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Harnack inequality for kinetic Fokker-Planck equations
with rough coefficients and application to the Landau equation

FRANÇOIS GOLSE, CYRIL IMBERT, CLÉMENT MOUHOT

AND ALEXIS F. VASSEUR

Abstract. We extend the De Giorgi-Nash-Moser theory to a class of kinetic
Fokker-Planck equations and deduce new results on the Landau-Coulomb equa-
tion. More precisely, we first study the Hölder regularity and establish a Harnack
inequality for solutions to a general linear equation of Fokker-Planck type whose
coefficients are merely measurable and essentially bounded, i.e. assuming no
regularity on the coefficients in order to later derive results for non-linear prob-
lems. This general equation has the formal structure of the hypoelliptic equations
“of type II”, sometimes also called ultraparabolic equations of Kolmogorov type,
but with rough coefficients: it combines a first-order skew-symmetric operator
with a second-order elliptic operator involving derivatives along only part of the
coordinates and with rough coefficients. These general results are then applied
to the non-negative essentially bounded weak solutions of the Landau equation
with inverse-power law � 2 [�d, 1] whose mass, energy and entropy density are
bounded and mass is bounded away from 0, and we deduce the Hölder regularity
of these solutions.

Mathematics Subject Classification (2010): 35H10 (primary); 35B65 (sec-
ondary).

1. Introduction

1.1. The Landau equation

We consider the Landau equation

@t f + v · rx f = rv · (A[ f ]rv f + B[ f ] f ), (1.1)
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where
8
>><

>>:

A[ f ](v) = ad,�

Z

Rd

✓
I �

w

|w|
⌦

w

|w|

◆
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B[ f ](v) = bd,�

Z

Rd
|w|� w f (v � w) dw,

with � 2 [�d, 0] and ad,� > 0. We note that the main physical case is that of
Coulomb interactions when � = �d and d = 3 (giving rise to the Landau-Coulomb
equation in plasma physics); the other cases are hard potentials � 2 (0, 1] (not
covered here1), Maxwellian molecules � = 0, and soft potentials � 2 [�d, 0). It
can be rewritten as follows:

@t f + v · rx f = rv · (A[ f ]rv f ) + B[ f ] · rv f + c[ f ] f, (1.2)

where

c[ f ](v) =

8
<

:
cd,�

Z

Rd
|w|� f (v � w) dw if � > �d

cd,� f if � = �d.

We assume that the mass, energy and entropy density of the weak solution f satisfy
the following control at a given space-time point (x, t):

C(x, t)

8
>>>>>><

>>>>>>:

M1 == M(x, t) =
Z

Rd
f (x, v, t) dv  M0 (local mass)

E(x, t) =
1
2

Z

Rd
f (x, v, t)|v|2 dv  E0 (local energy)

H(x, t) =
Z

Rd
f (x, v, t) ln f (x, v, t) dv  H0 (local entropy).

(1.3)

The weak solutions to equation (1.1) on Ux ⇥ Uv ⇥ I , Ux ⇢ Rd open, Uv ⇢
Rd open, I = [a, b] with �1 < a < b  +1, are defined as functions f 2
L1
t (I, L2x,v(Ux⇥Uv)))\L2x,t (Ux⇥ I, H1v (Uv)) such that @t f +v·rx f 2 L2x,t (Ux⇥

I, H�1
v (Uv)), f satisfies estimates (1.3) and satisfies the equation in the sense of

distributions2.

Theorem 1.1 (Hölder continuity for the Landau equation). Assume � 2 [�d,0].
Let f be an essentially bounded weak solution of (1.2) in B1⇥B1⇥(�1, 0]. Assume

1 Our method would apply as well in this case with no changes, we did not include it only
because it requires the additional condition supx

R
v f (t, x, v)|v|2+� dv < 1 on the solution,

and we wanted a clean statement.
2 Observe that the coefficients A[ f ] and B[ f ] are controlled under assumption (1.3), thanks to
Lemmas A.1 and A.2.
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that C(x, t) (equation (1.3)) holds true for all B1 ⇥ (�1, 0]. Then f is ↵-Hölder
continuous with respect to (x, v, t) 2 B 1

2
⇥ B 1

2
⇥ (�1

2 , 0] and

k f kC↵(B1/2⇥B1/2⇥(�1/2,0])  C
✓

k f kL2(B1⇥B1⇥(�1,0]) + k f k1+
|� |
d

L1(B1⇥B1⇥(�1,0])

◆
,

for some ↵ and C depending on dimension, M1, M0, E0 and H0.

Remark 1.2. After this work was completed, we heard of a nice recent preprint
of Cameron, Silvestre and Snelson [11] that establishes a priori upper bounds for
solutions to the spatially inhomogeneous Landau equation in the case of moderately
soft potentials (� 2 [�2, 0]), with arbitrary initial data, under the assumption (1.3).
When � 2 [�2, 0], it thus allows us to remove the L1 assumption on the weak
solution in Theorem 1.1.
Remark 1.3. Under the assumptions of Theorem 1.1, it is known [23, 56] that
the diffusion matrix A[ f ] is uniformly elliptic and B[ f ] and c[ f ] are essentially
bounded for bounded velocities (see Lemmas A.1 and A.2 in appendix). In particu-
lar, the assumption (1.7) given below, and under which Theorems 1.4 and 1.6 hold
true, is satisfied. Let us add that Theorems 1.1 and 1.6 are new, while Theorem 1.4
was proved in [61,62] with a different method; our method of proof however is new
and, we believe, elementary, and it includes intermediate results used in our proof
of Harnack inequality in Theorem 1.6.

1.2. The studied question and its history

We are also motivated by the study of the following nonlinear kinetic Fokker-Planck
equation

@t f + v · rx f = ⇢[ f ]rv · (rv f + v f ) , t � 0, x 2 Rd , v 2 Rd , (1.4)

(with or without periodicity conditions with respect to the space variable) where
d 2 N⇤, f = f (x, v, t) � 0 and ⇢[ f ] :=

R
Rd f (x, v, t) dv. The construction of

global smooth solutions for such a problem is one motivation of the present paper.
The linear kinetic Fokker-Planck equation @t f + v · rx f = rv · (rv f + v f )

is sometimes called the Kolmogorov-Fokker-Planck equation, as it was studied by
Kolmogorov in the seminal paper [47]. In this note, Kolmogorov explicitely cal-
culated the fundamental solution, which exhibits regularisation in both variables x
and v, even though the operator rv · (rv +v)�v ·rx shows ellipticity in the v vari-
able only. This inspired Hörmander and his theory of hypoellipticity [42], where
the regularisation is recovered by geometric commutator estimates (see also [55]).

Another question which has attracted a lot of attention in calculus of variations
and partial differential equations along the 20th century is Hilbert’s 19th problem
about the analytic regularity of solutions to certain integral variational problems,
when the quasilinear Euler-Lagrange equations satisfy ellipticity conditions. Sev-
eral previous results had established analyticity conditionally to some differentiabil-
ity properties of the solution, but the full answer came with the landmark works of
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De Giorgi [17,18] and Nash [53], where they proved that any solution to these vari-
ational problems with square integrable derivative is analytic. More precisely, their
key contribution is the following3: the derivative f of the solution of the variational
problem solves the quasilinear parabolic problem

@t f = rv (A(v, t)rv f ) , t � 0, v 2 Rd , (1.5)

with f = f (v, t) � 0 and A = A(v, t) satisfying the ellipticity condition 0 <
�I  A  3I for two constants �,3 > 0 but is, besides that, merely measurable.
Then the solution f is Hölder continuous.

The method has been extended to degenerate cases, like the p-Laplacian, first
in the elliptic case by Ladyzhenskaya and Uralt’seva [49]; then degenerate parabolic
cases were covered by DiBenedetto [24] (see also DiBenedetto, Gianazza and Ve-
spri [25–27]). More recently, the method has been extended to integral operators,
such as fractional diffusion, in [9, 10] – see also the work of Kassmann [46] and of
Kassmann and Felsinger [29]. Further application to fluid mechanics can be found
in [12,36,58].

1.3. Main results

In view of the Landau equation and the nonlinear (quasilinear) equation (1.4), it
is natural to ask whether a similar result as the one of De Giorgi-Nash holds for
hypoelliptic equations. More precisely, we consider the following kinetic Fokker-
Planck equation

@t f + v · rx f = rv · (Arv f ) + B · rv f + s, t 2 (0, T ), (x, v) 2 �, (1.6)

where � is an open set of R2d , f = f (x, v, t), B and s are bounded measurable
coefficients depending in (x, v, t), and the d⇥d real matrices A, B and source term
s are measurable and satisfy

8
><

>:

0 < �I  A  3I
|B|  3

s essentially bounded,
(1.7)

for two constants �,3. We establish the Hölder continuity and the Harnack in-
equality for solutions to this problem. To state the result, one needs cylinders
that respect the two invariant transformations of our equation: define the scaling
(x, v, t) 7! (r3x, rv, r2t) and the transformation

Tz0 : z 7! (x0 + x + tv0, v0 + v, t0 + t). (1.8)

3 We give the parabolic version due to Nash here.
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Given z0 = (x0, v0, t0) 2 R2d+1, the cylinder Qr (z0) “centered” at z0 of “radius”
r is defined as

Qr (z0)=
n
(x, v, t) : |x�x0�(t�t0)v0|<r3, |v�v0|<r, t 2

⇣
t0�r2, t0

io
. (1.9)

When z0 = 0, we omit to specify the base point: Qr := Qr (0, 0, 0).
The weak solutions to equation (1.6) on Ux ⇥ Uv ⇥ I , Ux ⇢ Rd open, Uv ⇢

Rd open, I = [a, b] with �1 < a < b  +1, are defined as functions f 2
L1
t (I, L2x,v(Ux⇥Uv)))\L2x,t (Ux⇥ I, H1v (Uv)) such that @t f +v·rx f 2 L2x,t (Ux⇥

I, H�1
v (Uv)) and f satisfies the equation (1.6) in the sense of distributions.

Theorem 1.4 (Hölder continuity). Let f be a weak solution of (1.6) in Qext :=
Qr0(z0) and Qint := Qr1(z0) with r1 < r0. Then f is ↵-Hölder continuous with
respect to (x, v, t) in Qint and

k f kC↵(Qint)  C
�
k f kL2(Qext) + kskL1(Qext)

�

for some universal ↵ (i.e. ↵ = ↵(d, �,3)) and C = C(d, �,3, Qext, Qint).

Remark 1.5. The boundedness of L2 solutions was first obtained by Pascucci and
Polidoro [54]. The Hölder continuity was proved by Wang and Zhang in [61,62] by
a different method. See below for further comments.
As a first step, we prove that L2 sub-solutions are locally bounded; we refer to such
a result as an L2�L1 estimate. We then prove that solutions are Hölder continuous
by means of lemma which is an hypoelliptic counterpart of De Giorgi’s “isoperi-
metric lemma”. We finally prove a “quantitative version” of the strong maximum
principle: a Harnack inequality.

Theorem 1.6 (Harnack inequality). If f is a non-negative weak solution of (1.6)
in Q1, then

sup
Q�

f  C
✓
inf
Q+

f + kskL1(Q1)

◆
, (1.10)

where Q+ := QR , Q� := QR(0, 0,�1), C > 1 and R,1 2 (0, 1) are small (in
particular Q± ⇢ Q1 and they are disjoint), and universal, i.e. they only depend on
dimension and ellipticity constants.

Remark 1.7. Applying the transformation Tz0(x, v, t) = (x0+x+ tv0, v0+v, t0+
t), the Harnack inequality holds for cylinders centered at any z0 = (x0, v0, t0).

1.4. Comments and previously known results

In [54], the authors obtain an L2�L1 estimate but cannot reach the Hölder continu-
ity estimate. We prove the L2 � L1 estimate using hypoelliptic estimates obtained
by Bouchut [7]. Still, the same crucial step is at the core of both proofs: estabil-
ishing hypoelliptic gain of Sobolev regularity for a kinetic Fokker-Planck equation
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with rough coefficients. Note that in [54], and more recently in [45], this is done by
replacing the linear operator with rough coefficients by the corresponding one with
constant coefficients and treating the difference as a source error term; while in our
paper we use regularisation estimates related to velocity averaging lemma.

Hypoelliptic estimates in [7] are part of the well-developed literature about ve-
locity averaging lemmas and transfer of regularity results. The latter is a smoothing
effect for v-averages of solutions to @t f + v · rx f = S observed for the first time
in [1, 35] independently, later improved and generalized in [28, 34] (no smoothing
on f itself can be observed, since the transport operator is hyperbolic and propa-
gates the singularities). And when S is of the form S = rv · (A(x, v, t)rv f ) + s,
where s is a given source term in L2, the smoothing effect of velocity averaging
can be combined with the H1 regularity in the v variable implied by the energy
inequality in order to obtain some amount of smoothing on the solution f itself.
A first observation of this type (at the level of a compactness argument) can be
found in [50]. More recently, Bouchut [7] has obtained more quantitative Sobolev
regularity estimates. These estimates are one key ingredient in our proof.

We give two slightly different proofs of the L2 � L1 estimate, one follow-
ing Moser’s approach, the other following De Giorgi’s ideas. We emphasize that,
in both approaches, the main ingredient is the local gain of integrability of non-
negative sub-solutions. This latter is obtained by combining a comparison principle
and a Sobolev regularity estimate. We then prove the Hölder continuity through a
De Giorgi type argument on the decrease of oscillation. We also derive the Har-
nack inequality by combining the decrease of oscillation with a result about how
the minimum of non-negative solutions deteriorates with time, adapting a scheme
Luis Silvestre showed us for elliptic equations.

In [61, 62], the authors get a Hölder estimate for weak solutions of so-called
ultraparabolic equations, including (1.6). Their proof relies on the construction of
cut-off functions and a particular form of weak Poincaré inequality satisfied by non-
negative weak sub-solutions. Our paper proposes an alternate method based on hy-
poelliptic estimates in the presence of rough coefficients, as explained above. It also
provides several tools interesting per se, e.g., our intermediate-value Lemma 4.1 is
adapted to non-local equations of order 2s 2 [1, 2) in [45].

The C1 smoothing of solutions to the Landau equation has been investigated
so far in two different settings: either for weak spatially homogeneous solutions
(non-negative in L1 and with finite energy) [6, 20, 22, 60] (see also the related
entropy dissipation estimates in [21, 23]), or for classical spatially heterogeneous
solutions [14, 51]. The analytic regularisation of weak spatially homogeneous so-
lutions was investigated in the case of Maxwellian or hard potentials in [13]. Let
us also mention that in [56], Silvestre derives an L1 bound on the spatially ho-
mogeneous solutions for soft potentials without relying on energy methods (which
implies as well the smoothing by standard parabolic techniques). Let us also men-
tion works studying modified Landau equations [37, 48] and the work [39], which
shows that any weak radial solution to the Landau-Coulomb equation belonging to
L3/2 is automatically bounded and C2 using barrier arguments. Finally, we high-
light the related results of regularisation for the Boltzmann equation without long-
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range interactions [15, 16, 19], and the related perturbative results for the Landau
and (long-range interaction) Boltzmann equation [2–5, 38, 40, 63]. To the best of
our knowledge, the regularity of a priori non-negative locally L1 solutions (under
our assumption (1.3)) to the spatially heterogeneous Landau equation has not been
investigated so far.

A part of the results of this paper were announced in [33,43].

1.5. Plan of the paper

In Section 2, we prove the universal gain of integrability for non-negative sub-
solutions. In Section 3, we derive from this gain of integrability a local upper bound
of such non-negative sub-solutions. We give two proofs: one following de Giorgi’s
approach and the other following Moser’s iteration procedure. In Section 4, the
Hölder estimate is derived by proving a lemma of “reduction of oscillation”. In
Section 5 we prove a Harnack inequality for non-negative solutions. In Section 6,
we prove a local gain of regularity of sub-solutions. In Section 7, we prove that the
velocity gradient of the solution is slightly better than square integrable.

1.6. Notation

We occasionally write A . B in order to say that A  C̄ B for some constant C̄
which only depends on dimension and ellipticity constants � and3. Such a constant
C̄ is called universal.

The inverse transformation T �1
z0 : z 7! z�10 � z is defined by

T �1
z0 (z) = (x � x0 � (t � t0)v0, v � v0, t � t0).

The notation z0 � z and z�10 refers to a Lie group structure associated with the
equation.

ACKNOWLEDGEMENTS. The authors would like to thank Luis Silvestre for fruitful
comments during the preparation of this article.

2. Local gain of regularity / integrability

We consider the equation (1.6) and we want to establish a local gain of integrability
of solutions in order to apply De Giorgi-Moser’s iteration and get a local L1 bound.
Since we will need to perform convex changes of variables, it is necessary to obtain
this gain for all (non-negative) sub-solutions. The next theorem is stated in cylinders
centered at the origin.

Theorem 2.1 (Gain of integrability for non-negative sub-solutions). Consider
two cylinders Qint := Qr1 and Qext := Qr0 with 0 < r1 < r0. There exists p > 2
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(only depending on dimension) such that for all non-negative sub-solution f of
(1.6) in Qext, we have

k f k2L p(Qint)  C̄
✓
C20,1k f k

2
L2(Qext)

+ C0,1
Z

Qext
|s|21 f>0

◆
, (2.1)

with

C0,1 =

 
1

r20 � r21
+

r0
r30 � r31

+
1

(r0 � r1)2
+ 1

!

and C̄ = C̄(d, �,3) .

Remark 2.2. The exponent p is obtainedby the Sobolev embeddingH
1
3 (R2d+1) ,!

L p(R2d+1), that is to say p := 6(2d + 1)/(6d + 1).
This result is a consequence of the comparison principle and the following gain of
regularity.

Theorem 2.3 (Gain of regularity for sign-changing solutions). Consider z0 2
R2d+1 and two cylinders Qint := Qr1(z0) and Qext := Qr0(z0) with 0 < r1 < r0.
Then any (sign-changing) weak solution f of (1.6) in Qext satisfies

k f k2
H
1
3
x,v,t (Qint)

 C
⇣
k f k2L2(Qext) + ksk2L2(Qext)

⌘
, (2.2)

with C = C(d, �,3, Qext, Qint).

Remark 2.4. Using Theorem 2.1 and De Giorgi-Moser’s iteration, it is in fact pos-
sible to prove that this gain of regularity is also true for non-negative sub-solutions,
as we will see in Section 6.
Theorems 2.1 and 2.3 are proved in Section 2.3 below.

2.1. Global estimates and gain of regularity / integrability

Let us remark that our weak solutions in f 2 L1
t (I, L2x,v(Ux ⇥Uv))) \ L2x,t (Ux ⇥

I, H1v (Uv)) are in C0t (I, L2x,v(Ux ⇥Uv) \ H1/2t (I, L2x,v(Ux ⇥Uv)), following and
adapting respectively the by-now standard arguments in [57] and [30] to the kinetic
case. This justifies the calculations performed in our energy estimates in the sequel.

Lemma 2.5 (Global estimate). Let g be a weak solution of

(@t + v · rx )g = rv · (Arvg) + rv · H1 + H0 in R2d+1,

with H1 and H0 in L2(R2d+1) and g, H0 and H1 supported in Rd ⇥ B(0, r0) ⇥ R.
Then

krvgk2L2 + kD
1
3
x gk2L2 + kD

1
3
t gk2L2  C

✓
kH1k2L2 + kH0k2L2

◆
, (2.3)
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where C = C̄(1+ r20 ) and C̄ = C̄(d, �,3). In particular, there exists p > 2 (only
depending on dimension) such that

kgk2L p  C
✓

kH1k2L2 + kH0k2L2
◆

, (2.4)

where C = C̄(1+ r20 ) and C̄ = C̄(d, �,3).

Proof. Integrating against 2g in R2d+1 yields

2�
Z

R2d+1
|rvg|2 dx dv dt 

Z

R2d+1
(�2H1 · rvg + 2gH0) dx dv dt


�

2

Z

R2d+1
|rvg|2 dx dv dt +

2
�

Z

R2d+1
|H1|2 dx dv dt + 2

Z

R2d+1
|g||H0| dx dv dt.

Moreover

2
Z

R2d+1
|g||H0| dx dv dt  "

Z

R2d+1
|g|2 dx dv dt +

1
"

Z

R2d+1
|H0|2 dx dv dt.

Since g is supported in B(0, r0) in the velocity variable, we can use the Poincaré
inequality to get

"

Z

R2d+1
|g|2 dx dv dt  CPr20"

Z

R2d+1
|rvg|2 dx dv dt,

and we choose " such that CPr20" = �/2. This implies

krvgk2L2  C
⇣
kH1k2L2 + kH0k2L2

⌘
. (2.5)

Applying [7, Theorem 1.3] with p = 2, r = 0, � = 1, m = 1,  = 1 and � = 1
yields

�
�
�
�D

1
3
x g
�
�
�
�

2

L2
+

�
�
�
�D

1
3
t g
�
�
�
�

2

L2
. kgk2L2 + krvgkL2

�
�
�
�
�
1+ |v|2

� 1
2 H0

�
�
�
�
L2

+ krvgk
4
3
L2

�
�
�
�
1+ |v|2

�
(H1 + Arvg)

�
�
�
2
3

L2

+ krvgkL2
�
�
�
�
�
1+ |v|2

� 1
2 (H1 + Arvg)

�
�
�
�
L2

.
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Using the fact that g, H0 and H1 are supported in Rd ⇥ B(0, r0) ⇥ R, we get
�
�
�
�D

1
3
x g
�
�
�
�

2

L2
+

�
�
�
�D

1
3
t g
�
�
�
�

2

L2
. r20krvgk2L2 +

�
1+ r20

� 1
2 krvgkL2kH0kL2

+
⇣
1+ r20

⌘ 2
3
krvgk

4
3
L2

✓
kH1k

2
3
L2 + krvgk

2
3
L2

◆

+
⇣
1+ r20

⌘ 1
2
krvgkL2

�
kH1kL2 + krvgkL2

�

.
⇣
1+ r20

⌘ ⇣
krvgk2L2 + kH1k2L2 + krvgkL2kH0kL2

⌘
.

Combining this estimate with (2.5) yields (2.3). The proof is now complete.

2.2. The local energy estimate

The gain of integrability with respect to v and t is classical; it derives from the
natural energy estimate, after truncation. We follow here [52].

Lemma 2.6 (The local energy estimate). Under the assumptions of Theorems 2.1
and 2.3, any sub-solution f satisfies

sup
t

Z

Qt
int

f 2(·, ·, t) +
Z

Qint
|rv f |2  C̄

✓
C0,1

Z

Qext
f 2 +

Z

Qext
|s|2

◆
(2.6)

for Qt
int := {(x, v) 2 R2d : (x, v, t) 2 Qint}, C̄ = C̄(d, �,3) and

C0,1 =

 
1

r20 � r21
+

r0
r30 � r31

+
1

(r0 � r1)2
+ 1

!

.

Moreover, if the sub-solution f is non-negative, then

sup
t

Z

Qt
int

f 2(·, ·, t) +
Z

Qint
|rv f |2  C̄

✓
C0,1

Z

Qext
f 2 +

Z

Qext
|s|21 f>0

◆
. (2.7)

Proof. Consider 9 2 C1
c (R2d ⇥ R) with 0  9  1 and integrate the disequation

satisfied by f against 2 f92 inR := R2d ⇥ [t1, 0] with t1 2 (�r21 , 0], obtaining
Z

R
@t
�
f 2
�
92 +

Z

R
v · rx

�
f 2
�
92  2

Z

R
rv · (Arv f ) f92

+ 2
Z

R
(B · rv f ) f92 + 2

Z

R
f s92.
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Add
R
R f 2@t (92), integrate by parts and use the upper bound on A to get

Z

R
@t
�
f 292�+ 2�

Z

R
|rv f |292


Z

R
f 2(@t+v · rx )

�
92��4

Z

R
9Arv f · frv9+2

Z

R
(B · rv f ) f92+2

Z

R
f s92


Z

R
f 2(@t + v · rx )

�
92�+ 43

Z

R
(|rv f |9) f (9 + |rv9|) + 2

Z

R
f s92


Z

R
f 2
h
(@t+v · rx )

�
92�+832��1�|rv9|2+92�

i
+2
Z

R
f s92+�

Z

R
|rv f |292.

We thus get
Z

R
@t
�
f 292�+ �

Z

R
|rv f |292

 C̄
⇣
k@t9k1 + r0krx9k1 + krv9k21 + 1

⌘Z

R\supp9
f 2 + 2

Z

R
f s92

(2.8)

with C̄ = C̄(d, �,3). Choose next 92 such that 9(t = 0) = 0 and supp9 ⇢ Qext
and get for t1 2 R:
Z

R2d
f 2(·, ·, t1)92(t1) dx dv+�

Z

R2d+1
|rv f |292 dx dv dtC

Z

Qext
f 2+2

Z

Qext
| f ||s|.

If 9 additionally satisfies 9 ⌘ 1 in Qint, we get (2.6). We remark that (2.7) is a
simple consequence of (2.6). The proof is now complete.

2.3. Local gain: proofs

Proof of Theorems 2.1 and 2.3. We first remark that if f is a non-negative sub-
solution of (1.6), then f = f 1 f�0 and it is also a sub-solution of the same equation
when the source term s is replaced with s1 f�0.

For i = 1, 12 , consider fi = f �i where �1 and �1/2 are two truncation func-
tions such that

�1 ⌘ 1 in Qint and �1 ⌘ 0 outside Qmid,

� 1
2

⌘ 1 in Qmid and � 1
2

⌘ 0 outside Qext .

The function f1 now satisfies

(@t + v · rx ) f1  rv · (Arv f1) + rv · H1 + H0 in R2d+1,
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with H1 and H0 given by
8
<

:

H1 = (�Arv�1) f 1
2

H0 = (B�1 � Arv�1) · rv f 1
2

+ ↵1 f 1
2

+ s1{ f�0}�1,

with ↵1 = (@t + v · rx )�1. We remark that f1, H0 and H1 are supported in Qext.
We now consider the solution g of

(@t + v · rx )g = rv · (Arvg) + rv · H1 + H0 in R2d+1.

We remark that g is also supported in Qext, and since h := f1 � g is a sub-solution
of the equation @t h + v · rxh  rv(Arvh) with zero initial data at t = �r20 , the
comparison principle implies that h  0 everywhere, and therefore 0  f1  g.
It can be proved for instance by observing that h+ is also a sub-solution of the
same inequation and the standard energy estimate implies that its L2x,v-norm is non-
increasing along the time variable.

Moreover,
8
>>><

>>>:

kH1k2L2 . krv�1k
2
L1k f k2L2(Qext)

kH0k2L2 .
⇣
1+ krv�1k

2
L1

⌘
krv f k2L2(Qmid) + k↵1k

2
L1k f k2L2(Qext)

+
�
�
�s1{ f�0}

�
�
�
2

L2(Qext)
.

In view of Lemma 2.6, we know that

krv f k2L2(Qmid) . C0,1k f k2L2(Qext) +
�
�
�s1{ f�0}

�
�
�
2

L2(Qext)
.

Hence,

kH0k2L2 + kH1k2L2 .
h⇣
1+ krv�1k

2
L1

⌘
(1+ C0,1) + k↵1k

2
L1

i
k f k2L2(Qext)

+
⇣
2+ krv�1k

2
L1

⌘
ks1{ f�0}k2L1(Qext).

In view of the definition of C0,1 in Lemma 2.6, we thus get

kH0k2L2 + kH1k2L2 . C20,1k f k
2
L2(Qext)

+ (r0 � r1)�2
�
�
�s1{ f�0}

�
�
�
2

L1(Qext)
.

Lemma 2.5 then yields

kgk2L p(Qint)  C̄
✓
C20,1k f k

2
L2(Qext)

+ C0,1
Z

Qext
|s|21 f�0

◆
.

We then obtain (2.1) by using the fact that 0  f1  g. This achieves the proof of
Theorem 2.1.

As for Theorem 2.3, Lemma 2.5 can be applied directly to f1 and the conclu-
sion follows along the same lines, with some simplifications.
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3. Local upper bounds for non-negative sub-solutions

In this section, we prove that non-negative L2 sub-solutions are in fact locally
bounded.

Theorem 3.1 (Upper bounds for non-negative L2 sub-solutions). Given two cy-
linders Qext := Qr0(z0) and Q1 := Qr1(z0) with 0 < r1 < r0, let f be
a non-negative L2 sub-solution of (1.6) in Qext with s 2 Lq(Qext) and q >
(2p)/(p � 1) with p only depending on dimension. Then for any g >, there ex-
ists  = (d, �,3, Qext, Q1, g, q) > 0 such that

(
kskLq (Qext)  g

k f kL2(Qext)  

)

) f 
1
2
in Q1.

Remark 3.2. The exponent p = 6(2d + 1)/(6d + 1) is the one given by the gain
of integrability in Theorem 2.1 (see Remark 2.2).
We give two proofs of such a result. The first one sticks to the case q = +1 with
no lower order terms and use Moser’s approach. The second one deals with the
general case and uses De Giorgi’s approach.

3.1. Moser’s approach

Proof of Theorem 3.1 in the case without source term by Moser’s iteration. Using
tranformations introduced in Equation (1.8), we reduce to the case z0 = 0.

We first observe that, for all q > 1, the function f q satisfies

(@t + vrx ) f q  rv · (Arv f q) in Qr0 .

We now rewrite (2.1) with s = 0 from Qrn to Qrn+1 with rn+1 < rn as follows:

 Z

Qrn+1 (0)
( f q)p

! 2
p

 C̄C2n
Z

Qrn (0)
f 2q , (3.1)

where C̄ = C̄(d, �,3) and

Cn =

 
1

r2n � r2n+1
+

rn
r3n � r3n+1

+
1

(rn � rn+1)2

!

+ kBkL1 + 1. (3.2)

Choose now q = qn = (p/2)n for n 2 N and write an for (
R
Qn

f 2qn )1/(2qn). Using
that for C̄ = C̄(d, �,3, Qext) � 1 large enough, we have |Qext|  C̄ , we get from
(3.1)

an+1  (C̄)
1
2qn (Cn)

1
qn an. (3.3)
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Finally we choose

rn+1 = rn �
1

a(n + 1)2

for some a > 0 (only depending on r0 � r1) so that (3.2) yields Cn ⇠ a2n4 as
n ! +1. In particular, we can choose C̄ = C̄(d, �,3, kBkL1) large enough so
that Cn  C̄

1
2 a2n4 and we get from (3.3) that

an+1 
�
C̄a2n4

� 1
qn an.

The convergence of the following infinite product

1Y

n=0

�
C̄a2

� 1
qn (n4)

1
qn < +1

achieves the proof.

3.2. De Giorgi’s approach

Proof of Theorem 3.1 by De Giorgi’s approach. We again reduce to the case z0 =
0 thanks to the transformation T �1

z0 defined in Equation (1.8). For n � 0 integer,
consider radius rn , time Tn , cylinder Qn and constant Cn as follows

rn = r1 + (r0 � r1)2�n, Tn = t0 � r2n , Cn =
1
2
(1� 2�n),

and cut-off functions 9n (independent of time) as follows

9n ⌘

8
<

:

1 in Q0rn

0 outside Q0rn�1
and

8
>><

>>:

krv9nkL1 
1

rn�1 � rn
 C0,12n

krx9kkL1 
1

r3n�1 � r3n
 C0,12n,

where C0,1 = C(r0, r1) only depends on r0 and r1, and as before

Q⌧
r := {(x, v) : (x, v, ⌧ ) 2 Qr }.

The energy estimate. Remark that fn = ( f � Cn)+ is a sub-solution of (1.6) in
Qrn with sn = s1 f�Cn . Then the energy estimate (2.8) obtained in the proof of
Lemma 2.6 yields for all Tn�1  ⌧  Tn  t  0,

Z

Qt
rn

f 2n + �

Z

Qrn

|rv fn|2


Z

Q⌧
rn

f 2n +
⇣
rnkrx9nk1 + krv9nk

2
1 + 1

⌘ Z

Qrn�1

f 2n + 2
Z

Qrn�1

fn|s|.
(3.4)
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Averaging both sides of the inequality in ⌧ 2 (Tn�1, Tn) and using the estimates on
the gradients of the cut-off function yields

Un := sup
t2(Tn,0)

Z

Qt
rn

f 2n  C4n
Z

Qrn�1

f 2n + 2
Z

Qrn�1

fn|s|, (3.5)

where C = C(r0, r1). Remark that,

Un  Un�1  · · ·  U0    1 (3.6)

(we choose   1).

The non-linearization procedure. Using the (universal) exponent p > 2 given by
Theorem 2.1, we next estimate the terms in the right-hand side of (3.5) as follows

8
>>><

>>>:

Z

Qrn�1

f 2n 
⇣R

Qrn�1
f pn
⌘ 2
p ��{ fn � 0} \ Qrn�1

�
�1�

2
p

Z

Qrn�1

fn|s|  g
⇣R

Qrn�1
f pn
⌘ 1
p ��{ fn � 0} \ Qrn�1

�
�1�

1
p� 1

q ,

(3.7)

(we used that kskLq (Qext)  � ) if p and q satisfy

1�
1
p

�
1
q

> 0.

We remark that { fn � 0} = { fn�1 � Cn � Cn�1 = 2�k�1}, which in turn implies

|{ fn � 0} \ Qrn�1 |  22n+2
Z

Qrn�1

f 2n�1  C̄4nUn�1. (3.8)

Combining these three estimates with (3.5) yields

UnC24n
2

4

 Z

Qrn�1

f pn�1

! 2
p

U
1� 2

p
n�1 +kskLq (Qext)

 Z

Qrn�1

f pn�1

! 1
p

U
1� 1

p� 1
q

n�1

3

5 (3.9)

(we also used that fn  fn�1) where C = C(d, �,3, r0, r1).

Use of the gain of integrability. In view of Theorem 2.1, we know that

 Z

Qrn�1

f pn�1

! 2
p

 C

 

8n
Z

Qrn�2

f 2n�1 + 4n
Z

Qrn�2

s21 fn�1>0

!
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with C = C(d, �,3, r0, r1). We next estimate the terms in the right-hand side of
the previous equation depending of the source term as in (3.7), but with p = 2: we
use (3.8) to get

Z

Qrn�2

s21 fn�1�0  g2
�
�{ fn�1 > 0} \ Qrn�2

�
�1�

2
q  g222n�

4n
q U

1� 2
q

n�2 .

Hence, we can use (3.6) and U0  1 again in order to write

 Z

Qrn�1

f pn�1

! 2
p

 C
✓
23nUn�2 + 24n�

4n
q U

1� 2
q

n�2

◆
 C24nU

1� 2
q

n�2

with C = C(d, �,3, r0, r1, q, g). Then (3.9) and (3.6) imply

Un  C24n
✓
24nU

2� 2
p� 2

q
n�2 +U

3
2�

1
p� 2

q
n�2

◆
 C28nU

3
2�

1
p� 2

q
n�2 .

Conclusion. Remark that we can assume that C � 1. We rewrite it as

Vn  �nV ↵
n�1 (3.10)

where Vn = U2n , � = 28C and ↵ = 3
2 � 1

p � 2
q . Remark that ↵ > 1 as soon as

1
q

<
1
2

✓
1
2

�
1
p

◆
.

Applying (3.10) recursively, we get

Vn  �k+↵(k�1)+↵2(k�2)+···+↵k�1V ↵k

0 .

Since

n+↵(n � 1)+ · · · +↵n�1=n
�
1+↵+· · · + ↵n�1

�
�↵

�
1+2↵ +· · · +(n�1)↵n�2

�

=n
↵n � 1
↵ � 1

� ↵
d
d↵

✓
↵n � 1
↵ � 1

◆

=
n(↵n � 1)

↵ � 1
� ↵

 
n↵n�1(↵ � 1) � (↵n � 1)

(↵ � 1)2

!

=
↵(↵n � 1) � n(↵ � 1)

(↵ � 1)2


↵

(↵ � 1)2
↵n,

we have
Vn 

⇣
�

↵

(↵�1)2 V0
⌘↵n

.
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This implies that U2n = Vn ! 0 as n ! +1 as soon as

�
↵

(↵�1)2 V0  (28C)
↵

(↵�1)2  < 1

where C = C(d, �,3, r0, r1, q, g). Hence,

U1 =
Z

Qr1

✓
f �

1
2

◆2

+
= 0,

which means that f  1/2 in Qr1 . This completes the proof of Theorem 3.1.

4. Intermediate-value lemma and Hölder continuity

4.1. A De Giorgi intermediate-value lemma

An important step in the proof of regularity in De Giorgi’s method for elliptic
equations is based on an inequality of isoperimetric form (see the proof of [18,
Lemma II]). This inequality is a quantitative variant of the well-known fact that no
H1 function can have a jump discontinuity, and can also be understood as a quan-
titative minimum principle. More precisely, given an H1 function u with values
[0, 1], and which takes the values 0 and 1 on sets of positive measure, De Giorgi’s
isoperimetric inequality provides a lower bound on the measure of the set of inter-
mediate values {0 < u < 1}. In the present subsection, we establish an analogue
of this inequality adapted to our equation and the combination of the first order
transport operator and the second order elliptic operator in the velocity variable.

We prove the core lemma at “unit scale”. We recall that Q2 = B8⇥B2⇥(�4, 0]
and Q1 = B1⇥B1⇥(�1, 0], Q! = B!3⇥B!⇥(�!2, 0] and we denote the shifted
cube Q̂ := Q!(0, 0,�1) = B!3 ⇥ B! ⇥ (�1� !2,�1] (see Figure 4.1).

Lemma 4.1 (A De Giorgi intermediate-value lemma). Let ! = 1
4 . For any (uni-

versal) constants �1 2 (0, 1), �2 2 (0, 1) there exist ⌫ > 0 and ✓ 2 (0, 1) (both
universal) such that for any sub-solution f of (1.6) in Q2 with f  1, |s|  1, and

|{ f � 1� ✓} \ Q!| � �1|Q!|,

|{ f  0} \ Q̂| � �2|Q̂|,

we have
|{0 < f < 1� ✓} \ B1 ⇥ B1 ⇥ (�2, 0]| � ⌫.

Remark 4.2. While De Giorgi’s isoperimetric inequality is based on an explicit
computation leading to a precise estimate with effective constants, the proof of
Lemma 4.1 is obtained by an argument by contradiction, so that the values of ✓ and
⌫ are not known explicitly.
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Figure 4.1. Cylinders involved in the statement of the De Giorgi intermediate-value
Lemma.

Remark 4.3. The compactness argument used in the proof is reminiscent of one
used by Guo in [41] and of one used by the fourth author in [59].

Proof. We argue by contradiction by assuming that there exists a sequence ( fk)k�0
of sub-solutions:

(@t + v · rx ) fk  rv · (Akrv fk) + Bk · rv fk + sk, (4.1)

such that fk  1, |sk |  1,

(
✓k ! 0
↵k ! 0

as k ! +1

and
|{ fk � 1� ✓k} \ Q!| � �1|Q!|,

|{ fk  0} \ Q̂| � �2|Q̂|,

|{0 < fk < 1� ✓k} \ (Q1 [ Q̂)| ! 0 as k ! +1.

The convexity of z 7! z+ together with |sk |  1 implies that the non-negative part
f +
k of fk satisfies the same inequation, and therefore

(@t + v · rx ) f +
k = rv ·

�
Akrv f +

k
�
+ Bk · rv f +

k + 1� µk (4.2)

for some non-negative measures µk .
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A priori estimates for f +
k . The natural energy estimate is obtained by multiplying

the equation with f +
k 92 with a smooth cut-off function 9 supported in Q2, valued

in [0, 1] and 9 ⌘ 1 in Q̃1 with

Q̃1 = B1 ⇥ B1 ⇥ (�2, 0).

Using the fact that f +
k  1 and |sk |  1, we get

�

Z

R2d+1

�
�rv f +

k
�
�292  C̄

Z

R2d+1

⇣
92 + |rv9|2 + 9|(@t + v · rx )9|

⌘

+ 3

Z

R2d+1

�
�rv f +

k
�
� f +
k 92

 C̄
Z

R2d+1

⇣
92 + |rv9|2 + 9|(@t + v · rx )9|

⌘

+
�

2

Z

R2d+1

�
�rv f +

k
�
�292.

Hence

�

Z

R2d+1

�
�rv f +

k
�
�292  C̄

Z

R2d+1

⇣
92 + |rv9|2 + 9|(@t + v · rx )9|

⌘
(4.3)

where C̄ = C̄(d, �,3).
We can also multiply the equation by 92 and get

�
Z

R2d+1
f +
k (@t + v · rx )(9

2)=�
Z

R2d+1
Akrv f +

k · rv(9
2)+

Z

R2d+1
Bk · rv f +

k 92

+
Z

R2d+1
92 �

Z

R2d+1
92 dµk .

Combining the latter equation with (4.3), we deduce
Z

R2d+1
92 dµk  C̄

Z

R2d+1

⇣
92 + |rv9|2 + 9|(@t + v · rx )9|

⌘
(4.4)

where C̄ = C̄(d, �,3).
Passage to the limit. On the one hand, Banach-Alaoglu theorem implies that

f +
k

⇤
* F in L1(Q̃1)

and

rv f +
k * rvF and

(
Akrv f +

k * H1

Bk · rv f +
k * H0

in L2(Q̃1), (4.5)
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for some weak limit F 2 L1(Q̃1)\ (L2x,t H1v )(Q̃1). In particular, (4.3) implies that
Z

Q
|rvF |2 .Q 1 (4.6)

for all Q b Q2, with a control depending on Q. On the other hand, the bound (4.4)
implies that

µk * µ inM(Q̃1).

We thus have

(@t + v · rx )F = rvH1 + H0 + 1� µ. (4.7)

By velocity averaging (see [8, Theorem 1.8]), together with the bound (4.3), we
deduce the strong convergence

f +
k ! F in L p(Q̃1) for 1  p < +1.

This implies the convergence in probability, and the function F thus satisfies

|{F = 1} \ Q!| � �1|Q!|, (4.8)

|{F = 0 } \ Q̂ | � �2 |Q̂ |, (4.9)
|{0 < F < 1} \ (B1 ⇥ B1 ⇥ (�2, 0])| = 0 .

In view of (4.6), since indicator functions are not in H1 unless they are constant,
we have that for almost every (x, t) 2 B1 ⇥ (�1, 0),

(
either for almost every v 2 B1, F(x, v, t) = 0
or for almost every v 2 B1, F(x, v, t) = 1.

In other words, F(x, v, t) = 1P(x, t) for some measurable set P ⇢ B1 ⇥ (�1, 0).
In view of (4.8) and (4.9), P satisfies

(
|P \ B!3 ⇥ (�!2, 0)| > 0

|B!3 ⇥ (�1� !2,�1) \ P| > 0.
(4.10)

Propagation. We thus get from (4.7)

@t F + v · rx F  rvH1 + H0 + 1 in Q̃1.

Consider a cut-off funtion ⇠ 2 D(Rd) such that
Z

Rd
⇣(z) dz = 1, ⇣(z) = ⇣(�z), supp ⇣ ⇢ B 1

2
.
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Given v0 2 B 1
2
, since F only depends on (t, x), we can use a test-function of the

form ⇣(v � v0), and get for all v0 2 B 1
2
,

@t F + v0 · rx F
Z

Rd

h
|H1(x, v, t)rv⇣(v � v0)| + |H0(x, v, t)⇣(v � v0)|

i
dv + 1

in (x, t) 2 B1 ⇥ (�2, 0). Since F is an indicator function and H0, H1 2 L2(Q̃1),
this implies for v0 2 B 1

2
,

@t F + v0 · rx F  0 in B1 ⇥ (�2, 0). (4.11)

We next remark that
(
for all (x, t) 2 B!3 ⇥ (�!2, 0) and (x0, t0) 2 B!3 ⇥ (�1� !2,�1)

there exists v02 B! so that (x0,v0,t0)2 Q̂ and (x, t)=(x0+sv0, t0+s).
(4.12)

Indeed, the time shift s is fixed by t = t0+ s and belongs to (1�!2, 1+!2). Then
the velocity v0 is fixed by x = x0 + sv0 and satisfies

|v0| =
|x � x0|
t � t0

<
2!3

1� !2
 !,

since ! = 1
4  1p

3
. We can use (4.11) and (4.12) and the second inequality in

(4.10)) and conclude that F ⌘ 0 in Q!, and contradicts the first inequality in (4.10).
The proof is complete.

4.2. Improvement of oscillation

It is a classical fact that Hölder continuity is a consequence of the decrease of the
oscillation of the solution “at unit scale”.

Lemma 4.4 (Improvement of oscillation). There exist �0 2 (0, 1), ! 2 (0, 1/2)
and � > 0 (all universal) such that any f solution of (1.6) in Q2 with oscQ2 f  2
and |s|  � satisfies

oscQ !
2
f  2� �0.

This lemma is a consequence of the following one.

Lemma 4.5 (A measure-to-pointwise estimate). Given �2 > 0, there exist �0 2
(0, 1), ! 2 (0, 1/2) and � > 0 (depending on �2 but not on the sub-solution)
such that any f sub-solution of (1.6) in Q2 with f  1 and |s|  � such that
|{ f  0} \ Q̂| � �2|Q̂| satisfies

f  1� �0 a.e. in Q !
2
. (4.13)
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Proof of Lemma 4.4. Let f be a solution of (1.6) in Q2 with oscQ2 f  2 and
|s|  �. We can reduce to the case where | f |  1. Indeed, we remark that there
exists a constant C such that f̃ = f � C satisfies (1.6) in Q2(0) with | f̃ |  1 and
the same source term.

If |{ f  0} \ Q̂| � |Q̂|/2, then apply Lemma 4.5 with �2 = 1/2.
In the other case, considering � f implies that the essential infimum of f is

raised. In both cases, we get the desired improvement of the oscillation of f . This
completes the proof of the lemma.

We now turn to the proof of Lemma 4.5.

Proof of Lemma 4.5. The proof proceeds in several steps.
Choice of parameters. Theorem 3.1 provides us with  correponding to the upper
bound g = 1 on the source term and Qext = Q! and Q1 = Q !

2
. Lemma 4.1

applied with �2 and �1 =
p

/|Q!| provides us with ⌫ and ✓ universal. We choose
next k0 the smallest positive integer such that

k0⌫ > |B1 ⇥ B1 ⇥ (�2, 0)|.

We finally choose � such that �  ✓k0 .
Iteration. We define f0 = f and

fk+1 =
1
✓
( fk � (1� ✓)) = ✓�k� f � (1� ✓k)

�
.

They satisfy fk  1 and

(@t + v · rx ) fk  rv · (Arv fk) + B · rv fk + sk

with sk = ✓�ks. In particular |sk |  ✓�k0�  1, which allows us to apply Theo-
rem 3.1 with the upper bound g = 1 as above. Remark that

|{ f0  0} \ Q̂| � �2|Q̂| and { fk+1  0} � { fk  0}. (4.14)

Our goal is to prove that there exists at least one index k 2 {1, . . . , k0} such that

|{ fk � 0} \ Q!|  �1|Q!|.

Indeed, observing that for such an index k1

k( fk1)+kL2(Q!) 

�
�{ fk1 � 0} \ Q!

�
�
� 1
2


p

�1|Q!|  ,

Theorem 3.1 then implies that

f  1�
1
2
✓k1  1�

1
2
✓k0 in Q !

2
,

which concludes the proof.
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Let us prove the claim by contradiction. Assume that for all k = 1, . . . , k0,

|{ fk � 0} \ Q!| � �1|Q!|.

Since fk+1 = 1
✓ ( fk � (1� ✓)), this also implies for k = 0, . . . , k0 � 1,

|{ fk � 1� ✓} \ Q!| � �1|Q!|.

But (4.14) also implies that for all k � 0,

|{ fk  0} \ Q̂| � �2|Q̂|.

Hence Lemma 4.1 implies that for k = 0, . . . , k0 � 1,

|{0  fk  1� ✓} \ (B1 ⇥ B1 ⇥ (�2, 0))| � ⌫.

Now observe that

|{ fk+1 0}\(B1⇥B1⇥(�2, 0))| = |{ fk  0} \ (B1 ⇥ B1 ⇥ (�2, 0))|
+ |{0  fk  1� ✓} \ (B1 ⇥ B1 ⇥ (�2, 0))|

� |{ fk  0} \ (B1 ⇥ B1 ⇥ (�2, 0))| + ⌫.

In particular

|B1 ⇥ B1 ⇥ (�2, 0)| �
�
�{ fk0  0} \ (B1 ⇥ B1 ⇥ (�2, 0))

�
� � k0⌫,

which is impossible for k0 as chosen above. The proof is now complete.

4.3. Proof of the Hölder estimate

Proof of Theorem 1.4. Consider an L2 solution f of Equation (1.6) in a cylinder
Qext = Qr0(z0). By Theorem 3.1, we know that f is locally bounded in Qext. In
particular, f is bounded in Qmid = Q r0+r1

2
(z0) and

k f kL1(Qmid)  C0
�
k f kL2(Qext) + kskL1(Qext)

�

for some constant C0 = C(d, �,3, Qext, Qmid). If f ⌘ 0 in Qext, there is nothing
to prove. If f is not identically 0, recalling that � is given by Lemma 4.4, we
assume that

k f kL1(Qmid)  1 and kskL1(Qext)  �,

by considering, if necessary,

f̃ =
f

C0
�
k f kL2(Qext) + kskL1(Qext)

�
+ ��1kskL1(Qext)

.
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Let z1 2 Qint := Qr1(z0). We want to prove that for all r > 0 such that Q2r (z1) ⇢
Qmid,

oscQr (z1) f  Cr↵ (4.15)

for some universal ↵ 2 (0, 1) and some constant C = C(d, �,3, r0, r1). Let
r̃ > 0 denote the largest r 2 (0, 1) such that Q2r (z0) ⇢ Qmid. We remark that
for r 2 (0, r̃), Q2r (z1) = T �1

z1 (Q2r ) where Tz1 is defined in Equation (1.8) and
f̄ = f � Tz1 satisfies (1.6) in Q2r̃ with the source term s̄ := s � Tz1 and the
coefficients Ā := A � Tz1 and B̄ := B � Tz1 . In particular f̄ and s̄ satisfy

k f̄ kL1(Q2r̃ )  1 and ks̄kL1(Q2r̃ )  �,

and (4.15) is equivalent to: for all r 2 (0, r̃),

oscQr f̄  Cr↵. (4.16)

We recall how to scale solutions. For all r 2 (0, r̃), the function

f̄r (x, v, t) = f̄ (r3x, rv, r2t)

is defined in Q2 and satisfies (1.6) with
(
B̄r (x, v, t) = r B̄(r3x, rv, r2t)

s̄r (x, v, t) = r2s̄(r3x, rv, r2t).

Since oscQ2r̃ f̄  2, we have oscQ2 f̄r̃  2 and Lemma 4.4 implies that

oscQ !
2
f̄r̃ = oscQ !

2 r̃
f̄  2✓

with ✓ = 1��0/2 (we used the fact that r̃  1 to ensure that ks̄r̃kL1(Q2)  �). We
remark that we can assume that ✓ � 1/2 and we recall that ! 2 (0, 1/2). We next
apply Lemma 4.4 to ✓�1 f̄r̃1 with r̃1 = (!/4)r̃ , which rescales the L1 bound on the
source term by a factor (!/4)2✓�1 < 1 as compared to ks̄r̃kL1(Q2)  �. Hence the
assumed bounds are still valid and we get

oscQr̃2
f̄  2✓2

with r̃2 = (!/2)r̃1. Inductively, we deduce that

oscQr̃k
f̄  2✓k

with r̃k = (!/2)kr̃/2. This yields (4.16) for r = r̃k with

↵ =
ln ✓

ln(!/2)
and C = 2

✓
2
r̃

◆↵

.
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If now r 2 [r̃k+1, r̃k], then

oscQr f̄  oscQrk
f̄  Cr̃↵

k = C
✓
2
!

◆↵

r̃↵
k+1  C̃r↵

with C̃ = C(2/!)↵ . Observe finally that the constant C and C̃ are uniformly
bounded above as z0 varies in Qint since r̃ � r1 � r0. The proof is now com-
plete.

5. Harnack inequality

In this section, we derive Harnack inequality for solutions to Equation (1.6). We use
here an approach that Luis Silvestre explained to us in the elliptic setting: we start
with Hölder continuous solutions and we consider expanding cylinders to control
the spreading of the lower bound of non-negative solutions (see Lemma 5.5). The
Harnack inequality is a consequence of the decrease of oscillation we proved earlier
and a so-called “doubling property” that estimates how the minimum of a solution
propagates with time. Let us first recall the decrease of oscillation proposition.

Proposition 5.1 (Decrease of oscillation). There exist � 2 (0, 1) and ! 2 (0, 1/2)
(both universal) such that for any r 2 (0, 1) and any solution f of (1.6) in some
cylinder Q2r (z) satisfies

oscQ !
4 r

(z) f  (1� �)
⇣
oscQr (z) f + 2��1kskL1

⌘
.

Remark 5.2. The conclusion of the proposition is equivalent to

oscQ !
4 r

f � Tz  (1� �)
⇣
oscQr f � Tz + 2��1kskL1

⌘

with Tz(y, w, s) = (x + y + sv, v + w, t + s) where z = (x, v, t).

Proof. By considering

f̃ =
f � Tz

oscQ2r (z) f/2+ kskL1/�
,

and a rescaling f̃r , we can assume that z = 0 and oscQ2 f̃r  2 and kskL1  �

(we use here that r  1). We then apply Lemma 4.4 to f̃r and get the desired result
with 1� � = 1� �0/2.
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Figure 5.1. The cylinders Q+, Q�, Q�[1] and Q�[2]. Harnack inequality relates
the supremum of a solution over Q� and its infimum over Q+. The proof consists
in constructing a sequence of points lying in Q�[1] and whose corresponding values
explode. Neighborhoods of points included in Q�[2] are also considered.

5.1. How minima propagate with time

The goal of this subsection is to prove the forthcoming Proposition 5.3. In order to
state it, we introduce two cylinders which contain Q�:

Q� ⇢ Q�[1] ⇢ Q�[2] ⇢ Q1.

See Figure 5.1. We recall that Q+ = QR and Q� = QR(0, 0,�1) and R,1 2
(0, 1) are small so that in particular Q± ⇢ Q1 and they are disjoint. We let Q�[i]
be equal to Q⇢i (0, 0,�1) with R < ⇢1 < ⇢2 < 1.

In the following propositions, we introduce elongated cylinders Qel where the
time is stretched longer in the past than what the scaling would induce:

Qel
1 = B(!/4)3 ⇥ B!/4 ⇥ (�1, 0]

Qel
r (z) = Tz

�
B(!/4)3r3 ⇥ B(!/4)r ⇥ (�r2, 0]

�
.

Proposition 5.3 (The propagation of minima). Assume that f is a non-negative
super-solution of (1.6) in Q1 with a non-negative source term s. There exists r0 >
0, R > 0 (universal) such that for any r 2 (0, r0) and z 2 Q� such that Qel

r (z) ⇢
Q�[2], we have

min
Qel
r (z)

f  Cpm r�q min
Q+

f

for some universal constants Cpm and q > 0.

We first derive from Lemma 4.5 the following doubling property at the origin. In
the two next lemmas, we conveniently assume that 0 is the final time of the first
cylinder.
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Lemma 5.4 (The doubling property at the origin). There exists h 2 (0, 1) (uni-
versal) such that for any non-negative super-solution f of (1.6) in B8⇥B2⇥(�1, 4]
with s � 0, we have

inf
Q1

f � h inf
Q0

f

with Q1 = Qel
2 (0, 0, 4) and Q0 = Qel

1 .

Proof. We first notice that since s � 0, the function f is a super-solution of (1.6)
with s = 0. We first prove that

inf
Q!/2(0,0,1)

f � h0 inf
Q!/4

f (5.1)

for some universal constant h0; see Figure 5.2.

Figure 5.2. The doubling property. On the left, the cylinders Q!/4 and Q!/2(0, 0, 1).
In the middle, the elongated cylinders Q0 and Q1. On the right, the iterated cylinders
Q0, . . . , QN (Lemma 5.5).

If infQ!/4 f = 0, there is nothing to prove. If not, the function

g =
f

infQ!/4 f

satisfies (1.6) in Q2 (up to translation in time – this is where we use that s = 0) and

|{g � 1} \ Q!| � |Q!/4| = �2|Q!|

for some universal �2, where Q! plays the role of Q̂ in Lemma 4.5. We then apply
Lemma 4.5 (with time shifted by +1) to g̃ = 1 � g  1, we get g � h0 in
B(!/2)3 ⇥ B!/2 ⇥ (1� (!/2)2, 1], that is to say, (5.1) indeed holds true.
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Apply now the result to f̃ (x, v, t) = f (x, v, t � T ) for T 2 [0, 1 � !2] and
get

inf
B

(!/2)3⇥B!/2⇥(0,1]
f � h0 inf

Q0
f. (5.2)

By applying (5.2) on time intervals (1, 2], (2, 3] and (3, 4], we propagate the infi-
mum till time t = 4 and get the desired result for h = h40.

Applying iteratively the previous lemma, we obtain straightforwardly the fol-
lowing lemma whose proof is omitted.

Lemma 5.5 (The iterated doubling property at the origin). There exists h > 0
(universal) such that for any non-negative super-solution f of (1.6) in B23N ⇥
B2N ⇥ (�1, T N ), we have

inf
QN

f � hN inf
Q0

f (5.3)

with
Qk = BR3k ⇥ BRk ⇥ (Tk�1, Tk] for k � 1,

where Rk = (!/4)2k and Tk = 4
3 (4

k � 1) for k � 0.

Remark 5.6. In [44], a measure estimate is also applied iteratively to prove a Har-
nack inequality for fully nonlinear parabolic equations in non-divergence form.

We can now prove Proposition 5.3.

Proof of Proposition 5.3. In the following proof, we need iterated cylinders that are
not centered at the origin and with arbitrary radius.

Qk
r (z) := Tz

�
r Qk�.

The cylinder Qk is first scaled by r (this is r Qk) and then centered around z (this is
Tz
�
r Qk�).
Let z1 2 Q+ be such that minQ+ f = f (z1).

Lemma 5.7. There exist R, 1, r0 (small, universal) such that

a) For all r 2 (0, r0) and z 2 Q�, the iterated cylinders Qk
r (z) (k 2 N) which are

included in {t  0} are in fact included in Q1(0);
b) The union of the iterated cylinders

S+1
k=1 Q

k
r (z) contains Q+.

The proof is elementary but tedious. It is given in appendix.
Applying Lemma 5.5, we get

inf
Qel
r (z)

f  h�N inf
QN
r (z)

f  h�N min
Q+

f,
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with N such that z1 2 QN
r (z), i.e. r�1(z�1 � z1) 2 QN . In particular, r�2(t1 �

t) 2 [T N�1, T N ]. Since z1 2 Q+ and z 2 Q�, we know that

4N�1  T N�1 
t1 � t
r2


1/2+ R2

r2
.

In particular,

h�N 

 
1/2+ R2

4

! q
2

r�q ,

where q = � ln � / ln 2 > 0. We get the desired inequality with Cpm = ((1/2 +

R2)/4)
q
2 . The proof of the proposition is thus complete.

5.2. Proof of the Harnack inequality

We can now turn to the proof of Theorem 1.6.

Proof of Theorem 1.6. We first remark that replacing f (x, v, t) with f (x, v, t) +
kskL1 t if necessary, we can assume that s � 0. By dividing f by 2��1kskL1 if
necessary, we can assume that kskL1 = �/2 (if s 6⌘ 0).

We are going to find a universal constant C = CH such that (1.10) cannot be
false. In other words, we are going to find a universal CH such that

m + 1  CHM (5.4)

entails a contradiction where

M := sup
Q�

f = f (z0) and m := inf
Q+

f = f (z1)

for some z0 2 Q� and z1 2 Q+. We used here the fact that u is (Hölder) continu-
ous.

Our goal is to construct by induction a sequence (zk)k�0 in Q�[1] (we recall
that Q� ⇢ Q�[1] ⇢ Q�[2] ⇢ Q1, see Figure 5.1) such that

f (zk) � (1� �0)�kM (5.5)

for some universal �0 2 (0, 1). This implies in particular that f (zk) ! +1 as
k ! +1 which is absurd since f is bounded in Q�.

Remark first that (5.5) holds true for k = 0. Let us assume that we already
constructed z0, . . . , zk and let us construct zk+1. Let zk = (xk, vk, tk). We choose
rk > 0 such that

f (zk) = r�2q
k m, (5.6)

where q is given by Proposition 5.3. Inequality (5.4) and the induction hypothesis
(5.5) imply

r2qk  CH (1� �0)k . (5.7)
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From the decrease of oscillation (Proposition 5.1), we know that

1+ oscQrk
f � (1� �)�1 oscqk f

(recall 2��1kskL1 = 1) with

Qk = Qrk (zk) and qk = Q!rk/4(zk).

In particular, zk 2 qk . Let zk+1 2 Qk be such that

max
Qk

f = f (zk+1).

Then we get

1+ f (zk+1) � (1� �)�1
✓
f (zk) �min

qk
f
◆

. (5.8)

Recall that zk 2 Q�[1]. Choosing CH small, we can ensure through (5.7) that
Qrk (zk) ⇢ Q�[2]. We also remark that

qk � Qel
(!/4)2rk

(zk).

We thus can apply Proposition 5.3 and get

min
qk

f  min
Qel

(!/4)2rk
(zk)

f  C̃pmr
�q
k m,

with C̃pm = Cpm(4/!)q . The use of (5.6) in the previous inequality yields

min
qk

f  C̃pmr
q
k f (zk)  C̃pm

p
CH f (zk). (5.9)

Now combining (5.8) and (5.9), we get

1+ f (zk+1) � (1� �)�1
⇣
1� C̃pm

p
CH

⌘
f (zk).

Use next that 1  CHM (this is a consequence of (5.4)) and the induction hypoth-
esis and get

f (zk+1) � (1� �)�1
⇣
1� C̃pm

p
CH

⌘
(1� �0)�kM � CHM

� j(1� �0)�kM,
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with
j = (1� �)�1

⇣
1� C̃pm

p
CH

⌘
� CH .

We thus choose �0 such that
(1� �0)�1 = j

and we can choose CH small enough so that �0 2 (0, 1). In particular we get

f (zk+1) � (1� �0)�k�1M

which is the desired inequality.
We are left with proving that the sequence {zk} stays in Q�[1]. The fact that

zk+1 lies in Qrk (zk) = Tzk (Qrk (0)) implies in particular that |vk+1�vk |  rk which
in turn yields

|vk � v0| 
X

l�0
rl  C1/(2q)

H

X

l�0
(1� �0)

k
2q =

C1/(2q)
H

1� (1� �0)1/(2q)
.

Using now that the fact that �0 is explicitely given as a function of � and CH (see
above), we conclude that |vk � v0| can be arbitrarily small uniformly in k. We can
argue in the same spirit for |xk � x0| and |tk � t0|. Since z0 2 Q�, we conclude
that we can indeed ensure that zk lies in Q�[1]. The proof of the theorem is now
complete.

6. Local gain of regularity for sub-solutions

In this section, we investigate the regularity of sub-solutions to Equation (1.6) be-
yond the gain of integrability proved above. Observe that, on the one hand, Theo-
rem 2.1 applies to sub-solutions but only concludes to the gain of integrability. On
the other hand, Theorem 2.3 proves a gain of Sobolev regularity but only applies to
solutions (not sub-solutions). It might seem, at first glance, that the lack of ellip-
ticity in all directions means the gain of regularity of solutions is false, since in the
elliptic and parabolic case it is entirely based on the energy estimate. However we
show here that, using the local upper bound proved above by the De Giorgi–Moser
iteration, and refined averaging lemmas, this result still holds in essence for our
equation, even though the gain of regularity is only Hs with s > 0 small. We prove
the following result:

Theorem 6.1 (Gain of regularity for non-negative sub-solutions). Consider z02
R2d+1 and two cylinders Qint := Qr1(z0) and Qext := Qr0(z0) with 0 < r1 < r0.
Then there is some s 2 (0, 1/3) such that any weak non-negative sub-solution f
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of (1.6) in Qext satisfies

k f kHs
x,v,t (Qint)  C

�
k f kL2(Qext) + kskL1(Qext)

�
(6.1)

with C = C(d, �,3, Qext, Qint).

Remark 6.2. Since f is sub-solution of (1.6), a non-positive measure appears as
a source term. Since such measure is arbitrary, we necessarily gain strictly less
derivatives in x than what was obtained in Theorem 2.3; this can be seen for in-
stance by considering the Dirac mass belonging to W 1/p�1�0,p and exploiting the
optimality of the regularisation results in [7].

Proof. We define Qmid in between Qint and Qext and the same truncation functions
as before. Theorem 3.1 implies that

k f kL1(Qmid) . k f kL2(Qext) + kskL1(Qext).

We want to apply [7, Theorem 1.3] on f in Qmid. However since f is only a sub-
solution it satisfies the equation

@t f + v · rx f = rv · (Arv f ) + B · rv f + s � µ in Qext,

where we have included the defect non-negative measure µ � 0 accounting for the
inequation. We can now repeat the reasoning from the proof of Lemma 4.1 and
reduce to the case

@t g + v · rx g = rv · (Arvg) + rv · H1 + H0 � µ̃ in R2d+1,

with g ⌘ f in Qint and g, the measure µ̃ � 0, H0 and H1 supported in Qmid, and
with g, rvg, H0 and H1 bounded in L2 on Qmid. Then by integrating in x, v, t
we deduce that µ̃ has bounded variation in terms of the previous bounds. Since

for q > (4d + 2), the space W
1
2 ,q
x,v,t embeds into the space of continuous bounded

functions of x, v, t , we deduce that the space of measures is included in W� 1
2 ,q

⇤

x,v,t
and therefore

µ̃ =
�
1� 1x,t

� 1
4 (1� 1v) h with h 2 Lq

⇤
(Qmid) (6.2)

and that the bound on the Lq⇤
(Qmid) depends on the previous bounds above, where

q⇤ = 1/(1�1/q) is the conjugate exponent of q. Observe that q⇤ is strictly smaller
than 2 and close to one, for instance q⇤ 2 (1, 14/13) in dimension d = 3. We
then apply [7, Theorem 1.3] with  = 1, r = 1

2 , m = 2, � = 1, p = q⇤: we

deduce that g belongs to W
1
8 ,p
x,t L

p
v (observe that we use a full Laplacian derivative

in v in Equation (6.2) in order to be in the framework of [7, Theorem 1.3], even
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though (1 � 1v)
1/4 would have been enough for the purpose of having h 2 Lq⇤).

By interpolation with the L1 estimate, we obtain then that g 2 Hs
x,t L2v for some

s 2 (0, 18 ) small enough. Finally, we combine the latter estimate with the energy
estimate g 2 L2x,t H1v to conclude with g 2 Hs

x,v,t . Since the truncation function is
equal to one on the smaller cube Qint, it translates into f 2 Hs

x,v,t on Qint and this
concludes the proof.

7. Gain of integrability of the velocity gradient

This section is devoted to the proof of the following theorem.

Theorem 7.1 (Gain of integrability for rv f ). Let f be a solution of (1.6) with-
out lower order terms (B ⌘ 0 and s ⌘ 0) in some cylinder Qr0(z0). There exists
a universal " > 0 such that for all Q[i] = Qri (z0), i = 0, 1, 2 with r2 < r1 < r0,
rv f 2 L2+"(Q2)

Z

Q[2]
|rv f |2+" dz  C

✓Z

Q[1]
|rv f |2 dz

◆ 2+"
2

, (7.1)

with C = C(d, �,3, Q2, Qint, Qext).

Remark 7.2. We decided to remove lower order terms B and s in order to simplify
the presentation of the proof. We believe there is no additional technical difficul-
ties dealing with bounded B and s, and that such a gain of integrability is true for
solutions of the Landau-Coulomb equation under the assumption of Theorem 1.1.

The proof follows along the lines of the one of [32, Theorem 2.1]. It consists in
deriving an almost reverse Hölder inequality which in turn implies the result thanks
to the analogous of [32, Proposition 1.3]. The following measure-theoretical lemma
will be used as a black box in the proof of Theorem 7.1. It implies the use of
cylinders with different shape:

Q(z0, r) =
n
z = (x, v, t) : |xi � x0i | < r3, |vi � v0i | < r,�r2 < t � t0  0

o
,

where x = (x1, . . . , xd) and v = (v1, . . . , vd). The scaling of the equation pre-
serves this family of cylinders but not the Lie group action Tz .

Lemma 7.3 (A Gehring lemma). Let g � 0 inQ such that there exists q > 1 such
that for all z0 2 Q and R such thatQ4R(z0) ⇢ Q,

Z

QR(z0)
gq dz  b

✓Z

Q4R(z0)
g dz

◆q
+ ✓

Z

Q4R(z0)
gq dz
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for some ✓ > 0. There exists ✓0 = ✓0(q, d) such that if ✓ < ✓0, then g 2 L ploc(Q)
for p 2 [q, q + ") and

✓Z

QR

g p dz
◆ 1

p
 cp

✓Z

Q4R
gq dz

◆ 1
q

,

the constants " > 0 depends only on b, q, ✓ and dimension, and cp further depends
on p.

The proof of Lemma 7.3 is an easy adaptation of the one of [31, Proposition 5.1],
by changing Euclidean cubes with cylindersQR .

The proof of Theorem7.1is a consequence of some estimates involving weight-
ed means of the solution. Given z0 2 R2d+1, they are defined as follows:

f̃2R(t) =
1

cR4d

Z

R2d
f (t, x, v)�2R(x, v, t) dx dv

(for some c defined below) where �2R is a cut-off function such that

�2R(x, v, t) =
dY

i=1
�R3

⇣
xi � x0i

⌘
�R

⇣
vi � v0i

⌘
,

with �R(a) = �(a/R) for some � such that
p

� 2 C1(R) and � ⌘ 1 in [�1, 1]
and supp� ⇢ [�2, 2]. We remark that �2R ⌘ 1 inQR and �2R ⌘ 0 outsideQ2R .

Lemma 7.4. Let f be a solution of (1.6) inQ0. Then forQ3R(z0) ⇢ Q0,
Z

QR(z0)
|rv f |2 dz  CR�2

Z

Q2R(z0)
| f � f̃2R|2 dz, (7.2)

sup
t2(t0�R2,t0]

Z

Qt
R(z0)

| f (t) � f̃ R(t)|2 dx dv  C
Z

Q3R(z0)
|rv f |2 dz, (7.3)

whereQt
R(z0) = {(x, v) : (t, x, v) 2 QR(z0)}.

Remark 7.5. This lemma corresponds to [32, Lemmas 2.1 and 2.2].

Proof. For the sake of clarity, we put z0 = 0 and R = 1. Consider ⌧2 2 C1(R, R)
such that 0  ⌧2  1, ⌧2 ⌘ 0 in (�1,�22] and ⌧2 ⌘ 1 in [�1, 0]. Use 2( f �
f̃2)�2⌧2 as a test function for (1.6) and get
Z

R2d

�
f (0) � f̃2(0)

�2
�2 dx dv + 2

Z

R2d+1
(Arv f · rv f )�2⌧2 dx dv dt

=
Z

R2d+1

⇣
f � f̃2

⌘2
�2(@t⌧2) dx dv dt �

Z

R2d+1
v · rx

⇣
f � f̃2

⌘2�
�2⌧2 dx dv dt

� 2
Z

R2d+1

�
f � f̃2

�
Arv f · rv�2⌧2 dx dv dt.
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Note that the definition of f̃2 implies that the remaining term

�2
Z

R2d+1

�
@t f̃2

��
f � f̃2

�
�2⌧2

vanishes. This equality yields
Z

R2d

�
f (0) � f̃2(0)

�2
�2 dx dv + �

Z

R2d+1
|rv f |2�2⌧2 dx dv dt


Z

R2d+1

�
f � f̃2

�2
 

�2|@t⌧2| + |v · rx�2|⌧2 +
32

�
|rv

p
�2|

2⌧2

!

dx dv dt

which in turn yields (7.2). Changing the final time, we also get

sup
t2(�1,0]

Z

R2d

⇥
f (t) � f̃2(t)

⇤2
�2(t) dx dv  C

Z

Q2
| f � f̃2|2 dx dv dt.

Now the function F = f � f̃2 is such that
R
F(x, v, t) dx dv = 0. In particular, we

have
Z

Q2

�
f � f̃2

�2 dx dv dt  C
Z

Q2

✓
|rv f |2 +

�
�
�D

1
3
x f
�
�
�
2
◆
dx dv dt.

Observe that if there are no lower order terms (B = 0 and s = 0), then we have for
all q 2 (1, 2],

Z

Q2

�
�
�D

1
3
x f
�
�
�
q
dx dv dt  C

Z

Q3
|rv f |q dx dv dt. (7.4)

Indeed, in view of the proof of (2.2), it is enough to apply [7, Theorem 1.3] with
such a q and use the Poincaré inequality (assuming the cutoff functions to have
convex super-level sets).

Combining the three previous estimates yields

sup
t2(�1,0]

Z

Qt
1

�
f (t) � f̃2(t)

�2
�2(t) dx dv  C

Z

Q3
|rv f |2 dx dv dt.

Finally, we write for t 2 (�1, 0]
1
2

Z

Qt
1

�
f (t)� f̃1(t)

�2
�2(t)

Z

Qt
1

�
f (t) � f̃2(t)

�2
�2(t)+

Z

Qt
1

�
f̃2(t) � f̃ R(t)

�2
�2(t)


Z

Qt
1

( f (t) � f̃2(t))2�2(t)

+ |Qt
1|

 
1
c

Z

Qt
1

( f � f̃2(t))�1(x, v, t) dx dv

!2

C
Z

Qt
1

( f (t) � f̃2(t))2�2(t),

and we get the second desired estimate since �2 ⌘ 1 inQ1.
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We now turn to the proof of Theorem 7.1. The use of (7.4) is the main differ-
ence with [32].

Proof of Theorem 7.1. Pick p>2 and let q denote its conjugate exponent: 1q+
1
p =1.

We follow [32] in writing (omitting the center of cylinders z0), thanks to (7.2),

Z

Q1
|rv f |2 .

Z

Q2
| f � f̃2|2

 sup
t2(t0�4,t0]

 Z

Qt
2

| f � f̃2|2
! 1
2 Z t0

t0�4
dt

 Z

Qt
2

| f � f̃2|2
! 1
2

.
✓Z

Q4
|rv f |2

◆ 1
2
Z t0

t0�4
dt

 Z

Qt
2

| f � f̃2|q
! 1
2q
 Z

Qt
2

| f � f̃2|p
! 1
2p

where (7.3) and Hölder inequality are used successively.
We now use Sobolev inequalities and Hölder inequality (twice) successively to

get

Z

Q1
|rv f |2 .

✓Z

Q4
|rv f |2

◆ 1
2

⇥

2

4
Z t0

t0�4

 Z

Qt
2

|rv f |q + |D1/3x f |q
! 1
2q

dt

3

5

⇥

 Z

Qt
2

|rv f |2 + |D1/3x f |2
! 1
4

.
✓Z

Q4
|rv f |2

◆ 1
2
✓Z

Q2
|rv f |q + |D1/3x f |q

◆ 1
2q

⇥

0

@
Z t0

t0�4

 Z

Qt
2

|rv f |2 + |D1/3x f |2
! q
2(2q�1)

dt

1

A

2q�1
2q

.
✓Z

Q4
|rv f |2

◆ 1
2

⇥

✓Z

Q2
|rv f |q + |D1/3x f |q

◆ 1
2q

⇥

✓Z

Q2
|rv f |2 + |D1/3x f |2

◆ 1
4
.
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We now use (7.4) and get

Z

Q1
|rv f |2 .

✓Z

Q4
|rv f |2

◆ 1
2
✓Z

Q2
|rv f |q

◆ 1
2q
✓Z

Q2
|rv f |2

◆ 1
4

.
✓Z

Q4
|rv f |2

◆ 3
4
✓Z

Q2
|rv f |q

◆ 1
2q

.

Now use and get for all " > 0,

Z

Q1
|rv f |2 .

✓Z

Q4
|rv f |2

◆ 3
4
✓Z

Q4
|rv f |q

◆ 1
2q

.
✓Z

Q4
|rv f |2

◆ 3
4
✓Z

Q4
|rv f |q

◆ 1
2q

.

After rescaling, we get the following:

Z

QR

|rv f |2 .
✓Z

Q4R
|rv f |2

◆ 3
4
✓Z

Q4R
|rv f |q

◆ 1
2q

. "

Z

Q4R
|rv f |2 + c"

✓Z

Q4R
|rv f |q

◆ 2
q

.

Apply now Proposition 7.3 in order to achieve the proof of Theorem 7.1.

Appendix

A. Known estimates for the Landau equation

Lemma A.1 (Lower bound – [23,56]). Assume there exist positive constants M1,
M0, E0 and H0 such that (1.3) holds true. Then

det A[ f ] � c(1+ |v|)

with

 =

(
(d � 1)(� + 2) + � if � 2 [�2, 0]
3� + 2 if � 2 [�d,�2),

where c only depends on dimension, � , M0, M1, E0 and H0.
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Lemma A.2 (Upper bounds - [23,56]). Assume there exist positive constants M1,
M0, E0 and H0 such that (1.3) holds true. Assume that f 2 L1(Rd). Then

|A[ f ]| 

(
C(1+ |v|)�+2 if � 2 [�2, 0]

Ck f k
|�+2|
d

1 if � 2 [�d,�2),

|B[ f ]| 

(
C(1+ |v|)�+1 if � 2 [�1, 0]

Ck f k
|�+1|
d

1 if � 2 [�d,�1),

|c[ f ]| 

(
C if � = 0

Ck f k
|� |
d

1 if � 2 [�d, 0),

where C only depends on dimension, � , M0, E0.

B. Proof of a technical lemma

Proof of Lemma 5.7. To justify a) and b), we remark that

P� ⇢
+1[

k=1
Qk ⇢ P+,

where

P� :=

(

(y, w, s) : s �
4
3

 
42

!2
⇢2 � 1

!

, |y|  ⇢3, |w|  ⇢

)

,

P+ :=

⇢
(y, w, s) : s �

4
3

✓
4
!2

⇢2 � 1
◆

, |y|  ⇢3, |w|  ⇢

�
,

see Figure B.1.
In what follows, R and r0 are chosen as functions of 1. In particular,

R 
p

1 and r0 
p

1.

As far as a) is concerned, we should ensure that for all z 2 Q� and r 2 (0, r0),
�
z � rP+� \ {t  0} ⇢ Q1(0).

If z = (x�, v�, t�) and z+ = (x+, v+, t+) 2 rP+ are such that z � z+ 2 {t  0},
we have

0 � t� + t+

�
�
� 1 � R2

�
+
4
3

⇣
(4/!2)⇢2 � r2

⌘

� �41 +
�
42/3!2

�
⇢2,
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Figure B.1. Paraboloids containing/contained in the union of iterated cylinders.

where ⇢ = |v+|. This implies in particular

⇢2 
3!2

4
1.

In particular, for 1 2 (0, 1),
�
�v� + v+

�
�  R + ⇢


⇣
1+

p
3!/2

⌘p
1

�
�x� + x+ + t+v�

�
�  R3 + ⇢3 + R


⇣
1+ (

p
3!/2)3

⌘
13/2 +

p
1


⇣
2+ (

p
3!/2)3

⌘p
1.

We thus can choose 1 small enough (recall ! = 1/
p
5) to ensure a).

As far as b) is concerned, notice that for z+ 2 Q+ and z 2 Q�, we have

z�1 � z+ =
�
t+ � t, x+ � x � (t+ � t)v, v+ � v

�
.

Choosing R2  1  1
2 we have 2R  (4R)

1
3 and we get

�
�v+ � v

�
�  2R  (4R)

1
3 ,

�
�x+ � x � (t+ � t)v

�
�  2R3 +

�
1 + R2

�
R = 3R3 + 1R  4R,

(since R  1 and 1  1) and

t+ � t � 1 � R2.
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In particular z�1 � z+ 2 rP� if

1 � R2 �
4
3

 
42

!2
(4R)

1
3 � r2

!

.

This is in turn implied by

1 � R2 +
43

3!2
(4R)

1
3 .

Hence, for 1 given, we can choose R = R(1) small enough to get the desired
inequality and in turn point b).
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tifiques et Médicales Elsevier, Paris, 2000, edited and with a foreword by Benoı̂t Perthame
and Laurent Desvillettes.

[9] L. CAFFARELLI, C. H. CHAN and A. VASSEUR, Regularity theory for parabolic nonlinear
integral operators, J. Amer. Math. Soc. 24 (2011), 849–869.

[10] L. A. CAFFARELLI and A. VASSEUR, Drift diffusion equations with fractional diffusion
and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), 1903–1930.

[11] S. CAMERON, L. SILVESTRE and S. SNELSON, Global a priori estimates for the inhomo-
geneous Landau equation with moderately soft potentials, Ann. Inst. H. Poincaré Anal. Non
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[43] C. IMBERT and C. MOUHOT, Hölder continuity of solutions to hypoelliptic equations with

bounded measurable coefficients, Technical report, arXiv:1505.04608, 2015, Version 5.
[44] C. IMBERT and L. SILVESTRE, An introduction to fully nonlinear parabolic equations, In:

“An Introduction to the Kähler-Ricci Flow”, Lecture Notes in Math., Vol. 2086, Springer,
Cham, 2013, 7–88.

[45] C. IMBERT and L. SILVESTRE,Weak Harnack inequality for the Boltzmann equation with-
out cut-off, J. Europ. Math. Soc. (JEMS), to appear.

[46] M. KASSMANN, A priori estimates for integro-differential operators with measurable ker-
nels, Calc. Var. Partial Differential Equations 34 (2009), 1–21.

[47] A. KOLMOGOROFF, Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann.
of Math. (2) 35 (1934), 116–117.

[48] J. KRIEGER and R. M. STRAIN, Global solutions to a non-local diffusion equation with
quadratic non-linearity, Comm. Partial Differential Equations 37 (2012), 647–689.

[49] O. A. LADYZHENSKAYA and N. N. URAL’TSEVA, Linear and quasilinear elliptic equa-
tions, translated from the Russian by Scripta Technica, Inc. Translation Leon Ehrenpreis
(ed.), Academic Press, New York-London, 1968.

[50] P.-L. LIONS, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London Ser.
A 346 (1994), 191–204.

[51] S. LIU and X. MA, Regularizing effects for the classical solutions to the Landau equation
in the whole space, J. Math. Anal. Appl. 417 (2014), 123–143.

[52] J. MOSER, A Harnack inequality for parabolic differential equations, Comm. Pure Appl.
Math. 17 (1964), 101–134.

[53] J. F. NASH, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80
(1958), 931–954.

[54] A. PASCUCCI and S. POLIDORO, The Moser’s iterative method for a class of ultraparabolic
equations, Commun. Contemp. Math. 6 (2004), 395–417.

[55] L. P. ROTHSCHILD and E. M. STEIN, Hypoelliptic differential operators and nilpotent
groups, Acta Math. 137 (1976), 247–320.

[56] L. SILVESTRE, Upper bounds for parabolic equations and the Landau equation, J. Differ-
ential Equations 262 (2017), 3034–3055.
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