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Some relations among volume, intrinsic perimeter
and one-dimensional restrictions of BV functions

in Carnot groups

Francescopaolo Montefalcone

Abstract. Let G be a k-step Carnot group. The first aim of this paper is to show
an interplay between volume and G-perimeter, using one-dimensional horizontal
slicing. What we prove is a kind of Fubini theorem for G-regular submanifolds of
codimension one. We then give some applications of this result: slicing of BVG

functions, integral geometric formulae for volume and G-perimeter and, making
use of a suitable notion of convexity, called G-convexity, we state a Cauchy type
formula for G-convex sets. Finally, in the last section we prove a sub-Riemannian
Santaló formula showing some related applications. In particular we find two
lower bounds for the first eigenvalue of the Dirichlet problem for the Carnot sub-
Laplacian �G on smooth domains.

Mathematics Subject Classification (2000): 49Q15 (primary); 46E35, 22E60
(secondary).

1. Introduction

In the last few years many efforts have been produced to develop a Geomet-
ric Measure Theory in very general metric spaces along the lines originally
suggested in Federer’s book [31]. In many respects, deep contributions to this
program have been carried out, with different approaches, by De Giorgi [27, 28,
29], Gromov [45, 46], Preiss & Tisěr [67], David & Semmes [24], Cheeger [17],
Ambrosio & Kirchheim [3, 4], and Montgomery [61], just to mention some ex-
amples. Moreover, progresses in these areas is somehow connected with the
contemporary development of a theory of Sobolev spaces in abstract metric
settings that culminated in the paper [48].

Geometries associated with a family of vector fields and Carnot Carathéodory
spaces are the main models of these investigations. On this subject there is a
wide literature and we shall refer the reader to [10, 14, 22, 34, 35, 37, 42, 51,
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58, 60, 61, 64, 66, 71, 74, 75]. Of course, this list is far from being complete but
illustrates fairly well some of the directions followed by the present research.
The closeness of Analysis and Geometry is here particularly stressed by the
fact that, initially, these questions arose in the field of hypoelliptic differential
equations; in this respect, we mention the remarkable paper of Rothschild and
Stein [68]. Also we have to emphasize the special importance of the related
studies on nilpotent Lie groups; as references we would cite the works of
Folland and Stein [32, 33, 70] and Goodman [44] as regards the analytical
aspects, and, for instance, those of Pansu [65, 66] and Korányi & Reimann [52]
to better appreciate several geometrical features; see [49, 61] and [62] for useful
comments.

The geometric setting of this paper is that of Carnot groups, also known
in literature as non Abelian vector spaces or sub-Riemannian groups. They
constitute a wide class of non trivial examples of Carnot Carathéodory spaces;
see [10, 61]. Roughly speaking, a Carnot group G is a nilpotent and stratified
Lie group endowed with a one-parameter family of dilations adapted to the
stratification. They play a crucial role in the theory of Carnot Carathéodory
geometries since a deep theorem of Mitchell states that the tangent cone (in the
sense of Gromov) of a Carnot Carathéodory space is a suitable Carnot group;
see [60] and [61] for clarifying discussions.

Since Carnot groups are also homogenous groups, according to the defini-
tion of [33], harmonic analysis and P.D.E.’s on them have become a rich and
extensive subject of investigations.

Many classical tools of Calculus of Variations have been generalized to
this context and, in particular, the theory of functions of bounded variation and
that related of Caccioppoli sets.

A motivation for a great deal of new researches has been a De Giorgi type
rectifiability result in the Heisenberg group (i.e. the most simple non Abelian
Carnot group) due to Franchi, Serapioni and Serra Cassano; see [39] and [40,
41] for further generalizations. For a survey of results on these topics of
Geometric Measure Theory and for more detailed bibliographic references, we
shall refer the reader to [1, 5, 23, 40, 41, 49, 56, 61, 62, 63, 76].

In this paper we are mainly concerned with some elementary questions
about measures on Carnot groups and our starting point is a Fubini type the-
orem for codimension one G-regular submanifolds. We refer the reader to
Theorem 2.2 for a precise statement.

The proof of Theorem 2.2 follows mainly by our Proposition 2.1, using
some non-trivial approximation results. We would also remark that the main
problem to get these formulae is that of a good choice of projection maps.
Here we use, for a great number of integral formulae, the projections along the
integral curves of a generating family of vector fields of G, called horizontal
projections; see Section 2.1 for more detailed comments.

These theorems enable us to consider one-dimensional slicing of functions
and we apply this procedure to state a characterization of the space BVG of
functions of bounded variation on G. Here the key point is that to link the total
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G-variation of a function with the variation of its one-dimensional restrictions;
see Definition 1.13 and Theorem 3.7. We remark that a similar characterization
was proved in [76] for Sobolev spaces in Carnot groups.

Secondly, we deduce some integral geometric formulae and one in partic-
ular for the intrinsic perimeter measure, in Proposition 3.13. Afterwards, we
introduce a notion of convexity, called G-convexity, analogous to that recently
given in [23] and in [55]. We then prove that G-convex sets verify an integral
Cauchy type formula for the G-perimeter and a related inequality, showing that,
in a sense, this kind of convex set minimize the intrinsic G-perimeter.

The last section is devoted to prove the validity of a Santaló type formula
and some of its applications. We stress that our Theorem 4.4 generalizes to
arbitrary Carnot groups a result already proved in Pansu’s thesis [65]. This
formula is strictly connected with the introduction of a measure on the unit
horizontal bundle of G and with its invariance under a suitable restriction of
the Riemannian geodesic flow. We refer to Section 4 for a detailed introduction.

We then apply Theorem 4.4 to establish a geometric inequality linking
volume, G-perimeter and diameter of smooth bounded domains.

Finally, as an application to Analysis in Carnot groups, we perform explicit
computations to find two lower bounds for the first eigenvalue of the Dirichlet
problem for the Carnot sub-Laplacian �G on smooth domains. This will be
done quite easily, as we will see, by adapting some arguments of Riemannian
geometry.

The following two subsections are devoted to introduce, in a self-contained
way, definitions, results and preliminary tools necessary for the sequel.

Acknowledgements. I would like to thank my thesis advisor, Prof. B. Franchi,
for the generous help he has given me throughout the preparation of this paper
and Prof. L. Ambrosio for many clarifying comments about some topics here
developed. Finally, I would also express my gratitude to Prof. E. Lanconelli
for his constant support.

1.1. Carnot groups

Below we will introduce the geometric background for Carnot groups for which
we refer the reader to [10, 19, 33, 50, 52, 45, 61, 65, 70, 73].

Let G be a connected, simply connected, nilpotent Lie group, with group
law denoted by ·. It is well-known that any x ∈ G defines smooth maps
lx , rx : G → G, called left translation and right translation, respectively, by
lx(y) := x · y, rx(y) := y · x . Left translations plays a key role in the theory of
Lie groups since the Lie algebra g associated with G is defined as the set of
all left invariant vector fields. Explicitly, if x ∈ G, then X is left invariant if

(Xψ)(lx(y))= X (ψ ◦ lx)(y)= d

dt

∣∣∣
t=0

ψ(x · Exp(t X)) ∀ ψ ∈ C∞(G) ∀ y ∈ G . (1)
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The set of all left invariant vector fields X on G is a vector space and it
becomes a Lie algebra since the bracket of left invariant vector fields is still a
left invariant vector field. This algebra is canonically isomorphic to TeG, the
tangent space at the identity e of G, via the identification of any vector field
X with its value Xe at e, where the isomorphism is given by the differential
of the left translation at e, i.e. d lx : TeG −→ TxG for x ∈ G. Let us consider
now the following Cauchy problem{

γ̇ (t) = X (γ (t))

γ (0) = x ∈ G

where X ∈ g. From the elementary theory of O.D.E.’s we know that there
exists a unique smooth solution which is defined on all of R since every left
invariant vector field on a Lie group is complete. As usual we set

γ (t) = exp[t X ](x) ∀ t ∈ R . (2)

The integral curve of X is a one-parameter subgroup of G and one can think
of it as the image in G of the one-dimensional vector subspace of g generated
by X . We may define the exponential map setting Exp : g �−→ G, Exp(X) :=
exp[X ](1). Since G is a simply connected Lie group we have that Exp is a
global analytic diffeomorphism between g and G; see [19, 50, 73]. Hence the
inverse of Exp is defined globally and we denote this map by Log . Notice that
any solution γ of the above Cauchy problem is the right translation by Exp(t X)

of x ∈ G, i.e.

γ (t) = exp[t X ](x) = x · Exp(t X) = rExp(t X)
(x) ∀ t ∈ R .

We have assumed that G is nilpotent and this means that its Lie algebra g is
nilpotent. To explain this condition first we define by induction g1 := g and
gi := [g1, gi−1] for i > 1, where [g1, gi−1] is the set of the Lie brackets [X, Y ]
for X ∈ g1 and Y ∈ gi−1. We say that g is nilpotent of k-step if gk �= {0} and
gk+1 = {0}. A connected, simply connected, nilpotent Lie group G is a Carnot
group of step k if its Lie algebra g admits a step k stratification, i.e. there exist
linear subspaces V1, . . . , Vk of g such that

g = V1 ⊕ . . . ⊕ Vk, [V1, Vi−1] = Vi for i = 2, . . . , k and Vk+1 = {0} . (3)

Hereafter, we will assume that the underlying manifold of G is Rn , for some
n ∈ N. Since g nilpotent it follows that it is finite-dimensional as a vector
space and that dim g = n. We then choose as a vector basis of g the standard
one of Rn , say e1, . . . , en . By means of the exponential map any x ∈ G
can be written in a unique way as x = Exp(x1e1 + . . . + xnen). Therefore,
using exponential coordinates, x is identified with the n-tuple (x1, . . . , xn) ∈ Rn

and G is identified with Rn equipped with the group law ·. The group law is
completely determined by the Campbell-Hausdorff formula which states

Exp(X) · Exp(Y ) = Exp(X ∗ Y ) ∀ X, Y ∈ g ,



Volume, G-perimeter and slicing of BVG functions 83

where X ∗ Y is given by the following identity

X ∗ Y = X + Y + 1

2
[X, Y ] + 1

12
[X, [X, Y ]] + 1

12
[Y, [Y, X ]] + R(X, Y ) , (4)

where R(X, Y ) denotes a formal series of commutators which becomes a finite
sum in our case, since G is a connected and simply connected nilpotent Lie
group (see [19, 73]). Notice also that the group law turns out to be polynomial
in the coordinates of Rn . Moreover the Campbell-Hausdorff formula implies
that the identity e of G is 0 ∈ Rn and that x−1 = −x for x ∈ G.

We have seen that V1, the first layer of g, generates the whole algebra
by iterated Lie brackets. We set mi := dim Vi for i = 1, . . . , k and hi :=
m1 + . . .+ mi where h0 := 0 and hk := n. The standard basis e1, . . . , en of Rn

can be adapted to the stratification of g assuming that

ehj−1+1, . . . , ehj is a basis of Vj for each j = 1, . . . , k . (5)

Therefore we may define a smooth global frame of left invariant vector fields
for G related to the fixed basis of g by setting

X j (x) := d lx ej for x ∈ G and j = 1, . . . , n , (6)

or, equivalently, X j (0) = ej for j = 1, . . . , n.

Any Carnot group G is endowed with a family of group automorphisms
δλ : G −→ G, the so-called intrinsic dilations, defined by

δλ(x1, . . . , xn) = (λα1 x1, . . . , λαn xn) for x ∈ G whenever λ > 0 , (7)

where αi ∈ N is called homogeneity of the variable xi and it is defined as
αj := i whenever hi−1 + 1 ≤ j ≤ hi . Hence 1 = α1 = . . . = αm1 < αm1+1 =
2 ≤ . . . ≤ αn = k; see [10, 33].

According to [33, 70], G is a homogeneous group with respect to the family
of dilations δλ and hence we will denote by Q := ∑k

i=1 i dim Vi its homogeneous
dimension.

The smooth subbundle of the tangent bundle T G that is spanned by X1, . . . ,

Xm1 is called the horizontal bundle HG on G and we refer to X1, . . . , Xm1
as generating vector fields of the group. The fibers of this bundle are given by
HzG = span{X1(z), . . . , Xm1(z)}, for z ∈ G, and the horizontal bundle HG is
the disjoint union of the horizontal fibers, i.e.

HG :=
⊔
z∈G

HzG .

From now on we shall write any element of HG as an ordered pair (z; Z) with
z ∈ G and Z ∈ HzG. The projection map π|HG on G is the restriction to HG
of the projection map π : T G �−→ G, i.e. π|HG : HG �−→ G, π|HG(z; Z) = z
for (z; Z) ∈ HG. We may define a sub-Riemannian structure on G endowing
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each fiber of HG with an inner product 〈·, ·〉HG and with a norm | · |HG

that makes the basis X1, . . . , Xm1 an orthonormal basis. More precisely, if
(z; Z), (z; Z1), (z; Z2) ∈ HG we shall write

〈Z1, Z2〉HzG =
m1∑
j=1

aj bj , |Z |HzG = √〈Z , Z〉HzG ,

where Z1(0) = ∑m1
j=1 aj ej , Z2(0) = ∑m1

j=1 bj ej .

Notation. Throughout this paper, unless mentioned otherwise, the notation 〈·, ·〉
will be used to denote the euclidean inner product in Rk (k = 1, m1 or n) where
k is given by the context and similarly for | · |.
The sections of HG are called horizontal sections; the elements of HG are called
horizontal vectors while those of T G that are not horizontal are called vertical
vectors. Each horizontal section is identified with its canonical coordinates with
respect to the moving frame X1, . . . , Xm1, so that a horizontal section ψ is
regarded as a function ψ = (ψ1, . . . , ψm1) : Rn −→ Rm1 . If D ⊂ G we shall
denote by HD the restriction to D of the structure of horizontal bundle, i.e.

HD :=
{
(z; Z) ∈ HG : z = π|HG(Z) ∈ D

}
.

Some of the next topics require us to introduce the notion of unit horizontal

bundle on G. To this end let us set
◦

HG := HG \ {0HG}, where 0HG is the

zero section of HG. Denoting by U HG the quotient of
◦

HG by the positive
dilations we obtain a bundle structure on G, called unit horizontal bundle on G,

whose projection map π|U HG : U HG �−→ G is given by π|U HG(z; Z) = z for
(z; Z) ∈ HG. Notice that each fiber U H zG of π|U HG can be identified with
the unit sphere Sm1−1 of Rm1 . Roughly speaking, U H zG is the subset of HzG
of all unit vectors with respect to the norm on the fiber | · |HzG.

We shall now introduce the Carnot-Carathéodory distance and some related
topics which can be found in [6, 10, 45, 46, 61, 62, 66].

We call a curve γ : [0, 1] −→ G a horizontal curve if γ̇ (t) ∈ HG for all
t ∈ [0, 1].

Definition 1.1. For every x, y ∈ G the cc-distance dc(x, y) is defined by

dc(x, y) := inf
∫ 1

0
|γ̇ (t)|HG dt

where the infimum is taken over all horizontal curves such that γ (0) = x and
γ (1) = y.
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By Chow’s theorem the set of horizontal curves joining two different points is
not empty since the rank of the Lie algebra generated by X1, . . . , Xm1 is n
and hence dc is a left-invariant metric on G. Note that dc induces the same
topology as the euclidean one on Rn . We will denote by Uc(x, r) and Bc(x, r),
respectively, the open and closed balls of center x and radius r with respect to
dc. Moreover dc is well behaved with respect to left translation and dilations,
indeed we have

dc(z · x, z · y) = dc(x, y), dc(δλ(x), δλ(y)) = λdc(x, y)

∀ x, y, z ∈ G ∀ λ ∈ R .
(8)

From now on, if s ≥ 0, then Hs will denote the s-dimensional Hausdorff
measure obtained from the euclidean distance in Rn, while Hs

c will denote the
s-dimensional spherical Hausdorff measure obtained from the cc distance dc,
using Carathédory’s construction. We remark that a theorem of J. Mitchell states
that the Hausdorff dimension of a Carnot group with respect to the cc-distance
dc equals its homogeneous dimension Q; see [60].

Later on we will use the following result.

Proposition 1.2. Let γ : [0, 1] −→ G be an absolutely continuous horizontal curve.
Then there exists the metric derivative |γ̇ | of γ for L1−a.e. t ∈ [0, 1] and we have

|γ̇ |(t) := lim
ε→0

dc(γ (t + ε), γ (t))

|ε| = |γ̇ (t)|HG for L1 − a.e. t ∈ [0, 1] .

Moreover, if Var(γ ) denotes the total variation of γ (with respect to the cc-distance
dc), then

Var(γ ) =
∫ 1

0
|γ̇ (t)|HG dt ≥ H1

c(γ ([0, 1]))

and the equality holds if and only if γ is injective.

For a proof of this statement see Theorem 4.4.1 of [6] and Theorem 1.3.5
of [62]. Note that if γ is an integral curve of a fixed horizontal left invariant
vector field X ∈ HG then γ̇ (t) is constant being the vector of coordinates of
X in V1, and for all K ⊂ γ compact we get

H1
c(K) =

∫
γ−1(K)

|γ̇ (t)|HG dt = |X | · L1(γ −1(K)) . (9)

We now summarize some features of differential forms on Lie groups; for more
details the reader is referred to [50]. We say that a differential form ω on G is
left invariant if l∗x ω = ω for all x ∈ G, where the map l∗x (l∗x : T ∗

y G �−→ T ∗
lx (y)G

for y ∈ G) denotes the pullback by the left translation lx . Analogously we
define right invariant differential forms and we call bi-invariant a differential
form that is both left and right invariant. A smooth global coframe for G,
i.e. a basis ω1, . . . , ωn for T ∗G, is defined by the condition ωi (X j ) = δi j (for
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i, j = 1, . . . , n), where X1, . . . , Xn is the chosen global frame for G and δi j

denotes the Kronecker delta. A left invariant volume form on G is given by


 := ω1 ∧ . . . ∧ ωn . (10)

With the previous assumptions on G we easily get that 
 turns out to be a bi-
invariant n-form that is called the Haar volume form on G. Since by integration
of 
 we obtain the standard n-dimensional Lebesgue measure Ln, this one is
the Haar measure on G.

Remark 1.3. We shall emphasize that, since also HQ
c , the Q-dimensional spher-

ical Hausdorff measure of G, is a Haar measure of G and since, up to scale,
there is only one Haar measure on locally compact Lie groups, we must have

Ln�B = kQ · HQ
c �B ∀ B ∈ Bor(G) , (11)

where kQ is an absolute constant and Bor(G) denotes the family of Borel
subsets of G.

The next proposition will be used in the last section of this paper and introduces
the so-called Maurer-Cartan equations, [50].

Proposition 1.4. Let ω1, . . . , ωn be the global coframe for G determined by
ωi (X j ) = δi j (for i, j = 1, . . . , n), where X1, . . . , Xn is the global frame for G.
Then

dωi = −1

2

n∑
j,h=1

ci
jhωj ∧ ωh (12)

where ci
jh are the structural constants given by [X j , Xh] := ∑n

i=1 ci
jh Xi .

Remark 1.5. The stratification of g implies that if X j ∈ Vr and Xh ∈ Vs then
[X j , Xh] ∈ Vr+s . Therefore

ci
jh �= 0 �⇒ hr+s−1 < i < hr+s+1 ∀ i, j, h = 1, . . . , n .

In particular ci
ji = ci

ih = 0 ∀ i, j, h = 1, . . . , n. Moreover, let i be such that
hl−1 < i < hl+1. Then ci

jh �= 0 only if, for any j, h such that hr−1 < j < hr+1
and hs−1 < h < hs+1, we have that l = r + s. This means that we may rewrite
the summation in (12) as follows

dωi = −1

2

∑
1≤ j,h≤hl−1

ci
jhωj ∧ ωh whenever hl−1 < i < hl+1 .

In what follows we collect several properties concerning group operation and
canonical vector (resp. co-vector) fields of G.
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Proposition 1.6. The group law has the form

x · y = P(x, y) = x + y + Q(x, y) ∀ x, y ∈ G , (13)

where P = (P1, . . . ,Pn) : G × G → G and Q = (Q1, . . . ,Qn) : G × G → G
are polynomial functions and, more precisely, for each i = 1, . . . , n, we have that
Pi and Qi are homogeneous polynomials of degree αi with respect to the dilations
of G, i.e.

Pi (δλx, δλy) = λαiPi (x, y), Qi (δλx, δλy) = λαiQi (x, y) ∀ x, y ∈ G . (14)

Moreover, for every x, y ∈ G we have that

(i) Q1(x, y) = . . . = Qm1(x, y) = 0;
(ii) Qj (x, 0) = Qj (0, y) = 0 and Qj (x, x) = Qj (x, −x) = 0 for m1 <

j ≤ n;
(iii) Qj (x, y) = Qj (x1, . . . , xhi−1, y1, . . . , yhi−1) if 1 < i ≤ k and j ≤

hi ;
(iv) Qj (x, y) is a sum of terms each of which contains a factor (xi yl − xl yi ) for

some 1 ≤ i, l < j , whenever j > m1.

Proof. For the first part see [70], Chapter 12, Section 5, while the last statement
follows by using Campbell-Hausdorff formula; see [63] for a detailed proof.

Proposition 1.7. Each left invariant vector fields of the moving frame for G have
polynomial coefficients and it can be written as follows

X j (x) = ∂

∂xj
+

n∑
i>hl

ai, j (x)
∂

∂xi
for j = 1, . . . , n and j ≤ hl ,

ai, j (x) := ∂

∂yj

∣∣∣
y=0

Qi (x, y) .

(15)

Thus if j ≤ hl we have ai, j (x) = ai, j (x1, . . . , xhl−1), ai, j (0) = 0 and ai, j (δλ(x)) =
λαi −αj ai, j (x). Moreover each X j ( j = 1, . . . , n) turns out to be homogeneous of
degree αj with respect to positive dilations, i.e.

X j (ψ ◦ δλ)(x) = λαj X j (ψ)((δλ(x))) ∀ ψ ∈ C∞(G) ∀ x ∈ G ∀ λ > 0 ;
see [33, 40, 63].

Finally, we recall some basic results about calculus in Carnot groups. We say
that a map L : G −→ R is G-linear if is a group homomorphism of (G, ·)
onto (R, +) and if it is positively homogeneous of degree 1 with respect to
the positive dilations of G, i.e. L(δλx) = λL(x) for every λ > 0 and x ∈ G.
The R-linear set of G-linear real valued functionals is indicated as LG and it
is endowed with the norm ‖L‖LG

:= sup{|L(x)| : dc(x, 0) ≤ 1}. For a fixed
left invariant frame X1, . . . , Xn on G, every G-linear map can be represented
as follows, [40].
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Proposition 1.8. A map L : G −→ R is G-linear only if there exists a =
(a1, . . . , am1) ∈ Rm1 such that, whenever v = (v1, . . . , vn) ∈ G, one has L(v) =∑m1

j=1 ajvj .

Definition 1.9. Let � ⊆ G be open and x0 ∈ �. We say that f : � −→ R is
Pansu-differentiable at x0 if there exists a G-linear map L such that

lim
λ→0+

f (lx0(δλv)) − f (x0)

λ
= L(v)

uniformly with respect to v belonging to a compact set in G. In particular, L
is unique and we shall write dG f (x0)(v) := L(v).

This definition depends only on G and not on the particular choice of the
canonical generating vector fields. If � ⊆ G is open we denote by C1

G
(�) the

set of all continuous real functions in � such that the map dG f : � −→ LG is
continuous in � and by C1

G
(�, HG) the set of all sections ψ of HG whose

canonical coordinates ψj belongs to C1
G
(�) ( j = 1, . . . , m1). We remark that

C1(�) � C1
G
(�), i.e. in general the inclusion is strict. We say that f is

differentiable along X j ( j = 1, . . . , m1) at x0 if the map λ �→ f (lx0(δλej )) is
differentiable at λ = 0 where ej is the j-th vector of the standard basis of Rn .

If we have fixed a generating family of left invariant vector fields, say
X1, . . . , Xm1, then for any function f : G −→ R for which the partial deriva-
tives X j f ( j = 1, . . . , m1) are defined, we will denote by ∇G f the horizontal
section defined by

∇G f :=
m1∑
j=1

(X j f )X j ,

so that ∇G f = (X1 f, . . . , Xm1 f ). Moreover, if ψ = (ψ1, . . . , ψm1) is a hori-
zontal section such that X jψj exists for every j = 1, . . . , m1, we will denote
by divGψ the real valued function

divG ψ :=
m1∑
j=1

X jψj .

We also remark that the following integration by parts formula holds; see [9,
49].

Proposition 1.10. Let � ⊂ G be a domain; let f ∈ C∞
0 (�) and ψ ∈ C∞

0 (�, HG).
Then ∫

�

f divG ψ dLn = −
∫

�

〈∇G f, ψ〉HG dLn .

Remark 1.11. We stress that the notion of horizontal gradient ∇G depends only
on the choice of the horizontal frame X1, . . . , Xm1 and therefore it is uniquely
determined by the sub-Riemannian metric chosen. On the other hand, the notion
of horizontal divergence divG turns out to be independent of the sub-Riemannian
metric and it can be computed using the previous formula for the fixed basis;
see [40, 41].



Volume, G-perimeter and slicing of BVG functions 89

For a fixed x0 ∈ G we set 
x0
(v) := ∑m1

j=1 vj X j (x0) for v = (v1, . . . , vn) ∈ G.
Notice that the map v −→ 
x0

(v) is a smooth section of HG. The next
proposition can be found in [63].

Proposition 1.12. If f is Pansu-differentiable at x0 then f is differentiable along
X j at x0 for j = 1, . . . , m1, and

dG f (x0)(v) = 〈∇G f , 
x0
(v)〉Hx0

G for any v ∈ G . (16)

Finally, we shall introduce a notation that will be useful in some mean integral
formulae. Fixing x0 ∈ G and X ∈ HG, we set

Ix0
(X) := lx0

(Exp(X⊥
0 )) = lx0

({
v ∈ G : 〈
0(v), X〉H0G = 0

})
, (17)

where X⊥
0 denotes the orthogonal complement of X (0) in g. Explicitly if X (0) =∑m1

j=1 aj ej ,

Ix0
(X) =

x ∈ G :
m1∑
j=1

(
xj − (x0)j

)
aj = 0

 .

We call Ix0
(X) the vertical hyperplane through x0 and orthogonal to X and we

denote by Vx0
the family of all vertical hyperplanes through x0 , i.e. Vx0

:={
Ix0

(X) : X ∈ Hx0
G
}
.

1.2. BVG and G-Caccioppoli sets

For the classical theory of BV functions and Caccioppoli sets we shall refer the
reader to [2, 30, 77], while many generalizations to metric spaces as Carnot-
Carathéodory ones or Carnot groups can be found in [1, 3, 4, 14, 37, 38, 39,
40, 42, 60, 62, 63]. We shall make now a quick overview of main definitions
and properties that will be used in the sequel.

Definition 1.13. If � ⊆ G is open and f ∈ L1(�), then f has bounded
G-variation in � if

|∇G f |(�) := sup
{∫

�

f divGψ dLn : ψ ∈ C1
0(�, HG), |ψ | ≤ 1

}
< ∞ , (18)

where |∇G f |(�) is called G-variation of f in �. We denote by BV G(�) the
vector space of functions of bounded G-variation in � and by BV G,loc(�) the
set of functions belonging to BV G(U ) for each open set U � �.

Theorem 1.14. (Structure of BV G functions.) If f ∈ BV G(�) then |∇G f | is
a Radon measure in � and there exists a |∇G f |−measurable horizontal section
σ f : � → HG such that |σ f | = 1 for |∇G f |−a.e. x ∈ � and∫

�

f divG ψ dLn =
∫

�

〈ψ, σ f 〉HG d |∇G f | ∀ ψ ∈ C1
0(�, HG) . (19)
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Moreover ∇G can be extended as a vector valued measure for functions in BV G

setting

∇G f := −σ f �|∇G f | =
(

− (σ f )1�|∇G f |, . . . , −(σ f )m1�|∇G f |
)

, (20)

where (σ f )j ( j = 1, . . . , m1) is the j-th component of σ f with respect to the
horizontal frame.

The following two theorems hold in the general context of Carnot-Carathéodory
geometries associated with vector fields; see [37, 42].

Theorem 1.15. (Lower semicontinuity.) Let f, fk ∈ L1(�), k ∈ N, be such that
fk → f in L1(�); then

|∇G f |(�) ≤ lim inf
k→∞

|∇G fk |(�) . (21)

Theorem 1.16. (Compactness.) BV G,loc(G) is compactly embedded in L p
loc(G) for

1 ≤ p < Q
Q−1 , where Q denotes the homogeneous dimension of G.

Definition 1.17. Let � ⊆ G be open; then a measurable set E ⊂ G has finite
G-perimeter in �, or is a G-Caccioppoli set in �, if its characteristic function
1E belongs to BV G,loc(�). In this case we call G-perimeter of E in � the
(Radon) measure given by

|∂ E |G := |∇G1E | (22)

and we call generalized inward G-normal along ∂ E in � the vector valued
measure

νE := −σ1E . (23)

We stress that the notion of G-perimeter depends only on the sub-Riemannian
metric chosen (see also Remark 1.11).

Remark 1.18. The G-perimeter measure is invariant under group translations,
i.e.

|∂ E |G(B) = |∂(lx E)|G(lxB) ∀ x ∈ G ∀ B ∈ Bor(G) ; (24)

indeed divG is invariant under group translations and the Jacobian determinant
of lx is equal to 1. Moreover the G-perimeter is (Q − 1)-homogeneous with
respect to the intrinsic dilations, i.e.

|∂(δλE)|G(δλB) = λQ−1|∂ E |G(B) ∀ B ∈ Bor(G) . (25)

This fact can be easily proved by changing variable in formula (18).
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Proposition 1.19. [14]. If E is a G-Caccioppoli set in � with C1 smooth boundary,
then

|∂ E |G(�) =
∫

∂ E∩�

√
〈X1, n〉2 + . . . + 〈Xm1, n〉2 d Hn−1 , (26)

where n is the euclidean unit inward normal along ∂ E . In this case we have

νE(x) =
(
〈X1(x), n(x)〉, . . . , 〈Xm1(x), n(x)〉

)
√

〈X1(x), n(x)〉2 + . . . + 〈Xm1(x), n(x)〉2
∀x ∈ ∂ E ∩ � .

We would point out that the regularization technique of convolution with mol-
lifiers enables us to obtain several approximation results for both Sobolev and
BV functions in Carnot groups as well as in more general contexts; see, for
instance, [37, 42]. To this end we introduce a family of spherically symmetric
mollifiers Jε (ε > 0) by Jε(x) := ε−n J (ε−1x), where J ∈ C∞

0 (Rn), J ≥ 0,
spt (J ) ⊆ {x ∈ Rn : |x | ≤ 1} and

∫
G

J dLn = 1.

Lemma 1.20. Let � ⊆ G be open and f ∈ BVG(�). If �̃ � � is open and
|∇G f |(∂�̃) = 0, then

lim
ε→0

|∇G(Jε ∗ f )|(�̃) = |∇G f |(�̃) . (27)

Theorem 1.21. (Density for BVG functions.) Let f ∈ BVG(�); then there exists
a sequence { f j }j∈N ⊂ C∞(�) ∩ BVG(�) such that

lim
j→∞

‖ f j − f ‖L1(�) = 0 and lim
j→∞

|∇G f j |(�) = |∇G f |(�) . (28)

The following coarea formula for BVG functions is a key tool to understand the
interplay between BVG functions and G-Caccioppoli sets; for a proof see [42,
37, 63].

Theorem 1.22. Let f ∈ BVG(�) and set Et := {x ∈ � : f (x) > t} for t ∈ R.

Then

(i) Et has finite G-perimeter in � for L1−a.e. t ∈ R;
(ii) |∇G f |(�) = ∫ +∞

−∞ |∂ Et |(�) dt.

(iii) Conversely, if f ∈ L1(�) and
∫ +∞
−∞ |∂ Et |(�) dt < ∞, then f ∈ BVG(�) and

(ii) holds.

In Rn a C1 smooth hypersurface can be viewed as the zero set of a function
f : Rn −→ R with non-vanishing gradient. In Carnot groups it is possible to
follow the same approach to define the so-called G-regular hypersurfaces, [39,
40, 41].

Definition 1.23. We say that S ⊂ G is a G-regular hypersurface if for every
x ∈ S there exist a neighborhood U of x and a function f ∈ C1

G
(U) such that

(i) S ∩ U = {y ∈ U : f (y) = 0};
(ii) ∇G f (y) �= 0 ∀ y ∈ U .
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The following Implicit Function Theorem has been recently proved in [40].

Theorem 1.24. (Implicit Function Theorem.) Let � ⊆ G be open such that 0 ∈ �;
let f ∈ C1

G
(�) be such that f (0) = 0 and X1 f (0) > 0. Put E := {x ∈ � :

f (x) < 0}, S := {x ∈ � : f (x) = 0} and for h, δ > 0 set Jh := [−h, h] and
Iδ := {ξ = (ξ2, . . . , ξn) ∈ Rn−1 : |ξj | ≤ δ, j = 2, . . . , n}. If ξ ∈ Rn−1 and t ∈ Jh

we denote by γ 1
(0,ξ)

(t) the integral curve of the horizontal left invariant vector field

X1 ∈ HG at the time t issued from (0, ξ) ∈ {(0, η) ∈ G : η ∈ Rn−1}, that is

γ 1
(0,ξ)

(t) = exp[t X1](0, ξ) .

Then there exist δ, h > 0 such that R × Rn−1 � (t, ξ) �−→ γ 1
(0,ξ)

(t) is a diffeo-

morphism of a neighborhood of Jh × Iδ onto an open subset of Rn and denoting by
U � � the image of Int{Jh × Iδ} under this mapping the following statements hold:

(i) E has finite G-perimeter in U;
(ii) ∂ E ∩ � = S ∩ U;

(iii) if νE is the generalized inner unit normal of E then

νE(x) = − ∇G f (x)

|∇G f (x)|HG

∀ x ∈ S ∩ � ,

|νE |HG = 1 for |∂ E |G − a.e. x ∈ U .

Moreover there exists a unique continuous function φ = φ(ξ) : Iδ −→ Jh such that,
setting �(ξ) = γ 1

(0,ξ)
(φ(ξ)) for ξ ∈ Iδ, we have

(iv) S ∩ U = {x ∈ U : x = �(ξ), ξ ∈ Iδ};
(v) the G-perimeter has the following integral representation

|∂ E |G(U) =
∫

Iδ

√√√√ m∑
j=1

|X j f (�(ξ))|2

X1 f (�(ξ))
dξ .

We conclude this subsection with the definition of partial perimeter along a
horizontal direction, while in the next Lemma 1.26 we explicitly characterize it.

Definition 1.25. Let � be open and let X ∈ HG. Let E be a Lebesgue
measurable subset of G such that Ln(E ∩ �) < ∞. Then we say that E has
finite X -perimeter in � if

|∂X E |G(�) := sup
{∫

�

1E Xϕ dLn : ϕ ∈ C1
0(�), |ϕ| ≤ 1

}
< ∞ (29)

and we call this quantity the X-perimeter of E in �; see also [37].
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We will see in Section 3.1 that this notion agrees with that more general of
X -variation of a L1 function; see, for instance, Definition 3.1 and Remark 3.2
below.

Lemma 1.26. Let � be open and let X ∈ HG. If E is a G-Caccioppoli set in �,

then

|∂X E |G(�) =
∫

�

|〈X, νE
〉

HG
| d |∂ E |G .

Proof. Firstly, putting � := ϕ X ∈ HG, where ϕ ∈ C1
0(�), |ϕ| ≤ 1, we get∫

�

1E X ϕ dLn =
∫

�

1E 〈∇Gϕ, X〉HG dLn =
∫

�

1E divG � dLn

= −
∫

�

〈�, νE 〉HG d |∂ E |G = −
∫

�

ϕ 〈X, νE 〉HG d |∂ E |G .

Since for every x ∈ � we have ϕ 〈X, νE 〉HG ≤ |〈X, νE 〉HG|, from Definition 1.25
it follows that

|∂X E |G(�) ≤
∫

�

|〈X, νE 〉HG| d |∂ E |G .

Now we shall prove the reverse inequality. So let ε > 0 and set

�ε :=
{

x ∈ � : |x | <
1

ε
, dist(x, ∂�) > ε

}
,

ζε :=
Jε ∗

(
1�ε sign(〈X, νE 〉HG)

)
√

ε2 +
(

Jε ∗ (1�ε sign(〈X, νE 〉HG))
)2

,

where, as above, Jε is a Friedrichs’ mollifier. Using standard properties of
mollifiers we get that ζε ∈ C∞

0 (�), |ζε | < 1, and ζε −→ 1� sign(〈X, νE 〉HG)

for Ln−a.e. x ∈ G as ε → 0. Finally, from Definition 1.25 together with
previous computations and Fatou’s lemma we get

|∂X E |G(�) ≥ lim inf
ε→0

∫
�

ζε 〈X, νE 〉HG d |∂ E |G

≥
∫

�

lim inf
ε→0

ζε 〈X, νE 〉HG d |∂ E |G =
∫

�

|〈X, νE 〉HG| d |∂ E |G .

Remark 1.27. From Lemma 1.26 and from the regularity of the measures |∂ E |G
and |∂X E |G one gets equality of measures, i.e.

|∂X E |G�B = |〈X, νE 〉HG| · |∂ E |G�B ∀ B ∈ Bor(G) .
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2. A Fubini type theorem in Carnot groups

2.1. Statement of results

Let S ⊂ G be a C1 smooth hypersurface. By the usual Implicit Function
Theorem, without loss of generality, we may assume that S = ∂ E , locally,
where E is an open G-Caccioppoli set. Furthermore, again arguing locally, let
us assume that X ∈ HG is a horizontal left invariant vector field which is
transverse to S, i.e.

〈X (y), n(y)〉 �= 0 ∀ y ∈ S , (30)

where n is the euclidean unit inward normal along S. We explicitly notice that
if X ∈ HG is a horizontal left invariant vector field and S ⊂ G is a C1 smooth
hypersurface we have that

〈X, νE 〉HyG �= 0 ⇐⇒ 〈X (y), n(y)〉 �= 0 ∀ y ∈ S .

Indeed by Proposition 1.19 the inward unit G-normal along S = ∂ E is given by

νE(y) =

m1∑
j=1

〈X j (y), n(y)〉X j (y)√√√√ m1∑
j=1

〈X j (y), n(y)〉2

∀ y ∈ S

and if X = ∑m1
i=1 ai Xi we get

〈X (y), νE (y)〉HyG =

m1∑
j=1

〈X j (y), n(y)〉 aj√√√√ m1∑
j=1

〈X j (y), n(y)〉2

= 〈X (y), n(y)〉√√√√ m1∑
j=1

〈X j (y), n(y)〉2

.

Condition (30) is equivalent to require that X (y) ∈ HyG \ TyS for y ∈ S.

Consider now the following Cauchy problem{
γ̇ (t) = X (γ (t))

γ (0) = y ∈ S .

There exists a unique smooth solution of this problem which is defined on all
of R and, throughout this section, we shall write γ X

y (t) = exp[t X ](y) for t ∈ R
and y ∈ S. If X ∈ HG is fixed, we shall remove the superindex just writing γy .
Notice that γ X

y (t) = y ·Exp(t X) = P(y, Exp(t X)). Following [58], we call such
a trajectory a horizontal X-line, or simply horizontal line. Now let us consider
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the family of horizontal X -lines starting from S. We denote by RX
S the subset

of G reachable from S by means of horizontal X -lines, i.e.

RX
S :=

{
x ∈ G : ∃ y ∈ S, ∃ t ∈ R s.t. x = exp[t X ](y)

}
.

From now on, we assume that S enjoys the following further property:

γy(R) ∩ S = {y} ∀ y ∈ S . (31)

Since X is transverse to S, from the uniqueness of the solutions of the Cauchy
problem and the hypothesis (31), it follows that any subset D of RX

S has a
natural projection on S along the horizontal direction X. More precisely, we
may define a mapping pr X

S : D ⊆ RX
S �−→ S as follows; for x ∈ D and y ∈ S

we set y = pr X
S (x) if, and only if, there exists t ∈ R such that x = exp[t X ](y).

Using this type of projection every subset D of RX
S can be foliated with one-

dimensional leaves that are horizontal X -lines. In fact, setting Dy := γy(R)∩D,
one has

D =
⊔

y ∈ pr X
S (D)

Dy and y1 �= y2 �⇒ Dy1 ∩ Dy2 = ∅ ∀ y1, y2 ∈ pr X
S (D) .

In some of our results we will often use vertical hyperplanes (see (17) of Sec-
tion 1.1). It is important to note that every subset of G is reachable from any
vertical hyperplane. Finally, we would emphasize that, although this projection
turns out to be useful in the proof of many integral formulas, it is not Lips-
chitz with respect to the Carnot-Carathéodory distance dc and so one cannot to
assimilate it to an euclidean orthogonal projection; see for more details [52].

We may state our first result of this section.

Proposition 2.1. LetS⊂G be a C1 smooth hypersurface and let X ∈HG, |X |HG =1,

be a unit horizontal left invariant vector field which is transverse to S, i.e.

〈X, νE 〉HyG �= 0 ∀ y ∈ S .

Let γy be the horizontal X-line starting from y ∈ S, i.e.

γy : R �−→ G, γy(t) = exp[t X ](y) for y ∈ S .

Moreover we assume that

γy(R) ∩ S = {y} ∀ y ∈ S .

Let D ⊆ RX
S be a Lebesgue measurable subset of G that is reachable from S by

means of horizontal X-lines. Since locally S = ∂ E, for a suitable open set E ⊂ G,

without loss of generality we may assume that S = ∂ E globally, where E has locally
finite G-perimeter. Then we have

(i) Dy := γy(R) ∩ D is H1
c−measurable for |∂ E |G−a.e. y ∈ S;

(ii) the mapping S � y �−→ H1
c(Dy) is |∂ E |G-measurable on S and

Ln(D) =
∫

pr X
S (D)

H1
c(Dy) |〈X, νE 〉HyG| d |∂ E |G(y) =

∫
pr X

S (D)

H1
c(Dy) d |∂X E |G(y) ,

where pr X
S (D) ⊆ S is the horizontal X-projection of D on S.
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This proposition may be generalized to G-regular hypersurfaces and, more pre-
cisely, we can state our main theorem as follows.

Theorem 2.2. Let S ⊂ G be a G-regular hypersurface. By Theorem 1.24, without
loss of generality, we may assume that S = ∂ E globally, where E ⊂ G is an open
G-Caccioppoli set with locally C1

G
boundary. Let X ∈ HG, |X |HG = 1, be a unit

horizontal left invariant vector field which is transverse to S. Let γy be the horizontal
X-line starting from y ∈ S and let us suppose that γy(R)∩S = {y} for every y ∈ S.

Let D ⊆ RX
S be a Lebesgue measurable subset of G that is reachable from S. Then

we have

(i) Dy := γy(R) ∩ D is H1
c−measurable for |∂ E |G−a.e. y ∈ S;

(ii) the mapping S � y �−→ H1
c(Dy) is |∂ E |G-measurable on S and

Ln(D) =
∫

pr X
S (D)

H1
c(Dy) |〈X, νE 〉HyG| d |∂ E |G(y) =

∫
pr X

S (D)

H1
c(Dy) d |∂X E |G(y) .

The proof of these results will be given in the next subsection. Nevertheless
we state a first useful consequence.

Corollary 2.3. Let S ⊂ G be a G-regular hypersurface and assume that S = ∂ E
globally, where E ⊂ G is a suitable open G-Caccioppoli set. Let X ∈ HG, |X |HG =
1, be a unit horizontal left invariant vector field which is transverse to S and denote
by γy the horizontal X-line starting from y ∈ S. We assume that γy(R) ∩ S = {y}
for every y ∈ S. Finally let D ⊆ RX

S be a Lebesgue measurable subset of G that
is reachable from S by means of X-lines. Then, for every function ψ ∈ L1(D) the
following statements hold

(i) let ψ|Dy denote the restriction of ψ to Dy := γy(R) ∩ D and let us define the
mapping

ψy : γ −1
y (Dy) ⊆ R �−→ R, ψy(t) = (ψ ◦ γy)(t) .

Then ψy isL1-measurable for |∂ E |G−a.e. y ∈ S or, equivalently, the restriction
ψ|Dy is H1

c-measurable for |∂ E |G−a.e. y ∈ S;
(ii) the mapping defined by

S � y �−→
∫
Dy

ψ dH1
c =

∫
γ−1

y (Dy )

ψy(t) dt

is |∂ E |G-measurable on S and the following formula holds∫
D

ψ d Ln =
∫

pr X
S (D)

[ ∫
Dy

ψ dH1
c

]
d |∂X E |G(y)

=
∫

pr X
S (D)

[ ∫
γ−1

y (Dy )

ψy(t) dt

]
|〈X, νE 〉HyG| d |∂ E |G(y) .

Proof. Having at our disposal Theorem 2.2, is enough to use a standard argument
of measure theory to approximate the function ψ with a finite linear combination
of characteristic functions, as for instance in Theorem 3.2.5 of [31].
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Till now we have used only the intrinsic G-perimeter as a measure for hy-
persurfaces in G but also different measures can be considered. In fact, the
comparison of different surfaces measures is a one of the main problems of Ge-
ometric Measure Theory in Carnot groups and in general Carnot-Carathéodory
spaces. In particular, an interesting problem for Carnot groups is that to com-
pare the G-perimeter with the (Q−1)-dimensional Hausdorff measure associated
with either the cc-distance dc or with some suitable homogeneous distance on
G, in the case of euclidean smooth hypersurfaces; see [7, 40, 41, 57]. In this
regard, we have that the following result holds true for general Carnot groups;
see [57].

Remark 2.4. Let S be a C1 smooth hypersurface and let us assume that S is
locally the boundary of an open set E . Then

|∂ E |G�B = kQ−1(νE )HQ−1
c �

(
S ∩ B

) ∀ B ∈ Bor(G) (32)

where the measure HQ−1
c is the spherical(1) (Q − 1)-dimensional Hausdorff

measure associated with the cc-distance dc and kQ−1 is a function depending
on νE , called metric factor (see Definition 2.17 in [57]).

Therefore, we may reformulate Proposition 2.1 by using Hausdorff measures
with respect to the cc-distance dc and, more precisely, we have the following

Corollary 2.5. LetS ⊂ G be a C1 smooth hypersurface and let X ∈ HG, |X |HG =1,

be a unit horizontal left invariant vector field which is transverse to S. Let γy be
the horizontal X-line starting from y ∈ S and assume that γy(R) ∩ S = {y} for
every y ∈ S. Finally, let D ⊆ RX

S be a HQ
c -measurable subset of G that is reachable

from S by means of horizontal X-lines. Then

(i) Dy := γy(R) ∩ D is H1
c−measurable for HQ−1

c −a.e. y ∈ S;
(ii) the mapping S � y �−→ H1

c(Dy) is HQ−1
c -measurable on S and

HQ
c (D) =

∫
pr X

S (D)

H1
c(Dy) |〈X, νE 〉HyG| kQ−1(νE)

kQ

d HQ−1
c (y)

where kQ is the constant defined in Remark 1.3. Moreover

∫
D

ψ d HQ
c =

∫
pr X

S (D)

[ ∫
Dy

ψ dH1
c

]
|〈X, νE 〉HyG| kQ−1(νE )

kQ

d HQ−1
c (y) .

(1)Notice that HQ−1
c (S) = limδ→0+ HQ−1

c,δ (S) where, up to a constant multiple,

HQ−1
c,δ (S) = inf

{∑
i

(
diamc(Bi )

)Q−1
: S ⊂

⋃
i

Bi ; diamc(Bi ) < δ

}

and the infimum is taken with respect to closed dc-balls Bi .
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Proof. We have already observed in Remark 1.3 that Lebesgue measure Ln and
Q-dimensional spherical Hausdorff measure HQ

c coincide up to the constant kQ .
Thus, using Proposition 2.1, Corollary 2.3 and the identity of measures stated
in (32) the thesis follows.

2.2. Proofs of Proposition 2.1 and Theorem 2.2

This subsection is entirely devoted to prove Proposition 2.1 and Theorem 2.2.
The proof of Proposition 2.1 relies mainly on Lemma 2.7 below and on the
classical change of variables formula with some non trivial computations. The
proof of Theorem 2.2 follows from Proposition 2.1 using an approximation
argument inspired by a recent work of Franchi, Serapioni and Serra Cassano
about an implicit function theorem in Carnot groups; see Theorem 1.24 or [40].

We begin by stating two technical lemmas. For the notation used in the
sequel we refer the reader to Section 1.1. We just recall here that the group
law · on G is also denoted by P(x, y) = x + y + Q(x, y) for x, y ∈ G, where
Pj (x, y) = xj + yj for 1 ≤ j ≤ m1(= dim V1) and Pj (x, y) = xj + yj +Qj (x, y)

for j > m1.

Lemma 2.6. If X ∈ V1 and j > m1, then

Qj (y, Exp((t1+t2)X))=Qj (y, Exp(t1 X))+Qj (P(y, Exp(t1 X)), Exp(t2 X)) (33)

whenever y ∈ G and t1, t2 ∈ R.

Proof. Firstly, by Proposition 1.6 we get that if X ∈ V1

P(Exp(t1 X), Exp(t2 X)) = Exp(t1 X) + Exp(t2 X) ∀ t1, t2 ∈ R . (34)

Now, starting from the associativity property of the group law and using (34),
it follows that

P(P(y, Exp(t1 X)), Exp(t2 X)) = P(y,P(Exp(t1 X), Exp(t2 X)))

and so

Pj (P(y, Exp(t1 X)), Exp(t2 X)) = Pj (y,P(Exp(t1 X), Exp(t2 X))) . (35)

Moreover the following identities hold

Pj (P(y, Exp(t1 X)), Exp(t2 X))

= Pj (y, Exp(t1 X)) + Qj (P(y, Exp(t1 X)), Exp(t2 X))

= yj + Qj (y, Exp(t1 X)) + Qj (P(y, Exp(t1 X)), Exp(t2 X)) ;
(36)

Pj (y,P(Exp(t1 X), Exp(t2 X))) = yj + Qj (y,P(Exp(t1 X), Exp(t2 X)))

= yj + Qj (y, Exp((t1 + t2)X)) .
(37)

Thus the claim easily follows by substituting (36) and (37) in (35).
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Lemma 2.7. If X ∈ V1 we have that

∂

∂ t
P(y, Exp(t X)) =

[
∂

∂ y
P(y, Exp(t X))

]
X (y) ∀ t ∈ R ∀ y ∈ G . (38)

Notation. In some of the following formulae we will write

JyP(y, z) := ∂

∂ y
P(y, z) (y, z ∈ G) .

Proof. We shall prove this lemma by considering components. First, let X =∑m1
j=1 aj ej so that Exp(t X) = (ta1, . . . , tam1, 0, . . . , 0). If 1 ≤ j ≤ m1 we have

that Pj (y, Exp(t X)) = yj + taj and since〈[
JyP(y, Exp(t X))

]
X (y), ej

〉
= aj ,

in this case the thesis follows. Now if j > m1, we have to show that

∂

∂ t
Pj (y, Exp(t X)) = 〈∇yPj (y, Exp(t X)), X (y)〉 .

Since (Exp(t X))j = 0, we have that Pj (y, Exp(t X)) = yj + Qj (y, Exp(t X)).

Moreover the following identities hold

∂

∂ t
Pj (y, Exp(t X)) = ∂

∂ t
Qj (y, Exp(t X)) ; (39)

〈∇yPj (y, Exp(t X)), X (y)〉 = (X (y))j + 〈∇yQj (y, Exp(t X)), X (y)〉 . (40)

Therefore, by (39) and (40) we have to prove that

∂

∂ t
Qj (y, Exp(t X)) = (X (y))j + 〈∇yQj (y, Exp(t X)), X (y)〉

∀ t ∈ R ∀ y ∈ G .

(41)

Now, by differentiating both sides of (33) of the previous Lemma 2.6 with
respect to t1 at the time t1 = 0 and putting t2 = t, we get that

∂

∂ t1

∣∣∣
t1=0

Qj (y, Exp((t1 + t)X))

= ∂

∂ t1

∣∣∣
t1=0

Qj (y, Exp(t1 X)) + ∂

∂ t1

∣∣∣
t1=0

Qj (P(y, Exp(t1 X)), Exp(t X))

= ∂

∂t1

∣∣∣∣∣
t1=0

Pj (y, Exp(t1 X))

+
〈

∇yQj (P(y, 0), Exp(t X)),

[
∂

∂ t1

∣∣∣∣∣
t1=0

P(y, Exp(t1 X))

]〉
= (X (y))j + 〈∇yQj (y, Exp(t X)), X (y)

〉
that is nothing but (41).
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Proof of Proposition 2.1. Let Sα be an open neighborhood of pr X
S (D) on S. Of

course, without loss of generality, we may think of Sα as globally parameterized
through a smooth mapping �α, where �α : Uα ⊆ Rn−1 �−→ Sα and �α ∈
C1(Uα, G). In the general case we shall use a partition of unity related to
an atlas {(Sα, �α)}α∈A of S, where �α := �−1

α for α ∈ A and (Sα, �α) is
a coordinate chart on S. However, for sake of simplicity, we omit the index
α from Uα , �α and Sα just writing U, � and S. Let us consider the map
S × R � (y, t) �−→ γy(t) ∈ G given by γy(t) = exp[t X ](y). The last one
enables us to carry out the parametrization of D we were looking for. Indeed,
more precisely, starting from the parametrization of S, we may put

γ
�(ξ)

(t) = exp[t X ](�(ξ))

whenever ξ ∈ U and t ∈ R. In the sequel, for simplicity, we shall drop the
dependence on the variables and we denote this mapping just by γ

�
. This one

enjoys an important property that we summarize in the next lemma.

Lemma 2.8. The Jacobian matrix of the mapping γ
�

with respect to (ξ, t) ∈ U × R
satisfies the following identity

∣∣∣det
[
J

(ξ,t)γ�

]∣∣∣= ∣∣∣〈X, νE

〉
H�G

∣∣∣( m1∑
j=1

〈X j (�), n(�)〉2

) 1
2

|�ξ1
∧ . . .∧�ξn−1

| , (42)

where we have set

�ξh
:= ∂ �

∂ ξh

for h = 1, . . . , n − 1 .

Proof of Lemma 2.8. We have to compute the expression of the Jacobian matrix
of γ

�
, i.e.

J
(ξ,t)γ�

=
[

∂ γ
�

∂ ξ
,
∂ γ

�

∂ t

]
=
[

∂ γ
�

∂ ξ1

, . . . ,
∂ γ

�

∂ ξn−1

,
∂ γ

�

∂ t

]
.

By definition we have that γ
�(ξ)

(t) = P(�(ξ), Exp(t X)) and so we get

∂ γ
�

∂ ξ
=
[

∂

∂ y

∣∣∣∣∣
y=�(ξ)

P(y, Exp(t X))

]
∂ �

∂ ξ
.

We have then

J
(ξ,t)γ�

=
[[

∂

∂ y

∣∣∣∣∣
y=�(ξ)

P(y, Exp(t X))

]
∂ �

∂ ξ
,

∂

∂ t
P(�(ξ), Exp(t X))

]
(43)
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and, for sake of simplicity, in the following computations we will set

A :=
[

∂

∂ y

∣∣∣∣∣
y=�(ξ)

P(y, Exp(t X))

]
and b := ∂

∂ t
P(�(ξ), Exp(t X)) .

Then

∣∣∣ det
[
J

(ξ,t)γ�

]∣∣∣ =
∣∣∣∣∣ det

[
A

∂ �

∂ ξ
, b

]∣∣∣∣∣ =
∣∣∣∣∣ det

[
A

∂ �

∂ ξ
, AA−1 b

]∣∣∣∣∣ .
Next, note that | det A | = 1. Indeed, in general, one has

∂

∂ y
P(y, z) = In + ∂

∂ y
Q(y, z)

whenever y, z ∈ G, where In is the n × n identity matrix and ∂
∂ yQ is a n × n

nilpotent matrix, because it is lower triangular with the entries in the main
diagonal all equal to 1. Furthermore, by Lemma 2.7 we infer that

X (y) =
[

∂

∂ y
P(y, Exp(t X))

]−1
∂

∂ t
P(y, Exp(t X))

whenever y ∈ G and t ∈ R and so, in particular, we get that A−1 b = X (�(ξ)).

Therefore

∣∣∣ det
[
J

(ξ,t)γ�

]∣∣∣ = | det A | ·
∣∣∣∣∣ det

[
∂ �

∂ ξ
, A−1 b

]∣∣∣∣∣ =
∣∣∣∣∣ det

[
∂ �

∂ ξ
, X (�(ξ))

]∣∣∣∣∣
=
∣∣∣∣∣ det

[
∂ �

∂ ξ1

, . . . ,
∂ �

∂ ξn−1

, X (�(ξ))

]∣∣∣∣∣ =
∣∣∣∣∣
〈

∂ �

∂ ξ1

∧ . . . ∧ ∂ �

∂ ξn−1

, X (�(ξ))

〉∣∣∣∣∣
=
∣∣∣〈n(�(ξ)), X (�(ξ))

〉∣∣∣ · |�ξ1 ∧ . . . ∧ �ξn−1 | .

Here above we have used two standard properties of Linear Algebra and, more
precisely, the following identity

det
[
a1, a2, . . . , an−1, b

]=〈
a1∧a2∧. . .∧an−1, b

〉 ∀ a1, a2, . . . , an−1, b ∈ Rn ,

and the fact that

det
[
Ab1, Ab2, . . . , Abn

]
= det A · det

[
b1, b2, . . . , bn

]
for any invertible n ×n matrix A. Notice also that in the last line, we have used
the explicit expression of the euclidean unit inward normal along a parametric
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hypersurface. Now, keeping in mind that, whenever S = ∂ E is smooth, we
have

νE(y) =
(
〈X1(y), n(y)〉, . . . , 〈Xm1(y), n(y)〉

)
( m1∑

j=1

〈X j (y), n(y)〉2

) 1
2

for every y ∈ S, the thesis follows by observing that

∣∣∣〈n(y), X (y)
〉∣∣∣ =

∣∣∣〈νE (y), X (y)
〉

HyG

∣∣∣ · ( m1∑
j=1

〈X j (y), n(y)〉2

) 1
2

.

Starting from Lemma 2.8 we carry out the proof of Proposition 2.1 by means
of a partition of unity {(Wα, σα)}α∈A related to the atlas {(Sα, �α)}α∈A for S,
where Wα = spt{σα} � Sα. Indeed, by the classical change of variables formula
we get that

Ln(D)=
∑
α∈A

∫
�α(pr X

S (D)∩Sα)

(σα ◦ �α)(ξ)

[ ∫
γ−1
�α(ξ)

(D�α(ξ))

∣∣∣ det
[
J

(ξ,t)γ�α(ξ)
(t)

]∣∣∣dt

]
dξ, (44)

where D�α(ξ) :=γ
�α(ξ)

(R)∩D and γ −1
�α(ξ)

(D�α(ξ))=
{

t ∈ R : γ
�α(ξ)

(t)∩D �= ∅
}
.

Therefore, by (42) we have

Ln(D) =
∑
α∈A

∫
�α(pr X

S (D)∩Sα)

(σα ◦ �α)(ξ)

[ ∫
γ−1
�α(ξ)

(D�α(ξ))

∣∣∣〈X, νE

〉
H�α(ξ)G

∣∣∣
·
(

m∑
j=1

〈X j (�α(ξ)), n(�α(ξ))〉2

) 1
2

·
∣∣∣(�α)ξ1

∧ . . . ∧ (�α)ξn−1

∣∣∣ dt

]
dξ

=
∫

pr X
S (D)

[ ∫
R

1Dy (t) dt

]∣∣∣〈X, νE 〉HyG

∣∣∣ ( m∑
j=1

〈X j (y), n(y)〉2

) 1
2

d Hn−1(y)

=
∫

pr X
S (D)

H1
c(Dy) |〈X, νE 〉HyG| d |∂ E |G(y)=

∫
pr X

S (D)

H1
c(Dy) d |∂X E |G(y) ,

where we have used Proposition 1.2, Proposition 1.19 and Remark 1.27.

Before the beginning of the proof of Theorem 2.2 we recall the basic statements
of Implicit Function Theorem 1.24. We assume, by hypothesis, that S is a G-
regular hypersurface and so for every x̃ ∈ S there exist an open neighborhood
U of x̃ and a real valued function f ∈ C1

G
(U) such that S ∩ U = {x ∈ U :

f (x) = 0} and ∇G f (x) �= 0 for all x ∈ U . Thus S is locally the boundary of
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E = {x ∈ U : f (x) < 0} and, without loss of generality, we can assume that
X1 f (x) > 0 for x ∈ U . Let now h, δ > 0 and set

Jh := [−h, h], Iδ := {ξ = (ξ2, . . . , ξn) ∈ Rn−1 : |ξj | ≤ δ, j = 2, . . . , n} .

If ξ ∈ Rn−1 and t ∈ Jh we denote by γ 1
(0,ξ)

(t) the integral curve of the left
invariant horizontal vector field X1 ∈ HG at the time t issued from (0, ξ) ∈
{(0, η) ∈ G : η ∈ Rn−1}. Then Theorem 1.24 states that there exist δ, h > 0
such that the mapping

R × Rn−1 � (t, ξ) �−→ γ 1
(0,ξ)

(t)

is a diffeomorphism of a neighborhood of Jh × Iδ onto an open subset of G. In
what follows we denote by U the image of Int{Jh × Iδ} through this mapping.
The set E has finite G-perimeter in U and if νE is the generalized inward unit
normal of E we have

νE (x) = − ∇G f (x)

|∇G f (x)|Hx G

∀ x ∈ S ∩ U .

Furthermore, there exists a unique continuous function φ = φ(ξ) : Iδ −→ Jh

such that, setting �(ξ) = γ 1
(0,ξ)

(φ(ξ)) for ξ ∈ Iδ, we have S∩U = {x ∈ U : x =
�(ξ), ξ ∈ Iδ} and the G-perimeter has the following integral representation

|∂ E |G(U) =
∫

Iδ

√√√√ m∑
j=1

|X j f (�(ξ))|2

X1 f (�(ξ))
dξ . (45)

Let now Jε be a Friedrichs’ mollifier; putting fε = f ∗ Jε by the continuity
of f we have that fε −→ f as ε → 0 uniformly in U and analogously
(X j f ) ∗ Jε −→ X j f as ε → 0 uniformly in U (for j = 1, . . . , m). Arguing as
in [38], p. 90, we obtain

X j fε = (X j f ) ∗ Jε − ((X j f ) ∗ Jε − X j fε) for j = 1, . . . , m

and also
(X j f ) ∗ Jε − X j fε −→ 0

uniformly in U as ε → 0. We note that starting from the regularization of
f by the usual Implicit Function Theorem we get the existence of a smooth
function φε : Iδ −→ Jh such that φε −→ φ as ε → 0 uniformly in Iδ. Thus
we may construct a family {Sε}ε>0 of smooth hypersurfaces which uniformly
converges in U to S ∩ U as ε → 0. Moreover every hypersurface Sε is the
boundary of a smooth open set Eε which also converges in U to E ∩ U as
ε→0. An explicit parametrization of Sε is given by the mapping �ε : Iδ −→G,
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�ε(ξ) := γ 1
(0,ξ)

(φε) for ξ ∈ Iδ. Finally, we have that �ε −→ � uniformly for
ξ ∈ Iδ as ε → 0. To see this, notice that

|�ε(ξ)−�(ξ)| = |γ 1
(0,ξ)

(φε(ξ))− γ 1
(0,ξ)

(φ(ξ))| ≤
∣∣∣∣∣
∫ φ(ξ)

φε(ξ)

|X1(exp[t X1](0, ξ))| dt

∣∣∣∣∣
and that dc(exp[t X1](0, ξ), (0, ξ)) ≤ |t | ≤ h. Therefore, if K is a compact subset
of Iδ

exp[t X1]((0, ξ)) ∈ Kh := {z ∈ G : dc(z, {0 × K}) ≤ h} ,

and, keeping in mind that φε −→ φ as ε → 0 uniformly in Iδ, the proof of
the previous assertion follows by observing that

|�ε(ξ) − �(ξ)| ≤ |φε(ξ) − φ(ξ)| · max
z∈Kh

|X1(z)| .

Proof of Theorem 2.2. This proof is divided into several claims. In what follows
we will use the notation introduced in Theorem 1.24. From now on we assume
that the hypersurface S is parameterized by a unique map � as above and, more
precisely, we may suppose that there exists δ > 0 such that S is the image of
� : Int{Iδ} �−→ G, where �(ξ) = γ 1

(0,ξ)
(φ(ξ)) and Iδ = {ξ ∈ Rn−1 : |ξ |∞ ≤ δ}.

So we have

S = {y ∈ G : y = �(ξ), ξ ∈ Iδ} = {y ∈ G : f (y) = 0}

where f ∈ C1
G
(G) is an implicit function which defines S and such that X1 f > 0

near S.

Claim 1. Let α ∈ L∞(G) ∩ C∞(G) be such that α ≥ 0. Then we have

∫
G

α d Ln =
∫
S

[ ∫
R

(α ◦ γy)(t) dt

]
d |∂X E |G(y) .

Proof of Claim 1. More explicitly, we note that the right-hand side is equal to

∫
S

[ ∫
R

(α ◦ γy)(t) |〈X, νE 〉HyG| dt

]
d |∂ E |G(y) .

To prove this claim, we first set

I :=
∫
S

[ ∫
R

(α ◦ γy)(t) dt

]
d |∂X E |G(y) .
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By (iii) and (v) of Theorem 1.24 we get that

I =
∫

Iδ

∫
R

|〈X (�(ξ)), ∇G f (�(ξ))〉H�(ξ)G
| (α ◦ γ

�(ξ)
)(t)

X1 f (�(ξ))
dt dξ .

Now we shall prove that

I = lim
ε→0

∫
Iδ

∫
R

|〈X (�ε(ξ)), ∇G fε(�ε(ξ))〉H�ε(ξ)G
| (α ◦ γ

�ε(ξ)
)(t)

X1 f (�ε(ξ))
dt dξ . (46)

Indeed if (46) holds, Claim 1 will hold by observing that

I = lim
ε→0

∫
Sε

∫
R

(α ◦ γy)(t) |〈X, νEε 〉HyG| dt d |∂ Eε |G(y)

and that Corollary 2.3 implies that∫
G

α d Ln =
∫
Sε

∫
R

(α ◦ γy)(t) |〈X, νEε 〉HyG| dt d |∂ Eε |G(y) .

To prove (46), we first notice that, as we have seen above, �(ξ) −→ �ε(ξ)

uniformly in Iδ as ε → 0 and so, keeping in mind that ∇G fε −→ ∇G f uniformly
on compact sets, we get

∇G fε(�ε(ξ)) −→ ∇G f (�(ξ)) (47)

as ε → 0 for ξ ∈ Iδ. Thus, by (47) and by the continuous dependence of the
Cauchy problem on the initial data, the integrand in (46) tends to the integrand
of I. On the other hand �ε(ξ) lies in a fixed compact neighborhood of �(Iδ) so
that, by Weierstrass theorem and our assumptions on α, the integrand in (46)
is bounded by a constant for (ξ, t) ∈ Iδ × R and (46) follows by Dominate
Convergence Theorem.

Claim 2. Let Q ⊂ RX
S be a compact, rectangular n-box. Then

Ln(Q) ≥
∫
S
H1

c(γy(R) ∩ Q) d |∂X E |G(y) .

Proof of Claim 2. Let us choose a sequence of functions {αh}h∈N such that

lim
h→∞

αh(x) = 1Q(x) ∀ x ∈ G .

For y ∈ S we set γ −1
y (Q) :=

{
t ∈ R : γy(t) ∈ Q

}
. So we have

αh(γy(t)) −→ 1
γ−1

y (Q)
(t) ∀ (y, t) ∈ S × R
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as h → ∞. Therefore, the proof follows by observing that∫
S
H1

c(γy(R) ∩ Q) d |∂X E |G(y) =
∫
S

∫
R

1
γ−1

y (Q)
(t) d t d |∂X E |G(y)

=
∫
S

∫
R

lim
h→∞

αh(γy(t)) d t d |∂X E |G(y)

≤ lim inf
h→∞

∫
S

∫
R

αh(γy(t)) d t d |∂X E |G(y)

= lim
h→∞

∫
G

αh(x) d Ln(x) = Ln(Q) .

Claim 3. Let F ⊂ RX
S be a measurable subset of G such that Ln(F) = 0.

Setting

S0 :=
{

y ∈ S : H1
c(γ

1
y (R) ∩ F) > 0

}
,

we have that |∂ E |G(S0) = 0.

Proof of Claim 3. Let ε > 0 and {Qj }j∈N be a countable family of compact,
rectangular, n-boxes such that

F ⊆
∞⋃

j=1

Qj ,

∞∑
j=1

Ln(Qj ) < ε .

We have then∫
S
H1

c(γy(R) ∩ F) d |∂X E |G(y) ≤
∫
S

∞∑
j=1

H1
c(γy(R) ∩ Qj ) d |∂X E |G(y)

=
∫
S

lim
k→∞

k∑
j=1

H1
c(γy(R) ∩ Qj ) d |∂X E |G(y)

≤ lim
k→∞

k∑
j=1

∫
S
H1

c(γy(R) ∩ Qj ) d |∂X E |G(y)

≤
∞∑

j=1

∫
S
H1

c(γy(R) ∩ Qj ) d |∂X E |G(y)

≤
∞∑

j=1

Ln(Qj ) < ε .

Therefore ∫
S
H1

c(γy(R) ∩ F) · |〈X, νE 〉HyG| d |∂ E |G(y) = 0
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and since 〈X, νE 〉HyG �= 0 for any y ∈ S, the proof of Claim 3 follows by
observing that

H1
c(γy(R) ∩ F) = 0 for |∂ E |G − a. e. y ∈ S.

At this point we can achieve the proof of Theorem 2.2 in the following way. Let
Jε be a Friedrichs’ mollifier and put αε := 1D ∗ Jε . Since αε ∈ L∞(G)∩C∞(G)

and αε −→ 1D in L1
loc, up to a subsequence, we may assume that

lim
ε→0

αε = 1D for Ln − a.e. x ∈ G .

Now setting

F := D\
{

x ∈ D : lim
ε→0

αh(x) = 1D(x)
}

and S0 :=
{

y ∈ S : H1
c(γy(R)∩F) > 0

}
by Claim 3 we get that |∂ E |G(S0) = 0. Moreover by Claim 1 we have

∫
G

αε d Ln =
∫
S

∫
R

(αε ◦ γy)(t) dt d |∂X E |G(y) (48)

=
∫
S\S0

∫
R

(αε ◦ γy)(t) dt d |∂X E |G(y) . (49)

Therefore αε(γy(t)) −→ 1
γ−1

y (Q)
(t) for L1 −a.e. t ∈ R and |∂ E |G −a.e. y ∈ S

as ε → 0. Thus the thesis follows by letting ε to 0 in (48).

3. Sections of BVG functions and G-Perimeter

3.1. One-dimensional restrictions of BVG functions

We now introduce the concept of variation along a horizontal direction of a
locally summable function in a Carnot group G and we summarize its main
properties. Afterwards, we define the notion of X -variation along a horizontal
line and we consider the space of functions of bounded variation along a fixed
horizontal line. Then, in Theorem 3.7, we establish a link between the notion
of variation of a function along a horizontal direction and that of variation of
the restrictions of such a function to a family of horizontal lines. Finally, we
generalize to Carnot groups a well-known characterization of the usual space
BV by means of one-dimensional restrictions of its elements. These topics in
the classical setting can be found in [2], or in [30], while many other results
about function of bounded variation in Carnot-Carathéodory spaces can be found
in [1, 5, 14, 37, 38, 42, 63, 62, 76].



108 Francescopaolo Montefalcone

Definition 3.1. Let � ⊆ G be open and let X ∈ HG be a horizontal left
invariant vector field. We say that f ∈ L1(�) has bounded X -variation in � if

|X f |(�) = sup
{∫

�

f Xϕ dLn : ϕ ∈ C1
0(�), |ϕ| ≤ 1

}
< ∞ ;

we refer to the quantity |X f |(�) as the X -variation of f in � and we denote
by BV X (�) the vector space of bounded X -variation functions in �.

In the next remark we summarize, without proof, some well-known properties
of the variation.

Remark 3.2. Let � ⊆ G be open and let X ∈ HG. Then the following items
hold:

(i) let f, fk ∈ L1(�) for k ∈ N be such that fk −→ f in L1(�) as k → ∞.
Then

|X f |(�) ≤ lim inf
k−→∞

|X fk |(�) ;
(ii) if f ∈ BV X (�) then |X f | is a Radon measure in � and∫

�

f Xϕ d Ln = −
∫

�

ϕ d |X f | ∀ ϕ ∈ C∞
0 (�) ;

(iii) |X f |(�) =
∫

�

|X f | dLn ∀ f ∈ C1(�) ;
(iv) if f ∈ BV X (�) then there exists a sequence { f j }j∈N ⊂ C∞(�) ∩ BV X (�)

such that

lim
j→∞

‖ f j − f ‖L1(�) = 0 and lim
j→∞

|X fj |(�) = |X f |(�) .

From now on, let � denote an open subset of G and let f : � −→ R. Moreover
let us fix a horizontal direction X ∈ HG and let us denote by γ : R −→ � the
corresponding horizontal X -line. Proposition 1.2 implies that for all compact
set K ⊂ γ one has

H1
c(K) =

∫
γ−1(K)

|X |HG dt .

Therefore, if f ◦ γ ∈ L1(γ −1(K)), putting |X |HG = 1, we get that the integral
of f along the horizontal X -line γ is given by∫

K
f dH1

c =
∫

γ−1(K)

( f ◦ γ )(t) dt (50)

for every compact K ⊂ γ . In the sequel, ifU ⊂ γ is an open subset of γ, we
shall denote by L1(U, dH1

c� γ ) the space of all H1
c-summable functions defined

on U .

Proposition 3.3. Let X ∈ HG, |X |HG = 1, and let γ be a horizontal X-line starting
from x ∈ G, i.e. γ (t) = exp[t X ](x)for t ∈ R. If U is an open subset of γ and
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f ∈ L1(U, dH1
c� γ ) the following two statements are equivalent:

(i) f ◦ γ ∈ BV (γ −1(U));
(ii) |D( f ◦ γ )|(γ −1(U)) = sup

{ ∫
γ

f dψ, ψ ∈ C1
0(U), |ψ | ≤ 1

}
< ∞ .

Moreover, setting

var1
X [ f ](U) :

= sup

{∫
U

f Xϕ dH1
c : ϕ ∈ C1

0(B), |ϕ| ≤ 1, B ⊂ G, B open s.t. γ ∩ B = U
}

,

we get that
var1

X [ f ](U) = |D( f ◦ γ )|(γ −1(U)) .

Remark 3.4. Here we have used the usual definition (see [2, 30]) of total
variation for real functions of one variable. We remind that, whenever h : I ⊂
R −→ R, h ∈ L1(I ), the total variation |Dh|(I ) of h in I is given by

|Dh|(I ) := sup
{∫

I
h

dφ

dt
dt : φ ∈ C1

0(I ), |φ| ≤ 1|
}

.

BV (I ) will denote the space of functions belonging to L1(I ) and of finite total
variation in I .

Proof of Proposition 3.1. Since∫
γ

f dψ =
∫

R

( f ◦ γ )
d

dt
(ψ ◦ γ ) dt

it follows that (i) is equivalent to (ii) because if ψ ∈ C1
0(U), |ψ | ≤ 1, we may

put
φ = (φ ◦ γ −1) ◦ γ = ψ ◦ γ ,

where φ ∈ C1
0(R), spt(φ) ⊂ γ −1(U), |φ| ≤ 1. To prove the last statement we

notice that, for any ψ ∈ C1
0(U), |ψ | ≤ 1, we may find ϕ ∈ C1

0(R
n) such that

ψ = ϕ|γ , spt(ϕ)∩γ = spt(ψ) and |ϕ| ≤ 1. Thus the following chain of equalities
holds:

sup

{ ∫
γ

f dψ : ψ ∈ C1
0(U), |ψ | ≤ 1

}

= sup

{ ∫
γ

f dϕ : ϕ ∈ C1
0(R

n), spt(ϕ) ∩ γ ⊂ U, |ϕ| ≤ 1

}

= sup

{∫
R

( f ◦ γ )
d

dt
(ϕ ◦ γ ) dt : ϕ ∈ C1

0(R
n), spt(ϕ) ∩ γ ⊂ U, |ϕ| ≤ 1

}

=sup

{∫
R

( f ◦ γ )
〈
γ̇ (t), ∇ϕ(γ (t))

〉
dt :ϕ∈C1

0(R
n), spt(ϕ)∩γ ⊂U, |ϕ|≤1

}
.

(51)
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So we may find an open set B ⊂ G such that γ ∩ B = U and we get that (51)
is equal to

sup

{∫
U

f Xϕ dH1
c : ϕ ∈ C1

0(�), |ϕ| ≤ 1

}
.

Definition 3.5. Let X ∈ HG, |X |HG = 1, and let γ be a horizontal X -line.
If U is an open subset of γ and f ∈ L1(U, dH1

c� γ ) we call var1
X [ f ](U) the

X -variation of f along γ and we define BV 1
X (U) as the space of functions of

finite X -variation in U ⊂ γ .

Proposition 3.6. Let X ∈ HG, |X |HG = 1; let γ be a horizontal X-line. Then for
every H1

c-measurable set E ⊂ γ one has

var1
X [1E ](γ ) = |D1γ−1(E)|(R) = var1

X [1lyE ](lyγ ) ∀ y ∈ G (52)

where γ −1(E) =
{

t ∈ R : γ (t) ∈ E
}
; moreover

var1
X [1E ](γ ) ≥ 2 (53)

and equality holds if and only if γ −1(E) is a bounded interval of R.

Proof. Equalities (52) follow from Definition 3.5. Moreover, using the first iden-
tity of (52) we get that var1

X [1E ](γ ) is equal to the euclidean one-dimensional
perimeter of γ −1(E) in R. Thus, using the one-dimensional isoperimetric in-
equality of [72], p. 103, Section 3.6, we get (53).

It seems interesting to find some results that reduce the study of BVG functions
to that one of their one-dimensional restrictions. Indeed, this is a very useful
approach in classical Calculus of Variations; see [2, 43]. Here below we state a
theorem modeled on an analogous euclidean result for which we refer the reader
to [2] and [30]. A similar theorem has been proved in [76] for Sobolev functions
in Carnot groups and in [18] in the case of vertical planes in Heisenberg type
groups.

Theorem 3.7. Let S ⊂ G be a G-regular hypersurface and assume that S =
∂ E globally, where E ⊂ G is a suitable open G-Caccioppoli set. Let X ∈
HG, |X |HG = 1, be a unit horizontal left invariant vector field which is trans-
verse to S and denote by γy the horizontal X-line starting from y ∈ S. We assume
that γy(R)∩S = {y} for every y ∈ S. Finally let � ⊆ RX

S be a Lebesgue measurable
subset of G that is reachable from S by means of X-lines. Then

|X f |(�) =
∫

pr X
S (�)

var1
X [ fγy ](�y) d |∂X E |G(y) (54)

where fγy := f ◦ γy and �y := γy ∩ �.
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Proof. Using (ii) of Corollary 2.3 we get

∫
�

f Xϕ d Ln =
∫

pr X
S (�)

∫
γ−1

y (�y )

( f ◦ γy)
d

d t
(ϕ ◦ γy) dt d |∂X E |G(y)

≤
∫

pr X
S (�)

var1
X [ fγy ](�y) d |∂X E |G(y) ,

whenever ϕ ∈ C1
0(�). In a similar way we obtain the equality if f ∈ C1(�).

Now let us set

�h :=
{

x ∈ � : |x | <
1

h
, dist(x, ∂�) > h

}

and choose h > 0 such that |X f |(∂�h) = 0. Notice that this can be done
for L1−a.e. h > 0, as for instance in [2], Example 1.63. Therefore, using
Lemma 1.20, we get that

lim
ε→0

∫
�h

|( f ∗ Jε) − f | d Ln

= lim
ε→0

∫
pr X

S (�h )

‖( f ∗ Jε)y − fy‖L1(γy−1((�h )y )) d |∂X E |G(y) = 0 ,

and so we may choose a sequence {εj }j∈N such that

lim
j→∞

∫
γy−1((�h )y )

|( f ∗ Jεj )y − fy| dt = 0 for |∂X E |G − a.e. y ∈ pr X
S (�h) .

By the lower semicontinuity of the X -variation (see (i) of Remark 3.2) we get

∫
pr X

S (�h )

var1
X [ fγy ]((�h)y) d |∂X E |G(y)

≤
∫

pr X
S (�h )

lim inf
j→∞

var1
X [( f ∗ Jεj )γy ]((�h)y) d |∂X E |G(y)

≤ lim inf
j→∞

∫
pr X

S (�h )

var1
X [( f ∗ Jεj )y]((�h)y) d |∂X E |G(y)

= lim
j→∞

|X ( f ∗ Jεj )|(�h)

= |X f |(�h) ≤ |X f |(�)

and the claim follows by letting h → 0.
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We would notice that for any j = 1, . . . , m1, the following inequalities hold

|X j f |(�) ≤ |∇G f |(�) ≤
m1∑
j=1

|X j f |(�) ,

whenever f ∈ BVG(�), where X1, . . . , Xm1 are the canonical generating vector
fields of the group. This easily follows from Definition 1.13 and Definition 3.1
and, using Theorem 3.7, it allows to state the following

Corollary 3.8. (Characterization of BVG by sections.) Let X1, . . . , Xm1 be the
generating vector fields of the global frame for G and let j = 1, . . . , m1. Let Sj ⊂ G
be a G-regular hypersurface such thatSj = ∂ Ej globally, where Ej ⊂ G is a suitable
open G-Caccioppoli set, and suppose that X j is transverse to Sj . Denoting by γ j

y

the horizontal X j -line starting from y ∈ Sj , we assume that γ j
y (R) ∩ Sj = {y} for

every y ∈ Sj . Finally let � ⊆ RX j
Sj

be a Lebesgue measurable subset of G that is
reachable from each Sj by means of X j -lines. Then, we have that f ∈ BVG(�) if

and only if f
γ

j
y

∈ BV 1
X j

(�
X j
y ) for |∂ EX j |G−a.e. y ∈ pr

X j
Sj

(�) and

∫
pr

X j
Sj

(�)

var1
X j

[
f
γ

j
y

](
�

X j
y

)
d |∂X j E |G(y) < ∞ ∀ j = 1, . . . , m1 .

Remark 3.9. Denoting by I0(X j ) the vertical hyperplane through 0 ∈ G and
orthogonal to X j (see (17) of Section 1.1), we may assume that Sj = I0(X j ) for
every j = 1, . . . , m1, and for such hypersurfaces the hypotheses of Corollary 3.8
are automatically verified since each subset of G is reachable from a given
vertical hyperplane. More precisely, if � ⊆ G and j = 1, . . . , m1, we have
that � can be foliated with a family of horizontal X j -lines starting from I0(X j )

and hence the above characterization of BVG(�) can be reformulated by means
of vertical hyperplanes.

3.2. Integral geometric measures, G-normal sets and G-convexity

In this subsection we give some applications of the previous results. To this end,
we introduce a measure µ0 on U HG (i.e. the unit horizontal bundle over G) that
we need to state some integral geometric formulae for volume and G-perimeter.
Afterwards, we give a definition of G-normality with respect to a vertical hyper-
plane that generalizes the euclidean one (see [26, 72]). Then we formulate an
intrinsic definition of convexity, called G-convexity (see Definition 3.15 below),
that seems to be natural from a geometric point of view. Indeed, using this
notion we prove a Cauchy-type formula and a related inequality which says that,
in a sense, among all sets containing a fixed G-convex set, this one minimizes
the G-perimeter. See Theorem 3.19 and Corollary 3.20 below, and also [16]
and [69]for the classical statements. We would emphasize that equivalent defi-
nitions of convexity in Carnot groups has been introduced recently in [23] and
in [55]; see also [8] and [47] for some further developments.
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We first consider the volume form on U HG given by 
 ∧ σm1−1, where

 = ω1 ∧ . . . ∧ ωn is the bi-invariant volume form on G and σm1−1 is the
canonical volume form on the unit sphere Sm1−1 of Rm1 that is identified
with the generic fiber of U HG. More explicitly, we note that if (x; X) ∈
U HG (X (0) = (a1, . . . , am1, 0, . . . , 0)), then

σm1−1(X) =
m1−1∑
i=1

(−1)i+1ai da1 ∧ . . . ∧ d̂ai ∧ . . . ∧ dam1

and

(
 ∧ σm1−1)(x; X)(X1, . . . , Xn; Y1, . . . , Ym1)

= 
(x)(X1, . . . , Xn) · σm1−1(X)(Y1, . . . , Ym1) ∀ X1, . . . , Xn ∈ TxG

∀ Y1, . . . , Ym1 ∈ U H xG .

Definition 3.10. We denote by µ0 the measure on U HG obtained by integration
of 
 ∧ σm1−1 and by µ0x the measure on U H xG (i.e. the fiber at x) obtained
by integration of σm1−1. Thus, for every function f ∈ L1(U HG) we have∫

U HG

f (x; X) d µ0(x; X) =
∫

G

d Ln(x)

∫
U H x G

f (x; X) d µ0x(X) . (55)

We remind that if D is a subset of G, then U HD denotes the restriction of
the bundle structure U HG to D, i.e.

U HD :=
{

X ∈ U HG : π|U HG(X) ∈ D
}

.

Furthermore, if x0 ∈ G and X ∈ U HG, then Ix0
(X) denotes the vertical

hyperplane through x0 and orthogonal to X and Vx0
denotes the family of all

vertical hyperplanes through x0 . Finally, γ X
y is the horizontal X -line starting

from y ∈ Ix0
(X), i.e. γ X

y (t) = exp[t X ](y) for t ∈ R, and if D ⊂ G we set

DX
y := γ X

y (R)∩D. Note that, if X (0) = ∑m1
j=1 aj ej , then Ix0

(X) is the boundary
of the half-space

I−
x0

(X) =
x ∈ G :

m1∑
j=1

(
xj − (x0)j

)
aj ≤ 0


and we get that

νI−
x0

(X)
(y) = (a1, . . . , am1) ∀ y ∈ Ix0

(X) .

Hence, the G-perimeter of I−
x0

(X) is the usual (n − 1)-dimensional Hausdorff

measure Hn−1 on the vertical hyperplane Ix0
(X) and, using Proposition 2.1, we

may state the following
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Corollary 3.11. Let D be a Lebesgue measurable subset of G and fix x0 ∈ G. Then

µ0(U HD) =
∫

U H x0
G

d µ0x0
(X)

∫
pr X

Ix0
(X)

(D)

H1
c(D

X
y ) d Hn−1(y)

or, equivalently,

Ln(D) = 1

Om1−1

∫
U H x0

G

d µ0x0
(X)

∫
pr X

Ix0
(X)

(D)

H1
c(D

X
y ) d Hn−1(y) ,

where Om1−1 denotes the (m1 −1)-dimensional surface measure of the sphere Sm1−1

of Rm1 .

Proof. From Proposition 2.1 we have that

Ln(D) =
∫

pr X
Ix0

(X)
(D)

H1
c(D

X
y ) d Hn−1(y) ∀ X ∈ U HG ,

so we get the claim by integrating both sides of the last identity over X ∈
U H x0

G.

Corollary 3.12. Let � ⊆ G be open and let X ∈ U HG. If D ⊂ G is a G-Cacciop-
poli set, then

|∂XD|G(�) =
∫

pr X
Ix0

(X)
(D∩�)

var1
X [1DX

y
](�X

y ) d Hn−1(y) . (56)

Proof. This follows using Lemma 1.26 and Theorem 3.7 and observing that,
for the half-space I−

x0
(X), we have

|∂X I−
x0

(X)|G(B) = Hn−1(B ∩ Ix0
(X)) ∀ B ∈ Bor(G) .

As an application of the last corollary we may establish the following

Proposition 3.13. (Integral geometric G-perimeter.) Let � ⊆ G be open and fix
x0 ∈ G. If D ⊂ G is a G-Caccioppoli set, we have

|∂D|G(�)

= 1

2κm1−1

∫
U H x0

G

d µ0x0
(X)

∫
pr X

Ix0
(X)

(D∩�)

var1
X [1DX

y
](�X

y ) d Hn−1(y) , (57)

where κm1−1 denotes the m1 − 1-dimensional Lebesgue measure of the unit ball in
Rm1−1.
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Proof. Starting from Corollary 3.12, we integrate both sides of (56) over X ∈
U H x0

G. Thus∫
U H x0

G

d µ0x0
(X)

∫
pr X

Ix0
(X)

(D∩�)

var1
X [1DX

y
](�X

y ) d Hn−1(y)

=
∫

U H x0
G

|∂D|G(�) d µ0x0
(X)

=
∫

U H x0
G

d µ0x0
(X)

∫
D∩�

|〈X, νD〉HG| d |∂D|G

=
∫
D∩�

d |∂D|G
∫

U H x0
G

|〈X, νD〉HG| d σm1−1(X)

= 2κm1−1|∂D|G(�) ,

where we have used Fubini’s theorem and spherical coordinates to compute the
integrating of the last line.

We now introduce the notion of G-normality with respect to a fixed vertical
hyperplane.

Definition 3.14. (G-normality). If x0 ∈ G and X ∈ HG is a horizontal direction,
let Ix0

(X) denote the vertical hyperplane through x0 and orthogonal to X . We
say that D ⊆ G is pointwise X-normal with respect to Ix0

(X) if for all y ∈ Ix0
(X)

we have that (γ X
y )−1(γ X

y (R) ∩ D) is the empty set or a connected subset of R
or, equivalently, if γ X

y (R)∩D is either empty or a connected subset of γ X
y (R).

Moreover we say that D is X -normal with respect to Ix0
(X) if D is L1-equivalent

to a subset of G that is pointwise X -normal with respect to Ix0
(X).

Usually, we term this property pointwise G-normality (resp. G-normality) with
respect to a vertical hyperplane. As already observed, for any point x ∈ G and
for any horizontal direction X ∈ HG there exists a unique horizontal X -line
passing from x . This implies that the notion of G-normality is invariant under
group translations, as left translations send a vertical hyperplane orthogonal to
X ∈ HG into a vertical hyperplane which is still orthogonal to X. Let now
x0 ∈ G and consider the family Vx0

of vertical hyperplanes through x0. The
invariance under group translations of the notion of G-normality allows to see
that the following two conditions are equivalent:

(i) D ⊆ G is pointwise G-normal with respect to any vertical hyperplane Ix0
(X) ∈

Vx0;
(ii) D ⊆ G is pointwise G-normal with respect to any vertical hyperplane Iz(Z)

where z ∈ G and Z ∈ HG.

We would emphasize that the notions introduced above generalize the euclidean
ones because, if G is (Rn, +), they coincide, as it can be easily proved. More-
over, the analogy with the euclidean case suggests the following
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Definition 3.15. (G-convexity). We say that D ⊆ G is G-convex if for every
x ∈ G, whenever X ∈ HG, we have that (γ X

x )−1(γ X
x (R) ∩ D) is the empty set

or a connected subset of R or, equivalently, if γ X
x (R) ∩D is either empty or a

connected subset of γ X
x (R).

Also in this case, if the Carnot group reduces to (Rn, +), the definitions coincide.
Moreover, G-convexity is invariant under group translations and it is stable under
intersection, i.e. if D1, D2 ⊆ G are G-convex sets, then also D1 ∩ D2 is a G-
convex set.

We refer the reader to [23] and [55] for different, but in fact equivalent,
definitions of convexity in Carnot groups. See also [8] for a detailed discussion
on this topic.

Remark 3.16. We would point out that G-convexity turns out to be equivalent
to condition (ii) above, i.e.

• D is G-convex if, and only if, D is pointwise G-normal with respect any
vertical hyperplane.

Of course, if D is just G-normal with respect all of vertical hyperplanes of G,
then it is only L1-equivalent to a G-convex set. To better explain the geometric
meaning of G-convexity we make use of horizontal m1-planes. We remind that,
if z ∈ G, then HzG := lz(Exp(V1)) denotes the horizontal m1-plane through
z, i.e. the set of all horizontal lines starting from z. Using just the previous
definitions it is easy to see that D is G-convex if and only if

• Log
(

l−z(HzG∩D)
)

is starshaped in V1 with respect to 0 ∈ g for all z ∈ D.

In particular, the following implication holds:

• if Log
(

l−z(HzG ∩D)
)

is euclidean convex in V1 for all z ∈ D, then D is
G-convex.

Finally, if z ∈ Exp(Vk), where Vk is the center of the Lie algebra g, then the
horizontal plane HzG through z is an affine m1-dimensional plane and we get
that

• if D is G-convex, then HzG ∩ D is starshaped in HzG with respect to z
for all z ∈ Exp(Vk).

Remark 3.17. (G-convexity in 2-step Carnot groups). If G is a 2-step Carnot
group, then its horizontal lines are also euclidean lines. This is a straightforward
consequence of the group law that is completely determined by Campbell-
Hausdorff formula, as we have seen in Section 1.1. Thus, from the definition
of G-convexity, it follows that euclidean convex sets are G-convex sets. In
general the converse it is not true, as proved in the next example.

Example 3.18. (An H1-convex that is not euclidean convex). Let us consider
the Heisenberg group H1 = (R3 ∼= C × R, ·), where (z, t) · (z′, t ′) = (z + z′, t +
t ′ + 2�(zz̄′)). Then, the truncated cone of width α > 0 given by

Cα =
{
(z, t) ∈ C × R : |z| ≤ α |t |, |z| ≤ 1, α |t | ≤ 1

}
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is an H1-convex set for any α ≥ 2 but it is not convex. This easily follows
observing that the maximal slope of the horizontal lines having initial data in
the cylinder {(z, t) ∈ H1 : |z| ≤ 1} is 2 so that any such line intercepts Cα in a
segment line.

This definition of G-convexity can be used to generalize the Cauchy’s formula
for the area of euclidean convex sets. For the statement of this classical theorem
see [13, 16, 69].

Theorem 3.19. (Cauchy type formula.) Let D be a G-convex subset of G and
x0 ∈ G. Then

|∂D|G(G) = 1

κm1−1

∫
U H x0

G

Hn−1
(

pr X
Ix0

(X)
(D)

)
d µ0x0

(X) (58)

where κm1−1 is the m1 − 1-dimensional Lebesgue measure of the unit ball in Rm1−1.

Proof. Using Proposition 3.6 and Proposition 3.13 we get the thesis ob-
serving that, since D is G-convex, then var1

X [1DX
y

](γ X
y ) = 2 for Hn−1−a.e.

y ∈ pr X
Ix0

(X)
(D) for any X ∈ U H x0G.

The above theorem, analogously to the euclidean case, allows to see that, in
a sense, G-convex sets minimize the G-perimeter. Indeed, as an immediate
application, we have the following

Corollary 3.20. If D ⊂ G is a G-convex set, then for any open set � containing D
we have

|∂D|G(G) ≤ |∂�|G(G) .

Proof. Fixing x0 ∈ G, the claim follows by the previous Theorem 3.19 by
observing that, for every X ∈ HG, one has pr X

Ix0
(X)

(D) ⊆ pr X
Ix0

(X)
(�).

4. A Santaló type formula and some related topics

From now on will be discussing the integration on the unit horizontal bundle
U HG of a k-step Carnot group G endoweed with the measure µ0 (see Defi-
nition 3.10). The results here exposed rely on the invariance of µ0 under the
action of the horizontal flow, i.e. the flow generated by restriction to HG of
the Riemannian geodesic flow. In fact, the measure µ0 generalizes to Carnot
groups the classical notion of Kinematic density (see [11, 15]). More precisely,
an integral formula is given in Theorem 4.4, which generalizes the well-known
Santaló formula [69]. We emphasize that, in the case of the Heisenberg group
H1, a Santalò-type formula was proved by Pansu, [65]. We then give some
applications of Theorem 4.4. In particular, we find two lower bounds for the
first eigenvalue of the Dirichlet problem for the Carnot sub-Laplacian �G on
smooth domains (see Proposition 4.8 and Theorem 4.9).
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In the tangent bundle T G we use coordinates given by (x;X) = ((x1, . . . , xn);
(a1, . . . , an)), where (x1, . . . , xn) are the exponential coordinates of x ∈ G and
(a1, . . . , an) are the coordinates of X in the Lie algebra g ∼= T0G, i.e. X (0) =∑n

i=1 ai ei . We endowed g with an inner product denoted by 〈·, ·〉 that is the
usual one in Rn. This uniquely determines a left invariant metric on G, also
denoted by 〈·, ·〉, that is defined by setting

〈X, Y 〉 := 〈X (0), Y (0)〉 ∀ X, Y ∈ g .

The energy function of a vector field X ∈ g associated with 〈·, ·〉 is given by

E(X) := 1

2
〈X, X〉 = 1

2

n∑
i=1

a2
i .

Moreover we denote by α the canonical 1-form on the cotangent bundle T ∗G
that is given, with our notations, by α := ∑n

i=1 aiωi . Following Besse [11], we
call geodesic vector field on T G the solution of the equation(2)

i(T )dα = −d E . (59)

We call geodesic flow the flow generated by T . We remark that T is given by

T =
n∑

i=1

ai Xi − 1

2

n∑
l,i, j,k=1

ai al ci
jk

(
δl j

∂

∂ak
− δlk

∂

∂aj

)
.

To prove this is enough to use equation (59) together with the definitions of
α, E and T . The result follows by applying Proposition 1.4. Now we shall
prove that the restriction of the canonical 1-form α to the unit horizontal bundle
is invariant under the geodesic flow. This means that the Lie derivative of α

by T is zero. Indeed, by Cartan’s identity (see [54]), we get

LT α = i(T ) dα + d i(T ) α = −d E + 2
n∑

i=1

ai dai = d E .

Now, since we consider unit horizontal vectors, the thesis follows observing
that ai = 0 for any i = m1 + 1, . . . , n, and that

∑m1
i=1 a2

i = 1. Therefore,
setting α0 := α|U HG to denote the restriction of α to the unit horizontal bundle
U HG, we have that α0 is invariant under the restriction of T to the horizontal
bundle. From now on we denote this vector by T0, i.e. T0 = T|HG, and we call
horizontal flow the flow on HG generated by T0.

Before the next theorem, which asserts a Liouville type property of the
measure µ0, we fix some notations. We set τ1 := ω1 ∧ . . . ∧ ωm1, τ2 :=
ωm1+1 ∧ . . . ∧ ωm2, τk := ωmk−1+1 ∧ . . . ∧ ωmk so that 
 = τ1 ∧ . . . ∧ τk .
Furthermore, ∗ : �k T ∗G → �n−k T ∗G will denote the Hodge star operator; we
explicitly note that ∗τ1 = τ2 ∧ . . . ∧ τk .

(2)We remind that, if X ∈ T G, then i(X) : �k T ∗G → �k−1T ∗G denotes the interior product
with X, i.e. the linear map defined by i(X)ψ(Y1, . . . , Yk−1) = ψ(X, Y1, . . . , Yk−1); see [50, 53,
54].
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Theorem 4.1. The measure dµ0 on U HG turns out to be invariant with respect to
the horizontal flow on HG determined by T0 and we have that


 ∧ σm1 = ± 1

(m1 − 1)!
α0 ∧ (dα0)

m1−1 ∧ (∗τ1) .

The proof relies on the following two lemmas.

Lemma 4.2. With notations as above we have

α0 ∧ (dα0)
m1−1 = (m1 − 1)! (−1)

(m1−1)(m1−2)

2 τ1 ∧ σm1−1

= (m1 − 1)!
m1∑
i=1

(−1)
(m1−1)(m1−2)

2 (−1)i ai ω1 ∧ . . .

. . . ∧ ωm1 ∧ da1 ∧ . . . ∧ d̂ai ∧ . . . ∧ dam1 .

Proof. One can prove this lemma by induction on m1(= dim V1), just using
definitions and the expressions of α0 =∑m1

i=1 aiωi and dα0 =∑m1
i=1 dai ∧ ωi .

Lemma 4.3. If X ∈ HG then τ1 ∧ i(X)(d ∗ τ1) = 0.

Proof. We have that

d (∗τ1) = d (τ2 ∧ . . . ∧ τk)

=
n∑

i=m1+1

(−1)i+1ωm1+1 ∧ . . .

. . . ∧ ωi−1 ∧ dωi ∧ ωi+1 ∧ . . . ∧ ωn

= −1

2

k∑
l=1

n∑
i=m1+1

∑
1≤ j, h≤hl−1

(−1)i+1ci
jh ωm1+1 ∧ . . .

. . . ∧ ωi−1 ∧ (ωj ∧ ωh) ∧ ωi+1 ∧ . . . ∧ ωn .

This formula, which is an easy consequence of Proposition 1.4 and Remark 1.5,
enable us to say that d (∗τ1) is a linear combination of (n − m1 + 1)-forms of
the type

(ωj ∧ ωh) ∧ ωm1+1 ∧ . . . ∧ ωi−1 ∧ ω̂i ∧ ωi+1 ∧ . . . ∧ ωn

for i = m1, . . . , n, j, h = 1, . . . , n and i �= j, h.
Therefore, by a direct computation it follows that τ1 ∧ i(X)(d ∗ τ1) is a

linear combination of n-forms having the following expression

ω1 ∧ . . . ∧ ωs−1 ∧ (ωs)
2 ∧ ωs+1 ∧ . . . ∧ ωn

for s =1, . . . , n, and the thesis follows since each of these terms vanishes.
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Proof of Theorem 4.1. We have to show that the Lie derivative along T0 of

 ∧ σm1−1 is equal to 0. From Lemma 4.2 it follows that


 ∧ σm1−1 = (−1)
(m1−1)(m1−2)

2
1

(m1 − 1)!
α0 ∧ (dα0)

m1−1 ∧ (∗τ1) .

Thus we need to compute the Lie derivative along T0 of α0 ∧ (dα0)
m1−1 ∧ (∗τ1)

and using Cartan’s identity and the invariance of α0 under the horizontal flow
induced by T0 we get

LT

(
α0 ∧ (dα0)

m1−1 ∧ (∗τ1)
)

= LT

(
α0 ∧ (dα0)

m1−1
)

∧ (∗τ1) +
(
α0 ∧ (dα0)

m1−1
)

∧ LT (∗τ1)

=
(
α0 ∧ (dα0)

m1−1
)

∧
(

i(T )(d ∗ τ1) + d (i(T ) ∗ τ1)
)

=
(
α0 ∧ (dα0)

m1−1
)

∧
(

i(T )(d ∗ τ1)
)

and the thesis now follows from Lemma 4.2 and Lemma 4.3.

Let D ⊂ G be a smooth, relatively compact domain (open and connected) and
let

U HD =
{

X ∈ U HG : π|U HG(X) ∈ D
}

,

i.e. the restriction to D of the structure of unit horizontal bundle. If (x; X) ∈
U HD we set

�x(X) := sup
{

s ∈ R+ : γX (t) ∈ D, ∀ t ∈ (0, s)
}

,

where γX is the (unique) horizontal line satisfying γX (0) = π|U HG(X), γ̇X (0) =
X . Notice that

�x(X) = H1
c

(
γX

(
]0, �x(X)[

))
.

By the boundedness of D we have �x(X) < ∞, everywhere in D. Moreover
γX (�x(X)) is the first point of the horizontal line γX starting from x = π|U HG(X)

to hit the boundary of D.
Let now νD be the unit inward G-normal to ∂D and let us set

U H+∂D :=
{

X ∈ U HD : π|U HG(X) ∈ ∂D, 〈X, νD〉Hx G > 0
}

. (60)

This is the set of inward pointing unit horizontal vectors along the boundary ∂D
and, identifying the generic fiber with Sm1−1, we may think it as the hemisphere
determined by νD which will be denoted by Um1−1. We also provide U H+∂D
with the following measure

d σ(x; X) := d µ0x(X) d |∂D|G(x) ∀ (x; X) ∈ U H+∂D .
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Clearly, d µ0x will be concentrated on the hemisphere Um1−1 ∼= U H+
x ∂D.

Below we shall denote by Car(∂D) the so-called characteristic set of ∂D
(see for instance [7, 39, 40, 41, 42, 57]), i.e.

Car(∂D) :=
{

x ∈ ∂D : 〈n(x), X (x)〉 = 0 ∀ X ∈ HxG
}

.

Moreover we shall set

D∗ =
{

x ∈ D : ∃X ∈ HGx s.t. γX (�x(X)) ∈ Car(∂D)
}

.

Along the lines of [15, 65] and 69] we may prove the following

Theorem 4.4. LetD be a smooth relatively compact domain. For all f ∈ L1(U HD)

we have∫
U HD

f (y; Y ) d µ0(y; Y )

=
∫

U H+∂D

∫ �x (X)

0
f (γX (t); X) 〈X, νD〉Hx G dt d σ(x; X)

=
∫

∂D

∫
U H+

x ∂D

∫ �x (X)

0
f (γX (t); X) 〈X, νD〉Hx G dt d µ0x(X) d |∂D|G(x) .

(61)

Proof. Let us first consider the following map

R+ × U H+∂D � (t, (x; X)) �−→ (γX (t); X) ∈ U HG ,

that is nothing but the restriction to U H+∂D of the horizontal flow. Denoting
by �t (X) this flow, we shall see how �t (X) acts on the measure d µ0. To
this end we have to compute the pull back by �t (X) of the volume form of
U HG. Observing that (�t (X))∗σm1−1 = σm1−1, we get(

�t (X)
)∗

(
 ∧ σm1−1) =
(
(γX (t))∗


)
∧ σm1−1(X) .

Notice that we have already performed this computation in the proof of Lem-
ma 2.8 by means of a local parametrization and so we have just to reformulate
it. We have

(γX (t))∗
 = (i(X)
)x ∧ dt ,

and explicitly this means that

(γX (t))∗d Ln =〈X, νD〉Hx G d t d |∂D|G(x), for t > 0 and x ∈π|U HG

(
U H+∂D

)
.

Therefore

(�t (X))∗dµ0 = 〈X, νD〉Hx G d t d |∂D|G(x) dµ0x(X) . (62)



122 Francescopaolo Montefalcone

Since D is a relatively compact domain, we can univocally associate to any
(y; Y ) ∈ U H(D \ D∗) the time t = �y(−Y ) < ∞ and the point (x; X) =
(γ−Y (�y(−Y )); −Y ), so that x is the first point on the boundary of D reachable
from y along the (unique) horizontal Y -line passing through y; furthermore
t < �x(X). Thus we have that the map �t (X) which takes (t, (x; X)) onto
(y; Y ) is a diffeomorphism of the open set

{
(t, (x; X)) : 0 < t < �x(X)

}
of

R+ × U H+∂D onto U H(D \ D∗).
Finally, if µ0(U H(D∗)) = 0 we get the thesis by multiplying both sides

of (62) by f and then integrating. But the last assertion follows from the classical
Area formula [31], by applying again the same computations of Lemma 2.8.

Remark 4.5. From Theorem 4.4 we easily deduce the following integral ge-
ometric formula for the volume of a smooth relatively compact domain in a
Carnot group:

Ln(D) = 1

Om1−1

∫
∂D

∫
U H+∂Dx

�x(X) 〈X, νD〉Hx Gd µ0x(X) d |∂D|G(x) , (63)

where Om1−1 denotes the (m1 − 1)-dimensional surface measure of the sphere
Sm1−1.

We will give some applications of this theorem. To this end we need some
preliminaries.

Let (x; X̃) ∈ U HG be fixed and denotes by U H+
x G the hemisphere deter-

mined by X̃ , i.e.

U H+
x G :=

{
X ∈ U H xG : 〈X̃ , X〉Hx G > 0

}
.

Lemma 4.6. ∫
U H+

x G

〈X, X̃〉Hx G d µ0x(X) = Om1−2

m1 − 1
. (64)

Proof. It is enough to observe that this integral is the measure of the projection
of the (m1 −1)-dimensional hemisphere Um1−1 ∼= U H+

x G onto a diametral plane
and so we may perform the computation using spherical coordinates.

As above, let D be a smooth, relatively compact, open subset of G and denotes
by diamH (D) its horizontal diameter, that is the quantity defined by

diamH (D) := sup
(y;Y )∈U H+∂D

�y(Y ) .

Denoting by diamc(D) the diameter of Dwith respect to the Carnot-Carathéodory
distance dc, we obviously have

diamH (D) ≤ diamc(D) .

Corollary 4.7. Let D ⊂ G be a smooth and relatively compact domain. Then we
have

Ln(D)

|∂D|G(G)
≤ Om1−2

Om1−1 · (m1 − 1)
· diamc(D) ,

where, in general, Ok denotes the k-dimensional surface measure of the unit sphere
Sk of Rk+1.
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Proof. From Remark 4.5 we get

Ln(D) ≤ diamH (D)

Om1−1

∫
U H+∂D

〈X, νD〉Hx Gd σ(X)

≤ diamc(D)

Om1−1

∫
∂D

d |∂D|G(x)

∫
U H+

x G

〈X, νD〉Hx Gd µ0x(X)

and, using the foregoing lemma, we get the asserted inequality.

Finally, we will show some applications of Theorem 4.4 to Analysis in Carnot
groups. For these topics, we refer the reader to [12, 22, 74, 75]. More precisely,
we will give two explicit lower bounds for the first eigenvalue of the Dirichlet
problem for the Carnot sub-Laplacian. To this end we will use Theorem 4.4
by adapting some arguments of Riemannian geometry, for which we refer the
reader to [15, 20, 21, 25]. We have to remark that in these inequalities, as well
as in the previous Corollary 4.7, we do not characterize the equality cases and,
in general, they are non-sharp.

We recall that, with our notations, the Carnot sub-Laplacian of G is de-
fined as

�G :=
m1∑
j=1

X2
j , �Gψ(x) =

m1∑
j=1

d 2

dt2

∣∣∣∣∣
t=0

ψ(x · Exp(t X j )) ∀ ψ ∈ C∞(G) .

Now let us consider the Dirichlet eigenvalue problem for �G on a smooth
bounded domain D, i.e. we find all real number λ for which there exist non
trivial solutions φ ∈ W 1,2

G
(D) (the horizontal Sobolev space) of the problem

�Gφ + λφ = 0 (x ∈ D) (65)

satisfying the boundary condition φ|∂D = 0. One can prove that all eigenvalues
λ of this problem are real and strictly positive and that all eigenfunctions φ

can be choose to be real-valued. Moreover all eigenfunctions corresponding
to distinct eigenvalues are orthogonal in L2(D) with respect to the usual inner
product on L2(D). The main result that we use in what follows is the variational
characterization of the first eigenvalue of (65) that we denote by λ1(D), i.e.

λ1(D) = inf
ϕ∈C∞

0 (D)

∫
D

|∇Gϕ|2
HG

dLn∫
D

|ϕ|2 dLn
. (66)

We point out that to prove (66) one uses the following Green’s identity∫
D
{ϕ �Gψ + 〈∇Gϕ, ∇Gψ〉HG} dLn = 0

whenever ϕ, ψ : D −→ R are smooth and with at least one of them com-
pactly supported in D. The above identity can easily be proved by means of
Proposition 1.10.
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Proposition 4.8. Let D ⊂ G be a smooth, relatively compact domain and let λ1(D)

be the first eigenvalue of (65). Then we have

λ1(D) ≥ π2 · m1

diamH (D)2 ≥ π2 · m1

diamc(D)2 .

Proof. We have to prove only the first inequality since the second one is trivial.
To this end, we first notice that for any ϕ ∈ C∞

0 (D) we have

|∇Gϕ|2
Hx G

= m1

Om1−1

∫
U H x G

(Xϕ)2d µ0x(X) .

Moreover the fixed-endpoint version of the one dimensional Wirtinger’s inequal-
ity says that

∫ l

0
ḣ(t)2dt ≥ π2

l2

∫ l

0
h(t)2dt ∀ h ∈ C1([0, l]), h(0) = h(l) = 0 .

Using these remarks and Theorem 4.4 we have that∫
D

|∇Gϕ|2
Hx G

dLn(x) = m1

Om1−1

∫
U HD

(Xϕ)2d µ0(x; X)

= m1

Om1−1

∫
U H+∂D

∫ �y (X)

0

[
d

dt
ϕ(γX (t))

]2

〈X, νD〉HyG dt d σ(y; X)

≥ m1

Om1−1

∫
U H+∂D

π2

�2
y(X)

∫ �y (X)

0

[
ϕ(γX (t))

]2 〈X, νD〉HyG dt d σ(y; X)

≥ π2 · m1

Om1−1 · diam2
H (D)

∫
U H+∂D

∫ �y (X)

0

[
ϕ(γX (t))

]2 〈X, νD〉HyG dt d σ(y; X)

= π2 · m1

Om1−1 · diam2
H (D)

∫
U HD

[
ϕ(x)

]2
d µ0(x; X)

= π2 · m1

diamH (D)2

∫
D

|ϕ(x)|2 dLn(x) .

Similarly, along the lines of [21], we can prove the following inequality; see
also [15] and [25].

Theorem 4.9. Let D ⊂ G and λ1(D) be defined as above. Then we have

λ1(D) ≥ m1 · π2

Om1−1
· inf

x∈D

∫
U H x G

1

�2
x(X)

dµ0x(X) .
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Proof. Analogously to the previous proof, we have∫
D

|∇Gϕ|2
Hx G

dLn(x)

≥ m1

Om1−1

∫
U H+∂D

π2

�2
y(X)

∫ �y (X)

0

[
ϕ(γX (t))

]2 〈X, νD〉HyG dt d σ(y; X)

=m1 · π2

Om1−1

∫
U H+∂D

∫ �y (X)

0

ϕ2(γX (t))

�2
y(X)

〈X, νD〉HyG dt d σ(y; X)

=m1 · π2

Om1−1

∫
U HD

ϕ2(x)

�2
x(X)

dµ(x; X)

=m1 · π2

Om1−1

∫
D

ϕ2(x)

[ ∫
U H x G

1

�2
x(X)

dµ0x(X)

]
dLn(x)

≥m1 · π2

Om1−1
·
[

inf
x∈D

∫
U H x G

1

�2
x(X)

dµ0x(X)

]
·
∫
D

|ϕ(x)|2 dLn(x)

and the thesis follows.
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a Carnot-Carathéodory spaces, Geom. Functional Anal. 5 (1995), 402–433.

[59] P. Mattila, “Geometry of Sets and Measures in Euclidean Spaces”, Cambridge University
Press, 1995.
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