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Stability of coisotropic fibrations
on irreducible holomorphic symplectic manifolds

CHRISTIAN LEHN AND GIANLUCA PACIENZA

Abstract. We investigate the stability of fibers of coisotropic fibrations on irre-
ducible symplectic manifolds and generalize Voisin’s result on Lagrangian sub-
varieties to this framework. We present applications to such manifolds which
are deformation equivalent to Hilbert schemes of points on a K3 surface or to
generalized Kummer manifolds.
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14C30, 14C25 (secondary).

1. Introduction

Let X be an irreducible symplectic manifold, by which we mean a compact, sim-
ply connected Kähler manifold such that H0(X,�2

X ) = h�X i where �X is a non-
degenerate 2-form. Voisin showed in [21] that if F ⇢ X is a Lagrangian sub-
manifold, that is, an analytic connected isotropic submanifold (i.e. (�X )|F = 0) of
maximal dimension dim(X)/2, then the only obstruction to deforming F along with
the ambient irreducible symplectic manifold X is Hodge theoretic. More precisely,
she proved that

HdgF = Def(F, X)

where HdgF is the closed analytic subset of the Kuranishi space Def(X) of X where
the cohomology class [F] remains of type (n, n), 2n = dim(X) and Def(F, X) ⇢
Def(X) parametrizes deformations of X containing a deformation of F . Following
Voisin, we call such a property stability of the submanifold F .

Recently, Voisin [23] brought to light the importance of a natural generalization
of Lagrangian subvarieties in the study of projective irreducible symplectic mani-
folds X and their Chow groups of 0-cycles CH0(X). To be more precise, we need to
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recall some definitions. For any point x 2 X she considers its rational orbit Ox , i.e.,
the set of points in X which are rationally equivalent to x , and for any k = 1, . . . , n
she defines Sk(X) (respectively Sk CH0(X)) to be the subset of points x 2 X such
that dim Ox � k (respectively the subgroup of CH0(X) generated by classes of
points x 2 Sk(X)). She conjectures that this new decreasing filtration S• CH0(X)
on CH0(X) is opposite to the conjectural Bloch-Beilinson filtration F•

BB CH0(X)
(in the sense that the natural map

Sk CH0(X) ! CH0(X)/F2(n�k+1)BB CH0(X) (1.1)

is an isomorphism) and that it provides the splitting of the Bloch-Beilinson filtration
conjectured by Beauville in [3], see [23] for the details.

A pivotal rôle in her approach is played by the existence of algebraically
coisotropic subvarieties with isotropic constant cycle fibers in the sense of Huy-
brechts [11]. Indeed, on the one hand she proves in [23, Theorem 0.7] that if P is a
subvariety of Sk(X) of maximal dimension 2n� k, then P is endowed with a dom-
inant rational map P 99K B whose general fiber F is k-dimensional and isotropic
(which is the definition of algebraically coisotropic subvarieties) and such that any
two points of F are rationally equivalent in X . Moreover, she observes that if such
subvarieties exist (which she conjectures to be true cf. [23, Conjecture 0.4]), the
axioms of the Bloch-Beilinson filtration would already imply the surjectivity of the
map (1.1), see [23, Lemma 3.9].

The study of the stability of algebraically coisotropic subvarieties seems there-
fore to be a relevant task in this new and promising research direction.

Notice that by work of Amerik and Campana [1, Theorem 1.3] we know that
a codimension one submanifold of a projective irreducible symplectic manifold (of
dimension � 4) is algebraically coisotropic if and only if it is uniruled. As it be-
came clear in [5], where the stability of rational curves covering a divisor has been
verified, instead of working with the coisotropic subvariety itself it seems more ef-
ficient to deal with the isotropic fibers F and their stability (see [5, Remark 3.5]
and Remark 4.6 below). This apparently weaker property allows nevertheless to
recover the stability of a union of uniruled codimension one subvarieties containing
the initial uniruled divisor, see [5, Corollary 3.4]. This is the viewpoint that we
adopt here.

Our main result confirms the stability of fibers of smoothly algebraically
coisotropic subvarieties (cf. Definition 2.2) of any possible dimension and is sum-
marized in the following.

Theorem 1.1. Let X be an irreducible symplectic manifold of dimension 2n and let
F ⇢ X be an isotropic submanifold of dimension k = 1, . . . , n. Suppose that F is
a general fiber of a smoothly algebraically coisotropic subvariety and that

(n � k)h1(OF ) = 0. (1.2)

Then
Def(F, X) = HdgF
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and for any t 2 Def(F, X) the deformation Xt of X contains a codimension k alge-
braically coisotropic subvariety Pt covered by the deformations Ft of F . Moreover,

codimDef(X)Def(F, X) = rk
⇣
H2(X, C) ! H2(F, C)

⌘
 rkNS(F).

In particular, if NS(F) has rank 1, the subvariety F deforms in a hyperplane in the
Kuranishi space of X .

As in [21] we restrict ourselves to deforming smooth submanifolds F , although it
seems plausible that some extensions to the singular case are possible in the spirit
of [13]. Notice however, that the coisotropic subvariety P ⇢ X swept out by
deformations of F inside X is not supposed to be smooth. We do not know whether
the theorem holds without the vanishing hypothesis (1.2), which is automatically
satisfied in the Lagrangian case. Nevertheless, notice that the hypothesis (1.2) is
satisfied if F has trivial Chow group CH0(F)Q = Q (e.g. rationally connected),
a case which is of particular interest for the cycle-theoretic applications envisioned
in [23].

On the other hand, exactly as in [21] one can show (cf. Propositions 3.1 and
3.2) without any cohomological hypothesis that the Hodge locus of an isotropic
submanifold F ⇢ X coincides with the locus where F or its cohomology class
remain isotropic (i.e. (�t )|F = 0 resp. �t [ [F] = 0). As a consequence, we have
the following two other characterizations of Def(F, X).

Corollary 1.2. Let X and F be as in Theorem 1.1. Then the following are equiva-
lent:

(i) t 2 Def(F, X);
(ii) �t [ [F] = 0 2 H2k+2(Xt , C) ⇠= H2k+2(X, C), for 0 6= �t 2 H0(Xt ,�2

Xt );
(iii) ( jt )⇤(�t ) = 0where ( jt )⇤ denotes the composition of the inclusion j : F ,! X

with the isomorphism H2(Xt , C) ⇠= H2(X, C).

Note that we always work with germs of spaces, see the introduction to section 4.
As in [21, Corollaire 1.4] we also deduce the following.

Corollary 1.3. With the above notation, Def(F, X) coincides with the locus of de-
formations of X preserving the subspace LQ

F of NS(X)Q defined as the intersec-
tion with H2(X, Q) of the orthogonal, with respect to the Beauville-Bogomolov
quadratic form, to ker(µF ), where µF is the cup-product map

µF : H2(X, C) ! H2k+2(X, C), ⌘ 7! ⌘ [ [F].

Turning to irreducible symplectic manifolds of given deformation type and to the
Chow groups of such manifolds, as an application of Theorem 1.1 we obtain the
following.
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Corollary 1.4. Let M (respectively Mpol ) be the moduli space of marked (respec-
tively marked and polarized) irreducible symplectic manifolds of dimension 2n
which are deformation equivalent to Hilbert schemes of points on a K3 surface
or to generalized Kummer manifolds. Then for any k = 1, . . . , n there exists a di-
visor Dk ⇢ M (respectively Dpol

k ⇢ Mpol ) such that for any t 2 Dk (respectively
t 2 Dpol

k ) the corresponding manifold Xt contains an algebraically coisotropic
subvariety of codimension k which is covered by Pk’s. Moreover, if t 2 Dk (respec-
tively t 2 Dpol

k ) is a general point, Xt is not isomorphic to a Hilbert scheme of n
points on a K3 surface or to a generalized Kummer manifold.

In the polarized case Corollary 1.4 proves therefore Voisin’s conjecture [23, Con-
jecture 0.4] for any fixed k along a divisorial locus in the above moduli spaces. In
particular, the map (1.1) is surjective for points inDpol

k . Moreover, such coisotropic
subvarieties are of the most special form, as they are covered by projective spaces.
Few other results in this direction are available for varieties not isomorphic to a
Hilbert scheme of points on a K3 surface or to a generalized Kummer manifold:
Voisin showed existence for the LLSV 8-folds [23, Corollary 4.9], Lin showed
in [15] existence for k = n for projective irreducible symplectic manifold hav-
ing a Lagrangian fibration, and, as recalled above, in [5] the existence of uniruled
divisors on deformations of K3[n] is showed.

Notice that by [20] a generic irreducible symplectic manifold (so in particular
non-projective) can only contain holomorphic symplectic submanifolds. Corollary
1.4 provides in this case the existence of Voisin’s coisotropic subvarieties of fixed
codimension on a locus of the largest possible dimension in the moduli space of
irreducible symplectic manifolds deformation equivalent to one of the two infinite
series of examples.

We conclude the introduction with some words about the proof of our main
result. Following [21] one checks that the Hodge locus of the class of an isotropic
submanifold is always smooth (see Section 3). On the other hand, using the T 1-
lifting principle we show that, under the hypotheses of Theorem 1.1, Def(F, X) is
also smooth (cf. Theorem 4.3). The equality between these two loci can then be
checked at the level of tangent spaces, which we do in Theorem 4.7.

ACKNOWLEDGEMENTS. We would like to thank the referee for carefully reading
the manuscript and suggesting several improvements.

2. (Co)isotropic subvarieties

For the basic properties of irreducible symplectic manifolds we refer the reader
to [10] and [8, Part III]. We recall some definitions and results, the presentation
follows [23]. Let X be a compact symplectic manifold of dimension 2n and denote
by � 2 0(X,�2

X ) its symplectic form.
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Definition 2.1. A subvariety F ⇢ X is called isotropic if � |F reg = 0 where F reg
denotes the regular part of F .
Definition 2.2. A subvariety P ⇢ X is called coisotropic if T?

P reg ⇢ TP reg where
P reg denotes the regular part of P and T?

P reg = {v 2 TX |P reg | � (v, ·) = 0} is the
radical of the symplectic form. The variety P is called algebraically coisotropic
if the foliation T?

P reg is algebraically integrable. This means that there is a rational
map1 � : P 99K B, such that TP/B = T?

P over an open dense subset where � is
defined. We say that P is smoothly algebraically coisotropic if it is algebraically
coisotropic, the map � is almost holomorphic2 and the general fiber of � is smooth.
The map � : P 99K B is called in this case a coisotropic fibration.
Remark 2.3. —

(1) Note that a smoothly algebraically coisotropic subvariety P is automatically
smooth in a neighborhood of a general fiber F of its coisotropic fibration by
generic flatness and [9, Exc. III.10.2] or its analogue in the analytic category.

(2) Assume that P is algebraically coisotropic and that its coisotropic fibration has
constant cycle fibers. Let ⇡̃ : P̃ ! B̃ be a birational model of P 99K B with
smooth varieties P̃ and B̃. Then by [23, Lemma 1.1] there exists a holomorphic
2-form �B on B̃ which is generically non-degenerate and satisfies � |P̃ = ⇡̃⇤�B .

(3) If an algebraically coisotropic subvariety P has codimension k, then from the
previous item and the non-degeneracy of the symplectic form one deduces that
B has dimension 2n � 2k.

(4) Note that an algebraically coisotropic subvariety P which is smooth and such
that � : P 99K B coincides with the mrc-fibration of P is smoothly algebraically
coisotropic. This follows from [4].

If P ⇢ X is algebraically coisotropic, then the general fiber F of the corresponding
map � : P 99K B is isotropic. The following lemma is well-known and easily
proven by symplectic linear algebra.

Lemma 2.4. A subvariety P ⇢ X of codimension k in a symplectic manifold of
dimension 2n is coisotropic if and only if the symplectic form � on X satisfies
� n�k+1|P reg = 0.

3. Description of the Hodge locus

Let X be an irreducible symplectic manifold and let Def(X) be its Kuranishi space.
We know by the Bogomolov-Tian-Todorov theorem that Def(X) is smooth. It is a
space germ, but we will always have chosen a representative, which by smoothness
we may assume to be biholomorphic to a small complex ball of dimension h1,1(X).

1 We use the algebraic terminology even if X is just supposed to be a complex manifold.
2 Recall that a rational map is almost holomorphic if it is defined and proper on a dense open
subset.
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It is well-known that the universal family X ! Def(X) is a family of irreducible
symplectic manifolds in a neighborhood of [X] 2 Def(X). For t 2 Def(X) we will
denote by Xt the irreducible symplectic manifold corresponding to t .

By a variety, we mean a separated, reduced, connected, equidimensional com-
plex space. For an isotropic subvariety F ⇢ X (not necessarily smooth) we will re-
call Voisin’s description of the Hodge locus HdgF in [21]. It was originally formu-
lated for Lagrangian subvarieties but it carries over literally to the case of isotropic
subvarieties. In this article, we would only need to consider smooth varieties, but
the proofs of most results in this section only need minor corrections for singular
varieties so that we take the liberty of proving them in this more general context.
This will be useful for future considerations. Let us denote by H k the holomor-
phic vector bundles on Def(X) whose fiber at t 2 Def(X) is just Hk(Xt , C). The
class [F] 2 H2k(X, C) has a unique flat lifting toH 2k which we will also denote
by [F].

We denote by s 2 H 2 a section which fiberwise is the class [�t ] of a sym-
plectic form on Xt . Let S[[F] ⇢ Def(X) be the subspace of Def(X) defined by the
vanishing of the section s [ [F] 2 H 2k+2. Set-theoretically, S[[F] can thus be
described as {t 2 S : �t [ [F] = 0 2 H2k+2(Xt , C)}. As in [21, Proposition 1.2]
one shows

Proposition 3.1. Let F ⇢ X be an isotropic subvariety in an irreducible symplec-
tic manifold. Then HdgF = S[[F] and it is a smooth subvariety of Def(X) of
codimension equal to the rank of cup-product map

µF : H2(X, C) ! H2k+2(X, C), ⌘ 7! ⌘ [ [F].

Proof. One can argue exactly as in [21, Proposition 1.2], replacing the Lagrangian
subvariety, its cohomology class and its dimension n, with the isotropic subvariety
F , its cohomology class and its dimension k.

We also have the following description.

Proposition 3.2. With the above notation, if F is irreducible, then HdgF coincides
with the locus

{t 2 S : ( jt )⇤�t = 0} (3.1)

where ( jt )⇤ denotes the composition of the inclusion j : F ,! X with the isomor-
phism H2(Xt , C) ⇠= H2(X, C)

Proof. The proof is almost identical as in [21, Proposition 1.7]. That proposition
uses [21, Proposition 1.2], which we reformulated in our setting as Proposition
3.1, together with [21, Lemme 1.5 and Remarque 1.6], which has to be replaced
by [13, Lemma 2.7] instead because F is singular. Note that the statement of [13,
Lemma 2.7] is about the composition eF ! [⌫]F ! [ j]X where eF ! [⌫]F is
a resolution of singularities and not about j . This does however not play any role
for ker

�
H2(X, C) ! H2(F, C)

�
= ker

�
H2(X, C) ! H2(eF, C)

�
by a standard

argument using mixed Hodge structures, use e.g. [17, Corollary 5.42].
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As a consequence, the tangent space to the Hodge locus is given by

Proposition 3.3. Let F ⇢ X be an isotropic irreducible subvariety in an irre-
ducible symplectic manifold and let ⌫ : eF ! F be a resolution of singularities.
Then

THdgF ,[X] = {v 2 H1(TX ) | j⇤� (v, ·) = 0 in H1(�eF )}.

Proof. As in [21, 2.2], this is a direct consequence of (3.1). Indeed, by differentiat-
ing the equation there we obtain the equation j⇤� (v, ·) = 0 from the properties of
the Gauß-Manin connection. The only difference to Voisin’s argument for singular
F is thus the use of a resolution of singularities as in [13, Lemma 2.5].

4. Deformations

A deformation of a compact complex variety X is a flat morphismX ! S of com-
plex spaces to a pointed space (S, 0) such that the fiberX0 over 0 2 S is isomorphic
to X . We will mostly work with space germs but usually take representatives of
these germs to work with honest complex spaces and shrink them whenever neces-
sary to small neighborhoods of the central fiber. More precisely, in many situations
we choose a deformation over a contractible open subset as a representative of the
(uni-)versal deformation ofX ! Def(X).

4.1. Preparations

We start with the following easy remarks. The next result will be crucially used for
Artinian base schemes.

Lemma 4.1. Let F ⇢ X be a submanifold of an irreducible symplectic manifold
and let F ,!X be a deformation of F ,! X over a connected base scheme S such
that X ! S and F ! S are smooth. If F is isotropic, then F remains isotropic for
every relative holomorphic 2-form on X.

Proof. We look at the restriction morphism in de Rham cohomology %:H2dR(X/S)!
H2dR(F/S)where H2dR(·/S) is the second direct image of the complex�•

·/S; thus it is
a locally free sheaf on S by Deligne’s theorem [6, Théorème 5.5]. We have to show
that the restriction of % to the Hodge filtration F2H2dR(X/S) vanishes identically. As
in [6] one successively reduces to the case where S is affine respectively Artinian.
Then by [14, Theorem 4.23] the cokernel isOS-free and by [14, Theorem 4.17] the
same is true for the cokernels of the graded pieces. So Gr2% is the zero map as it is
so on the central fiber. The claim follows as Gr2F = F2.

Lemma 4.2. Let F ⇢ X be an isotropic submanifold of an irreducible symplectic
manifold X and let F ,!X be a deformation of F ,! X over a connected base
scheme S such that X ! S and F ! S are smooth and such that there is a relative
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symplectic form � on X extending the one on X . If F remains isotropic for � , then
there is a commutative diagram

TX/S //

✏✏

NF/X

'

✏✏

�X/S // �F/S

where the left vertical arrow is the isomorphism induced by the symplectic form and
' is surjective. If moreover P ⇢ X is a coisotropic subvariety such that F ⇢ P is
a general fiber of the coisotropic fibration of P , then the restriction of ' to F is the
composition of NF/X ! NP/X |F and an isomorphism NP/X |F ⇠= �F .

Proof. This is rather standard and we will only sketch the proof. It is clearly suffi-
cient to verify the existence of the diagram after restriction to F. As F is isotropic,
TF/S is contained in its orthogonal T?

F/S with respect to � . Consider the isomor-
phism TX/S ! �X/S induced by � and let IF ⇢ OX be the ideal sheaf of F. The
image of T?

F/S in �X/S is identified with IF/IF2 so that it maps to zero in �F/S .
Hence, ' exists and is surjective. To justify the last claim one simply has to observe
that the kernel of NF/X ! NP/X |F is NF/P and this is a quotient of T?

F = TP |F
by the coisotropicity of P .

4.2. Proof of the main results

For the basic material on deformation theory we refer the reader to [19]. Let f :
X ! Def(X) be the universal deformation of X . Consider the relative Hilbert
scheme (or rather the Douady space) of X ! Def(X) and let H be the union
of those irreducible components of it which contain F . We endow H with the
following scheme structure: it is the smallest closed subspace that coincides with
the Hilbert scheme in an open neighborhood of [F] inH. As the natural morphism
⇡ : H ! Def(X) is proper, which may be seen similarly to [7, Proposition 2.6],
the scheme theoretic image Def(F, X) of ⇡ is a closed complex subspace contained
in the Hodge locus HdgF ⇢ Def(X) of F .

Theorem 4.3. Let X be an irreducible symplectic manifold of dimension 2n and
let F ⇢ X be an isotropic submanifold of dimension k = 1, . . . , n which is a
general fiber of some smoothly coisotropic fibration. If (n � k)h1(OF ) = 0, then
the following hold.

(1) The spaceH is smooth at [F];
(2) The morphism ⇡ : H ! Def(F, X) and the subspace Def(F, X) ⇢ Def(X)

are smooth at [F], in particular, if the representative of Def(X) is chosen small
enough, thenH is irreducible;

(3) Possibly after shrinking the representative of Def(X), the general fiber of ⇡ :
H ! Def(F, X) is irreducible.
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We will henceforth choose the representative of Def(X) such that the conclu-
sion of (3) is fulfilled.

Proof. Consider the exact sequence

0 ! TX hFi ! TX ! NF/X ! 0 (4.1)

of sheaves on X which defines TX hFi. Then H1(X, TX hFi) is the tangent space to
the relative Hilbert schemeH at [F]. Let S = Spec R be a local Artinian scheme of
finite type over C and let F ,!X be a deformation of F ,! X over S. Smoothness
ofH, Def(F, X) and ⇡ follows via the T 1-lifting principle (cf. [8, §14] for a concise
account) if we can show that H1(TX/ShFi) and im

�
H1(TX/ShFi) ! H1(TX/S)

�
are

free R-modules. Moreover, im
�
H1(TX hFi) ! H1(TX )

�
will be the tangent space

to Def(F, X) at [F] in this case.
The equalities H0(TX ) = H0(�X ) = 0 and H1(TX ) = H1(�X ) on the central

fiber imply H0(TX/S) = H0(�X/S) = 0 and H1(TX/S) = H1(�X/S). So there is
an exact sequence

0 ! H0(NF/X) ! H1(TX/ShFi) ! H1(�X/S) ! H1(NF/X). (4.2)

Suppose that P 99K B is the coisotropic fibration of a smoothly algebraically
coisotropic subvariety P ⇢ X such that F is a general fiber of P 99K B. Then
on X we have a short exact sequence

0 ! NF/P ! NF/X ! NP/X |F ! 0 (4.3)

where the first term is isomorphic toO2n�2kF and the last term to�F by Lemma 4.2.
As F ,!X is isotropic by Lemma 4.1 there is a relative version of this sequence

0 ! K ! NF/X ! �F/S ! 0 (4.4)

which gives back (4.3) when restricted to the central fiber. Note that all sheaves in
(4.4) are S-flat. In order to show that K is also the trivial bundle it suffices to show
that the restriction to the central fiber H0(K ) ! H0(K ⌦R C) = H0(O2n�2kF ) is
surjective. This is easily shown by induction. Indeed, suppose that N 2 N is such
thatmN

R = 0 wheremR is the maximal ideal of R and denote Sm := Spec R/mm+1
R .

Then it suffices to inductively show that K ⌦OSm = O2n�2kF⇥S Sm for all m 2 N. Fix
m 2 N and suppose that K ⌦ OSm is a free OF⇥S Sm -module. Consider the exact
sequence

0 ! O2n�2kF ⌦C
⇣
mm+1/mm+2

⌘
! K ⌦OSm+1 ! K ⌦OSm ! 0

obtained by flatness of K . Then H0(K ⌦ OSm+1) ! H0(K ⌦ OSm ) is surjective
by the vanishing of H1(O�2(n�k)

F ) and the triviality of K follows.
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We deduce that also H1(K ) = H1(O2n�2kF ) = 0 and the map H1(NF/X) !

H1(�F/S) is injective. Combining this with (4.2), we obtain an exact sequence

0 ! H0(NF/X) ! H1(TX/ShFi) ! H1(�X/S) ! H1(�F/S) (4.5)

where the last map is just the ordinary restriction map by Lemma 4.2. We observe
that the last two terms are R-free by [6, Théorème 5.5] and so is the cokernel, hence
the image and the kernel, of the last map in this sequence by [14, Theorem 4.17].
Also H0(NF/X) is R-free because of the sequence (4.4) and [6, Théorème 5.5].
Consequently, we deduce the freeness of H1(TX/ShFi) and conclude the proof of
(1) and (2).

For (3), note that by definition smoothness of H in a neighborhood of [F]
implies irreducibility. Furthermore, by our choice of scheme structureH is reduced.
Consider the normalization H̃ ! H and let H̃ ! D ! Def(F, X) be the Stein
factorization so that H̃ ! D has connected fibers. As H̃ is normal, the general
fiber of H̃ ! D is irreducible.

Smoothness of ⇡ : H ! Def(F, X) near [F] also yields a local analytic
section Def(F, X) ! H into the smooth locus of ⇡ and thus a local analytic
section of Def(F, X) ! D. After shrinking the representative of Def(X) (and
hence of Def(F, X)) we may assume that these sections are given globally. As
D ! Def(F, X) is finite, admits a section, and Def(F, X) is smooth, D has a
component isomorphic to Def(F, X). Note that while shrinking D might have
become reducible, but we may disregard its other components. It follows that
H̃ ! D = Def(F, X) has irreducible general fiber so that the claim follows.

The fact that H1(�X/S) ! H1(�F/S) has a locally free cokernel could also
be deduced from a Katz-Oda type argument, see [12], but this only seems to work
when S is an infinitesimal truncation of a smooth variety, a restriction which is not
necessary with the above argument. We deduce the following

Corollary 4.4. In the situation of Theorem 4.3 assume that h1(OF ) = 0 also for
k = n. Then for every small deformation Ft ⇢ Xt of F ⇢ X the Hilbert scheme
Hilb(Xt ) is smooth at [Ft ] of dimension 2n � 2k.

Proof. The Hilbert scheme Hilb(Xt ) is locally at [Ft ] given by the fiber of H !
Def(F, X) over t 2 Def(F, X)which is smooth at [Ft ] by Theorem 4.3. Hence, also
the fiber dimension ofH ! Def(F, X) is constant and equal to dim H0(NF/X ) =
2n � 2k.

Note that if k = n, the vanishing hypothesis on h1(OF ) is necessary, as e.g.
the Hilbert scheme of a Lagrangian torus in X is smooth of dimension n.

Corollary 4.5. In the situation of Theorem 4.3 for any t 2 Def(F, X) the defor-
mation Xt of X contains a codimension k algebraically coisotropic subvariety Pt
covered by deformations Ft of F .
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Proof. Let us first observe that the case k = n is trivial as the varieties Pt and
Ft coincide in this case. Consequently, we will from now on assume that k < n
so that we have h1(OF ) = 0. Let F ⇢ H ⇥Def(X) X be the universal family of
deformations of F parametrized byH. Denote by Ft its fiber over t 2 H. We infer
from the proof of Theorem 4.3 that there is an exact sequence 0 ! O�2(n�k)

Ft !
NFt/Xt ! �Ft ! 0 for all t 2 H sufficiently close to [F]. Hence, the evaluation
morphism H0(NFt/Xt ) ⌦OFt ! NFt/Xt is injective with cokernel �Ft for all such
t . This means that small deformations of Ft inside Xt do not intersect Ft . Let
Ht be a component of Ht parametrizing smooth deformations of F and denote by
Ft ! Ht the restriction of the universal family. By the preceding corollary (or the
exact sequence above) the evaluation map evt : Ft ! Xt maps onto a subvariety
Pt ⇢ Xt of dimension dim(Pt ) = 2n � k and it is generically finite. Let p 2 Pt
be a smooth point which is covered by smooth fibers of Ft ! Ht . Analytically
locally around p the variety Pt has an isotropic fibration whose fibers are the Ft ’s,
in other words, there is an analytically open subset of Pt which is isomorphic to
the universal family FS ⇢ Xt ⇥ S restricted to a small analytically open subset
S ⇢ Ht . But then � n�k+1|P regt

= 0 as the analytically open sets of the form FS
cover a Zariski open subset of Pt by definition of Pt and so Pt is coisotropic by
Lemma 2.4. In particular, T?

P is the relative tangent bundle of Ft ! Ht in a small
analytic neighborhood of p so that there is only one Ft passing through p and thus
evt : Ft ! Pt is birational. We deduce that Pt is algebraically coisotropic.

Remark 4.6. Note that we do however not know whether Pt is a deformation of P .
One can only say that for general t 2 Def(F, X) the variety Pt is a deformation of
a variety P0 one of whose components is P . Also, we do not know whether Pt is
smoothly algebraically coisotropic.

We prove now the following.

Theorem 4.7. In the situation of Theorem 4.3 we have Def(F, X) = HdgF and

codimDef(X)Def(F, X) = rank
⇣
H2(X, C) ! H2(F, C)

⌘
 rkNS(F). (4.6)

If codimDef(X)HdgF � rkNS(F), then

codimDef(X)Def(F, X) = codimHdgF = rkNS(F).

Proof. Recall that THdgF ,0 = ker
�
H1(TX ) ⇠= H1(�X ) ! H1(�F )

�
just like in

Voisin’s original paper, see Proposition 3.3 above. As Def(F, X) ⇢ HdgF and
both are smooth (the former by Theorem 4.3, the latter by Proposition 3.1) it suf-
fices to show that their tangent spaces agree. Now TDef(F,X),0 is the kernel of
H1(TX ) ! H1(NF/X ). Recall that NF/P is trivial and that NP/X |F ⇠= �F , by
Lemma 4.2. Then the map H1(NF/X ) ! H1(�F ) induced from (4.3) is injective
as (n � k)h1(OF ) = 0 and the equality TDef(F,X),0 = THdgF ,0 follows.
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We also deduce that dimDef(F, X) = h1,1(X) � rk
�
H1(�X ) ! H1(�F )

�

which implies the statement on the codimension as dimDef(X) = h1,1(X). Indeed,
as F is isotropic and the restriction map H2(X, C) ! H2(F, C) is a morphism of
Hodge structures, it sends the transcendental part of H2(X, C) to zero so that

rk
⇣
H2(X, C) ! H2(F, C)

⌘
= rk

⇣
H1(�X ) ! H1(�F )

⌘
.

Now the image of H2(X, C) ! H2(F, C) is clearly defined over Z and it
is contained in H1,1(F), so it lies in NS(F) ⌦ C. Hence codimDef(X)HdgF 
rkNS(F) so that the inequality in the other direction implies equality.

Example 4.8. Although H2(X, C) ! H2(F, C) factors through NS(F) ⌦ C it is
not true that rk

�
H2(X, C) ! H2(F, C)

�
= rk (NS(X) ! NS(F)). For example

take an elliptic K3 surface f : X ! P1 of Picard rank one and let F be a gen-
eral fiber of f . Then rk (NS(X) ! NS(F)) = 0 but certainly every Kähler class
restricts to a non-zero cohomology class on F . We are grateful to the referee for
providing this example.
Remark 4.9. The hypothesis codimHdgF � rkNS(F) is always fulfilled if the
Picard number ⇢F of F is one, see [20, Theorem 2.3]. In general, this need not be
the case. If F is a smooth fiber of a Lagrangian fibration, then codimHdgF = 1
by a result of Matsushita [16]. However, it is easy to give examples of Lagrangian
fibrations where rkNS(F) � 2. For instance, the general fiber of the induced
fibration on the Hilbert scheme of points of an elliptic K3 surface is a product of
elliptic curves and its Picard rank is at least its dimension.

We conclude the section by noticing that Theorem 1.1 follows immediately by
putting together Theorem 4.7, Corollary 4.5 and Remark 4.9.

Similarly, Corollary 1.2 follows from Theorem 1.1 together with Propo-
sitions 3.1 and 3.2. Arguing as in [21, Corollaire 1.4] and using Theorem 1.1 we
also deduce Corollary 1.3.

5. Examples and final remarks

Example 5.1. Let S be a K3 surface containing a smooth rational curve R. For any
1  k  n consider

P := Pk = {⇠ 2 S[n] : lg(Supp(⇠) \ R) � k}.

There is a natural dominant rational map P 99K S[n�k], which restricts to a surjec-
tive morphism over the open subset U [n�k], where U := S \ R. The fiber Fk over a
point ⌘ 2 U [n�k] is Pk ⇠= R[k].

As the moduli space of marked irreducible symplectic manifolds is constructed
via the local Torelli theorem by patching together the Kuranishi spaces it is suffi-
cient to prove on the local chart Def(S[n]) the assertions of Corollary 1.4. A small
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deformation of projective space remains projective space, so, by Theorem 1.1, for
every t 2 Def(Fk, S[n]) the manifold Xt contains a coisotropic submanifold Pt
ruled by Pk’s. As Fk ⇠= Pk has Picard rank one, Theorem 4.7 immediately implies
thatDk := Def(Fk, S[n]) is a divisor in Def(S[n]).

To see that for any k � 1 and for a general point t 2 Def(Fk, S[n]) the manifold
Xt is not isomorphic to a (K3)[n] we can argue as follows. Let `t ⇢ Pk ⇠= F ⇢
Pt be a line inside a fiber of the coisotropic submanifold Pt ⇢ Xt . If Xt were
isomorphic to a (K3)[n], then Def(F, S[n]) would be contained in the codimension
2 locus of Def(S[n]) given by the intersection of the Hodge loci of the exceptional
class and of the class dual to that of `t contradicting the fact that theDk are divisors.
Note that these two Hodge loci cannot coincide as one can see from the fact that
a curve whose class is dual to the exceptional class is contracted under the map
to the symmetric product whereas `t is not. Alternatively, this follows from the
calculations in Remark 5.2. By the local Torelli theorem the polarized deformations
Def(S[n])pol of S[n] are isomorphic to the preimage under the period map of the
orthogonal to a class h 2 H2(S[n], Z) of positive square. As of course HdgF does
not coincide with Def(S[n])pol , it cuts a divisor on it.

All the conclusions of Corollary 1.4 are then proved in this case.
Remark 5.2. Notice that the common intersection of any two of the Dk (respec-
tively Dpol

k ) is a codimension 2 subset M (respectively Mpol ) contained in the
locus of Hilbert schemes of points. Indeed, it is clear thatDk contains the locus of
Hilbert schemes of points on K3 surfaces containing a deformation of R. This is a
hypersurface in the space of K3 surfaces and their Hilbert schemes thus form a codi-
mension 2 subset of Def(S[n]). To show that the intersection of any two (and hence
of all)Dk is not bigger than this by Corollary 1.3 it is sufficient to show that, say, for
k 6= k0, the kernels of the cup-product maps ker(µFk ) and ker(µFk0 ) do not coincide.
On the other hand as in [21, Lemme 1.5] (see also [21, Remarque 1.6]) we have
ker(µFk ) = ker( j⇤k ) (resp. ker(µFk0 ) = ker( j⇤k0)), where j⇤k and j

⇤
k0 are the pull-back

maps in cohomology associated to the inclusions jk : Fk ,! X and jk0 : Fk0 ,! X .
As Fk and Fk0 are isotropic, the transcendental lattice T ⇢ H2(X, C) is contained
in both kernels and one may verify ker( j⇤k ) 6= ker( j⇤k0) on the Neron-Severi sublat-
tice (withQ-coefficients) by explicit geometric calculations. Let us be a little more
precise: NS(S[n]) = NS(S)�QE where E is the exceptional divisor of S[n] ! S(n)

and if 6 ⇢ S is an effective divisor we obtain a divisor on S[n] via

D6 = {⇠ 2 S[n] | ⇠ \ 6 6= ;}.

The restriction of D6 to Fk is uniquely determined by its degree (as Fk ⇠= Pk) and
it is easy to check that deg D6|Fk = (6.R)S , which is independent of k. On the
other hand, E |Fk has degree 2(k � 1), see [2, VIII Proposition 5.1], so that indeed
the kernel of the restriction map for k and k0 6= k is not the same.
Example 5.3. Let T be a 2-dimensional complex torus containing a smooth elliptic
curve E . Then T is fibered over the elliptic curve E 0 := T/E and E is the fiber
over zero of this fibration. The fiber Et for t 2 E 0 is a translate of E by an arbitrary



978 CHRISTIAN LEHN AND GIANLUCA PACIENZA

preimage of t under T ! E 0. For any 1  k  n and any divisor D of degree k+1
on Et we have h0(OEt (D)) = k + 1. In this way we get an immersion

Pk ,! E (k+1)
t ⇢ T [k+1]

where Pk is the fiber over some fixed point a 2 E(k+1)t of the sum map E (k+1)
t !

E(k+1)t . We consider the relative Hilbert scheme E (k+1) (or relative symmetric
product) of k+1 points on the fibers of T ! E 0 and the submanifold P̃ ⇢ T [n�k]⇥
E (k+1) given by taking the fiber of the sum map T [n�k] ⇥ E (k+1) ! T over 0 2 T .
Note that P̃ has dimension 2n � k and the projection to the first factor induces a
surjective morphism �̃ : P̃ ! T [n�k] whose fibers are exactly the Pk’s introduced
above.

Define P := Pk ⇢ Kn(T ) to be the closure of the image of the rational map
P̃ 99K Kn(T ) obtained by taking the union of subschemes in T [n�k] and E (k+1).
Observe that the fibration �̃ induces an almost holomorphic map � : Pk 99K T [n�k]

which is the coisotropic fibration of the coisotropic subvariety Pk . Arguing as in the
previous example, one checks that all the conclusions of Corollary 1.4 hold also in
this case. Here, we use the fact that the degree of the exceptional divisor restricted
to the general fibers Fk ⇠= Pk of the coisotropic fibration of Pk is 2k.
Example 5.4. Other examples, for Hilbert schemes of points on K3 surfaces, come
from the classical Brill-Noether theory. The idea is the following: if (S, H) is a
generic primitively polarized K3 surface of genus g, and n is such that the Brill-
Noether number ⇢(g, 1, n) = g�2(g�n+1) is positive, then one can consider the
locus P ⇢ S[n] covered by the rational curves associated to degree n non-constant
morphisms ' : C ! P1, as the curve C 2 |H | and the morphism ' vary. The
subvariety P is swept by projective spaces of dimension equal to the codimension
of P . These projective spaces are the projectivizations PH0(S, E) of the space of
global sections of the Lazarsfeld-Mukai rank two vector bundle E associated to the
data of the curve C together with a pencil of degree n. See [23, §4.1, Example 3)]
and [22, §2, p. 10-11] for the details. The point we want to make here is that these
examples differ from the previous ones, in the sense that they do not necessarily
come from a contraction of S[n].
Remark 5.5. It seems relevant to observe that in all the previous examples one can
easily count parameters and check that, independently of the codimension of the
coisotropic subvariety P , a line ` inside a general isotropic fiber of P moves in a
family of the expected dimension 2n� 2. This ensures (cf. [5, Proposition 3.1] and
[18]) that the curve ` deforms along its Hodge locus Hdg[`]. Nevertheless, without
Theorem 1.1 we cannot control the dimension of the locus that the deformations `t
of ` cover in Xt , for t 2 Hdg[`].
Remark 5.6. Is it true that Ft has trivial CH0 if F does? Since the Hodge numbers
remain constant under deformation and a variety with trivial group of 0-cycles sat-
isfies h p,0 = 0 for all p > 0 by the Mumford-Rojtman theorem, see e.g. [24, The-
orem 10.4], we have h p,0(Ft ) = 0 for all p > 0. The Bloch-Beilinson conjecture
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implies that Ft should be a subvariety of Xt with trivial CH0. We do not know how
to show this unconditionally.
Remark 5.7. In Theorem 1.1 the hypothesis that F covers a codimension k
coisotropic submanifold is not necessary, as, already when k = 1, it is sufficient
to have dim(Def(F, X)) = 2n�2 to obtain the conclusion (see [5, Proposition 3.1]
and [18]). However, we have restricted our attention to this setting because of the
importance of algebraically coisotropic subvarieties emphasized in [23].
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