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Weak type (1,1) estimates for inverses
of discrete rough singular integral operators

MACIEJ PALUSZYNSKI AND JACEK ZIENKIEWICZ

Abstract. We obtain weak type (1,1) estimates for the inverses of truncated dis-
crete rough Hilbert transform. We include an example showing that our result is
sharp. One of the ingredients of the proof are regularity estimates for convolutions
of singular measure associated with the sequence [m↵]; see [18].

Mathematics Subject Classification (2010): 42B25 (primary); 1P05 (sec-
ondary).

1. Introduction

Suppose 1 < ↵  1 + 1
1000 , 0 < ✓ < 1 are fixed parameters. For a non-negative

number M we consider a family of operators on `2(Z)

HM f (x) =
X

M✓sM
s-dyadic

Hs f (x)

=
X

M✓sM
s-dyadic

X

m>0
's

✓
m↵

s

◆
f (x � [m↵]) � f (x + [m↵])

m
, x 2 Z

(1.1)

for some sequence 's which is uniformly in C1
c (12 , 2). It is by now a routine

fact that the operators HM , the truncated Hilbert transforms, are bounded on `p,
1 < p < 1 with norm estimates uniform in M and ✓ . The analogous weak type
(1, 1) estimate seems to be unknown. For a fixed ✓ , by a rather routine application
of the methods of [4, 16, 18] the operators HM can be shown to be of weak type
(1,1) uniformly in M . We intend to return to this issue in the future. The subject
of the current paper has been inspired by [3]. There, a theorem has been proved [3,
Theorem 3], which for our purposes can be formulated as follows:

The second named author was supported by the NCN grant UMO-2014/15/B/ST1/00060.
Received December 7, 2016; accepted in revised form September 11, 2017.
Published online June 2019.



680 MACIEJ PALUSZYNSKI AND JACEK ZIENKIEWICZ

Theorem 1.1. Suppose K is a kernel inRd satisfying K (x) = �(x)/|x |d , where�
is homogeneous of degree 0, � 2 Lq(Sd�1) and has mean 0. Denote K f = K ⇤ f .
Suppose further that for some � 2 C the operator � Id+ K is invertible in L2(Rd).
Then (� Id+ K )�1 is of the form 3 Id+ K 0, where the kernel K 0 satisfies the same
assumptions as K .

It immediately implies:

Corollary 1.2 ([3, 4, 6, 15]). In the setting of the above theorem, the operator
(� Id+ K )�1 is of weak type (1, 1).

The principal object of the current work is to extend the above theorem to the case
of discrete rough Hilbert transforms HM . For a fixed ✓ we prove the uniform in
M estimates for k(� Id + HM)�1k`1!`1,1 , provided such an estimate exists in the
sense of `2. By the previous general remark, this goal is accomplished through the
following representation theorem, which is the main result of this paper:

Theorem 1.3. Suppose 1 < ↵  1 + 1
1000 and let ✓ be such, that ↵ � 1 < ✓ < 1.

Fix � 2 C and suppose that for some constant CI we have
�
�
�(� Id+ HM)�1

�
�
�
`2!`2

 CI , for M � M0. (1.2)

Then, there exists M1 = M1(CI , �) such that for M � M1 the kernel of the operator
(� Id+ HM)�1 has the form

�I Id+ �I HM + K , (1.3)

where K is the classical discrete Calderón-Zygmund kernel, and we have an esti-
mate uniform in M � M1:

�
��I
�
�+

�
��I
�
�+ kKk`2!`2 + kKkCZ  C1(CI , �), (1.4)

where
kKkCZ = sup

y

X

|x |�2|y|
|K (x � y) � K (x)|.

Moreover, the above restriction on ✓ is sharp (we make this statement precise in
Theorem 2.3 in the next section).

Applying standard Banach algebras arguments (see, e.g., [8]), for each fixed M ,
the kernel of the operator (� Id + HM)�1 is in `1((1 + |x |)N ) for any N � 0.
In particular (� Id + HM)�1 is bounded on `1, but the weak type (1, 1) estimate
obtained in this way becomes unbounded when M ! 1. Also, by selfduality of
the multiplier problem, the uniform in M upper bound for k(� Id+HM)�1k`1!`1,1

requires assumption (1.2).
It is worthwhile to put our result in a more general context. First we note

that for the convolution Calderón-Zygmund operators in the continuous setting,
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the invertibility theorems are by now classical. Similarly, the resolvent of the dis-
crete Hilbert transform, if it exists as an operator on `2(Z), is a discrete Calderón-
Zygmund operator. This fact seems to be folklore and can be proved by an ap-
plication of Fourier transform or by the method of [3]. The discrete analogues of
the classical singular integrals have been studied intensively, see some examples
in [1,2,5,10,11,13]. We believe, that our results fit well within this line of research.

ACKNOWLEDGEMENTS. We thank the reviewer for the remarks which significantly
improved the overall presentation of the paper.

2. Main Theorem

Let us recall that we have fixed parameters ↵, ✓ with 1 < ↵  1+ 1
1000 , 0 < ✓ < 1.

We introduce a family of algebras, which are subalgebras of the algebra of operators
on `2.
Definition 2.1. We consider the family of operators T , which are convolution op-
erators on Z, with kernels of the form

T = � Id+ �HM +
X

M✓s<1
s-dyadic

Ks, (2.1)

(we identify convolution operator with its kernel), where the operator HM is the
truncated Hilbert transform:

HM f (x) =
X

M✓sM
s-dyadic

Hs f (x) (2.2)

with

Hs f (x) =
X

m>0
's

✓
m↵

s

◆
f (x � [m↵]) � f (x + [m↵])

m
(2.3)

for some sequence 's which is uniformly in C1
c (12 , 2). We require that the kernels

Ks satisfy:

(i)s
P

x Ks(x) = 0;
(ii)s supp Ks ⇢ [�s, s];
(iii)s

P
x |Ks(x)|2  D2s

s ;

(iv)s
P

x |Ks(x + h) � Ks(x)|2  D2s
s

⇣
|h|
s

⌘�0
;

for some small positive �0 depending only on � = ✓ � (↵ � 1).
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For a fixed M we put

k{Ks}kAM = sup
M✓s<1
s-dyadic

Ds,

and
kTkAM = inf

�
|�| + |�| + k{Ks}kAM

 
, (2.4)

where the infimum is taken over all representations of the operator T in the form
(2.1).
In fact AM is a Banach algebra with the norm CkTkAM for a certain constant C
independent of M . Moreover

K =
X

M✓s<1
s-dyadic

Ks

is Calderón-Zygmund kernel with constant controlled by kTkAM .
We are now ready to formulate the two theorems leading immediately to The-

orem 1.3.

Theorem 2.2. Let ✓ > ↵� 1. Assume that for some fixed � 2 C and a constant CI
all operators � Id+HM are invertible for M � M0 and k(� Id+�HM)�1k`2!`2 
CI . Then for M � M1 we have k(� Id+ �HM)�1kAM  C(CI , �).

Theorem 2.3. Let ✓ < ↵ � 1. There exists a sequence of functions 's and a
compact set 0 ⇢ C such that the corresponding Hilbert transform (2.3) satisfies
k(� Id + HM)�1k`2!`2  CI for all M and � 2 0, and the estimate k(� Id +
HM)�1k`1!`1,1  C , does not, for any C , hold uniformly in � 2 0 and M .

Remark 2.4.

(i) The range of ↵’s considered in Theorem 2.2 is not optimal, and can be im-
proved using the methods from [12, 18] or a variant of the argument used in
this work to prove Lemma 3.1;

(ii) Theorem 2.2 is probably also true with [m↵] replaced by [m↵'(m)], where '
is a function of the Hardy class considered in [12];

(iii) For values of ✓ < 1 close to 1 Theorem 2.2 could be proved using regularising
effect in `2 of the kernel HM . Known estimates for the Fourier transform ĤM
seem, however, to be too weak to cover the entire range of ✓ considered in this
paper;

(iv) In the proof of Lemma 3.7 we could have used a weaker statement of Lem-
ma 3.1, at a cost of a more sophisticated argument. We believe that Lemma
3.1 is of some independent interest, because of its relation to certain type of
Waring problem (see [7, 17]). This is one reason we have chosen the variant
of proof we present;
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(v) Condition (1.2) is always satisfied for sufficiently large |�|. If we only consider
real valued 's , more can be said. Since the kernels HM are anti-symmetric,
the Fourier transform dHM is purely imaginary and also anti-symmetric. Thus
(1.2) is equivalent to � /2 [�i N , i N ], where N � 0. Using the estimates
from [7] it can be shown that

N = lim sup
M!1

sup
⇠2R

�
�
�
�
�
�
�
c↵

X

M✓sM
s-dyadic

Z 1

0
sin(⇠ ts↵)'s(t1/↵)

dt
t1�1/↵

�
�
�
�
�
�
�
;

(vi) We refer the reader to our subsequent paper [14] for a sharper version of The-
orem 2.3.

Theorem 2.2 is an immediate consequence of the following result, which exploits
the mixed-norm submultiplicity properties of algebras AM . The idea of using such
estimates to solve the problem of invertibility of singular integral operators first
appeared in [3].

Theorem 2.5. Let AM , M � M0 � 1 be a family of algebras, consisting of
bounded convolution operators on `2, with norms k · kAM , satisfying

kT1 T2kAM  CA
�
kT1k`2!`2kT2kAM + kT1kAMkT2k`2!`2

�

+ CA✏(M)kT1kAMkT2kAM ,
(2.5)

kT1 T2kAM  CAkT1kAMkT2kAM , (2.6)

where the constant CA does not depend on M and ✏(M) ! 0 as M ! 1. Suppose
all operators from the sequence T (M) are invertible on `2 and satisfy:

k(T (M))�1k`2!`2 + kT (M)kAM  K K independent of M � M0,

kT (M)k`2!`2  � < 1.
(2.7)

Then for an M1 � M0, sufficiently large and depending only on K and �, and all
M � M1, T (M) are invertible in AM , with

�
�(T (M))�1

�
�
AM

 C = C(K , �),

with C(K , �) independent of M � M1.

Proof. We will drop the superscript M and denote T (M) by T . We first prove that
there exist constants C, N0 and �1 < 1, depending only on K , �,CA, such that

�
�
�
�
T (M)

�n
�
�
�
AM

 C �n1 , n � N0. (2.8)
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A simple inductive argument shows an estimate
�
�
�T 2

N
�
�
�
AM

 2N CN
A

�
�
�T 2

N�1
�
�
�
`2!`2

. . . kTk`2!`2kTkAM+

+ ✏ GN
�
kTkAM , kTk`2!`2

�
,

where GN is a polynomial of degree 2N , with non-negative coefficients. Suppose
an operator T satisfies (2.7). Then, clearly

�
�
�T 2

N
�
�
�
AM

 (2CA)
N �2

N
K + ✏ GN (K , �).

Choose N0 such, that
(2CA)

N0 �2
N0 K 

1
4CA

,

and M1 � M0 so that also

✏(M)GN0(K , �) 
1

4CA
, M � M1.

We get �
�
�T 2

N0
�
�
�
AM


1

2CA
, M � M1.

By (2.6) and a standard Banach algebras consideration we get

�
�T n

�
�
AM



✓
1
2

◆ n
2N0

· CCA,K ,�. (2.9)

Suppose that the positive invertible on `2 operator T satisfies (2.7). Then � 
I � T  1 � K�1 so I � T satisfies (2.7). Applying (2.9) to the Neumann series
representation of T�1 we get an estimate kT�1kAM  CK ,�,CA .

Now, if T is an arbitrary operator, invertible on `2 and satisfying (2.7), we
apply the above conclusion to T ⇤ T and T T ⇤ and the proof of the theorem is con-
cluded.

The fact that the algebra norms k · kAM satisfy the hypotheses (2.5) and (2.6)
will follow from a series of lemmas, which are gathered in the next section.

3. Lemmas

In this section we fix ✓ = ↵�1+�, � > 0. Let ' 2 C1
c (12 , 2), and, for convenience

let us introduce an operator Hs :

Hs f (x) = Hs↵ f (x) =
X

m>0
'
⇣m
s

⌘ f (x � [m↵]) � f (x + [m↵])
m

, (3.1)

where Hs corresponds to the functions '̃s(t) = '(t1/↵). Let us denote by Hs(x)
the kernel of this operator.
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Lemma 3.1. Fix 1 < ↵ < 1+ 1
1000 and �L > 0. Then there exist functions Gs(x),

Es(x) and an exponent � (�L) independent of s, such that

Hs ⇤ Hs(x) = Gs(x) + Es(x) +
C
s
�0(x) (3.2)

where

|Gs(x)| + |Es(x)|  Cs�↵, supp Es ⇢
h
�s↵�1+�L , s↵�1+�L

i
(3.3)

and
|Gs(x + u) � Gs(x)|  Cs�↵|u s�↵|�� (�L ) (3.4)

where the constants C depends only on '.

This lemma is the main technical tool we use. We postpone its proof to the next
section. In this section we will apply this lemma to Hs , that is with s replaced
by s

1
↵ .

Lemma 3.2. Let  2 C1
c (R),  ⌘ 1 for |x |  1,  ⌘ 0 for |x | � 2. For a given

convolution kernel K on Z we define truncated kernels:

KR(x) = K (x) ·  
⇣ x
R

⌘
.

Then for R � 1 we have

kKRk`2!`2  C kKk`2!`2,

where the constant C is independent of R.

Proof. This is immediate by taking the Fourier transform.

Lemma 3.3. For an operator T as in (2.1), we have

|�|  kTk`2!`2 + ✏(M)kTkAM .

Proof. It suffices to observe, that

hHM �0, �0i = 0,

and by (iii)s of Definition 2.1

|Ks(0)|2 
kTk2AM

s
.

Then, for ✏(M)  C M�✓/2 the conclusion follows from

� =< T �0, �0 > �
X

M✓s<1
s-dyadic

Ks(0).
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Lemma 3.4. Let T be the kernel of the form (2.1). Then T admits a representation

� Id+ �
X

M✓sM
s-dyadic

Hs +
X

M✓s<1
s-dyadic

K 0
s,

where:

Hs(x) =
⇣
 
⇣ x
2s

⌘
�  

⇣ x
2s

⌘⌘
HM(x), s � M✓ , dyadic,

the function  is the same smooth cutoff function as in the previous lemma, the
kernels K 0

s satisfy conditions (i)s, (ii)s and (iv)s from Definition 2.1, and we have:

|�| + |�| + k
�
K 0
s
 
kAM  C kTkAM .

Moreover
�
�
�
�
�
�
�
�

� Id+
X

M✓s<s0
s-dyadic

(�Hs + K 0
s)

�
�
�
�
�
�
�
�
`2!`2

 CkTk`2!`2 + ✏(M)kTkAM .

Proof. This lemma is standard and we include the proof for the reader‘s conve-
nience. Let  be the smooth symmetric cutoff function as in the Lemma 3.2, and
let s 0 be the largest dyadic integer satisfying s0  M✓/2. We let

 s0(x) =  
⇣ x
s0
⌘

, and  s(x) =  
⇣ x
s

⌘
�  

✓
2x
s

◆
for s > s0,

and thus
X

s0�s�s0
s-dyadic

 s(x) =  

✓
x
s0

◆
=  s0(x),

with

supp  s0 ⇢ {|x |  M✓ } supp  s ⇢ {s/2  |x |  2s}, s > s0.

Given an operator T with kernel of the form (2.1):

T = � Id+ �HM +
X

M✓s<1
s-dyadic

Ks,
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we can write the decomposition of its kernel

 s0 · T = � Id+ �
X

s0�s�2s0
s-dyadic

 s · HM +
X

s0�s�s0
s-dyadic

 s · K ,

where
K =

X

M✓s<1
s-dyadic

Ks .

Now we let

Hs =  s · HM , s > s0,

K̃s =  s · K , s � s0.

Observe, that the kernels K̃s satisfy the requirements in the definition of the algebra
AM , except, possibly, for the vanishing means. We let

K 0
s(x) = K̃s(x) �

cs
s
 
⇣ x
s

⌘ X

y2Z
K̃s(y),

where the constants cs have been chosen so that

cs
s

X

x2Z
 
⇣ x
s

⌘
= 1.

Note, that the kernels K 0
s do have vanishing means, and satisfy all the requirements

of the definition of the algebra AM , with k{K 0
s}kAM bounded by k{Ks}kAM . Now

we write the decomposition of kernel T (x)

 s0(x) · T (x) = � Id(x) + �
X

s0�s�2s0
s-dyadic

Hs(x) +
X

s0�s�s0
s-dyadic

K 0
s(x)

+
X

s0/2�s�s0
s-dyadic

Js
⇣ cs
s
 
⇣ x
s

⌘
�

c2s
2s
 
⇣ x
2s

⌘⌘
+ Js0

cs0
s0
 

✓
x
s0

◆
,

where
Js =

X

s�l�s0
s-dyadic

X

y
K 0
l (y) =

X

y
K (y) 

⇣ y
s

⌘
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and Js0/2 = 0. Let

K 00
s (x) = K 0

s(x) + Js/2
✓
2cs/2
s

 

✓
2x
s

◆
�

cs
s
 
⇣ x
s

⌘◆
.

We will prove below that |Js |  |�| + CkTk`2!`2 . This immediately imply

T = � Id+ �
X

s�2s0
s-dyadic

Hs +
X

s�s0
s-dyadic

K 00
s

in a weak sense. Moreover, by Lemma 3.2 applied to  s0 · T and estimate on �
provided by Lemma 3.3, the partial sums

� Id+ �
X

s0�s�2s0
s-dyadic

Hs +
X

s0�s�s0
s-dyadic

K 00
s

represent an operator with `2 ! `2 bounded by CkTk`2!`2 + ✏(M)kTkAM , and
by the construction kK 00kAM  CkTkAM .

We will now show the required estimate for Js , that is
�
�
�
�
�
�

X

y2Z
K (y) 

⇣ y
s

⌘
�
�
�
�
�
�
 ckTk`2!`2 + |�|.

We let
Ks = (K + HM) ·  s, �s =

1
2s + 1

�[�s,s],

and, since the kernel HM is antysymmetric,
�
�
�
�
�
�

X

y2Z
K (y) s(y)

�
�
�
�
�
�

2

=

�
�
�
�
�
�

X

y2Z
Ks(y)

X

y12Z
�s(y1)

�
�
�
�
�
�

2

=

�
�
�
�
�
�

X

y2Z
Ks ⇤ �s(y)

�
�
�
�
�
�

2

 8 s
X

y2Z

�
�Ks ⇤ �s(y)

�
�2

 8 s kKsk2
`2!`2

k�sk
2
`2


8 s

2s + 1
kKsk2

`2!`2

 c kK + HMk2
`2!`2

 2ckTk2
`2!`2

+ 2|�|2,
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where the estimate for kKsk`2!`2 follows by Lemma 3.2. Now we apply Lem-
ma 3.3.

Lemma 3.5. Let 0  ' 2 C1
c (R) and 's = cs

s '( ·
s ), with constants cs > 0 such

that k'sk1 = 1. For a given � > 0 and a positive dyadic integer s let s1 be such
that s

↵�1+�
↵  s1  s. Then for 0 < �  �0(�) we have:

(i) k's1 ⇤Hsk2`2  c
s ;

(ii) k's1 ⇤Hs( · + h ) � 's1 ⇤Hsk2`2  c
s
� h
s
�� .

We can take �0(�) = min{ �4↵ , � ( �2 )}, where � (�) is defined by (3.4).

Proof. It suffices to prove (ii) with |h|  Cs since it implies (i). For the moment,
the superscript h denotes the translation of a function by h. We have:

D⇣
'hs1 � 's1

⌘
⇤Hs,

⇣
'hs1 � 's1

⌘
⇤Hs

E
=
D⇣
'hs1 � 's1

⌘
⇤ Gs,'

h
s1 � 's1

E

+ k'hs1 � 's1k
2
`2

1
s1/↵

+
D⇣
'hs1 � 's1

⌘
⇤ Es,

⇣
'hs1 � 's1

⌘E

= I + I I + I I I.

In the above we have applied Lemma 3.1 with �l = �/2 to obtain the decomposition
Hs ⇤ Hs = Gs + C�0

s1/↵ + Es , satisfying estimates (3.3), (3.4). We have, for � 
� (�/2), where � (�) is defined by (3.4), that:

|I | =
�
�
�
D⇣
'hs1 � 's1

⌘
⇤ Gs,'

h
s1 � 's1

E��
�

=
D
's1 ⇤

⇣
Gh
s � Gs

⌘
,'hs1 � 's1

E

 C
1
s

✓
|h|
s

◆�
k's1k

2
`1

.

|I I |  C
1
s1/↵

·
1
s1

·

✓
|h|
s1

◆�

 C
1
s1/↵

·
|h|�

s1

 C
1
s1/↵

·
|h|�

s1�1/↵+�/↵

 C
1
s

✓
|h|
s

◆�/2↵
,
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for �  �/2↵ and s1 � s1�1/↵+�/↵ . By the Hölder regularity of 's1 we get

|I I I |  C
�
�'hs1 � 's1

�
�
`1

kEsk`1

 C
✓

|h|
s1

◆�
·
1
s1

·
1
s

· s1�1/↵+�/2↵


C
s1/↵

·
1
s1

|h|� |s|�/2↵


C
s1/↵

1
s1�1/↵+�/↵

· s�/2↵ |h|�


C
s

✓
|h|
s

◆�/4↵
· s��/4↵,

for �/4↵ � � and s1 as in II.

Let
T̃s =

X

M✓<s0<s

⇣
H̃s0 + K̃ 0

s0
⌘

,

where the kernels H̃s0, K̃ 0
s0 come from the representation of T̃ in the sense of

Lemma 3.4.

Lemma 3.6. For �  �0(�) and s1�1/↵+�/↵  s1  s we have

(i) k's1 ⇤Hs ⇤ T̃sk2`2  C
s (kT̃k2

`2!`2
+ C

M✓ kT̃k2A);

(ii) k's1 ⇤Hs ⇤ T̃s( ·+h )�'s1 ⇤Hs ⇤ T̃sk2`2  C
s

⇣
|h|
s

⌘�
(kT̃k2

`2!`2
+ C

M✓ kT̃k2A).

Proof. Immediate, from Lemmas 3.4 and 3.5.

Lemma 3.7. Let 0  l  s1�1/↵+�/↵ , s✓ = s↵�1+�  s1  s and  l = 'l � '2l ,
where 'l has been defined in Lemma 3.5. We have for �  �0(�):

(i) k l ⇤Hs ⇤Hs1k
2
`2

 C
|s|1+�/2 ;

(ii) k l ⇤Hs ⇤Hs1( · + h ) �  l ⇤Hs ⇤Hs1k
2
`2

 C
|s|1+�/4↵ ·

⇣
|h|
|s|

⌘�
;

(iii) k l ⇤Hs ⇤ Ks1k2`2  C
|s|1+�/2↵ ;

(iv) k l ⇤Hs ⇤ Ks1( · + h ) �  l ⇤Hs ⇤ Ks1k2`2  C
|s|1+�/4↵ ·

⇣
|h|
|s|

⌘�
.

Proof. (ii) and (iv) follow from (i) and (iii), since |h| � 1. We will now prove (i).
We again use Lemma 3.1 with �L = �/2.

k l ⇤Hs ⇤Hs1k
2
`2

= h l ⇤ Gs,Hs1 ⇤Hs1 ⇤  li

+ h l ⇤ Es,Hs1 ⇤Hs1 ⇤  li

+ h l ·
1
s1/↵

,Hs1 ⇤Hs1 ⇤  li

= I + I I + I I I.
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We estimate each part.

|I |  k l ⇤ Gsk`1 · kHs1 ⇤Hs1 ⇤  lk`1

= C

 
|s|1�1/↵+�/↵

|s|

!�
·
1
|s|


C
|s|

·
1

|s|�1
.

|I I I | = |h l ⇤Hs1,Hs1 ⇤  li| ·
1
s1/↵

 kHs1k
2
`2

k lk
2
`1

·
1
s1/↵


C

s1/↵1
·
1
s1/↵


1
s1/↵

·
1

s1�1/↵+�/↵


1

s1+�/↵
.

|I I | = |hEs,Hs1 ⇤Hs1 ⇤  l ⇤  li|

 |hEs ⇤Hs1,Hs1 ⇤  l ⇤  li|

 kEsk`1 · kHs1k
2
`2


s1�1/↵+�/2↵

s
·
1
s1/↵1


s1�1/↵+�/2↵

s · s1�1/↵+�/↵


1

s1+�/2↵
.

The estimates of |I I | is very crude but it suffices for our purposes. The proof of
(iii) is identical.

Lemma 3.8. We have that

kHs ⇤ T̃sk
2
`2


C
s

✓
kT̃k2

`2
+ kT̃kA ·

✓
1

s�/4↵
+ ✏(s)

◆◆
, (3.5)

kHs⇤T̃s( · + h)�Hs ⇤ T̃sk
2
`2


C
|s|

✓
|h|
|s|

◆�✓
kT̃k2

`2
+kT̃kA ·

✓
1

s�/4↵
+✏(s)

◆◆
, (3.6)

where Ts, T̃s have been defined before Lemma 3.6.
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Proof. It is a corollary of Lemmas 3.6 and 3.7. Let s1=s1�1/↵+�/↵ , '2C1
c (�1

2 ,
1
2 )

and 's1  l be as in Lemma 3.7. Then �0 = 's1 +
P 1

2 s1
l=1

l-dyadic
 l . The conclusion of

the Lemma follows directly from the formula:

Hs ⇤ T̃s = 's1 ⇤Hs ⇤ T̃s +
X

M✓s0s
s0-dyadic

1
2 s1X

l=1
l-dyadic

 l ⇤Hs ⇤
�
H̃s0 + K̃s0

�
. (3.7)

Since the kernels Ts, T̃s are supported in [�Cs,Cs] for some constant C , from
Lemma 3.6 we conclude that

's1 ⇤Hs ⇤ T̃s

satisfies (3.5) and (3.6), that is (i)s2, (ii)s2 ,(iii)s2 ,(iv)s2 of the Definition 2.1 for some
s2 = Cs and with the constant Ds2  CkT̃sk`2!`2  CkT̃k`2!`2 +C✏(s)kT̃kAM .
Since s✓  s0  s, each of the kernels

 l ⇤Hs ⇤
�
H̃s0 + K̃s0

�
, (3.8)

by Lemma 3.7, satisfies (3.5) and (3.6), that is (i)s2 , (ii)s2 , (iii)s2 , (iv)s2 of the Def-
inition 2.1 with s2 = Cs and Ds2  Cs��/8↵kTkAM  CM� �(↵�1+�)

8↵ kTkAM . Since
the number of summands in (3.7) is at most C(logM)2, the lemma follows.

Lemma 3.9. We have:

kT T̃kAM  C
⇣
kTk`2!`2kT̃kAM + kTkAMkT̃k`2!`2

⌘
+ ✏1(M)kTkAMkT̃kAM ,

where ✏1(M)  CM� �(↵�1+�)
16↵ , and the constant C does not depend on M .

Proof. We use the identity

T T̃ = � T̃ + �̃ T +
X

s
(Ks +Hs) ⇤ T̃s +

X

s
(K̃s + H̃s) ⇤ T2s,

(where Ts, T̃s are defined as in the previous Lemma). We apply Lemma 3.8, and
obtain the estimates in the case s  M . The case s > M is immediate, since
thenHs vanish and by the `2 boundedness of Ts, T̃s , the kernels Ks ⇤ T̃s , K̃s ⇤ Ts
satisfy conditions (i)Cs , (ii)Cs , (iii)Cs , (iv)Cs of Definition 2.1 with appropriate
norm control.
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4. Proof of Lemma 3.1.

In this section we slightly abuse the notation and denote a generic s by M . We
note that HM , introduced in (3.1), is supported in [�CM↵,CM↵]. Denote GM =
HM ⇤ HM . The estimates (3.4) and (3.3) on GM have been proved in [18], the
estimate (3.4) under additional restriction M

99
100  |x |, |x + u| and the estimate

(3.3) for any x 6= 0. In what follows we will prove (3.4) for the remaining case
M↵�1+�L  x, x + u  M

99
100 . Then the new function G̃M defined on the whole

Z by G̃M(x) = GM(x) for |x | � M↵�1+�L and G̃M(x) = GM([M↵�1+�L ]) for
|x |  M↵�1+�L satisfies (3.4). Since GM(x) = GM(�x), for |x | � M↵�1+�L we
obviously have, for those x , G̃M(x) = GM(x). We will denote G̃M again by GM
and define EM(x) by equation (3.2) with additional condition GM(0)+EM(0) = 0.
Then EM(x) obviously satisfies (3.3).

We will apply the method of trigonometric polynomials and we refer the reader
to [9] for all background facts. We begin with some definitions used in the sequel.
Definition 4.1. Let � > 0 be small, and �0 = �

100 . We consider the partition of the
interval [0, 1) into intervals of the form

Ir =


r
M�0

,
r + 1
M�0

◆
⇢ [0, 1), 0  r < M�0 .

For a number 1 2 [0, 1) we will denote by I (1) the unique interval of the above
form such that 1 2 I (1). We will write Ir = [a(Ir ), b(Ir )) and denote by l(1) =
l(I (1)) = b(I (1)) � a(I (1)) the length of I (1).
Furthermore, we let m(h, x,1) be the unique, if it exists, non-negative solution of

(m + h)↵ � m↵ = x +1, (4.1)

where x, h 2 N and 0  1 < 1. Let

H =
x

M↵�1 , x 2 N, M↵�1+�L  x  M
99
100 , (4.2)

kwk = inf
k2Z

|k � w|, w 2 R. (4.3)

We will consider the following condition for (h, x,1, k):

8 m, m(h, x, a(I (1)))  m  m(h, x, b(I (1)))

=)
�
�↵ · k · m↵�1�� � M��0/2.

(4.4)

Lemma 4.2. If M2  m  2M , satisfies (4.1), and H, x, h, 1 are as above, then

C�1H  h  CH (4.5)
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for some constant C independent of M, x, h,1. Moreover we have the following
estimates:

m(h, x, b(I (1))) � m(h, x, a(I (1)))

= c↵
l(I (1))

h
m(h, x, 0)2�↵

�
1+ O(M��0)

�
,

(4.6)

m(h, x, 0) =

✓
x
h ↵

◆⇢ �
1+ O(M��0)

�
, where ⇢ = 1

↵�1 (4.7)

S =
X

H/ChCH
Ir⇢[0,1)

'

✓
m(h, x, br )

M

◆2 l(Ir )
h

m(h, x, br )2�↵

= c↵M2�↵ �1+ O
�
M��0

��
,

(4.8)

where the choice of br 2 Ir is arbitrary, and ' 2 C1
c (12 , 2).

Proof. The estimate (4.5) follows immediately from Taylor’s formula. In order to
prove (4.6) we use the mean value theorem and the definition of m(h, x, t):

@m(h, x, t)
@t

=
@m(h, x, t)

@x
=
m(h, x, t)2�↵

↵(↵ � 1)h

✓
1+ O

✓
h
M

◆◆
=O

✓
M
x

◆
,(4.9)

m(h, x, t)2�↵�m(h, x, 0)2�↵

m(h, x, 0)2�↵
=

(2�↵)m(h, x, t1)1�↵ @m(h,x,t1)
@x

m(h, x, 0)2�↵
=O

✓
1
x

◆
.(4.10)

Hence:

m(h, x, b(I (1))) � m(h, x, a(I (1))) = l(1) ·
@m(h, x, t)

@x

= l(1)
m(h, x, t)2�↵

↵(↵ � 1)h

✓
1+ O

✓
h
M

◆◆

= l(1)
m(h, x, 0)2�↵

↵(↵ � 1)h

✓
1+ O

✓
h
M

◆◆✓
1+ O

✓
1
x

◆◆
.

Now we prove (4.7). Let x1 be such that

m(h, x1, 0) =

✓
x
h↵

◆⇢
,

that is

x1 =

✓✓
x
h↵

◆⇢
+ h

◆↵
�

✓
x
h↵

◆⇢↵
.
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Using the Taylor’s formula applied to (4.1) we obtain |x1 � x |  xM�1/100. We
have:

�
�
�
�
m(h, x1, 0) � m(h, x, 0)

m(h, x1, 0)

�
�
�
� 

C
M
@m(h, x1, b)|x1 � x |

@x1


C1
M

M
x

|x � x1|  M� 1
100 .

We now prove the last part, (4.8). Using the estimate (4.9) it is straightforward to
check that

S =

0

B
@

X

H/ChCH
Ir⇢[0,1)

'

✓
m(h, x, 0)

M

◆2 m(h, x, 0)2�↵

h
l(Ir )

1

C
A
⇣
1+ O

⇣
M�(↵�1+�)

⌘⌘

=

 
X

H/ChCH
'

✓
m(h, x, 0)

M

◆2 m(h, x, 0)2�↵

h

!
⇣
1+ O

⇣
M�(↵�1+�)

⌘⌘
.

We apply (4.7) and replace m(h, x, 0) by m(h, x1, 0) . We get

=

 
X

H/ChCH
'

✓
1
M

✓
x
↵h

◆⇢◆2 ✓ x
↵h

◆⇢(2�↵) 1
h

!
⇣
1+ O

⇣
M�(↵�1+�)

⌘⌘

=

 Z 1

0
'

✓
1
M

✓
x
↵h

◆⇢◆2 ✓ x
↵h

◆⇢(2�↵) dh
h

!
�
1+ O

�
M���� .

The last equality follows from (4.5), and the fact, that by (4.5)

'

✓
1
M

✓
x
↵h

◆⇢◆
= 0 for h  C�1H or h � CH ,

and by Taylor’s formula. Now, by the change of variables, the last integral equals
to c↵M2�↵ and (4.8) follows.

Lemma 4.3. Let M↵�1+�L  x  M
99
100 . We then have:

M2HM ⇤HM(x)=
X

H/ChCH
Ir⇢[0,1)

'

✓
m(h, x, a(Ir ))

M

◆2⇣�
�J �

h,x,Ir

�
�+

�
�J +

h,x�1,Ir

�
�
⌘
+Er(x),

where J �
h,x,Ir , and J

+
h,x,Ir are sets satisfying the inclusions:

J �
h,x,Ir � {m 2 [m(h, x, a(Ir )),m(h, x, b(Ir )) : {m↵} � 1� a(Ir )},

J �
h,x,Ir ⇢ {m 2 [m(h, x, a(Ir )),m(h, x, b(Ir )) : {m↵} � 1� b(Ir )},

J +
h,x,Ir � {m 2 [m(h, x, a(Ir )),m(h, x, b(Ir )) : {m↵}  1� b(Ir )},

J +
h,x,Ir ⇢ {m 2 [m(h, x, a(Ir )),m(h, x, b(Ir )) : {m↵}  1� a(Ir )}.



696 MACIEJ PALUSZYNSKI AND JACEK ZIENKIEWICZ

Moreover, for the error function Er(x) we have |Er(x)|  CM1�↵M2�↵ so it
satisfies conditions (3.3) and (3.4) required for G.

Proof. By the definition of HM , we have:

M2 HM ⇤ HM(x) =
X

m1,m22Z
'
⇣m1
M

⌘ M
m1
'
⇣m2
M

⌘ M
m2
�±[m↵1 ] ⇤ �±[m↵2 ](x)

= 2
X

m1,m22Z
'̃
⇣m1
M

⌘
'̃
⇣m2
M

⌘
�[m↵1 ]�[m↵2 ](x) = (†)

where we have denoted '̃(t) = sgn (t)|t |�1'(t), and used the fact that for m1 > m2
and 0 < x  M

99
100 the equation ±[m↵1 ] ± [m↵2 ] = x can be solved only when

[m↵1 ] � [m↵2 ] = x .
Now we fix h > 0 and consider solutions to the equation:

x = [m↵1 ] � [m↵2 ], m1 � m2 = h,
M
2

 m1  2M.

Each solution is a pairm1,m2, but it is determined uniquely by its larger component
m1. In the following we refer to m1 as “the solution”. The set J +

h,x,Ir consists of
solutions with additional condition

m↵1 � m↵2 = x +1, 1 2 Ir ⇢ [0, 1).

The complementary set, J �
h,x,Ir consists of solutions with additional condition

m↵1 � m↵2 = x � 1+1, 1 2 Ir ⇢ [0, 1).

It is immediate, that if
⇥
(m + h)↵

⇤
�
⇥
m↵
⇤

= x then

(m + h)↵ � m↵ = x +1,

or
(m + h)↵ � m↵ = x � 1+1,

for some 1 2 [0, 1). Hence
⇢
1
2
M  m  2M : (9 k) x = [m↵] � [k↵]

�
=

[

H/ChCH
Ir⇢[0,1)

J +
h,x,Ir

·[ J �
h,x,Ir .

Hence, we have

(†) = 2
X

Ir⇢[0,1)

X

H/ChCH

X

m12J+
h,x,Ir

·[J�
h,x,Ir

'̃
⇣m1
M

⌘
'̃
⇣m2
M

⌘
�[m↵1 ]�[m↵2 ](x) = (‡).
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Since for m1 2 J +
h,x,1 ·[ J �

h,x,1 we have, by (4.6),

|m1 � m(h, x, a(1))|  CM2�↵, |m2 � m(h, x, a(1))|

 CM2�↵ + C|m2 � m1|  CM2�↵ + CH  CM2�↵,

applying Taylor’s formula for ' we get

(‡) = 2
X

Ir⇢[0,1)

X

H/ChCH
'̃

✓
m(h, x, a(Ir ))

M

◆2 X

m12J+
h,x,Ir

·[J�
h,x,Ir

1+ Er(x),

where the error term Er(x) satisfies

|Er |CM1�↵#
⇢
1
2
Mm2M : (9 k)x=

⇥
m↵
⇤
�
⇥
k↵
⇤
�

CM1�↵M2�↵. (4.11)

The last inequality, by [18] is true for every x 2 Z. The first statement of Lemma
follows.

If for some 1 2 I (1) ⇢ [0, 1) we have

(m + h)↵ � m↵ = x +1, x 2 N,

and
{m↵}  1� b(I (1)),

then ⇥
(m + h)↵

⇤
�
⇥
m↵
⇤

= x .

So
{m↵} + {(m + h)↵ � m↵}  1� b(I (1)) +1,

and thus
{(m + h)↵} = {m↵} + {(m + h)↵ � m↵} = {m↵} +1.

So, ⇥
(m + h)↵

⇤
�
⇥
m↵
⇤

= x +1�
�
{(m + h)↵} � {m↵}

�
= x .

Analogously:

{m↵} � 1� a(I (1)) ) {m↵} + {(m + h)↵ � m↵} > 1
) {(m + h)↵} = {m↵} +1� 1,

and then ⇥
(m + h)↵

⇤
�
⇥
m↵
⇤

= x � 1.

It follows that
⇥
(m + h)↵

⇤
�
⇥
m↵
⇤

= x ) {m↵}  1� a(I (1)).

The required inclusions now follow.
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Let us introduce the following four functions. Given an interval Ir ⇢ [0, 1),
let

�1 = �[1�a(Ir ),1�M��0 ], �2 = �[1�b(Ir ),1].

Also, choose a function ', smooth, even, positive, monotone on R+, with support
contained in [�M��0,M��0], and with integral 1. Extend these three functions as
1-periodic on R (M��0 << 1), and let

 �,�
M,Ir = �1 ⇤ ',  �,+

M,Ir = �2 ⇤ ',

where the convolutions are on the torus. Using Lemma 4.5 we have the following
obvious estimates:

X

m(h,x,a(Ir ))mm(h,x,b(Ir ))
 �,�
M,Ir (m

↵) 
�
�J �

h,x,Ir

�
�,

�
�J �

h,x,Ir

�
� 

X

m(h,x,a(Ir ))mm(h,x,b(Ir ))
 �,+
M,Ir (m

↵).

Now we choose new

�1 = �[M��0 ,1�b(Ir )], �2 = �[0,1�a(Ir )],

and let
 +,�
M,Ir = �1 ⇤ ',  +,+

M,Ir = �2 ⇤ '.

In this case, we have
X

m(h,x,a(Ir ))mm(h,x,b(Ir ))
 +,�
M,Ir (m

↵) 
�
�J +

h,x,Ir

�
�,

�
�J +

h,x,Ir

�
� 

X

m(h,x,a(Ir ))mm(h,x,b(Ir ))
 +,+
M,Ir (m

↵).

It is straightforward to see that if  is any one of the above introduced functions,
we have the estimates:

X

k2Z

�
� ̂(k)

�
�  C logM, (4.12)

X

|k|>M2�0

�
� ̂(k)

�
�  C M��0 . (4.13)

Lemma 4.4. We have the estimate
�
�
�
�
�

X

m(h,x,a(Ir )mm(h,x,b(Ir ))
 (m↵)�(m(h, x, b(Ir ))�m(h, x, a(Ir )))

Z 1

0
 (t) dt

�
�
�
�
�


X

0<|k|M2�0

�
� ̂(k)

�
�
�
�Sk(h, x, Ir )

�
�+

C
M�0/4

|m(h, x, b(Ir )) � m(h, x, a(Ir ))|,

where  is any of the functions  ±
M,Ir .
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We further have
�
�Sk(h, x, Ir )

�
� 

1
M�0/4

|m(h, x, b(Ir )) � m(h, x, a(Ir ))| (4.14)

and if (h, x,1, k) satisfies (4.4), moreover we have
�
�Sk(h, x, Ir )

�
�  C|m(h, x, b(Ir )) � m(h, x, a(Ir ))|. (4.15)

Proof. Let us denote

J = {m(h, x, a(Ir ))  m  m(h, x, b(Ir ))}. (4.16)

We have
�
�
�
�
�

X

m2J
 (m↵) �

X

m2J
 ̂(0)

�
�
�
�
�


X

0<|k|M2�0

�
� ̂(k)

�
�

�
�
�
�
�

X

m2J
e2⇡ i m

↵ ·k

�
�
�
�
�
+ |J | ·

X

|k|>M2�0

�
� ̂M,Ir (k)

�
�

= I + I I.

It follows from (4.13) that I I  |J |M��0 . We will estimate I . We have, as in the
proof of Van der Corput’s difference lemma (see [9]):

�
�
�
�
�

X

m2J
e2⇡ i m

↵k

�
�
�
�
�

1
D

X

m2J

�
�
�
�
�

D�1X

s=0
e2⇡ i ((m+s)↵�m↵)·k

�
�
�
�
�
+ C · D


1
D

X

m2J

�
�
�
�
�

D�1X

s=0
e2⇡ i ks↵m

↵�1

�
�
�
�
�
+ C|J |

 

·
D2M2�0

M2�↵ +
D

|J |

!

,

with the second term of the last expression estimated by |J |
� M4�0
M2�↵ + M�0�

1
100
�



|J |M��0 if we have D = M�0 . We have used in the above the the following
obvious consequence of the Taylor’s formula

e2⇡ i((m+s)↵�m↵) = e2⇡ i↵s m
↵�1

+ O

 
s2 k
m2�↵

!

.

We continue the original estimate:


1
D

X

m2J
min

⇢
D,

2
k↵km↵�1k

�
+
C|J |

M�0
.

Now, if (h, x,1, k) satisfies the (4.4) condition, then

1
D

X

m2J
min

⇢
D,

2
k↵km↵�1k

�
 M��0/2|J |.
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Lemma 4.5. Assume |k|  M2�0 . We have the estimates
X

1/C HhC H

�
�Sk(h, x, Ir )

�
� 

C H
M�0/4

|m(h, x, b(Ir )) � m(h, x, a(Ir ))|

 C l(Ir )M2�↵��0/4.

Proof. The last inequality is an obvious consequence of (4.6). Based on (4.14) and
(4.15), it is enough to prove the estimate

#{h : (h, x,1, k) does not satisfy (4.4)}  CH M��0/4.

To do so, let us momentarily fix h, x,1, k which do not satisfy (4.4). Thus there
exists m 2 J such that

�
�↵ k m↵�1�� < M�

�0
2 .

Let |k|  M2�0 . We will show the estimate

↵ k m↵�1 =
kx
h

+ O
⇣
M� �

2
⌘

.

Since m 2 J , it satisfies the equation

(m + h)↵ � m↵ = x +1, a(I (1))  1 < b(I (1)),

and by the mean value theorem

↵ h m↵�1 = x +1+ O

 
h2 M↵

M2

!

.

By (4.2) we have M�  H  M99/100, and consequently, since |k|  M2�0 and
2�0 < �/2,

↵ k m↵�1 =
k x
h

+ O
⇣
M��/2

⌘
.

We have
�
�
�
�
k x
h

�
�
�
� 

�
�↵ k m↵�1��+ M��/2  2M��0/2.

Now, let w 2 N be the integer approximation of kxh , thus

kx
h

= w + e, |e|  2M��0/2.

Nowwe assume that we have at least H M��0/4 different hi ’s, and that (4.4) is false.
Thus, each of these hi ’s satisfies

k x = hi wi + ei hi , (4.17)
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and since kx and hiwi are integers, so are ei hi , and

|ei hi |  2H M��0/2.

Now, for given number z with |z|  2HM��0/2 we consider the set

Az = {hi : kx = hiwi + z}.

If for each z the number of elements ofAz is less than 12M
�0/4, that the total number

of hi ’s satisfying (4.17) would be < 1
2M

�0/4 · 2HM��0/2 = HM��0/4, which is a
contradiction. Thus, there must be a z, for which

#{hi : kx = hiwi + z} �
1
2
M�0/4. (4.18)

Now, since |z|  Cx
M↵�1 , k 6= 0 we have 0 6= |kx � z|  M�0/2+1 and by (4.18)

kx � z has at least M�0/4 divisors, which is impossible by a well known estimate
on the number of divisors.

Corollary 4.6. We have
X

Ir

X

h⇠H

�
�
�
�
�
�J +

h,x,Ir

�
�
�+
�
�
�J �

h,x,Ir

�
�
��(m(h, x, b(Ir )) � m(h, x, a(Ir )))

�
�
�C M2�↵��0/4.

X

Ir

X

h⇠H
'

✓
m(h, x, a(Ir ))

M

◆2 ⇣��
�J +

h,x,Ir

�
�
�+

�
�
�J �

h,x,Ir

�
�
�
⌘

= S + O
⇣
M2�↵��0/4

⌘

where S is defined by (4.8).

Proof. The first formula is an immediate consequence of Lemmas (4.5) and (4.4).
For the second formula we apply (4.6) and the first part.

5. A counterexample

In this section we prove Theorem 2.3. Fix 1 < ↵ < 1 + 1
1000 , 0 < �  (↵�1)2

↵
and  = c�, where c will be specified later. Let {Ml}l be a sequence of integers
satisfying 10Ml  M↵�1�1.1�

l+1 , with ' 2 C1
c (1, 2) real valued. We put 's = ' if

for some l we have (recall s is dyadic ) s 2 U� = [M↵�1�1.1�
l ,M↵�1��

l ] or s 2

U+ = [M1�0.1
l ,Ml ], and 's = 0 otherwise. We will consider Hilbert transform

HM↵ =
X

M↵�1�1.1�sM
s-dyadic

Hs

(we use more convienient Hs instead of Hs) corresponding to this sequence {'s},
and ✓ = ↵ � 1� 1.1�.
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Fix l and denote M = Ml . By (2.2), HM↵ contains two large blocks H+, H�
corresponding to summation indices in U+,U� respectively. For P = M↵(↵�1��)

and an integer j satisfying, for C sufficiently large, 1
C M

↵(2+0.9��↵)  j 
CM↵(2+��↵), let I j = [( j � 1)P, ( j + 1)P]. Consider A j , the set of n 2 U�
such that for some x 2 I j the equation

[m↵] ± [n↵] = x (5.1)

has more than 1 solution (a pair m, n, with m 2 U+ and n 2 U�); we allow the
different choice of ± signs for different solutions. Let m1 and m2 satisfy (5.1)
possibly with different x1, x2 2 I j and n1, n2 2 U�. We define h = m1 � m2 and
estimate using m1,m2 2 U+ and the Taylor’s formula:

|m↵1 � m↵2 |  P ) hM(1�0.1�)(↵�1)  CM↵(↵�1��).

Let H = CM↵(↵�1��)

M(1�0.1�)(↵�1) ; hence |h|  H , that is m1,m2 are contained in the interval
of length H containing somem0 satisfying (5.1). If n1 2 A j , then for some n2 6= n1
we have two pairs m1, n1 and m2, n2 satisfying (5.1). In what follows we assume
that the ± signs corresponding to both pairs are minus. By (5.1) we obtain

⇥
n↵1
⇤
�
⇥
n↵2
⇤

=
⇥
m↵1
⇤
�
⇥
m↵2
⇤

=
⇥
m↵1 � m↵2

⇤
+1, 1 2 {�1, 0, 1}. (5.2)

We have:

m↵1 � m↵2 = m↵1 � m↵0 + m↵0 � m↵2
= ↵h1m↵�1

0 � ↵h2m↵�1
0 + O(H2 M↵�2), H2 M↵�2  1.

From this:

[m↵1 � m↵2 ] +1 = [↵ (h1 � h2)m↵�1
0 ] +11 (5.3)

11 2 {�2,�1, 0, 1, 2}, �H  h1, h2  H. (5.4)

There are at most 5(4H + 1) different numbers represented by right hand side of
(5.3). By Lemma 3.1, the number of solutions to

⇥
n↵1
⇤
±
⇥
n↵2
⇤

= k, 0 < n1, n2  M↵�1��

is at most CM(↵�1��)(2�↵). Thus the number of pairs (n1, n2) with n1,m1 and
n2,m2 satisfying (5.2), that is (5.1) for the same x , does not exceed

M(↵�1��)(2�↵) · 21 H  C · M↵�1�1.9�.

The case of other choices of ± signs follows exactly the same way. So we obtained
|A j |  M↵�1�1.9� .
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Let x be of the form

x = [m↵] ± [n↵], n /2 A j [ A j�1 [ A j+1, [m↵] 2 I j . (5.5)

Then one can easily verify, that x 2 I j[I j�1[I j+1. We infer that the representation
(5.5) is unique, and it remains unique if we drop the assumption [m↵] 2 I j (we
remark that if n  M

↵�1�1.1�
↵ than this statement is immediate and do not require an

argument above ). In particular for x,m, n related by (5.5)
�
�H+ ⇤ H�(x)

�
� �

1
m · n

,

H� ⇤ H�(x) = 0. (5.6)

Thus (we leave the proof for the reader)

�
�H+ ⇤ H�

�
�
`p � C

✓
�

100

◆ 1
p
(logM)2, p = 1+

1
logM

. (5.7)

We will show the estimate
�
�H+ ⇤ H+

�
�
`p  C

2
p (logM)2 (5.8)

where p is as in (5.7). We have

H+ ⇤ H+ =
X

M1�0.1s1,s2M
s1,s2-dyadic

Hs1 ⇤ Hs1 .

Since this expression contains at most C2(logM)2 summands, it suffices to prove
that kHs1 ⇤ Hs2k`p  C . Assume s1 � s2. Since Hs1 ⇤ Hs2 is supported in
[�Cs↵1 ,Cs↵1 ], by Cauchy-Schwartz, it suffices to have kHs1 ⇤ Hs2k2`2  Cs�↵1 .
We have

�
�Hs1 ⇤ Hs2

�
�2
`2 =

⌦
Hs1 ⇤ Hs1, Hs2 ⇤ Hs2

↵
 C

✓
1
s1s2

+
s↵2
s↵1 s

↵
2

◆

where, since Hs2 ⇤ Hs2 is supported in [�Cs↵2 ,Cs↵2 ], the last estimate follows from
the Lemma 3.1. Fix sufficiently small c > 0 and  = c�. From the (5.7), (5.8) and
(5.6) we infer that the estimate

k(H+ + H�) ⇤ (H+ + H�)k`p 
C

p � 1
cannot hold uniformly with M and p > 1. By the definition, HM↵ is antisymmet-
ric with `2 ! `2 operator norm controlled independently of M , so it has purely
imaginary spectrum contained in some fixed interval D ⇢ iR. Let 0 be a con-
tour in C enclosing D. Then we have k(�I + HM↵ )�1k`2!`2  C . Now, if we
have k(�I + HM↵ )�1k`1!`1,1  C , uniformly for M and � 2 0, we should have
k(�I + HM↵ )�1k`p!`p  C

p�1 . The formula H2
M↵ = �1

2⇡ i
H
0 �

2(�I + HM↵ )�1d�
implies that the estimate kH2

M↵k`p!`p  C
p�1 holds uniformly in M . This is a

contradiction.
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