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On Seshadri constants of varieties with large fundamental group

GABRIELE DI CERBO AND LUCA F. DI CERBO

Abstract. Let X be a smooth variety and let L be an ample line bundle on
X . If ⇡

alg
1 (X) is large, we show that the Seshadri constant ✏(p⇤L) can be made

arbitrarily large by passing to a finite étale cover p : X 0 ! X . This result
answers affirmatively to a conjecture of J.-M. Hwang. Moreover, we prove an
analogous result when ⇡1(X) is large and residually finite. Finally, under the
same topological assumptions, we appropriately generalize these results to the
case of big and nef line bundles. More precisely, given a big and nef line bundle
L on X and a positive number N > 0, we show that there exists a finite étale
cover p : X 0 ! X such that the Seshadri constant ✏(p⇤L; x) � N for any
x /2 p�1B+(L) = B+(p⇤L), where B+(L) is the augmented base locus of L .

Mathematics Subject Classification (2010): 32J25 (primary); 14C20 (sec-
ondary).

1. Introduction

Let X be a smooth n-dimensional projective variety and let L be an ample line
bundle on X . An interesting way of studying the local positivity of the line bundle
is by estimating the so-called Seshadri constants of L . Recall that, given a nef line
bundle L and a point x 2 X , J.-P. Demailly defines the numbers

✏(L; x) = inf
C�x

L · C
multx (C)

, ✏(L) = inf
x2X

✏(L; x),

to be respectively the Seshadri constant of L at x and the global Seshadri constant
of L , where C ⇢ X is an irreducible curve and multx (C) is the multiplicity of such
a curve at x . The following proposition explains the connection between separation
of jets and Seshadri constants.
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Proposition 1.1 (Demailly, in [3, Proposition 6.8.]). Let X be a smooth n-dimen-
sional projective variety and let L be a nef line bundle. If ✏(L; x) > n + s, then
the linear system |KX + L| separates s-jets at x. Moreover, if ✏(L; x) > 2n for any
x 2 X , then KX + L is very ample.

Recall that a line bundle L separates s-jets at x 2 X if the evaluation map

H0(X, L) ! H0
�
X, L ⌦OX/ms+1

x
�

is surjective, where mx is the maximal ideal of the point x 2 X . In the remander
of the paper we will denote by s(L; x) the largest natural number s such that L
separates s-jets at x . One of Demailly’s fundamental observations is that ✏(L; x)
controls the asymptotic of s(kL; x) as a function of k, see Proposition 3.1 for a
precise statement or the original reference [3] for more details.

Unfortunately, the Seshadri constants are in practice very hard to compute or
even estimate. The main purpose of this paper is to show that, in the presence of a
“large” fundamental group, they can be nicely estimated up to a finite cover when
L is at least a big and nef line bundle. The following notion for the fundamental
group of a variety was introduced by J. Kollár in [9].
Definition 1.2. Let X be a smooth variety. For any positive dimensional irreducible
subvariety Z ⇢ X , let us denote by nZ : Z̄ ! Z its normalization. We say that X
has large algebraic fundamental group (respectively large fundamental group) if for
any such Z ⇢ X the image ⇡

alg
1 (Z̄) ! ⇡

alg
1 (X) (respectively ⇡1(Z̄) ! ⇡1(X) ) is

infinite.
Given Definition 1.2, we can state our first result.

Theorem 1.3. Let X be a smooth variety and let L be an ample line bundle on X .
If ⇡alg1 (X) is large, given a positive number N > 0 there exists a finite étale cover
p : X 0 ! X such that ✏(p⇤L) � N .

Let us observe that Theorem 1.3 answers affirmatively to a conjecture of J.-M.
Hwang, see [2, Problem 2.6.2].

In complex differential geometry it is usually more convenient to work with
the topological fundamental group, see for example Theorem 2.1 in Section 2. The
strategy of the proof of Theorem 1.3 can be adapted to prove the following.

Theorem 1.4. Let X be a smooth variety and let L be an ample line bundle on X .
If ⇡1(X) is residually finite and large, given a positive number N > 0 there exists a
finite étale cover p : X 0 ! X such that ✏(p⇤L) � N .

Remark 1.5. It is possible to show that if ⇡1(X) is residually finite and large then
⇡
alg
1 (X) has to be large as well. Thus, Theorem 1.4 is strictly speaking a particular
case of Theorem 1.3. Nevertheless, we have decided to state Theorem 1.4 inde-
pendently of Theorem 1.3 because in the geometric analysis literature ⇡

alg
1 is rarely

used. We refer to Theorem 2.1 below for an example of a classical result in this
field.
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Theorems 1.3 and 1.4 combined with Proposition 1.1 have an interesting corollary.

Corollary 1.6. Let X be a smooth variety with ample canonical line bundle KX . If
⇡1(X) is residually finite and large or if ⇡alg1 (X) is large, there exists a finite étale
cover p : X 0 ! X such that 2KX 0 is very ample.

Finally, we can state a generalization of Theorems 1.3 and 1.4 when L is a big
and nef line bundle.

Recall that given a big line bundle L we denote by B+(L) its augmented base
locus, see [5] for more details. In Section 4 we prove the following.

Theorem 1.7. Let X be a smooth variety and let L be a big and nef line bundle
on X . If ⇡1(X) is residually finite and large or if ⇡alg1 (X) is large, given a positive
number N > 0 there exists a finite étale cover p : X 0 ! X such that ✏(p⇤L; x) �
N for any x /2 p�1B+(L) = B+(p⇤L).

Let us observe that when L is ample, i.e. B+(L) is empty, Theorem 1.7 recovers
the statements of Theorems 1.3 and 1.4.
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János Kollár for useful discussions. The second author would like to thank Rita
Pardini for generously sharing her knowledge with him and for useful comments
and suggestions. He also thanks the Mathematics Department at Notre Dame Uni-
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getting this project started.

2. Motivations and preliminaries

The problem of estimating the Seshadri constants of a “positive” line bundle is ex-
tensively studied both in the algebraic geometry and geometric analysis literatures.
As shown by Demailly in [3], these numerical invariants are deeply connected with
the theory of singular Hermitian metrics and Hörmander L2-estimates. Therefore
they can be studied with techniques coming from geometric analysis. This ap-
proach has been successfully explored mainly when the underlying variety X ad-
mits Kähler metrics of non-positive sectional curvature. For example, if (X,!B)
is a n-dimensional complex hyperbolic manifold equipped with the standard lo-
cally symmetric metric Bergman metric whose holomorphic sectional curvature is
normalized to be �1, J.-M. Hwang and W.-K. To in [8] were able to prove that
✏(KX ; x) � (n+1) sinh2(ix )where ix is the injectivity radius of !B at x . Similarly,
if (X,!) is a n-dimensional compact Kähler manifold with non-positive sectional
curvature, say �a2  R!  0, and L is an ample line bundle on X , then S.-K. Ye-
ung in [12] shows that ✏(L; x) � �(ix , a, L; n) where � is an explicitly computable
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function of the injectivity radius ix , the curvature bounds, the curvature of L and
the dimension. Moreover, if we fix a normalization for the curvature then � ! 1
as ix ! 1. This interesting fact then implies the following.

Theorem 2.1 (Yeung, in [12, Theorem 2]). Let (X,!) be a n-dimensional Kähler
manifold with non-positive sectional curvature and let L be an ample line bundle
on X . If ⇡1(X) is residually finite, given any positive number N > 0 there exists a
finite étale cover p : X 0

! X such that ✏(p⇤L) � N .

Observe that, by a classical result of H. Wu [7], the universal cover of a compact
Kähler manifold with non-positive sectional curvature is a Stein manifold. Since
Stein manifolds do not contain proper subvarieties, it is easy to show that the va-
rieties considered in Theorem 2.1 have large fundamental groups, compare with
Theorem 1.4. This paper started as an attempt of finding a proof of Theorem 2.1
which relies on the properties of the fundamental group rather than on curvature
assumptions, following a circle of ideas quite common in classical Riemannian ge-
ometry.

Concerning the organization of the paper, in Section 3 we recall the main re-
sults in [6] and provide the proofs of Theorems 1.4 and 1.3. In Section 4, we give
the details of a proof of Theorem 1.7.

3. Proofs of the main results

We start by recalling the connection between Seshadri constants and separation of
jets. Let L be a nef line bundle on X . For any k � 0 and given any x 2 X , let us
denote by s(kL; x) the maximal integer such that the linear series |kL| separates s-
jets at x . The following proposition gives a nice lower bound for Seshadri constants
in terms of the separation of jets of the linear series |kL|.

Proposition 3.1. Let X be a smooth variety of dimension n and let L be a nef line
bundle. For any k > 0, we have

✏(L; x) �
s(kL; x)

k
.

Proof. Let C ⇢ X be a reduced irreducible curve containing x 2 X . By definition
for any k � 0, the linear series |kL| generates sk-jets at x , where sk = s(kL; x). We
can then find a divisor Dx 2 |kL| which does not contain C such that multx (Dx ) �
sk . We then conclude that

L · C
multx (C)

�
sk
k



ON SESHADRI CONSTANTS OF VARIETIES WITH LARGE FUNDAMENTAL GROUP 339

for any C ⇢ X . Thus, we have

✏(L; x) �
s(kL; x)

k
,

and the proof is complete.

Let us observe that when L is ample then the asymptotic growth of jet separa-
tion actually computes ✏(L; x) for any given x 2 X , for more details see [3, Propo-
sition 6.3] or [10, Chapter V]. Nevertheless, for our purposes Proposition 3.1 will
be sufficient.

Next, we need to state a result of Ein, Lazarsfeld and Nakamaye proved in [6].
This theorem is a variant of the main theorem in the celebrated work of Demailly
[4].

Theorem 3.2 (Ein-Lazarsfeld-Nakamaye [6]). Let X be a smooth variety of di-
mension n and let L be an ample divisor on X satisfying Ln > (n + s)n . Let b be
a non-negative number such that bL � KX is nef. Suppose that m0 is a positive
integer such that |m0L| is base point free. Then for any point x 2 X either

• |KX + L| separates s-jets at x; or
• There exists a codimension c < n subvariety V containing x such that

Ldim(V ) · V 

✓
b + m0(n � c) +

n!
c!

◆c
(n + s)n .

Now that we recalled these basic results, we can proceed with the proofs of Theo-
rems 1.3 and 1.4. The first step is the construction of a suitably “large” étale cover
of X .

Proposition 3.3. Let L be an ample line bundle on a smooth variety X . If ⇡1(X)

is residually finite and large or if ⇡alg1 (X) is large, given a positive number N > 0
there exists a finite étale cover q : X 0 ! X such that (q⇤L)dim(Z) · Z � N for any
irreducible subvariety Z ✓ X 0.

Proof. Assume ⇡
alg
1 (X) to be large. Let 0̂ be the kernel of the map ⇡1(X) !

⇡
alg
1 (X) and let us denote by p̂ : X̂ ! X the algebraic universal cover, where
X̂ = X̃/0̂ and where X̃ is the topological universal cover. Let us observe that X̂ is
non-compact as ⇡alg1 (X) is infinite. Next, let ! 2 [c1(L)] be a smooth Kähler metric
on X . Let us consider a sequence {0k} of nested finite index normal subgroups in
0 = ⇡1(X) with 00 = 0 and such that

T1
k=0 0k = 0̂. Let {Xk} be the sequence of

associated regular étale Kähler coverings of X , where by construction Xk = X̂/0̂k
with 0̂k = 0k/0̂. For any k, let us define the following numerical invariant

r̂k := inf
�
d(z, �̂k z) | z 2 X̂ , �̂k 2 0̂k, �̂k 6= 1

 
,
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where the distance is measured with respect to the induced metric on the algebraic
universal cover X̂ . In other words, the distance function d is induced by the Kähler
metric p̂⇤! on X̂ .

Lemma 3.4. We have that limk!1 r̂k = 1.

Proof of the lemma. If this is not the case, there exist infinite sequences {zk} 2 X̂
and �̂k 2 0̂k such that d(zk, �̂k zk)  2M for some positive constant M . Let D
be a fundamental domain for X in X̂ , in other words p̂ : D ! X is injective
and p̂ : D̄ ! X is surjective. Thus for all k, there exists gk 2 0̂0 such that
gkzk 2 D̄. Let us define z0k = gkzk and �̂ 0

k = gk �̂kg�1
k , where �̂ 0

k 2 0̂k since 0̂k
is by construction a normal subgroup of 0̂0. By compactness of D̄, there exists a
subsequence {z0k j } converging to a point z̄ 2 D̄. Since d(z0k, �̂

0
k z

0
k) = d(zk, �̂k zk),

we have that

d
⇣
z̄, �̂ 0

k j z̄
⌘

 d
⇣
z̄, z0k j

⌘
+ 2M.

By construction d(z̄, z0k j ) ! 0, we then conclude that, up to a subsequence, �̂ 0
k j z̄

converges to a point q 2 B̄(z̄; 2M + ✏) for some ✏ > 0. This implies that

p̂(z̄) = p̂
⇣
�̂ 0
k j z̄

⌘
�! p̂(q)

and then
⇣
�̂ 0
k j · �̂

⌘
q = �̂ 0

k j z̄ �! q,

for some �̂ 2 0/0̂. Now the action of 0̂k on X̂ is properly discontinuous, we then
conclude that �̂ 0

k j · �̂ = {1} for all j sufficiently large. Thus, we must have �̂ = {1}
which then implies the contradiction �̂ 0

k j = {1}. The proof of the lemma is then
complete.

By using Lemma 3.4, we are now ready to conclude the proof of Proposi-
tion 3.3. For any k, let us denote by qk : Xk ! X the finite étale cover associated to
0k . Moreover, let us denote by p̂k : X̂ ! Xk the algebraic universal covering map.
By definition of the numerical invariant r̂k , the map p̂k : B(z; r̂k2 ) ! p̂k(B(z; r̂k2 ))

is a biholomorphism for any z 2 X̂ , and then by construction an isometry as well.
Thus for any k, given a subvariety Zk ⇢ Xk , we cannot have Zk ⇢ p̂k(B(z; r̂k2 ))

for any ball in B(z; r̂k2 ) in X̂ . If otherwise, we can then find a copy of Zk inside
the algebraic universal cover X̂ which contradicts our topological assumptions on
X . Recall in fact that ⇡alg1 (X) is large if and only if X̂ does not contain any proper
subvariety, see [9, Proposition 2.12]. Next, let us observe that all of the metrics q⇤

k!
have uniformly bounded geometry. In fact, they are pull backs via étale maps of a
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fixed smooth Kähler metric on the compact manifold X . In particular, we can find
a positive number r = r(L) > 0 and positive constants C1, C2 such that

C1!E  p̂⇤!  C2!E (3.1)

on any ball B(z; r) inside X̂ , and where by !E we denote the standard Euclidean
Kähler metric on Cn . Moreover, we can arrange (3.1) to hold true for any q̂⇤

k!
as well as for ! on balls of the same size. Thus, for any k, given an irreducible
subvariety Zk ⇢ Xk of pure dimension m, there exists a positive constant Km =
K (r,C1,C2;m) such that for any point p 2 Zk we have that Volm(B(p; r)\ Zk) �
Km . Here the volume of the m-dimensional subvariety Zk is computed by the
integral of the m-th power of q⇤

k! over the smooth part of Zk . The volume in-
equality follows from (3.1) and the same statement for the euclidian metric on
Cn , see Remark 3.5. Recall now that for any k, given a point p 2 Zk , then the
subvariety Zk cannot be entirely contained in the ball B(p; r̂k2 ). Thus, for any m-
dimensional irreducible subvariety Zk ⇢ Xk we have that Volm(Zk) � ↵mr̂k for
some ↵m = ↵(Km) > 0. Next, let us observe that by construction

⇣
q⇤
k L

⌘m
· Zk = Volm(Zk) � ↵mr̂k

for any k. By Lemma 3.4, we have that r̂k ! 1 as k goes to infinity. Thus,
given N > 0 there exists a k0 = k0(N ) such that for k � k0 any of the coverings
qk : Xk ! X satisfies the requirements of the proposition.

The proof under the assumptions that ⇡1(X) is residually finite and large is
completely analogous. More precisely, let us consider a sequence {0k} of finite
index normal subgroups in 0 = ⇡1(X) with the property that

T1
k=0 0k = {1}. For

any k � 0, we can define the numerical invariant

rk := inf{d(z, �k z) | z 2 X̃ , �k 2 0k, �k 6= 1},

where X̃ is the topological universal cover, which satisfies rk ! 1 as k ! 1. The
proof then proceeds exactly as before once we recall that ⇡1(X) is large if and only
if X̃ does not contain any proper subvariety, see again [9, Proposition 2.12].

We are now ready to prove Theorem 1.3. The proof of Theorem 1.4 is identical
and we leave its details to the interested reader.

Proof of Theorem 1.3. Let n be the dimension of the smooth variety X . Given the
ample line bundle L on X , let us fix an integer a = a(L) such that aL � KX is
ample and aL � 2KX is nef. Moreover, let us define L 0 = aL � KX . Observe
that by Anghern-Siu [1] we have that for m0 �

�n+1
2
�
then m0L 0 is base point free.

Next, let us define

N 0 := max
⇢✓
1+

✓
n + 1
2

◆
(n � c) +

n!
c!

◆c
(n + s)n + 1 | c = 0, . . . , n

�
,



342 GABRIELE DI CERBO AND LUCA F. DI CERBO

where s > 0 is a fixed parameter to be determined later. By Proposition 3.3, we can
find a finite regular étale cover qs : Xs ! X such that (q⇤

s L 0)dim(V ) · V � N 0 for
any subvariety V ✓ Xs . Moreover, we have that by construction

q⇤
s (L

0 � KX ) = q⇤
s L

0 � KXs

is nef and
m0q⇤

s L
0 = q⇤

s (m0L
0)

is base point free. By Theorem 3.2, for any x 2 Xs the linear system |KXs + q⇤
s L 0|

separates s-jets at x . Since

KXs + q⇤
s L

0 = aq⇤
s L ,

by Proposition 3.1 we conclude that ✏(q⇤
s L) � s

a . Thus, given any N > 0 we
simply find s such that sa � N and the associated cover qs : Xs ! X , which we
rename to be p0 : X 0 ! X , satisfies the requirements of the theorem. The proof is
then complete.

Remark 3.5. Let V be a pure m-dimensional subvariety passing through the origin
0 2 Cn . Let us consider the Euclidean Kähler metric !E on Cn . We then have the
basic inequality

Volm(B(0; R) \ V ) � mult0(V ) · Vm(R),

where we denote by mult0 V the multiplicity of V at the origin and where Vm(R)
is the volume of the ball of radius R in Cm . For more details see for example
[10, page 300]. Thus, using the uniformly bounded geometries of the covers as
in Proposition 3.3, it is possible to directly prove Theorems 1.4 and 1.3 without
dealing with the separation of jets. We have decided to leave the current proof as it
seems of interest to explicitly prove a somewhat stronger result.

4. The case of big and nef line bundles

In this section, we appropriately generalize the results of Section 3 to the case of big
and nef divisors. More precisely, we give the details of the proof of Theorem 1.7.
Crucial to this generalization is the notion of augmented base locus of a big and
nef divisor. This locus is a closed subset of the ambient variety which, roughly
speaking, coincides with the set of points where the line bundle “fails” to be ample.

Thus, let us start by precisely stating some of the important properties of the
augmented base locus of a big line bundle. To this aim, recall that given a big line
bundle L its augmented base locus, denoted by B+(L), can be written as

B+(L) =
\

L=A+E
Supp(E),

where the intersection is taken over all decompositions L ⇠Q A + E , where A is
ample and E effective, see [5, Remark 1.3]. Note that since X is noetherianand
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B+(L) is a Zariski closed subset of X , we can find finitely many decompositions
L ⇠Q Ai + Ei such that B+(L) = \li=1 Supp(Ei ).

Next, let us observe that the augmented base locus behaves nicely under finite
étale covers. More precisely, we can state the following.

Lemma 4.1. Let p : X 0 �! X be a regular étale cover and let L be a big and nef
line bundle on X . We then have p�1B+(L) = B+(p⇤L).

Proof. By the definition, it is clear that B+(p⇤L) ✓ p�1B+(L). Recall that since L
is big and nef by a theorem of Nakamaye, see for example [11, Theorem 10.3.5], we
know that B+(L) coincides with the union of all positive dimensional subvarieties
V ✓ X such that Ldim(V ) ·V = 0. By contradiction, let us now assume the existence
of a point x 2 p�1B+(L) such that x /2 B+(p⇤L). Let y := p(x) 2 X which by
definition is a point in B+(L). Now, Nakamaye’s theorem implies the existence of
a positive dimensional subvariety V containing y, such that Ldim(V ) · V = 0. Thus,
let W be an irreducible component of p�1(V ) containing x , and let us denote by
d = deg(W ! V ) be the degree of the restriction of p to W . By the projection
formula, we have

⇣
(p⇤L)dim(W ) · W

⌘
= d

⇣
Ldim(V ) · V

⌘
= 0,

and then, again because of Nakamaye’s theorem, it follows that x 2 B+(p⇤L). We
have therefore reached a contradiction, and the proof is complete.

Remark 4.2. We remark that the proof of Lemma 4.1 proves a slightly stronger
statement. More precisely, it gives that

p�1B+(L) = B+(p⇤L),

for L big and nef line bundle on X , under the weaker assumption that p : X 0 ! X
is a finite morphism.
We can now give the details of the proof of Theorem 1.7.

Proof of Theorem 1.7. Given L , let us fix a decomposition L ⇠Q Ai + Ei with Ai
ample and Ei effective. Let us choose !i to be a smooth Kähler metric in the Q-
cohomology class [Ai ]. By Theorem 1.4, given an integer N > 0, we can construct
an infinite sequence of finite regular Kähler coverings

. . . ! Xk+1 ! Xk ! Xk�1 ! . . . ! X,

such that ✏(q⇤
k Ai ) � N for any k � ki (N , Ai ), where ki is a positive integer

depending on N and on Ai . Thus, for any k � ki (N , Ai ) and x /2 q⇤
k (Ei ) we have

✏
�
q⇤
k L; x

�
= ✏

�
q⇤
k (Ai + Ei ); x

�
� ✏

�
q⇤
k Ai ; x

�
� N .

Next, let us find finitely many decompositions L ⇠Q Ai + Ei such that B+(L) =
\li=1 Supp(Ei ). For each i 2 {1, . . . , l} let us chose ki as above and let us define
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K := Max{k1, . . . , kl}. Next, let us observe that because of Lemma 4.1, given any
x /2 q�1

k B+(L) we can find at least an index j 2 {1, . . . , l} such that x /2 q�1
k (E j ).

Thus, given any k � K and for x /2 q�1
k B+(L), by choosing an index j as above,

we compute

✏
�
q⇤
k L; x

�
= ✏

�
q⇤
k (A j + E j ); x

�
� ✏

�
q⇤
k A j ; x

�
� N .

The proof is then complete.
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