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Parabolic obstacle problems, quasi-convexity and regularity

IOANNIS ATHANASOPOULOS, LUIS CAFFARELLI AND EMMANOUIL MILAKIS

Abstract. In a wide class of the so called Obstacle Problems of parabolic type
it is shown how to improve the optimal regularity of the solution and as a conse-
quence how to obtain space-time regularity of the corresponding free boundary.

Mathematics Subject Classification (2010): 35R45 (primary); 35R35, 49J40,
49K20, 91G80 (secondary).

1. Introduction

Obstacle problems are characterized by the fact that the solution must satisfy uni-
lateral constraint, i.e. must remain, on its domain of definition or part of it, above
a given function the so called obstacle. Parabolic obstacle problems, i.e. when the
involved operators are of parabolic type, can be formulated in various ways such
as a system of inequalities, variational inequalities, Hamilton-Jacobi equation, etc.
More precisely, as a system of inequalities, one seeks a solution u(x, t) which sat-
isfies (

ut + Au � 0, u �  

(ut + Au)(u �  ) = 0
in �⇥ (0, T ]

u = � on @p(�⇥ (0, T ])

(1.1)

or a solution u(x, t) to

ut + Bu = 0 in �⇥ (0, T ]
(
u �  , ↵ut + u⌫ � 0
(↵ut + u⌫)(u �  ) = 0

on 0 ⇥ (0, T ]

u = � on @p(�⇥ (0, T ]) \ (0 ⇥ (0, T ]),

(1.2)
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where A and B are (non-negative) definite elliptic operators. Usually, (1.1) is re-
ferred as a thick obstacle problem and (1.2) with 0 ⇢ @� (when ↵ = 0) as a
Signorini boundary obstacle problem (or thin obstacle problem if one takes 0 to be
a (n � 1)� manifold in �). We shall refer to (1.2) as the dynamic thin obstacle
problem if ↵ > 0 and to nondynamic thin obstacle or Signorini problem if ↵ = 0.
Recently, there has been an intense interest, perhaps due to the connectivity to jump
or anomalous diffusion, to study (1.1) in all of Rn when A is a non-local operator
and especially the fractional Laplacian. Observe that when A is the 1

2�Laplacian
there is an obvious equivalence between (1.1) and (1.2) which is identified by the
Neumann-Dirichlet map, provided that ut term is absent and B is minus the Lapla-
cian, 0 ⇢ Rn�1. This equivalence remains true for any fractional Laplacian if
B is replaced by an appropriate degenerate elliptic operator as it was introduced
in [14].

Every problem of the above mentioned ones and their obvious generaliza-
tions is actually a minimum of linear monotone operators therefore second or-
der incremental quotients are “supersolutions” and satisfy a minimum principle.
That is “for z = (x, t) with x 2 � in (1.1) or z = (x 0, t) with x 0 2 Rn�1

in (1.2)
u(z + w) + u(z � w) � 2u(z)

has no interior minima”. In particular, in the limit Dwwu cannot attain a minimum in
the interior of the domain of definition and on the hyperplane in the case (1.2). This
means that minima must occur at the initial or lateral data (minus the hyperplane in
case (1.2)). Therefore for an appropriate data we have an L1 bound from below.
This is certainly true if the data is smooth enough or just when the data stays strictly
above the obstacle (Section 2). In fact, we believe that an appropriate barrier would
give interior quasi-convexity of solutions under general data; this is the content of a
forthcoming paper where we discuss the limitations of the smooth fit principle, an
important issue in mathematical finance and numerical analysis.

The purpose of this work is to show that the quasi-convexity property, absent in
the literature so far, has strong implications in the study of the above problems. One
such implication is the improvement of optimal time regularity, i.e. the positive time
derivative is continuous, contrary to a long standing belief that the time derivative
is only bounded. In Section 3 we prove this for a wide class of problems with no
assumptions on the free boundary; let us mention that in the literature there are only
three cases in which the positive time derivative is continuous and all three rely on
the fact that the time derivative is a priori non negative. These are the one-phase
Stefan problem [11], the (non-dynamic) thin obstacle problem ([3] only in n = 2)
and, very recently, the parabolic fractional obstacle problem [10].

For further implications of the quasi-convexity assumption we concentrate on
the (nondynamic) thin obstacle problem or (time-dependent) Signorini problem.
The other cases, i.e. the dynamic parabolic obstacle problem, the nondynamic and
dynamic fractional counterparts, as well as the one with parabolic nonlocal opera-
tors, is a long term project and they will be treated in forthcoming papers. Also,
elsewhere we show how one can get with this approach free boundary regularity
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for the already known result [12] of the “thick” obstacle. Actually, in this case,
i.e. the (time-dependent) Signorini problem, we prove the optimal regularity of the
space derivative (Section 4.1), as a consequence of the parabolic monotonicity for-
mula stated in the appendix of [4]. Secondly, we prove that the regularity of the
time derivative (Section 4.2) near free boundary points of positive parabolic density
with respect to the coincidence set is as “good” as that of the space derivative; let
us point out that the results in Section 4.2 are, in fact, independent of the quasi-
convexity. And finally, in Section 4.3, since Section 4.2 yields control of the speed
of the free boundary, we prove (space and time) regularity of the free boundary near
“non-degenerate” free boundary points.

The results of the present paper were presented by the first author in IMPA,
Rio de Janeiro, August, 17- 21, 2015 during the “International Conference on Cur-
rent Trends in Analysis and Partial Differential Equations”. A video of the talk is
available online at http://video.impa.br.

ACKNOWLEDGEMENTS. Part of this work was carried out while the first and the
third authors were visiting the University of Texas. They wish to thank the De-
partment of Mathematics and the Institute for Computational Engineering and Sci-
ences for the warm hospitality and support during several visits the last few years.
I. Athanasopoulos wishes to thank IMPA for the invitation where the majority of the
results of the present article were presented during August 2015 (available online
here).

2. Quasi-convexity

In this section we prove the quasi-convexity of the solution for a wide class of
Parabolic Obstacle Problems. In order to avoid technicalities we shall concentrate
on five prototypes of this class:

1st prototype (Thick obstacle problem). Given a bounded domain� inRn , a func-
tion  (x, t) (the obstacle) where  < 0 on @� ⇥ (0, T ], max (x, 0) > 0 and a
function � with � = 0 on @�⇥ (0, T ], � �  on �⇥ {0}, find a function u such
that 8

>><

>>:

ut �1u � 0, u �  in �⇥ (0, T ]

(ut �1u)(u �  ) = 0 in �⇥ (0, T ]

u = � on @p(�⇥ (0, T ]).

(2.1)

2nd prototype (Nondynamic thin obstacle problem). Given a bounded domain �
in Rn with part of its boundary 0 ⇢ @� that lies on Rn�1, a function  (x, t) (the
obstacle) where  < 0 on (@� \ 0) ⇥ (0, T ], max (x, 0) > 0 and a function �
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with � = 0 on (@� \ 0) ⇥ (0, T ], � �  on 0 ⇥ {0}, find a function u such that
8
>>><

>>>:

ut �1u = 0, in �⇥ (0, T ]
@⌫u � 0, u �  on 0 ⇥ (0, T ]
(@⌫u)(u �  ) = 0 on 0 ⇥ (0, T ]
u = � on @p(� \ 0 ⇥ (0, T ])

(2.2)

where ⌫ is the outward normal on @�.

3nd prototype (Dynamic thin obstacle problem). Given a bounded domain � in
Rn with part of its boundary 0 ⇢ @� that lies on Rn�1, a function  (x, t) (the
obstacle),  < 0 on (@� \ 0) ⇥ (0, T ], max (x, 0) > 0 and a function � with
� = 0 on (@� \ 0) ⇥ (0, T ], � �  on 0 ⇥ {0}, find a function u such that

8
>>><

>>>:

ut �1u = 0, in �⇥ (0, T ]
↵@t u + @⌫u � 0, u �  on 0 ⇥ (0, T ]
(↵@t u + @⌫u)(u �  ) = 0 on 0 ⇥ (0, T ]
u = � on @p(� \ 0 ⇥ (0, T ])

(2.3)

where ↵ 2 (0, 1] and ⌫ is the outward normal on @�.

4th prototype (Fractional obstacle problem). Given a  : Rn�1 ⇥ [0,1) ! R
such that

R
Rn�1

| |
(1+|x |)n�1+2s dx

0 < +1 for all t > 0 and � : Rn�1 ! R such that
R |�|

(1+|x |)n�1+2s < +1 for some 0 < s < 1, find a function u such that

8
><

>:

@t u + (�1)su � 0, u �  � 0 on Rn�1 ⇥ (0, T ]
(@t u + (�1)su)(u �  ) = 0 on Rn�1 ⇥ (0, T ]
u(x, 0) = �(x) on Rn�1.

(2.4)

5th prototype (General nonlocal operators). Assume that  : Rn�1 ⇥ [0,1) !
R is given and let

Lu := ut �
Z

Rn�1
g0(u(y, t) � u(x, t))K (y � x)dy,

where g : R ! [0,1) is a C2(R) function such that g(0) = 0 and 3�1/2 
g00(z)  31/2, z 2 R for a given constant 3 > 1. The kernel K : Rn�1 \ {0} !
(0,1) satisfies

8
><

>:

K (�x) = K (x) for any x 2 Rn�1 \ {0}

�{|x |3}
3�1/2

|x |n�1+s
 K (x) 

31/2

|x |n�1+s
for any x 2 Rn�1 \ {0}.

(2.5)
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Then find a function u such that
8
><

>:

Lu � 0, u �  � 0 on Rn�1 ⇥ (0, T ]
(u �  )Lu = 0 on Rn�1 ⇥ (0, T ]
u(x, 0) = �(x) on Rn�1.

(2.6)

In the following theorem we prove quasi-convexity for the first, the second, the
third and the fourth prototype problems. The proof for the fifth prototype problem,
although similar, will be treated in a forthcoming paper. The following theorem
can be stated and proved using incremental quotients as it is mentioned in the in-
troduction, for simplicity though, we prove it for the second t-derivative. Notice
that the corresponding space quasi-convexity is well known from the outset of the
problems.

Theorem 2.1. Suppose that in the above problems  and � are smooth. If (� �
 )

�
�
t=0 > 0 then

||(utt )�||1  C,

where C depends on || t t ||1 and on the boundedness of the fourth space deriva-
tive of the initial data or of the second derivatives in (2.4), and on the second
t-derivative of the lateral data for the bounded domains case. If (� �  )

�
�
t=0 � 0

the same estimate holds provided in addition that (@t � (�1)s )
�
�
t=0 � M > 0

for s 2 (0, 1] and M sufficiently large.

Remark 2.2. Actually, if in the theorem above one assumes that the data stays
above the obstacle, then the data can be taken to be very general since in its neigh-
bourhood everything smooths out due to the classical theory of parabolic equations,
hence interior quasiconvexity holds and C depends only on ||( t t )||1.

Proof. In all four cases we use the penalization method, i.e. one obtains the solution
u as a limit of u" as " ! 0, where u" is a solution, in case (2.1) of the problem

(
1u" � @t u" = �"(u" �  ") in �⇥ (0, T ]
u" = �" + " on @p(�⇥ (0, T ]),

(2.7)

or, in case (2.2), of the problem
8
><

>:

@t u" �1u" = 0, in �⇥ (0, T ]
�@⌫u" = �"(u" �  ") on 0 ⇥ (0, T ]
u" = �" + " on @p(� \ 0 ⇥ (0, T ]),

(2.8)

or, in case (2.3), of the problem
8
><

>:

@t u" �1u" = 0, in �⇥ (0, T ]
�↵@t u" � @⌫u" = �"(u" �  ") on 0 ⇥ (0, T ]
u" = �" + " on @p(� \ 0 ⇥ (0, T ]),

(2.9)
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or, in case (2.4), of the problem
(

�(�1)su" � @t u" = �"(u" �  ") on Rn�1 ⇥ (0, T ]
u"(x, 0) = �"(x) + " on Rn�1,

(2.10)

where, for " > 0, �",  " are smooth functions (with compact support in the case
of the whole Rn�1), �"(s) = �Ne

"
s�" �s"(s) with N large enough with  " !  ,

�" ! � (locally) uniformly as " ! 0. If, now, (�� )
�
�
t=0 > 0 then differentiating

twice with respect to t we obtain
8
><

>:

1u"t t � @t u"t t  � 0
"(u" �  ")

�
u"t t �  "t t

�
in �⇥ (0, T ]

u"t t = �"t t on @�⇥ (0, T ]
u"t t (x, 0) = 12�"(x) in �⇥ {0},

(2.11)

or 8
><

>:

@t u"t t �1u"t t = 0, in �⇥ (0, T ]
�@⌫u"t t � � 0

"(u" �  )
�
u"t t �  "t t

�
on 0 ⇥ (0, T ]

u"t t (x, 0) = 12�"(x) in �⇥ {0},
(2.12)

or
8
><

>:

@t u"t t �1u"t t = 0, in �⇥ (0, T ]
�↵@t u"t t � @⌫u"t t � � 0

"(u" �  ")
�
u"t t �  "t t

�
on 0 ⇥ (0, T ]

u"t t (x, 0) = 12�"(x) in �⇥ {0},
(2.13)

or
(

�(�1)su"t t � @t u"t t = � 0
"(u" �  ")

�
u"t t �  "t t

�
on Rn�1 ⇥ (0, T ]

u"t t (x, 0) = 12�" on Rn�1.
(2.14)

To finish the proof, apply the minimum principle to u"t t .
If, on the other hand, (�� )

�
�
t=0 � 0, following the steps above, we notice that

since ||�||1 < +1 and � 0 � 0 it is enough to have (@t �(�1)s )
�
�
t=0 � M > 0

for s 2 (0, 1] and M sufficiently large.

3. A general implication on the optimality of the time derivative

In this section we show that the quasi-convexity property obtained in the previous
section improves the time regularity for a wide class of problems. More precisely,
we prove that the positive time derivative of the solution is always continuous for
this class. Our approach will be as follows: we penalize the problems, we subtract
the obstacle from the solution, then we differentiate with respect to time and we
work with the derived equations. We shall obtain then a global uniform modulus of
continuity independent of ", which will yield in the limit the desired result.

In order to avoid having a lengthy paper, in the present section we concentrate
on the first three prototype problems stated in (Section 2). The fourth and the fifth
prototype problems will be treated in forthcoming papers.
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3.1. The “thick” obstacle problem

In this situation the derived problem takes the form:
8
><

>:

1v" � @tv
" = � 0

"(u" �  ")v" + ft in Q := �⇥ (0, T ]
v" = (�" �  ")t on @p(�⇥ (0, T ])
v" = 1(�" �  ") on �⇥ {0},

(3.1)

where v" = (u" �  ")t and f = �(1 " � @t 
").

Our method, which uses the approach of [9], is essentially that of De Giorgi,
first appeared in his celebrated work [17]. To simplify matters we start with a
normalized situation, i.e. we assume that our solution is between zero and one in
the unit parabolic cylinder. We will prove (Proposition 3.5) that if at the top center
v" is zero then in a concentric subcylinder into the future v" decreases. Then we
rescale and repeat. But before that we need several lemmata. Our first lemma
asserts that if v" is “most of the time” very near to its positive maximum in some
cylinder, then in a smaller cylinder into the future v" is strictly positive.

Lemma 3.1. Let Q1(x0, t0) ⇢ Q where Q1(x0, t0) := B1(x0, 0) ⇥ (t0 � 1, t0] with
B1 := {x 2 Rn : |x � x0|  1}. Suppose that 0 < v" < 1 in Q1(x0, t0) where v" is
a solution to (3.1); then there exists a constant � > 0, independent of ", such that

Z

Q1(x0,t0)
(1� v")2dx < � (3.2)

implies that v" � 1/2 in Q1/2(x0, t0).

Proof. For simplicity we drop the ", we shift (x0, t0) to (0, 0), and write Q1 for
Q1(0, 0). First, we derive an energy inequality suited to our needs. Therefore we
set w = 1� v, so that the equation becomes

1w � @tw = � 0(u �  )(w � 1) � ft .

Choose a smooth cutoff function ⇣ vanishing near the parabolic boundary of Q1
and k � 0. Multiply the above equation by ⇣ 2(w � k)+ and integrate by parts to
obtain

1
2

Z

Q1
@t

h�
⇣(w � k)+

�2i dxdt +
Z

Q1

�
�r

�
⇣(w � k)+

���2 dxdt

=
Z

Q1
�t (u �  )⇣ 2(w � k)+dxdt

+
Z

Q1

⇥
(w � k)+

⇤2�
|r⇣ |2 + ⇣@t⇣

�
dxdt +

Z

Q1
ft⇣ 2(w � k)+dxdt.

(3.3)
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Integrating by parts in t the first term on the right we obtain

1
2

Z

B1

�
⇣(w � k)+

�2
(x, 0)dx +

Z

Q1

�
�r

�
⇣(w � k)+

���2dxdt

= �
Z

Q1
�(u �  )@t

�
⇣ 2(w � k)+

�
dxdt

+
Z

B1
�(u �  )⇣ 2(w � k)+(x, 0)dx

+
Z

Q1

⇥
(w � k)+

⇤2�
|r⇣ |2 + ⇣@t⇣

�
dxdt +

Z

Q1
ft⇣ 2(w � k)+dxdt.

(3.4)

Now, since � is nonpositive and the upper limit of t-integration, t = 0, could have
been replaced by any �1  t  0, our energy inequality takes the form

max
�1t0

Z

B1

�
⇣(w � k)+

�2dx +
Z

Q1

�
�
�r

�
⇣(w � k)+

���
�
2
dxdt

 C
Z

Q1

⇣⇥
(w � k)+

⇤2�
|r⇣ |2 + |@t⇣ |

�
+ (w � k)+(|@t⇣ | + 1) + �{w>k}

⌘
dxdt

with C = 2max{1, ||�||1(2+ ||(utt )�||1), || ft ||1}, where we have used the time
quasiconvexity of the solution u.

Now, we want to obtain an iterative sequence of inequalities; thus we define,
for m = 0, 1, 2, . . .,

km :=
1
2

✓
1�

1
2m

◆
, Rm :=

1
2

✓
1+

1
2m

◆

Qm :=
n
(x, t) : |x |  Rm, �R2m  t  0

o

and the smooth cutoff functions

�Qm+1  ⇣m  �Qm

with
|r⇣m |  C2m, |@t⇣m |  C4m .

Substituting ⇣ = ⇣m and setting wm = (w � km)+ we obtain, by the Sobolev
inequality, that

✓Z

Qm

(⇣mwm)2
n+2
n dxdt

◆ n
n+2

 C
✓
4mC

Z

Qm

w2mdxdt + C4m
Z

Qm

wmdxdt + |Qm \ {wm 6= 0}|
◆

 C
✓
4mC

Z

Qm

w2mdxdt +

✓
4m

2
+ 1

◆ �
�Qm \ {wm 6= 0}

�
�
◆

.
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Since
(km � km�1)

2|Qm \ {wm 6= 0}| 
Z

Qm

w2m�1dxdt

we obtain
Z

(⇣mwm)2dxdt 

✓Z
(⇣mwm)2

n+2
n dxdt

◆ n
n+2 �

�Qm \ {wm 6= 0}
�
�
2

n+2

 C16m
✓Z

(⇣m�1wm�1)
2dxdt

◆ n+4
n+2

.

(3.5)

Setting

Im :=
Z

(⇣mwm)2dxdt

these quantities satisfy the recursive inequality

Im  C16m I
1+ 2

n+2
m�1 .

It is well known from De Giorgi’s work (see for instance [19, Lemma II.5.6, page
95]) that Im ! 0 as m ! 0 provided that

I0 
1

2(n+2)2C
n+2
n

=: �.

Our second lemma asserts that if v" is very tiny “most of the time” in some
cylinder, then in a smaller concentric cylinder, v" goes down to 1/2. The fact
that � 0 > 0 renders v", more so any nonnegative solution to (3.1), a subsolution
(subcaloric).
Lemma 3.2. Let Q1 be as in Lemma 3.1. Suppose that v" is a subsolution to (3.1)
and that 0 < v" < 1 in Q1. Then there exists a constant �̄ > 0, independent of ",
such that Z

Q1
(v")2dxdt < �̄

implies that v"  1/2 in Q1/2.
Proof. It is identical to the proof of Lemma 3.1 except for the energy inequality
which is in fact much simpler. As before we drop ". We see that

1v � @tv � ft in Q1. (3.6)

Therefore we multiply the equation by ⇣ 2(v�k)+ where ⇣ and k are as in the proof
of Lemma 3.1 and integrate by parts to obtain the energy inequality

max
�1t0

Z

B1

�
⇣(v � k)+

�2 dx +
Z

Q1

�
�r

�
⇣(v � k)+

���2 dxdt

 2
Z

Q1

⇥
(v � k)+

⇤2 ⇣
|r⇣ |2 + |@t⇣ |

⌘
dxdt.
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Again, we substitute ⇣ = ⇣m and we set vm = (v � km)+ where ⇣m and km are as
in Lemma 3.1. By the Sobolev inequality

Z
(⇣mvm)2

n+2
n dxdt  C4m

Z
v2mdxdt

and since
(km � km�1)

2|Qm \ {vm 6= 0}| 
Z

v2m�1dxdt

we obtain
Z

(⇣mvm)2dxdt 

✓Z
(⇣mvm)2

n+2
n dxdt

◆ n
n+2 �

�Qm \ {vm 6= 0}
�
�
2

n+2

 C16m
✓Z

(⇣m�1vm�1)
2dxdt

◆ 2
n+2

.

(3.7)

Hence, if
Im :=

Z
(⇣mwm)2dxdt

we have
Im  C16m I

1+ 2
n+2

m�1

i.e. Im ! 0 as m ! 0 provided that

I0 
1

2(n+1)2C
n+2
2

=: �̄ .

The next lemma is the parabolic version of De Giorgi’s isoperimetric lemma.
One version of this lemma is proved in [15] and with proper adjustments applies to
our situation. We state it as our next lemma.

Lemma 3.3. Given ✏1 > 0, there exists a �1 > 0 such that for every subsolution v"

to (3.1) satisfying 0 < v" < 1 in Q1 and

|{(x, t) 2 Q1 : v" = 0}| � �0|Q1|,

if
|{(x, t) 2 Q1 : 0 < v" < 1/2} < �1|Q1|,

then
Z

QR0

"✓
v" �

1
2

◆+
#2
dxdt  C✏1

where R0
= c�0 for �0 > 0 and some 0 < c < 1.
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In order to achieve our decay estimate to zero we shall take a point v"(0, 0) = 0 at
the top center of Q1 and show that in QR0 (0, 0), for some R0

< 1, v" is pointwise
strictly less than one. This is the content of our next lemma.

Lemma 3.4. Let Q1 and � be as in Lemma 3.1. Suppose that v" is a solution to
(3.1) such that v"(0, 0) = 0 and 0  v"  1 in Q1, then v"  1�C� in QR0 (0, 0)
where C is independent of " and R 0

= �
8 .

Proof. Again, we drop ". Since v(0, 0) = 0, by Lemma 3.1
Z

Q1
(1� v)2dxdt � �.

Then it follows that �
�
�
n
v < 1�

�

4

o
\ Q1

�
�
� �

1
4
� |Q1|.

Therefore, we set

w :=
4
�

h
v �

⇣
1�

�

4

⌘i+

and we see that w is a subsolution to (3.1). Following De Giorgi’s method we will
consider a dyadic sequence of normalized truncations

wk := 2k
⇥
w � (1� 2�k)

⇤+
,

still subsolutions to (3.1). We will show that, in finite number of steps k0 = k0(�1)
(where �1 is defined in Lemma 3.3 and C✏1  �̄ , where �̄ is that of Lemma 3.2),

|{wk0 > 0}| = 0.

Note that, for every k, one has 0  wk  1 and |{wk = 0}\Q1| � �
4 |Q1|. Assume,

now, that for every k |{0 < wk < 1/2} \ Q1| � �1|Q1|. Then, for every k,

|{wk = 0}| = |{wk�1 = 0}| + |{0 < wk < 1/2}| � |{wk�1 = 0}| + �1|Q1|.

Therefore, after a finite number of steps, say k0 > 1/�1, we get |{wk0 = 0}| � |Q1|.
Thus wk0 < 0, i.e. 2k0[w � (1� 2�k0)]+ = 0 or w < 1� 2�k0 . Suppose, now, that
there exists k0 with 0  k0  k0 such that

�
�
�
�

⇢
0 < wk0 <

1
2

���
�
� < �1|Q1|.

By Lemma 3.3 applied towk0 with �0 = �
4 , and consequently by Lemma 3.2 applied

to wk0+1, we obtain wk0+1  1/2 in QR0 , where R0
= �

8 , i.e. w < 1 � 2�(k0+2).
Hence in both cases w < 1� 2�(k0+2) in QR0 or v < 1� 2�(k0+4)� .
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The estimates obtained above are all independent of ". We would like to iterate
the lemmata above to force the maximum of v" to decrease to zero in a dyadic
sequence of decreasing parabolic cylinders in order to obtain the continuity of v".

Proposition 3.5. Let v" be a solution to (3.1) in Q then

�
�(v")+(x, t) � (v")+(x0, t0)

�
�  C!

�
|x � x0|2 + |t � t0|

�

for any (x, t) and (x0, t0) in Q, where C is independent of " and ! denotes the
modulus of continuity.

Proof. It is enough to consider only the case when (v")+(x0, t0) = 0, since, oth-
erwise, v" satisfies a nice equation with smooth data and with regular boundary.
Therefore, for simplicity, we take (x0, t0) = (0, 0) and Q1 as before. Again, we
drop the " and we set

Qk := QRk , Mk := sup
Qk

v

where Rk := �
8Mk and

v̄ :=
vk

Mk

where vk(x, t) := v(Rkx, (Rk)2t). Then v̄ satisfies

1v̄ � @t v̄ � f̄t in Q1.

Therefore, by Lemma 3.4,
sup
QR0

v̄  1� C�,

or, in our original setting,
sup
Qk+1

v  µk sup
Qk

v

where µk = 1� C(supQk v+)1+
n
2 . So, even, if µk ! 1 as k ! 1, Mk ! 0.

To finish the proof, we use a standard barrier argument to get the continuity
from the future.

Theorem 3.6. If u be a solution to (2.1), then (u �  )+t is continuous.

Proof. It is well known that a subsequence of v" will converge uniformly to the
unique solution of (2.1).



PARABOLIC OBSTACLE PROBLEMS, QUASI-CONVEXITY AND REGULARITY 793

3.2. The (nondynamic) thin obstacle problem or Signorini problem

Let us extend " to all�, i.e.we take any function  ̃"(x 0,xn,t) such that  ̃"(x 0,0,t)=
 "(x 0, t),  ̃"(x 0, xn, t)<� on @p((�\0)⇥ (0, T ]), and @ ̃

"

@⌫ (x 0,0,t)= 0. Then our
problem takes the form

8
>>>>><

>>>>>:

1v" � @tv
" = ft in �⇥ (0, T ]

�@⌫v" = � 0
"

�
u" �  ̃"

�
v" on 0 ⇥ (0, T ]

v" =
�
�" �  ̃"

�
t on @p(� \ 0 ⇥ (0, T ])

v" = 1
�
�" �  ̃"

�
on �⇥ {0},

(3.8)

where v" = (u" �  ̃")t and f = �(1 ̃" � @t  ̃
").

We shall repeat the approach of Section 3.1 but, instead of parabolic cylinders,
we take parabolic rectangular cylinders with one of its sides lying on 0. We nor-
malize again, i.e. our solution is between zero and one, and we prove that, if v" is
zero on the top center and on 0 in such a cylinder, then in a concentric subcylinder
into the future v" is smaller than one. Then we rescale and repeat.

Our first lemma asserts that if v" is “most of the time” very near to its positive
maximum in some cylinder sitting in (Rn+1) against the hyperplane xn = 0 and
going backwards in time then in a smaller cylinder into the future, v" is strictly
positive.

Lemma 3.7. Let Q1(x 0
0, 0, t0) ⇢ � ⇥ (0, T ] where Q1(x 0

0, 0, t0) = B1(x 0
0, 0) ⇥

(t0 � 1, t0], B1(x 0
0, 0) = B0

1(x
0
0) ⇥ (0, 1), B0

1(x0) = {x 0 : |x 0 � x 0
0| < 1} and

Q0
1(x

0
0, t0) = B0

1(x
0
0) ⇥ (t0 � 1, t0]. Suppose that 0 < v" < 1 in Q1(x0, t0) where

v" is a solution to (3.8). Then there exists a constant � > 0, independent of ", such
that Z

Q0
1(x

0
0,t0)

�{1�v">0}dx 0dt +
Z

Q1(x0,t0)
(1� v")2dxdt < �

implies that

v" �
1
2

in Q1/2(x0, t0).

Proof. For simplicity we drop the superscript ", shift (x0, 0, t0) to (0, 0, 0) and write
Q1 for Q1(0, 0, 0). We first derive an energy inequality associated to our problem.
Setting w = 1� v the problem becomes

8
>>>>><

>>>>>:

1w � @tw = � ft in �⇥ (�T, T ]

@⌫w = �t
�
u �  ̃

�
on 0 ⇥ (�T, T ]

w = 1�
�
� �  ̃

�
t on @p(� \ 0 ⇥ (�T, T ])

w = 1�1
�
� �  ̃

�
on �⇥ {�T }.

(3.9)
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Choose a smooth cutoff function ⇣ vanishing near the parabolic boundary of Q1,
except on Q0

1, and k � 0. Multiply the above equations by ⇣ 2(w�k)+ and integrate
by parts to obtain

Z

Q1

h
r
�
⇣ 2(w � k)+

�
rw + ⇣ 2(w � k)+@tw

i
dxdt

=
Z

Q0
1

⇣ 2(w � k)+@⌫wdx 0dt +
Z

Q1
ft⇣ 2(w � k)+dxdt

and
Z

Q1


1
2
@t

h�
⇣(w � k)+

�2i
+

�
�
�r

�
⇣(w � k)+

���
�
2
�
dxdt

=
Z

Q0
1

@t

h
⇣ 2(w � k)+�(u �  )

i
dx 0dt

�
Z

Q0
1

⇣ 2@t (w � k)+�(u �  )dx 0dt+2
Z

Q0
1

⇣@t⇣(w�k)+�(u� )dx 0dt

+
Z

Q1

�
|r⇣ |2 + ⇣@t⇣

�⇥
(w � k)+

⇤2dxdt +
Z

Q1
ft⇣ 2(w � k)+dxdt.

(3.10)

Now, using the fact that � is bounded and negative, (u� )t t is bounded below, and
since the upper limit of the t-integration t = 0 can be replaced by any �1  t  0,
we obtain

1
2
max

�1t0

Z

B1

⇥
(w � k)+⇣

⇤2 dx +
Z

Q1

�
�r

�
(w � k)+⇣

���2dxdt

 ||�||1
�
�
�
�(u �  )�t t

�
�
�
�
1

Z

Q1\{w>k}
⇣ 2dx 0dt + ||�||1

Z

Q0
1

(w � k)+@t⇣dx 0dt

+
Z

Q1

⇥
(w � k)+

⇤2�
|r⇣ |2 + @t⇣

�
dxdt +

Z

Q1
ft⇣ 2(w � k)+dxdt

and, a fortiori, we have the “energy inequality”

max
�1t0

Z

B1

⇥
(w � k)+⇣

⇤2dx +
Z

Q1

�
�r

�
(w � k)+⇣

���2dxdt

 C
✓Z

Q0
1

�
@t⇣

2(w � k)+ + �{w>k}
�
dx 0dt

+
Z

Q1

⇥
(w � k)+

⇤2�
|r⇣ |2 + @t⇣

�
dxdt +

Z

Q1
⇣ 2(w � k)+dxdt

◆
,

(3.11)

where C = C max{1, ||�||1(2+ ||(utt )�||1), || ft ||1}.
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Now, having our energy inequality, we shall obtain an iterative sequence of
inequalities. We, therefore, define

km =
1
2
�
1� 2�m� , Rm =

1
4

✓
1+

1
2m

◆
,

Qm := Bm ⇥
�
R2m, 0

⇤
, Bm := B0

m ⇥ [0, Rm], B0
m := B0

Rm = {|x 0| < Rm},

Q0
m := {(x1, . . . , xn, t) : �Rm  xi  Rm,�Rm  t  0},

and we choose smooth cutoff functions ⇣m such that �Qm+1  ⇣m  �Qm , |r⇣m | 
C2m and 0  @t⇣m  C4m . We set wm = (w � km)+ and we denote by

Im := max
�R2t0

Z
(⇣mwm)2dx +

Z
|r(⇣mwm)|2dxdt.

We want to prove that for every m � 0, Im  ↵0M�m with ↵0 > 0 and M > 1
to be chosen. The proof is by induction. For 1  m  2 we choose � such that
4C� < M�2, and for m � 3 we have

Im  C16m
✓Z

(wm�1⇣m�1)
2dxdt +

Z
(wm�1⇣m�1)

2dx 0dt
◆

=C16m
✓Z

(wm�1⇣m�1)
2dxdt�2

Z
(wm�1⇣m�1)(wm�1⇣m�1)xndxdt

◆

 C16m
Z

(wm�1⇣m�1)
2dxdt

+

✓Z
(wm�1⇣m�1)

2dxdt
◆1/2✓Z

|r(⇣m�1wm�1)|
2dxdt

◆1/2#

,

(3.12)

where we used the divergence theorem and Hölder’s inequality. Now, by Sobolev’s
inequality, we obtain

Z

Qm

(wm�1⇣m�1)
2dxdt



✓Z

Qm�1

(wm�1⇣m�1)
2 n+2n dxdt

◆ n
n+2

✓Z

Qm�1

�{wm�1 6=0}dxdt
◆ 2

n+2

 24m I 1+
2
n

m�2 .

Therefore, by substituting in the above we obtain

Im  C28m
✓
I 1+

2
n

m�2 + I
1
2
m�1 I

1
2+

1
n

m�2

◆
.

Hence, if we choose M = 28n and ↵0 = C� n
2 2�8n(n+2), the claim is proved.
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From this point on we observe that, since � 0 > 0, the boundary integral is
nonnegative and can be omitted; then by reflecting about the hyperplane we are in
the same situation as that of Section 3.1 with square cylinders. Therefore we have
arrived at out main result:

Proposition 3.8. Let v" be a solution to (3.8) in Q; then

�
�(v")+(x, t) � (v")+(x0, t0)

�
�  C

�
|x � x0|2 + |t � t0|

�↵

for any (x, t) and (x0, t0) in Q and some 0 < ↵ < 1, where C and ↵ are indepen-
dent of ".

Proof. It is enough to consider only the case when (v")+(x0, t0) = 0. For sim-
plicity, we take (x0, t0) = (0, 0) and Q1 as before. Again, we drop the " and we
set

Qk := QRk , Mk := sup
Qk

v

where Rk := �
8Mk and

v̄ :=
vk

Mk
,

where vk(x, t) := v(Rkx, (Rk)2t). Then v̄ satisfies

1v̄ � @t v̄ � f̄t in Q1

and
sup
QR0

v̄  1� C�,

or, in our original setting,
Mk+1  µkMk,

where µk = 1�C(Mk
Rk )1+

n
2 . So, even, if µk ! 1 as k ! 1, Mk ! 0. As a matter

of fact Mk ⇠ 2�k and Rk ⇠ 2�k .
To finish the proof, we use a standard barrier argument to get the Hölder con-

tinuity.

Theorem 3.9. Let u be a solution to (2.2); then (u �  )+t is Hölder continuous.

Proof. It is well known that a subsequence of v" will converge uniformly to the
unique solution of (2.2).
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3.3. The dynamic thin obstacle problem

Let’s extend " to all�, i.e.we take any function  ̃"(x 0,xn,t) such that  ̃"(x 0,0,)=
 "(x 0, t),  ̃"(x 0, xn, t)<� on @p((�\0)⇥(0, T ]) and @ ̃

"

@⌫ (x 0,0,t)= 0. Subtracting
 ̃" from the solution and differentiating with respect to t we obtain

8
>>>>>><

>>>>>>:

1v" � @tv
" = �

�
1 ̃" � @t  ̃

"
�
t in �⇥ (0, T ]

�↵@tv" � @⌫v
" = � 0

"

�
u" �  ̃"

�
v" + ↵@t  ̃

"
t on 0 ⇥ (0, T ]

v" =
�
�" �  ̃"

�
t on @p(� \ 0 ⇥ (0, T ])

v" = 1
�
�" �  ̃"

�
on �⇥ {0},

(3.13)

where v" = (u" �  ̃")t . In order to avoid technicalities, in this more complex
situation, and bring forth the main idea, we shall assume throughout this section
that (1 ̃" � @t  ̃

")t = 0.
We shall repeat the approach of Section 3.1 but, instead of parabolic cylinders,

we take “hyperbolic” hypercubes with one of its sides lying on 0. We normalize
again, i.e. our solution is between zero and one, and we prove (Lemma 3.13) that,
if v" is zero on the top center and on 0 in such a hypercube, then in a concentric
subhypercube into the future v" is smaller than one. Then we rescale and repeat.
The rescaling, of course, is hyperbolic appropriate for the boundary term on 0 but
diminishes the time derivative in the heat equation; this though does not prevent us
to obtain the continuity, as it was done in [5].

Our first lemma asserts that if v" is “most of the time” very near to its positive
maximum in some hypercube sitting in (Rn+1) against the hyperplane xn = 0 and
going backwards in time, then in a smaller hypercube into the future v" is strictly
positive.

Lemma 3.10. Let QR(x 0
0, 0, t0) ⇢ �⇥ (0, T ] where QR(x 0

0, 0, t0) = BR(x 0
0, 0) ⇥

(t0 � R, t0], BR(x 0
0, 0) = B0

R(x0) ⇥ (0, 1), B0
R(x0) = {x 0 = (x1, . . . , xn�1) :

|x 0
i � x 0

0i | < R, i = 1, . . . , n� 1} and QR(x 0
0, 0) = B0

R(x 0
0)⇥ (t0� R, t0]. Suppose

that 0 < v" < 1 in QR(x0, t0) where v" is a solution to (3.13). Then there exists a
constant � > 0, independent of ", such that

Z

Q0
R(x 0

0,t0)
(1� v")2dx 0dt +

Z

QR(x0,t0)
(1� v")2dxdt < �

implies that

v" �
1
8

in Qr/8(x0, t0) = B0
R(x 0

0) ⇥
�
0, 18

�
⇥

�
t0 � R

8 , t0
⇤
.
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Proof. For simplicity we drop the superscript ", shift (x0, 0, t0) to (0, 0, 0) and
write QR for QR(0, 0, 0). We first derive an energy inequality associated to our
problem. Setting w = 1� v, the problem becomes

8
>>>>>><

>>>>>>:

1w � @tw = 0 in �⇥ (�T, T ]

↵@tw + @⌫w = �t
�
u �  ̃

�
+ ↵@t  ̃t on 0 ⇥ (�T, T ]

w = 1�
�
� �  ̃

�
t on @p(� \ 0 ⇥ (�T, T ])

w = 1�1
�
� �  ̃

�
on �⇥ {�T }.

(3.14)

Choose a smooth cut-off function ⇣ vanishing near the parabolic boundary of QR ,
except on Q0

R , and k � 0. Multiply the above equations by ⇣ 2(w�k)+ and integrate
by parts to obtain
Z

QR

h
r
�
⇣ 2(w � k)+

�
rw + ⇣ 2(w � k)+@tw

i
dxdt�

Z

Q0
R

⇣ 2(w�k)+@⌫wdx 0dt=0

and
Z

QR

�
�
�r

�
⇣ 2(w � k)+

���
�
2
+
1
2
@t
�
⇣ 2(w � k)+

�2
�
dxdt

�
Z

Q0
R

⇣ 2(w � k)+(�t (u �  ) + ↵ t t � ↵@tw)dx 0dt

=
Z

QR

�
(w � k)+

�2�
|r⇣ |2 + ⇣⇣t

�
dxdt

and

↵

2

Z

Q0
R

@t

h�
⇣(w � k)+

�2idx 0dt

+
Z

QR


1
2
@t

h�
⇣(w � k)+

�2i
+

�
�
�r

�
⇣(w � k)+

���
�
2
�
dxdt

=
Z

Q0
R

@t
⇥
⇣ 2(w � k)+�(u �  )

⇤
dx 0dt�

Z

Q0
R

⇣ 2@t (w � k)+�(u �  )dx 0dt

+ 2
Z

Q0
R

⇣@t⇣(w � k)+�(u �  )dx 0dt + ↵

Z

Q0
R

⇣@t⇣
�
(w � k)+

�2dx 0dt

+ ↵

Z

Q0
R

⇣ 2(w � k)+ t t dx 0dt +
Z

QR

�
|r⇣ |2 + ⇣@t⇣

�⇥
(w � k)+

⇤2dxdt.

(3.15)

Now, using the fact that � is bounded and negative, (u� )t t is bounded below, and
since the upper limit of the t-integration t = 0 can be replaced by any�R  t  0,
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we obtain

↵

2
max

�Rt0

Z

B0
R

⇥
(w � k)+⇣

⇤2dx 0 +
1
2
max

�Rt0

Z

BR

⇥
(w � k)+⇣

⇤2dx

+
Z

QR

�
�r

�
(w � k)+⇣

���2dxdt

 ||�||1||(u �  )�t t ||1

Z

QR\{w>k}
⇣ 2dx 0dt + 2||�||1

Z

Q0
R

(w � k)+|@t⇣ |dx 0dt

+ ↵

Z

Q0
R

⇥
(w � k)+

⇤2
|@t⇣ |dx 0dt + ↵|| t t ||1

Z

Q0
R

(w � k)+dx 0dt

+
Z

QR

⇥
(w � k)+

⇤2�
|r⇣ |2 + |@t⇣ |

�
dxdt

or

↵ max
�Rt0

Z

B0
R

⇥
(w � k)+⇣

⇤2dx 0 + max
�Rt0

Z

BR

⇥
(w � k)+⇣

⇤2dx

+
Z

QR

�
�r

�
(w � k)+⇣

���2dxdt

 C

 Z

Q0
R

⇥
(w � k)+

⇤2
|@t⇣ | + (w � k)+(1+ |@t⇣ |)dx 0dt +

Z

Q0
R\{w>k}

⇣ 2dx 0dt

!

+ C
Z

QR

⇥
(w � k)+

⇤2�
|r⇣ |2 + |@t⇣ |

�
dxdt,

where C = 2max{||�||1, ||(u � )�t t ||1, 1,↵|| t t ||1} and, a fortiori, we have the
“energy inequality”

↵ max
�Rt0

Z

B0
R

⇥
(w � k)+⇣

⇤2dx 0 +
Z

QR

|r((w � k)+⇣ )|2dxdt

 C

 Z

Q0
R

⇥
(w � k)+

⇤2
|@t⇣ | + (w � k)+(1+ |@t⇣ |) + ⇣ 2�{w>k}dx 0dt

+
Z

QR

⇥
(w � k)+

⇤2�
|r⇣ |2 + |@t⇣ |

�
dxdt

◆
.

(3.16)

Now, having this energy inequality at disposal, we shall obtain an iterative sequence
of inequalities. More precisely, the method consists in taking a sequence of decreas-
ing cutoff functions in space and time ⇣m that converges to the indicator function
of QR/4 and simultaneously a series of cutoff functions of the graph of u, um that
converge to (w � 7/8)+ and prove by iteration that in the limit (w � 7/8)+ = 0 on
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Qr/4. Therefore we define

km =
9
16

+
1
16

�
1� 2�m� Rm =

R
4

✓
1+

1
2m

◆

Q0
m = {(x1, . . . , xn, t) : �Rm  xi  Rm,�Rm  t  0}

and we choose cutoff functions ⇣m depending only on x 0 and t and such that �Q0
m+1



⇣m  �Q0
m , |r⇣m |  C2m and |@t⇣m |  C2m . We set um = (u � km)+ and we

define

Im =
Z

Q0
R

(⇣mum)2dx 0dt +
Z �m/2

0

Z
|r(⇣mum)|2dxdt,

where 0 < � < 1 is chosen such that 2n2� (n+6)2�m�1
�m  2�m�4 holds. We also

choose M as in [5] satisfying 2n+1M � m
2 (�n)�m� 1  2�m� 6, M �m �

C4m(1+ 1
n�1 )M�(m�3)(1+ 1

n�1 ), m � 14(n � 1).
We want to prove simultaneously that for every m � 0, Im  M�m and that

um = 0 on Q0
m ⇥ { �

m

2 }. The proof is by induction and is identical with Step 2a and
Step 2b of [5, Lemma 2.2 ], except that

�
�
�
�
�
�u�Q0

R
⇤ H(xn)

�
�
�
�
�
�  ||H(y)||1({xn�1})

Z

Q0
R

udx 0dt


2n+2

⇡
n
2

✓
n + 2
2e

◆n+2 �
�Q0

R
�
�1/2� 1/2 

1
64

for � small enough. So we concentrate on Step 2c, where we will show that

Im  C4m(1+ 1
n�1 ) I

1+ 1
n�1

m�3 , m � 14n � 13.

By the energy inequality,

Im 
Z

(wm⇣m�1)
2dx 0dt

+ C

C2m

Z
(wm⇣m�1)

2dx 0dt + (1+ C2m)
1
2

Z
(wm⇣m�1)

2dx 0dt
�

+ C

(1+ C2m)

1
2
|Qm�1 \ {wm 6= 0}| +

�
�Q0

m�1 \ {wm 6= 0}
�
�

+(C2m)2
Z

(wm⇣m�1)
2dxdt

�

+ C

1
2

Z
(wm⇣m�1)

2dxdt +
1
2
|Qm�1 \ {wm 6= 0}|

�
,
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where we have used Young’s inequality. Since wm < wm�1 and {wm 6= 0} =
{wm�1 > 2�m�4}, we have

Im  C2m
Z

(wm�1⇣m�1)
2dx 0dt + C4m

Z
(wm�1⇣m�1)

2dxdt.

Also, the integral of the second term, satisfies
Z

(wm�1⇣m�1)
2dxdt 

Z
|(wm�2⇣m�2) ⇤ H(xn)|2dxdt

 ||H ||2L1(QR)

Z
(wm�2⇣m�2)

2dx 0dt.

Therefore one has

Im  C4m
Z

(wm�2⇣m�2)
2dx 0dt

 C4m
✓Z

(wm�2⇣m�2)
2 n
n�1 dx 0dt

◆ n�1
n �
�{wm�2 6= 0} \ Q0

m�2
�
�
1
n

 C4m(1+ 1
n�1 )

Z
(wm�3⇣m�3)

2 n
n�1 dx 0dt.

(3.17)

By Sobolev’s inequality

Im  C4m(1+ 1
n�1 )

✓Z
(wm�3⇣m�3)

2dx 0dt +
Z �

�31/2(wm�3⇣m�3)
�
�2dx 0dt

◆ n
n�1

where 3(wm�3⇣m�3) = � @
@xn (wm�3⇣m�3). Since

Z �
�31/2(wm�3⇣m�3)

�
�2dx 0dt 

Z
|r(wm�3⇣m�3)|

2dxdt,

we have
Im  C4m(1+ 1

n�1 ) I
1+ 1

n�1
m�3 for every m � 14(n � 1) + 1

and so Im ! 0 as m ! 1 provided that

I0  C�(n�1)4�n(n�1) =: �.

Hence, to complete the proof, consider the function w̄ defined by
8
>>>><

>>>>:

1w̄ � @t w̄ = 0 in QR/4

w̄ = 1 on @p(QR/4 \ {xn = 0}

w̄ =
5
8

on Q0
R/4.

(3.18)

Then w̄ < 7/8 in QR/8 and by the maximum principle w  w̄.
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Our second lemma asserts that if v" is very tiny “most of the time” in some
hypercube (as above) then, in a smaller concentric hypercube, v" goes down from
1 to 7/8.

Lemma 3.11. Let QR(x 0
0, 0, t0) be as in Lemma 3.10. Suppose that v

" is a subso-
lution to (3.13) and that 0 < v" < 1 in QR(x 0

0, 0, t0). Then there exists a constant
�̄ > 0, independent of ", such that

Z

Q0
R(x 0

0,t0)
(v")2dx 0dt +

Z

QR(x 0
0,0,t0)

(v")2dxdt < �̄

implies that

v" 
7
8

in Qr/8(x0, 0, t0).

Proof. The proof is identical to the proof of Lemma 3.10 except from the energy
inequality. For simplicity again we drop the " and take (x 0

0, 0, t0) = (0, 0, 0) with
QR = QR(0, 0, 0). Since � 0 � 0, v satisfies

(
1v � @tv = 0 in QR
�↵@tv � @⌫v � ↵@t t on Q0

R .
(3.19)

Choose again, a smooth cutoff function ⇣ vanishing near the parabolic boundary of
QR except on Q0

R and k � 0. Multiply the above by ⇣ 2(v � k)+ and integrate by
parts to obtain
Z

QR

h
r
�
⇣ 2(v � k)+

�
rv + ⇣ 2(v � k)+@tv

i
dxdt �

Z

Q0
R

⇣ 2(v � k)+@⌫vdx 0dt  0

or
Z

QR

�
�
�r

�
⇣(v � k)+

���
�
2
+
1
2
@t

⇣�
⇣(v � k)+

�2⌘
�
dxdt

+
Z

Q0
R

⇣ 2(v � k)+ [↵ t t + ↵@tv] dx 0dt


Z

QR

⇣�
v � k

�+⌘2 h
|r⇣ |2 + ⇣@t⇣

i
dxdt

and
↵

2

Z

Q0
R

@t

h�
⇣(v�k)+

�2idx 0dt+
Z

QR

h
@t
⇥
(⇣(v�k)+

⇤2�
+
�
�r

�
⇣(v � k)+

���2
i
dxdt

 ↵

Z

Q0
R

⇥
(v � k)+

⇤2
|@t⇣ |dx 0dt + ↵|| t t ||L1

Z

Q0
R

(v � k)+dx 0dt

+
Z

QR

⇥
(v � k)+

⇤2�
|r⇣ |2 + |@t⇣ |

�
dxdt.
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Taking again as upper limit any �R  t  0, we obtain

↵ max
�Rt0

Z

B0
R

⇥
⇣(v � k)+

⇤2dx 0 +
Z

QR

�
�r

�
⇣(v � k)+

���2dxdt

 C̄

(Z

Q0
R

h⇥
(v � k)+

⇤2
|@t⇣ | + (v � k)+

i
dx 0dt

+
Z

QR

⇥
(v � k)+

⇤2�
|r⇣ |2 + |@t⇣ |

�
dxdt

)

where C̄ = 2max{1,↵|| t t ||L1}.
Now, since we have our energy inequality, the rest is as that of Lemma 3.10

and we define
�̄ := C̄�(n�1)4�n(n�1).

We proceed, now, by using the parabolic version of De Giorgi’s isoperimetric
lemma. This lemma is proved in [15] and with proper adjustments applies to our
situation. We state it as our next lemma.

Lemma 3.12. Given ✏1 > 0, there exists a �1 > 0 such that for every subsolution
v" to (3.13) satisfying 0 < v" < 1 in QR and

|{(x, t) 2 QR : v" = 0}| � �0|QR|,

if
|{(x, t) 2 QR : 0 < v" < 1/2} < �1|QR|

then

Z

Q0
R0

"✓
v" �

1
2

◆+
#2
dx 0dt +

Z

QR0

"✓
v" �

1
2

◆+
#2
dxdt < C

p
✏1,

where R0 = �0
2 R for �0 > 0.

We are now ready to obtain our basic decay estimate to zero.

Lemma 3.13. Let QR(x 0
0, 0, t0) and � be as in Lemma 3.10. Suppose that v" is

a solution to (3.13) such that v"(x 0
0, 0, t0) = 0 and 0  v"  1 in QR(x 0

0, 0, t0).
Then v"  1� C� in QR0(x 0

0, 0, t0) where C is independent of " and R0 = �
16 R.

Proof. We drop the ", take (x 0
0, 0, t0) to be (0, 0, 0) (by translation), and set QR =

QR(0, 0, 0). Since v(0, 0, 0) = 0, by Lemma 3.10
Z

Q0
R

(1� v)2dx 0dt +
Z

QR

(1� v)2dxdt � �.
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Then it follows that there exists a constant c0 < 1 such that
�
�
�
n
v < 1�

�

4

o
\ QR

�
�
� � c0� |QR|.

Therefore set
w :=

4
�

⇣
v �

⇣
1�

�

4

⌘⌘+

and observe that w is a (nonnegative) subsolution to (3.13). Again by De Giorgi’s
lemma, the normalized truncations, i.e.

wk := 2k
⇣
w �

�
1� 2�k�

⌘+
,

are still subsolutions to (3.13). We will show now that in a finite number of steps
k0 = k0(�1) (�1 as in Lemma 3.12) there holds |{wk0 > 0}| = 0. Note that for
every k, 0  wk  1 and |{wk = 0} \ QR| � �1|QR|. Set Cp

✏1  �̄ where ✏1 is
defined in Lemma 3.12 and �̄ in Lemma 3.11. Hence we assume that for every k,
|{0 < wk < 1

2 } \ QR| � �1|QR|. Then, for every k, one has

|{wk = 0}| = |{wk�1 = 0}| + |{0 < wk�1 < 1/2}| � |{wk�1 = 0}| + �1|QR|.

Hence after a finite number of steps, say k0 > 1/�1, we get |{wk0 = 0}| � |QR|.
Thus wk0 < 0, i.e. 2k0[w � (1� 2�k0)]+ = 0 or w < 1� 2�k0 . Suppose, now, that
there exists k0, 0  k0  k0, such that

�
�
�
�

⇢
0 < wk0 <

1
2

���
�
� < �1.

By Lemma 3.12 applied to wk0 , and consequently by Lemma 3.11 applied to wk0+1,
we conclude that wk0+1  7/8 in QR0 , where R0 = �

16 R, i.e. w < 1 � 1
82

�(k0+1).
A fortiori, in both cases we have w < 1 � 2�(k0+4) in QR0 , that is v < 1 �
2�k0�6� .

The estimates we obtained above are all independent of " and remain invariant
under hyperbolic scaling much the same way as in [5]. Although the time derivative
term diminishes in the rescaling, we still obtain the continuity of the time derivative.

Proposition 3.14. Let v" be a solution to (3.13) in QR . Suppose that 0  v"  M ,
where M is independent of ". If v"(0, 0, 0) = 0 then

v"
�
x 0, xn, t

�
 !

�
|x 0|, |xn|, |t |

�
,

where ! is a modulus of continuity (required to be monotone and to satisfy !(0) =
0) independent of ".
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Proof. We drop as usual the ". Set

Qk := QRk = (�Rk, Rk)n�1 ⇥ (0, rk) ⇥ (�Rk, 0] and Mk := sup
Qk

v

where Rk := rk R, rk := �
16Mk . Define

v̄ :=
vk

Mk
, where vk(x, t) := v

�
rkx 0, rkxn, rkt

�
.

Then v̄ verifies
(
1v̄ � rk@t v̄ = 0 in QR
�↵@t v̄ � @⌫ v̄ = � 0(u �  )v̄ +  ̄t on Q0

R
(3.20)

where  ̄t = ↵@t t/Mk . We apply Lemma 3.13 to v̄ to obtain

sup
QR0

v̄  1� C�.

Hence in our original setting

sup
Qk+1

v  µk sup
Qk

v,

whereµk = 1�C(supQk v)n�1. Thereforeµk ! 1 as k ! 1 only if supQk u ! 0
which yields a modulus of continuity. Finally, a standard barrier argument yields
the continuity from the future, too.

Theorem 3.15. Let u be a solution to (2.3) then (u �  )+t is continuous with a
uniform modulus of continuity.

4. Further implications on the (nondynamic) thin obstacle problem or
(time dependent) Signorini problem

In the present section we shall concentrate on the nondynamic parabolic “thin”
obstacle or parabolic Signorini problem and we will show how the quasi-convexity
yields the optimal regularity of the solution as well as free boundary regularity. The
other cases, as it was mentioned in Section 1, will be treated in forthcoming papers.
Since it is easier to work with the zero obstacle, we extend the obstacle as it was
done in Section 3.2 in all of� and subtract it from the solution which we still denote
by u.

More precisely, given � ⇢ Rn , an open bounded set with smooth boundary
@� and 0 ⇢ @� lying in Rn�1, we consider the following problem:

8
>>><

>>>:

1u � @t u = f, in �⇥ (�T, T ]
@⌫u � 0, u � 0 on 0 ⇥ (�T, T ]
u@⌫u = 0 on 0 ⇥ (�T, T ]
u = � �  on @p(� \ 0 ⇥ (�T, T ]),

(4.1)
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where ⌫ is the unit outward normal, the functions  (x 0, t) and �(x, t) are smooth
functions, satisfying the compatibility conditions of Section 2, and f := �(1 ̃ �
@t  ̃). Notice that the extended  ̃ can be chosen, with no loss of generality, in such
a way so that f is independent of xn .

The methods to follow can be easily extended to cover a more general non-
homogeneous term f . But, in order to avoid minor technicalities and set forth the
ideas involved behind it, we work with (4.1).

4.1. Optimal regularity of the space derivative

The solution to the problem (4.1) is globally Lipschitz continuous in space and
furthermore the space normal to the hyperplane derivative enjoys a C↵ parabolic
regularity, for 0 < ↵  1

2 , up to the hyperplane (see [1, 2]). We will prove in
this subsection that, actually, ↵ = 1

2 . Recently, in [16], the optimal space deriva-
tive regularity was also obtained using the parabolic Almgren’s frequency formula
approach.

First, we want to complete what had started in [4], i.e. to prove a parabolic
monotonicity formula analogous to the elliptic one for the global zero obstacle case.
We thus take in (4.1) f = 0 and the domain � to be the half space Rn

+. In this
situation, it is clear, perhaps by appropriately blowing up the local solution, that the
solution u is convex in the tangential and time directions. For simplicity we take
the origin to be a free boundary point. The proof of the monotonicity result relies
on the following eigenvalue problem (see the appendix of [4]):

Lemma 4.1. Set

�0 = inf
w2H1(Rn

+)

w=0 on Rn�1
�

R
Rn

+
|rw(y,�1)|2e�

�|y|2
4 dy

R
Rn

+
w2(y,�1)e�

�|y|2
4 dy

,

where
Rn

+ :=
�
x = (x 0, xn) 2 Rn : xn > 0

 

and
Rn�1

� :=
�
(x 0, 0) : x 0 2 Rn�1, xn�1 < 0

 
.

Then �0 = 1/4.

Let w be any function in Rn
+ ⇥ [�1, 0] that is caloric in Rn

+ ⇥ [�1, 0], where
Rn

+ = {x = (x 0, xn) 2 Rn : xn > 0}. We assume that w has moderate growth at
infinity, Z

BR
w2(x,�1)dx  Ce

R2
4+"
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for some positive constant C , R > 0 large and some " > 0. We also set

G(x, t) =

8
<

:

1
(4⇡ t)n/2

e�
|x |2
4t , t > 0

0 t  0.
(4.2)

Lemma 4.2. Set w(x, t) = uxn (x, t) where u is a solution, with the above restric-
tions, to the problem (4.1), and assume that w(0, 0) = 0. If

'(t) :=
1
t1/2

Z 0

�t

Z

Rn
+

|rw|2G(x,�s)dxds,

then '(t) is increasing in t .

Proof. Note that 1w2 = 2w1w + 2|rw|2. We compute '0(t), with a usual molli-
fication argument, to obtain

'0(t) = �
1

2t3/2

Z 0

�t

Z

Rn
+

|rw|2G(x,�s)dxds +
1
t1/2

Z

Rn
+

|rw(x,�t)|2G(x, t)dx

= �
1

2t3/2

Z 0

�t

Z

Rn
+

✓
1
2
1w2 � wwt

◆
G(x,�s)dxds

+
1
t1/2

Z

Rn
+

|rw(x,�t)|2G(x, t)dx .

By integrating by parts and noticing that 1G + Gt = �(0,0), w(0, 0) = 0 and
G(x, 0) = 0, we obtain,

'0(t) = �
1

4t3/2

Z

Rn
+

w2(x,�t)G(x, t)dx+
1
t1/2

Z

Rn
+

|rw(x,�t)|2G(x, t)dx

�
1

4t3/2

Z 0

�t

Z

Rn�1
2ww⌫G(x 0, 0,�s)dx 0ds.

(4.3)

Hence, by the eigenvalue problem of Lemma 4.1 and the complimentary conditions
of the solution on Rn�1, '0(t) � 0.

Theorem 4.3. If u is a solution to the global convex case of (4.1) then ru 2
C1/2,1/4x,t up to the coincidence set.

Proof. It is enough to prove that u tends to zero in a parabolic C1 fashion as (x, t),
a point in the noncoincidence set, approaches a point (x0, t0) in the coincidence set
which we take to be the origin. Set w = uxn , then w satisfies the hypothesis of
Lemma 4.2. In particular, w vanishes at the origin, therefore

1
t1/2

Z 0

�t

Z

Rn
+

|rw(x, s)|2G(x,�s)dxds  C. (4.4)
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Since w vanishes on at least half of the space for all t  0, the Poincaré inequality
implies that
Z

Rn
+

w2
�
y,�r2

�
G
�
x�y, t+r2

�
dy4r2

Z

Rn
+

�
�rw

�
y,�r2

���2G
�
x�y, t+r2

�
dy. (4.5)

Since w2 is a subsolution across xn = 0 we have, for every (x, t) 2 Q�
r/2 and

s < r/2,
w2(x, t) 

Z

Rn
w2(y, s)G(x � y, t � s)dy. (4.6)

Now integrate (4.6) with respect to s from �r2 to �r2/2 to obtain

r2w2(x, t) 
Z �r2/2

�r2

Z

Rn
w2(y, s)G(x � y, t � s)dyds (4.7)

and combining with Poincaré inequality we have

w2(x, t)  4
Z �r2/2

�r2

Z

Rn
|rw|2G(x � y, t � s)dyds (4.8)

for every (x, t) 2 Q�
r/2. Hence by (4.4), the proof is complete.

Now, we remove the restrictions previously imposed and we show how to im-
prove the 0 < ↵ < 1 in the C↵ regularity to get C1/2 regularity. First we prove a
lemma, which uses the normal semi-concavity, the tangential semi-convexity, and
the time semi-convexity.

Lemma 4.4. Let u be a solution of (4.1) in Q+
1 with ru, u+

t 2 C↵,
↵
2

x,t Then there
exists a � = �(↵) > 0 such that

(0, 0, t) /2 0
⇣�
uxn < �r↵+� \ Q0

r

⌘

for every t 2 [�r2, 0] and 0 < r < 1, where 0(A) denotes the convex hull of the
set A.

Proof. If �
x 0, 0,�r2

�
2
�
uxn < �r↵+� 

then
u
�
x 0, h,�r2

�
 �r↵+�h +

M
2
h2

since uxnxn < M . Take h = r↵+m�

M for some m > 1; in this case

u
�
x 0, h,�r2

�
 �

r2↵+(m+1)�

2M
.
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Moreover, if we restrict the considerations to |x 0|  r
2M , then

u
�
x 0, h,�r2

�
+ M|x 0|2  �

r2↵+(m+1)�

4M
(4.9)

provided that � < 2(1�↵)
m+1 . On the other hand, since utt > �M1 and u+

t is Hölder
continuous whose exponent, with no loss of generality, can be taken to be the same
↵ as above, we have

u(0, h,�r2) � u(0, h, 0) �max
�
0, c1h↵r2

 
�
M1
2
r4

� �c0h1+↵ �max
�
0, c1h↵r2

 
�
M1
2
r4

> �c̄r (↵+m�)(1+↵).

(4.10)

Finally, if we choose � > ↵(1�↵)
↵m�1 and m > 1 + 2

↵ we get a contradiction to (4.9)
above. Note that the same argument applies for any t 2 [�r2, 0].

We provide now our monotonicity formula for solutions to the local situation.

Lemma 4.5. Let � > 0 and u be a solution to the Signorini problem (4.1). Set
w = uxn and

'(r) =
1
r

Z 0

�r2

Z

Rn
+

|r(⌘w)(x, s)|2G(x,�s)dxds

for r < 1 where ⌘ 2 C1
0 (Br ) with ⌘ ⌘ 1 and ⌘xn |Br\Rn�1 = 0. There exists a

universal constant C > 0 such that

(i) If 2↵ + � > 1 then '(r)  C;
(ii) If 2↵ + � < 1 then '(r)  Cr2↵+��1.

Proof. We compute

|r(⌘w)|2 =
1
2
�
1(⌘w)2 � @t (⌘w)2

�
� 2⌘wr⌘rw � ⌘w21⌘ (4.11)

and

'0(r) = �
1
2r2

Z 0

�r2

Z

Rn
+

�
1(⌘w)2 � @t (⌘w)2

�
G(x,�s)dxds

+ 2
Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G
�
x, r2

�
dx

+
1
r2

Z 0

�r2

Z

Rn
+

�
2⌘wr⌘rw + ⌘w21⌘

�
dxdt.

(4.12)
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We integrate by parts to obtain

'0(r) =
1
2r2

Z 0

�r2

Z

Rn
+

�
r(⌘w)2rG + @t (⌘w)2G

�
dxds

�
1
2r2

Z 0

�r2

Z

Rn�1

⇥
(⌘w)2

⇤
⌫
(x 0, 0, s)G(x 0, 0,�s)dx 0ds

+
1
r2

Z 0

�r2

Z

Rn
+

�
2⌘rwr⌘ + ⌘w21⌘

�
G(x,�s)dxds

+ 2
Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G
�
x, r2

�
dx .

(4.13)

Integrating again by parts, we obtain

'0(r) = �
1
2r2

Z 0

�r2

Z

Rn
+

(⌘w)2(1G + @tG)dxds

�
1
2r2

Z 0

�r2

Z

Rn�1
(⌘w)2⌫G(x,�s)dx 0ds

�
1
2r2

Z

Rn
+

(⌘w)2
�
x,�r2

�
G
�
x, r2

�
dx

+
1
r2

Z 0

�r2

Z

Rn
+

�
⌘1⌘w2 + 2⌘wr⌘rw

�
G(x,�s)dxds

+ 2
Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G(x, r2)dx .

(4.14)

Since w(0, 0) = 0, we have

'0(r) = �
1
2r2

Z

Rn
+

(⌘w)2
�
x,�r2

�
G
�
x, r2

�
dx

+ 2
Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G
�
x, r2

�
dx

�
1
2r2

Z 0

�r2

Z

Rn�1
2⌘w⌘w⌫G(x,�s)dx 0ds

+
1
r2

Z 0

�r2

Z

Rn
+

⌘1⌘w2G(x,�s)dxds

+
2
r2

Z 0

�r2

Z

Rn
+

⌘wr⌘rwG(x,�s)dxds

(4.15)
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or

'0(r) = �
1
2r2

Z

Rn
+

(⌘w)2
�
x,�r2

�
G
�
x, r2

�
dx

+ 2
Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G
�
x, r2

�
dx

+
1
2r2

Z 0

�r2

Z

Rn
+

r⌘2rw2G(x,�s)dxds

+
1
r2

Z 0

�r2

Z

Rn
+

⌘1⌘w2G(x,�s)dxds

+
1
r2

Z 0

�r2

Z

Rn�1
⌘2w f G(x,�s)dx 0ds

(4.16)

and finally

'0(r) � �
1
2r2

Z

Rn
+

(⌘w)2
�
x,�r2

�
G
�
x, r2

�
dx

+ 2
Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G
�
x, r2

�
dx � Cr↵.

Now, consider the truncated function w = �(w + r↵+�)� and note that
Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G
�
x, r2

�
dx 

Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G
�
x, r2

�
dx .

Hence we have

'0(r) � �
1
2r2

Z

Rn
+

[⌘(w � w) + ⌘w]2
�
x,�r2

�
G
�
x, r2

�
dx

+ 2
Z

Rn
+

�
�r(⌘w)

�
x,�r2

���2G
�
x, r2

�
dx � Cr↵

and

'0(r) � �
1
2r2

Z

Rn
+

⌘2
⇥
(w � w)2 + 2w(w � w)

⇤
G
�
x, r2

�
dx � Cr↵

or
'0(r) � �

3
2
r2↵+2��2 � Cr↵ � �

3
2
r2↵+��2.

Therefore

'(1) � '(r) � �
3
2

✓
1

2↵ + � � 1

◆
+
3
2

✓
1

2↵ + � � 1

◆
r2↵+��1.

Since '(1) is universally bounded the proof is complete.
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Next, we state our main result of this subsection:

Theorem 4.6. Let u the solution of (4.1), then ru is C
1
2 ,
1
4

x,t up to the hyperplane
Rn�1.

Proof. Let w = uxn and w be as in the proof of Lemma 4.5. Fix s > 0, choose
R > 0 large enough and " < s. We define a cutoff function ⌘ = ⌘(x) so that
supp ⌘ 2 BR+1(0), ⌘ ⌘ 1 on BR(0) and |r⌘|  C .

Then

(1� @⇠ )(⌘w)2 = 2⌘2|rw|2 + 8w⌘rwr⌘ + 2
�
⌘1⌘ + |r⌘|2

�
w2

+ 2⌘2w(1w � @⇠w).
(4.17)

Recall that (1 + @⇠ )G(x,�⇠) = �(0,0); therefore using (4.17), an integration by
parts, along with the fact that ⌘ is compactly supported, we obtain

2
Z �"

�s

Z

Rn
⌘2|rw|2G(x,�⇠)dxd⇠

= �
Z

Rn
⌘2w2G(x, ")dx +

Z

Rn
⌘2w2G(x, s)dx

� 8
Z �"

�s

Z

Rn
w⌘r⌘rwG(x,�⇠)dxd⇠

� 2
Z �"

�s

Z

Rn

�
⌘1⌘ + |r⌘|2

�
w2G(x,�⇠)dxd⇠

� 2
Z �"

�s

Z

Rn
⌘2w(1w � @⇠w)G(x,�⇠)dxd⇠.

(4.18)

Observe that
Z �"

�s

Z

Rn
w⌘|r⌘||rw|G(x,�⇠)dxd⇠  C

Z �"

�s

Z

BR+1\BR
|w||rw|

e�R2/4|⇠ |

|⇠ |n/2
dxd⇠

 Ce�R2/4+"0
Z 0

�s

Z

BR+1\BR
|w||rw|dxd⇠.

Using the Cauchy-Schwartz inequality, we conclude that the last three terms on the
right hand side of (4.18) behave in the same way, in particular they decay to zero as
R ! 1. Therefore we conclude that

(⌘w)2(0, 0) 
Z

Rn
(⌘w)2G(x, s)dx

or, after rescaling,

(⌘w)2(x, t) 
Z

Rn
(⌘w)2(y, s)G(x � y, t � s)dy (4.19)
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for every (x, t) 2 Q+
r/2 and �r2 < s < � r2

2 . By Poincaré inequality for Gaussian
measures (see [7]) we have that

Z

Rn
(⌘w)2(y, s)G(x � y, t � s)dy

 2|s|
Z

Rn
|r(⌘w)(y, s)|2G(x � y, t � s)dy

(4.20)

for (x, t) 2 Q+
r/2 and �r2 < s < � r2

2 . Combine (4.19) and (4.20) to obtain

(⌘w)2(x, t)  C|s|
Z

Rn
+

|r(⌘w)(y, s)|2G(x � y, t � s)dy (4.21)

for every (x, t) 2 Q+
r/2 and �r2 < s < � r2

2 . An integration with respect to s in
(4.21) shows that

(⌘w)2(x, t)  C
Z �r2/2

�r2

Z

Rn
|r(⌘w)(y, s)|2G(x � y, t � s)dyds

for every (x, t) 2 Q+
r/2. Now the dichotomy for '(r) in Lemma 4.5 provides a C1/2

modulus of continuity for w, as in [4, proof of Theorem 5].

4.2. Hölder continuity of the time derivative near a free boundary point of
positive parabolic density

Although the positive time derivative is always Hölder continuous (see Section 3.2),
one does not expect to obtain continuity of the full time derivative without further
restrictions. The purpose of this section is to show that, indeed, Hölder continuity
of the full time derivative can be achieved near free boundary points of positive
parabolic density with respect to the coincidence set. In order to achieve this de-
sired result we employ the well known “hole filling” method of Widman (see [22])
adapted for parabolics by Struwe (see [21]). As it was mentioned in the introduc-
tion, the results of the present section are independent of the quasi-convexity.

Definition 4.7. A free boundary point (x 0
0, 0, t0) is of positive parabolic density

with respect to the coincidence set if there exist positive constants c > 0 and r0 > 0
such that

�
�Q0

r (x
0
0, 0, t0) \ {u = 0}

�
� � c

�
�Q0

r (x
0
0, 0, t0)

�
�

for all r < r0.
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So the main result of this subsection is stated as follows:

Theorem 4.8. Let (x0, t0) be a free boundary point of positive parabolic density
with respect to the coincidence set to problem (4.1). Then ut is Hölder continuous
in a neighborhood of (x0, t0).

Proof. Since, by Subsection 3.2, u+
t is Hölder continuous, it suffices to prove the

theorem for u�
t . Actually, we will show that u

�
t decays to zero in parabolic cylin-

ders shrinking to the free boundary point (x0, t0). We consider the penalized so-
lution u" of (4.1) in Q+

r (x0, t0) with r < r0, where r0 is as in Definition 4.7. For
simplicity we take (x0, t0) = (0, 0) and r = 1. Differentiate with respect to t to
have as in (3.8) (

1v" � @tv
" = f "t , in Q+

1

�@⌫v" = � 0
"(u")v" on Q0

1,
(4.22)

where v" := (u")t . For any (⇠, ⌧ ) 2 Q+
1
5
we want to multiply the equation by an

appropriate test function and integrate by parts over the set Q+
3
5
(⇠, ⌧ ) := Q 3

5
(⇠, ⌧ )\

{xn � 0} ⇢ Q+
1 . This will lead us to an estimate which will be iterated to yield the

desired result.
The aforesaid appropriate test function will be the product of following three

functions:

• The first one is the square of a smooth function ⇣(x, t) supported in Q+
3
5
(⇠, ⌧ )

such that ⇣ ⌘ 1 for every (x, t) 2 Q+
2
5
(⇠, ⌧ ), |r⇣ |  c with supp(r⇣ ) ⇢

(B+
3
5
(⇠, ⌧ ) \ B+

2
5
(⇠, ⌧ )) ⇥ (⌧ � 9

25 , ⌧ ], 0  ⇣t  c with supp(⇣t ) ⇢ B 3
5
(⇠, ⌧ ) ⇥

(⌧ � 9
25 , ⌧ � 4

25 );
• The second one is a smoothing of the fundamental solution G(x, t) of the heat
equation (see (4.2)), i.e.

G(⇠,⌧ )
� (x, t) :=

�
G(x � ⇠, ⌧ � t)�(x, t)Ec� (⇠,⌧ )

+ p(x � ⇠, t � ⌧
⌘
�(x, t)E�(⇠,⌧ ))�(x, t){t<⌧ }

where E�(⇠, ⌧ ) := {(x, t) 2 Rn+1 : t  ⌧, G(x�⇠, ⌧�t) � 1
�n }, the “heat” ball

of “radius” � about (⇠, ⌧ ), and p(x, t) := 1
�n (log

e(4⇡ |t |)n/2
�n � |x |2

4t )�(x, t){t<0}.
Notice that G(⇠,⌧ )

� is a C1 function everywhere inRn+1 except at (⇠, ⌧ ). In order
to deal with this problem we just translate the singularity outside of our domain
by a small amount "0 > 0 and then we let "0 to tend to zero, for simplicity we
omit this technicality;

• Finally the third function is (v")� which can be smoothed out by the standard
way; again we omit it for the sake of simplicity.
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Therefore we multiply the equation in (4.22) by ⇣ 2G(⇠,⌧ )
� (v")� and integrate by

parts over Q+
3
5
(⇠, ⌧ ) to obtain

Z

Q+
3
5
(⇠,⌧ )

⇣
r
⇣
⇣ 2G(⇠,⌧ )

� (v")�
⌘

rv" +
⇣
⇣ 2G(⇠,⌧ )

� (v")�
⌘
@tv

"
⌘
dxdt

= �
Z

Q0
3
5
(⇠,⌧ )

⇣
⇣ 2G(⇠,⌧ )

� (v")�
⌘
� 0(u")v"dx 0dt

�
Z

Q+
3
5
(⇠,⌧ )

⇣ 2G(⇠,⌧ )
� (v")� ft dxdt.

(4.23)

By calculating appropriately and by noticing that due to the non negativity of � 0
" the

boundary integral term has the right sign, so it can be omitted, we obtain
Z

Q+
3
5
(⇠,⌧ )

✓
G(⇠,⌧ )
�

�
�
�r

�
⇣(v")�

���
�
2
+
1
2

h
rG(⇠,⌧ )

� r
�
⇣
�
v"
���2

+G(⇠,⌧ )
� @t

�
⇣
�
v"
���2i

◆
dxdt


Z

Q+
3
5
(⇠,⌧ )

G(⇠,⌧ )
�

⇣
|r⇣ |2 + ⇣⇣t

⌘⇣�
v"
��⌘2dxdt

+
1
2

Z

Q+
3
5
(⇠,⌧ )

rG(⇠,⌧ )
� r⇣ 2

⇣�
v"
��⌘2dxdt +

Z

Q+
3
5
(⇠,⌧ )

⇣ 2G(⇠,⌧ )
� (v")� ft dxdt.

Using the fact that supp(µ) = E�(⇠, ⌧ ) where µ := �(1 + @t )G
(⇠,⌧ )
� with dµ =

1
4�n dE�(⇠, ⌧ ) and |E�(⇠, ⌧ )| = 4�n (see [18]) and that, for � small enough, one has
the inequalities 0  G(⇠,⌧ )

�  C(n) in (B+
4
5

\ B+
1
5
) ⇥ (�2

5 , 0), and c(n)  G(⇠,⌧ )
� 

C(n) in B+
4
5

⇥ (�2
5 ,�

4
25 ), we have

Z

Q+
2
5
(⇠,⌧ )

G(⇠,⌧ )
� |r(v")�|2dxdt +

Z

E+
� (⇠,⌧ )

(v✏)�dE�(⇠, ⌧ )

 C(n)
Z � 4

25

� 2
5

Z

B+
4
5

((v")�)2dxdt

+ C(n)
Z 0

� 2
5

Z

B+
4
5
\B+

1
5

((v")�)2dxdt + C(n)M

(4.24)

where M := ||v"||1|| ft ||1.
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Now, we first let " tend to 0 in order to obtain (4.24) for v�, then we let � to go
to 0, and, finally, we take the supremum over (⇠, ⌧ ) 2 Q+

1
4
to obtain, a fortiori,

Z

Q+
1
5

G(x,�t)|rv�|2dxdt + sup
Q+
1
5

(v�)2  C(n)
Z � 4

25

� 2
5

Z

B+
4
5

(v�)2dxdt

+ C sup
Q+
1 \Q+

1
5

(v�)2 + CM.

(4.25)

Next we want to control the first integral of the right hand side of (4.25) by one
similar to the first integral of the left hand side of (4.25). To do this first we multiply
the equation in (4.22) by ⇣ 2(v")�, where ⇣ is a smooth cutoff function supported
in B1 ⇥ (�1, t) , for any t  � 4

25 , ⇣ ⌘ 1 on B 4
5

⇥ (�2
5 , t), and vanishing near its

parabolic boundary with |r⇣ |  c and 0  ⇣t  c, then we integrate by parts over
this set intersected by Rn

+ to have
Z t

�1

Z

B+
1

⇣
r
�
⇣ 2(v")�

�
rv" +

�
⇣ 2(v")�

�
@tv

"
⌘
dxdt

= �
Z t

�1

Z

B0
1

�
⇣ 2(v")�

�
� 0(u")v"dx 0dt

�
Z t

�1

Z

B+
1

⇣ 2(v")� ft dxdt.

Again, exploiting the positivity of � 0 and letting " go to zero, we arrive, as above
but in a much simpler way, at the following inequality
Z

B+
4
5

(v�)2(x, t)dx +
Z t

� 2
5

Z

B+
4
5

|rv�|2dxdt  c
Z

Q+
1

(v�)2dxdt + C(n)Mrn+2

8 t 2 (�2
5 ,�

4
25 ). Observe that a sufficient portion of the coincidence set is present

in Q1 so that the parabolic Poincaré inequality can be applied to dominate the inte-
gral on the right hand side of the above inequality. Therefore, since the second term
on the left hand side is non negative, we have, for every � 2

5  t  � 4
25 ,

Z

B+
4
5

(v�)2(x, t)dx  C(n)
Z

Q+
1

|rv�|2dxdt + C(n)M.

We then integrate the above inequality with respect to t from � 2
5 to � 4

25 to get

Z � 4
25

� 2
5

Z

B+
4
5

(v�)2dxdt  C(n)
Z

Q+
1

|r(v�)|2dxdt + C(n)M.
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Insert this in (4.25) above and, using the fact that G(x,�t) � c(n) for �2
5  t 

� 4
25 , to have

Z

Q+
1
5

G(x,�t)|rv�|2dxdt + sup
Q+
1
5

(v�)2

 C(n)

0

B
@
Z

Q+
1 \Q+

1
5

G(x,�t)|rv�|2dxdt + sup
Q+
1 \Q+

1
5

(v�)2)

1

C
A + C 0(n)M.

(4.26)

Set !(⇢) :=
R
Q+
⇢
G|rv�|2dxdt + supQ+

⇢
(v�)2, then add C(n)!(15 ) to both sides

of (4.26) and divide the new inequality by 1+ C(n) to have

!

✓
1
5

◆
 �!(1) + c, (4.27)

where � = C(n)
1+C(n) . Iteration of (4.27) implies that there exists an ↵ = ↵(�) 2 (0, 1)

and a constant C = C(n, ||ut ||1, || ft ||1) such that

!(⇢)  C⇢↵

for every 0 < ⇢  r0
5 . This concludes the Hölder continuity from the past. The

continuity from the future follows, now, by standard methods.

Remark. After the presentation of the present paper in IMPA (August 2015), we
have been informed by A. Petrosyan that a similar result to our Theorem 4.8 has
also appeared in [20].

4.3. Free boundary regularity

In the study of free boundary regularity it turns out that in order to achieve smooth-
ness of the free boundary one has to focus his attention in a neighborhood of certain
free boundary points, which we shall call them non-degenerate, (see Definition 4.9
below). A good candidate for a non-degenerate free boundary point must include
one of positive parabolic density of the coincidence set. The fact, that ut is Hölder
continuous at such a point (see Section 4.2), yields a control of the speed of the in-
terphase, a crucial step for our further analysis of the regularity of the free boundary.
Since it is more convenient to work with the zero obstacle and with the right hand
side of the equation to vanish at the point, which, for simplicity, we take it to be the
origin, we set ũ(x 0, xn, t) = u(x 0, xn, t)� (x 0, t)+ 1

2H (0, 0)x2n (H := 1� @t ).
Observe that {ũ(x 0, xn, t) = 0} = {u(x 0, xn, t) =  (x 0, t)}, and upon reflection in
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B⇤
1 := {(x, t) 2 Rn+1 : |x |2 + t2 < 1} ũ satisfies:
8
>>><

>>>:

ũ(x 0, 0, t) � 0 in B⇤
1 \ {xn = 0}

ũ(x 0, xn, t) = ũ(x 0,�xn, t) in B⇤
1

1ũ(x 0, xn, t)�@t ũ(x 0, xn, t)=H (0, 0)�H (x 0,t) in B⇤
1 \ {ũ = 0}

1ũ(x 0, xn, t)�@t ũ(x 0, xn, t)H (0, 0)�H (x 0, t) in B⇤
1 .

(4.28)

For simplicity of notation we replace u with ũ for the rest of this section.
Now we pass the ut term to the right hand side of the equation and if we

assume that H is at least C↵ we can apply the elliptic theory developed in [6, 13]
and extended in [8] at the t-level of the point. In the Appendix we show how we
apply the elliptic theory in our case. Consequently, if the origin is regular then at
t = 0 the blow up limit v0 of the solution u (up to sub-sequences) exists, and, in
appropriate coordinates,

v0(x) =
2
3
⇢
3
2 cos

✓
3
2
✓

◆
,

where ⇢ =
q
x21 + x2n and ✓ = arctan( xnx1 ) (unique up to rotations).

Now, we are ready to state the “hyperbolic” definition of our non-degenerate
free boundary point.
Definition 4.9. Let (x0, t0) be a free boundary point and B⇤

r (x0, t0) := {(x, t) 2
Rn+1 : (x � x0)2 + (t � t0)2 < r2}, and set

l := lim sup
r!0+

||u||L1(B⇤
r (x0,t0))

r3/2
.

A point (x0, t0) is called a non-degenerate free boundary point if it is of positive
parabolic density of the coincidence set and 0 < l < 1; otherwise the point is
called degenerate.
With this definition at our hands we state the main result of this section:
Theorem 4.10. Let u be a solution to (4.28). Assume the origin to be a non-
degenerate free boundary point. Then the free boundary is a C1,↵ n-dimensional
surface about the origin.
The following “hyperbolic” blow up sequence will be very useful for our analysis
since, at a point, it preserves the geometry of the free boundary:

ur (x, t) :=
u(r x, rt)
r3/2

.

Lemma 4.11. Let u be a solution to (4.28). If (0, 0) is a non-degenerate free
boundary point then there exists a sequence ur j of blow ups which converges uni-
formly on compact subsets to a function u0 such that (in appropriate coordinates)

u0(x, t) =
2
3
⇢(t)

3
2 cos

✓
3
2
✓(t)

◆

where ⇢(t) :=
p

(x1 + !t)2 + x2n and ✓(t) := arctan( xn
x1+!t ) for some ! 2 R.
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Proof. Since 0 < l < 1, it is clear that we can extract a subsequence ur j con-
verging uniformly on compact subsets to a non trivial limit u0. This u0 is a har-
monic function for every fixed t outside of the coincidence set; the coincidence
set, due to the density assumption, is a convex cone in Rn , or more precisely in
(x 0, t) variables. Also, by the discussion above, at t = 0 u0 = 2

3⇢
3/2 cos 32✓ where

⇢ =
q
x21 + x2n and ✓ = arctan( xnx1 ). Moreover the convex cone is composed by

the two supporting hyperplanes Ax1 + at = 0 for t � 0 and Bx1 + bt = 0, for
t  0, with A � 0, B � 0 and bA  aB. We want to prove that this convex cone
is actually a non-horizontal half space, i.e. A > 0, B > 0, and bA = aB, and u0
admits the stated representation; we do this in several steps:

Step I: A > 0 and B > 0. For, if A = 0 then for every t > 0 u0(x, t) is harmonic in
all of Rn , and therefore of polynomial growth. But for t = 0 u0 has 3/2 degrees of
growth, therefore, by continuity of u0, we have a contradiction. Similarly B > 0.

Step II: For each fixed t, u ⇠ |x |
3
2 as |x | ! 1 with x · e1 � " for some " > 0.

It is enough to show the bound by below. Therefore take a sequence x ( j) such
that |x ( j)| ! 1 with x ( j) · e1 � " for every j then by convexity u0(x ( j), t) �
u0(x ( j), 0)+(u0)t (x ( j), 0)t , hence by the behavior of u0 at t = 0 the result follows.

Step III: For each fixed t ,

u0(x, t) =
2
3
⇢(t)

3
2 cos

✓
3
2
✓(t)

◆
,

where for t > 0, ⇢(t) =
q

(x1 + a
A t)2 + x2n , ✓(t) = arctan xn

x1+ a
A t
and for t < 0,

⇢(t) =
q

(x1 + b
B t)2 + x2n , ✓(t) = arctan xn

x1+ b
B t
. Indeed, for each fixed t > 0,

u0 is a harmonic function which vanishes for {x1  � a
A t} \ {xn = 0} and grows

at infinity with 32 exponent, therefore by Phragmén-Lindelöf theorem we obtain the
representation. We can proceed analogously for t < 0.

Step IV: bA = aB. If this is not true we have

@t u0(0, 0+) � @t u0(0, 0�) =

✓
a
A

�
b
B

◆
⇢
1
2 cos

✓
1
2
✓

◆
6= 0,

whence, by approximation, a contradiction to the continuity of @t u at the origin.
Set ! := a

A and the proof is complete.

Finally we prove our theorem:

Proof. Obviously the existence of ! in Lemma 4.11 implies the differentiability of
the free boundary at the origin. Also, due to the upper semi-continuity of the elliptic
Almgren’s frequency function, we have the differentiability of the free boundary for
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any nearby point p = (xp, tp) at least when tp  0, since ut is continuous there.
Now, if tp > 0 and p = (xp, tp) still near the origin, we observe that the frequency
function will converge to 32 , and this implies that the positive density will propagate
to p. Consequently, the point p = (xp, tp) will be a free boundary point of positive
parabolic density with respect to zero set, which renders ut continuous there. Hence
we have the differentiability of the free boundary there, too. To prove the continuous
differentiability of it consider two distinct free boundary points nearby, say p and 0.
Assume, on the contrary, that it is not true, that is !(p) does not converge to !(0) as
p ! 0. Consider the blow up sequences u(p)

r j and u
(0)
ri around p and 0, respectively,

where u(p)
r j (x, t) :=

u(r j ((x,t)�p))
r3J /2

. These sequences converge uniformly to

u(p)
0 (x, t) :=

2
3
⇢
3
2 (p, t) cos

3
2
✓(p, t)

and
u(0)
0 (x, t) :=

2
3
⇢
3
2 (0, t) cos

3
2
✓(0, t)

respectively, where ⇢(p, t) :=
p

(x1(p) + !(p)t (p))2 + x2n) and

✓(p, t) := arctan
xn

x(p)) + !(p)t (p)
.

So, if !(p) does not converge to !(0) then u(p)
0 does not converge to u(0)

0 , therefore
a contradiction to the continuity of the solution u. Hence a C↵ estimate of the free
boundary normals follows easily.

Appendix A.

The purpose of this Appendix is to show how to apply the elliptic theory to our case.
First we show that the Almgren’s frequency formula holds even with right hand side
in L p for p > n and secondly we show how to deduceC1,↵ free boundary regularity
even with W�1,p right hand side.

Frequency formula

The main issue in the proof arises when one differentiates the expression

D(r) :=
r
2
d
dr
log'(r) :=

r
2
d
dr
log

Z

@Br
u2dS =

r
R
@Br uu⌫dSR
@Br u

2dS

=
r
R
Br (|ru|

2 + u1u)dx
R
@Br u

2dS
=:

rV (r)
S(r)

.
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Indeed
d
dr
log D(r) =

1
r

+
V 0(r)
V (r)

�
S0(r)
S(r)

and working as in [6] we end up

= 2

 R
@Br u

2
⌫dSR

@Br uu⌫dS
�

R
@Br uu⌫dSR
@Br u

2dS

!

+

R
@Br u1udS � n�1

r
R
Br u1udx � 2

r
R
Br (x · ru)1udx

R
@Br uu⌫dS

=: R(r) + E(r).

Notice that if the right hand side of the equation were zero, i.e. 1u = 0, then we
would obtain as in [6] only the first term, which being non-negative produces the
monotonicity in the frequency formula. Since E(r) 6= 0 we have, as in [13], to
estimate it, of course, for small r . The key point in controlling this term relies on
the following fact obtained in [13] for any fractional power, which includes our 12
exponent case (see Lemma 2.13 in [13]). Notice the difference in the power of the
second term; this occurs because we are using instead only the L p bound of the
Laplacian. Z

@Br
u2dS  Cr

Z

Br
|ru|2dx + Crn+3�

2n
p (A.1)

and its integrated analogue
Z

Br
u2dx  Cr2

Z

Br
|ru|2dx + Crn+4�

2n
p . (A.2)

Now, writing (A.1) as
Z

@Br
u2dS  Cr2

Z

Br
|ru|2dx + Cr4�

2n
p , (A.3)

we observe that for any number a0, 0 < a0 < 1, with
Z

@Br
u2dS � r4�

2n
p �a0 (A.4)

for every r  r0, with r0 small enough, it holds
Z

@Br
u2dS 

Cr2

1� Cra00

Z

Br
|ru|2dx, (A.5)

r2 
Cr

2n
p +a0

1� Cra00

Z

Br
|ru|2dx, (A.6)
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and Z

Br
u2dx  Cr2

Z

Br
|ru|2dx . (A.7)

Thus, with (A.5), (A.6), and (A.7) at hands, we can estimate the error E(r) term by
term: the first one

�
�
�
�

Z

@Br
u1udS

�
�
�
�  ||1u||p

✓Z

@Br
|u|qdS

◆ 1
q

 C
✓Z

@Br
urqdS

◆ 1
r
|@Br |

1
s

= Cr
n�1
qs + n�1

2

✓Z

@Br
u2dS

◆ 1
2
,

where 1p + 1
q = 1 and rq = 2 with 1r + 1

s = 1. Using (A.5) and (A.6), we obtain

�
�
�
�

Z

@Br
u1udS

�
�
�
�Cr

n�1
qs + n�1

2

✓
Cr2

Z

Br
|ru|2dx

◆ 1
2

Cr
n�1
qs + n�1

2 +1
✓Z

Br
|ru|2dx

◆ 1
2

 Cr�1+ a0
2

Z

Br
|ru|2dx .

(A.8)

In the second one, using (A.6) and (A.7), we get

�
�
�
�

Z

Br
u1udx

�
�
�
�Cr

n
qs

✓Z

Br
u2dx

◆ 1
2
Cr

n
qs+1

Z

Br
|ru|2dx=Cr

a0
2

Z

Br
|ru|2dx . (A.9)

In the third one of the numerator, using (A.6),

�
�
�
�

Z

Br
(x · ru)1udx

�
�
�
�  Cr

n
qs

✓Z

Br
|x · ru|2dx

◆ 1
2

 Cr
n
qs+1

✓Z

Br
|ru|2dx

◆ 1
2

 Cr
a0
2

Z

Br
|ru|2dx .

(A.10)

Finally, by (A.8) the denominator
�
�
�
�

Z

@Br
uu⌫dS

�
�
�
� 

Z

Br
|ru|2dx+

�
�
�
�

Z

Br
u1udx

�
�
�
� 

�
1+Cr

a0
2
� Z

Br
|ru|2dx . (A.11)

Therefore

E(r) � �
Cr�1+ a0

2

1+ Cr
a0
2

. (A.12)
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Hence, multiplying by an appropriate in order to absorb this error and “cutting” to
accommodate the opposite case in (A.4), we have shown that

8(r) :=
r
⇣
1+ C0r

a0
2
⌘

2
d
dr
logmax{'(r), r4�a0}

is monotone non-decreasing function in r if C0 is chosen large enough.

C1,↵ Regularity of the free boundary

First we obtain Lipschitz continuity of the free boundary by using the following
approximation lemma which has been proved in [13].

Lemma A.1. Let 3 be a subset of Rn�1 ⇥ {0}. Assume that h is a continuous
function such that:

(i) 1h  C in B1 \3;
(ii) h � 0 for |xn| � � > 0, h = 0 on 3;
(iii) h � c0 > 0 for |xn| � 1

8(n�1) ;
(iv) h � �!(� ) for |xn| < � , where ! is the modulus of continuity of h.

Then there exists �0 = �0(n, c0,!) and C0 = C0(n, c0,!) such that, if � < �0 and
C < C0, then h � 0 in B1/2.

We will obtain Lipschitz continuity of the free boundary by applying Lemma A.1
to h = (D⌧ur j )m , where m 2 N is large and odd, to be chosen later, ur j is the
blow-up family that converges to u0 (see Lemma 4.11) and D⌧ denotes a tangential
derivative. We compute

1h = m(m � 1)
�
D⌧ur j

�m�2��r
�
D⌧ur j

���2 + m
�
D⌧ur j

�m�1
1
�
D⌧ur j

�
. (A.13)

Fix (x, t) 2 B⇤
r j \ {u = 0} and let d be the distance of (x, t) to the free boundary.

By Theorem 4.8 we know that @t ur j is Hölder continuous, therefore |r(D⌧ur j )| ⇠
d��1 and 1(D⌧ur j ) ⇠ d��2 for �1, �2 positive. If we choose m large enough, 1h
in (A.13) remains bounded and Lemma A.1 applies. As a result (D⌧ur j )m � 0
in B⇤

1/2 and the same is true for D⌧ur j since m is odd. This shows that the free
boundary is (locally) the graph of a Lipschitz function.

To prove C1,↵ regularity we proceed as in [13, Section 7]. Firstly, we observe
that since (D⌧ur j )m is positive in B⇤

1/2 and @t ur j is Hölder continuous at (0, 0),
of [13, Lemma 7.3] can be applied to an appropriate multiple of (D⌧ur j )m , for m
large and odd. Then using Harnack inequality we obtain a nondegeneracy condition

�
D⌧ur j (x, t)

�m
� Cd,

where d is the distance of (x, t) to the coincidence set. The C1,↵ regularity will be
a consequence of the boundary Harnack inequality, for the Laplacian with bounded
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right hand side, applied to two positive directional derivatives. The first part of the
boundary Harnack principle (the Carleson estimate) can be proved with the right
hand side due to the nondegeneracy condition. In our case, we make use again of the
fact that @t ur j is Hölder continuous and thatm can be chosen large enough to ensure
the validity of [13, Lemma 7.5] for (D⌧ur j )m . The proof of the second part of the
boundary Harnack inequality follows the corresponding proof of [13, Lemma 7.6 ].
Finally, the C1,↵ regularity of the free boundary is obtained by applying a standard
iterative argument to the ratio (D⌧u)m/(D⌧̄u)m of two directional derivatives of u,
see for instance the [6, proof of Theorem 6].
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