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Elliptic and parabolic problems for a class of operators
with discontinuous coefficients
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Abstract. We study elliptic and parabolic problems associated to the second
order elliptic operator

L = 1 + (a � 1)
NX

i, j=1

xi x j
|x |2

Di j + c
x

|x |2
· r � b|x |�2

with a > 0 and b, c real coefficients. We prove generation of analytic semigroup
and domain characterization.

Mathematics Subject Classification (2010): 47D07 (primary); 35B50, 35J25,
35J70 (secondary).

1. Introduction

In this paper we study elliptic and parabolic problems in L p(RN ) associated to the
second order elliptic operator

L = 1 + (a � 1)
NX

i, j=1

xi x j
|x |2

Di j + c
x

|x |2
· r � b|x |�2

with a > 0 and b, c real coefficients. The leading coefficients are uniformly elliptic
but discontinuous at 0, if a 6= 1, and singularities in the lower order terms appear
when b or c is different from 0. The operator commutes with dilations, in the sense
that I�1

s L Is = s2L , if Isu(x) = u(sx).
In the special case b = c = 0, these operators have already been introduced to

provide counterexamples to the elliptic regularity. Positive results have also been
obtained by Manselli and Ragnedda, see [5–7], who proved existence and unique-
ness results in Sobolev spaces in a bounded domain containing the origin and spec-
tral properties in the two-dimensional case.
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When a = 1, that is when the discontinuity in the second order coefficients
disappears, generation results can be deduced by [3], or by [8, 15, 18, 19], where
more general operators have been studied and the domain is explicitly described.
Similar operators, but with singular coefficients only at infinity, have been studied
also in [16,17, 20].

If 1 < p < 1, we define the maximal operator L p,max through the domain

D(L p,max) =
n
u 2 L p

�
RN � \ W 2,p

loc
�
RN \ {0}

�
; Lu 2 L p

�
RN �

o

and note that, by local elliptic regularity, L p,max is closed and

D(L p,max) =
n
u 2 L p

�
RN � ; Lu 2 L p

�
RN � as a distribution in RN \ {0}

o
.

The operator L p,min is defined as the closure, in L p(RN ) of (L ,C1
c (RN \ {0}) (the

closure exists since this operator is contained in the closed operator L p,max) and it
is clear that L p,min ⇢ L p,max.

This paper contains results on generation theorems and domain characteri-
zation. To state them and explain how they are proved we introduce some nota-
tion.

The equation Lu = 0 has radial solutions |x |�s1 , |x |�s2 where s1, s2 are the
roots of the indicial equation f (s) = �as2 + (N � 1 + c � a)s + b = 0 given
by

s1 :=
N � 1+ c � a

2a
�

p
D, s2 :=

N � 1+ c � a
2a

+
p
D, (1.1)

where

D :=
b
a

+

✓
N � 1+ c � a

2a

◆2
. (1.2)

The above numbers are real if and only if D � 0. When D < 0 the equation
u� Lu = f cannot have positive distributional solutions for certain positive f , see
Proposition 3.11. In the case of Schrödinger operators with inverse square potential,
a famous result due to Baras and Goldstein [2] states the instantaneous blow up of
positive distributional solutions of the corresponding heat equation, when D =
b+ (N � 2)2/4 < 0. Our result can be seen as an elliptic counterpart in the general
situation.

We point out, however, that even when b + (N � 2)2/4 is negative there are
realizations of the operator L in L2(RN ) which generate analytic semigroups. Such
semigroups are not positive and these realizations are necessarily non self-adjoint,
see [9].
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Assuming D � 0 we show that there exists an intermediate operator L p,min ⇢
L p,int ⇢ L p,max which generates an (analytic) semigroup in L p(RN ) if and only if
N
p 2 (s1, s2 + 2). An intuitive explanation (for D > 0) of this result is the follow-
ing. If u(x) =

P
u j (r)Pj (!) and f =

P
f j (r)Pj (!) where (Pj ) are spherical

harmonics, then the equation !2u � Lu = f , Re ! > 0 can be reduced to the
infinite system ODE of Bessel type

!2u j (r) �

✓
au00

j (r) +
N � 1+ c

r
u0
j (r) � (b + �n)

u j (r)
r2

◆
= f j (r), (1.3)

where n is the degree of Pj and �n = n2 + (N � 2)n are the eigenvalues of the
Laplace-Beltrami operator on the sphere SN�1. Each of the above equation has
characteristic numbers s(n)1 , s(n)2 , defined as in (1.1), (1.2) with b + �n instead of
b. The numbers s(n)1 decrease to �1, whereas s(n)2 increase to +1. The equations
(1.3) have more regularizing effect as n increases, since the potentials (�b+�n)r�2

become more and more negative and therefore the most critical equation appears
for n = 0 and corresponds to radial functions. For positive !, (1.3) with n = 0
and f0 = 0 has two linearly independent solutions v!,1, v!,2 with the following
properties: v!,1 is exponentially increasing at 1 and behaves like r�s1 as r ! 0,
v!,2 is exponentially decreasing at 1 and behaves like r�s2 as r ! 0. Using
these function one can construct a Green function as for Sturm-Liouville problems.
However, if N/p  s1, then neither v!,1 or v!,2 belong to L p((0, 1), r N�1 dr) and
equation (1.3) with n = 0 cannot be solved for suitable f0. If N/p � s2 + 2, the
function v!,2 belongs to the domain of the minimal operator L p,min and is therefore
an eigenfunction of any of its extensions. These facts explain the negative part of
our result.

If N/p 2 (s1, s2), then v!,1 is the only solution of the homogeneous equation
which is in L p near 0 and v!,2 is the only solution of the homogeneous equa-
tion which is in L p near 1 (in both cases with respect to the measure r N�1 dr).
This means that there is only one way to construct a resolvent and hence L p,max
is a generator. By duality, L p,min is a generator when N/p 2 (s1 + 2, s2 + 2).
Therefore L p,int = L p,max if N/p 2 (s1, s2] and L p,int = L p,min if N/p 2
[s1 + 2, s2 + 2) and L p,int is the unique realization of L between L p,min and
L p,max which generates a semigroup, when these two intervals overlap, that is when
s1 + 2  s2, since it coincides either with L p,min or with L p,max (and with both
when N/p 2 [s1 + 2, s2]). However, if s2 < s1 + 2 and N/p is in between, that is
when

D =
b
a

+

✓
N � 1+ c � a

2a

◆2
2 [0, 1) and

N
p

2 (s2, s1 + 2),

both functions v!,1, v!,2 are in L p((0, 1), r N�1 dr) and there is no uniqueness even
among the generators of positive and analytic semigroups, see [12]. The choice of
the domain of L p,int is made to preserve the consistency of the semigroup in the
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Lq -scale, by extrapolating the semigroup from those Lq(RN ) for which there is
uniqueness; namely we select v!,1 to construct the Green function near 0 but other
choices are possible.

The above arguments can be made rigorous in L2 by expansion in spherical
harmonics, but not directly in L p. Instead we use a global argument based on
improved Hardy and Poincaré inequalities which yield complex dissipativity on
subspaces of L p(RN ) generated by high order spherical harmonics and then we
perform a one dimensional analysis on a finite number of cases.

Before describing in more details the content of the sections, let us discuss
another way to look at the operator. In spherical coordinates we write

a�1L = Drr +
N � 1+ c̃

r
Dr �

b̃
r2

+
10

ar2
=: C +

10

ar2
, (1.4)

where c̃ = a�1(c � (N � 1)(a � 1)) and b̃ = a�1b. Clearly L and a�1L have the
same operator theoretical properties and, accordingly, the corresponding numbers
s1, s2 and s̃1.s̃2 coincide. However, when written in this form, it is easily seen
from (1.1) that these numbers depend only on b̃ and c̃ and not on a. This means
that all the results proved in this paper, both on the generation side and on domain
characterization, are independent of a > 0 for an operator as in (1.4), hence they
rely only on the radial part C . This remarkable fact, however, is a consequence
of our results and we have no a-priori argument for showing it, since the operators
C and 10/r2 do not commute. In order to explain better this point we discuss a
situation where a plays a role. From [11, Theorem 3.1] it is seen that the validity of
Rellich estimates

Z

RN

|u|p

|x |2p
dx  M

Z

RN

�
�
�
�Cu +

10u
ar2

�
�
�
�

p
dx

for u 2 C1
c (RN \ {0}) does depend on the parameter a and the same holds also for

Calderón-Zygmund estimates. These facts seem to be, at first sight, in contrast with
the domain characterization for (1.4) which, as said before, depends only on b̃, c̃.
However, no contradiction arises since the generation properties and the domain
characterization depend on the solvability of the set of equations (1.3), whose most
degenerate one is that with �0 = 0 which is not affected by division by a. On the
other hand, Rellich and Calderón-Zygmund inequalities can hold in (the closure of)
C1
c (RN \ {0}) which is too small, in some cases, to provide solvability. It turns out
that these estimates are equivalent to a spectral problem and hold in C1

c (RN \ {0})
except for countably many values of a, b̃, c̃ (explicitly computed) and the parameter
a plays a role, since the eigenvalues � j of the Laplace-Beltrami operator 10 are
changed to � j/a 6= � j for j � 1.

A summary of the contents of the chapters is the following. In Chapter 2 we
define the spaces L p<n , L

p
�n which are the closed linear span of functions of the

form
P

j f j (r)Pj (!), where the sums are finite and the spherical harmonics Pj
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have degree less than n or greater or equal than n, respectively. We recall their
main properties and study the action of L when restricted to them. We study care-
fully Sobolev regularity of functions of the form v(r)P(!), where P is a spherical
harmonics and v is defined as the mean over SN�1 of a Sobolev function u. We
improve Poincaré and Hardy inequalities on the sphere SN�1 for functions which
are linear combination of spherical harmonics of high order and then we improve
weighted Poincaré and Hardy inequalities on L p�n , showing that the best constants
tend to 0 as n ! 1 (we do not make any effort to estimate these constants which
are related to the eigenvalues of the p-Laplacian 1pu = div

�
|ru|p�2ru

�
on the

sphere). Using these results, we show in Section 3 that L p,min = L p,max generates
an analytic semigroup of contraction in L p�n if n is large enough and character-
ize the domain, using Rellich inequalities proved in [11] and [10]. The operator
in L p<n is reduced to a finite number of ordinary differential operators of Bessel
type, whose resolvents can be written explicitly and analyzed in detail. The condi-
tion D � 0 comes from the 1-d analysis and guarantees the existence of positive
solutions near the origin; in contrast, when D < 0 all radial solutions of the homo-
geneous equation u � Lu = 0 oscillate. Finally, we put together the results in L p

�n
and in L p<n to obtain necessary and sufficient conditions for generation in L p(RN ).
When these conditions are satisfied, the semigroup turns out to be analytic and pos-
itive. However, it need not be contractive and this explains why the variational
approach based on Hardy inequality does not give the full range of p for which the
semigroup exists. We refer the reader to [3] where the question of non-contractivity
is treated in the case a = 1 and also to [8] where similar phenomena are shown
for certain degenerate operators. Section 4 is devoted to analyze in detail the
operator

L = 1 + (a � 1)
NX

i, j=1

xi x j
|x |2

Di j ,

which corresponds to b = c = 0 and to compare our results with those obtained
in [5] where, however, the more restrictive condition a � 1 is assumed.

Notation. We denote by N0 = N [ {0} the natural numbers including 0. Often
we use � for RN \ {0}. When V is an open subset of RN , Cb(V ) is the Banach
space of all continuous and bounded functions in V , endowed with the sup-norm,
C0(V ) its subspace consisting of functions vanishing at the boundary of V and at
infinity, when V is unbounded. C1

c (V ) denotes the space of infinitely continu-
ously differentiable functions with compact support in V . C00(RN ) stands for the
Banach space of all continuous functions in RN vanishing at 0,1. The unit sphere
{kxk = 1} in RN is denoted by SN�1 and 10 is the Laplace-Beltrami operator on
SN�1. We adopt standard notation for L p and Sobolev spaces and write L prad for
L p((0,1), r N�1 dr). We denote by C+ := {z ; Re z > 0} and write for nonneg-
ative functions f, g, f (z) ⇡ g(z) as |z| ! 0 (|z| ! 1) if f (z)

g(z) converges to a
positive constant as |z| ! 0 (|z| ! 1).
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2. The operator L in spherical coordinates

2.1. Spherical coordinates

Introducing spherical coordinates x = r!, r = |x | and ! = x/|x | 2 SN�1, we
write the Laplace operator as

1 =
@2

@r2
+
N � 1
r

@

@r
+
1
r2

10,

where 10 the Laplace-Beltrami operator on the unit sphere SN�1, see [22, Chapter
IX]).

We recall that a spherical harmonic Pn of order n is the restriction to SN�1 of a
homogeneous harmonic polynomial of degree n and that the linear span of spherical
harmonics (which coincides with all polynomials) is dense in C(SN�1), hence in
L p(SN�1). We refer to [21, Chapter IV.2] for a proof of the following well-known
lemma.
Lemma 2.1. If P is a spherical harmonic of degree n, then

10P = �
⇣
n2 + (N � 2)n

⌘
P.

The values �n := n2 + (N � 2)n are the eigenvalues of the Laplace-Beltrami
operator �10 on SN�1 and the corresponding eigenspaces consist of all spherical
harmonics of degree n and have dimension dn where d0 = 1, d1 = N and for n � 2

dn =

✓
N + n � 1

n

◆
�

✓
N + n � 3
n � 2

◆
.

If u 2 C1
c (RN \ {0}), u(x) =

P
u j (r)Pj (!) (here we consider finite sums), then

Lu(r,!) =
X

j

✓
au00

j (r) +
N � 1+ c

r
u0
j (r) � (b + �n j )

u j (r)
r2

◆
Pj (!), (2.1)

where n j is the degree of the spherical harmonic Pj .
The formal adjoint of L is given by

L⇤ = 1 + (a � 1)
NX

i, j=1

xi x j
|x |2

Di j + c⇤
x

|x |2
· r � b⇤|x |�2, (2.2)

where c⇤ = 2(N � 1)(a � 1) � c and b⇤ = b + (N � 2)(c � (N � 1)(a � 1)).
Observe that, in spherical coordinates x = r!,

L = aDrr +
N � 1+ c

r
Dr �

b � 10

r2

L⇤ = aDrr +
N � 1+ c⇤

r
Dr �

b⇤ � 10

r2
,

(2.3)

where 10 is the Laplace-Beltrami operator on SN�1.
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The following lemma follows from elliptic regularity, see [8, Proposition 2.2].

Lemma 2.2. Let 1 < p < 1. Then the adjoint of L p,min, L p,max are L⇤
p0,max,

L⇤
p0,min, respectively.

Let us compute the numbers s⇤1 , s
⇤
2 , D

⇤ defined as in (1.1), (1.2) and relative to L⇤.
We have

D⇤ :=
b⇤

a
+

✓
N � 1+ c⇤ � a

2a

◆2
= D,

s⇤1,2 :=
N � 1+ c⇤ � a

2a
⌥

p
D⇤ =s1,2+

(a � 1)(N � 1) � c
a

=N�2�s2,1.
(2.4)

Observe that N
p > s1 is equivalent to N

p0 < s⇤2 + 2 and N
p < s2 is equivalent to

N
p0 > s⇤1 + 2. Similarly, Np > s1 + 2 is equivalent to N

p0 < s⇤2 and
N
p < s2 + 2 is

equivalent to N
p0 > s⇤1 .

L is formally self-adjoint, that is L = L⇤, if and only if c = (a � 1)(N � 1).
In this case

s1,2 =
N � 2
2

⌥

s
b
a

+

✓
N � 2
2

◆2
.

2.2. The spaces L pJ
We refer the reader to [11, Section 2] for further information and proofs of the
following results. If X,Y are function spaces over G1,G2 we denote by X ⌦ Y
the algebraic tensor product of X and Y , that is the set of all functions u(x, y) =Pn

i=1 fi (x)gi (y) where fi 2 X , gi 2 Y and x 2 G1, y 2 G2. In what follows
we denote by P a spherical harmonic and by deg P its degree. We fix a com-
plete orthonormal system of spherical harmonics {Pj , j 2 N0} (which is dense in
L p(SN�1) for every 1  p < 1) and a subset J of N0.
Definition 2.3. Let J be a subset of N0 and 1  p < 1. We denote by L pJ , the
closure of

L p((0,1), r N�1dr) ⌦ span{Pj : j 2 J }

in L p(RN ). We use L p�n , L
p
<n and L

p
n when J identifies all spherical harmonics of

degree � n, < n, = n, respectively.

Let us observe that L p = L pN0 and that L
p
0 consists of all radial functions in L

p.
Moreover C1

c ((0,1)) ⌦ span{Pj : j 2 J } is dense in L pJ . Observe that, by (2.1),
the spaces L pJ are invariant under the operator L . The next lemma clarifies the
structure of the spaces L pJ .
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Lemma 2.4. Let 1  p < 1 and assume that the L2 orthogonal projection S :
L2(SN�1) ! span{Pj : j 2 J } extends to a bounded projection in L p(SN�1).
Then

L p = L pJ � L pN0\J

and

L pJ =

⇢
u 2 L p :

Z

SN�1
u(r !)Pj (!) d� (!) = 0 for a.e. r > 0 and j 62 J

�
. (2.5)

If J is finite we have in addition

L pJ =

(

u =
X

j2J
f j (r)Pj (!) : f j 2 L p((0,1), r N�1dr)

)

and the projection I ⌦ S : L p ! L pJ is given by

(I ⌦ S)u =
X

j2J
Tju(r) Pj (!),

where

Tju(r) :=
Z

SN�1
u(r !)Pj (!) d� (!).

Remark 2.5. Observe that the hypotheses on the above lemma are always satisfied
if J (or N0 \ J ) is finite. In this last case note also that if u 2 C1

c (RN \ {0})
then (I ⌦ S)u 2 C1

c (RN \ {0}). We also remark that equality (2.5) holds without
assuming the existence of a bounded projection S.

Lemma 2.6. Under the hypotheses of the Lemma 2.4, the dual space of L pJ is L
p0

J .

Proof. By the lemma above L pJ is the quotient of L
p with respect to L pN0\J and

hence its dual coincides with the annihilator, say E , of L pN0\J in L
p0 , with respect to

the usual duality between L p and L p0 , denoted by h, i. Next we note that a function
v 2 L p0 belongs to E if and only if hw, vi = 0 for every w = u(r)Pj (!) 2 L p,
j 62 J or

Z

SN�1
v(r !)Pj (!) d� (!) = 0 for a.e. r > 0 and j 62 J.

By Lemma 2.4, this means that v 2 L p
0

J .
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2.3. Poincaré and Hardy inequalities in L pJ
In this section we improve Poincaré-type inequalities for smooth functions on the
sphere SN�1 which are orthogonal to some sets of spherical harmonics. Then we
use these inequalities to improve Hardy-type inequalities in L p�n .

We define

C1
�n
�
SN�1� =

⇢
v 2 C1�SN�1� :

Z

SN�1
v(!)P(!) d!

= 0 8 spherical harmonic P of degree less than n
�
.

For 1  p < 1, n � 1, we denote by Cp,n the best constant in the inequality
Z

SN�1
|v|p d!  C

Z

SN�1
|r⌧v|p d!, v 2 C1

�n
�
SN�1�,

and for 1 < p < 1 by eCp,n the best constant for which
Z

SN�1
|v|p d!  C

Z

SN�1
|r⌧v|2|v|p�2 d!, v 2 C1

�n
�
SN�1�.

Note that Cp,n is defined also for p = 1, whereas eCp,n only for p > 1. Moreover,
when 1 < p < 2 the expression |r⌧v|2|v|p�2, entering the definition of eCp,n , is
understood as |r⌧v|2|v|p�2�{v 6=0}, to give a meaning where v is equal to 0. How-
ever, if v is smooth, then |v|

p
2�1v could be not, and this is source of some technical

complications.
The constants Cp,n and eCp,n satisfy the following properties.

Lemma 2.7.

(i) For n � 1, Cp,n and eCp,n are finite and decreasing with respect to n;
(ii) Cp,n ! 0, eCp,n ! 0 as n ! 1 .

Proof. (i) Since it is clear that Cp,n and eCp,n are decreasing, it suffices to show, by
contradiction, that Cp,1 and eCp,1 are finite. Let 1  p < 1. If Cp,1 = +1, then
there exists (vm)m2N ⇢ C1

�1(S
N�1) such that kvmkp = 1 and kr⌧vmkp  1/m. In

view of the Rellich-Kondrachov theorem, by taking a subsequence we may assume
that vm ! v strongly in L p(SN�1) and hence, since kr⌧vmkp  1/m, (vm) is
a Cauchy sequence in W 1,p(SN�1) and therefore converges to v in W 1,p(SN�1).
Since vm 2 C1

�1(S
N�1) and kvmkp = 1, we also have kvkp = 1 and v has zero

mean on SN�1. On the other hand, v is constant since

kr⌧vkp = lim
m!1

kr⌧vmkp = 0.
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This is a contradiction. Concerning eCp,1, we argue as above when 2  p < 1, by
replacing vm with |vm |

p
2�1vm 2 H1(SN�1), see (ii), Step 2, below.

Let us now consider the case 1 < p < 2 and prove that eCp,n  (Cp,n)
2
p . In

fact, by Hölder inequality
Z

SN�1
|v|p d!  Cp,n

Z

SN�1
|r⌧v|p d!

 Cp,n

✓Z

SN�1
|r⌧v|2|v|p�2 d!

◆ p
2
✓Z

SN�1
|v|p d!

◆1� p
2

and therefore eCp,n  (Cp,n)
2
p < 1.

(ii) (Step 1, 1  p < 1) We first prove the assertion for Cp,n assuming, by
contradiction, that Cp,n > � > 0. Then there exists vn 2 C1

�n(SN�1) such that
Z

SN�1
|vn|

p d! = 1,
Z

SN�1
|r⌧vn|

p d! < ��1.

By taking a subsequence we may assume that vn ! v strongly in L p(SN�1). Since
Z

SN�1
vn P d! = 0

if deg P < n, one obtains
Z

SN�1
|v|p d! = 1,

Z

SN�1
vP d! = 0

for every spherical harmonic P and hence v = 0, which is a contradiction.
(Step 2) We next prove that eCp,n ! 0. For 1 < p < 2 this follows from the

inequality eCp,n  (Cp,n)
2
p proved in (i) and Step 1. If 2  p < 1 we argue by

contradiction. Assuming that eCp,n > � > 0 we take as above vn 2 C1
�n(SN�1)

such that Z

SN�1
|vn|

p d! = 1,
Z

SN�1
|r⌧vn|

2|v|p�2 d! < ��1.

By taking a subsequence, we suppose that vn ! v weakly in L p(SN�1) and then
v = 0 since v is orthogonal to all spherical harmonics, as in Step 1. We define

wn := |vn|
p
2�1vn 2 C1

�
SN�1�.

Then kwnk2 = 1 and r⌧wn = |vn|
p
2�3vn((p/2)Re(vnr⌧vn) + iIm(vnr⌧vn)) (note

that the derivative of t 7! |z(t)|
p
2�1z(t) with z 2 C1 is |z|

p
2�3z[(p/2)Re(zz0) +
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iIm(zz0)]) so that kr⌧wnk2 is bounded because of p � 2. By taking a subsequence
we may assume that wn ! w weakly in H1(SN�1) and strongly in L2(SN�1). Set

fn := |wn|
1� 2

p wn 2 L p
0�
SN�1�, f := |w|1�

2
p w 2 L p

0�
SN�1�

and observe that fn = |vn|p�2vn . Using the estimate
�
�
�|z1|

1� 2
p z1 � |z2|

1� 2
p z2
�
�
� 

2
p0

(|z1| + |z2|)
1� 2

p |z1 � z2|, z1, z2 2 C,

we obtain by Hölder inequality with q = 2� (2/p) � 1
Z

SN�1
| fn� f |p

0
d!



✓
2
p0

◆p0 Z

SN�1
(|wn| + |w|)

p�2
p�1 |wn � w|

p
p�1 d!



✓
2
p0

◆p0 ✓Z

SN�1
(|wn| + |w|)2 d!

◆ p�2
2(p�1)

✓Z

SN�1
|wn � w|2 d!

◆ p
2(p�1)



✓
2
p0

◆p0

2
p�2
p�1

✓Z

SN�1
|wn � w|2 d!

◆ p
2(p�1)

.

Therefore fn ! f strongly in L p0
(SN�1). Since fn = |vn|p�2vn we have

Z

SN�1
vn f n d! =

Z

SN�1
|vn|

p d! = 1.

On the other hand, since vn ! 0 weakly in L p(SN�1) and fn ! f strongly in
L p0

(SN�1), we have also Z

SN�1
vn f n d! ! 0,

which is a contradiction.

Next we prove Hardy-type inequalities for smooth functions in L p�n . Note that
p = 1 is allowed in the second inequality.

Proposition 2.8. For every n 2 N, � 2 R and u 2 C1(RN \ {0}) \ L p�n(RN ) the
following inequalities hold
Z

RN
|x |� |u(x)|p dx  eCp,n

Z

RN
|x |�+2|ru(x)|2|u(x)|p�2 dx, 1 < p < 1

Z

RN
|x |��p|u(x)|p dx  Cp,n

Z

RN
|x |� |ru(x)|p dx, 1  p < 1,

where Cp,n, eCp,n are as in Lemma 2.7 and tend to 0 as n ! 1.
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Proof. For any fixed r > 0, u(r ·) 2 C1
�n(SN�1). Hence using Lemma 2.7 we

obtain
Z

RN
|x |� |u(x)|p dx=

Z 1

0
r�+N�1

✓Z

SN�1
|u(r!)|p d!

◆
dr

eCp,n

Z 1

0
r�+N�1

✓Z

SN�1

�
�r⌧

�
u(r!)

���2|u(r!)|p�2 d!

◆
dr

eCp,n

Z 1

0
r�+N+1

✓Z

SN�1

�
�ru(r!)|2|u(r!)|p�2 d!

◆
dr

=eCp,n

Z

RN
|x |�+2|ru(x)|2|u(x)|p�2 dx .

The proof of the second inequality is identical.

Remark 2.9. Lemma 2.7, combined with a Hardy-type inequality (see [10, Propo-
sition 8.3]) which involves only the radial part of the gradient, allows to improve
Proposition 2.8 in the following way:
 

1
eCp,n

+

✓
N + �

p

◆2!Z

RN
|x |� |u(x)|p dx 

Z

RN
|x |�+2|ru(x)|2|u(x)|p�2 dx .

The classical Hardy inequality holds for p 6= N . However it holds for every u in
L p�1.

Corollary 2.10. Let 1  p < 1, u 2 W 1,p(RN ) \ L p�1. Then

Z

RN
|x |�p|u(x)|p dx  Cp,1

Z

RN
|ru(x)|p dx . (2.6)

Proof. For u 2 C1(RN \ {0}) \ L p�1, (2.6) is a particular case of Proposition 2.8
with n = 1,� = 0. In the general case we observe that 0 =

R
SN�1 u(r!) d! =R

SN�1 ur (r!) d! and consider a sequence (vn) ⇢ C1
c (RN ) such that vn ! u in

W 1,p(RN ). Let un = vn� wn with wn(r) = c
R
SN�1vn(r!)d! =

R
SN�1(vn(r!)�

u(r!)) d! and c�1 is the measure of SN�1. Then un 2 C1(RN \ {0}) \ L p�1 and
un!u inL p(RN ).Moreover, sincew0

n(r)=c
R
SN�1vn,r (r!)d!=c

R
SN�1(vn,r (r!)�

ur (r!)) d!, then w0
n ! 0 in L prad, that is rwn ! 0 in L p(RN ) and hence un ! u

in W 1,p(RN ). We conclude the proof by writing (2.6) for each un , letting n ! 1
and using Fatou’s lemma.

Note that the above proof shows that C1(RN \ {0}) \ W 1,p(RN ) \ L p�1 is
dense in W 1,p(RN ) \ L p�1.
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2.4. Sobolev regularity in L pJ

We denote by Wm,p
J the spaces Wm,p(RN ) \ L pJ . Most of the results in this section

hold also for p = 1 but sometimes one has to substitute bounded functions with
bounded and continuous functions. To avoid misunderstanding and to simplify the
exposition we always assume that p is finite.

The following lemma is false when N = 1 (consider a function which is equal
to 0 in a left neighbourhood of 0 and 1 in a right neighbourhood of 0). It is used to
control the singularity at the origin introduced by the spherical coordinates. Even
though it is known, see, e.g., [4] or [23], we provide a proof for completeness.
Lemma 2.11. If 1  p < 1 and N � 2, then Wk,p(�) = Wk,p(RN ).
Proof. By induction, it is sufficient to give a proof only for k = 1. We fix ⌘ 2
C1(RN ) such that ⌘(x) = 0 for x 2 B(0, 1) and ⌘(x) = 1 for x 2 RN \ B(0, 2),
therefore supp @⌘

@x j ⇢ B(0, 2) \ B(0, 1). Moreover, we define for " > 0, ⌘"(x) :=

⌘( x" ).
Let u 2 W 1,p(�). Since ⌘u 2 W 1,p(RN ), it suffices to prove that v = (1 �

⌘)u 2 W 1,p(RN ).
For a fixed ' 2 Cc(RN ), from the definition of weak derivative D(�)

j v in� we
have

I" :=
Z

RN
⌘"v

@'

@x j
dx �

Z

RN
⌘"D(�)

j v' dx = �
Z

RN
v
@⌘"

@x j
' dx .

If I" vanishes as " ! 0, we have D(RN )
j v = D(�)

j v 2 L p(RN ) and therefore the
proof is complete. By the definition of ⌘", we have

|I"|  kr⌘kL1k'kL1

✓
1
"

Z

B(0,2")\B(0,")
|v(x)| dx

◆
.

For a fixed " > 0, using standard mollifier {⇢n}n , we see that vn := ⇢n ⇤ v 2
C1(RN \ B(0, ")) for n > "�1, vn ! v in W 1,p(RN \ B(0, ")) as n ! 1 and
supp vn ⇢ supp v + B(0, 1) is also compact.

Then taking R := dist(0, supp v) + 1 and ! := x/|x |, we have for x 2
B(0, 2") \ B(0, "),

|vn(x)| =

�
�
�
�

Z R

|x |
rvn(t!) · ! dt

�
�
�
� 

Z R

|x |
|rvn(t!)| dt =

Z R

"
|rvn(t!)| dt.

Integrating "�1|vn(x)| over B(0, 2") \ B(0, ") and using the spherical coordinates,
we see
1
"

Z

B(0,2")\B(0,")
|vn(x)| dx 

1
"

Z 2"

"

✓Z

SN�1

✓Z R

"
|rvn(t!)| dt

◆
d!

◆
r N�1 dr

=
2N � 1
N

Z

B(0,R)\B(0,")

✓
"

|y|

◆N�1
|rvn(y)| dy.
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Letting n ! 1, we obtain

|I"| 
2N � 1
N

kr⌘kL1k'kL1

Z

B(0,R)\B(0,")

✓
"

|y|

◆N�1
|rv(y)| dy


2N � 1
N

kr⌘kL1k'kL1

Z

B(0,R)

✓
1 ^

"

|y|

◆N�1
|rv(y)| dy.

The dominated convergence theorem implies I" ! 0 as " ! 0.

In the following two results we characterize when functions of the form
v(r)P(!) belong to Sobolev spaces. Note that the result depends on the order
of the spherical harmonic P . In the proof of Propositions 2.13, 2.14 we shall use
the following elementary result.

Lemma 2.12. Let u(r!) = v(r)P(!), where P is a spherical harmonic. Then
u 2 Wk,p

loc (�) if and only if v 2 Wk,p
loc ((0,1)).

Proof. If n is order of P , then Q(x) = rn P(!) is a harmonic polynomial and we
write u(x) = |x |�nv(|x |)Q(x). If v(r) 2 Wk,p

loc ((0,1)), then v(|x |) 2 Wk,p
loc (�),

by composition, and the same is true for u. Conversely, if u 2 Wk,p
loc (�), then all

radial derivatives of u of order not greater than k are in L ploc(�) and then v(r) =
R
SN�1 u(r!)P(!) d! is in Wk,p

loc ((0,1)).

Proposition 2.13. Let 1  p < 1, 0 6= P be a fixed spherical harmonic of order
n 2 N0 and u(r!) = v(r)P(!), with v 2 L prad.

(i) If n = 0, then u 2 W 1,p(RN ) if and only if v0 belongs to L prad. Moreover the
norms kuk1,p and kvkp,rad+kv0kp,rad are equivalent on the (closed) subspace
of W 1,p(RN ) spanned by these functions;

(ii) If n � 1, then u 2 W 1,p(RN ) if and only if v0 and v
r belong to L

p
rad. Moreover,

the norms kuk1,p and kvkp,rad + kv0kp,rad + kv/rkp,rad are equivalent on the
(closed) subspace of W 1,p(RN ) spanned by these functions.

Proof. Q(x) = rn P(!) is a harmonic homogeneous polynomial of degree n and
DhQ is a homogeneous polynomial of degree n � 1. Therefore, writing u(x) =
r�nv(r)Q(x) we see from Lemma 2.12 that u 2 W 1,p

loc (�) if and only if v 2

W 1,p
loc ((0,1)). Moreover, for r > 0, h = 1, . . . , N we have

Dhu(x) =

✓
v0(r) � n

v(r)
r

◆
!h P(!) +

v(r)
r

DhQ(x)
rn�1

. (2.7)

If n = 0, since Q = 1, then from (2.7) and Lemma 2.11 we see that u 2 W 1,p(RN )
if and only if v0 belongs to L prad and the norms krukp and kv0kp,rad are clearly
equivalent.
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If n � 1 we first note that, by (2.7) and Lemma 2.11, u 2 W 1,p(RN ) if
v0, v/r 2 L prad and krukp  C(kv0kp,rad + kv/rkp,rad). Conversely, let u 2
W 1,p(RN ). Then noting that ur = ru · x

r = v0(r)P(!) 2 L p(RN ), we have
kv0kp,rad  Ckrukp. On the other hand, Corollary 2.10 yields kv/rkp,rad 
Ckrukp.

Proposition 2.14. Let 1  p < 1, 0 6= P be a spherical harmonic of order
n 2 N0. Let moreover u(r!) = v(r)P(!), with v 2 L prad and assume that u 2
W 1,p(RN ). Then

(i) If n = 0, then u 2 W 2,p(RN ) if and only if v00 and v0

r belong to L
p
rad. Moreover,

the seminorms kD2ukp, where D2u is the Hessian matrix of u and kv00kp,rad+
kv0/rkp,rad are equivalent on the (closed) subspace of W 2,p(RN ) spanned by
these functions;

(ii) If n = 1, then u 2 W 2,p(RN ) if and only if v00 and v0

r � v
r2 belong to L

p
rad.

Moreover, the seminorms kD2ukp, and kv00kp,rad + kv0/r � v/r2kp,rad are
equivalent on the (closed) subspace of W 2,p(RN ) spanned by these functions;

(iii) If n � 2, then u 2 W 2,p(RN ) if and only if v00, v0

r and
v
r2 belong to L

p
rad. More-

over, the seminorms kD2ukp, and kv00kp,rad + kv0/rkp,rad + kv/r2kp,rad are
equivalent on the (closed) subspace of W 2,p(RN ) spanned by these functions.

Proof. Q(x) = rn P(!) is a harmonic homogeneous polynomial of degree n.
Therefore, writing u(x) = r�nv(r)Q(x) and using Lemma 2.12, we see from (2.7)
that for r > 0

Dhku(x) =

✓
v00(r) � (2n + 1)

v0(r)
r

+ n(n + 2)
v(r)
r2

◆
!h!k P(!)

+

✓
v0(r)
r

� n
v(r)
r

◆✓
�hk P(!) + !h

DkQ(x)
rn�1

+ !k
DhQ(x)
rn�1

◆

+
v(r)
r2

DhkQ(x)
rn�2

.

(2.8)

Observe that DhQ, DhkQ are homogeneous polynomials of degree n � 1, n � 2,
respectively.

The case n = 0. Since Q = 1, then from (2.8) and Lemma 2.11 we see that
u 2 W 2,p(RN ) if and only if v00 and v0

r belong to L
p
rad, with equivalence of the

corresponding norms. Indeed, from (2.8), we immediately see that if v00 and v0

r
belong to L prad then Dhku(x) 2 L p(RN ). Concerning the other implication, from
(2.8) we have that, if Dhku(x) 2 L p(RN ), h 6= k implies v00 � v0

r 2 L prad and
h = k implies that v0

r +
⇣
v00 � v0

r

⌘
!2h belongs to L

p(RN ). By difference, also
v0

r , v00 2 L prad.
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The case n = 1. Q is linear, say Q(x) = x j and DhkQ = 0. The equation (2.8)
becomes

Dhku(x) =

✓
v00(r) � 3

✓
v0(r)
r

�
v(r)
r2

◆◆
! j!h!k

+

✓
v0(r)
r

�
v(r)
r2

◆
�
�hk! j + !h� jk + !k� jh

�
.

Then Dhku 2 L p(RN ) if v00 and
⇣

v0

r � v
r2

⌘
2 L prad and we conclude that u 2

W 2,p(RN ) by using Lemma 2.11.
Conversely, if u 2 W 2,p(RN ), then

v00(r)P(!) = urr (x) =
X

i, j

h xi x j
r2

Di ju +
x j
r2
⇣
�i j �

xi x j
r2

⌘
Diu

i

=
X

i, j
Di j u

xi x j
r2

2 L p
�
RN �

and hence v00 2 L prad. Finally, since 10P = �(N � 1)P we have

1u =

✓
v00 + (N � 1)

✓
v0

r
�

v

r2

◆◆
P 2 L p

�
RN �,

hence, by difference v0

r � v
r2 2 L prad. The equivalence of the norms follows also by

the arguments above.

The case n � 2. If v00, v0

r and
v
r2 belong to L

p
rad, then Dhku 2 L p(RN ), by (2.8)

and u 2 W 2,p(RN ) by Lemma 2.11.
Conversely, let u 2 W 2,p(RN ). Then as in the case n = 1 we obtain v00 2 L prad.

Since1u =
⇣
v00 + N�1

r v0 � �n
v
r2

⌘
P and urr = v00P belong to L p(RN ), it follows

that g = N�1
r v0 � �n

v
r2 2 L prad. Note that v

0 � c v
r = f r where f = g/(N � 1)

and c = �n/(N � 1) > 2, since n � 2 and �n � 2N . Now we show v/r2 2 L prad.
Integrating the identity (v0 � c v

r )r
�c = f r1�c between r < s, we obtain

s�cv(s) � r�cv(r) =
Z s

r
f (t)t1�c dt.

Since f 2 L prad and c > 2, by Hölder inequality we see for every � 2 [0, c � 2]

Z 1

r
| f (t)|t1�c dt 

✓Z 1

r
| f (t)|pt N�1�p� dt

◆ 1
p
✓Z 1

r
t (1�c+�)p0� N�1

p�1 dt
◆ 1

p0

= C�

✓Z 1

r
| f (t)|pt N�1�p� dt

◆ 1
p
r2�c+�� N

p
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and therefore, choosing � = 0, the integral on the right hand side converges at
infinity. Hence s�cv(s) has a limit at infinity which is 0, since v 2 L prad. Then
letting s ! 1, we have

v(r)= �rc
Z 1

r
f (t)t1�c dt and

|v(r)|
r2

C�

✓Z 1

r
| f (t)|pt N�1�p� dt

◆ 1
p
r �� N

p .

Then we have
Z 1

0

�
�
�
�
v(r)
r2

�
�
�
�

p
r N�1 dr  C p

�

Z 1

0

✓Z s

0
r p��1 dr

◆
| f (t)|pt N�1�p� dt

=
C p

�

p�

Z 1

0
| f (t)|pt N�1 dt = k f kpL prad

.

By difference, v0/r 2 L prad and the proof is complete.

Observe that for n = 0, 1, a function u can be in W 2,p(RN ) even though v/r2
does not belong to L prad.

Conversely, now we study the regularity of radial functions defined as means
ofW 2,p- functions or in other words, the continuity of the operator I⌦S introduced
in Lemma 2.4, with respect to the Sobolev norm.

Proposition 2.15. Let 1  p < 1, u 2 L p(RN ) and P be a spherical harmonic
of order n. Let us define

v(r) =
Z

SN�1
u(r!)P(!) d!, w(x) = v(r)P(!).

Then

(i) If u 2 W 1,p(RN ) then w 2 W 1,p(RN ); moreover kwk1,p  Ckuk1,p for a
suitable C > 0 independent of u;

(ii) If u 2 D(L p,max) then w 2 D(L p,max) and

Lw(x)= P(!)

✓
avrr�

N � 1+ c
r

vr�
b + �n

r2
v

◆
= P(!)

Z

SN�1
Lu(r!) d!.

In particular if u 2 W 2,p(RN ) then w 2 W 2,p(RN ) and kwk2,p  Ckuk2,p
for a suitable C > 0 independent of u.

Proof. (i) Clearly v 2 L prad and, since vr =
R
SN�1 ur (r!)P(!) d! and ur = ru ·

x
r 2 L p(RN ), then also v0 2 L prad. This completes the proof if n = 0, by Proposition
2.13 (i). In the case n � 1, by Proposition 2.13 (ii) we have also to prove that
v/r 2 L prad. Let w(r) =

R
SN�1 u(r!) d! and v1(x) = w(|x |). The case n = 0

yields v1 2 W 1,p(RN ) and moreover, v(r) =
R
SN�1(u(r!) � v1(r))P(!) d!. We

apply Corollary 2.10 to u � v1 2 W 1,p(RN ) \ L p�1 and obtain that v/r 2 L prad.
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(ii) From (2.3) and since 10 is self-adjoint in L2(SN�1) and 10P = ��n P
we get for u 2 D(L p,max)

avrr �
N � 1+ c

r
vr �

b + �n

r2
v

=
Z

SN�1

✓
aurr �

N � 1+ c
r

ur �
b + �n

r2
u
◆
P(!) d!

=
Z

SN�1

✓
Lu �

�n

r2
u �

10u
r2

◆
P(!) d!

=
Z

SN�1

✓
Lu �

�n

r2
u
◆
d! �

1
r2

Z

SN�1
u10P d!

=
Z

SN�1
Lu d!,

which is the formula in the statement since Lw= P(!)
�
avrr � N�1+c

r vr � b+�n
r2 v

�
.

This yields w 2 D(L p,max). To prove that w 2 W 2,p(RN ) when u 2 W 2,p(RN )
we apply Proposition 2.14 and note, first of all, that vrr =

R
SN�1 urr (r!)P(!) d! 2

L prad. Taking L = 1 in the formula above we obtain that vrr � N�1
r vr +

�n
r2 v 2 L prad,

hence N�1
r vr � �n

r2 v 2 L prad. This yields, v
0/r 2 L prad if n = 0, v0/r � v/r2 2 L prad

if n = 1 (since �1 = N � 1) and v0/r, v/r2 2 L prad as in the proof of Proposition
2.14 (iii).

Let us show that the projection I ⌦ S is bounded in Wk,p(RN ), k = 1, 2 and
with respect to the graph-norm of L . We point out that this result has been already
proved in [11, Section 2] for 1 < p < 1 and k = 2.

Lemma 2.16. Let 1  p < 1 and assume that J is finite. Then the projection
I ⌦ S of Lemma 2.4 extends to a bounded projection of Wk,p(RN ), k = 1, 2.
Moreover, L(I ⌦ S)u = (I ⌦ S)Lu for every u 2 D(L p,max).

Proof. Since

(I ⌦ S)u =
X

i2J
Pj (!)

Z

SN�1
u(r!)Pj (!) d!,

all statements follow from Proposition 2.15.

As in [11, Section 2] one deduces the following two results.

Lemma 2.17. Let 1  p < 1, J ⇢ N0. Then et1L pJ ⇢ L pJ . If J is finite, the
projection I ⌦ S of Lemma 2.4 satisfies for every u 2 L p

et1(I ⌦ S)u = (I ⌦ S)et1u.
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Lemma 2.18. Let 1  p < 1. Then C1
c (RN ) functions of the form

v =
X

f j (r)Pj (!), (2.9)

where the sums are finite and j 2 J , are dense in Wm,p
J with respect to the Sobolev

norm. If u 2 C1
c (RN \ {0}), the approximating functions of the form (2.9) can be

chosen to have support in RN \ {0}, too.

The above lemma, in combination with Lemma 2.11, allows to approximate func-
tions inWm,p with smooth function as in (2.9), with the f j having compact support
away from 0.

3. Generation of analytic semigroup in L p and domain characterization

3.1. Generation in L p�n
An operator (A, D(A)) densely defined in a Banach space X is called regularly
dissipative if the set

{hAu, vi : u 2 D(A), v 2 X 0, kvk = 1 and hu, vi = kuk}

is contained in a sector of the complex plane symmetric with respect to the half-
line (�1, 0] and of angle less than ⇡ . It is well-known that a regularly dissipative
operator, whose resolvent contains a point in C+, generates an analytic semigroup
which is contractive in a sector around the positive axis.

Let us first prove that, if n is sufficiently large, a minimal realization of L is
regularly dissipative on L p�n .

Proposition 3.1. Let 1 < p < 1. Then there exists n0 2 N such that for n � n0,
L endowed with domain C1

c (RN \ {0}) \ L p�n is regularly dissipative in L
p
�n .

Proof. Let u 2 C1
c (RN \ {0}) \ L p�n . Note that

Lu(x) =
X

i j
Di

�
ai j D ju(x)

�
+ (c � (N � 1)(a � 1))

x
|x |2

· ru(x) �
b

|x |2
u(x),

with ai j (x) = �i j + (a � 1)|x |�2xi x j . Multiplying �Lu and u? = |u|p�2u and
integrating over RN , we see from integration by parts (for details, see [13]) that

Z

RN
(�Lu)u?dx=

Z

RN

X

i j
ai j DiuD j (u?) dx

�(c�(N�1)(a�1))
Z

RN

✓
x

|x |2
·ru

◆
u? dx+b

Z

RN

|u|p

|x |2
dx .

(3.1)
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Putting a(⇠) =
P

i j ai j⇠i⇠ j for ⇠ 2 C and taking real parts in (3.1) we have

Re
Z

RN
(�Lu)u? dx

= (p � 1)
Z

RN
a(Re (uru))|u|p�4 dx +

Z

RN
a(Im (uru))|u|p�4 dx

+

✓
b +

(c � (N � 1)(a � 1))(N � 2)
p

◆Z

RN

|u|p

|x |2
dx

= (p � 1� �)

Z

RN
a(Re (uru))|u|p�4 dx

+ (1� �)

Z

RN
a(Im (uru))|u|p�4 dx + �

Z

RN
a(ru)|u|p�2 dx

+

✓
b +

(c � (N � 1)(a � 1))(N � 2)
p

◆Z

RN

|u|p

|x |2
dx

� (p � 1� �)

Z

RN
a(Re (uru))|u|p�4 dx

+ (1� �)

Z

RN
a(Im (uru))|u|p�4 dx + �(1 ^ a)

Z

RN
|ru|2|u|p�2 dx

+

✓
b +

(c � (N � 1)(a � 1))(N � 2)
p

◆Z

RN

|u|p

|x |2
dx,

(3.2)

where 0 < � < 1 ^ (p � 1) and we have used a(⇠) � (1 ^ a)|⇠ |2. Applying
Proposition 2.8 with � = �2 we see that

Z

RN

|u|p

|x |2
dx  eCp,n

Z

RN
|ru|2|u|p�2 dx .

Then we have

Re
Z

RN
(�Lu)u? dx � (p � 1� �)

Z

RN
a(Re (uru))|u|p�4 dx

+(1� �)

Z

RN
a(Im (uru))|u|p�4 dx + Kn(�)

Z

RN

|u|p

|x |2
dx,

where

Kn(�) = b +
(c � (N � 1)(a � 1))(N � 2)

p
+

�(1 ^ a)
eCp,n

.
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Note that for every 0 < � < 1 ^ (p � 1), Kn(�) ! 1 as n ! 1. On the other
hand, taking imaginary parts in (3.1), we have

�
�
�
�Im

Z

RN
(�Lu)u? dx

�
�
�
�  |p � 2|

Z

RN

X

i j

�
�
�ai jRe (uDiu)Im (uDju)

�
�
�|u|p�4 dx

+
�
�c � (N � 1)(a � 1)

�
�
Z

RN

|Im (uru)||u|p�4

|x |
dx

 |p � 2|
✓Z

RN
a(Re(uru))|u|p�4 dx

◆ 1
2
✓Z

RN
a(Im(uru))|u|p�4 dx

◆ 1
2

+(1 ^ a)
�
�c�(N�1)(a�1)

�
�
✓Z

RN
a(Im(uru))|u|p�4 dx

◆ 1
2
✓Z

RN

|u|p

|x |2
dx
◆ 1
2
.

Taking n0 2 N such that Kn(�) > 0 for n � n0 we obtain

�
�
�
�Im

Z

RN
(�Lu)u? dx

�
�
�
�  `

✓
Re
Z

RN
(�Lu)u? dx

◆

with

`2 =
|p � 2|2

4(p � 1� �)
+

(1 ^ a)2|c � (N � 1)(a � 1)|2

4(1� �)Kn(�)
.

Remark 3.2. Observe that ` = `n depends on n and `n ! |p�2|
2
p
p�1��

as n ! 1,
for any 0 < � < 1 ^ (p � 1). This means that in L p�n , with n large enough, the
angle of complex dissipativity of L p,min is almost the same as in the simplest case
L = 1.

As a byproduct of the previous computation we can give conditions under which
L p,min is dissipative on the whole L p(RN ).

Corollary 3.3. If (1^ a)(p� 1) (N�2)2
4 + b+ c�(a�1)(N�1)(N�2)

p � 0, then L p,min
is dissipative.

Proof. Since L has real coefficients, we consider only real functions u 2 C1
c (RN \

{0}) and write (3.2) with � = 0. Using the Hardy-type inequality of [10, Proposi-
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tion 8.3], we obtain

�
Z

RN
Lu u⇤ dx = (p � 1)

Z

RN
a|ru|2|u|p�2 dx

+

✓
b +

(c � (N � 1)(a � 1))(N � 2)
p

◆Z

RN

|u|p

|x |2
dx

� (1 ^ a)(p � 1)
Z

RN
|ru|2|u|p�2 dx

+

✓
b +

(c � (N � 1)(a � 1))(N � 2)
p

◆Z

RN

|u|p

|x |2
dx

�

✓
(1 ^ a)(p � 1)

(N � 2)2

4
+ b

+
c � (a � 1)(N � 1)(N � 2)

p

◆Z

RN

|u|p

|x |2
dx .

To prove generation in L p�n we need the following simple lemma.

Lemma 3.4. Let f, g be continuous functions on R with f > 0 everywhere. If
V 2 C2(R) \ L p(R) satisfies

f V � V 00 � gV 0 = 0

then V = 0.

Proof. Since V belongs to L p(R), we can find sequences (an) and (bn) such that
an ! �1, bn ! 1 as n ! 1 and |V (an)|, |V (bn)|  1/n. Since f is positive,
the maximum principle yields|V (s)|1/n in [an,bn] and the proof is complete.

Proposition 3.5. There exists n0 2 N such that for n � n0 the closure Lnp,min of
(L ,C1

c (RN \{0})\L p�n) generates generates an analytic semigroup of contractions
in L p�n . Moreover, Lnp,min coincides with the maximal operator L

n
p,max defined as

L on the domain

D
⇣
Lnp,max

⌘
=
n
u 2 L p�n \ W 2,p

loc
�
RN \ {0}

�
: Lu 2 L p�n

o
.

Proof. By Proposition 3.1 it follows that Lnp,min generates an analytic semigroup of
contractions in L p�n if (I � L)(C1

c (RN \ {0})\ L p�n) is dense in L
p
�n . Assume that

v 2 L p
0

�n = (L p�n)0, see Lemma 2.6, satisfies
Z

RN
(u � Lu)v dx = 0, u 2 C1

c (RN \ {0}) \ L p�n. (3.3)

We show that v = 0.
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Observe that, since v 2 L p
0

�n , (3.3) holds for every u 2 C1
c (RN \ {0}). In fact

this follows by splitting u = u1 + u2 using the projection I ⌦ S of Lemma 2.4, by
noticing that (I ⌦ S)u 2 C1

c (RN \{0}), see Remark 2.5, and that L commutes with
(I⌦S), by Lemma 2.16. By elliptic regularity, v 2 C1(RN \{0}) and v�L⇤v = 0.
Let P be a spherical harmonic of degree at least n and we define

w(r) =
Z

SN�1
v(r,!)P(!) d! 2 L prad

and
V (s) =: e

N
p sw(es) = e

N
p s
Z

SN�1
v(es,!)P(!) d! 2 C1(R).

Then V 2 L p(R) and moreover

V 0(s) = e(
N
p +1)s

Z

SN�1
Drv(es,!)P(!) d! +

N
p
V (s)

and

V 00(s) = e(
N
p +2)s

Z

SN�1
Drrv(es,!)P(!) d!

+

✓
N
p

+ 1
◆
e(

N
p +1)s

Z

SN�1
Drv(es,!)P(!) d! +

N
p
V 0(s)

= a�1e(
N
p +2)s

Z

SN�1

✓
aDrrv(es,!) +

N � 1+ c⇤

es
Drv(es,!)

◆
Pj (!) d!

+

✓
N
p

+ 1�
N � 1+ c⇤

a

◆✓
V 0(s) �

N
p
V (s)

◆
+
N
p
V 0(s).

Here c⇤ = 2(N � 1)(a� 1) � c and b⇤ = b+ (c� (N � 1)(a� 1))(N � 2) are the
coefficients of L⇤, see (2.2). By using

v � L⇤v =

✓
1� aDrr �

N � 1+ c⇤

r
Dr +

b⇤

r2
�
1
r2

10

◆
v = 0

we obtain, as in Proposition 2.15,
Z

SN�1

✓
aDrrv(es,!) +

N � 1+ c⇤

es
Drv(es,!)

◆
P(!) d!

=
Z

SN�1

✓
v(es,!) +

b⇤

e2s
v(es,!)

◆
P(!) d! �

Z

SN�1

10v(es,!)P(!)

e2s
d!

=
Z

SN�1

✓
v(es,!) +

b⇤

e2s
v(es,!)

◆
P(!) d! �

Z

SN�1

v(es,!)10P(!)

e2s
d!

=
Z

SN�1

✓
v(es,!) +

b⇤ + �

e2s
v(es,!)

◆
P(!) d!,



624 GIORGIO METAFUNE, MOTOHIRO SOBAJIMA AND CHIARA SPINA

where � = j2 + (N � 2) j , j = deg P � n. Then V solves
✓
e2s + b⇤ + � +

✓
N � 1+ c⇤ �

Na
p

� a
◆
N
p

◆
V � aV 00

+

✓
2Na
p

+ a � (N � 1+ c⇤)
◆
V 0 = 0.

If n is sufficiently large, then the coefficient of the zero order term becomes positive,
hence Lemma 3.4 applies and therefore V = 0. Since this is true for every spherical
harmonic of degree at least n, we conclude that v = 0 and that Lnp,min is a generator.
The equality Lnp,min = Lnp,max follows from the inclusion Lnp,min ⇢ Lnp,max once
the injectivity of I � Lnp,max has been proved. However this follows from the same
arguments as before, interchanging the role of L and L⇤ and taking a larger n, if
necessary.

Precise conditions for the injectivity of 1 � L⇤ in L p
0

�n can be obtained with
the results of Subsection 4.3, see the proof of Proposition 3.28. In fact, the function
W (r) =

R
SN�1 v(r!)P(!) d! 2 L prad satisfies a Bessel equation and its asymptotics

near zero is well known. Since, however, n cannot be determined in Proposition 3.1,
we prefer to keep the more elementary proof of Proposition 3.5.

A more precise description of the domain follows from Rellich inequalities.

Proposition 3.6. If n is sufficiently large then both Lnp,min and L
n
p,max coincide with

the operator L defined on the domain

D
⇣
Lnp,reg

⌘
= L p�n \ W 2,p�RN �

=
n
u 2 L p�n \ W 2,p�RN � : |x |�1ru, |x |�2u 2 L p

�
RN �

o
.

Proof. LetW be the space on the right hand side above. The inclusion D(Lnp,min) ⇢
W follows for large n from the Rellich inequalities proved in [11, Section 3] and
the interpolation inequality [11, Lemma 8.1]. Therefore for large n, using also
Proposition 3.5, D(Lnp,min) = W = D(Lnp,max). We conclude the proof by showing
that

L p�2 \ W 2,p�RN � =
n
u 2 L p�2 \ W 2,p�RN � : |x |�1ru, |x |�2u 2 L p

�
RN �

o
.

First of all, let us observe that L p�2 \ W 2,p(RN ) is contained in W 2,p
0 (�), the

closure of C1
c (RN \ {0}) in W 2,p(RN ). This is clear if 1 < p  N/2 since

W 2,p(RN ) = W 2,p
0 (�). If N/2 < p  N and u 2 L p�1, then

Z

SN�1
u(r!)d ! = 0
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for r > 0 and, letting r ! 0, u(0) = 0 and u 2 W 2,p
0 (�), by [11, Lemma 2.5(ii)].

Finally, if N < p < 1 and u 2 L p�2, then u(0) = 0, as above, but also

0 =
Z

SN�1
u(r!)!i d! =

Z

B1
Di (u(r x)) dx = r1�N

Z

Br
Diu(y) dy.

Dividing it by r and letting r ! 0, we obtain that ru(0) = 0 and hence u 2
W 2,p
0 (�) by [11, Lemma 2.5(iii)]. The proof is now concluded by observing that

Rellich inequality �
�|x |�2u

�
�
p  C(N , p)k1ukp

and the interpolation inequality
�
�|x |�1ru

�
�
p  C(N , p)

⇣
k1ukp +

�
�|x |�2u

�
�
p

⌘

hold for every u 2 C1
c (�) \ L p�2, 1 < p < 1, see [10, Section 7.2] and [11,

Lemma 8.1], hence in the closure of the above set, namely in W 2,p
0 (�) \ L p�2, by

Lemma 2.18.

Corollary 3.7. If n is sufficiently large, the semigroups generated in L p�n and in
Lq�n coincide in L

p
�n \ Lq�n .

Proof. It is sufficient to prove that the resolvents are consistent for � > 0. Assume
that 1 < p < q < 1 and that f 2 L p�n\L

q
�n . If u 2 L p�n solves �u�Lu = f , then

u 2 W 2,p(RN ) by the previous result and hence u 2 L p1�n for a suitable p < p1 
q, given by Sobolev embedding. Then Lu 2 L p1 , that is, u belongs to the maximal
domain of L in L p1�n . Applying Proposition 3.6 again, we see that u belongs to
W 2,p1(RN ) and, iterating the above procedure if necessary, u, Lu 2 Lq�n , hence u
is also the solution of �u � Lu = f in Lq�n .

3.2. Generation in L p<n: reduction to the 1d case

The space L p<n can be decomposed as a finite sum

L p<n =
M

j2J

⇣
L prad ⌦ Pj

⌘
,

where L prad = L p((0,1), r N�1 dr), J is finite and {Pj , j 2 J } is an orthogonal
basis of spherical harmonics of degree less than n. Note that we should write L prad⌦
span {Pj } since the tensor product is defined for vector spaces. However we keep
the above notation because span{Pj } is one-dimensional.

Since each term in the above sum is preserved by L we analyze it in each space
L prad⌦ Pj . Let v(x) = u(r)Pj (!) 2 C1

c (RN \ {0}). By Proposition 2.15 we obtain

Lv =

✓
aurr +

N � 1+ c
r

ur �
b + �k

r2
u
◆
Pj , (3.4)
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where k = deg Pj < n. The results in this section, therefore, depend on a detailed
analysis of the following second order differential operator of Bessel-type in L prad

L�u = au00 +
N � 1+ c

r
u0 �

b + �

r2
u, � � 0.

We denote by L�,p,min the closure in L
p
rad of L� initially defined on C1

c ((0,1))
and by L�,p,max the operator L� when endowed with the maximal domain

D(L�,p,max) =
n
u 2 L prad \ W 2,p

loc ((0,1)) : L�u 2 L prad
o

.

We observe that L⇤
�,p,min = L⇤

�,p0,max, L
⇤
�,p,max = L⇤

�,p0,min where L
⇤ is defined in

(2.2) and the duality is referred to the spaces L prad.

Note that the equation L�u = 0 has solutions r�s(�)
1 , r�s(�)

2 where

s(�)
1 =

N � 1+ c � a
2a

� ⌫�, s(�)
2 =

N � 1+ c � a
2a

+ ⌫�

and

D� :=
b + �

a
+

✓
N � 1+ c � a

2a

◆2
, ⌫� :=

p
D�,

s(�)
1 , s(�)

2 are real if and only if D� � 0 and if D� = 0 we often write s(�)
0 = s(�)

1 =

s(�)
2 . Note that when � = 0, D� and s(�)

i reduces to D and si defined in (1.2) and
(1.1).

3.3. Basic results on Bessel functions

We recall some well-known facts about the modified Bessel functions of first and
second kind, I⌫ and K⌫ , which constitute a basis of solutions of the modified Bessel
equation

z2
d2v
dz2

(z) + z
dv

dz
(z) �

�
z2 + ⌫2

�
v(z) = 0, z 2 C+. (3.5)

We recall that

I⌫(z) =
⇣ z
2

⌘⌫ 1X

m=0

1
0(⌫ + 1+ m)

⇣ z
2

⌘2m
, K⌫(z) =

⇡

2
I�⌫(z) � I⌫(z)

sin⇡⌫
, (3.6)

where limiting values are taken for the definition of K⌫ when ⌫ is an integer. The
basic properties of these functions we need are collected in the following lemmas.
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Lemma 3.8. For every ⌫ � 0, as |z| ! 1, z 2 C+,

|I⌫(z)| ⇡ |z|�
1
2 eRe z, |I 0⌫(z)| ⇡ |z|�

1
2 eRe z,

|K⌫(z)| ⇡ |z|�
1
2 e�Re z, |K 0

⌫(z)| ⇡ |z|�
1
2 e�Re z .

Moreover, if ⌫ > 0, then as |z| ! 0, z 2 C+,

|I⌫(z)| ⇡ |z|⌫, |I 0⌫(z)| ⇡ |z|⌫�1, |K⌫(z)| ⇡ |z|�⌫, |K 0
⌫(z)| ⇡ |z|�⌫�1,

and

|I0(z)| ⇡ 1, |I 00(z)| ! 0, |K0(z)| ⇡ | log z|, |K 0
0(z)| ⇡ |z|�1.

Proof. See, e.g., [1, 9.6 and 9.7].

We also need the precise behavior of the derivatives of I⌫ and K⌫ .

Lemma 3.9. If ⌫ 2 R \ N, then for every z 2 C+,

d
dz

⇣
z⌫ I⌫(z)

⌘
= z⌫ I⌫�1(z),

d
dz

⇣
z⌫ I�⌫(z)

⌘
= z⌫ I�⌫+1(z). (3.7)

In particular, for every ↵ 2 C and z 2 C+,

d
dz

⇣
z⌫ I⌫(z) + ↵z⌫K⌫(z)

⌘

=

8
<

:
z⌫ I1�⌫(z) +

✓
2 sin(⌫⇡)

⇡
� ↵

◆
z⌫K1�⌫(z) if ⌫ 2 (0, 1),

z⌫ I⌫�1(z) � ↵z⌫K⌫�1(z) if ⌫ 2 (1,1) \ N.

(3.8)

Proof. The equalities in (3.7) are well-known, see, e.g., [1, Chapter 9, 6.28] or [12,
Section 3]. Therefore by (3.6), we have

d
dz

⇣
z⌫ I⌫(z) + ↵z⌫K⌫(z)

⌘
=

d
dz

✓✓
1�

⇡↵

2 sin(⌫⇡)

◆
z⌫ I⌫(z) +

⇡↵

2 sin(⌫⇡)
z⌫ I�⌫(z)

◆

=

✓
1�

⇡↵

2 sin(⌫⇡)

◆
z⌫ I⌫�1(z) +

⇡↵

2 sin(⌫⇡)
z⌫ I�⌫+1(z).

If ⌫ 2 (1,1) \ N, then noting that ⌫ � 1 > 0 and sin(⌫⇡) = � sin((⌫ � 1)⇡), we
have the second equality in (3.8). On the other hand, if ⌫ 2 (0, 1), then noting that
1� ⌫ > 0 and

I⌫�1(z) = I1�⌫(z) +
2 sin(⌫⇡)

⇡
K1�⌫(z),

we deduce the first equality in (3.8).
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We now consider solutions of the equation !2u � L�u = 0, ! 2 C+. Let

v!,1(r) := r� N�1+c�a
2a I⌫�

✓
!r
p
a

◆
= r�s(�)

1 �⌫� I⌫�

✓
!r
p
a

◆
,

v!,2(r) := r� N�1+c�a
2a K⌫�

✓
!r
p
a

◆
= r�s(�)

2 +⌫� K⌫�

✓
!r
p
a

◆
.

(3.9)

Then we have
Lemma 3.10. v!,1 and v!,2 solve !2u � L�u = 0 in (0,1). Moreover v!,1(r) ⇡

r�s(�)
1 , v!,2(r) ⇡ r�s(�)

2 as r ! 0 when D� > 0 and v!,1(r) ⇡ r�s(�)
0 , v!,2(r) ⇡

r�s(�)
0 | log r | as r ! 0 when D� = 0. More precisely, rs

(�)
1 v!,1(r) = h(r) is

an entire function with h(0) 6= 0 and, when ⌫� is not an integer, rs
(�)
2 v!,2(r) =

f (r) + r2⌫g(r) with and f, g entire functions with f (0) 6= 0, g(0) 6= 0.
Proof. Let w(r) = r�v(!r/

p
a) where � = � N�1+c�a

2a and v satisfies (3.5) with
⌫ = ⌫�. Then

w0(r)=
✓

!
p
a

◆
r�v0

✓
!r
p
a

◆
+ �r��1v

✓
!r
p
a

◆
=

✓
!

p
a

◆
r�v0

✓
!r
p
a

◆
+�r�1w(r)

and therefore

w00(r)=
✓

!r
p
a

◆2
r��2v00

✓
!r
p
a

◆
+�

✓
!r
p
a

◆
r��2v0

✓
!r
p
a

◆
+�r�1w0(r)��r�2w(r)

=

✓
!r
p
a

◆2
r��2v

✓
!r
p
a

◆
+⌫2�r

��2v

✓
!r
p
a

◆
+(� � 1)

✓
!r
p
a

◆
r��2v0

✓
!r
p
a

◆

+�r�1w0(r) � �r�2w(r)

=
!2

a
w(r) +

2� � 1
r

w0(r) +
⌫2� � �2

r2
w(r)

=
1
a

✓
!2w(r) �

N � 1+ c
r

w0(r) +
b + �

r2
w(r)

◆
.

The last assertions follow the definition of v!,1, v!,2, Lemma 3.8 and the power
series expansion of I⌫ , I�⌫ , see (3.6).

By variation of parameters, all solutions of !2u� L�u = f , with ! 2 C+ and
f 2 C1

c ((0,1)) are given by

u(r) = c1v!,1(r) + c2v!,2(r) +
v!,2(r)
W (!)

Z r

0
t
N�1+c

a v!,1(t) f (t) dt

+
v!,1(r)
W (!)

Z 1

r
t
N�1+c

a v!,2(t) f (t) dt
(3.10)

for some c1, c2 2 C, where W (!)t�
N�1+c

a = v0
!,1v!,2 � v!,1v

0
!,2 is the Wronskian

of v!,1 and v!,2. Note that W (!) > 0 when ! is real, since v!,1 is positive and
increasing, v!,2 is positive and decreasing, near infinity.
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3.4. The case D� < 0

Here we show that the condition D� � 0 is necessary to get positive solutions for
all positive data.

Proposition 3.11. Let D� = b+�
a +

⇣
N�1+c�a

2a

⌘2
< 0. Then for every ! > 0 there

exists a nonnegative function 0  � 2 C1
c ((0,1)), � 6⌘ 0, such that the problem

!2v � L�v = � (3.11)

does not admit any positive solution in (0,1).

Proof. By scaling we may assume that ! = 1. Suppose that there exists v � 0
satisfying (3.11) in (0,1). Setting w(s) = e(

N�1+c�a
2a )sv(es) we get

aw00(s) =
�
k + e2s

�
w(s) � e(

N�1+c+3a
2a )s�

�
es
�
, s 2 R,

where

k = b + � + a
✓
N � 1+ c � a

2a

◆2
< 0.

We choose m 2 R such that (k + e2s)  k/2 < 0 for s  m. By the Sturm
comparison theorem all non-zero solutions of the homogeneous equation

a⇣ 00(s) =
�
k + e2s

�
⇣(s) (3.12)

are oscillating for s  m. By variation of parameters we write

w(s) = u2(s)
Z s

�1
u1(t)g(t)dt + u1(s)

Z 1

s
u2(t)g(t)dt + c1u1(s) + c2u2(s),

where c1, c2 2 C, g(s) = e(
N�1+c+3a

2a )s�(es) and ui , i = 1, 2 are linearly indepen-
dent solutions of (3.12) with Wronskian equal to 1. Since g is compactly supported
we have for s near �1

w(s) = u1(s)
Z

supp g
u2(t)g(t)dt + c1u1(s) + c2u2(s).

However w is non-negative, because v � 0, and also oscillating near �1 since
solves (3.12). Hence w = 0 near �1 and therefore

c1 = �
Z

supp g
u2(t)g(t)dt, c2 = 0.
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This gives

w(s)=u2(s)
Z s

�1
u1(t)g(t)dt + u1(s)

Z 1

s
u2(t)g(t)dt � u1(s)

Z

supp g
u2(t)g(t)dt

=u2(s)
Z s

�1
u1(t)g(t)dt � u1(s)

Z s

�1
u2(t)g(t)dt

=
Z s

�1
(u1(t)u2(s) � u1(s)u2(t))g(t)dt.

For fixed s the function t 7! G(s, t) = u1(t)u2(s) � u1(s)u2(t) is also oscillating
near t = �1. Therefore, if we choose g 6= 0 such that G(s, t) < 0 on supp g, we
get w(s) < 0 and this contradicts v � 0.

3.5. The case D� � 0

Here we show that a suitable realization of L� generates a semigroup in L
p
rad if and

only if s(�)
1 < N/p < s(�)

2 + 2. We start with the negative part of the assertion.

Proposition 3.12. Assume that D� � 0. If Np  s(�)
1 , then R(!2�L�,p,max) 6= L prad

for every ! 2 C+ and � (L�) = C for every L� ⇢ L�,p,max. If Np � s(�)
2 + 2, then

� (L�) = C for every L� � L�,p,min.

Proof. Assume that Np  s(�)
1 and let ! 2 C+. We fix 0  ⇣ 2 C1

c ((0,1)), ⇣ � 0
and consider

f (r) := v!,2(r)⇣(r) 2 C1
c ((0,1)). (3.13)

It follows from (3.10) that every solutions of (!2 � L�)u = f satisfies near 0,

u(r) =

✓
c1 +

1
W (!)

Z 1

0
t
N�1+c

a |v!,2(t)|2⇣(t) dt
◆

v!,1(r) + c2v!,2(r).

Since v!,1 and v!,2 do not belong to L p((0, 1), r N�1 dr), by Lemma 3.10, if u
belongs to L p((0, 1), r N�1 dr) then

c1 = �
1

W (!)

Z 1

0
t
N�1+c

a |v!,2(t)|2⇣(t) dt 6= 0, c2 = 0.

On the other hand, near1,

u(r) = c1v!,1(r) +

✓
1

W (!)

Z 1

0
t
N�1+c

a v!,1(t) f (t) dt
◆

v!,2(r).

Since v!,1 does not belong to L p((1,1), r N�1 dr) and v!,2 belongs to L p((1,1),
r N�1 dr), we conclude that c1 = 0, hence u = 0, which is a contradiction.
Therefore R(!2 � L�) 6= L prad for every ! 2 C+ and L� ⇢ L�,p,max. Hence
� (L�) � C \ (�1, 0] and, since the spectrum is closed, we have � (L�) = C.
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Next we assume N
p � s(�)

2 + 2 and L� � L�,p,min. We consider the adjoint

operator (2.2) in L p
0

rad and the relative indicial numbers defined in (2.4) (with b
replaced by b + �)

L�
⇤v = av00 +

N � 1+ c⇤

r
v0 �

b⇤

r2
v.

Observe that Np �s(�)
2 +2 is equivalent to N

p0 s⇤(�)
1 . Since L

⇤
�,p0,max is the adjoint of

L�,p,min, then L⇤
� ⇢L⇤

�,p0,max and the previous step yields � (L�)=� (L⇤
�)=C.

When N
p 2 (s(�)

1 , s(�)
2 + 2) we construct a resolvent using (3.10) with c1 =

c2 = 0. Since v!,1, v!,2 are given by (3.9), we are led to study the following
integral operators:

R1 f (r) := r� N�1+c�a
2a K⌫�(r)

Z r

0
t
N�1+c�a

2a +1 I⌫�(t) f (t) dt,

eR1 f (r) := r� N�1+c�a
2a K 0

⌫�
(r)
Z r

0
t
N�1+c�a

2a +1 I⌫�(t) f (t) dt,

R2 f (r) := r� N�1+c�a
2a I⌫�(r)

Z 1

r
t
N�1+c�a

2a +1K⌫�(t) f (t) dt,

eR2 f (r) := r� N�1+c�a
2a I 0⌫�

(r)
Z 1

r
t
N�1+c�a

2a +1K⌫�(t) f (t) dt.

Note that if u=(R1 f +R2 f ), then u0 =Cr�1(R1 f +R2 f ) + (eR1 f + eR2 f ) for
some constant C 0.

The main weighted and unweighted estimates of the above operators in L prad
are contained in the following two lemmas. Note that, when D� > 0 the inequality
s(�)
1 < N/p < s(�)

2 + 2 is equivalent to the existence of ✓ 2 (0, 1] such that
s(�)
1 < N/p � 2✓ < s(�)

2 .

Lemma 3.13. Assume that D� > 0. If N
p < s(�)

2 + 2, then (1 ^ r)�2R1 and
(1^r)�1eR1 are bounded in L

p
rad. If

N
p �2✓ > s(�)

1 with ✓ 2 (0, 1], then (1^r)�2✓R2

and (1 ^ r)1�2✓ eR2 are bounded in L
p
rad.

Proof. Since the arguments for eR1 and eR2 are almost the same as those forR1 and
R2, we give a proof only in the latter case.
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(The estimate forR1) Take � > 0 satisfying N
p + � < s(�)

2 + 2, that is, s(�)
2 + 1�

N�1
p � � > � 1

p0 . For r < 1

|R1 f (r)|pCr�s(�)
2 p

✓Z r

0
t s

(�)
2 +1| f (t)| dt

◆p

Cr�s(�)
2 p

✓Z r

0
t (s

(�)
2 +1� N�1

p ��)p0
dt
◆p�1 Z r

0
| f (t)|pt N�1+p� dt


C

((s(�)
2 +1� N�1

p � �)p0+1)p�1
r2p�1�(N�1+p�)

Z r

0
| f (t)|pt N�1+p� dt.

This implies

kr�2R1 f k
p
L p((0,1),r N�1 dr)  C̃

Z 1

0

✓
r�1�(N�1+p�)

Z r

0
| f (t)|pt N�1+p� dt

◆
r N�1 dr

 C̃
Z 1

0

 Z 1

t
r�1�p� dr

!

| f (t)|pt N�1+p� dt


C̃
p�

Z 1

0
| f (t)|pt N�1 dt =

C̃
p�

k f kpL p((0,1),r N�1 dr).

On the other hand, for r � 1, since s(�)
2 + 2� N > �N/p0 + �,

|R1 f (r)|  Cr� N�1+c
2a e�r

 Z 1

0
t s

(�)
2 +1| f (t)| dt +

Z r

1
t
N�1+c
2a et | f (t)| dt

!

 Cr� N�1+c
2a e�rkrs

(�)
2 +2�NkL p0 ((0,1),r N�1 dr)k f kL p((0,1),r N�1 dr)

+Cr� N�1
p

Z r

1
exp

✓
t � r +

✓
N � 1+ c

2a
�
N � 1
p

◆
(log t � log r)

◆

· | f (t)|t
N�1
p dt

 Cr� N�1+c
2a e�rkrs2+2�NkL p0 ((0,1),r N�1 dr)k f kL p((0,1),r N�1 dr)

+ Cr� N�1
p e↵(� log ")

Z r

1
e(1�↵")(t�r)| f (t)|t

N�1
p dt

 Cr� N�1+c
2a e�rkrs2+2�NkL p0 ((0,1),r N�1 dr)k f kL p((0,1),r N�1 dr)

+C"�↵r� N�1
p

✓Z r

1
e(1�↵")(t�r)dt

◆ 1
p0
✓Z r

1
e(1�↵")(t�r)| f (t)|pt N�1dt

◆1
p
,

where ↵ = | N�1+c
2a � N�1

p |. Note that we used the inequality

| log x � log y|  (� log ") + "|x � y|, " > 0, x, y � 1.
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If we choose " satisfying "↵ < 1, we have

kR1 f kL p((1,1),r N�1 dr)

C
�
�
�r� N�1+c

2a e�r
�
�
�
L p((1,1),r N�1 dr)

�
�rs2+2�N

�
�
L p0 ((0,1),r N�1 dr)k f kL p((0,1),r N�1 dr)

+ C"�↵

✓
(1� ↵")1�p

Z 1

1

Z r

1
e(1�↵")(t�r)| f (t)|pt N�1 dt dr

◆ 1
p

 C
�
�
�r� N�1+c

2a e�r
�
�
�
L p((1,1),r N�1 dr)

�
�rs2+2�N

�
�
L p0 ((0,1),r N�1 dr)k f kL prad

+ C"�↵

✓
(1� ↵")1�p

Z 1

1

✓Z 1

t
e(1�↵")(t�r) dr

◆
| f (t)|pt N�1 dt

◆ 1
p

 C
�
�
�r� N�1+c

2a e�r
�
�
�
L p((1,1),r N�1 dr)

�
�rs2+2�N

�
�
L p0 ((0,1),r N�1 dr)

+ "�↵(1� ↵")�1
�
k f kL prad .

(The estimate forR2) Take � > 0 satisfying s(�)
1 < N

p � 2✓ � �. For r < 1,

|R2 f (r)|  Cr�s(�)
1

Z 1

r
t s

(�)
1 +1| f (t)| dt + Cr�s(�)

1

Z 1

1
t
N�1+c
2a e�t | f (t)| dt

 Cr�s(�)
1

 Z 1

r
t (s

(�)
1 +2✓+��N )p0+N�1 dt

! 1
p0

·

 Z 1

r
| f (t)|pt (2�2✓��)p+N�1 dt

! 1
p

+ Cr�s(�)
1 kt

N�1+c
2a +1�Ne�tkL p0 ((1,1),r N�1 dr)k f kL p((1,1),r N�1 dr)


C

|(s(�)
1 + 2✓ + � � N )p0 + N |

1
p0
r2✓+�� N

p

·

 Z 1

r
| f (t)|pt (2�2✓��)p+N�1 dt

! 1
p

+ Cr�s(�)
1 kt

N�1+c
2a +1�Ne�tkL p0 ((1,1),r N�1 dr)k f kL p((1,1),r N�1 dr).
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Therefore

kr�2✓R2 f kL p((0,1),r N�1 dr)


C

|(s(�)
1 +2✓+��N )p0+N |

1
p0

 Z 1

0
r�1+p�

Z 1

r
| f (t)|pt (2�2✓��)p+N�1 dt dr

! 1
p

+ C
�
�
�r�s(�)

1 �2✓
�
�
�
L p((0,1),r N�1 dr)

�
�
�t

N�1+c
2a +1�Ne�t

�
�
�
L p0 ((1,1),r N�1 dr)

· k f kL p((1,1),r N�1 dr)


C

|(s(�)
1 + 2✓ + � � N )p0 + N |

1
p0 (p�)

1
p

 Z 1

0
| f (t)|pt (2�2✓)p+N�1 dt

! 1
p

+ C
�
�
�r�s(�)

1 �2✓
�
�
�
L p((0,1),r N�1 dr)

�
�
�t

N�1+c
2a +1�Ne�t

�
�
�
L p0 ((1,1),r N�1 dr)

k f kL p((1,1),r N�1 dr)

 Ck f kL prad .

For r � 1, proceeding as forR1 we have

|R2 f (r)|  Cr� N�1+c
2a er

Z 1

r
t
N�1+c
2a e�t | f (t)| dt

 Cr� N�1
p e↵(� log ")

Z 1

r
e(1�↵")(r�t)| f (t)|t

N�1
p dt.

Thus kR2 f kL p((1,1),r N�1 dr)  Ck f kL p((1,1),r N�1 dr), with similar computations
as forR1, r � 1.

Lemma 3.14. Assume that D� = 0. If N
p < s(�)

0 + 2, then (1 ^ r)�2✓R1 (1 ^

r)1�2✓ eR1 are bounded in L
p
rad for every ✓ 2 [0, 1). If N

p � 2✓0 = s(�)
0 with ✓0 2

(0, 1), then R2 and eR2 are bounded in L
p
rad and �{r< 1

2 }
|x |�2✓0 | log r |�

2
pR2 and

�{r< 1
2 }

|x |1�2✓0 | log r |�
2
p eR2 are bounded in L

p
rad.

Proof. Since | log r |  c"r�" for small r , the assertion forR1 follows by arguments
similar to those of Lemma 3.13.

Observing that rs
(�)
0 +2�N K0(r) 2 L p

0

rad, we have for r < 1
2 ,

|R2 f (r)|r�s(�)
0

Z 1

r
t s

(�)
0 +1K0(t)| f (t)| dtr�s(�)

0

�
�
�rs

(�)
0 +2�N K0(r)

�
�
�
L p

0

rad
k f kL prad .

Therefore
�
�
�r�2✓0 | log r |�

2
pR2 f

�
�
�
L p((0, 12 ),r N�1 dr)

(log 2)�
1
p
�
�
�rs

(�)
0 +2�N K0(r)

�
�
�
L p

0

rad
k f kL prad .

For r > 1
2 , the computation is as in Lemma 3.13.
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We can now prove the main results of this subsection. In the proposition be-
low, the domain of the operator is defined through a suitable parameter ✓ 2 (0, 1].
The proof shows that the definition is independent of the choice of ✓ , whenever it
satisfies the requirement in the statement.

Proposition 3.15. Assume that D� > 0 and that Np 2 (s(�)
1 , s(�)

2 +2). Then L�,p,int
defined by

D(L�,p,int)

=

⇢
u2D(L�,p,max) ; r�2✓u2L prad 8✓ 2 (0, 1] satisfying

N
p

� 2✓ 2
⇣
s(�)
1 , s(�)

2

⌘�

generates a bounded positive analytic semigroup of angle ⇡
2 in L prad and

� (L�,p,int) = (�1, 0]. The domain D(L�,p,int) coincide with

D(L�,p,reg)

=
n
u2L prad \ W 2,p

loc ((0,1)) ; (1 ^ r)2�2✓u00, (1 ^ r)1�2✓u0, (1 ^ r)�2✓u2L prad
o

for all/one ✓ as above.
Proof. Let ! 2 C+. If u 2 D(L�,p,int) solves !2u � Lu = 0 , then u = c1v!,1 +
c2v!,2, see (3.9). Since v!,1 diverges exponentially and v!,2 tends to 0 at infinity,
then c1 = 0. However v!,2(r) ⇡ r�s(�)

2 as r ! 0, hence r�2✓v!,2 62 L prad. Then
c2 = 0 and !2 � L is injective on D(L�,p,int). To show the surjectivity we set for
every f 2 L prad,

u(r)=
v!,2(r)
W (!)

Z r

0
t
N�1+c

a v!,1(t) f (t) dt+
v!,1(r)
W (!)

Z 1

r
t
N�1+c

a v!,2(t) f (t) dt. (3.14)

Then !2u � L�u = f and, using Lemma 3.8,

|W (!)u(r)|

 C2r� N�1+c�a
2a K⌫�

✓
Re!
p
a
r
◆Z r

0
t
N�1+c�a

2a +1 I⌫�

✓
Re!
p
a
t
◆

| f (t)| dt

+ C2r� N�1+c�a
2a I⌫�

✓
Re!
p
a
r
◆Z 1

r
t
N�1+c�a

2a +1K⌫�

✓
Re!
p
a
t
◆

| f (t)| dt
(3.15)

=C2
✓p

a
Re!

◆2✓Re!
p
a
r
◆� N�1+c�a

2a
K⌫�

✓
Re!
p
a
r
◆Z Re!p

a

0
s
N�1+c�a

2a +1 I⌫�(s)
�
�
�
� f
✓p

a
Re!

s
◆��
�
� ds

+C2
✓p

a
Re!

◆2✓Re!
p
a
r
◆� N�1+c�a

2a
I⌫�

✓
Re!
p
a
r
◆Z Re!p

a

0
s
N�1+c�a

2a +1K⌫�(s)
�
�
�
� f
✓p

a
Re!

s
◆��
�
� ds

 C2
✓ p

a
Re!

◆2 ⇣
R1 |Js f | +R2 |Js f |

⌘✓Re!
p
a
r
◆

,
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where Js f (r) = f (sr) for s > 0 and s = (
p
a)/(Re!) in (3.15). From Lemma

3.13 we deduce that u 2 L prad. This yields � (L�,p,int) ⇢ (�1, 0] and the resolvent
estimate k(!2�L�)

�1k  C|!|�2 follows via the scaling Js . Next, let us show that
� (L�,p,int) = (�1, 0]. Assume that the resolvent set ⇢(L�,p,int) contains a point
in the negative real axis. By scaling again it contains the point �1, hence the unit
circle S1. Then the resolvent estimate k(!2 � L�)

�1k  C|!|�2 holds for every
! 6= 0 and yields that ezL�,p,int is an entire function inC. Then the generator L�,p,int
would be bounded. To prove the domain characterization, it is enough to observe
that, by (3.15) and the analogous estimate for u0 involving eRi , i = 1, 2, Lemma
3.13 yields (1 ^ r)�2✓u, (1 ^ r)1�2✓u0 2 L prad. Using the equation, we deduce that
(1 ^ r)2�2✓u00 2 L prad. Finally, the positivity of the generated semigroup follows
from that of the resolvent for real !, since the functions v!,1, v!,2 and W (!) in
(3.14) are positive.

Proposition 3.16. If D� = 0 and N
p 2 (s(�)

0 , s(�)
0 + 2), then L�,p,int defined by

D(L�,p,int) =
n
u 2 D(L�,p,max) ; �{r< 1

2 }
r�2✓0 | log r |�

2
p u 2 L prad

o

with ✓0 = 1
2 (

N
p � s(�)

0 ) 2 (0, 1), generates a bounded positive analytic semigroup
of angle ⇡

2 in L
p
rad and � (L�,p,int) = (�1, 0]. The domain D(L�,p,int) coincide

with

D(L�,p,reg)=

8
>>>>><

>>>>>:

u2L prad \ W 2,p
loc ((0,1)) ;

�{r> 1
2 }
u00,�{r> 1

2 }
u0,�{r> 1

2 }
u 2 L prad,

�{r< 1
2 }
r2�2✓0 | log r |�

2
p u00 2 L prad,

�{r< 1
2 }
r1�2✓0 | log r |�

2
p u0 2 L prad,

�{r< 1
2 }
r�2✓0 | log r |�

2
p u 2 L prad

9
>>>>>=

>>>>>;

.

Proof. Similar to that of the above proposition, using Lemma 3.14 instead of Lem-
ma 3.13.

The cases s(�)
1 = 0,�1 are special for the domain characterization, since in

these cases the operator L� has a special form. In fact, s(�)
1 = 0 if and only if

b+� = 0 and (N � 1+ c� a) � 0. In this case L� = aD2+ N�1+c
r D has no zero

order term. Instead s(�)
1 = �1 if and only if b+� = N�1+c and N�1+c+a � 0.

In this case L� = aD2 + N�1+c
r ( Dr � 1

r2 ). We refer to Proposition 2.14 for similar
phenomena.

Proposition 3.17. Assume that D� � 0 and that s(�)
1 = 0 or equivalently b+� = 0

and (N � 1 + c � a) � 0. If N
p 2 (0, s(�)

2 + 2), then u00, u
0

r 2 L prad for every
u 2 D(L�,p,int). It follows that

D(L�,p,int) =
n
u 2 L prad \ W 2,p

loc ((0,1)) ; u00, (1 ^ r)�1u0, (1 ^ r)�2u 2 L prad
o
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if 1 < p < N
2 and

D(L�,p,int) =
n
u 2 L prad \ W 2,p

loc ((0,1)) ; u00, (1 ^ r)�1u0, u 2 L prad
o

(3.16)

if N2  p < 1.

Proof. If 1 < p < N
2 , then s

(�)
1 + 2 = 2 < N

p and the assertions follow from
Proposition 3.15 since ✓ = 1. Note that in the critical case D� = 0, then N

p <

s(�)
2 + 2 = 2 implies that p > N

2 .
Let us therefore assume that p � N

2 . By assumption b + � = 0 and (N � 1+

c � a) � 0. Observe that s(�)
2 = (N � 1 + c � a)/a and that for u 2 D(L�,p,int),

g = L�u = au00 + N�1+c
r u0 belongs to L prad. Setting v = u0 and k = N�1+c

a � 1
we obtain v0 + k

r v = f with f = g/a. Integrating between " and r we obtain

rkv(r) � "kv(") =
Z r

"
f (t)tk dt =

Z r

"
f (t)t N�1t1�N+k dt.

The integral on the right hand side converges as " ! 0, by Hölder inequality with
respect to the measure t N�1 dt , since p � N/2, hence N�1+ p0(1�N+k) > �1
(in the critical case k = 1 but p > N/2). Then "kv(") has a finite limit ` as " ! 0.
If ` 6= 0 and D� > 0 then k > 1, v(r) ⇡ r�k and u(r) ⇡ r�k+1 as r ! 0.
Choosing 2✓ = N/p�� < 2 in Proposition 3.15 we see that r�2✓u is not in L prad for
� sufficiently small. If D� = 0, then k = 1 and u ⇡ log r as r ! 0. In this case, we
pick ✓0 = N/(2p) in Proposition 3.16 and see again that r�2✓0 | log r |�2/pu 62 L prad.
In both cases this contrasts with u 2 D(L�,p,int), hence ` = 0 and therefore

v(r)
r

=
1

rk+1

Z r

0
f (t)tk dt =

Z 1

0
f (sr)sk ds.

Minkowski inequality then yields

�
�
�r�1v

�
�
�
p,rad


Z 1

0
sk k f (s·)kp,rad ds 

Z 1

0
sk ds

✓Z 1

0
| f (t)pt N�1s�N dt

◆ 1
p

= k f kp,rad
Z 1

0
sk�

N
p ds = Ck f kp,rad

since k � N/p > �1 both in the critical and in the non critical case. This shows
that u0/r 2 L prad hence, by difference, also u

00 2 L prad. To show equality (3.16) let us
call W the space on the right hand side. We have just shown that D(L�,p,int) ⇢ W .
Since W ⇢ D(L�,p,max) we have only to show that !2 � L� is injective on W for
! 2 C+. However, this follows from (3.9) and Lemma 3.10 since v!,1 is unbounded
at infinity and v0

!,2 behaves like r
�s(�)

2 �1 when r ! 0 in the non critical case and
like r�1 in critical case (in the critical case v!,2(r) = K0(!r/

p
a)), hence r�1v0

!,2
does not belong to L prad.
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Even though s(�)
1 = �1 requires only b+� = N�1+c and N�1+c+a � 0,

we deal only with the special case � = N � 1, b = c = 0.

Proposition 3.18. Assume that b = c = 0 and that � = N � 1. Then D� > 0 and
s(�)
1 = �1, s(�)

2 = (N � 1)/a. If N
p 2 (0, s(�)

2 + 2), then u00, u
0

r � u
r2 2 L prad for

every u 2 D(L�,p,int). It follows that

D(L�,p,int) =
n
u 2 L prad \ W 2,p

loc ((0,1)) ; u00, (1 ^ r)�1u0, (1 ^ r)�2u 2 L prad
o

if 1 < p < N and

D(L�,p,int) =

⇢
u 2 L prad \ W 2,p

loc ((0,1)) ; u0, u00,
u0

r
�

u
r2

2 L prad

�
(3.17)

if N  p < 1.

Proof. Note that D� = (N � 1 + a)2/4a2 � 1. Moreover s(�)
1 = �1, s(�)

2 =
(N � 1)/a > 0 are immediately verified.

If 1 < p < N , then s(�)
1 + 2 = 1 < N

p and the assertions follow from
Proposition 3.15 since ✓ = 1.

Let us therefore assume that p � N . For u 2 D(L�,p,int), g = L�u = au00 +
N�1
r (u0 � u/r) belongs to L prad. Setting k = N�1

a > 0 we obtain u00 + k
r
�u
r
�0

= f
with f = g/a. let v=u/r and w = v0 = (u0/r � u/r2). Then

w0 +

✓
2
r

+
k
r2

◆
w =

f
r

and integrating between r and s we obtain

r2e�
k
r w(r) � s2e�

k
s w(s) =

Z r

s
f (t)te�

k
t dt.

The integral on the right hand side converges as s ! 0 and then s2e�k/sw(s) ! 0
as s ! 0, as in the proof of the preceding Proposition. Therefore

w(r) = r�2e
k
r

Z r

0
f (t)te�

k
t dt.

Choose � 2 ( N�2
p , 2

p0 ); note that N�2
p < 2

p0 is equivalent to p > N
2 . Since 2� p0� >

0, we have

|w(r)|p  r�2pe
kp
r

Z r

0
| f (t)|te�

k
t dt

 r�2pe
kp
r

✓Z r

0
t1�p0� dt

◆p�1 Z r

0
| f (t)|pt1+p�e�

kp
t dt

 (2� p0�)1�pr�2�p�e
kp
r

Z r

0
| f (t)|pt1+p�e�

kp
t dt.
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Therefore noting that p� + 2� N > 0, we see that
Z 1

0
|w(r)|pr N�1 dr(2� p0�)1�p

Z 1

0
r N�3�p�e

kp
r

✓Z r

0
| f (t)|pt1+p�e�

kp
t dt

◆
dr

(2� p0�)1�p
Z 1

0

✓Z 1

t
r N�3�p�e

kp
r dr

◆
| f (t)|pt1+p�e�

kp
t dt

 (2� p0�)1�p
Z 1

0

✓Z 1

t
r N�3�p� dr

◆
| f (t)|pt1+p� dt

 (2� p0�)1�p(p� + 2� N )�1
Z 1

0
| f (t)|pt N�1 dt

and hence w = (u0/r � u/r2) in L prad. By difference, we obtain that u
00 2 L prad.

To show equality (3.17), let us call W the space on the right hand side. We
have just shown that D(L�,p,int) ⇢ W . Since W ⇢ D(L�,p,max) we have only to
show that !2 � L� is injective on W . However this follows from (3.9) and Lemma
3.10 since v!,1 is unbounded at infinity and v!,2 ⇡ r�s(�)

2 as r ! 0, hence does not
belong to L prad, since N/p  1  s(�)

2 .

The consistency of the semigroups is proved in the next corollary

Corollary 3.19. If p, q satisfy the hypotheses of Proposition 3.15 or 3.16, then the
generated semigroups coincide in L prad \ Lqrad.

Proof. This is immediate from the proofs of the above Propositions, since the re-
solvents coincide, see (3.14).

3.6. Generation in L p<n
From the results so far obtained we can easily prove generation in L p<n . We recall
that s(�)

i coincide with si , i = 1, 2, defined in (1.1), when � = 0 and that we write
s0 for s1, s2 when D = 0.

Proposition 3.20. Assume that D > 0. If Np 2 (s1, s2+2) that is s1 < N
p �2✓ < s2

for some ✓ 2 (0, 1], then L p,int,<n defined through the domain

D(L p,int,<n) =
n
u 2 L p<n \ D(L p,max) ; |x |�2✓u 2 L p

o

generates bounded analytic semigroup of angle ⇡
2 in L

p
<n . The domain D(L p,int,<n)

coincides with

D(L p,reg,<n)

=
n
u2L p<n\W

2,p
loc
�
RN\{0}

�
;(1^|x |)2�2✓D2u,(1^|x |)1�2✓ru,|x |�2✓u2L p

�
RN �

o
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for all/one ✓ as above. In particular, if s1 + 2 < N
p < s2 + 2, then one can choose

✓ = 1 and therefore

D
�
L p,reg,<n

�
=
n
u 2 L p<n \ W 2,p�RN � ; |x |�1ru, |x |�2u 2 L p

�
RN �

o
.

Proposition 3.21. Assume that D = 0. If Np 2 (s0, s0 + 2), then L p,int,<n defined
through the domain

D(L p,int,<n) =
n
u 2 L p<n \ D

�
L p,max

�
; |x |�2✓0 | log |x ||�

2
p u 2 L p(B 1

2
)
o

with ✓0 = 1
2 (s0 � N

p ) 2 (0, 1) generates bounded analytic semigroup of angle ⇡
2 in

L p<n . The domain D(L p,int,<n) coincides with

D(L p,reg,<n)=

8
>>>>><

>>>>>:

u2L p<n\W
2,p
loc (RN \{0}) ;

u 2 W 2,p(RN \ B 1
2
),

|x |2�2✓0 | log |x ||�
2
p D2u2L p(B 1

2
),

|x |1�2✓0 | log |x ||�
2
p ru2L p(B 1

2
),

|x |�2✓0 | log |x ||�
2
p u 2 L p(B 1

2
)

9
>>>>>=

>>>>>;

.

Proof. (Propositions 3.20 and 3.21). Observe that L p<n coincides with L
p
J with a

suitable finite J in Lemma 2.4 and that (3.4) holds. Therefore L endowed with
domain M

j2J

⇣
D(L�n j ,p,int) ⌦ Pj

⌘

generates an analytic semigroup of angle ⇡
2 in L

p
<n . Note that we should write

(D(L�n j ,p,int) ⌦ span {Pj }) since the tensor product is defined for vector spaces.
However we keep the above notation since span{Pj } is one-dimensional. Let us
first prove that

D(L p,int,<n) =
M

j2J

⇣
D(L�n j ,p,int) ⌦ Pj

⌘
.

Consider the case D > 0. Let u 2 D(L�n j ,p,int). Then, since

s
(�n j )

1  s1 <
N
p

� 2✓ < s2  s
(�n j )

2 ,

by Proposition 3.15 we have ||x |�2✓u(r) ⌦ Pj (!)|p  ||x |�2✓u(r)|pkPjk
p
1 2

L1(RN ).
On the other hand, given u 2 D(L p,int,<n) we consider the bounded projection

Tj defined in Lemma 2.4. Then r�2✓Tju(r) = Tj (|x |�2✓u)(r) 2 L prad and Tj Lu =
L�n j

Tj u 2 L prad. Therefore Tju 2 D(L�n j ,p,int) and

u =
X

j2J
(Tju)Pj 2

M

j2J

⇣
D(L�n j ,p,int) ⌦ Pj

⌘
.
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To complete the proof we prove that D(L p,reg,<n) = D(L p,int,<n), the inclusion
D(L p,reg,<n) ✓ D(L p,int,<n) being obvious. To prove the other inclusion, we show
that

L
j2J

⇣
D(L�n j ,p,int) ⌦ Pj

⌘
✓ D(L p,reg,<n). Let u 2 D(L�n j ,p,int) ⌦ Pj

for some j 2 J . Then we may write u(r!) = v(r)Pj (!) for a suitable radial
function v 2 L prad. Then |x |�2✓v(r)Pj (!) 2 L p. Moreover, if s = deg Pj and
Q j (x) = rs Pj (!) then

Dh
�
v(r)Pj (!)

�
=Dh

✓
v(r)
rs

Q j (x)
◆

=

✓
v0(r)�s

v(r)
r

◆
xh
r
Pj (!)+

v(r)
r

DhQ j (x)
rs�1

.

Since DhQ j is homogeneous of degree (s � 1), we obtain from above |ru| 

c
⇣
|v0(r)| + |v(r)|

r

⌘
with c depending on Pj and then

(1 ^ |x |)1�2✓ |ru|  c(1 ^ r)1�2✓
✓

|v0(r)| +
|v(r)|
r

◆
2 L p.

The estimate for the second order derivatives is similar, see (2.8).

From Corollary 3.19 we obtain

Corollary 3.22. If p, q satisfy the hypotheses of Proposition 3.20 or 3.21, then the
generated semigroups coincide in L p<n \ Lq<n .

3.7. Generation in L p and domain characterization

In this section we prove the main results of this paper, summarizing the results of
the preceding two sections.

First we observe that the condition D � 0 is necessary also in the N -dimen-
sional case for the existence of positive solutions for arbitrary data. In fact, if D < 0
and f � 0 is radial, then positive solutions u of !2u� Lu = f would give positive
radial solutions v(r) =

R
SN�1 u(r!) d! of the same equation, by Proposition 2.15.

However, Proposition 3.11 shows that one can find a suitable f for which such a
solution does not exist.

Theorem 3.23. Assume that D > 0. If Np 2 (s1, s2 + 2) that is s1 < N
p � 2✓ < s2

for some ✓ 2 (0, 1], then L endowed with domain

D(L p,int) =
n
u 2 D(L p,max) ; |x |�2✓u 2 L p

o

generates a bounded positive analytic semigroup on L p. Moreover,

D(L p,int)=D
�
L p,reg

�

:=
n
u2D(L p,max) ; (1 ^ |x |)2�2✓D2u, (1 ^ |x |)1�2✓ru, |x |�2✓u 2 L p

o
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for all/one ✓ as above. In particular, if s1 + 2 < N
p < s2 + 2, then one can choose

✓ = 1 and therefore

D(L p,int) =
n
u 2 W 2,p�RN � ; |x |�1ru, |x |�2u 2 L p

o
.

When N
p 62 (s1, s2 + 2), then � (L) = C for every L p,min ⇢ L ⇢ L p,max.

Theorem 3.24. Assume that D = 0. If N
p 2 (s0, s0 + 2), then L endowed with

domain

D(L p,int) =
n
u 2 D(L p,max) ; |x |�2✓0 | log |x ||�

2
p u 2 L p(B 1

2
)
o

with ✓0 = 1
2 (s0 � N

p ) 2 (0, 1) generates a bounded positive analytic semigroup on
L p. Moreover,

D(L p,int)=D(L p,reg) :=

8
>>>>><

>>>>>:

u2D(L p,max) ;

u 2 W 2,p(RN \ B 1
2
),

|x |2�2✓0 | log |x ||�
2
p D2u 2 L p(B 1

2
),

|x |1�2✓0 | log |x ||�
2
p ru 2 L p(B 1

2
),

|x |�2✓0 | log |x ||�
2
p u 2 L p(B 1

2
)

9
>>>>>=

>>>>>;

.

When N
p 62 (s0, s0 + 2), then � (L) = C for every L p,min ⇢ L ⇢ L p,max.

Proof. (Theorems 3.23 and 3.24). We fix n sufficiently large so that Proposi-
tions 3.5 and 3.6 apply and write L p = L p<n � L p�n . Using also Propositions
3.15 and 3.16 we see that L with domain

D
�
L p,reg,<n

�
� D

⇣
Lnp,reg

⌘
= D

�
L p,int,<n

�
� D

⇣
Lnp,reg

⌘

generates an analytic semigroup in L p and, moreover, D(L p,reg,<n)� D(Lnp,reg) ⇢
D(L p,reg) ⇢ D(L p,int).

Conversely, let u 2 D(L p,int) and consider the projection (I ⌦ S)u =P
j2J Tju(r)Pj (!) 2 L p<n of Lemma 2.4. As in the proof of Propositions 3.23 and

3.24 we have r�2✓Tju(r) = Tj (|x |�2✓u)(r) 2 L prad and Tj Lu = L�n j
Tj u 2 L prad.

Therefore Tju 2 D(L�n j ,p,int) and

(I ⌦ S)u =
X

j2J
(Tju)Pj 2

M

j2J

⇣
D(L�n j ,p,int) ⌦ Pj

⌘
= D

�
L p,reg,<n

�
.

Finally, u � (I ⌦ S)u 2 D(Lnp,max) = D(Lnp,reg), by Proposition 3.6 and this
concludes the proof of the generation part and domain characterization.
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Let us show that if Np 62 (s1, s2+2), then � (L p) = C for every L p,min ⇢ L p ⇢

L p,max. Assume first that Np  s1 and let ! 2 C+. Let f be defined by (3.13), as in
the proof of Proposition 3.12 where we set � = 0. We still denote by f the radial
function defined in RN by f (|x |). If u 2 D(L p,max) solves !2u � Lu = f , then

v(r) =
1

|SN�1|

Z

SN�1
u(r,!) d! 2 D(L p,max), r = |x |

is radial and solves !2v � Lv = f , by Proposition 2.15 with P(!) = |SN�1|�1.
However, such a solution v does not exist, according to Proposition 3.12, and hence
R(!2 � L) ⇢ R(!2 � L p,max) 6= L p(RN ). This yields � (L) = C if N

p  s1 and,
by duality as in the proof of Proposition 3.12, also � (L) = C if Np � s2 + 2.

The proof of the positivity of the semigroup or, equivalently, of the resolvent
for large ! requires some preparation. Let a = (ai j ) where

ai j (x) = �i j + (a � 1)|x |�2xi x j , x 2 RN \ {0}, � =
N � 1+ c

a
� N + 1.

Then

Lu =
NX

i, j=1
ai j Di j u + c

x
|x |2

· ru �
b

|x |2
u = |x |�� div(|x |� aru) �

b
|x |2

u.

Note that � = 0 if and only if L = L⇤, see (2.2).
Since the matrix a is positive definite with eigenvalue a corresponding to the

eigenvector x/|x |, we have haw,wi � hawn, wni = a|wn|2, where wn is the com-
ponent of a vector w along x/|x |. By the weighted Hardy inequalities with best
constants, see for example the Appendix in [14], we have for every u 2 W 1,2(RN )
with compact support in RN \ {0}

Z

RN
haru,rui|x |� dx �

Z

RN

⌧
a
✓

@u
@r

x
|x |

◆
,

✓
@u
@r

x
|x |

◆�
|x |� dx

= a
Z

RN

�
�
�
�
@u
@r

�
�
�
�

2
|x |� dx

� a
✓
N + � � 2

2

◆2 Z

RN
|u|2|x |��2 dx

= a
✓
N � 1+ c � a

2a

◆2 Z

RN

|u|2

|x |2
|x |��2 dx .

(3.18)

Let ! > 0, 0  f 2 C1
c (�). Then f0(r) =

R
SN�1 f (r!) d! is nonnegative,

smooth and with compact support. We write f = f0 + g with g 2 C1
c (�) \ L p�1

and, using Lemma 2.18, we approximate g in Wk,p(RN ) with a sequence gm of the
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form gm =
P

gmj (r)Pj (!) (the sum is finite), gmj 2 C1
c ((0,1)) and supp gm ⇢

K , where K is a fixed compact subset of�. We choose k such that kp > N , so that
the convergence is also uniform.

Then f is approximated in L p(RN ) and uniformly by the functions fm =P
f mj (r)Pj (!) with f 00 = f0 and f mj = gmj for m � 1. The solution um 2

D(L p,int) of the equation !2um � Lum = fm is given, by construction, by um =P
umj (r)Pj (!) where umj 2 D(L�n,p,int) solves !2umj � L�n umj = f mj and n is the

order of Pj . From (3.14) we easily obtain um0 (r) ⇡ cr�s1 with c > 0. For j � 1, the
same argument yields |umj (r)|  c jr�s(�n )

1 , n being the order of Pj and then since
s(�n)1 < s1, then um � 0 in an a small ball B" (depending on m). Moreover, near
infinity umj is a multiple of the relative v!,2 and tends to 0 exponentially together
with its derivative, hence um and rum tend to 0, exponentially, as |x | ! 1. Let
us fix R > ", multiply the equation !2um � Lum = fm by u�

m and integrate on
�",R = BR \ B" with respect to the measure |x |� dx . Since u�

m = 0 for |x | = " we
obtain

Z

�",R

✓
!2|u�

m |2+ a(ru�
m,ru�

m)+
b

|x |2
|u�
m |2
◆

|x |� dx+
Z

@BR
u�
marum · ⌫|x |� d�

= �
Z

�",R

fmu�
m |x |� dx 

Z

�",R

f �
m u

�
m |x |� dx .

Letting R ! 1 all integrals converge, due to the exponential decay of um,rum ,
and the boundary integral tends to 0. We apply (3.18) to u�

m (extended to 0 in B"),

using the exponential decay at1, and deduce since b+a
⇣
N�1+c�a

2a

⌘2
= aD � 0,

that

!2
Z

Bc"
|u�
m |2|x |� dx 

Z

Bc"

✓
!2|u�

m |2 + a(ru�
m,ru�

m) +
b

|x |2
|u�
m |2
◆

|x |� dx


Z

Bc"
f �
m u

�
m |x |� dx

and finally, since u�
m = 0 in B", by Hölder inequality,

!4
Z

RN
|u�
m |2|x |� dx 

Z

RN
| f �
m |2|x |� dx .

Since f �
m ! 0 uniformly and the supports are contained in a common bounded set

K , the integral on the right hand side tends to 0 as n ! 1. Then

u =
⇣
!2 � L p,int

⌘�1
f = lim

m!1

⇣
!2 � L p,int

⌘�1
fm = lim

m!1
um
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satisfies, by Fatou’s lemma,

!4
Z

RN
|u�|2|x |� dx  lim inf

n!1

Z

RN
|u�
m |2|x |� dx  0.

This yields u � 0.

From Corollaries 3.7 and 3.22 we obtain

Corollary 3.25. If p, q satisfy the hypotheses of Theorems 3.23 or 3.24, then the
generated semigroups coincide in L p(RN ) \ Lq(RN ).

Remark 3.26. Theorems 3.23 and 3.24 can be stated in L p�n with minor changes,
for every n 2 N0, thus extending Proposition 3.5. The conditions D > 0, s1 < N

p <

s2+ 2 have to be replaced by D�n > 0 and s(�n)1 < N
p < s(�n)2 + 2, and similarly for

the others. The description of the domain holds with the same changes. The proof
is the same as in the main theorems. Of course the positivity statement makes sense
only if n = 0.
Example 3.27. Let a be fixed. Fixing c < 0 small enough and choosing b < 0
such that D is small, one obtains s2 + 2 < 0. Similarly, fixing c > 0 large enough
and choosing b < 0 such that D is small, one obtains s1 > N . In both cases
(s1, s2+2)\ (0, N ) = ; and therefore no operator L p,min ⇢ L ⇢ L p,max generates
a semigroup, for every 1 < p < 1. However, if b � 0 then s1s2 = � b

a  0 yields
s1  0, s2 � 0 and (s1, s2 + 2) \ (0, N ) 6= ;. Therefore, for some 1 < p < 1, the
operator L p,int generates a bounded positive analytic semigroup on L p(RN ).
Next we study when L p,int coincides with L p,min or L p,max.

Proposition 3.28. Assume that D > 0. Then L p,int = L p,max if and only if N
p 2

(s1, s2] and L p,int = L p,min if and only if Np 2 [s1+2, s2+2). Therefore, if s1+2 

s2 or equivalently D � 1, and if Np 2 [s1 + 2, s2], then L p,int = L p,min = L p,max.

Proof. If Np 2 (s1, s2], then N
p 2 (s(�n)1 , s(�n)2 ] for every n 2 N0. Let us fix ! 2 C+

and u 2 Dp,max(L) such that !2u � Lu = 0. If P is a spherical harmonic of order
n, the function v(r) =

R
SN�1 u(r!)P(!) d! belongs to D(L�n,p,max) and satisfies

!2v � L�nv = 0. Therefore v is a linear combination of the functions v!,1, v!,2
defined in (3.9). Since v!,1 is exponentially increasing at infinity and v!,2 does not
to belong to L prad, by Lemma 3.10 (since N/p  s(�n)2 ), then v = 0. Since this is
true for every spherical harmonic P we get u = 0 and then !2� L p,max is injective,
hence L p,max coincide with L p,int. However if N/p > s2, then the function v!,2
relative to �n = 0 is a radial eigenfunction of L p,max for every ! 2 C+. This
proved the part relative to L p,max.

By duality, as in the proof of Proposition 3.12, we obtain L p,int = L p,min if
and only if Np 2 [s1 + 2, s2 + 2).

The equalities above never occur when D = 0.
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Proposition 3.29. Assume that D = 0. If Np 2 (s0, s0+2), then L p,min ( L p,int (
L p,max.

Proof. Since v!,2 belongs to L
p
rad, !2 � L p,max is never injective and therefore

L p,int ( L p,max. By duality we get the other part.

Corollary 3.30. If p satisfies the hypotheses of Theorems 3.23 or 3.24, then
(L p,int)⇤ = L⇤

p0,int.

Proof. As in the proof of Theorems 3.23 and 3.24, we write, for large n, L p,int =
L p,int,<n + Lnp,reg in L p(RN ) = L p<n � L p�n . In L

p
�n we have Lnp,reg = Lnp,max

hence (Lnp,reg)⇤ = (Lnp,max)⇤ = Lnp0,min = Lnp0,reg, see Proposition 3.5, and we have
to consider only the operator L p,int,<n in L

p
<n or, equivalently, the 1-d operators

L� j ,p,int in L
p
rad. For ! > 0 and f 2 L prad we have
⇣
!2 � L� j ,p,int

⌘�1
f =

Z 1

0
G(r, t) f (t)t N�1 dt,

where the Green function G is given by

G(r, t) = C

(
v!,t (r)v!,2(t) t� 0 < r  t < 1
v!,1(t)v!,2(r) t� 0 < t  r < 1

(3.19)

and � = N�1+c
a + 1 � N , see (3.14). Then (!2 � (L� j ,p,int)

⇤)�1 is given by the
Green function G⇤(r, t) = G(t, r). To conclude the proof we have to verify that G⇤

coincides with the Green function of (!2 � L⇤
� j ,p0,int)

�1. To see this, let us define
v⇤
!,1, v

⇤
!,2 as in (3.9) but referred to L

⇤
� j
and � ⇤ = N�1+c⇤

a +1�N . Then � ⇤ = ��

and the Green function of (!2�(L� j ,p,int)
⇤)�1 is given by (3.19) with v!,1, v!,2, �

replaced by v⇤
!,1, v

⇤
!,2, �

⇤ = �� . Since, using (2.4), v⇤
!,i (t) = t� v!,i (t), i = 1, 2,

the proof is complete.

Next we characterize when D(L p,int) is contained in W 2,p(RN ).

Theorem 3.31.

(i) If D > 0 and s1 + 2 < N
p < s2 + 2 then D(L p,int) ⇢ W 2,p(RN ); moreover

D
�
L p,int

�
=
n
u 2 W 2,p�RN � ; |x |�1ru, |x |�2u 2 L p

�
RN �

o
;

(ii) If s1 6= 0 and s1 < N
p  s1+ 2, then D(L p,int) is not contained in W 2,p(RN );

(iii) If s1 = 0 and s(�1)1 6= �1, then D(L p,int) ⇢ W 2,p(RN ) if and only if and
s(�1)1 + 2 < N

p < s2 + 2. In this case

D
�
L p,int

�
=
n
u 2 W 2,p�RN � : |x |�1ru 2 L p

�
RN �

o
;
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(iv) If s1 = 0 and s(�1)1 = �1, then D(L p,int) ⇢ W 2,p(RN ) if and only if s(�2)1 +
2 < N

p < s2 + 2. In this case

D
�
L p,int

�
= W 2,p�RN �.

Proof. (i) This is a special case of Theorem 3.23.
(ii) We assume that s1 6= 0 and take f � 0 radial with compact support in

the annulus ↵  |x |  �, ↵ > 0. By construction the solution u 2 D(L p,int) of
the equation u � Lu = f is radial and is given by (3.14) with ! = 1. Therefore
u(r) = cv1,1(r) for r < ↵, with c > 0. Since rs1v1,1(r) = h(r), with h analytic and
h(0) 6= 0, see Lemma 3.10, it follows that

v0
1,1(r)
r ⇡ �s1h(r)r�s1�1 near 0 (since

s1 6= 0) and therefore u0/r 62 L prad and u 62 W 2,p(RN ), by Proposition 2.14 (i).
(iii) Assume that s1 = 0, that is b = 0 and N � 1 + c � a � 0. We fix n

sufficiently large so that Proposition 3.6 applies and split f =
Pn

k<n fk + g where
fk 2 L pk , 0  k < n and g 2 L p�n , through the projections of Lemma 2.4. Then the
solution u 2 D(L p,int) of the equation u � Lu = f is given by u =

P
k<n uk + v

with uk 2 D(L p,�k ,int) ⇢ L pk , 0  k < n and v 2 D(Lnp,reg). By Proposition 3.6,
v 2 W 2,p(RN ) and also |x |�1rv, |x |�2v 2 L p(RN ). Concerning the functions uk ,
we have fk(x) =

P
j f

(k)
j P(k)

j , uk(x) =
P

j u
(k)
j P(k)

j where the P(k)
j constitute a

basis for the spherical harmonics of order k and, by Proposition 2.15,

u(k)
j � L�k u

(k)
j = f (k)

j .

Since s1 = 0, Proposition 3.17 yields u00
0, u

0
0/r 2 L prad and, by Proposition 2.14

(i) , u0 2 W 2,p(RN ). Moreover, |x |�1|ru0| = |u0
0|/r 2 L prad yields |x |�1ru0 2

L p(RN ).
If s(�1)1 + 2 < N

p , then uk 2 W 2,p(RN ) for 1  k < n, by Propositions
3.15, 2.14 (ii), (iii) and recalling that the numbers s(�k)1 are decreasing. Moreover
|x |�1ruk 2 L p(RN ), by Proposition 2.13 (ii), since both u0

k/r and uk/r
2 are in

L prad.
This shows that D(L p,int) ⇢ {u 2 W 2,p(RN ) : |x |�1ru 2 L p(RN )} := W .

Since clearly W ⇢ D(L p,max) to show equality we have only to prove that 1� L is
injective on W . Let u 2 W be such that u� Lu = 0 and P be a spherical harmonic
of order k. If v(r) =

R
SN�1 u(r!)P(!) d!, then v�L�kv = 0, by Proposition 2.15.

Moreover, since u 2 W , then v, v0, v00, v0/r 2 L prad and the equation v � L�kv = 0
yields also v/r2 2 L prad when k � 1 (since �k > 0) and also when k = 0 and
p < N/2 by the classical Hardy inequality. It follows that v 2 D(L�k ,p,int), for
k = 0 by Proposition 3.17 and for k � 1 by Proposition 3.15 with ✓ = 1. Then
v = 0 and, since this is true for every spherical harmonic P , then u = 0.

However, if N/p  s(�1)1 + 2, the same argument in the proof of (ii) shows
that one can choose f (1) (having only one non-zero component, say the first) such
that u(1)

1 ⇡ r�s(�1)1 as r ! 0 and then u0(1)
1 /r � u(1)

1 /r2 ⇡ �(s(�1)1 + 1)r�s(�1)1 �2.
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It follows that u0(1)
1 /r � u(1)

1 /r2 62 L prad, hence u1 = u(1)
1 P(1)

1 62 W 2,p(RN ), by
Proposition 2.14 (ii).

(iv) Let us assume now that s1 = 0 and s(�1)1 = �1 or, equivalently, that
b = c = 0 and 0 < a  N�1. Then u0 2 W 2,p(RN ), as in the proof of (iii) but also
u1 2 W 2,p(RN ), by Propositions 3.18, 2.14 (ii) (but this time |x |�1ru1 could be
not in L p(RN ) for p � N ). If s(�2)1 +2 < N

p , proceeding as in (ii) for uk , 2  k < n
and for v we obtain that D(L p,int) ⇢ W 2,p(RN ) ⇢ D(L p,max). let us prove that
D(L p,int) = W 2,p(RN ) by showing that 1� L is injective onW 2,p(RN ), as in (iii).
Let u 2 W 2,p(RN ) be such that u � Lu = 0 and P be a spherical harmonic of
order k. If v(r) =

R
SN�1 u(r!)P(!) d!, then v � L�kv = 0, by Proposition 2.15.

Since u 2 W 2,p(RN ), Proposition 2.15 yields that v(r)P(!) 2 W 2,p(RN ), too. If
k = 0, then Proposition 2.14 (i) gives v00, v0/r 2 L prad (and also v/r2 2 L prad when
p < N/2, by Hardy inequality) and hence v 2 D(L�0,p,int) by Proposition 3.17,
hence v = 0.

If k = 1, then Proposition 2.14 (ii) gives v00, v0/r � v/r2 2 L prad (and also
v0/r 2 L prad when p < N , by Hardy inequality and v/r2 2 L prad by difference) and
hence v 2 D(L�1,p,int) by Proposition 3.18, hence v = 0.

If k � 2, then Proposition 2.14 (iii) gives v00, v0/r, v/r2 2 L prad and hence
v 2 D(L�k ,p,int) by Proposition 3.15 with ✓ = 1, hence v = 0.

Then v = 0 in all cases and hence u = 0.
However if N/p  s(�2)1 + 2, then we construct a solution u(1)

2 ⇡ r�s(�2)2 as
r ! 0 which does not satisfy u(1)

2 /r2 2 L prad and hence u
(1)
2 P(1)

2 62 W 2,p(RN ), by
Proposition 2.14 (iii).

Observe that, by the classical Hardy inequalities, the conditions |x |�1ru,
|x |�2u 2 L p(RN ) are automatically satisfied in W 2,p(RN ) when 1 < p < N/2
and the first requires only p < N .

4. The operator L = 1 + (a � 1)
PN
i, j=1

xi x j
|x|2 Di j

In this section we specialize our results assuming b = c = 0. The pure second order
operator has been extensively used as a source of counterexamples but also studied
in detail byManselli [6], concerning existence and uniqueness of the Dirichlet prob-
lem Lu = f with u vanishing at the boundary of the unit ball, under the assumption
a � 1. We are not aware of previous results in the parabolic setting or in the case
0 < a < 1.

The following quantities will be important in the discussion

D =

✓
N � 1� a

2a

◆2
� 0, s1 =

N � 1� a
2a

�

�
�
�
�
N � 1� a

2a

�
�
�
� ,

s2 =
N � 1� a

2a
+

�
�
�
�
N � 1� a

2a

�
�
�
� .
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Moreover s(�1)1 = �1 and

s(�2)1 =
N � 1� a

2a
�

s
2N
a

+

✓
N � 1� a

2a

◆2
< �1.

Observe that s(�2)1 ranges from �1 to �1 as a ranges from 0 to 1. Moreover,
s(�2)1  �2 if and only if 0 < a  1.

4.1. The case 0 < a  N � 1

Here s1 = 0, s2 = N�1�a
a . Note that s2 ranges from 1 to 0 as a ranges from 0

to N � 1 and that s2 = N � 2 when a = 1. The critical case D = 0 corresponds to
a = N � 1, hence to the Laplacian in dimension 2.

Corollary 4.1. Let 0 < a  N � 1. Then (L , D(L p,int)) generates a bounded
positive analytic semigroup in L p(RN ) if and only if 0 < N

p < s2 + 2 = N�1+a
a .

Moreover, D(L p,int) = W 2,p(RN ) if and only if s(�2)1 + 2 < N
p < s2 + 2.

Proof. The generation part follows from Theorems 3.23 and 3.24. and the domain
characterization from Theorem 3.31 (iv).

Remark 4.2. Since s(�2)1 +2  0 if and only if 0 < a  1, the condition s(�2)1 +2 <
N
p is always satisfied when 0 < a  1 and D(L p,int) = W 2,p(RN ) when L is a
generator.
We point out that the same results, but only for elliptic solvability in W 2,p(B),
B being the unit ball, with Dirichlet boundary conditions, have been obtained by
Manselli [6], under the restriction a � 1 and for s(�2)1 + 2 < N

p < s2 + 2.

4.2. The case a > N � 1

Here the situation is different and s1 = N�1�a
a 2 (�1, 0), s2 = 0. The critical case

s1 = s2, or D = 0, does not occur.

Corollary 4.3. Let a > N � 1. Then (L , D(L p,int)) generates a bounded positive
analytic semigroup in L p(RN ) if and only if N

p < 2. When s1 + 2 = N�1+a
a <

N
p < 2, then

D
�
L p,int

�
=
n
u 2 W 2,p�RN � ; |x |�1ru, |x |�2u 2 L p

�
RN �

o
( W 2,p�RN �.

On the other hand, if Np  s1 + 2, then D(L p,int) 6⇢ W 2,p(RN ) and W 2,p(RN ) 6⇢
D(L p,int).
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Proof. The generation part and the domain characterization when s1 + 2 < N
p < 2

follow from Theorem 3.23. Note that D(L p,int) is included in but different from
W 2,p(RN ) since p > N/2.

Let us now assume that N
p  s1 + 2. Since s1 6= 0, then D(L p,int) 6⇢

W 2,p(RN ), by Theorem 3.31 (ii).
On the other hand, let u(x) = e�|x |2 2 W 2,p(RN ). Choosing ✓ 2

⇣
N
2p , 1

⌘

such that 2✓ < N
p � s1, we see that s1 < N

p � 2✓ < s2 and |x |�2✓u /2 L p(RN ).
From Theorem 3.23 we obtain u /2 D(L p,int).

The results collected in the above corollary are different from those obtained
by Manselli in [6], who obtains solvability in W 2,p for certain parameters. We
explain why this happens and then how Manselli’s results can be obtained with our
methods.

First of all, let us observe that the interval (s1, s2) does not intersect (0, N )
(since s2  0) and hence L p,max is not a generator for every 1 < p < 1, by
Proposition 3.28. On the other hand, if s1 + 2 < N/p < 2, Corollary 4.3 yields
a domain strictly contained in W 2,p(RN ) and L p,int is equal to L p,min (even when
N/p = s1 + 2), by Proposition 3.28, again. In this last range Manselli does not
obtain unique solvability in W 2,p and this is clear from Corollary 4.3, since we
prove existence and uniqueness in a smaller domain.

Since 0 = s2 < s1 + 2, there is no uniqueness if N
p 2 (0, s1 + 2) and it turns

out that, in a smaller subinterval, Manselli’s domain is different from D(L p,int) and
more regular. In what follows we explain how to obtain his results and consider the
operator L |W 2,p = (L ,W 2,p(RN )).

Lemma 4.4. Let a > N � 1. If Np  s(�2)1 + 2, then (0,1) ⇢ � (L |W 2,p ).

Proof. Let ! > 0 and consider u(x) = ⌘(|x |)v!,1(|x |)!1!2, where v!,1 is de-
fined in Lemma 3.10 with � = �2 and satisfies !2v!,1 � L�2v!,1 = 0 and ⌘ 2
C1((0,1)) satisfies ⌘ ⌘ 1 in (0, 1] and ⌘ ⌘ 0 in [2,1).

The function f := !2u � Lu is identically zero near 0,1 and belongs to
L pJ , where J is the singleton which identifies the spherical harmonic !1!2. Let us
assume, by contradiction, that there exists w 2 W 2,p(RN ) such that !2w � Lw =
f and consider its projection v(|x |)!1!2 in L

p
J . By Propositions 2.15, 2.14 (iii),

v/r2 2 L prad. However v � ⌘v!,1 2 L prad is in the kernel of !
2 � L�2 , hence

v(r) � ⌘(r)v!,1(r) = c1v!,2(r)

for a suitable c1 2 C. Using Lemma 3.10 with � = �2, one easily sees that v/r2 62
L prad since s

(�2)
1 < s(�2)2 and N

p  s(�2)1 + 2.

Lemma 4.5. Let a > N � 1. If s(�2)1 + 2 < N/p < s1 + 2, then ⇢(L p,int) ⇢
⇢(L |W 2,p ).
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Proof. Let !2 2 ⇢(L p,int). We show that !2 2 ⇢(L |W 2,p ). Let f 2 L p(RN ). To
solve !2u � Lu = f in W 2,p(RN ), we use the decomposition L p(RN ) = L p<n �
L p�n =

�L
j2J L

p
{ j}
�
� L p�n , where n is given in Proposition 3.6 and J individuates

all spherical harmonics of order less than n. Then f can be decomposed as

f (x) =
X

j2J
f j (r)Pj (!) + f̃ (x), f j 2 L prad, j 2 J, f̃ 2 L p�n.

By Proposition 3.6, we have ũ := (!2�L p,int)�1 f̃ 2D(L p,int)\L
p
�n ⇢ W 2,p(RN ).

If n j = deg Pj � 2, we observe that

s
(�n j )

1  s(�2)1 <
N
p

� 2 < s1 < s
(�n j )

2 .

Thus setting v j = (!2 � L� j ,p,int)
�1 f j and applying Proposition 3.15 with ✓ = 1

we have v j , v
0
j , v

00
j , v

0
j/r, v j/r

2 2 L prad. Therefore from Proposition 2.14 (iii) we
deduce that u j (x) := v j (r)Pj (!) 2 W 2,p(RN ).

If deg Pj =1, then v j = (!2�L� j ,p,int)
�1 f j 2 D(L�1,p,int). Applying Propo-

sition 3.18 and then Proposition 2.14 (ii) we deduce that u j (x) := v j (r)Pj (!) 2
W 2,p(RN ).

If deg Pj = 0 we look for solutions of the equation !2v � av00 + N�1
r v0 = f0

having the form

v = c0r⌫0K⌫0

✓
!r
p
a

◆
+ (!2 � L p,�0,int)

�1 f0 = c0r⌫0K⌫0

✓
!r
p
a

◆

+ C!r⌫0

✓
K⌫0

✓
!r
p
a

◆Z r

0
t1�⌫0 I⌫0

✓
!t
p
a

◆
f0(t) dt

+I⌫0

✓
!r
p
a

◆Z 1

r
t1�⌫0K⌫0

✓
!t
p
a

◆
f0(t) dt

◆
,

where ⌫0 = | N�1�a
2a | = � s1

2 2 (0, 12 ), C! = W�1(!), see (3.14). Observe that if
g 2 C1

c ((0,1)) with g � 0 and g 6⌘ 0, then for sufficiently small r > 0, we have

v(r) = c0r⌫0K⌫0

✓
!r
p
a

◆
+

✓
C!

Z 1

0
t1�⌫0K⌫0

✓
!t
p
a

◆
g(t) dt

◆
r⌫0 I⌫0

✓
!r
p
a

◆
.

Therefore by Lemmas 3.9 and 3.8 we see that

v0(r)
r

⇡

8
<

:
1 if c0 = cg := C! ·

2 sin(⌫0⇡)

⇡

Z 1

0
t1�⌫0K⌫0

✓
!t
p
a

◆
g(t) dt

r�2(1�⌫0) if c0 6= cg

as r ! 0. This means that if c0 6= cg, then by N/p < s1 + 2, v0

r /2 L prad and
therefore by Proposition 2.14, v(|x |) /2 W 2,p(RN ). Hence we choose v0 as v with
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c0 = cg0 . The linearity and boundedness in L
p
rad of the map f0 7! v0 have been

already proved in Lemma 3.13. Moreover, v0 can be written in the following form:

v0(r) = C
✓
r⌫0K⌫0

✓
!r
p
a

◆Z r

0
t1�⌫0U⌫0

✓
!t
p
a

◆
f0(t) dt

+r⌫0U⌫0

✓
!r
p
a

◆Z 1

r
t1�⌫0K⌫0

✓
!t
p
a

◆
f0(t) dt

◆
,

with U⌫(z) = I⌫(z) + 2 sin(⌫⇡)
⇡ K⌫(z). Using Lemma 3.9 and 3.8 again, we have

|v0
0|  C 0

✓
r⌫0K⌫0�1(kr)

Z r

0
t1�⌫0U⌫0(kt)| f0(t)| dt

+r⌫0 I1�⌫0(kr)
Z 1

r
t1�⌫0K⌫0(kt)| f0(t)| dt

◆

with k = Re!p
a . Proceeding as in the proof of Lemma 3.13, we get kv0kL prad

+

kv0
0kL prad

+ kv0
0/rkL prad  Ckg0kL prad . By difference, we also have kv00

0kL prad


Ck f0kL prad . Consequently, by Proposition 2.14 (i) we obtain u0(x) := v0(|x |) 2

W 2,p(RN ). Taking
u =

X

j2J
u j + ũ 2 W 2,p�RN �,

we see that !2u � Lu = f .
Finally, we show N (!2 � L |W 2,p ) = {0}. Let w 2 W 2,p(RN ) satisfy !2w �

Lw = 0. Set w j (x) = h j (r)Pj (� ) with h j (r) =
R
SN�1 w(r� )Pj (� ) d� 2 L prad

for j 2 J , and w̃ = w �
P

j2J w j 2 L p�n . We see from Proposition 3.6 that
w̃ 2 N (!2 � Lnp,max) = {0}. Hence it suffices to show h j = 0 for each j . Since
h j satisfies the equation !2h j � ah00

j �
N�1
r h0

j +
�k
r2 h j = 0, where k is the order of

Pj . Therefore h j = c1, jv!,1+c2, jv!,2. Noting that v!,1 and v!,2 have exponential
growth and decay at infinity, we have c1, j = 0. On the other hand, since v0

!,2/r /2

L prad, it follows fromw j 2 W 2,p(RN ) and Proposition 2.14 that c2, j = 0. Therefore
w j = 0, and hence w = w̃ +

P
j2J w j = 0.

Proposition 4.6. The operator L |W 2,p generates a semigroup if and only if s(�2)1 +
2 < N/p < s1 + 2. In this case the semigroup is positive and analytic.

Proof. The necessity of the condition follows from Lemma 4.4. Instead, if the
above condition is satisfied, the previous lemma implies that the resolvent con-
tains a sector larger than the right half plane and the resolvent estimate k(!2 �
L |W 2,p )�1k  C|!2|�1 follows by scaling. Concerning the positivity we note that,
by the proof of Lemma 4.5, (!2 � L |W 2,p )�1 coincides with (!2 � L p,int)�1 on
L p�1 and, for ! > 0, is larger than it on positive radial functions, by the choice of
c0 = cg and since C! = W (!)�1 > 0.
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Remark 4.7. The previous proposition shows that the difference of L p,int and the
operator defined by Manselli [6] is only in the subspace of radial functions.
Example 4.8. Let N = 2, p = 2 and assume that b = c = 0. By Remark 4.2 we
have that for a  1 there is generation and D(L2,int) = W 2,2(R2). When a > 1,
we have s2 + 2 = 2, s(�2)1 + 2 < 1. It follows that L |W 2,2 generates a bounded
analytic semigroup.
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