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Nef partitions for codimension 2 weighted complete intersections

VICTOR PRZYJALKOWSKI AND CONSTANTIN SHRAMOV

Abstract. We prove that a smooth well-formed Fano weighted complete intersec-
tion of codimension 2 has a nef partition. We discuss applications of this fact to
Mirror Symmetry. In particular we list all nef partitions for smooth well-formed
Fano weighted complete intersections of dimensions 4 and 5 and present weak
Landau–Ginzburg models for them.

Mathematics Subject Classification (2010): 14J33, 14M10 (primary); 05C22
(secondary).

1. Introduction

In [8] (see also [9]) Givental defined a Landau–Ginzburg model for a Fano com-
plete intersection X in a smooth toric variety. This Landau–Ginzburg model is
a precisely described quasi-projective family over A1. Givental proved that an
I -series for X , that is a generating series of genus 0 one-pointed Gromov–Witten
invariants that count rational curves lying on X , provides a solution of Picard–Fuchs
equation of the Landau–Ginzburg model. Givental’s construction may be used for
smooth well-formed complete intersections in weighted projective spaces (as well
as it is expected to work for complete intersections in varieties that admit “good”
toric degenerations like Grassmannians, see [1,3]) in the same way as for complete
intersections in smooth toric varieties, see Section 2 below for details.

The key ingredient in Givental’s construction is a notion of nef partition. Let
us describe it for the case we are mostly interested in, that is for complete inter-
sections in weighted projective spaces (we refer the reader to [6] and [10] for the
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definitions and basic information about weighted projective spaces and complete
intersections therein). Let X be a smooth well-formed Fano complete intersection
of hypersurfaces of degrees d1, . . . , dc in P(a0, . . . , an).
Definition 1.1. A nef partition for the complete intersection X is a splitting

{0, . . . , n} = S0 t S1 t . . . t Sc

such that
P

j2Si a j = di for every i = 1, . . . , c. The nef partition is called nice if
there exists an index r 2 S0 such that ar = 1.

Given a nef partition, one can easily write down Givental’s Landau–Ginzburg
model. Moreover, if the nef partition is nice, one can birationally represent it as a
complex torus with a function on it, that is just a Laurent polynomial, see Section 2,
which we call fX . Such Laurent polynomials are called weak Landau–Ginzburg
models. This way of presenting Landau–Ginzburg models has many advantages.
“Good” weak Landau–Ginzburg models are expected to have Calabi–Yau compact-
ifications. As a result one gets Landau–Ginzburg models from Homological Mirror
Symmetry point of view. Another expectation is that fX can be related to a toric
degeneration of X via its Newton polytope. If both expectations hold, fX is called
a toric Landau–Ginzburg model, see for instance [23] for more details.

It appears (see Section 2) that a crucial ingredient for the construction of Given-
tal’s Landau–Ginzburg model for a weighted Fano complete intersection is the
existence of a nef partition, and a crucial ingredient for the construction of toric
Landau–Ginzburg model is the existence of a nice nef partition. In [22] this was
shown for complete intersections of Cartier divisors in weighted projective spaces.
In particular, [22] implies the following.

Theorem 1.2. Let X be a smooth well-formed Fano weighted hypersurface. Then
there exists a nice nef partition for X , and X has a toric Landau–Ginzburg model.

The main result of the present paper is the following.

Theorem 1.3. Let X be a smooth well-formed Fano weighted complete intersection
of codimension 2. Then there exists a nice nef partition for X .

As it is discussed above, this result, together with [8,21,23], and [11] (see also
Section 2 below), gives the following.

Corollary 1.4. In the assumptions of Theorem 1.3 the complete intersection X has
a toric Landau–Ginzburg model.

Keeping in mind Theorems 1.2 and 1.3 (together with Corollary 1.4), we be-
lieve that the following is true.
Conjecture 1.5. Let X be a smooth well-formed Fano weighted complete inter-
section. Then there exists a nice nef partition for X , and X has a toric Landau–
Ginzburg model.
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The plan of the paper is as follows. In Section 2 we give definitions of nef par-
titions and Landau–Ginzburg models they correspond to. In Section 3 we introduce
the combinatorial method to deal with nef partitions based on certain graphs with
vertices labelled by non-trivial weights of the weighted projective space. In Sec-
tion 4 we prove Theorem 1.3 and make some remarks on its possible generaliza-
tions. In Section 5 we write down nice nef partitions and weak Landau–Ginzburg
models for four- and five-dimensional smooth well-formed Fano weighted complete
intersections that are not intersections with linear cones to give additional evidence
for Conjecture 1.5, and make a couple of concluding remarks.

ACKNOWLEDGEMENTS. We are grateful to the referee for his helpful comments,
in particular for his proof of Lemma 3.8(ii) included in the final version of this
paper.

2. Nef partitions and Landau–Ginzburg models

Let X be a smooth well-formed Fano complete intersection of hypersurfaces of
degrees d1, . . . , dc in P(a0, . . . , an). Assume that X admits a nef partition

{0, . . . , n} = S0 t S1 t . . . t Sc.

Definition 2.1. Givental’s Landau–Ginzburg model is a quasi-projective variety
in (C⇤)n+1 with coordinates x0, . . . , xn given by equations

8
<

:

xa00 · . . . · xann = 1
P

j2Si
x j = 1 i = 1, . . . , c,

together with a function
P

j2S0 x j called superpotential.
If the nef partition is nice, then one can birationally represent Givental’s

Landau–Ginzburg model by a complex torus with a function on it. This func-
tion is represented by the following Laurent polynomial. Let si,1, . . . , si,ri , where
ri = |Si |, be elements of Si and let xi,1, . . . , xi,ri be formal variables of weights
asi,1, . . . , asi,ri . Since the nef partition is nice, we can assume that as0,r0 = 1. Then
Givental’s Landau–Ginzburg model for X is birational to (C⇤)n�c with coordinates
xi, j with superpotential

fX =

Qc
i=1(xi,1 + . . . + xi,ri�1 + 1)di

Q

i=0,...,c,
j=1,...,ri�1

xai, ji, j
+ x0,1 + . . . + x0,r0�1, (2.1)

see [23] and [30, Section 3]. Indices of variables in the factors in the numera-
tor are (i, 1), . . . , (i, si � 1). However one can choose any si � 1 indices among
(i, 1), . . . , (i, si ) to distinguish such variables. The resulting family is relatively
birational to the one presented above.
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Remark 2.2. We see that the main difficulty to represent Givental’s Landau–Ginz-
burg model for a weighted complete intersection by a Laurent polynomial is to find
a nice nef partition; once it is found it is easy to get a birational isomorphism be-
tween Givental’s Landau–Ginzburg model and a complex torus, so any nice nef par-
tition gives a Laurent polynomial in this way. Givental’s construction of Landau–
Ginzburg models can be applied, besides complete intersections in smooth toric
varieties or weighted projective spaces, to other related cases such as complete in-
tersections in Grassmannians or partial flag varieties, see [3]. Unlike the case of
weighted projective spaces, it is easy to describe nef partitions in the latter cases,
and this can be done in a lot of ways. However the main problem for representing
Landau–Ginzburg models by Laurent polynomials in this case is to find a “good”
nef partition among all of them, and to construct the birational isomorphism with a
complex torus, see [5, 7, 19, 26, 28, 30].

Givental in [8] computed I -series of complete intersections in smooth toric va-
rieties, that is a generating series of genus zero one-pointed Gromov–Witten invari-
ants with descendants. He proved that this series gives a solution of Picard–Fuchs
equation for the family of fibers of the superpotential. The I -series is described in
terms of boundary divisors of the toric variety and the hypersurfaces that define the
complete intersection. In [20] it was shown that Givental’s recipe for I -series for
complete intersections in singular toric varieties works in the same way provided
that the complete intersection does not intersect the singular locus of the toric vari-
ety. The reason is that curves lying on the complete intersection (that is ones that
we count) do not intersect the singular locus, so we can resolve singularities of the
toric variety and apply Givental’s recipe; the exceptional divisors do not contribute
to the I -series. Thus one can explicitly write down an I -series for X . One can easily
compute the main period for fX , see, for instance, [21], and check that it coincides
with the I -series for X . Moreover, if the Newton polytope of fX is reflexive (which
holds for complete intersections in usual projective spaces, see [24] and [27], but
in fact it is not common for weighted complete intersections in weighted projective
spaces with non-trivial weights), then fX admits a Calabi–Yau compactification
(see [25, Remark 9]). The Laurent polynomial fX also corresponds to a certain
toric degeneration of X , see [11]. In other words, in this case fX is a toric Landau–
Ginzburg model of X , see more details, say, in [23].

3. Weighted projective graphs

In this section we establish auxiliary combinatorial results that will be used in the
proof of Theorem 1.3. Given a graph 0, we will denote by V (0) the set of its
vertices.
Definition 3.1. A weighted projective graph, or a WP-graph, is a non-empty non-
oriented graph 0 without loops and multiple edges together with a weight function

↵0 : V (0) ! Z>2
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such that the following properties hold

• For any two vertices v1, v2 2 V (0) there exists an edge connecting v1 and v2 in
0 if and only if the numbers ↵0(v1) and ↵0(v2) are not coprime;

• For any three vertices v1, v2, v3 2 V (0) the numbers ↵0(v1), ↵0(v2), and
↵0(v3) are coprime.

The motivation for Definition 3.1 is as follows. If P = P(a0, . . . , an) is a well-
formed weighted projective space such that every three numbers ai1 , ai2 , and ai3
are coprime, we can produce a WP-graph whose vertices are labelled by the indices
i such that ai > 1, and whose weight function assigns the weight ai to the corre-
sponding vertex. We will use this graph to describe singularities of P and complete
intersections therein, see Section 4.
Definition 3.2. If 0 is a WP-graph, we define 60 to be the sum of ↵0(v) over
all vertices v of 0, and lcm0 to be the least common multiple of ↵0(v) over all
vertices v of 0.

Our current goal is to show that under certain assumptions on a WP-graph 0
one has lcm0 > 60. However, this is not always the case for an arbitrary WP-
graph.
Example 3.3. Let 1 = 1(6, 10, 15) be a graph with three vertices v1, v2, and v3,
and three edges connecting the pairs of the vertices. Put

↵1(v1) = 6, ↵1(v2) = 10, ↵1(v3) = 15,

see Figure 3.1. Then 1 is a WP-graph with 61 = 31 and lcm1 = 30.

6

10

15

Figure 3.1. WP-graph 1(6, 10, 15).

Remark 3.4. Suppose that a WP-graph 0 contains a WP-subgraph 1(6, 10, 15).
Then it is easy to see that 1(6, 10, 15) is a connected component of 0, and such
subgraph is unique.
Definition 3.5. Let 0 be a WP-graph, and v be its vertex. We say that v is weak if
there is an edge connecting v with another vertex v0 of 0 such that ↵0(v) divides
↵0(v0). If v is not weak, we say that it is strong.
Example 3.6. The graph on Figure 3.2 contains three weak vertices: one labelled
by weight 7 and two labelled by weight 17.
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17

176 15

70 7

Figure 3.2. Weak and strong vertices.

It easily follows from the definitions that if v is a weak vertex of a WP-graph 0,
then there is only one edge in 0 containing v. We will see later that (surprisingly)
the only WP-graph 0 without weak vertices such that lcm0 < 60 is1(6, 10, 15).

To proceed we will need the following elementary computation.

Lemma 3.7. Let N and M be positive integers such that N > 4 and M > d N�1
2 e.

Let a1, . . . , aM be integers such that all ai are greater than 1, and ai are be pairwise
coprime. Then

Q
ai > N .

Proof. We can assume that aM > 2 and a1 > . . . > aM�1 > 3. This implies that
Y

ai > 2 · 3M�1 > 2 · 3d N�3
2 e.

The latter value is not smaller than N for N > 4, which is easily checked by
induction on N .

Lemma 3.8. Let 0 be a connected WP-graph without weak vertices. The following
assertions hold.

(i) If 0 has at most two vertices, then lcm0 > 60;
(ii) If 0 has three vertices, then lcm0 > 60 � 1, and lcm0 > 60 unless 6 is

the WP-graph 1(6, 10, 15).

Proof. If 0 has only one vertex, then one clearly has lcm0 = 60.
Suppose that 0 has two or three vertices, and denote them by vi , 1 6 i 6 t ,

where t equals either 2 or 3. Put ri = lcm0/↵0(vi ). Then ri are pairwise coprime
positive integers; moreover, one has ri > 2, because 0 has no weak vertices. If
t = 2, then

60 = lcm0 ·

✓
1
r1

+
1
r2

◆
< lcm0.

If t = 3, write

60 = lcm0 ·

✓
1
r1

+
1
r2

+
1
r3

◆
.

Therefore, one has 60 > lcm0 if and only if

1
r1

+
1
r2

+
1
r3

> 1.
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This easily implies that r1 = 2, r2 = 3, and r3 = 5 up to permutation, which in
turn means that ↵0(v1) = 15, ↵0(v2) = 10, and ↵0(v3) = 6. Therefore, 0 is the
WP-graph 1(6, 10, 15), and one has

lcm0 = 30 = 60 � 1.

Lemma 3.9. Let 0 be a connected WP-graph. Suppose that every vertex of 0 is
contained in at least two edges of 0. Suppose also that the number N of vertices of
0 is at least 4. Then lcm0 > 60.

Proof. Let vmax be the vertex of 0 where ↵0 attains its maximum. Let E be the set
of all edges of 0 that do not contain the vertex vmax. It is easy to see that

|E | >
⇠
N � 1
2

⇡
.

For every edge e connecting the vertices v1 and v2 of 0, let ae denote the great-
est common divisor of ↵0(v1) and ↵0(v2). Note that all ae are pairwise coprime
integers, and all of them are greater than 1. By Lemma 3.7(ii) we have

lcm0 > ↵0(vmax) ·
Y

e2E
ae > N↵0(vmax) >

X

v2V (0)

↵0(v) = 60.

Lemma 3.10. Let 0 be a connected WP-graph without weak vertices. Suppose that
there is a vertex v of 0 contained in only one edge of 0. Let 00 be the WP-graph
that is obtained from 0 by throwing away the vertex v and the edge containing v,
and restricting the weight function to the remaining vertices. Suppose that

lcm00 > 600 � 1.

Then
lcm0 > 60.

Proof. Let v0 be the vertex of 0 connected with the vertex v. Write ↵0(v) = ab
and ↵0(v0) = ac, where b and c are coprime positive integers, and a > 2, see
Figure 3.3.

ab ac Γ′

v v′

Figure 3.3. Strong vertex contained in a unique edge.

Note that b > 2 and c > 2, because v and v0 are strong vertices. One has

lcm0 = blcm00, 60 = ab + 600.
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Note also that the graph 00 is connected because the graph 0 is connected.
Suppose that 600 > ab + 2. Then

lcm0 = blcm00 > 2lcm00 > 2600 � 2 > 600 + ab = 60.

Now suppose that 600 6 ab + 1. This is impossible if c > b, because a > 2.
Thus we have b > c, which means b > c since b and c are coprime. Hence

(b � 1)c > 2b � 2 > b + 1.

Note that lcm00 > ac. This gives

lcm0 = blcm00 = lcm00 + (b � 1)lcm00 > 600 � 1+ (b � 1)ac
> 600 � 1+ (b + 1)a > 600 + ab = 60.

Proposition 3.11. Let 0 be a connected WP-graph without weak vertices. Then

lcm0 > 60 � 1,

and moreover lcm0 > 60 unless 0 is the WP-graph 1(6, 10, 15).

Proof. We prove the assertion by induction on the number N of vertices of 0.
We know from Lemma 3.8 that the assertion holds for N 6 3. If 0 has a ver-
tex contained in only one edge of 0, then the assertion follows by induction from
Lemma 3.10. Therefore, we may assume that N > 4, and every vertex of 0 is con-
tained in at least two edges of 0. Now the assertion follows from Lemma 3.9.

Corollary 3.12. Let 0 be a WP-graph without weak vertices. Suppose that 0 is not
the WP-graph 1(6, 10, 15). Then lcm0 > 60.

Proof. Let 01, . . . ,0r be connected components of 0. Then

lcm0 =
rY

i=1
lcm0i , 60 =

rX

i=1
60i . (3.1)

If a connected component 0i is not the WP-graph1(6, 10, 15), then lcm0i > 60i
by Proposition 3.11. Therefore, if none of 0i is 1(6, 10, 15), then the assertion
immediately follows from (3.1).

Suppose that some of 0i , say 01, is the WP-graph 1(6, 10, 15). Then r > 2,
and none of 02, . . . ,0r is 1(6, 10, 15). Note that 60i > 2 (and actually it is at
least 7 for 2 6 i 6 r because of coprimeness condition), so that

30
rY

i=2
60i > 31+

rY

i=2
60i > 31+

rX

i=2
60i .

Thus (3.1) implies

lcm0 = 30
rY

i=2
lcm0i > 30

rY

i=2
60i > 31+

rX

i=2
60i =

rX

i=1
60i .
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Definition 3.13. Let d1, . . . , dc be positive integers. A weighted complete intersec-
tion graph (or aWCI-graph) of multidegree (d1, . . . , dc) is a WP-graph 0 such that
the following condition holds: for every k and every choice of k vertices v1, . . . , vk
of 0 for which the greatest common divisor � of ↵0(v1), . . . ,↵0(vk) is greater
than 1, there exist k numbers ds1, . . . , dsk , 1 6 s1 < . . . < sk 6 c, whose greatest
common divisor is divisible by �. The number c is called the codimension of the
WCI-graph 0.

The motivation for Definition 3.13 comes from the fact that a smooth weighted
complete intersection of codimension 1 or 2 produces a WCI-graph of codimension
1 or 2, respectively, and some important properties of the weighted complete inter-
section are controlled by this WCI-graph, see Section 4 for details. Therefore, in
this paper we will be mostly interested in WCI-graphs of codimension 1 and 2.
Remark 3.14. It would be more precise to say that a WCI-graph is not just a WP-
graph 0 but rather a collection that consists of 0 and the multidegree (d1, . . . , dc).
In particular, one may have several different WP-graphs with the same 0 and differ-
ent multidegrees, and even different codimensions. However, in this paper we are
going to deal only with WCI-graphs of codimension 1 and 2, and in any case we
want to avoid this complication of notation and hope that no confusion will arise.

Lemma 3.15. Let 0 be a WCI-graph of codimension 2 and bidegree (d1, d2). Then
the set of vertices V (0) is a disjoint union

V (0) = V1 t V2,

such that the complete subgraphs 01 and 02 of 0 with vertices V1 and V2 are WP-
graphs without weak vertices, none of 01 and 02 contains a connected component
1(6, 10, 15), and lcm0i divides di .

Proof. Let V 0 ⇢ V (0) be the set of strong vertices of 0, and V 00 = V (0) \ V 0 be
the set of weak vertices. If 0 does not contain a subgraph 1(6, 10, 15), put

V 0
1 = {v 2 V 0 | ↵0(v) divides d1}.

If 0 contains a subgraph 1(6, 10, 15), then it is easy to see that both d1 and d2 are
divisible by lcm1(6, 10, 15) = 30. In this case we put

V 0
1 = {v 2 V 0 \ V

�
1(6, 10, 15)

�
| ↵0(v) divides d1} [ {v1},

where v1 is an arbitrarily chosen vertex of 1(6, 10, 15). We also put V 0
2 = V 0 \ V 0

1.
It follows from the definition of a WCI-graph that for every v 2 V 0

2 the number
↵0(v) divides d2.

For every weak vertex v of 0 denote by ⌧ (v) the unique vertex of 0 connected
to v by an edge. It follows from the definition of a WP-graph that either ↵0(⌧ (v)) >
↵0(v), so that ⌧ (v) is a strong vertex of 0, or ↵0(⌧ (v)) = ↵0(v), so that v and ⌧ (v)
are both weak vertices. In the latter case the vertices v and ⌧ (v) together with the
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edge connecting them form a connected component of 0 (note however that v and
⌧ (v) together with the corresponding edge may form a connected component of 0 if
⌧ (v) is a strong vertex as well). Let us refer to the former vertices as weak vertices
of the first type, and to the latter vertices as weak vertices of the second type. In
both cases it follows from the definition of a WCI-graph that the degrees d1 and d2
are divisible by ↵0(v). Let V 00

1 be the set of all weak vertices of the first type such
that ⌧ (v) 2 V 0

2, and V
00
2 be the set of all weak vertices of the first type such that

⌧ (v) 2 V 0
1. Finally, let Ṽ

00
1 and Ṽ

00
2 be sets of weak vertices of the second type each

containing one and only one vertex from each pair connected by an edge.
Put

V1 = V 0
1 [ V 00

1 [ Ṽ 00
1 , V1 = V 0

2 [ V 00
2 [ Ṽ 00

2 .

Then for every v 2 V1 the number ↵0(v) divides d1, and for every v 2 V2 the num-
ber ↵0(v) divides d2. The graphs 01 and 02 are WP-graphs since they are complete
subgraphs of a WP-graph. None of them contains a subgraph 1(6, 10, 15); indeed,
if one of them does, then1(6, 10, 15) is also a subgraph of 0, and all three vertices
of 1(6, 10, 15) cannot simultaneously appear as vertices of any of 0i by construc-
tion. We also see that lcm0i divides di . Moreover, if v 2 V1 (respectively, v 2 V2)
is a weak vertex of 0, then ⌧ (v) 2 V2 (respectively, ⌧ (v) 2 V1). This means that the
graphs 01 and 02 do not have weak vertices themselves, because any weak vertex
of 0i would also be a weak vertex of 0.

Example 3.16. Let 0 be a WP-graph from Figure 3.2. The vertex of 0 labelled
by weight 7 is a weak vertex of the first type, while the two vertices labelled by
weight 17 are weak vertices of the second type. All other vertices are strong. The
WP-graph 0 can be considered as a WCI-graph of codimension 2 and bidegree
(d, d), where

d = 2 · 3 · 5 · 7 · 17 = 3570.

Following the proof of Lemma 3.15, one forms the set V 0
1 that consists of the

vertices labelled by 70, 15, and 6, the set V 00
2 that consists of the vertex labelled

by 7, the sets Ṽ 00
1 and Ṽ

00
2 each consisting of one vertex labelled by 17, and puts

V 0
2 = V 00

1 = ?.

Corollary 3.17. Let 0 be a WCI-graph of codimension 2 and bidegree (d1, d2).
Then the set of vertices V (0) is a disjoint union V (0) = V1 t V2 such that

X

v2Vi

↵0(v) 6 di .

Proof. Choose V1 and V2 as in Lemma 3.15, and let 01 and 02 be the complete
subgraphs of 0 with vertices V1 and V2. We know that di is divisible by lcm0i . By
Corollary 3.12 one has

di > lcm0i > 60i =
X

v2Vi

↵0(v).
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Example 3.18. Let 0 be a WP-graph from Figure 3.2 considered as a WCI-graph
of codimension 2 and bidegree (3570, 3570), see Example 3.16. Then one can take
01 to be the graph with two connected components, one of them a triangle with
vertices labelled by 70, 15, and 6 together with the edges connecting them, and the
other a single point labelled by 17, while 02 will be a graph with two connected
components, each of them just a single point, one labelled by 7 and the other by 17.

4. Proof of the main theorem

In this section we prove Theorem 1.3 and make some remarks about its possible
generalizations.

Proof of Theorem 1.3. Let X be a weighted complete intersection of hypersurfaces
of degrees d1 and d2 in P(a0, . . . , an). Since X is smooth and well-formed, by [29,
Lemma 2.15] for every k and every choice of k weights

ai1, . . . , aik , 0 6 i1 < . . . < ik 6 n,

whose greatest common divisor � is greater than 1, there exist k degrees

ds1, . . . , dsk , 1 6 s1 < . . . < sk 6 2,

whose greatest common divisor is divisible by �. In particular, any three weights
ai1, ai2, ai3 are coprime.

We may assume that

1 = a0 = . . . = ap < ap+1 6 . . . 6 an.

Let 0 be a WP-graph defined as follows. The vertices of 0 are vp+1, . . . , vn , and
two vertices vi and v j are connected by an edge if and only if the weights ai and
a j are not coprime. Furthermore, we put ↵0(vi ) = ai . It is easy to see that 0 is a
WP-graph. Moreover, 0 is a WCI-graph of codimension 2 and bidegree (d1, d2).
By Corollary 3.17 there are two disjoint sets V1 and V2 such that

V1 t V2 = {p + 1, . . . , n}

and
P

j2Vi a j 6 di for i = 1, 2. Since X is Fano, we have

nX

i=0
a j > d1 + d2, (4.1)

see [6, Theorem 3.3.4] or [10, 6.14]. This implies that one can add the indices of
several unit weights, i.e. some indices from {0, . . . , p}, to the sets V1 and V2 to form
two disjoint subsets S1 � V1 and S2 � V2 of {0, . . . , n} such that

P
j2Si a j = di
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for i = 1, 2. Moreover, since the inequality in (4.1) is strict, we conclude that the
set

S0 = {0, . . . , n} \ (S1 [ S2)

is not empty. All weights ai with indices i 2 S0 equal 1, so that the nef partition

{0, . . . , n} = S0 t S1 t S2

is nice.

Example 4.1. Let X be a complete intersection of two hypersurfaces of degree
3570 in P(1k, 6, 15, 70, 7, 17, 17), where 1k stands for 1 repeated k times. This is
a well-formed Fano weighted complete intersections if k is large enough (and X is
general). Example 3.18 provides a nice nef partition for X . Of course, there are
many more nice nef partitions in this case. Note that X is smooth if it is general
enough.

If X ⇢ P(a0, . . . , an) is a smooth well-formed Fano weighted hypersurface,
then the correspondingWP-graph0 has no edges at all. Thus the inequality lcm0>
60 is obvious in this case, and similarly to the proof of Theorem 1.3 we immedi-
ately obtain a nice nef partition for X . This recovers the result of Theorem 1.2. Also,
the proof of Theorem 1.3 gives the following by-product (cf. [29, Lemma 3.3]).

Corollary 4.2. Let X be a smooth well-formed Fano weighted complete intersec-
tion of hypersurfaces d1, . . . , dc in the weighted projective space P(a0, . . . , an).
Suppose that c 6 2. Then the number of indices i 2 {0, . . . , n} such that ai = 1 is
at least I (X) =

P
ai �

P
d j .

Actually, the assertion of Corollary 4.2 holds in the case of arbitrary codimension,
see [17, Corollary 5.11].

If X is a smooth well-formed Calabi–Yau weighted complete intersection of
codimension 1 or 2, we can argue in the same way as in the proof of Theorem 1.3 to
show that there exists a nef partition for X , for which we necessarily have S0 = ?
in the notation of Definition 1.1. Constructing the dual nef partition we obtain a
Calabi–Yau variety Y that is mirror dual to X , see [2]. In the same paper it is
proved that the Hodge-theoretic mirror symmetry holds for X and Y . That is, for a
given variety V one can define string Hodge numbers h p,qst (V ) as Hodge numbers of
a crepant resolution of V if such resolution exists. Then, for n = dim X = dimY ,
one has h p,qst (X) = hn�p,q

st (Y ) provided that the ambient toric variety (weighted
projective space in our case) is Gorenstein.

Finally, we would like to point out a possible approach to a proof of Conjec-
ture 1.5 along the lines of the current paper. If X is a smooth well-formed Fano
weighted complete intersection of codimension 3 or higher in a weighted projective
space P = P(a0, . . . , an), it is possible that some three weights ai1 , ai2 , and ai3 are
not coprime. Thus a WP-graph constructed in the proof of Theorem 1.3 does not
provide an adequate description of singularities of the weighted projective space P.
An obvious way to (try to) cope with this is to replace a graph by a simplicial



NEF PARTITIONS FOR CODIMENSION 2 WEIGHTED COMPLETE INTERSECTIONS 839

complex that would remember the greatest common divisors of arbitrary subsets of
weights ai in Definition 3.1. However, this leads to combinatorial difficulties that
we cannot overcome at the moment. Except for the most straightforward ones, like
the effects on weak vertices (which would be not that easy to control) and possibly
larger number of exceptions analogous to our WP-graph 1(6, 10, 15), there is also
a less obvious one (which is in fact easy to deal with). Namely, we need a finer
information about weights and degrees than that provided by [29, Lemma 2.15].
Example 4.3. Let X be a weighted complete intersection of hypersurfaces of de-
grees 2, 3, 5, and 30 in P(1k, 6, 10, 15), where 1k stands for 1 repeated k times.
Then X is a well-formed Fano weighted complete intersection provided that k is
large and X is general. Note that the conclusion of [29, Lemma 2.15] holds for X .
However, it is easy to see that X is not smooth. Moreover, there is no nef partition
for X .

In any case, it is easy to see that the actual information one can deduce from the
fact that a weighted complete intersection is smooth is much stronger than that pro-
vided by [29, Lemma 2.15]. We also expect that combinatorial difficulties that one
has to face on the way to the proof of Conjecture 1.5 proposed above are possible
to overcome.

5. Fano four- and fivefolds

Smooth well-formed Fano weighted complete intersections of dimensions 2 and 3
are known and well studied (see, for instance, [12]), as well as their toric Landau–
Ginzburg models (see, for instance, [16] and [23]). In this section we write down
nef partitions and weak Landau–Ginzburg models for four- and five-dimensional
smooth well-formed Fano weighted complete intersections. Some of them have
codimension greater than 2, which gives additional evidence for Conjecture 1.5.
Providing such list is possible due to classification of smooth Fano weighted com-
plete intersections obtained in [29, Section 5], because finding all nef partitions for
a given complete intersection requires just a simple (though a bit lengthy) compu-
tation.

In Tables 5.1 and 5.2 below we list nef partitions and corresponding weak
Landau–Ginzburg models of four- and five-dimensional smooth well-formed Fano
weighted complete intersections that are not intersections with linear cones, see [29,
Section 2] for definitions. These weighted complete intersections were classified in
[29, Section 5], see also [14, Proposition 2.2.1], where the case of dimension 4 was
originally established. In the first column of Tables 5.1 and 5.2 we put the number of
the family according to tables in [29, Section 5]. The second column describes the
weighted projective spaces where the weighted complete intersections live. Here
we use the abbreviation

(ak00 , . . . , akmm ) = (a0, . . . , a0| {z }
k0 times

, . . . , am, . . . , am| {z }
km times

),
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Table 5.1. Fourfold Fano weighted complete intersections.

No. P Degrees Nef partitions Weak
Landau–Ginzburg

models
1 P(13, 22, 32) 6,6 {0} t {1, 2, 3, 4} t {5, 6} (x1+x2+x3+1)6(y1+1)6

x1x2x23 y
3
1

{0} t {1, 3, 5} t {2, 4, 6} (x1+x2+1)6(y1+y2+1)6
x1x22 y1y

2
2

2 P(14, 2, 5) 10 {0} t {1, 2, 3, 4, 5} (x1+x2+x3+x4+1)10
x1x2x3x24

3 P(14, 22, 3) 4,6 {0} t {1, 2, 4} t {3, 5, 6} (x1+x2+1)4(y1+y2+1)6
x1x2y1y22

{0} t {4, 5} t {1, 2, 3, 6} (x1+1)4(y1+y2+y3+1)6
x21 y1y2y3

4 P(15, 4) 8 {0} t {1, 2, 3, 4, 5} (x1+x2+x3+x4+1)8
x1x2x3x4

5 P(15, 2) 6 {0} t {1, 2, 3, 4, 5} (x1+x2+x3+x4+1)6
x1x2x3x4

6 P(15, 22) 4,4 {0} t {1, 2, 3, 4} t {5, 6} (x1+x2+x3+1)4(y1+1)4
x1x2x3y21

{0} t {1, 2, 5} t {3, 4, 6} (x1+x2+1)4(y1+y2+1)4
x1x2y1y2

7 P(16, 3) 2,6 {0} t {1, 2} t {3, 4, 5, 6} (x1+1)2(y1+y2+y3+1)6
x1y1y2y3

8 P5 5 {0} t {1, 2, 3, 4, 5} (x1+x2+x3+x4+1)4
x1x2x3x4

9 P(16, 2) 3,4 {0} t {1, 2, 3} t {4, 5, 6} (x1+x2+1)3(y1+y2+1)4
x1x2y1y1

{0} t {1, 6} t {2, 3, 4, 5} (x1+1)3(y1+y2+y3+1)4
x1y1y2y3

10 P6 2,4 {0} t {1, 2} t {3, 4, 5, 6} (x1+1)2(y1+y2+y3+1)4
x1y1y2y3

11 P6 3,3 {0} t {1, 2, 3} t {4, 5, 6} (x1+x2+1)3(y1+y2+1)3
x1x2y1y2

12 P7 2,2,3 {0} t {1, 2} t {3, 4} t {5, 6, 7} (x1+1)2(y1+1)2(z1+z2+1)3
x1y1z1z2

13 P8 2,2,2,2 {0} t {1, 2} t {3, 4} t {5, 6} t {7, 8} (x1+1)2(y1+1)2(z1+1)2(u1+1)2
x1y1z1u1

14 P(15, 3) 6 {0, 1} t {2, 3, 4, 5} (x1+x2+x3+1)6
x1x2x3t1 + t1

15 P5 4 {0, 1} t {2, 3, 4, 5} (x1+x2+x3+1)4
x1x2x3t1 + t1

16 P6 2,3 {0, 1} t {2, 3} t {4, 5, 6} (x1+1)2(y1+y2+1)3
x1y1y2t1 + t1

17 P7 2,2,2 {0, 1} t {2, 3} t {4, 5} t {6, 7} (x1+1)2(y1+1)2(y1+1)2
x1y1z1t1 + t1

18 P(14, 2, 3) 6 {0, 1, 2} t {3, 4, 5} (x1+x2+1)6
x1x22 t1t2

+ t1 + t2

{0, 4} t {1, 2, 3, 5} (x1+x2+x3+1)6
x1x2x3t21

+ t1

19 P(15, 2) 4 {0, 1, 2} t {3, 4, 5} (x1+x2+1)4
x1x2t1t2 + t1 + t2

{0, 5} t {1, 2, 3, 4} (x1+x2+x3+1)4
x1x2x3t21

+ t1

20 P5 3 {0, 1, 2} t {3, 4, 5} (x1+x2+1)3
x1x2t1t2 + t1 + t2

21 P6 2,2 {0, 1, 2} t {3, 4} t {5, 6} (x1+1)2(y1+1)2
x1y1t1t2 + t1 + t2

22 P5 2 {0, 1, 2, 3} t {4, 5} (x1+1)2
x1t1t2t3 + t1 + t2 + t3
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Table 5.2. Fivefold Fano weighted complete intersections.

No. P Degrees Nef partitions Weak
Landau–Ginzburg

models
1 P(15,2,3,3) 6, 6 {0} t {1, 2, 3, 4, 5} t {6, 7} (x1+x2+x3+x4+1)6(y1+1)6

x1x2x3x4y31
{0} t {1, 2, 3, 6} t {4, 5, 7} (x1+x2+x3+1)6(y1+y2+1)6

x1x2x3y1y22
2 P(16, 5) 10 {0} t {1, 2, 3, 4, 5, 6} (x1+x2+x3+x4+x5+1)10

x1x2x3x4x5
3 P(16,2,3) 4, 6 {0} t {1, 2, 3, 4} t {5, 6, 7} (x1+x2+x3+1)4(y1+y2+1)6

x1x2x3y1y22
{0} t {1, 7} t {2, 3, 4, 5, 6} (x1+1)4(y1+y2+y3+y4+1)6

x1y1y2y3y4
{0} t {1, 2, 6} t {3, 4, 5, 7} (x1+x2+1)4(y1+y2+y3+1)6

x1x2y1y2y3
4 P(17, 4) 2, 8 {0} t {1, 2} t {3, 4, 5, 6, 7} (x1+1)2(y1+y2+y3+y4+1)8

x1y1y2y3y4
5 P6 6 {0} t {1, 2, 3, 4, 5, 6} (x1+x2+x3+x4+x5+1)6

x1x2x3x4x5
6 P(17, 2) 4, 4 {0} t {1, 2, 3, 4} t {5, 6, 7} (x1+x2+x3+1)4(y1+y2+1)4

x1x2x3y1y2
7 P(18, 3) 2,2,6 {0} t {1, 2} t {3, 4} t {5, 6, 7, 8} (x1+1)2(y1+1)2(z1+z2+z3+1)6

x1y1z1z2z3
8 P7 2, 5 {0} t {1, 2} t {3, 4, 5, 6, 7} (x1+1)2(y1+y2+y3+y4+1)5

x1y1y2y3y4
9 P7 3, 4 {0} t {1, 2, 3} t {4, 5, 6, 7} (x1+x2+1)3(y1+y2+y3+1)4

x1x2y1y2y3
10 P8 2,2,4 {0} t {1, 2} t {3, 4} t {5, 6, 7, 8} (x1+1)2(y1+1)2(z1+z2+z3+1)4

x1y1z1z2z3
11 P8 2,3,3 {0} t {1, 2} t {3, 4, 5} t {6, 7, 8} (x1+1)2(y1+y2+1)3(z1+z2+1)3

x1y1y2z1z2
12 P9 2,2,2,3 {0} t {1, 2} t {3, 4} t {5, 6} t {7, 8, 9} (x1+1)2(y1+1)2(z1+1)2(u1+u2+1)3

x1y1z1u1u2
13 P10 2,2,2,2,2 {0}t{1,2}t{3,4}t{5,6}t{7,8}t{9,10}(x1+1)

2(y1+1)2(z1+1)2(u1+1)2(v1+1)2
x1y1z1u1v1

14P(14,2,2,3,3) 6, 6 {0, 1} t {2, 3, 4, 5} t {6, 7} (x1+x2+x3+1)6(y1+1)6
x1x2x23 y

3
1 t1

+ t1

{0, 1} t {2, 4, 6} t {3, 5, 7} (x1+x2+1)6(y1+y2+1)6
x1x22 y1y

2
2 t1

+ t1

15 P(15, 2, 5) 10 {0, 1} t {2, 3, 4, 5, 6} (x1+x2+x3+x4+1)10
x1x2x3x24 t1

+ t1

16 P(15, 2, 2, 3) 4, 6 {0, 1} t {2, 3, 5} t {4, 6, 7} (x1+x2+1)4(y1+y2+1)6
x1x2y1y22 t1

+ t1

{0, 1} t {2, 7} t {3, 4, 5, 6} (x1+1)4(y1+y2+y3+1)6
x1y1y2y23 t1

+ t1

{0, 1} t {5, 6} t {2, 3, 4, 7} (x1+1)4(y1+y2+y3+1)6
x21 y1y2y3t1

+ t1

17 P(16, 4) 8 {0, 1} t {2, 3, 4, 5, 6} (x1+x2+x3+x4+1)8
x1x2x3x4t1 + t1

18 P(16, 2) 6 {0, 1} t {2, 3, 4, 5, 6} (x1+x2+x3+x4+1)6
x1x2x3x4t1 + t1

19 P(16, 2, 2) 4, 4 {0, 1} t {2, 3, 4, 5} t {6, 7} (x1+x2+x3+1)4(y1+1)4
x1x2x3y21 t1

+ t1

{0, 1} t {2, 3, 6} t {4, 5, 7} (x1+x2+1)4(y1+y2+1)4
x1x2y1y2t1 + t1

20 P(17, 3) 2, 6 {0, 1} t {2, 3} t {4, 5, 6, 7} (x1+1)2(y1+y2+y3+1)6
x1y1y2y3t1 + t1

21 P6 5 {0, 1} t {2, 3, 4, 5, 6} (x1+x2+x3+x4+1)5
x1x2x3x4t1 + t1
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Table 5.2. continued

No. P Degrees Nef partitions Weak
Landau–Ginzburg

models
22 P(17, 2) 3, 4 {0, 1} t {2, 3, 4} t {5, 6, 7} (x1+x2+1)3(y1+y2+1)4

x1x2y1y2t1 + t1
{0, 1} t {2, 7} t {3, 4, 5, 6} (x1+1)3(y1+y2+y3+1)4

x1y1y2y3t1 + t1
23 P7 2, 4 {0, 1} t {2, 3} t {4, 5, 6, 7} (x1+1)2(y1+y2+y3+1)4

x1y1y2y3t1 + t1
24 P7 3,3 {0, 1} t {2, 3, 4} t {5, 6, 7} (x1+x2+1)3(y1+y2+1)3

x1x2y1y2t1 + t1
25 P8 2,2,3 {0, 1} t {2, 3} t {4, 5} t {6, 7, 8} (x1+1)2(y1+1)2(z1+z2+1)3

x1y1z1z2t1 + t1
26 P9 2,2,2,2 {0, 1}t{2,3}t{4,5}t{6,7}t{8,9} (x1+1)2(y1+1)2(z1+1)2(u1+1)2

x1y1z1u1t1 + t1
27 P(16, 3) 6 {0, 1, 2} t {3, 4, 5, 6} (x1+x2+x3+1)6

x1x2x3t1t2 + t1 + t2
28 P6 4 {0, 1, 2} t {3, 4, 5, 6} (x1+x2+x3+1)4

x1x2x3t1t2 + t1 + t2
29 P7 2,3 {0, 1, 2} t {3, 4} t {5, 6, 7} (x1+1)2(y1+y2+1)3

x1y1y2t1t2 + t1 + t2
30 P8 2,2,2 {0, 1, 2} t {3, 4} t {5, 6} t {7, 8} (x1+1)2(y1+1)2(z1+1)2

x1y1z1t1t2 + t1 + t2
31 P(15, 2, 3) 6 {0, 1, 2, 3} t {4, 5, 6} (x1+x2+1)6

x1x22 t1t2t3
+ t1 + t2 + t3

{0, 1, 5} t {2, 3, 4, 6} (x1+x2+x3+1)6
x1x2x3t1t22

+ t1 + t2

{0, 6} t {1, 2, 3, 4, 5} (x1+x2+x3+x4+1)6
x1x2x3x4t31

+ t1

32 P(16, 2) 4 {0, 1, 2, 3} t {4, 5, 6} (x1+x2+1)4
x1x2t1t2t3 + t1 + t2 + t3

{0, 1, 6} t {2, 3, 4, 5} (x1+x2+x3+1)4
x1x2x3t1t22

+ t1 + t2

33 P6 3 {0, 1, 2, 3} t {4, 5, 6} (x1+x2+1)3
x1x2t1t2t3 + t1 + t2 + t3

34 P7 2, 2 {0, 1, 2, 3} t {4, 5} t {6, 7} (x1+1)2(y1+1)2
x1y1t1t2t3 + t1 + t2 + t3

35 P6 2 {0, 1, 2, 3, 4} t {5, 6} (x1+1)2
x1t1t2t3t4 + t1 + t2 + t3 + t4

where k0, . . . , km are any positive integers. If some of ki is equal to 1 we drop it for
simplicity. In the third column we put the degrees of weighted hypersurfaces that
cut out our complete intersections. The forth column describes nice nef partitions;
note that in general there are many of them in every case, but we do not distin-
guish between nef partitions obtained by permuting indices corresponding to equal
weights. In the fifth column we write down the corresponding Landau–Ginzburg
models. The latter are obtained using formula (2.1), where instead of variables x0, j ,
x1, j , x2, j , . . . , we use variables t j , x j , y j , . . . , respectively, to simplify notation. We
exclude four- and five-dimensional projective spaces (which are complete intersec-
tions of codimension 0 in themselves) from the tables to unify them with tables
from [29, Section 5].

Remark 5.1. The set S0 in nef partitions obtained as in the proof of Theorem 1.3
consists of indices only of such variables that have weight 1. However some smooth
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well-formed complete intersections may admit other nef partitions, having non-
trivial weights in S0, see for instance No. 18 and 19 in Table 5.1, and No. 31 and 32
in Table 5.2.

Question 5.2. One sees that varieties No. 1, 3, 6, 9, 18, 19 from Table 5.1 and
No. 1, 14, 19, 22, 32 from Table 5.2 have two different nice nef partitions, while
varieties No. 3, 16, and 31 from Table 5.2 have three different nice nef partitions.
Thus they have two or three weak Landau–Ginzburg models given by these nef par-
titions. In [4, 15] (see also [18]) it is proved (under mild additional assumptions)
that for complete intersections in Gorenstein toric varieties Landau–Ginzburg mod-
els provided by different nef partitions are birational. Does this hold for complete
intersections in weighted projective spaces?

Remark 5.3. Varieties listed in Tables 5.1 and 5.2 admit degenerations to toric va-
rieties whose fan polytopes coincide with Newton polytopes of their weak Landau–
Ginzburg models, see [11]. Most of them are complete intersections in usual projec-
tive spaces. Thus one can prove the existence of (log) Calabi–Yau compactifications
for them, see [23, 27], and [25]. Moreover, their existence can be proved for some
other varieties: for variety No. 18 from Table 5.2 using a method from [27] and for
varieties No. 18, 19 (for the second nef partition), 22 (for the first nef partition),
27, 32 (for both nef partitions) from Table 5.2 using a method from [25]. Thus one
can prove that these varieties have toric Landau–Ginzburg models (listed in the last
column of the tables).

Question 5.4. In [13] Landau–Ginzburg Hodge numbers are defined, see [16] for
some discussion on this definition. Using this definition in [13] the authors formu-
lated Hodge-theoretic Mirror Symmetry conjecture for Fano varieties by an analogy
with the conjecture for smooth Calabi–Yau varieties. This conjecture was proved
for del Pezzo surfaces in [16]. One of Hodge numbers can be conjecturally inter-
preted via number of components of reducible fibers, see [23, 27]. In [27] this con-
jecture was checked for complete intersections in usual projective spaces. Does the
Hodge-theoretic Mirror Symmetry conjecture hold for varieties listed in Tables 5.1
and 5.2? Does one have an interpretation via the number of irreducible components
of reducible fibers in this case? Does it hold for all Fano complete intersections in
weighted projective spaces having nice nef partitions?
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