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On a singular Liouville-type equation
and the Alexandrov isoperimetric inequality

DANIELE BARTOLUCCI AND DANIELE CASTORINA

Abstract. We obtain a generalized version of an inequality, first derived by
C. Bandle in the analytic setting, for weak subsolutions of a singular Liouville-
type equation. As an application we obtain a new proof of the Alexandrov isoperi-
metric inequality on singular abstract surfaces. Interestingly enough, motivated
by this geometric problem, we obtain a seemingly new characterization of local
metrics on Alexandrov’s surfaces of bounded curvature. At least to our knowl-
edge, the characterization of the equality case in the isoperimetric inequality in
such a weak framework is new as well.

Mathematics Subject Classification (2010): 35B45 (primary); 35J75, 35R05,
35R45, 30F45, 53B20 (secondary).

1. Introduction

Let � ⇢ R2 be an open, smooth and bounded domain, K a measurable function on
�, and ! be a signed measure of bounded total variation in � and ! = !+ � !�
be its Jordan decomposition, that is, for a Borel set E ✓ �, it holds !±(E) =
supU⇢E (±!(U)). Then !± are non negative and mutually orthogonal measures of
bounded total variation on � and we define f = f+ � f�, where f+ and f� are
two superharmonic functions constructed as follows,

f±(x) = h±(x) +
Z

�
G(x, y)d!±(y), (1.1)

where h± are harmonic in �. Here G(x, y) denotes the Green’s function of �1
in �. We are concerned with some quantitative estimates for subsolutions of the
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Liouville-type equation,

�1u = 2Ke f eu in �. (1.2)

By assuming � simply connected, @� analytic, u an analytic and C0(�) subsolu-
tion of (1.2) with K (x) ⌘ K0 in � for some K0 � 0, in a pioneering paper [4], C.
Bandle proved that

L2(@�) � (4⇡ � !+(�) � K0M(�))M(�), (1.3)

where
L(@�) =

Z

@�
e
f+u
2 d`, and M(�) =

Z

�
e f+udx .

Here and in the rest of this paper d` and dx are used to denote the integration with
respect to the 1-dimensional and 2-dimensional Hausdorff measures H1 and H2
respectively.

The inequality (1.3) is sharp and in [4] the case where the equality holds is
characterized as well, see also [5]. Actually (1.3) admits a beautiful geometric
interpretation in terms of the Alexandrov isoperimetric inequality [2], as discussed
in [4] and more extensively in [5]. As we will see later on, the original geometric
setting of the problem in terms of singular isothermal coordinates [22], suggests
that (1.3) should hold in a more general form. This is our motivation and indeed
our main aim is to obtain a generalized version of (1.3) in a weak framework. To
state our result, we need some definitions first.
Definition 1.1. We say that E ⇢ R2 is a simple domain, if it is an open and
bounded domain whose boundary @E is the support of a rectifiable Jordan curve.
We will also say that E ⇢ R2 is a regular domain if it is a connected, open and
bounded domain whose boundary @E is the union of finitely many rectifiable Jor-
dan curves.
Definition 1.2. Let S ⇢ � be a finite set. We say that

f 2 L p,locloc (� \ S) or either u 2 W 2,p,loc
loc (� \ S) , for some p > 2,

if for each open and relatively compact set U b � \ S there exists p = pU > 2
such that,

f 2 L pU(U) or either u 2 W 2,pU(U) .

Also, by setting Br (S) =
S

p2S Br (p), we say that,

f 2 L p,loc (� \ S) or either u 2 W 2,p,loc (� \ S) , for some p > 2,

if for each r > 0, there exists pr > 2 such that,

f 2 L pr(� \ Br (S)) or either u 2 W 2,pr(� \ Br (S)) .
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Definition 1.3. Let f± be two superharmonic functions in � taking the form (1.1),
u 2 L1loc(�) and Ke f+u 2 L1loc(�). For any fixed and relatively compact Borel set
E b �, we define,

K+(E; K0) = sup
U✓E

⇢
1
2
!(U) +

Z

U
[K � K0]e f+udx

�
, (1.4)

where the supremum is taken over all Borel sets U ✓ E .
Finally we will need the following result about the local exponential integrability
of e f . Although similar exponential estimates for logarithmic potentials are well
known, see [21] or more recently [11] and [31], it seems that the statement which
is really needed here has been introduced only very recently in [1].

Proposition 1.4. Let f± be two superharmonic functions satisfying (1.1) in � and

S2⇡ = {x 2 � : !+(x) � 2⇡}. (1.5)

Then S2⇡ is finite, d1 = 1
4dist(S2⇡ , @�) > 0 and we have:

(i) It holds e�( f��h�) 2 L1(�) and e( f+�h+) 2 L p0,loc(�\S2⇡ ) for some p0 > 2;
(ii) If

forall x 2 �, it holds !+(x) < 4⇡. (1.6)

Then e( f+�h+) 2 Lq0(�) for some q0 > 1.

Let K0 � 0, f± be two superharmonic functions taking the form (1.1) and satisfying
(1.6), q0 > 1 and p0 > 2 be defined as in Proposition 1.4 and K 2 Ln,locloc (� \

S2⇡ ) \ Lsloc (�), for some n > 2p0
p0�2 and some s > q0

q0�1 . Our main results consist
in finding weak but still sufficient conditions to ensure that the following inequality

L2(@E) � (4⇡ � 2K+(E; K0) � K0M(E))M(E), (1.7)

holds, with a full characterization of the equality sign, where E is any relatively
compact subdomain E b �.

Theorem 1.5. Assume that

Ke f+u 2 L1 (�) , where u 2 L1 (�)

is a solution of (1.2) in the sense of distributions.
(1.8)

Then u 2 W 2,p,loc
loc (� \ S2⇡ ) \ W 2,q

loc (�) \ L1
loc(�), for some p > 2 and some

q 2 (1, 2), and in particular u is a strong solution of (1.2), that is,

�1u = 2Ke f eu for a.a. x 2 �. (1.9)

Moreover, for any fixed simple and relatively compact subdomain E b �, we have
M(E) < +1 and (1.7) holds.
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Theorem 1.6. Assume that u 2 W 2,p,loc
loc (� \ S2⇡ )\W 2,q

loc (�), for some p > 2 and
some q > 1, is a strong subsolution of (1.2), that is,

�1u  2Ke f eu for a.a. x 2 �. (1.10)

Then, for any fixed simple and relatively compact subdomain E b �, we have
M(E) < +1 and (1.7) holds.

Theorem 1.7. Let the assumptions of either Theorem 1.5 or Theorem 1.6 be satis-
fied. Then we have:

(i) The equality sign in (1.7) is attained if and only if u is a strong solution of (1.2)
in E and,

e f (z) + u(z) =
⌧ 2

�
�
�8

0

0(z)(80(z))
�↵

�
�
�
2

⇣
1+ K0⌧2

4(1�↵)2
|80(z)|2(1�↵)

⌘2 , for z 2 E, (1.11)

for some ⌧ 6= 0, where ↵ = 1
4⇡ !+(E) and 80 is a conformal map of E onto

the disk of unit radius, |80(z)| < 1 with 80(z0) = 0, for some z0 2 E;
(ii) If ! ? e f+uH2, then the equality holds if and only if, in addition to the above

conditions, one has K ⌘ K0 for a.a. z 2 E and ! = 4⇡↵�z=z0 , that is,
f (z) = h(z) + 4⇡↵G(z, z0) = h(z) � 2↵ log |80(z)|, for some harmonic
function h in E .

Remark 1.8. By using the fact that !+ ? !�, it is easy to check that if !� ?
e f+uH2, then we have

2K+(E; K0) = !+(E) + 2
Z

E
[K � K0]+e f+udx,

where K+ = max{K , 0}, while in general the equality sign should be replaced by
the inequality sign.
As far as one is just concerned with the inequality and not with the characterization
of the equality sign, then, if the assumptions of Theorem 1.5 are satisfied, then (1.7)
holds under much weaker conditions. The proof of this fact is based on Theorem
1.5 and on some results and arguments in [11] about the regularity properties of
Liouville-type equations.

Corollary 1.9. Let K0 � 0, and f± be two superharmonic functions taking the
form (1.1) and satisfying (1.6), and K 2 L1(�; e f+uH2) where u 2 L1 (�) is a
solution of (1.2) in the sense of distributions. Then:

(i) It holds u 2 W 1,r
loc (�) for any r 2 (1, 2) and et |u| 2 L1loc(�) for any t � 1;

(ii) The inequality (1.7) holds.
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Motivated by the study of a cosmic string equation, in a recent paper [8] we derived
(1.7) in the easier situation where !� ⌘ 0 while !+ is proportional to a Dirac delta.
The problem here is more subtle, and the crux of the proof is to attach to each strong
subsolution of (1.2) an auxiliary function (which we will denote by ⌘) which satis-
fies a Liouville type equation with Dirichlet boundary condition on E , and which
admits a suitable locally absolutely continuous weighted rearrangement (which we
will denote by ⌘⇤). The difficulty arises since, in view of the generality suggested
by the geometric application, no assumption is made about !, with the unique ex-
ception of the ”no-cusp” hypothesis (1.6). As a consequence, the term e f+ , which is
part of the weight factor in the weighted rearrangement, can come with almost any
kind of singularity. In particular, the standard argument [25] yielding the absolute
continuity of ⌘⇤, does not work in this case, neither in the slightly improved form
used to handle conical singularities, see [8]. We succeed in solving this problem by
a careful decomposition of the singular set of !+, see the definition of S2⇡ in (1.5).
The point is that S2⇡ is finite in �, while, locally in its complement, we come up
with enough summability for e f to guarantee that ⌘⇤ is absolutely continuous. This
approach, recently pursued in [1] to prove a regularity result for a class of singular
surfaces introduced by Alexandrov [3], motivates the peculiar notations introduced
in Definition 1.2. In particular, the assumptions about K and u, are essentially the
minimal requirements to match the regularity of ⌘ as allowed by the properties of
f derived in this way. The characterization of the equality case in this weak contest
is new as well.

To avoid repetitions we provide a unified proof of Theorems 1.5, 1.6 and 1.7,
which is divided in four steps. In the first and second step we construct ⌘, its
weighted rearrangement ⌘⇤ and prove that ⌘⇤ is locally absolutely continuous. Step
four contains the discussion about the equality case. Step three is the adaptation in
our setting of the part of Bandle’s argument which is concerned with the derivation
of a differential inequality and its consequences.

In the second part of this paper, and in the same spirit of [4], we will apply
(1.7) to derive a new proof of the Alexandrov isoperimetric inequality for K0 � 0
on abstract surfaces of bounded curvature, see (4.9) in Theorem 4.7. We refer the
reader to [5, 6, 13, 17, 19] and the references therein for a detailed exposition of the
proof and of the interesting history of Alexandrov’s inequality and to [26, 27] for
other more recent proofs. See also [9, 23]. While in the above references one can
find various proofs of the inequality (4.9), we were not able to find a proof of the
characterization of the equality case in the weak context pursued here, which seems
therefore to be new even in the geometric setting.

Besides, to apply our estimates to this problem, we need to prove a seemingly
new characterization of the structure of the metrics in local isothermal coordinates
for certain classes of singular surfaces, see Theorem 4.4. This intermediate result
can also be seen as another result in the description of the regularity properties of
isothermal coordinates systems on Alexandrov’s surfaces of bounded curvature re-
cently pursued in [1]. Finally, some explicit examples are discussed to illustrate
these results, including the isoperimetric inequality (4.9) on various singular sur-
faces homeomorphic to the 2-sphere.
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We conclude this introduction with a remark about the case where E is not
simple but just regular, that is, the possibility that E could be connected but not
simply connected.
Remark 1.10. If� is simply connected and the assumptions of either Theorem 1.5
or of Theorem 1.6 are satisfied, but if the set E b � is just assumed to be regular,
then it is straightforward to check that our proof yields the following inequality,

L2(@E) > (4⇡ � 2K+(Es; K0) � K0M(E))M(E), (1.12)

where Es is the interior of the closure of the union of E with the bounded compo-
nents of R2 \ E (the “holes” of E) , which we denote by (E)B , that is,

Es =
�

E [ (E)B .

In other words we still have an inequality of the form (1.7), but we have a worse
isoperimetric ratio, which is essentially obtained by subtracting the terms of the
total curvature relative to the “holes” of E . This is not a technical point, and in
fact it is possible to construct counterexamples to the inequality where these terms
are omitted, see for example [9, page 14]. The proof of this inequality is really the
same as that of Theorems 1.5, 1.6, but for the fact that in (3.22) and in (3.23) below
we use the Huber inequality (2.2) for the non contractible domain E . In particular
this is also why we obtain the strict inequality in this case. It is straightforward to
check that if the (weaker) assumptions of Corollary 1.9 are satisfied, then (1.12)
holds with the strict inequality replaced by the � sign.

This paper is organized as follows. In section 2 we prove Proposition 1.4 and
discuss the Huber’s inequality. In Section 3 we prove Theorems 1.5, 1.6, 1.7 and
Corollary 1.9. Sections 4 and 5 are devoted to the discussion of the Alexandrov
isoperimetric inequality and the related examples.

2. Preliminary estimates: exponential summability of subharmonic
functions and Huber’s inequality

The local exponential integrability of e f+ as claimed in Proposition 1.4 is not new,
see [1]. We provide the proof of Proposition 1.4 for the sake of completeness.

Proof of Proposition 1.4. Wewill denote by d� the diameter of�. Clearly S2⇡ is fi-
nite since!+ is finite, whence obviously dist(S2⇡ , @�)>0. Let d1= 1

4dist(S2⇡ ,@�)

and let us set �d = {x 2 � : dist(x, @�) < d}. Then !+(�d) & 0+ as d & 0+,
whence there exists d0 > 0 such that !+(�d) < ⇡

2 , for each d < 4d0. We choose
d0 possibly smaller to satisfy 4d0 < d1. It is not difficult to see that there exists
C0 > 0 such that,

( f+(x)�h+(x))�C0  w0(x) :=
1
2⇡

Z

�2d0

log
✓

d�
|x � y|

◆
d!+, for all x 2 �d0 .
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By Jensen’s inequality and Fubini-Tonelli theorem we can estimate,
Z

�d0

exp
✓

3⇡w0
!+(�2d0)

◆
dx


Z

�d0

dx
Z

�2d0

✓
d�

|x � y|

◆ 3
2 d!+(y)
!+(B2d0)

=
Z

�2d0

d!+(y)
!+(�2d0)

Z

�d0

✓
d�

|x � y|

◆ 3
2
dx


Z

�2d0

d!+(y)
!+(�2d0)

Z

Bd� (y)

✓
d�

|x � y|

◆ 3
2
dx = ⇡(2d�)2,

where we used the fact that �d0 ⇢ Bd�(y). This inequality shows that e( f+�h+) 2
L6(�d0).

(i) Since �( f� � h�) is negative, then e�( f��h�) 2 L1(�). Let �0 =
{� \� d0

2
} \ Br (S2⇡ ), with 0 < r < d1, and let us fix x0 2 �0. Since !+(x0) < 2⇡ ,

then we can find " > 0 such that there exists R > 0 depending on x0 and ", such
that the ball centred at x0, say B2R := B2R(x0), satisfies B2R b {� \ �d0} \ S2⇡
and !+(B2R)  2⇡ � 2". As above there exists C > 0 such that,

( f+(x) � h+(x)) � C  w(x) :=
1
2⇡

Z

B2R
log

✓
4R

|x � y|

◆
d!+,

for all x 2 Dx0 ⌘ D0 := BR(x0),

and for any � < 4⇡ we can estimate,
Z

D0
exp

✓
(4⇡ � �)w

!+(B2R)

◆
dx


Z

D0
dx

Z

B2R

✓
d�

|x � y|

◆2� �
2⇡ d!+(y)
!+(B2R)

=
Z

B2R

d!+(y)
!+(B2R)

Z

D0

✓
d�

|x � y|

◆2� �
2⇡
dx


Z

B2R

d!+(y)
!+(B2R)

Z

Bd� (y)

✓
d�

|x � y|

◆2� �
2⇡
dx =

(2⇡d�)2

�
.

Therefore, in particular by choosing � < ", we see that pD0 :=
(4⇡��)
!+(D0) > (4⇡�")

!+(B2R) > 2
so that e( f+�h+) 2 L pD0 (D0), for some pD0 > 2 depending on x0 and R.

At this point we define B =
S

x2�0 Dx , where each Dx , constructed as above,
comes with its own pDx > 2. Clearly B is an open cover of �0, and since �0
is compact, then we can extract a finite cover Dx j , with j = 1, . . . , N , and set
pU := min{6,min j=1,...,N pDx j }. Therefore e

( f+�h+) 2 L pU (� \ Br (S2⇡ )), for
some pU > 2, which proves (i).

(ii) Let us define�1 = � \� d0
2
. We use (1.6), as in the proof of (i) to conclude

that e( f+�h+) 2 Lq(�1) for some q > 1. Therefore we find e( f+�h+) 2 Lq0(�)
where q0 = min{6, q} > 1, as claimed.
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Next we present the well known Huber inequality [18] as well as a generaliza-
tion, suitable to be applied to regular (whence in particular non simply connected)
domains.

Theorem 2.1 (Huber inequality, [18]). Let � ⇢ R2 be open and bounded and
E b � be a simple and relatively compact subset. Let f be the difference of two
superharmonic functions in � taking the form (1.1). Then it holds

✓Z

@E
e
f
2 d`

◆2
� (4⇡ � !+(E))

Z

E
e f dx . (2.1)

The equality holds in (2.1) if and only if, in complex notations,

f (z) = c + 2 log
�
�80(z)(8(z)�↵E )

�
�

where ↵E = 1
4⇡ !+(E) and 8 is a conformal map of E onto the disk of unitary

radius |w| = |8(z)| < 1 with 8(z0) = 0 for some z0 2 E .

We will need the following generalization of the Huber result.

Theorem 2.2. Let � ⇢ R2 be open and bounded and E b � be a simple and
relatively compact subset. Let f be the difference of two superharmonic functions
in � taking the form (1.1). If U ✓ E is a regular domain, then it holds

✓Z

@U
e
f
2 d`

◆2
� (4⇡ � !+(E))

Z

U
e f dx . (2.2)

In particular, if U is not simply connected, then the inequality is strict.

Proof. In view of Theorem 2.1 we are left to discuss the cases where U is not
simply connected and prove in particular that in all those cases the inequality is
strict. Obviously the strict inequality is trivially satisfied if !+(E) � 4⇡ , whence
we assume without loss of generality that !+(E) < 4⇡ . Let us assume for the
moment that U = U1 \ U0 for a pair of simple domains such that U0 b U1 and
@U = @U1 [ @U0. So U1 = U [ U0 and in this case, by assumption we have
E = U1 and in particular !+(U0) < !+(U1) < 4⇡ . For any domain U ⇢ R2, let
us set

`(@U) =
Z

@U
e
f
2 d`, and M(U) =

Z

U
e f dx .

Thus we may use (2.1) to obtain

`2(@U) = `2(@U1 [ @U0) > `2(@U1) + `2(@U0)
� (4⇡ � !+(U1))M(U1) + (4⇡ � !+(U0))M(U0)
> (4⇡ � !+(U1))M(U1) > (4⇡ � !+(U1))M(U),

which is (2.2) in this particular case. The case where R2 \ U has finitely many
bounded components readily follows by an induction argument on the number of
“holes” of U . Obviously the inequality is always strict whenever U is not simply
connected.
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3. The proof of Theorems 1.5, 1.6, 1.7 and of Corollary 1.9

This section is devoted to the proof of Theorems 1.5, 1.6, 1.7 and of Corollary 1.9.

Proof of Theorems 1.5, 1.6, 1.7. Once the result has been established for K0 6= 0,
then the case K0 = 0 is worked out by an elementary limiting argument, which is
why we will just discuss the case K0 > 0.

We recall that by assumption np0
n+p0 > 2 and sq0

s+q0 > 1. First of all, we have the
following,

Lemma 3.1. The following facts hold:

(a) If (1.8) holds and if K 2 Lsloc (�) for some s > q0
q0�1 , then,

Ke f+u 2 Lrloc (�) ,

and u 2 L1
loc(�)\W 2,r

loc (�), for any 1  r  sq0
s+q0 . In particular u is a strong

solution of (1.2);
(b) If (1.8) holds and if K 2 Ln,locloc (� \ S2⇡ ) \ Lsloc (�) for some n > 2p0

p0�2 and
some s > q0

q0�1 , then,

Ke f+u 2 Lk,locloc (� \ S2⇡ ) \ Lrloc (�) , (3.1)

and u 2 W 2,k,loc
loc (� \ S2⇡ ) \ W 2,r

loc (�) \ L1
loc(�), for any 2 < k  np0

n+p0 and
1  r  sq0

s+q0 . In particular u is a strong solution of (1.2).

Proof. (a) By assumption we have sq0
s+q0 > 1 and then, in view of Proposition 1.4,

we also have Ke f 2 Lqloc(�), for all 1 < q  sq0
s+q0 . On the other hand, since

Ke f+u 2 L1(�), then, by [11, Remark 2], we have e|u| 2 Lkloc(�) for any k > 0,
and therefore in particular eu 2 Lq

0

(�), where q 0
= q

q�1 < +1. Thus we can
apply another result in [11] (see [11, Remark 5]), which yields u 2 L1

loc(�). So,
by standard elliptic estimates, we conclude also that u 2 W 2,r

loc (�) and in particular
that u is a strong solution of (1.2).

(b) Next, let us fix a compact setU ⇢ �\S2⇡ and observe that, by assumption,
K 2 Ln(U) for some n > 2pU

pU�2 . Therefore
npU
n+pU > 2 and then, in view of

Proposition 1.4, we also have Ke f 2 L p(U), 8 2 < p  npU
n+pU . Since U is

arbitrary, then we conclude that Ke f+u 2 Lk,locloc (� \ S2⇡ ) \ Lrloc(�), for any 2 <

k  npU
n+pU and 1 < r  sq0

s+q0 . As above, by standard elliptic estimates, we conclude
also that u 2 W 2,k,loc

loc (�\S2⇡ )\W 2,r
loc (�) and in particular that u is a strong solution

of (1.2).



44 DANIELE BARTOLUCCI AND DANIELE CASTORINA

Lemma 3.1 shows that if (1.8) holds, then u 2 W 2,p,loc
loc (� \ S2⇡ )\W 2,q

loc (�)\
L1
loc(�), for some p > 2 and q > 1, and moreover that u is a strong solu-
tion of (1.2). Whence we are reduced to the analysis of the case where u 2
W 2,p,loc
loc (� \ S2⇡ ) \ W 2,q

loc (�) \ L1
loc(�), for some p > 2 and q > 1, satisfies

(1.10). In particular, in the rest of the proof, we will use the fact that, by the Sobolev
embedding Theorem, u 2 C0loc(�). Clearly, in view of (3.1), M(E) is finite. We
divide the proof into four steps.

Step 1. Since E b � is relatively compact and simple, then we can find an open,
simply connected, relatively compact and smooth domain �0 such that,

E b �0 b �.

Since S2⇡ is finite and since !±(�0) < +1, then we can choose �0 such that, for
some N 2 N,

S02⇡ := S2⇡ \�0 = {q1, . . . , qN } ⇢ �0 and @�0 \ S2⇡ = ;. (3.2)

Clearly, in view of (1.10), we have,

�1u  2Ke f eu = 2[K � K0]e f eu + 2K0e f eu for a.a. x 2 �0. (3.3)

Next, let us define,

�(x) := �1u � 2[K � K0]e f eu � 2K0e f eu, for x 2 �0. (3.4)

Since u 2 W 2,p,loc
loc (� \ S2⇡ ) \ W 2,q (�) \ C0loc(�), for some p > 2 and some

q > 1, and in view of (3.1) and of Proposition 1.4, we see from (3.3) that,

�(x)  0, for a.a. x 2 �0 and � 2 L p,locloc (�0 \ S02⇡ ) \ Lq(�0),

for some p > 2 and some q > 1. Therefore, in view of [16, Theorem 9.15,
Corollary 9.18 and Lemma 9.17] we see that the linear problem,

1w = � in �0, w = 0 on @�0, (3.5)

admits a unique strong solution w 2 W 2,p,loc
loc (�0 \ S02⇡ )\W 2,q(�0)\C0(�0 ), for

some p > 2 and some q > 1. Obviously w is superharmonic (see [16, Section 2.8
and Example 2.7, 2.8]).

Next let f1 be the Perron’s (see [16, Section 2.8]) solution of 1 f1 = 0 in E ,
f1 = �u on @E . Since u 2 C0(E), then f1 is well defined and continuous up
to the boundary (see [16, Section 2.8 ]). Let us also define f2 to be the unique
W 2,p,loc
loc (�0 \ S02⇡ ) \ W 2,q(�0) \ C0(�0) (for some p > 2 and some q > 1)

solution of the linear problem,

�1 f2 = 2[K � K0]e f eu in �0, f2 = 0 on @�0.
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With these definitions, we may finally set ⌘ = u + w + f1 � f2. Then, we see that
⌘ 2 W 2,p,loc

loc (E \ S02⇡ ) \ W 2,q(E) \ C0( E ) for some p > 2 and some q > 1 and
satisfies,

�1⌘ = 2K0 e e⌘ for a.a. x 2 E, ⌘ = 0 on @E, (3.6)
where

 = f+ + f2 � f� � w � f1. (3.7)
By Sobolev embedding theorem we conclude that,

⌘+ 2 C1loc
�
E \ S02⇡

�
. (3.8)

Since ⌘ 2 W 2,q(E), for some q > 1, then by using Sobolev embedding once more
we see that ⌘ 2 W 1,2(E) \ C0(E). Then by the maximum principle for weak
solutions (see for example [16, Theorem 8.1 ]) we deduce that ⌘ � 0. In particular,
by the strong maximum principle for weak supersolutions (see for example [16,
Theorem 8.18]) we also check that ⌘ is strictly positive in E . In particular, we
conclude that,

⌘(x) > 0 for all x 2 E and ⌘(x) = 0 () x 2 @E . (3.9)

Step 2. Let us set t+ = maxE ⌘,

d⌧ = e dx, � = e
 
2 d`,

and let us define,

�(t) = {x 2 E | ⌘(x) > t}, t 2 [0, t+),

and 0(t) = {x 2 E | ⌘(x) = t}, t 2 [0, t+],

and
µ(t) =

Z

�(t)
d⌧.

Since ⌘ satisfies (3.6), then 0(t) has null measure, whence we conclude that µ is
continuous. Moreover, in view of (3.9), we find that,

�(0) = E, 0(0) = @E, µ(0) =
Z

E
d⌧. (3.10)

Clearly we can extend µ on [0, t+] by setting µ(t+) = limt%t+ µ(t) = 0+, whence
µ 2 C0([0, t+]). Next, by using (3.6) once more, it is not difficult to see that the
2-dimensional measure of the set {x 2 E : r⌘(x) = 0} vanishes. Therefore, by
a well known consequence of the co-area formula (see for example [12, page 158])
and of Sard’s Lemma for Sobolev functions [14] (here we use also (3.2)), we see
that,

dµ(t)
dt

= �
Z

0(t)

e 

|r⌘|
d`, (3.11)

for a.a. t 2 [0, t+].
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At this point, for any s 2 [0, µ(0)) ⌘ [µ(t+), µ(0)), we introduce a weighted
rearrangement of ⌘,

⌘⇤(s) = |{t 2 [0, t+] : µ(t) > s}|, (3.12)

where |U | denotes the Lebesgue measure of a Borel set U ⇢ R. By setting
⌘⇤(µ(0)) = 0, then ⌘⇤ 2 C0([0, µ(0)]) is the inverse of µ on [0, t+] and coin-
cides with the distribution function of µ. Actually ⌘⇤ is strictly decreasing, whence
differentiable almost everywhere. A crucial point at this stage is to prove that ⌘⇤ is
not just continuous and differentiable almost everywhere, but also locally absolutely
continuous. It turns out that in fact it is locally Lipschitz in (0, µ(0)) as shown in
the following Lemma.
Lemma 3.2. For any 0 < a  a < b  b < µ(0), there exist C = C(a,
b, S2⇡ ,K+(E; K0)) > 0 such that,

⌘⇤(a) � ⌘⇤(b)  C(b � a). (3.13)

Proof. In view of (3.2) and (3.8), we see that |r⌘|  CU on any U b E \ S02⇡ . Let
us then set ti = ⌘(xi ) and xi 2 S2⇡ for i = 1, . . . ,m, with m  N , and t0 = ⌘⇤(a)
and tm+1 = ⌘⇤(b). For any

" < min
⇢

|⌘⇤(a) � ⌘⇤(b)|
4(m + 1)

,
1
4

min
i=0,...,m

{ti+1 � ti }
�

,

we can find � = �" such that ⌘�1[ti + ", ti+1 � "] \ B�(S2⇡ ) = ; for any i =
0, . . . ,m, where B�(S2⇡ ) is a �-neighbourhood of the set S2⇡ . Therefore, in partic-
ular, we can find C" > 0 such that |r⌘(x)|  C", for all x 2 ⌘�1[ti + ", ti+1 � "].
At this point, since K0 > 0, then we can assume without loss of generality that
2�E (K0) := 4⇡�2K+(E; K0) > 0 (otherwise 4⇡�2K+(E; K0)�K0M(E) < 0
and (1.7) would be trivially satisfied). Therefore we can use the coarea formula
(see [12, page 158]) and Huber’s isoperimetric inequality (2.2), to conclude that,

b � a =µ(⌘⇤(b))�µ(⌘⇤(a))=
Z

⌘>⌘⇤(b)
d⌧�

Z

⌘>⌘⇤(a)
d⌧=

Z

⌘⇤(b)<⌘⌘⇤(a)
d⌧

�
Z

⌘⇤(b)<⌘<⌘⇤(a)
d⌧=

Z ⌘⇤(a)

⌘⇤(b)

✓Z

0(t)

d�
|r⌘|

◆
dt=

mX

i=0

Z ti+1

ti

✓Z

0(t)

d�
|r⌘|

◆
dt

�
mX

i=0

Z ti+1�"

ti+"

✓Z

0(t)

d�
|r⌘|

◆
dt �

1
C"

mX

i=0

Z ti+1�"

ti+"

✓Z

0(t)
d�

◆
dt

�

p
2�E (K0)
C"

mX

i=0

Z ti+1�"

ti+"

s✓Z

�(t)
d⌧

◆

�

p
2�E (K0)
C"

s✓Z

�(⌘⇤(b))
d⌧

◆ mX

i=0

Z ti+1�"

ti+"
dt

=C(a, b, S2⇡ ,K+(E; K0))|⌘⇤(a)�⌘⇤(b)�2(m+1)"|�
1
4
C|⌘⇤(a)�⌘⇤(b)|,

for a strictly positive constantC depending on a,b,S2⇡ ,K+(E;K0), as claimed.
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Step 3. In view of (3.11) we obtain,

d⌘⇤(s)
ds

= �

✓Z

0(⌘⇤(s))

e 

|r⌘|
d`

◆�1

, (3.14)

for any s 2 I ⇤, where [0, µ(0)] \ I ⇤ is a set of null measure and, by setting I :=
⌘⇤(I ⇤), then µ(I ) = I ⇤. Next, let us define,

F(s) = 2K0
Z

�(⌘⇤(s))
e⌘d⌧, for s 2 [0, µ(0)],

where,
F(µ(0)) = 2K0

Z

E
e⌘d⌧ = 2K0M(E), (3.15)

and we have set,
F(0) = lim

s&0+
F(s) = 0+. (3.16)

Clearly F(s) is strictly increasing and continuous on [0, µ(0)] and in particular
locally Lipschitz in (0, µ(0)), since in fact it satisfies,

|F(s) � F(s0)|  C|µ(⌘⇤(s)) � µ(⌘⇤(s0))| = C|s � s0|,
for all 0 = µ(t+) < s0 < s < µ(0),

for a suitable constant C > 0. In particular it holds,
Z

�(⌘⇤(s))
eud⌧ =

Z s

0
e⌘

⇤(�)d�, for all s 2 [0, µ(0)],

so that,

dF(s)
ds

= 2K0e⌘
⇤(s), and

d2F(s)
ds2

= 2K0
d⌘⇤(s)
ds

e⌘
⇤(s)

=
d⌘⇤(s)
ds

dF(s)
ds

, for all s 2 I ⇤.
(3.17)

We remark that since ⌘⇤(s) is differentiable almost everywhere, then the formula
for the first derivative of F(s) shows that in fact dF(s)

ds is differentiable almost ev-
erywhere as well.

For any s 2 I ⇤ the Cauchy-Schwartz inequality yields,
✓Z

0(⌘⇤(s))
d�

◆2


✓Z

0(⌘⇤(s))

e 

|r⌘|
d`

◆✓Z

0(⌘⇤(s))
|r⌘|d`

◆

=

✓
�
d⌘⇤(s)
ds

◆�1 ✓Z

0(⌘⇤(s))

✓
�
@⌘

@⌫+

◆
d`

◆
,

(3.18)
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where ⌫+ = r⌘
|r⌘| is the exterior unit normal to �(⌘⇤(s)) and we have used (3.14).

Obviously, we can assume without loss of generality that ⌘�1(S2⇡ \ E) /2 I , so
that, since ⌘ satisfies (3.8), then (3.6) readily implies that

Z

0(⌘⇤(s))

✓
�
@⌘

@⌫+

◆
d` =

Z

�(⌘⇤(s))
2K0 e⌘d⌧,

for any s 2 I ⇤. Therefore, in particular we deduce that
Z

0(⌘⇤(s)))

✓
�
@⌘

@⌫+

◆
d` =

Z

�(⌘⇤(s))
2K0 e⌘d⌧ = F(s),

for any s 2 I ⇤. Plugging this identity in (3.18) we find
✓Z

0(⌘⇤(s))
d�

◆2


✓
�
d⌘⇤(s)
ds

◆�1
F(s), (3.19)

for any s 2 I ⇤. Clearly, in view of (3.7), we have

�1 = !+ � !� + � �1 f2  ! + 2[K � K0]e f eu, (3.20)

whence
sup
U⇢E

⇢Z

U
(�1 )

�
 2K+(E; K0), (3.21)

and we can apply generalized Huber’s inequality (2.2) to conclude that
✓Z

0(⌘⇤(s))
d�

◆2
� [4⇡�2K+(E; K0)]µ(⌘⇤(s)) ⌘ [4⇡�2K+(E; K0)]s, (3.22)

for any s 2 I ⇤ \ (0, µ(0)).
Remark 3.3. If 4⇡ � 2K(E; K+

0 ) < 0, then (3.22) trivially satisfied.
To simplify the exposition let us set,

2�E (K0) = 4⇡ � 2K+(E; K0).

Hence, substituting (3.22) in (3.19), we obtain,

2�E (K0)s 

✓
�
d⌘⇤(s)
ds

◆�1
F(s), for any s 2 I ⇤ \ (0, µ(0)).

So, multiplying by dF(s)
ds

⇣
�d⌘⇤(s)

ds

⌘
, we come up with the inequality,

2
dF(s)
ds

✓
d⌘⇤(s)
ds

◆
�E (K0)s +

dF(s)
ds

F(s) � 0, for any s 2 I ⇤ \ (0, µ(0)),
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and conclude that,

d
ds


2�E (K0)s

dF(s)
ds

� 2�E (K0)F(s) +
1
2
(F(s))2

�
� 0,

for any s 2 I ⇤ \ (0, µ(0)). Let P+(s) denote the functions in the square brackets.
Since F and ⌘⇤ are both continuous and locally Lipschitz continuous in [0, µ(0)]
and since, in view of (3.17), dF(s)

ds is continuous and locally Lipschitz continuous
in [0, µ(0)] as well, then we come up with the inequality,

P+(µ(0)) � P+(0) � 0.

Therefore we can use (3.15), (3.16) and (3.17) to obtain,
h
2�E (K0)µ(0)2K0e⌘

⇤(µ(0)) � 2�E (K0)(2K0M(E)) + 2(K0)2M2(E)
i

� 0.

Since ⌘⇤(µ(0)) = 0, this is equivalent to the following inequality,

2�E (K0)µ(0) � 2�E (K0)M(E) + K0M2(E) � 0.

So, by using the inequality (3.22) once more and (3.10) we find,

L2(@E) =

✓Z

@E
e
u
2 ds

◆2
⌘

✓Z

0(0)
d�

◆2
� 2�E (K0)µ(0)

� 2�E (K0)M(E) � K0M2(E)

= (4⇡ � 2K+(E; K0) � K0M(E))M(E),

(3.23)

which is (1.7) as claimed.

Step 4. We will discuss here the case where the equality holds in (1.7).
First of all, there is no chance to have the equality in (1.7) if the strict inequality

holds in (3.21). Therefore, because of (3.20), we see that we must have � = 0 for
a.a. x 2 E , that is, in view of (3.3) and (3.4), we also conclude that u must be a
solution of (1.2) in E , and not just a subsolution as in (1.10).

Next we must have the equality sign in the Huber inequality used in (3.22) for
a.a. s 2 I ⇤ \ (0, µ(0)) and in (3.23) for s = µ(0). Therefore, in view of (2.1) and
(2.2), we conclude that for each t 2 I [ {0}, we have,

(a) �(t) is simply connected and  (z) = ct + 2 log
�
�
�8

0

t (z)(8t (z))�↵�(t)
�
�
� ,

with z 2 �(t),

where ↵�(t) = 1
2⇡K+(�(t); K0), ct 2 R and 8t is a conformal map of �(t) onto

the disk of unit radius |w| = |8t (z)| < 1 with 8t (zt ) = 0, for some zt 2 �(t).
Here  is the function defined in (3.7). Since � vanishes, then we have the equality
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sign in (3.20) and (3.21) which therefore do not provide other conditions. However,
in view of Sard’s lemma for Sobolev functions, we can assume without loss of
generality that�(t) is simple for each t 2 I[{0}, so that each8t can be extended to
a univalent and continuous map from�(t) to a closed unit disk, see for example [20,
Theorem 2.6 ]. At this point, by setting w = 80(z), and in view of (a), we conclude
that

v(w) := ⌘
�
8�1
0 (w)

�
,

is a strong solution of

�1v = 2K0ec0 |w|�2↵ ev in {|w| < 1}, v = 0 on |w| = 1,

where ↵ = ↵E ⌘ ↵�(0). In particular we have that the level lines of v are concentric
circles centred at the origin, that is, v is radial. Actually, by using the Brezis-Merle
estimates for Liouville type equations (see [11, Remark 5]) and standard elliptic
theory, we see that v is analytic far away from the origin and of class W 2,q(B1), for
a suitable q > 1 depending on ↵.

Thus, by a straightforward evaluation we find that,

v(w) = log
⌧ 20

✓
1+

K0ec0⌧20
4(1�↵)2

|w|2(1�↵)

◆2 , for |w| < 1,

for a suitable constant ⌧0 6= 0, to be fixed in order to satisfy the Dirichlet boundary
condition.

As a consequence we find that,

⌘(z) = log
⌧ 2e�c0

⇣
1+ K0⌧2

4(1�↵)2
|80(z)|2(1�↵)

⌘2 , with z 2 E,

for some ⌧ 6= 0 and then, since in particular e (z) = ec0
�
�
�8

0

0(z)(80(z))
�↵

�
�
�
2
, we

see that,

⌘(z) = log
⌧ 2e� (z)

�
�
�8

0

0(z)(80(z))
�↵

�
�
�
2

⇣
1+ K0⌧2

4(1�↵)2
|80(z)|2(1�↵)

⌘2 , with z 2 E .

Since ⌘ +  = f + u, then we finally conclude that

e f (z) + u(z) =
⌧ 2

�
�
�8

0

0(z)(80(z))
�↵

�
�
�
2

⇣
1+ K0⌧2

4(1�↵)2
|80(z)|2(1�↵)

⌘2 , for z 2 E,



ON A SINGULAR LIOUVILLE-TYPE EQUATION 51

as claimed in (i) of Theorem 1.7. Finally, by using the well known fact that the
logarithm of the modulus of a non vanishing holomorphic function is harmonic, we
find that,

2Ke f+u = �1u

= 1 f �1 log
✓�
�
�8

0

0(z)(80(z))
�↵

�
�
�
2
◆

+ 21 log

 

1+
K0⌧ 2

4(1� ↵)2
|80(z)|2(1�↵)

!

= 1 f + 4⇡↵�z=z0 + 2K0e f+u = �! + 4⇡↵�z=0 + 2K0e f+u,

in the sense of distributions in E and classically in E \ {0}. Therefore, if ! ?
e f+uH2, then this identity can be satisfied if and only if,

2Ke f+u ⌘ 2K0e f+u for a.a. z 2 E, (3.24)

and ! = 4⇡↵�z=z0 . In other words

f (z) = h(z) + 2↵G(z, z0) = h(z) � 2↵ log |80(z)|, (3.25)

for some h harmonic in E . At this point (3.24) and (3.25) readily imply that K ⌘
K0 for a.a. z 2 E , which proves (ii) of Theorem 1.7.

Proof of Corollary 1.9. (i) In this situation we just know that u 2 L1loc(�) and
Ke f+u 2 L1loc(�). So we also have 1u 2 L1loc(�) and then in particular, by
the Green representation formula, |ru| 2 L1loc(�). By [11, Remark 2] we find
et |u| 2 L1loc(�) for any t � 1 and letting �0 b � be any open, smooth and
relatively compact subset, we have u 2 L1(@�0) by standard trace embeddings.
Let u = u1+u2, where u1 is the unique weak solution (in the sense of Stampacchia
[24]) of the Dirichlet problem,

(
�1u1 = 2Ke f+u in �0
u1 = 0 on �0,

and u2 satisfies, (
�1u2 = 0 in �0
u2 = u on �0.

Then u2(x) = �
R
@�0

u(y) @G0@⌫ (x � y)d`y , where G0 is the Green function of �1
relative to �0, and since u 2 L1(@�0), then u2 2 L1

loc(�0). Moreover, u1 2

W 1,r
0 (�0) for any r 2 (1, 2) by the results in [24] and then we find u 2 W 1,r

loc (�).
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(ii) Let E be any relatively compact and simple subset, we can find an open,
smooth, simple and relatively compact subset �1 such that E b �1 b �. Let
Kn 2 C0(�1) be any sequence satisfying,

Kn  K a.e. in �1 and Kne f+u ! Ke f+u, as n ! +1, in L1(�1). (3.26)

Next, let vn = vn,1 + u2, where vn,1 is the unique weak solution (in the sense of
Stampacchia [24]) of the Dirichlet problem,

(
�1vn,1 = 2Kne f+u in �1
vn,1 = 0 on �1,

and u2 satisfies, (
�1u2 = 0 in �1
u2 = u on �1.

Obviously, as in (i) we find u2 2 L1
loc(�1). In particular, by the Green representa-

tion formula, it is not difficult to see that,

vn  u a.e. in �1. (3.27)

Let us observe that, by Theorem 4.4, e f+u = e⇢ 2 L p0,locloc (� \ S2⇡ ) \ Lq0loc(�) for
some p0 > 2 and q0 > 1, whence by standard elliptic estimates and the Sobolev
embedding we find vn 2 W 2,q0(�1) \ C0(�1). By using (3.26) with well known
results in [24], we conclude that vn ! u in W 1,r

loc (�1), for any r 2 (1, 2). At this
point we observe that vn is a solution of,

�1vn = 2cKne f evn in �1,

where,
cKn = Kneu�vn satisfies sup

�1

|cKn|  Cneu .

By (i) we have cKn 2 Lt (�1) for any t � 1. On the other side, by Proposition
1.4, we also find that e f 2 Ls,locloc (� \ S2⇡ ) \ Lmloc(�) for some s > 2 and m > 1.
Therefore we can apply Theorem 1.5 on �1 with K = cKn and u = vn , to conclude
that,

✓Z

@E
e
f+vn
2 d`

◆2
�

✓
4⇡ � 2K+,n(E; K0) � K0

Z

E
e f+vn

◆Z

E
e f+vn , (3.28)

where,

K+,n(E; K0) = ks,+(E) +
Z

E
[cKn � K0]+e f+vn dx .
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Since vn ! u in W 1,r
loc (�1) and in view of (3.26), along a subsubsequence (which

we will not relabel) we have vn ! u a.e. in �1 and Kne f+u ! Ke f+u, as n !
+1, a.e. in �1. Then, by (3.27) and the dominated convergence theorem we con-
clude that,

Z

E
e f+vn !

Z

E
e f+u, as n ! +1,

K+,n(E; K0) ! K+(E; K0), as n ! +1,

and, Z

@E
e
f+vn
2 d` !

Z

@E
e
f+u
2 d`,

where for the second limit we observe that,

[cKn � K0]+e f+vn = [Kneu�vn � K0]+e f+vn  [Keu�vn ]+e f+vn = [K ]+e f+u .

It is understood that the last limit holds true whenever
R
@E e

f+u
2 d` is finite, oth-

erwise (1.7) is trivially satisfied since M(E) < +1. Therefore, in the limit
n ! +1, along the given subsequence we recover (1.7), as claimed.

4. Application to the Alexandrov isoperimetric inequality

The notion of surface of bounded curvature (SBC for short) was introduced by A.D.
Alexandrov [2], as a model to describe surfaces with a wide variety of singularities.
A detailed discussion of this subtle subject is behind the scope of our work, and we
refer the reader to [3,22] for a complete account about the subject, and to [30] for a
shorter exposition of some of the main results. Here we will just use an equivalent
local description of these objects.

Indeed, according to a series of results due to Huber and Reshetnyak, see [22],
an SBC without boundary can be equivalently defined as a Riemann surfaceM
equipped with a metric g, which admits an atlas of local charts U = {Uj ,8 j } j2J ,
such that each 8 j is an isometry of Uj on � j = 8 j (Uj ), with � j ⇢ R2(' C), a
smooth, open and bounded set, such that g in local coordinates takes the form of a
quadratic differential, 8#j (g) = e⇢ j (z)|dz|2, with z = x + iy 2 C. Here # denotes
the standard pull-back, |dz|2 is the Euclidean metric and ⇢ ⌘ ⇢ j = ⇢+ �⇢�, where
⇢± are two superharmonic functions defined by

⇢±(z) = h0±(z)+
Z

� j

0(z, y)d!0±(y), and 0(z, y) =
1
2⇡

log
✓

1
|z � y|

◆
, (4.1)

with h0± harmonic in � j . Here !0± are the mutually orthogonal non negative mea-
sures defined by the Jordan decomposition of a measure of bounded total variation
on� j , !0 = !0+�!0� . Any such system of coordinates is said to be isothermal and
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any metric taking the form e⇢(z)|dz|2 with ⇢ as in (4.1) is said to be subharmonic.
Among other things, the definition is completed by the transitions rules between
charts of functions and holomorphic forms, thus including the metric, see [22] for
further details.

This is why we will focus our attention on the local model of an SBC.
Definition 4.1. An abstract surface of bounded curvature (ASBC for short) is a
pair S =

�
�, e⇢(z)|dz|2

�
, where � ⇢ R2 is open, smooth and bounded and ⇢ =

⇢+ � ⇢�, with ⇢± as defined in (4.1).
Hence, if S =

�
�, e⇢(z)|dz|2

�
is an ASBC, according to Reshetnyak (see [22, The-

orem 8.1.7]), the total curvature K, is the measure of finite total variation defined
as follows,
Definition 4.2. Let S =

�
�, e⇢(z)|dz|2

�
be an ASBC. The total curvature K(E) of

a Borel set E ✓ � is defined by:

2K(E) := !0(E) = !0+(E) � !0�(E).

Remark 4.3. We remark that, with this definition, the total curvature is well de-
fined and finite for any Borel set E ✓ �. Nevertheless, if for some z0 2 � it holds
!0+(z0) � 4⇡ , then the lengths and areas of sets containing z0, as defined via the
metric g = e⇢(z)|dz|2 (see (4.6), (4.7) below) are not well defined in general. Any
point z0 2 � which satisfies !0+(z0) � 4⇡ is said to be a cusp.
From now on we will assume that S =

�
�, e⇢(z)|dz|2

�
is an ASBC with no cusps,

that is, we assume that,

for all z 2 �, it holds !0+(z) < 4⇡. (4.2)

Let S2⇡ = {x 2 � : !0+(z) � 2⇡}. We have the following seemingly new result
about the structure of subharmonic metrics with no cusps. Interestingly enough it
is sharp, see Example 5.1 below for further details. The proof is based on vari-
ous results and arguments in [11] about the regularity properties of Liouville-type
equations. HereH2, denotes the 2-dimensional Hausdorff measure.

Theorem 4.4. Let S =
�
�, e⇢(z)|dz|2

 
be an ASBC with no cusps. Then e⇢ 2

L p0,locloc (� \ S2⇡ ) \ Lq0loc (�) for some p0 > 2 and some q0 > 1. Moreover, there
exists K 2 L1loc

�
�; e⇢H2

�
and a Radon measure ks on �, satisfying ks ? e⇢H2,

such that, letting ks = ks,+ � ks,� be the Jordan decomposition of ks , then ⇢ can
be decomposed as ⇢ = u + f , where f = f+ � f�, with f± satisfying (1.1)
with !± = 2ks,± and h± suitable harmonic functions and where u 2 L1loc(�) is a
solution of,

�1u = 2Ke f+u in �, (4.3)
in the sense of distributions. In particular, one of the following holds:

(i) We have K 2 Lsloc (�), for some s > q0
q0�1 and then u is a strong solution of

(4.3) which satisfies u 2 L1
loc(�) \ W 2,r

loc (�), for all 1  r  sq0
s+q0 ;



ON A SINGULAR LIOUVILLE-TYPE EQUATION 55

(ii) We have u 2 W 1,r
loc (�) for any r 2 (1, 2) and et |u| 2 L1loc(�) for any t � 1.

In both cases,

e⇢(z)|dz|2 ⌘ eu(z)+ f (z)|dz|2, with z 2 �, and Ke f+u 2 L1loc(�),

and
K(E) =

Z

E
Ke f+u + ks(E), (4.4)

for any relatively compact Borel set E b �. Moreover, if ⇢ = u + f for a pair
{u, f } as above, then, for any fixed h harmonic in �, the pair {uh, fh} := {u �
h, f + h} satisfies the same properties with ⇢ = uh + fh .

Proof. Let H(z, y) = G(z.y)�0(z, y) be the regular part of the Green function on
�. Then m±(z) =

R
� H(z, y)d!0±(y) are harmonic in �, and ⇢ + m+ � m� takes

the form ⇢+ � ⇢� for a suitable pair ⇢± satisfying (1.1). Therefore, by Proposition
1.4, we find e⇢ 2 L p0,locloc (� \ S2⇡ ) \ Lq0loc (�) for some p0 > 2 and some q0 >

1. Then e⇢H2 is a Radon measure on �, and so it is well defined the Lebesgue
decomposition of K with respect to e⇢H2,

K = Ke⇢H2 + ks with K 2 L1loc
⇣
�; e⇢H2

⌘
, and ks ? e⇢H2, (4.5)

where ks is a Radon measure on �. We first observe that, since ⇢ 2 L1loc(�), then
�1⇢ = !0+ �!0� holds in the sense of distributions in �, whence, by (4.5) and the
definition of K, we see that the following equality

�1⇢ = 2Ke⇢ + 2ks,

holds as well, in the sense of distributions in �. Let f = f+ � f� be defined by
(1.1) with !± = 2ks,±, h± = 0, and let us set,

u := ⇢ � f.

Clearly u 2 L1loc(�), and since �1 f = 2ks in the sense of distributions, then we
deduce that

�1u = 2Ke f+u + 2ks +1 f = 2Ke f+u,
that is, u satisfies (4.3) in the sense of distributions in �.

At this point, the fact that K(E) takes the form (4.4) is a straightforward con-
sequence of the fact that ks ? e⇢H2. Moreover we observe that, if K satisfies the
assumption in (i), then all the assumptions of Lemma 3.1 (a) are satisfied and then
the conclusion readily follows.

So we are left with the case where K does not satisfy the assumption in (i),
that is, we just know that K 2 L1(�; e f+uH2) where u 2 L1 (�) is a solution of
(4.3) in the sense of distributions. Therefore all the assumptions of Corollary 1.9(i)
are satisfied and then the desired conclusion follows.

Finally it is obvious that the representation ⇢ = u + f with all the properties
established above still holds for {uh, fh} where h is an arbitrary harmonic function
in �.
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Let E b � be any regular and relatively compact subset and suppose that (4.2)
holds. Then we define the length of @E ,

L(@E) =
Z

@E
e
f+u
2 d`, (4.6)

and the area of E ,
M(E) =

Z

E
e f+udx . (4.7)

Definition 4.5. For K0 2 R and for any and relatively compact Borel set E b �,
we define the positive variation of the total curvature of E with respect to K0,

K+(E; K0) = sup
U✓E

⇢
K(U) � K0

Z

U
e f+udx

�
, (4.8)

where the supremum is taken over all Borel sets U ✓ E .
Because of (4.4), and since ks,+ ? e f+uH2, then K+(E; K0) takes the form,

K+(E; K0) = ks,+(E) +
Z

E
[K � K0]+e f+udx .

Definition 4.6. For fixed ↵ > �1 and K0 > 0, a spherical {K0,↵}-cone is the
ASBC defined by

�
B1, |w|�2↵ev(w)|dw|2

 
where B1 = {w 2 C : |w| < 1} and,

ev(w) =
⌧ 20

✓
1+

K0⌧20
4(1�↵)2

|w|2(1�↵)

◆2 , with |w| < 1,

for some ⌧0 6= 0.
It is worth to remark that the function v in Definition 4.6 is of class L1(B1) \
W 2,p
loc (B1 \ {0}}) \ W 2,q(B1) for any p > 2 and for any q < 1

|↵| and it is a strong
solution of �1v = 2K0|w|�2↵ev in B1.

In view of Theorems 1.5, 1.7, Corollary 1.9 and Theorem 4.4, and in the same
spirit of [4], for K0 � 0 we obtain a new proof of the Alexandrov [2] isoperimet-
ric inequality on an ASBC. At least to our knowledge the characterization of the
equality sign in this weak framework is new.

Theorem 4.7. Let S =
�
�, e⇢ |dz|2

 
be an ASBC with no cusps and fix K0 � 0.

Then the curvature takes the form (4.4) for some u, f, K , ks as in Theorem 4.4 and
for any simple and relatively compact subset E b �, it holds

L2(@E) � (4⇡ � 2K+(E; K0) � K0M(E))M(E). (4.9)
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In particular, if K satisfies the assumption of Theorem 4.4(i) and also K 2Ln,locloc (�\

S2⇡ ), for some n > 2p0
p0�2 , then the equality in (4.9) holds if and only if:

• The ASBC (E, e⇢ |dz|2) is isometric to a spherical {K0,↵}-cone with ↵ =
1
2⇡ ks,+(E);

• It holds ⇢ = u + f and e f+u takes the form (1.11), where u is a solution of
(4.3) with K ⌘ K0 for a.a. z 2 E and ks = 2⇡↵�z=z0 , for some z0 2 E , that
is, f (z) = h(z) + 2↵G(z, z0) = h(z) � 2↵ log |80(z)|, for some function h
harmonic in E .

Proof. Since S is an ASBCwith no cusps, then, by Theorem 4.4, the curvature takes
the form (4.4) where u 2 L1loc(�) is a solution of (4.3) in the sense of distributions,
f takes the form (1.1) with h± harmonic and !± = 2ks,± and Keu+ f 2 L1(�).
If K satisfies the assumption in Theorem 4.4(i) and also K 2 Ln,locloc (� \ S2⇡ ), for
some n > 2p0

p0�2 , then all the hypothesis of Theorems 1.5, 1.7 are satisfied as well.
As a consequence, the inequality (4.9) holds and the equality sign is attained if and
only if (1.11) holds, that is,

e f (z)+u(z)|dz|2 = |�80(z)|�2↵ev(�80(z))|d(�80(z))|2 = |w|�2↵ev(w)|dw|2,

with � = 1�↵p⌧ ,

for any B1 3 w = 80(z), with z 2 E , as claimed. In particular, since ! =
2ks ? eu+ fH2 by construction, then Theorem 1.7(ii) can be applied as well. This
observation completes the discussion of the equality case.

Clearly, to conclude the proof, it is enough to show that (4.9) holds in case (ii)
of Theorem 4.4 is satisfied. However this is just the content of Corollary 1.9(ii)
which immediately yields the desired conclusion.

5. Examples

We recall that a point P on an SBC is said to be a conical singularity of order
↵ > �1 if in an isothermal chart {�, z} such that z(P) = 0, the metric takes the
form e⇢(z)|dz|2 = |z|2↵eu(z)|dz|2, where u 2 C0(�) \ C2(� \ {0}).

In this section �p denotes the Dirac delta with pole at p 2 R2.
Example 5.1. We use [11, Example 1] to construct an ASBC of the form�
B1, e⇢ |dz|2

 
such that {u, f, K , ks} as obtained in Theorem 4.4 have the following

properties:

• Either e⇢ 2 L1(B1) or e⇢ 2 Lq(B1), for any q � 1;
• We have K 2 L1(e⇢H2, B1) \ L1(B1) but there is no s > 1 such that K 2
Ls(B1);

• Function u is not locally bounded;
• Function u has all the properties claimed in Theorem 4.4(ii).
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Let 0 6= a < 1, and for z 2 B1 \ {0} let us set u(z) = �a log
⇣
log

⇣
e
|z|

⌘⌘
and

K (z) = �
a
2
|z|�2

✓
log

✓
e
|z|

◆◆�(2�a)
.

The superharmonic function ⇢(z) =
R
B1 G(z, y)d!0(y), where

!0(y) = 2K (y)eu(y)dH2,

takes the form ⇢ = ⇢+ � ⇢� as in (4.1) with h0± = 0, and !0� = 0 and !0+(y) =
2K (y)eu(y)dH2 if a < 0, while !0�(y) = 2K (y)eu(y)dH2 and !0+ = 0 if a 2
(0, 1). Since Keu 2 L1(B1), then !0 ⌧ euH2 and so we find {u, f, K , ks} as
claimed in Theorem 4.4 by setting f = 0, ks = 0, K ⌘ K and u ⌘ u. In fact we
see that u is a solution of,

(
�1u = 2Keu in B1
u = 0 on B1,

that is, in particular u ⌘ ⇢, and so we find,

e⇢(z) =

✓
log

✓
e
|z|

◆◆�a
, for z 2 B1.

If a 2 (0, 1), then e⇢ 2 L1(B1) and K 2 L1(e⇢H2, B1)\L1(B1) but u(z) ! �1
as z ! 0. If a < 0, then e⇢ 2 Lq(B1) for any q � 1. It holds K 2 L1(e⇢H2, B1)\
L1(B1) but u(z) ! +1 as z ! 0. In both cases, there is no s > 1 such that
K 2 Ls(B1), and so there is no chance that K satisfies the assumption of Theorem
4.4(i). On the other side, in both cases it is easy to check that u has all the properties
claimed in Theorem 4.4(ii). Clearly Theorem 4.7 applies and then (4.9) holds on�
B1, e⇢ |dz|2

 
.

Example 5.2. Let S2↵1,↵2 be the SBC defined by the isothermal charts {�i ,'i }i=1,2
and the local metrics {gi }i=1,2 constructed as follows. For r0 � 4 and �1 < ↵1 
↵2  0, we define,

�2 = {z 2 C : |z| < r0}, with '2 = z and g2 = e⇢ |dz|2,

�1 =

⇢
z 2 C [ {1} : |z| >

1
r0

�
, with '1 =

1
z

and g1 = '#1 (g2),

where,

⇢(z) =

8
>>>>><

>>>>>:

log

 
4(1+ ↵2)

2|z|2↵2
�
1+ |z|2(1+↵2)

�2

!

if |z| < 1

log

 
4(1+ ↵2)

2|z|2↵1
�
1+ |z|2(1+↵1)

�2

!

if |z| 2 [1,+1).

(5.1)
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This is a compact surface without boundary, homeomorphic to the two sphere, with
two conical singularities, z = 1 of order ↵1 and z = 0 of order ↵2. For ↵1 =
↵2 < 0 we are reduced to the classical “american football” [28], with constant
Gaussian curvature K ⌘ 1. Instead, if ↵1 < ↵2  0, we have the glueing of
two caps of american footballs with gaussian curvatures 1 and (1+↵1)2

(1+↵2)2
respectively,

with different conical singularities, see [7, 15] for more details about this singular
surface.

We consider a decomposition in the {�2,'2} chart, as claimed in Theorem 4.4,
of the form ⇢(z) = f (z) + u(z), where,

u(z) =

8
>>>>><

>>>>>:

log

 
4(1+ ↵2)

2
�
1+ |z|2(1+↵2)

�2

!

if |z| < 1

log

 
4(1+ ↵2)

2|z|2(↵1�↵2)
�
1+ |z|2(1+↵1)

�2

!

if |z| 2 [1,+1),

and
f (z) = f (z;↵2) = 2↵2 log |z|, |z| 2 (0,+1).

Clearly we have u 2 W 2,k
loc (R2 \ {0}) \ W 2,r

loc (R2), for any k > 2 and 1 < r < 2
|↵1|
,

which is also a strong solution of �1u = 2K |z|2↵2eu in R2, with,

K (z) =

8
<

:

1 if |z| 2 [0, 1)
(1+ ↵1)

2

(1+ ↵2)2
if |z| 2 (1,+1).

So K 2 L1(R2) and putting

ks,2 = 2⇡ |↵2|�z=0,

we find,

K(E) =
Z

E
Ke f+udH2 + ks,2(E), for E b {|z| < r0},

which is the total curvature of a relatively compact Borel set E in the {�2,'2} chart.
For a generic Borel set E0 ✓ C[{1}, we can consider the analogue decomposition
for g1 which takes the form g1 = e⇢1 |dw|2, with ⇢1 = f1 + u1, where

u1(w) =

8
>>>>><

>>>>>:

log

 
4(1+ ↵2)

2
�
1+ |w|2(1+↵1)

�2

!

if |w| < 1

log

 
4(1+ ↵2)

2|w|2(↵2�↵1)
�
1+ |w|2(1+↵2)

�2

!

if |w| 2 [1,+1),
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with f1(·) = f ( · ,↵1), and eventually find the total curvature of any Borel set
E0 ✓ C [ {1},

K(E0)=
Z

E0,2
Ke f+udH2+ks,2(E0,2)+

Z

'1(E0,1)
K1e f1+u1dH2+ks,1('1(E0,1)), (5.2)

where E0,2 = E0 \ {|z| < r0} and E0,1 = E0 \ {|z| � r0} while K1 = K � '1, and,

ks,1 = 2⇡ |↵1|�w=0.

Next, to simplify the notations let us set

�1,2 =
(1+ ↵1)

2

(1+ ↵2)2
 1.

It is easy to check that the area of S2↵1,↵2 is 2⇡(1+ ↵2) + 1
�1,2
2⇡(1+ ↵1) while, by

using (5.2), we see that the total curvature of S2↵1,↵2 is 4⇡ , in agreement with the
fact that, as well known [3], the Gauss-Bonnet formula holds even in this singular
context. Please observe that this is just an equivalent formulation of the singular
Gauss-Bonnet formula, see [29], which asserts that the global integral of the abso-
lutely continuous part of the Gaussian curvature equals the singular Euler charac-
teristic, yielding in this particular case the well-known identity,

Z

B1
Ke f+udH2 +

Z

'1((B1)c)
K1e f1+u1dH2 = 2⇡(2+ ↵1 + ↵2).

If E is a simple set surrounding the origin, then we can always take r0 large enough
to guarantee that E b {|z| < r0} so that the inequality (4.9) takes the form,

L2(@E) �
�
4⇡(1+ ↵2) � 2[1� K0]+M(E \ B1)

� 2[�1,2 � K0]+M(E \ (B1)c) � K0M(E)
�
M(E).

In particular, if K is not constant in E , then the inequality is always strict and if we
choose K0 = 1, then it reduces to the well known Bol’s [10] inequality,

L2(@E) � (4⇡(1+ ↵2) � M(E))M(E).

If E = BR with R  1, then K ⌘ 1 in E and since,

L2(@BR) =

 Z 2⇡

0

2(1+ ↵2)R↵2

1+ R2(1+↵2)
d`

!2
=
16⇡2(1+ ↵2)

2R2↵2

(1+ R2(1+↵2))2
,

and,

M(BR) =
Z

BR

4(1+ ↵2)
2|x |2↵2

�
1+ |x |2(1+↵2)

�2 dx =
4⇡(1+ ↵2)R2↵2

1+ R2(1+↵2)
,
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then we find the equality in (4.9) with K0 = 1,

L2(@BR) =
16⇡2(1+ ↵2)

2R2↵2
�
1+ R2(1+↵2)

�2

=

 

4⇡(1+ ↵2) �
4⇡(1+ ↵2)R2↵2

1+ R2(1+↵2)

!
4⇡(1+ ↵2)R2↵2

1+ R2(1+↵2)

= (4⇡(1+ ↵2) � M(BR))M(BR).

Example 5.3. This example illustrates the failure of Theorem 4.4 on a surface
homeomorphic to the two-sphere with a cusp and in the same time the kind of
singularity which yields a curvature function K which is unbounded but in Lr (E)
for some r > 1.

Let us consider the same charts {�i ,'i }i=1,2 as in Example 5.2, where this
time the metric g2(z) = e⇢(z)|dz|2 is defined as follows,

⇢(z) =

8
>>>>>>>>><

>>>>>>>>>:

log

0

B
@

2
⇣
2� |z|

1
2
⌘2

1

C
A if |z| < 1

log

0

B
@

8|z|
3
2

⇣
1+ |z|

1
2
⌘2

1

C
A if |z| 2 [1,+1).

(5.3)

We consider a decomposition as claimed in Theorem 4.4 in the {�2,'2} chart,
⇢(z) = f (z) + u(z), where we choose f = 0 so that u = ⇢, which satisfies
u 2 W 2,k,loc

loc (R2 \ {0}) \ W 2,r
loc (R2), for any k > 2 and 1 < r < 4

3 , and is a strong
solution of �1u = 2Ke f+u in R2, where,

K (z) =

8
>>><

>>>:

�
1
4
1

|z|
3
2

if |z| 2 [0, 1)

1
32

1
|z|3

if |z| 2 (1,+1).

The total curvature of a relatively compact Borel set E in the {�2,'2} chart takes
the form,

K(E) =
Z

E
Keudx, for E b {|z| < r0},

with K 2 Lr (E) \ L1
loc(E \ {0}) for any 1 < r < 4

3 .
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On the other hand, let us check whether or not the assumption (4.2) is satisfied
on a generic relatively compact Borel set in the {�1,'1} chart. The metric takes the
form,

g1(w) = '#1 (g2) = e⇢1(w)|dw|2,

where,

⇢1(w) =

8
>>>>>>>>>><

>>>>>>>>>>:

log

0

B
@

8|w|�
9
2

⇣
1+ |w|

1
2
⌘2

1

C
A if |w| 2 [0, 1]

log

0

B
@

2|w|�3
⇣
2|w|

1
2 � 1

⌘2

1

C
A if |w| 2 (1,+1).

(5.4)

Therefore, it is readily seen that ⇢1 takes the form (4.1) with !0+(0) = 9⇡
2 > 4⇡

which violates (4.2). This singular surface is still homeomorphic to the two sphere,
but it has a cusp at z = 1. As a consequence, while the curvature is always
well defined in the sense of measures, the area of a compact Borel set in the
{�1,'1} chart is not, since e⇢1 is not an L1loc(R2) function. In particular, there
is no chance to use the argument in the proof of Theorem 4.4, which should be
based on the Lebesgue decomposition of K = !0 with respect to e⇢1H2, since the
latter is not even a Radon measure in this case. It is worth to mention that, nev-
ertheless, the product (K � '1)e⇢1 is an L1loc(R2) function which could be used
in principle as the density of the total curvature. On the other hand, the right
hand side of the Alexandrov’s isoperimetric inequality (4.9) is not well defined in
general.

However Theorem 4.4 and Theorem 4.7 can be applied in the {�2,'2} chart, so that
(4.9) holds therein. In particular, if E is any open and relatively compact Borel set
in �2, then the equality is always strict, since K is never constant in E .
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