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A characterisation of isometries
with respect to the Lévy-Prokhorov metric

GYÖRGY PÁL GEHÉR AND TAMÁS TITKOS

Abstract. According to the fundamental work of Yu.V. Prokhorov, the general
theory of stochastic processes can be regarded as the theory of probability mea-
sures in complete separable metric spaces. Since stochastic processes depending
upon a continuous parameter are basically probability measures on certain sub-
spaces of the space of all functions of a real variable, a particularly important
case of this theory is when the underlying metric space has a linear structure.
Prokhorov also provided a concrete metrisation of the topology of weak conver-
gence today known as the Lévy-Prokhorov distance. Motivated by these facts,
the famous Banach-Stone theorem, and some recent works related to characteri-
sations of onto isometries of spaces of Borel probability measures, here we give a
complete description of surjective isometries with respect to the Lévy-Prokhorov
metric in case when the underlying metric space is a separable Banach space. Our
result can be considered as a generalisation of L. Molnár’s earlier Banach-Stone-
type result which characterises onto isometries of the space of all probability dis-
tribution functions on the real line wit respect to the Lévy distance. However,
the present more general setting requires the development of an essentially new
technique.

Mathematics Subject Classification (2010): 46B04 (primary); 46E27, 47B49,
54E40, 60B10, 28A33, 60A10, 60B05 (secondary).

1. Introduction

There is a long history and vast literature of isometries (i.e., not necessarily sur-
jective distance preserving maps) on different kind of metric spaces. Two classical
results in the case of normed linear spaces are the Mazur-Ulam theorem which
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garian Academy of Sciences, and by the Hungarian National Research, Development and Inno-
vation Office – NKFIH (grant no. K115383).
Tamás Titkos was also supported by the “Lendület” Program (LP2012-46/2012) of the Hungarian
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every surjective isometry between real normed spaces is automatically affine (i.e.,
linear up to translation), and the Banach-Stone theorem which provides the struc-
ture of onto linear isometries between Banach spaces of continuous scalar-valued
functions on compact Hausdorff spaces. Since then several properties of surjective
linear isometries on different types of normed spaces have been explored, see for
instance the papers [2–5, 10, 13, 24] and the extensive books [16, 17]. The reader
can find similar results on non-linear spaces for example in [6, 11, 18, 21, 27, 28].

The starting point of our investigation is Molnár’s paper [25] where a complete
description of surjective Lévy isometries of the non-linear spaceD(R) of all cumu-
lative distribution functions was given. If F,G 2 D(R), then their Lévy distance is
defined by the following formula:

L(F,G) := inf
�
" > 0

�
�8 t 2 R : F(t � ") � "  G(t)  F(t + ") + "

 
.

The importance of this metric lies in the fact that it metrises the topology of weak
convergence on D(R). Molnár’s result reads as follows (see [25, Theorem 1]): let
8 : D(R) ! D(R) be a surjective Lévy isometry, i.e., a bijective map satisfying

L(F,G) = L(8(F),8(G)) (8 F,G 2 D(R)).

Then there is a constant c 2 R such that 8 is one of the following two forms:

8(F)(t) = F(t + c) (8 t 2 R, F 2 D(R)),

or

8(F)(t) = 1� lim
s!t�

F(�s + c) (8 t 2 R, F 2 D(R)).

In other words, every surjective Lévy isometry is induced by an isometry ofR with
respect to its usual norm (or equivalently, by a composition of a translation and a
reflection on R).

The investigation of surjective isometries on spaces of Borel probability mea-
sures was continued for example in [15, 26] for the Kolmogorov-Smirnov distance
which is important in the Kolmogorov-Smirnov statistic and test, and in [7, 8, 20]
with respect to the Wasserstein (or Kantorovich) metric which metrises the weak
convergence.

Let (X, d) be a complete and separable metric space. We will denote the � -
algebra of Borel sets on X by BX and the set of all Borel probability measures
by PX . The Lévy distance gives a metrisation of weak convergence on D(R), or
equivalently on PR. In 1956 Prokhorov managed to metrise the weak convergence
ofPX for general complete and separable metric spaces (X, d). The so-called Lévy-
Prokhorov distance which was introduced by him in [30] is defined by

⇡(µ, ⌫) := inf
�
" > 0

�
�8 A 2 BX : µ(A)  ⌫(A") + "

 
, (1.1)
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where

A" :=
[

x2A
B"(x) and B"(x) := {z 2 X | d(x, z) < "}.

For the details and elementary properties see, e.g., [19, page 27]. Let us point out
that in the special case when X = R this metric differs from the original Lévy
distance. Here arises the following very natural question:

What is the structure of onto isometries with respect to the Lévy-Prokhorov metric
on PX if X is a general separable real Banach space?

This paper is devoted to give an answer to this question. Namely, we will prove
that every such transformation is induced by an affine isometry of the underlying
space X .

There are some particularly important cases in our investigation which we em-
phasise now. Namely, since stochastic processes depending upon a continuous pa-
rameter are basically probability measures on certain subspaces of the space of all
functions of a real variable (see, e.g., [1, 14]), one particularly interesting case is
when the underlying Banach space is C([0, 1]), i.e., the space of all continuous
real-valued functions on [0, 1] endowed with the uniform norm k · k1. For details
see [30, Chapter 2] or [9, Chapter 2]. Further two important cases are when X
is a Euclidean space because of multivariate random variables, and when X is an
infinite dimensional, separable real Hilbert space because of the theory of random
elements in Hilbert spaces.

2. The setting and the statment of our main result

In this section we state the main result of the paper and collect some definitions
and well-known facts about weak convergence of Borel probability measures. For
more details the reader is referred to the textbooks of Billingsley [9], Huber [19]
and Parthasarathy [29].

Let (X, d) be a complete, separable metric space and denote by Cb(X; R) the
Banach space of all real-valued bounded continuous functions. Recall that BX is
the smallest � -algebra with respect to each f 2 Cb(X; R) is measurable. We say
that an element of PX is a Dirac measure if it is concentrated on one point, and for
an x 2 X the symbol �x stands for the corresponding Dirac measure. The set of
all Dirac measures on X is denoted by 1X . The collection of all finitely supported
measures is

FX :=

(
X

i2I
�i�xi

�
�
� #I < @0,

X

i2I
�i = 1, �i > 0, xi 2 X (8 i 2 I )

)

,

which is actually the convex hull of 1X . The support (or spectrum) of µ 2 PX is
the smallest d-closed set Sµ that satisfies µ(Sµ) = 1. Moreover, it is not hard to
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verify the following equation:

Sµ =
�
x 2 X

�
�8 r > 0 : µ(Br (x)) > 0

 
.

The closure of a set H ✓ X will be denoted by H .
We say that a sequence of measures {µn}1n=1 ⇢ PX converges weakly to a

µ 2 PX if we have
Z

f dµn !
Z

f dµ (8 f 2 Cb(X; R)).

This type of convergence is metrised by the Lévy-Prokhorov metric given by (1.1).
A map ' : PX ! PX is called a ⇡-isometry on PX if

⇡(µ, ⌫) = ⇡('(µ),'(⌫)) (8 µ, ⌫ 2 PX )

is satisfied.
Now, we are in the position to state the main result of this paper.

Main Theorem. Let (X, k·k) be a separable real Banach space and ' : PX ! PX
be a surjective ⇡-isometry. Then there exists a surjective affine isometry  : X !X
which induces ', i.e., we have

('(µ)) (A) = µ
⇣
 �1[A]

⌘
(8 A 2 BX ), (2.1)

where  �1[A] denotes the inverse-image set { �1(a) | a 2 A}.

The converse of the above statement is trivial, namely, every transformation of the
form (2.1) is obviously an onto ⇡-isometry. Note that our theorem can be re-phrased
in terms of push-forward measures. Namely, the action of ' is just the push-forward
with respect to the isometry  : X ! X .

As we already mentioned, the Lévy-Prokhorov metric on PR differs from the
Lévy distance on PR. Therefore, in the special case when X = R, our hypotheses
are different from those given in [25, Theorem 1], although the conclusion is the
same.

Our proof is given in the next section where we will have four major steps.
This will be followed by some remarks in the final section, where we will also point
out that our Main Theorem still holds if we replace PX with an arbitrary weakly
dense subset S .

3. Proof

The proof is divided into four major steps. First, we will explore the action of ' on
1X . Then for finitely supported measures µ we will investigate the behaviour of its
image '(µ) near to the vertices of the convex hull of Sµ. This will be followed by
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providing a procedure which will allow us to obtain important information about
the “rest” of '(µ). Finally, we close this section with the proof of the Main Theo-
rem. Note that although our main result deals with Borel probability measures on
separable Banach spaces, we state and prove some results in the context of complete
and separable metric spaces.

3.1. First major step: the action on Dirac measures

Here we will investigate properties of the restricted map '|DX . Namely, we will
prove that ' maps1X onto1X , furthermore, there is a surjective affine isometry of
X which induces this restriction. In order to do this first, we formulate the metric
phrase “distance one” by means of the supports of measures.
Proposition 3.1. Let (X, d) be a complete, separable metric space and µ, ⌫ 2 PX .
Then the following statements are equivalent:
(i) ⇡(µ, ⌫) = 1;
(ii) d(Sµ, S⌫) := inf

�
d(x, y) | x 2 Sµ, y 2 S⌫

 
� 1;

(iii) S⌫ \ S1µ = ;;
(iv) Sµ \ S1⌫ = ;.
Proof. Observe that (ii) implies the following inequality for every 0 < " < 1:

1 = µ(Sµ) > ⌫(S"µ) + " = ".

Consequently we have ⇡(µ, ⌫) � 1. But on the other hand, ⇡(µ, ⌫)  1 holds for
all µ, ⌫ 2 PX , and therefore the (ii))(i) part is complete.

To prove (i))(ii) assume that % := d(Sµ, S⌫) < 1. In this case one can fix two
points x⇤ 2 Sµ and y⇤ 2 S⌫ , and a positive number r > 0 which satisfy both

%  d(x⇤, y⇤) =: %0 < 1 and %0 + 2r < 1.
We also set t := min {µ (Br (x⇤)) , ⌫ (Br (y⇤))} which is clearly positive by the very
definition of the support. We will show that "̂ := max{1 � t, %0 + 2r} < 1 is a
suitable choice to guarantee

µ(A)  ⌫
�
A"̂
�
+ "̂ (8 A 2 BX ).

Indeed, if A 2 BX satisfies µ(A)  1� t , then

µ(A)  1� t  ⌫
�
A1�t

�
+ 1� t  ⌫

�
A"̂
�
+ "̂.

On the other hand, if µ(A) > 1 � t , then we observe that µ(A \ Br (x⇤)) > 0,
and consequently A \ Br (x⇤) is not empty. Let us fix a point z 2 A \ Br (x⇤).
Using the triangle inequality we infer d(y⇤, z)  d(y⇤, x⇤)+d(x⇤, z) < %0 +r and
Br (y⇤) ✓ B%0+2r (z) ✓ A"̂. Therefore we conclude

µ(A)  1  t + "̂  ⌫
�
Br
�
y⇤��+ "̂  ⌫

�
A"̂
�
+ "̂,

which implies ⇡(µ, ⌫)  "̂ < 1.
The equivalence of (ii), (iii) and (iv) follows from the definitions.
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Next, let us define the unit distance set of a set of measures A ✓ PX by

A uu =
�
⌫ 2 PX

�
�8 µ 2 A : ⇡(µ, ⌫) = 1

 
.

(Remark that by definition we have ;uu = PX .) The following statement gives a
metric characterisation of Dirac measures when X is a separable real Banach space.
We point out that similar results were also crucial ideas in [15, 25, 26].

Proposition 3.2. Let (X, d) be a complete, separable metric space and µ 2 PX be
an arbitrary Borel probability measure on it. Then the following three statements
are equivalent:

(i) ({µ}uu )uu = {µ};
(ii) there exists an x 2 X such that
(ii/a) µ = �x ;
(ii/b) B1(y) ✓ B1(x) implies x = y for every y 2 X;

(iii) # ({µ}uu )uu = 1.

Proof. First, let us characterise the elements of ({µ}uu )uu . It follows from Proposi-
tion 3.1 that

{µ}uu =
n
⌫ 2 PX

�
� S1⌫ \ Sµ = ;

o
=
n
⌫ 2 PX

�
� S⌫ \ S1µ = ;

o
.

Applying this observation twice, we easily see that

({µ}uu )uu =
\

⌫2{µ}uu
{⌫}uu =

\

⌫2PX ,S⌫\S1µ=;

n
# 2 PX

�
� S⌫ \ S1# = ;

o
, (3.1)

and therefore we obtain the following equivalence:

# 2 ({µ}uu )uu () S1# ✓ S1µ. (3.2)

(Note that if {µ}uu = ;, then
T
⌫2;{⌫}

uu = PX in (3.1) by definition.)
Now, since µ 2 ({µ}uu )uu always holds, the equivalence of (i) and (iii) is appar-

ent. We continue with proving (i))(ii). Observe that (3.2) implies
�
�z
�
� z 2 Sµ

 
✓ ({µ}uu )uu ,

thus (ii/a) follows. On the other hand, if any y 2 X satisfies

S1�y = B1(y) ✓ B1(x) = S1�x ,

then again by (3.2) we infer x = y.
Finally, we show (ii))(i). Assume that # 2 ({µ}uu )uu . By (ii/b) we get that

S1# ✓ S1�x holds if and only if S# ✓ {x}, which implies (i).
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Remark 3.3. Note that if the diameter of the metric space X is less than 1, i.e.,
there exists an 0 < r < 1 such that d(x, y)  r (8 x, y 2 X), then ⇡(µ, ⌫)  r
holds for every µ, ⌫ 2 PX . In particular, {µ}uu = ; and thus ({µ}uu )uu = PX for
every µ 2 PX .
The following lemma describes the action of ' on Dirac measures.

Lemma 3.4. Let (X, k ·k) be a separable real Banach space, and let ' : PX ! PX
be a surjective ⇡ isometry. Then there exists a surjective affine isometry : X ! X
such that

'(�x ) = � (x) (8 x 2 X). (3.3)

Proof. Since ' is a bijective isometry, we have

'
�
({µ}uu )uu

�
=
�
{'(µ)}uu

�uu
(8 µ 2 PX ).

Thus an easy application of the previous proposition yields '(1X ) = 1X . This also
means that there exists a bijective map  : X ! X which induces the restriction
'|1X , i.e.,

'(�x ) := � (x) (8 x 2 X). (3.4)

We will show that  is an isometry. Observe that

⇡(�x1, �x2) = min{1, kx1 � x2k} (8 x1, x2 2 X).

Therefore for all ↵ 2 (0, 1) we have

k (x1) �  (x2)k = ↵ () kx1 � x2k = ↵ (8 x1, x2 2 X). (3.5)

If X is one-dimensional, then it is rather easy to see that (3.5) implies the isometri-
ness of  . Now, assume that dim X � 2. After suitable renorming (i.e., considering
the norm ||| · ||| := 1

↵k · k), from a result of T. M. Rassias and P. Šemrl [31, Theo-
rem 1] we conclude that

k (x) �  (y)k = n↵ () kx � yk = n↵ (8 ↵ 2 (0, 1), n 2 N),

and therefore  is indeed an isometry. Finally, by the famous Mazur-Ulam theorem
we obtain that  is affine, which completes the proof.

We remark that the last step of the proof (using the Rassias-Šemrl theorem)
can be also done by the extension theorem of Mankiewicz [23].

In light of the above lemma, from now on we may and do assume without loss
of generality that ' acts identically on 1X , i.e.,

'(�x ) = �x (8 x 2 X), (3.6)

and our aim will be to show that ' acts identically on the whole of PX . After we do
so, to obtain the result of our Main Theorem for general surjective ⇡-isometries will
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be straightforward. Namely, if (3.3) is fulfilled, then we can consider the following
modified transformation:

' : PX ! PX ,
�
' (µ)

�
(A) :=('(µ)) ( [A]) (8 µ 2 PX , A 2 B ). (3.7)

By our assumption, ' fixes every element of 1X and thus also of PX , which
implies (2.1).

Next, let us define the following continuous function for each µ 2 PX :

Wµ : X ! [0, 1], Wµ(x) := ⇡(�x , µ),

which will be called the witness function of µ. The main advantage of the assump-
tion (3.6) is that the witness function becomes '-invariant, i.e.,

Wµ(x)=⇡(�x , µ)=⇡('(�x ),'(µ))=⇡(�x ,'(µ))=W'(µ)(x) (8 x 2 X). (3.8)

It is natural to expect that the shape of the witness function carries some informa-
tion about the measure. The last three major steps of the proof will be devoted to
explore this for the '-images of finitely supported measures in the setting of sepa-
rable Banach spaces. However, as demonstrated by the next example, the witness
function usually does not distinguish measures in general complete and separable
metric spaces.
Example 3.5. Consider the complete and separable metric space (X, d) with

X := {x1, x2, x3} and d(xi , x j ) :=

(
1
3 if i 6= j
0 if i = j.

Let µ := 1
2�x1 + 1

2�x2 and ⌫ := 1
2�x2 + 1

2�x3 . An easy calculation shows that we
have ⇡(�x , µ) = 1

3 = ⇡(�x , ⌫) for all x 2 X and hence Wµ ⌘ W⌫ .

3.2. Second major step: isolated atoms on the vertices of the convex hull of the
support

Here we will prove that if µ is a finitely supported measure, and x̂ is a vertex of the
convex hull of Sµ, then x̂ is an isolated atom of '(µ) and

µ({x̂}) = ('(µ))({x̂}).

We begin with a technical statement, which will be very useful in the sequel.

Proposition 3.6. Let X be a separable real Banach space, and suppose that µ is a
finitely supported measure. Then for every ⌫ 2 PX , ⌫ 6= µ we have

⇡(µ, ⌫) = min
�
" > 0 |8 A ✓ Sµ : µ(A)  ⌫(A") + "

 
. (3.9)
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Proof. Since one deals with finitely many balls, it is easy to see that the number "
obtained as the infimum without closures gives the minimum with closures.

The following proposition plays a key role in the proof. But before stating it we
introduce some notations. The convex hull of two points x and y will be denoted by
[x, y], and the symbol ]x, y[will stand for the set [x, y]\{x, y}. If f is a real valued
function on X and c 2 R, then the sets {x 2 X | f (x) < c}, {x 2 X | f (x) = c}, and
{x 2 X | f (x)  c}will be denoted by { f < c}, { f = c}, and { f  c}, respectively.

Proposition 3.7. Let (X, k·k) be a separable real Banach space, µ 2 FX \1X and
K be the convex hull of Sµ. Assume that x̂ is a vertex of K (which is a polytope)
and set �̂ := µ({x̂}) (for which we obviously have 0 < �̂ < 1). Then for every
# 2 PX with S# ✓ K the following two conditions are equivalent:

(i) # = �̂�x̂ + (1� �̂)e# wheree# 2 PX with Se# ✓ K \ Br (x̂) for some r > 0;
(ii) there exist a number 0 < ⇢  1� �̂ and a half-line e starting from x̂ such that

the restriction W# |e is of the following form:

W# |e(x) =

8
><

>:

1 if kx � x̂k � 1
kx � x̂k if 1� �̂ < kx � x̂k < 1
1� �̂ if 1� �̂� ⇢  kx � x̂k  1� �̂.

(3.10)

Moreover, S'(µ) ✓ K and x̂ is an isolated atom of '(µ) with ('(µ))({x̂}) = �̂.

Y

x̌
1

e

K

S
ϑ

x̂

{f = ĉ}
{f = c}

˜

Figure 3.1. Illustration for Proposition 3.7 on the finite dimensional subspace Y . The
support Sµ consists of the set of black points in K .

Proof. First, we construct a half-line e which starts from x̂ and satisfies

d ({x}, K ) = kx � x̂k < kx � kk (8 x 2 e, k 2 K \ {x̂}). (3.11)
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Being the convex hull of a finite set, each vertex of K is strongly exposed, i.e., there
exists a continuous linear functional f 2 X⇤ with

ĉ := max{ f (y) | y 2 K } = f (x̂) and K \ {x̂} ⇢ { f < ĉ}.

Let Y be the subspace generated by K . We fix an x̌ 2 Y such that x̂ 2 B1(x̌) and

B1(x̌) \ { f  ĉ} \ Y ✓ { f = ĉ}.

Note that as Y is finite dimensional, the existence of such an x̌ is guaranteed. Now,
we define e to be the half-line starting from x̂ and going through x̌ . It is straightfor-
ward that e fulfils (3.11).

Next, we consider an arbitrary # 2 PX which satisfies (i). It is clear form the
compactness of Sµ and S# , and the isolatedness of the point x̂ in both Sµ and S# ,
that there is a number c < ĉ such that

(Sµ [ S# ) \ {x̂} ✓ { f < c} (3.12)

holds. Consequently, for every x 2 e we have

d ({x}, K ) = kx � x̂k > d ({x}, { f  c} \ Y ) > d
�
{x}, (Sµ [ S# ) \ {x̂}

�
.

Therefore, if x 2 e and ↵ := kx � x̂k > 0, then there exists a y 2 ]x, x̂[ ✓ e which
satisfies the following equations:

�̂ = #({x̂}) = #(B↵(x)) = #(B↵(z)) (8 z 2 [x, y]), (3.13)

and

�̂ = µ({x̂}) = µ(B↵(x)) = µ(B↵(z)) (8 z 2 [x, y]). (3.14)

In fact, y can be chosen to be any point on ]x, x̂[ such that

kx � yk  d
�
{ f = ĉ}, { f = c}

�
.

We proceed to prove the equivalence of (i) and (ii). Trivially, both (i) and (ii)
implies that # /2 1X , and therefore from now on we may and do assume that # is
not a Dirac measure. Recall that according to Proposition 3.6 we have

W# (x) = min
n
" > 0 | 1  #(B"(x)) + "

o
(8 x 2 X). (3.15)

If (i) holds, then by combining (3.15) with (3.11) and (3.13) we obtain that W# |e is
of the form (3.10) with ⇢ := min

�
1� �̂, d

�
{ f = ĉ}, { f = c}

� �
.

Conversely, we suppose that # 2 PX , S# ✓ K and # satisfies (ii). Let x1 and
x2 be the points on e which satisfy kx1 � x̂k = 1� �̂ and kx2 � x̂k = 1� �̂� ⇢.
By (3.10) we have W# (x1) = W# (x2) = 1� �̂. Therefore on one hand, we obtain

1  #(B1��̂(x1)) + 1� �̂ = #({x̂}) + 1� �̂,
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from which �̂  #({x̂}) follows. On the other hand,

1 > #(B1��̂��(x2)) + 1� �̂� � � #({x̂}) + 1� �̂� � (8 0 < � < ⇢)

is satisfied. Hence we infer #({x̂}) < �̂ + � for every � > 0, and thus trivially
#({x̂}) = �̂ holds. But we also observe the following:

1 > #
⇣
B1��̂��(x2)

⌘
+1� �̂�� � #

✓
B1��̂�⇢2

(x2)
◆

+1� �̂��
�
8 0 < � < ⇢

2
�

which implies

�̂ � #

✓
B1��̂�⇢2

(x2)
◆

� #
�
{x̂}
�

= �̂,

whence we conclude that x̂ is indeed an isolated atom of # .
For the last statement first, by Proposition 3.1 we infer ⇡(�x , µ) = 1 for every

x /2 K 1. The '-invariance of the witness function gives

1 = ⇡(�x ,'(µ))
�
x 2 X \ K 1

�
,

and hence, again by Proposition 3.1, we conclude

S'(µ) \ B1(x) = ;
�
x 2 X \ K 1

�
.

Consequently, we obtain

S'(µ) ✓ X \
�
X \ K 1

�1
✓ K .

Finally, an application of the equivalence of (i) and (ii) gives the rest.

We have the following consequence.

Corollary 3.8. Let (X, k · k) be a separable real Banach space. If µ 2 FX such
that #Sµ  2, then '(µ) = µ. Moreover, if ⌫ 2 PX with Wµ ⌘ W⌫ , then µ and ⌫
coincide.

According to the above results, now we know that ' fixes every measure which
has at most two points in its support. Although we are expecting the same for all
µ 2 FX , right now we only have some information about the behaviour of '(µ)
near to the vertices of the convex hull of its support.
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3.3. Third major step: the story beyond vertices

Here we show a procedure how the behaviour of '(µ) can be completely explored
in case when µ is a finitely supported measure. In order to do so, we need to
introduce some technical notations. Let s > 0 be a positive parameter and define
the s-Lévy-Prokhorov distance ⇡s : PX ⇥ PX ! [0, 1] by the following formula:

⇡s(µ, ⌫) := inf
�
">0 |8 A2BX : s ·µ(A)s ·⌫(A") + "

 
(8 µ, ⌫2PX ). (3.16)

Note that although we do not know at this point whether ⇡s defines a metric on
PX , we will see this later. The s-witness function (or modified witness function) of
µ 2 PX is defined by

Ws,µ : X ! R, Ws,µ(x) := ⇡s(�x , µ).

Obviously, if we set s = 1, then we get the original Lévy-Prokhorov metric and
witness function.

In the next two lemmas we collect some properties of the s-Lévy-Prokhorov
distance analogous to those provided in the previous major step.

Lemma 3.9. Let (X, k · k) be a separable real Banach space and s > 0. Then
(PX ,⇡s) is a metric space. Furthermore, for every µ 2 FX and ⌫ 2 PX with
⌫ 6= µ we have

⇡s(µ, ⌫) = min
�
" > 0

�
�8 A ✓ Sµ : s · µ(A)  s · ⌫(A") + "

 
.

Proof. For the sake of clarity, let us use more detailed notations here. If k · k is a
norm on X , then denote by A",k·k and ⇡s,k·k the open "-neighborhood of A and the
s-Lévy-Prokhorov metric with respect to k · k, respectively. Observe that the Borel
� -algebras of (X, k · k) and

�
X, 1s k · k

�
coincide as the norms are equivalent. By an

elementary computation we have As�,k·k = A�,
1
s k·k, which yields

⇡s,k·k(µ, ⌫) = inf
n
" > 0

�
�
�8 A 2 BX : s · µ(A)  s · ⌫

�
A",k·k

�
+ "

o

= inf
n
s� > 0

�
�
�8 A 2 BX : s · µ(A)  s · ⌫

�
As�,k·k

�
+ s�

o

= s · inf
n
� > 0

�
�
�8 A 2 BX : µ(A)  ⌫

�
As�,k·k

�
+ �

o

= s · inf
n
� > 0

�
�
�8 A 2 BX : µ(A)  ⌫

�
A�,

1
s k·k

�
+ �

o

= s · ⇡ 1
s k·k

(µ, ⌫)

(3.17)

for every µ, ⌫ 2 PX . In particular, ⇡s is a metric on PX , and using the formula
(3.9) completes the proof.

We omit the proof of the following lemma as it is a straightforward conse-
quence of (3.17).
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Lemma 3.10. Let (X, k · k) be a separable real Banach space, µ 2 FX \1X and
s > 0. Let us denote the convex hull of Sµ by K , and assume that x̂ is a vertex of
K . Set �̂ := µ({x̂}) 2 (0, 1). Then for every # 2 PX with S# ✓ K the following
two conditions are equivalent:

(i) # = �̂�x̂ + (1� �̂)e# wheree# 2 PX with Se# ✓ K \ Br (x̂) for some r > 0;
(ii) there exist a number 0 < ⇢  s(1 � �̂) and a half-line e starting from x̂ such

that Ws,# |e has the following form:

Ws,# |e(x) =

8
<

:

s if kx � x̂k � s
kx � x̂k if s(1� �̂) < kx � x̂k < s
s(1� �̂) if s(1� �̂) � ⇢  kx � x̂k  s(1� �̂).

As a consequence we have that if µ 2 FX , #Sµ  2, ⌫ 2 PX and Ws,µ ⌘ Ws,⌫ ,
then µ = ⌫.

Next, let us suppose for a moment thatm 2 N pieces of atoms of # 2 PX have been
already detected. (For instance by Lemma 3.7, if # = '(µ) with µ 2 FX then the
atoms of # in the vertices of the convex hull of S# can be detected.) Our aim with
the forthcoming lemma is to describe a modified witness function of the remaining
part of # in terms of the (original) Lévy-Prokhorov distances between # and some
measures which are supported on at most m + 1 points. This will be later utilised
in order to explore the action of ' on FX .

Lemma 3.11. Let (X, k · k) be a separable real Banach space and # 2 PX . Let
x 2 X and {y j,l | 1  j  k, 1  l  d j } ⇢ X be some pairwise different points
such that

⇢ j := kx � y j,1k = kx � y j,lk
�
8 1  l  d j

�

holds for every 1  j  k,

⇢ j > ⇢ j+1 > 0 (8 1  j  k � 1),

and
w j,l := #

��
y j,l
 �

> 0
�
8 1  j  k, 1  l  d j

�
.

We also set

w j :=
d jX

l=1
w j,l = #

��
y j,1, . . . , y j,d j

 �
(8 1  j  k),

ew := 1�
kX

j=1
w j

and

⌘r :=
rX

j=1

d jX

l=1
w j,l · �y j,l +

 

1�
rX

j=1
w j

!

· �x 2 FX (8 0  r  k). (3.18)
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Furthermore, denote bye# 2 PX the measure which satisfies

# =
kX

j=1

d jX

l=1
w j,l · �y j,l + ew ·e# . (3.19)

Then the ew-witness function of e# can be expressed in terms of the Lévy-Prokhorov
distances of # and ⌘r ’s in the following way:

Wew,e# (x) =

8
><

>:

⇡(�x ,#) if x is not (P1)
⇡(⌘r ,#) if x is (Pr ) but not (Pr+1) with some 1  r < k
⇡(⌘k,#) if x is (Pk)

(3.20)

where for every 1  r  k the property (Pr ) means

⇡(⌘r�1,#)  ⇢r . (Pr )

x

ρ3
ρ2

ρ1

y3,3

y3,2

y3,1

y2,4

y2,3y2,2

y2,1
y1,2

y1,1

Figure 3.2. An illustration when X = R2 with the `1-norm.

Remark 3.12. It is extremely important to observe that the subscripts in the lemma
above highly depend on the actual position of x . For instance on Figure 1 with that
particular x we have k = 3. However, if x is moved slightly to the right, then k
becomes 7. In particular, this changes (Pr ) and therefore (3.20) as well.

Proof of Lemma 3.11. We split our proof into five parts.

Part 1. First, we prove that for each 1  r  k and 0 < " < ⇢r we have

⌘r (A)  #(A") + "
�
8 A ✓ S⌘r

�
(3.21)

if and only if

⌘r ({x})  #(B"(x)) + " (3.22)



A CHARACTERISATION OF LÉVY-PROKHOROV ISOMETRIES 669

is satisfied. One direction is obvious. In order to see the reverse implication, observe
that (3.21) holds trivially if x /2 A. On the other hand, if x 2 A, then (3.22) yields
(3.21) for this A by the following estimate:
⌘r (A) = ⌘r ({x}) + ⌘r (A \ {x})  #(B"(x)) + " + #(A \ {x})  #(A") + ".

Part 2. Here we show that the right-hand side of (3.20) is well defined. First, we
observe that by Proposition 3.6 x is (Pr ) if and only if

⌘r�1(A)  #(A⇢r ) + ⇢r
�
8 A ✓ S⌘r�1

�
. (3.23)

But by Part 1, this is equivalent to the following inequality:

1�
r�1X

j=1
w j  #(B⇢r (x)) + ⇢r . (P 0

r )

Next, let 2  r  k. In order to see the well-definedness, it is enough to show that
if x is (Pr ), then x is also (Pr�1). So assume that x is (Pr ). Since ⇢r < ⇢r�1 and

wr�1 =
dr�1X

l=1
wr�1,l = #

��
yr�1,1, . . . yr�1,dr�1

 �
 #

⇣
B⇢r�1(x) \ B⇢r (x)

⌘
,

we obtain

1�
r�2X

j=1
w j  #(B⇢r�1(x)) + ⇢r�1. (P 0

r�1)

Therefore x is indeed (Pr�1).
Part 3. Next, we verify (3.20) in case when x is not (P1), i.e., ⇡(�x ,#) > ⇢1.
Observe that since

1 > #(B⇢1(x)) + ⇢1 = ew ·e#(B⇢1(x)) +
kX

i=1
wi + ⇢1,

we have
ew > ew ·e#(B⇢1(x)) + ⇢1,

and thus
⇡ew(�x ,e#) > ⇢1

follows. Using this fact we obtain

⇡ew(�x ,e#) = min
n
" > ⇢1

�
� ew  ew ·e#(B"(x)) + "

o

= min

(

" > ⇢1

�
�
�
� 1 

kX

j=1
w j + ew ·e#(B"(x)) + "

)

= min
n
" > ⇢1

�
� 1  #(B"(x)) + "

o

= min
n
" > 0

�
� 1  #(B"(x)) + "

o
= ⇡(�x ,#),

which completes this part.
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Part 4. We proceed to show (3.20) in the case when x is (Pr ) but not (Pr+1) with
some 1  r < k. As in the previous part, first we estimate the value of ⇡ew(�x ,e#).
According to the re-phrasing (P 0

r ) and the assumption, we have

1�
r�1X

j=1
w j  #(B⇢r (x)) + ⇢r =

kX

i=r
wi + ew ·e#(B⇢r (x)) + ⇢r

and

1�
rX

j=1
w j > #(B⇢r+1(x)) + ⇢r+1 =

kX

i=r+1
wi + ew ·e#(B⇢r+1(x)) + ⇢r+1.

Observe that these inequalities are equivalent to

ew  ew ·e#(B⇢r (x)) + ⇢r

and

ew > ew ·e#(B⇢r+1(x)) + ⇢r+1,

respectively. Thus we conclude that

⇢r+1 < ⇡ew(�x ,e#)  ⇢r .

In particular,e# is different from �x , and we have

⇡ew(�x ,e#) = min
n
⇢r+1 < "  ⇢r

�
� ew  ew ·e#(B"(x)) + "

o
. (3.24)

From now on we consider two cases: (a) when ⇢r+1 < ⇡ew(�x ,e#) < ⇢r , and (b)
when ⇡ew(�x ,e#) = ⇢r . Assume first that (a) is fulfilled. Then (3.24) becomes

⇡ew
�
�x ,e#

�
= min

(

⇢r+1 < " < ⇢r

�
�
� 1�

rX

i=1
wi 

kX

i=r+1
wi + ew ·e#(B"(x)) + "

)

= min

(

⇢r+1 < " < ⇢r

�
�
� 1�

rX

i=1
wi  #(B"(x)) + "

)

= min
�
⇢r+1 < " < ⇢r

�
� ⌘r ({x})  #({x}") + "

 

= min
�
⇢r+1 < " < ⇢r

�
�8 A ✓ S⌘r : ⌘r (A)  #(A") + "

 
(by Part 1)

= min
�
" > 0 |8 A ✓ S⌘r : ⌘r (A)  #(A") + "

 

= ⇡(⌘r ,#),
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which is exactly the desired equation. Second, suppose that (b) is satisfied. Conse-
quently, we have

1�
kX

j=1
w j = ew > ew ·e#(B"(x)) + " (8 ⇢r+1 < " < ⇢r ),

whence

⌘r ({x}) = 1�
rX

i=1
wi >

kX

i=r+1
wk + ew ·e#(B"(x)) + " = #(B"(x)) + "

follows for every ⇢r+1 < " < ⇢r . In particular, we get

⇡(⌘r ,#) � ⇢r .

Finally, we verify that the converse inequality holds as well. Suppose indirectly that
there exists an A ✓ S⌘r such that

⌘r (A) > #(A⇢r ) + ⇢r .

Clearly, x /2 A contradicts the above inequality, thus x 2 A follows. Therefore we
have

⌘r (A) > #(A⇢r ) + ⇢r � #(A [ B⇢r (x)) + ⇢r

� #(A \ {x, yr,1, . . . , yr,dr }) + #(B⇢r (x)) + ⇢r

= ⌘r (A \ {x, yr,1, . . . , yr,dr }) + #(B⇢r (x)) + ⇢r .

Consequently,

1�
r�1X

j=1
w j = ⌘r ({x, yr,1, . . . , yr,dr })

� ⌘r (A) � ⌘r (A \ {x, yr,1, . . . , yr,dr }) > #(B⇢r (x)) + ⇢r ,

(3.25)

which contradicts (Pr ). This completes the present part.

Part 5. Finally, we prove (3.20) when x is (Pk), i.e., ⇡(⌘k�1,#)  ⇢k . We have to
show that ⇡(⌘k,#) = ⇡ew(�x ,e#). Because of the assumption, we have

1�
k�1X

j=1
w j  #(B⇢k (x)) + ⇢k = wk + ew ·e#(B⇢k (x)) + ⇢k,

which implies ew  ew ·e#(B⇢k (x)) + ⇢k , and hence,

⇡ew(�x ,e#)  ⇢k .
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We consider three cases: (a) when 0 < ⇡ew(�x ,e#) < ⇢k , (b) when ⇡ew(�x ,e#) = ⇢k ,
and (c) when ⇡ew(�x ,e#) = 0. First, let us suppose (a). In this case we have

⇡ew(�x ,e#) = min
n
0 < " < ⇢k

�
� ew  ew ·e#(B"(x)) + "

o

= min
n
0 < " < ⇢k

�
� ⌘k({x})  #(B"(x)) + "

o

= min
�
0 < " < ⇢k |8 A ✓ S⌘k : ⌘k(A)  #(A") + "

 
(by Part 1)

= ⇡(⌘k,#).

Second, we assume (b). Let us observe the following for every " < ⇢k :

⌘k({x}) = ew > ew ·e#(B"(x)) + " = #(B"(x)) + ",

which implies ⇡(⌘k,#) � ⇢k . To show the converse inequality, i.e., ⇡(⌘k,#)  ⇢k ,
assume indirectly that there exists an A ✓ S⌘k such that

⌘k(A) > #(A⇢k ) + ⇢k .

Very similarly, as in the verification of (3.25), we conclude that this inequality con-
tradicts (Pk). Finally, the case (c) is trivial.

Since the modified witness function is obviously continuous, we also know the
value of Wew,e# (x) when x 2

�
y j,l | 1  j  k, 1  l  d j

 
. Therefore if m pieces

of atoms of # 2 PX have been already detected, then a modified witness function of
the remaining part of # can be calculated in terms of the Lévy-Prokhorov distances
between # and some measures supported on a set of at most m + 1 points.

3.4. Final major step: the action on FX andPX

Now, we are in the position to verify our main result.

Proof of Main Theorem. Recall that we assumed (3.6) and that our aim is to show
that ' is the identity map. Observe that it is enough to prove that ' acts identically
on FX , as FX is a weakly dense subset of PX and ' is continuous. In order to do
this we use induction on the cardinality of the support of µ 2 FX . By Corollary 3.8
our map ' fixes all measures with an at most two-element support. Let k 2 N, k � 2
and assume that we had already proved the following:

'(⌫) = ⌫ (8 ⌫ 2 PX , #S⌫  k). (3.26)
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Let us consider a measure

µ =
k+1X

i=1
�i�xi 2 FX ,

where the xi ’s are pairwise different,
Pk+1

i=1 �i = 1 and each �i is positive. As-
sume also that for every 1  i  k the point xi lies outside of the convex hull of
{x j }k+1j=i+1. Let us use the following notations in the sequel:

# := '(µ) and µ(i) :=
1

k+1P

j=i+1
� j

·
k+1X

j=i+1
� j�x j (0  i  k).

By Proposition 3.7 we observe that the support of # is contained in the convex hull
of Sµ = {x j }k+1j=1.

Now, we prove step by step that each xi is an atom of '(µ) with the same
weight �i . By (3.8) we have Wµ ⌘ W# , thus an application of Proposition 3.7
gives

# = �1 · �x1 + (1� �1) · # (1),

with a measure # (1) 2 PX such that x1 /2 S#(1) and S#(1) lies in the convex hull of
Sµ = {x j }k+1j=1. Utilising Lemma 3.11 and (3.26) for measures with supports of at
most 2 elements we obtain

W1��1,µ(1) ⌘ W1��1,#(1) .

At this point, if k was 2, then #Sµ(1) = 2, thus by Lemma 3.10 the measures µ(1)

and # (1) coincide, and therefore µ = '(µ) is yielded. Otherwise, applying Lemma
3.10 for the measures µ(1) and # (1) gives

# = �1 · �x1 + �2 · �x2 + (1� �1 � �2) · # (2),

with a measure # (2) 2 PX such that x2 /2 S#(2) and S#(2) lies in the convex hull of
Sµ(1) = {x j }k+1j=2. Using Lemma 3.11 and (3.26) for the case when the cardinality of
the support is at most 3, we obtain

W1��1��2,µ(2) ⌘ W1��1��2,#(2) .
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Iterating this procedure, the conclusion of the (k � 2)nd step is the following:

W1�Pk�2
i=1 �i ,µ

(k�2) ⌘ W1�Pk�2
i=1 �i ,#

(k�2) (3.27)

where

# =
k�2X

i=1
�i�xi +

 

1�
k�2X

i=1
�i

!

· # (k�2)

such that # (k�2) 2 PX , xk�2 /2 S#(k�2) and S#(k�2) lies in the convex hull of
Sµ(k�3) = {xk�2, xk�1, xk, xk+1}. Utilising Lemma 3.10 for the measures µ(k�2)

and # (k�2) we get that

# =
k�1X

i=1
�i�xi +

 

1�
k�1X

i=1
�i

!

· # (k�1)

with some # (k�1) 2 PX , xk�1 /2 S#(k�1) and S#(k�1) lies in the convex hull of
Sµ(k�2) = {xk�1, xk, xk+1}. Furthermore, by Lemma 3.11 and (3.26) we obtain

W1�Pk�1
i=1 �i ,µ

(k�1) ⌘ W1�Pk�1
i=1 �i ,#

(k�1) . (3.28)

But since #Sµ(k�1) = 2, Lemma 3.10 and (3.28) imply µ(k�1) = # (k�1), and there-
fore we conclude '(µ) = µ, completing the proof.

4. Concluding remarks

We noted at the end of Section 2 that it is possible to give a characterisation of
surjective ⇡-isometries on certain subsets of PX . Namely, let S ⇢ PX be a weakly
dense subset (possibly disjoint from 1X ), and assume that � : S ! S is onto and
satisfies

⇡(�(µ),�(⌫)) = ⇡(µ, ⌫) (8 µ, ⌫ 2 S).

Since (PX ,⇡) is a complete metric space, there exists a unique isometric extension
' : PX ! PX , i.e., '|PX = �. Clearly, ' is a ⇡-isometry which maps PX into PX .
Observe that '[PX ] is closed in PX . On the other hand, as S = '[S] ⇢ '[PX ], we
infer '[PX ] = PX . Therefore ' : PX ! PX is induced by a surjective isometry
 : X ! X , whence we conclude the same for � : S ! S , i.e.,

(�(µ)) (A) = µ
�
 �1[A]

�
(8 µ 2 S, A 2 BX ).

We proceed to mention some typical examples of weakly dense subsets of PX (for
which the above statement holds). 1) The set of all discrete Borel probability mea-
sures, which is the collection of those µ 2 PX that are concentrated on a countable
subset of X . 2) The class of all continuous Borel probability measures, i.e., those
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µ 2 PX such that µ({x}) = 0 for every x 2 X . 3) Let n 2 N, X = Rn and k · k
be an arbitrary norm on Rn . Since any two norms on Rn are equivalent, the Borel
� -algebra BRn does not depend on k · k. We say that µ 2 PRn is an absolutely
continuous Borel probability measure if it is absolutely continuous with respect to
the usual Lebesgue measure on Rn . This set is clearly weakly dense in PRn , as
every element of FX can be approximated.

Next, as we have mentioned in the introduction, the most important special
cases of our result are the following: 1) when X is an infinite dimensional, separable
real Hilbert space; 2) when X is the real Banach space C([0, 1]); and 3) when X
is an n-dimensional Euclidean space (n 2 N). We make some comments on how
our proof could be modified in these cases. In the first two cases the underlying
Banach spaces are of infinite dimension, hence the support of any µ 2 FX lies in
a finite dimensional affine subspace. In case of 1) the equivalence in Proposition
3.7 can be done for every element x̂ in Sµ by choosing a half-line e orthogonal to
that affine subspace. Therefore the proof becomes much simpler as we immediately
obtain that every µ 2 FX is fixed by '. A similar argument simplifies the proof for
general strictly convex infinite dimensional separable Banach spaces. In case of 2)
the space is of infinite dimension but the norm is not strictly convex. Despite of this
obstacle the proof still can be shortened by utilising the Lindenstrauss-Troyansky
theorem [12, 22, 32]. Namely, if µ 2 FX and Sµ is contained in the kernel of a
strongly exposing functional (for the definition see, e.g., [12]), then the equivalence
part of Proposition 3.7 can be verified for every element x̂ in Sµ. Since by the
Lindenstrauss-Troyansky theorem it is easy to see that every µ 2 FX can be weakly
approximated by such measures, we easily complete the proof of the Main Theorem
in this case too. It seems that for finite dimensional spaces, even for the case of 3),
we really have to do the whole procedure presented in Section 3, or at least we are
not aware of any shortening possibilities.

Finally, we note that throughout Section 3 there were some parts where we
considered general complete and separable metric spaces. But later on most of our
techniques required that the underlying space had a linear structure. In our opinion
it would be interesting to find a characterisation of all surjective ⇡-isometries in the
setting of other special (but still general enough) kinds of complete separable metric
spaces.
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[18] GY. P. GEHÉR and P. ŠEMRL, Isometries of Grassmann spaces, J. Funct. Anal. 270 (2016),
1585–1601.

[19] P. J. HUBER, “Robust Statistics”, John Wiley & Sons, Inc., New York, 1981.
[20] B. KLOECKNER, A geometric study of Wasserstein spaces: Euclidean spaces, Ann. Scuola

Norm. Sup. Pisa Cl. Sci. (5) 9 (2010), 297–323.
[21] E. LE DONNE and A. OTTAZZI, Isometries of Carnot groups and sub-Finsler homogeneous

manifolds, J. Geom. Anal. 26 (2016), 330–345.
[22] J. LINDENSTRAUSS, On operators which attain their norm, Israel J. Math. 1 (1963), 139–

148.
[23] P. MANKIEWICZ, On extension of isometries in normed linear spaces, Bull. Acad. Polon.

Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 367–371.
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