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Singular p-Laplacian parabolic system in exterior domains:
higher regularity of solutions and related properties
of extinction and asymptotic behavior in time

FRANCESCA CRISPO, CARLO ROMANO GRISANTI AND PAOLO MAREMONTI

Abstract. We consider the IBVP in exterior domains for the p-Laplacian par-
abolic system. We prove regularity up to the boundary, extinction properties for
p 2

⇣
2n
n+2 ,

2n
n+1

⌘
and exponential decay for p = 2n

n+1 .

Mathematics Subject Classification (2010): 35K92 (primary); 35B65, 35B40
(secondary).

1. Introduction

The p-Laplace equation is a prototype example of non linear PDE. We consider the
parabolic singular case 1 < p < 2 for vector valued functions, namely

ut � r ·
⇣
|ru|p�2ru

⌘
= 0 in (0, T ) ⇥�

u(t, x) = 0 on (0, T ) ⇥ @� (1.1)
u(0, x) = u�(x) on {0} ⇥�,

where � is a bounded or exterior C2 domain of Rn and u : � �! RN a vector
valued function, with n � 2 and N � 1.

Problem (1.1) is widely studied in the case of bounded domains � and in the
case of the Cauchy problem. We would like to say that, in the case of � bounded,
the literature can be split in two branches. A former is a classical theory which is
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essentially devoted to the analysis of the Hölder’s regularity of the gradient of weak
solutions, see [1, 5–8, 14–18, 22, 24–26, 28, 31]. The latter is more recent and it is
based on the local or global W 2,q -regularity1 for suitable exponents q, see [1,3,11,
21, 27]. In this connection it is important to point out that only in [11] is obtained
the L1(0, T ;W 2,q(�)) regularity up to the boundary with an exponent q � 2. It
is deduced by the aid of the results in [4, 12] related to the boundary value problem
associated to the elliptic case. On the other hand if we exclude the special case
of the Cauchy problem, the initial boundary value problem in unbounded domains
appears overlooked. The same is for the boundary value problem associated to the
steady equations. The last problem very recently has received contributions for the
elliptic problem and for a perturbed elliptic problem [10,13].

The aim of this paper is to fill the gap of results between the cases of the IBVP
for � bounded and IBVP for � exterior domain. Particular regards are posed to the
questions of the regularity and extinction properties of the solutions.

This paper is the natural evolution of a project, concerning the regularity of
the p-Laplace system, whose previous chapters are the papers [10, 11]. The former
deals with the parabolic problem on bounded domains and the latter concerns the
elliptic system on exterior domains. A common feature of the high integrability
results in [10, 11] (likewise [4, 12, 13]) is the connection between the power q of
summability of the second spatial derivatives and the exponent p which describes
the singularity of the operator: as q increases, p must approach 2 from below.
Roughy speaking, in the scalar parabolic case, the second derivatives become more
integrable as the equation get closer to the heat equation. Together with this con-
straint, even for bounded domains (see [11]) we can find other restrictions on p
which sound to be more technical than intrinsic to the problem. To get rid of some
of these, we refine the duality method exploited in the quoted paper, resorting to a
further adjoint problem. The result is obtained for a bounded domain and extended
to the case of an exterior one. Our technique allows us also to push upward the
exponent of integrability of D2u. In this respect we remark that we obtain a power
that is higher than the space dimension, achieving the Hölder continuity of ru up
to the boundary, even for an exterior domain.

We like to point out that the special issue about the square summability of D2u
deserves a particular consideration, since the result becomes very clean requiring
simply p > 2n

n+2 .
We want to remark that we do not analyze the regularity of the solution, instead

we exhibit the existence of a regular solution and we use its uniqueness.
In order to tackle the mathematical question related to the extinction of the

solutions, we need a Ls-theory for s 2 (1, 2). In this respect we point out that the
result of uniqueness holds with the stronger hypothesis of initial data in Ls \ L2.
We would like to remark that we cannot omit the L2 assumption on u�. Actually the
difficulties are related with the non-linear character of the system and the weakness
of the Ls-theory for s < 2. However the same difficulties are met in the IBVP on

1 After the submission of the present article, the authors became aware of the arXiv preprint [9]
concerning the global regularity.
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bounded domains. The character of unbounded domains and the non-linearity of
the p-Laplacian give a special interest to the technique and to the results. Among
the results, we obtain the following generalized energy relation:

ku(t)k2s + c
Z t

0
kru(⌧ )kpsp

2
 ku�k

2
s , for all t > 0, (1.2)

where c is independent of u�. The above generalized energy inequality assumes
a particular interest even in the case of linear parabolic systems. Actually, for the
following IBVP

ut �1u = 0 , in (0, T ) ⇥�,
u(t, x) = 0 , on (0, T ) ⇥ @�,
u(0, x) = u�(x), on {0} ⇥�,

(1.3)

it is well known that the energy equality

ku(t)k22 + 2
Z t

0
kru(⌧ )k22 = ku�k

2
2 (1.4)

holds for any t > 0. In the case of a Lq -theory, q 2 (1, n], the above relation is
replaced by estimates of the kind

kru(t)kq  c(t � t0)�
1
2 ku(t0)kq , for all t > t0 � 0. (1.5)

It is evident that (1.5) cannot imply
Z t

t1
kru(⌧ )k2qd⌧  cku�k

2
q , for all t > t1 > t0,

but it can only furnish the weaker property krukq 2 L2w(t0,1), where L2w is the
Lorentz space. Hence estimate (1.2) has a special interest in the case of p = 2
(linear case), because it reproduces for all s 2 (1, 2] a property that was relegated
only to the L2-theory.

The following theorems are proved in Sections 6, 7 and 10.
Theorem 1.1. Let be p 2

� 2n
n+2 , 2

�
,� a bounded or exteriorC2 domain of Rn, n �

2 and u� 2 L2(�). Then, for any " > 0, D2u 2 L1(", T ; L2(�)), where u is the
unique solution u of (1.1) and

�
�D2u(t)

�
�
2 

c

t
1+�
p�1

ku�k
(2�p)�+1

p�1
2 +

c

t
1
p
ku�k

2
p
2 (1.6)

with � = (n�2)(2�p)
p(n+2)�2n if n � 3 or � = r�2

r(p�2) for any r 2
�
2, 2

p�1
�
\
⇥
2, 2+ 4(p�1)

(2�p)2
⇤

if n = 2. Moreover, for any q 2
⇥
2, 2 + 4(p�1)

(2�p)2
⇤
and " > 0 we have that ut 2

L1(", T ; Lq(�)) and

kut (t)kq 
c
t 1+�

ku�k
(2�p)�+1
2 , a.e. in (0, T ), (1.7)

with � = � (q 0) given by (4.8).
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Theorem 1.2. Let E ⇢ Rn, n � 2 be a bounded C2 domain, p > 2n
n+2 and

q 2
⇥
2, 2+ 4(p�1)

(2�p)2
⇤
. Moreover, following Definition 2.1, let

�(q) =

8
>><

>>:

2�
1

C(q)
if q 6= n

inf
q>n

⇢
2�

1
C(q)

�
if q = n.

If p > max{�(2),�(q)} then, the unique solution of (1.1) belongs to L1(", T ;
W 2,q(E)), for any " > 0.

Theorem 1.3. Let � be an exterior C2 domain of Rn, n � 2 and p > 2n
n+2 . For

any q 2
⇥
2, 2 + 4(p�1)

(2�p)2
⇤
, there exists p(q) < 2 such that if p 2 (p(q), 2) and u is

the unique solution of (1.1) then D2u 2 L1(", T ; Lq(�)).

Theorem 1.4. Let� be an exterior C2 domain of Rn . Assume p 2 ( 2n
n+2 ,

2n
n+1 ) and

u� 2 Lsex(�) \ Ls(�), with sex := n( 2p � 1) and s > sex. Then there exists a so-
lution u of problem (1.1), in the sense of Definition 9.1, which enjoys the extinction
property

u(t) = 0 for all t � Tex (1.8)
where

Tex 
c

2� p
ku�k

2
sex .

If u� 2 Lsex(�) \ L2(�), then the solution u is unique. Moreover, if p = 2n
n+1 and

u� 2 L1(�) \ Ls(�), s 2 (1, 2], then we get the exponential decay

ku(t)k2 
c
"�

ku�k
↵
s e

�c(t�")ku�k
�1/(n+1)
1 , for all t > " > 0. (1.9)

Theorem1.4 furnishes a result typical of the p-Laplacian parabolic problem, that is
the extinction of the solution in a finite time. This property depends on the nature of
the domain� of the IBVP. For� bounded we refer to DiBenedetto [14]. The known
result in the case of unbounded domains is related to the Cauchy problem see [14]
and [19]. This case is characterized by the fact that the extinction of the solution
holds with initial data belonging to Lsex(�) with sex := n( 2p � 1). In Theorem1.4
we prove this kind of result for p 2 ( 2n

n+2 ,
2n
n+1 ). It is important to stress that we

need an Ls-theory s < 2 of existence as a key tool in order to prove the extinction.
This is in harmony with the result of the Cauchy problem. In Theorem 9.2 we
develop a Ls-theory of existence of solutions which are regular for t > 0. However
we are not able to prove uniqueness unless for initial data u� 2 Ls(�) \ L2(�).
We complete this kind of results by proving that in the case p = 2n

n+1 the solutions
admit an exponential decay in time.

We complete the introduction furnishing a generalized energy inequality re-
lated to the solutions of the linear IBVP for parabolic systems (1.3).
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Theorem 1.5. Let� be an exterior domain and u� 2 L� (�) with � 2 (1, 2]. Then
there exists a unique solution to problem (1.3) such that u is smooth for t > 0 and

ku(t)k2� + 2(� � 1)
Z t

0
kru(⌧ )k2�d⌧  ku�k

2
� , for all t > 0. (1.10)

Theorem 1.5 is proved in Section 11.
The plan of the paper is the following. In Section 2 we introduce the notation,

the function spaces, our notion of solution and some results concerning the elliptic
problem. In Section 3 we quote the existence theorem for the parabolic problem
on bounded domains furnishing the explicit estimates which are hidden in the orig-
inal result; further we prove our existence theorem on exterior domains. Section 4
contains two adjoint parabolic problems which are used in Section 5 to estimate the
time derivative in Lq(�) by duality. The integrability of the second spatial deriva-
tives is investigated in Section 6 and Section 7, respectively in L2 and Lq , using
the elliptic results with ut acting as a force term. In Section 8 we obtain the Hölder
regularity of the gradient by Sobolev-Morrey embedding results. Section 9 is en-
tirely devoted to the existence theory with initial data in Ls(�). In Section 10 we
investigate the extinction and exponential decay of the solutions. Finally, in Section
11 we apply the methods of Section 10 to prove the energy inequality in Ls(�),
with 1 < s < 2, for linear parabolic IBVP.

ACKNOWLEDGEMENTS. The authors are grateful to the referee who pointed out
three critical points in the proof.

2. Notation and preliminary results

We denote by � an exterior domain, i.e., the complementary of a compact con-
nected set of Rn . In this context, we can find a real number R0 > 0 such that
(Rn \�) ⇢ B(0, R0). On the other hand, we reserve the letter E for bounded sub-
sets of Rn . In some statements the letter � is used at the same time for bounded or
exterior domains and the occurrence is explicitly enhanced.

For any R > 0 we define a smooth cut-off function hR : Rn �! [0, 1] such
that

hR(x) =

(
1 if |x |  R
0 if |x | � 2R,

|rhR| 
c
R

. (2.1)

Together with the usual Lebesgue, Sobolev and Bochner spaces we also make use
of some other suitable spaces in the framework of exterior domains. First the
space bW 1,p

0 (�) which is the completion of C1
0 (�) in the norm |'|1,p := kr'kp

and that, in the case of a bounded domain, coincides with W 1,p
0 (�). We intro-

duce also the Banach space V (�) := bW 1,p
0 (�) \ L2(�) and the Bochner space
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V p,p0
(0, T ;�) := { 2 L p(0, T ; V (�)) :  t 2 L p0

(0, T ; V (�)0)} with the norm
k k := k kL p(0,T ;V (�)) + k tkL p0 (0,T ;V (�)0) (see [32, Sec. 23.6]). The symbol
h·, ·i stands for the duality pairing between a Banach space and its dual.

We begin with the definition of a quantity which is crucial in most of our re-
sults.

Definition 2.1. Let E be a bounded C2 set of Rn . For any q � 2 we set

C(q) = sup
v2W 1,2

0 (E)\W 2,q (E)

kD2vkq
k1vkq

.

We remark thatC(q) is always finite and it is related to the Calderón-Zygmund The-
orem. Moreover it is possible to show that there exists a constant K , not depending
on q (but depending on E), such that C(q)  Kq. For the details see [30].

Let us introduce our notion of solution, which retains more regularity than an
ordinary weak solution. We want to focus the attention also on the set of test func-
tions which is chosen in order to apply previous regularity results. In Remark 2.3
we state the equivalence with other sets of test functions to which we will switch
from time to time, as needed by the context.

Definition 2.2. Let � be a bounded or exterior domain with boundary of class C2
and u� 2 L2(�). A field u : (0, T ) ⇥� ! RN is said a solution of system (1.1) if

u2L p(0,T ;V (�)) \ C([0, T ]; L2(�)) , t
1
p ru2L1(0, T ; L p(�)) , (2.2)

ut 2L p
0
(0,T ;V (�)0) , t ut 2L1(0, T ;L2(�)), t

p+2
2p rut 2L2(0, T ;L p(�)), (2.3)

Z T

0

h
(u, t )�

⇣
|ru|p�2ru,r 

⌘i
dt=�(u�, (0)), 8 2C1

0 ([0, T ) ⇥�) (2.4)

and
lim
t!0+

ku(t) � u�k2 = 0 .

Remark 2.3. We observe that, since u(t) 2 C([0, T ]; L2(�)), by using a suitable
cut-off function in time, we obtain that, for any 0  s < t  T

Z t

s

h
(u, ⌧ ) �

⇣
|ru|p�2 ru,r 

⌘i
d⌧ = (u(t), (t)) � (u(s), (s)),

8 2 C1
0 ([0, T ) ⇥�).

(2.5)

Moreover, resorting to a density argument, we can take the test functions  in the
space W 1,2(0, T ; L2(�)) \ L p(0, T ; V (�)), obtaining an equivalent definition of
solution which coincides with the one given in [11]. Always by density (see [32,
Proposition 23.23]), u is a solution in the sense of Definition 2.2, if and only if, for
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any 0  s < t  T
Z t

s

h
hu, ⌧ i �

⇣
|ru|p�2 ru,r 

⌘i
d⌧ = (u(t), (t)) � (u(s), (s)),

8 2 V p,p0
(0, T ;�) and u(0) = u�,

(2.6)

hence we can test the equation with the solution itself.
In view of Sections 6 and 7 we report, for the reader’s convenience, three

results on the regularity of the p-Laplacean elliptic system. If we set

r̂ =

8
>><

>>:

2n
n(p � 1) + 2(2� p)

if n � 3

any number in
✓
2,

2
p � 1

◆
if n = 2,

(2.7)

we have:

Theorem 2.4 ([10, Theorem 1.2]). Let � be a C2 bounded or exterior domain of
Rn and p 2 (1, 2). Assume that f 2 Lr̂ (�) \ (bW 1,p

0 (�))0. Then the unique weak
solution of the system

�r · (|ru|p�2ru) = f in �
u = 0 on @� (2.8)

has second derivatives in L2(�) and

kD2uk2  c
✓

k f k
1
p�1
�1,p0 + k f k

1
p�1
r̂

◆
.

Theorem 2.5 ([12, Theorem 1.1]). Let be E a bounded C2 domain of Rn,
n � 2, p 2

�
2 � 1

C(2) , 2
�
with C(2) as in Definition 2.1. If f 2 Lq(E) with

q � 2n
n(p�1)+2(2�p) for n � 3 or q > 2 for n = 2 and

q̂ =

8
>><

>>:

nq(p � 1)
n � q(2� p)

if q < n

any number < n if q = n
q if q > n

then there exists a unique u solution of (2.8) such that u 2 W 1,q̂
0 (E)\W 2,q̂(E) and

kuk2,q̂  ck f k
1
p�1
q .
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Theorem 2.6 ([10, Theorem 1.1]). Let � be a C2 exterior domain of Rn, n � 2.
Assume that f 2 Lr (�) \ (bW 1,p

0 (�))0, with r 2 (n,1). Then, there exists p(r) 2
(1, 2) such that if p 2 (p(r), 2) there exists a unique solution u of (2.8) with

kD2ukr  c
✓

k f k
1
p�1
�1,p0 + k f k

1
p�1
r

◆
.

We observe that, by Remark 2.3, the notion of solution used in the above results
(see [10,12]) is compatible with the one given in Definition 2.2.

We end this section with a “reverse” version of the Hölder inequality ([2, The-
orem 2.12])
Inequality 2.7. Let 0< p<1 and p0 = p

p�1 . If f 2L p(�) and 0<
R
� |g(x)|p0 dx <

1 then
Z

�
| f (x)g(x)| dx �

✓Z

�
| f (x)|p dx

◆1/p ✓Z

�
|g(x)|p

0
dx

◆1/p0

.

3. Existence results

In the case of a bounded domain we quote here the following result taken from
[11, Theorem 1.1]. The statement is not exactly as the original one, where the
quantitative estimates are not present. They are somehow hidden in the proof and
we want to make them explicit since we need them in view of the corresponding
result in the case of an exterior domain.

Theorem 3.1. Let E be a bounded C2 subset ofRn and u� 2 L2(E). Then, for any
p 2 (1, 2), there exists a unique solution of problem (1.1) in the sense of Definition
2.2. Moreover we have the following estimates with constants c not depending on
|E |

ku(t)k22  2ku�k
2
2 for a.e. t 2 [0, T ], (3.1)

t
1
p kru(t)kp  ku�k

2
p
2 for a.e. t 2 [0, T ], (3.2)

t
1
p0 kut (t)k�1,p0  cku�k

2
p0

2 for a.e. t 2 [0, T ], (3.3)
tkut (t)k2  cku�k2 for a.e. t 2 [0, T ], (3.4)

Z T

0
kru(t)kpp dt  ku�k

2
2, (3.5)

Z T

0
t
p+2
2 krut (t)k2p dt  cku�k

4
p
2 . (3.6)

Proof. The proof is based on a two steps approximation of the singular system via
parabolic systems depending on two parameters. Furthermore the authors use the
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Faedo-Galerkin approximation method with smooth initial data and then they pass
to the limit by density. It results that the estimates depend on four parameters and
the passage to the limit has to be carefully managed. It is of no interest to replicate
here the actual existence proof but, for the reader convenience, we perform only the
formal computations treating the solution as it was smooth enough. We refer to the
original paper [11, Appendix] for the rigorous proof.

We begin with the classical energy estimate to get (3.1) and (3.5). We fix
s 2 (0, T ] and we multiply (1.1)1 by u. Integration in time and space gives

1
2
ku(s)k22 +

Z s

0
kru(t)kpp dt  ku�k

2
2. (3.7)

Now we multiply (1.1)1 by ut and integrate over E

kut (t)k22 +
1
p
d
dt

kru(t)kpp = 0.

Multiplying by t the above equation we get

tkutk22 +
1
p
d
dt

�
tkrukpp

�
=
1
p
krukpp

and integrating this identity over (0, s)
Z s

0
tkut (t)k22 dt + skru(s)kpp 

Z s

0
kru(t)kpp dt. (3.8)

Hence by (3.8) and (3.7)
Z s

0
tkut (t)k22 dt + skru(s)kpp  ku�k

2
2 (3.9)

which gives (3.2).
Let us differentiate (1.1) with respect to t getting

utt � r ·
⇣
(p � 2)|ru|p�4(ru ⌦ ru) · rut + |ru|p�2rut

⌘
= 0.

Multiplying the above identity by ut and integrating over E we obtain

1
2
d
dt

kutk22 +
�
�
�|ru|

p�2
2 rut

�
�
�
2

2
 (2� p)

�
�
�|ru|

p�2
2 rut

�
�
�
2

2

and, multiplying by t2

1
2
d
dt

⇣
t2kutk22

⌘
� tkutk22 + (p � 1)t2

�
�
�|ru|

p�2
2 rut

�
�
�
2

2
 0.
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Finally, integrating in time over (0, s), using (3.8) and (3.7) we achieve

s2kus(s)k22+2(p�1)
Z s

0
t2
�
�
�|ru|

p�2
2 rut

�
�
�
2

2
dt 2

Z s

0
tkutk22 dt

 2
Z s

0
krukpp dt  2ku�k

2
2

(3.10)

and (3.4) is proved.
By the definition of negative Sobolev norm and using estimate (3.9) in (1.1)

we get

kus(s)k�1,p0 =kr ·
⇣
|ru(s)|p�2ru(s)

⌘
k�1,p0  kru(s)kp�1p 

c

s
p�1
p

ku�k
2(p�1)

p
2

that gives (3.3).
Concerning estimate (3.6), by Hölder’s inequality with exponent 2p ,

2
2�p , us-

ing (3.9) and (3.10), we have

Z s

0
t
p+2
p krutk2p dt =

Z s

0
t
2�p
p t2

✓Z

E
|ru|

p(p�2)
2 |rut |p|ru|

p(2�p)
2 dx

◆ 2
p
dt


Z s

0
t2

✓Z

E
|ru|p�2|rut |2 dx

◆
t
2�p
p

✓Z

E
|ru|p dx

◆ 2�p
p
dt

=
Z s

0
t2

�
�
�|ru|

p�2
2 rut

�
�
�
2

2

�
tkrukpp

� 2�p
p dt  cku�k

2
2ku�k

2(2�p)
p

2

= cku�k
4
p
2 .

Theorem 3.2. The same results of Theorem 3.1 hold true for an exterior C2 do-
main.

Proof. To prove the thesis for an exterior domain we define a sequence of bounded
sets invading �. For any k 2 N, k > R0, let be uk the unique solution of problem
(1.1) on Ek := �\B(0, k) in place of E . First we extend uk to 0 in [0, T ]⇥(�\Ek)
obtaining a function defined in [0, T ]⇥�. We remark that the estimates (3.1)-(3.6)
in Theorem 3.1 do not depend on the measure of the domain, hence we can consider
all the norms computed on � instead of Ek .

Let be k0 the smallest integer greater than R0 and consider the sequence
{uk}k�k0 .

By (3.1), (3.4) and (3.5) we can extract a subsequence (not relabeled) such that

uk
⇤
* u weakly-⇤ in L1(0, T ; L2(�)), (3.11)

uk * u weakly in L p(0, T ; V (�)), (3.12)
uk(t) * u(t) weakly in L2(�) for a.e. t 2 [0, T ]. (3.13)
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Let us fix t 2 (0, T ] and  2 V p,p0
(0, T ;�). By the weak convergences (3.12)

and (3.13) we get at once
Z t

0

D
uk(s), s(s)

E
ds �!

Z t

0
hu(s), s(s)i ds, (3.14)

(uk(t), (t)) �! (u(t), (t)) for a.e. t 2 [0, T ]. (3.15)

By (3.5) we get that there exists a function � 2 L p0
(0, T ; L p0

(�)) such that
�
�ruk

�
�p�2ruk * � weakly in L p

0�
0, T ; L p

0
(�)

�
. (3.16)

We want to prove that � = |ru|p�2ru. Since uk is a solution of problem (1.1), by
Remark 2.3, we can use uk itself as a test function in (2.6) getting
Z T

0

⇣�
�ruk

�
�p�2ruk,ruk

⌘
dt=

Z T

0

⌦
uk, ukt

↵
dt+

�
u�, uk(0)

�
�
�
uk(T ), uk(T )

�

= �
1
2
�
�uk(T )

�
�2
2 +

1
2
ku�k

2
2.

(3.17)

For any fixed R > 0 let us consider the function hR defined in (2.1). If k > 2R, we
can use uhR as a test function in equation (2.6) to get

Z T

0

⇣�
�ruk

�
�p�2ruk,r(uhR)

⌘
dt =

Z T

0

⌦
uk, (uhR)t

↵
dt +

�
�
�u�(hR)

1
2

�
�
�
2

2

�
⇣
uk(T ), u(T )hR

⌘
.

By (3.16), (3.14) and (3.15) we can pass to the limit as k ! 1 in the above identity
to gain
Z T

0
(�,r(uhR)) dt =

Z T

0
hu, (uhR)t i dt +

�
�
�u�(hR)

1
2

�
�
�
2

2
�

�
�
�u(T )h

1
2
R

�
�
�
2

2
. (3.18)

In order to pass to the limit as R ! 1, we will examine each term separately.
Z T

0
(�,r(uhR)) dt =

Z T

0
(�, (ru)hR) dt +

Z T

0
(�, u ⌦ rhR)) dt.

As far as the first term is concerned, by dominated convergence we have
Z T

0
(�, (ru)hR) dt �!

Z T

0
(�,ru) dt.

For the second one, considering that rhR 6= 0 () R  |x |  2R, we have

|u ⌦ rhR|  c
�
�
�
u
R

�
�
�  2c

�
�
�
u
x

�
�
� .
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Since 1 < p < 2, by Hardy inequality (it is not restrictive to suppose that 0 62 �)
we get

ku ⌦ rhRkp  c
�
�
�
u
x

�
�
�
p

 ckrukp < +1 (3.19)

hence
Z T

0
|(�, u ⌦ rhR)| dt

Z T

0
k�kp0 ku ⌦ rhRkp dtc

Z T

0
k�kp0krukp dt < +1.

Once again we can apply the dominated convergence theorem to obtain

Z T

0
(�, u ⌦ rhR) dt �! 0.

Now we remark that

uhR �! u strongly in L p(0, T ; V (�)). (3.20)

Indeed
ru � r(uhR) = ru(1� hR) � u ⌦ rhR

and, since u 2 L p(0, T ; V (�)), by the absolute continuity of the Lebesgue integral
with respect to the domain of integration and (3.19), we get the claim. This allows
us to pass to the limit in the term containing the time derivative

Z T

0
hu, (uhR)t i dt =

Z T

0
huhR, ut i dt �!

Z T

0
hu, ut i dt

by (3.20) and since ut 2 L p0
(0, T ; V (�)0). In the end, by dominated convergence,

we also get

�
�
�u�(hR)

1
2

�
�
�
2

2
�

�
�
�u(T )h

1
2
R

�
�
�
2

2
�! ku�k

2
2 � ku(T )k22.

Collecting the above results and passing to the limit in (3.18), we have

Z T

0
(�,ru) dt=

Z T

0
hu, ut i dt+ku�k

2
2�ku(T )k22 =

1
2
ku�k

2
2 �

1
2
ku(T )k22. (3.21)

By monotonicity we have

0 
Z T

0

⇣�
�ruk

�
�p�2ruk � |r |p�2r ,ruk � r 

⌘
dt.
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Hence, using (3.17), (3.16), (3.12) and the lower semicontinuity of the norm in the
weak limit, we have

0  lim sup
k

�
1
2
�
�uk(T )

�
�2
2 +

1
2
ku�k

2
2 �

Z T

0

���ruk
�
�p�2ruk,r 

�
dt

�
Z T

0

�
|r |p�2r ,ruk � r 

�
dt

 �
1
2
ku(T )k22 +

1
2
ku�k

2
2 �

Z T

0
(�,r ) dt �

Z T

0

�
|r |p�2r ,ru �r 

�
dt.

Substituting (3.21) in the above inequality we get

0 
Z T

0

⇣
� � |r |p�2r ,ru � r 

⌘
dt.

If we choose  = u + �� for generic � 2 V p,p0
(0, T ;�) and � 6= 0, we divide by

� and finally we let � to 0, by the dominated convergence theorem we get that

� = |ru|p�2ru.

Passing to the limit on k in the definition of solution written for uk , we get that
u is a solution in �. The estimates (3.2)-(3.6) for u on � follow by the lower
semicontinuity of the norms in the weak limits.

4. Lq estimates for parabolic auxiliary problems

In this section we deduce some estimates on the Lq norm for the solution of some
parabolic systems with smooth coefficients. The aim is to use them in the next
section for the evaluation in Lq of the time derivative of the solution of problem
(1.1).

Let v(t, x) be a function such that

sup
s2[0,t]

sk
⇣
µ + |rv(s)|2

⌘ 1
2
kpp =: M(µ, v) < +1. (4.1)

In order to apply known regularity results we introduce a time-space Friedrichs’
mollifier J⌘ and we define the following smooth tensor

(B⌘(t; s, x))i↵ j� :=
�i j �↵�

(µ + |J⌘(rv)(t � s, x)|2)
2�p
2

� (2� p)
(J⌘(rv) ⌦ J⌘(rv))(t � s, x)

(µ + |J⌘(rv)(t � s, x)|2)
4�p
2

.
(4.2)
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For any fixed � 2 (0, t] and ⌫ > 0 let us consider the parabolic problem

 ⌧ (⌧ )�⌫1 (⌧ )�r ·
�
B⌘(t; � � ⌧, x)r (⌧ )

�
= 0, in (0, � ) ⇥ E,

 (⌧, x) = 0, on (0, � ) ⇥ @E, (4.3)
 (0, x) =  �(x), on {0} ⇥ E .

Lemma 4.1. Let E be a bounded C2 domain of Rn . For any  � 2 C1
0 (E) let  

be the unique solution of (4.3). Then, for any p 2 (1, 2) and q 2
⇥
2, 2+ 4(p�1)

(2�p)2
⇤
it

results

k (⌧ )kq  k �kq , 8⌧ 2 [0, � ].

Proof. The existence and uniqueness of the solution of (4.3) follows, for instance,
by [20, Theorem IV.9.1] which also gives 2 Lq(0, � ;W 2,q(E)\W 1,2

0 (E)),  ⌧ 2
Lq(0, � ; Lq(E)). For brevity of notation we set

a⌘(µ, v) :=
⇣
µ + |J⌘(rv)|2

⌘ (p�2)
2

.

Since q � 2 we can multiply the system by | |q�2 and integrate over E obtaining

1
q
d
dt

k kqq + ⌫

Z

E
| |q�2|r |2 dx + ⌫(q � 2)

Z

E
| |q�4|r ·  |2 dx

+
Z

E
a⌘(µ, v(� � ⌧ ))|r |2| |q�2 dx

+ (q � 2)
Z

E
a⌘(µ, v(� � ⌧ ))| |q�4|r ·  |2 dx

= (p � 2)
Z

E

| |q�2|J⌘(rv(� � ⌧ )) · r |2

�
µ + |J⌘(rv(� � ⌧ ))|2

� 4�p
2

dx

+(p�2)(q�2)
Z

E

| |q�4(J⌘(rv(��⌧ )·r )(J⌘(rv(��⌧ ) ·  )(r ·  )
�
µ + |J⌘(rv(� � ⌧ ))|2

� 4�p
2

dx

=: (p � 2)I1 + (p � 2)(q � 2)I2.

We observe that

|I1| 
Z

E
a⌘(µ, v(� � ⌧ ))| |q�2|r |2 dx =: J1.
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By Cauchy-Schwarz’s and Hölder’s inequalities it results

|I2|
Z

E

⇣
µ+|J⌘(rv(��⌧ ))|2

⌘ p�4
2

| |q�4|J⌘(rv(� � ⌧ ))|2|r || ||r ·  | dx



✓Z

E
a⌘(µ, v(� � ⌧ ))| |q�4|r |2| |2 dx

◆ 1
2

·

✓Z

E
a⌘(µ, v(� � ⌧ ))| |q�4|r ·  |2 dx

◆ 1
2

=: J
1
2
1 J

1
2
2

hence

1
q
d
dt

k kqq + (p � 1)J1 + (q � 2)J2  (2� p)(q � 2)J
1
2
1 J

1
2
2


1
2"
J1 +

"

2
(2� p)2(q � 2)2 J2.

(4.4)

We want to choose " such that

1
2"

 p � 1,
"

2
(2� p)2(q � 2)2  q � 2 (4.5)

and this is always possible if

1
2(p � 1)


2

(q � 2)(2� p)2
.

An easy computation shows that the above inequality is verified for any p 2 (1, 2)
if

q 2


2, 2+

4(p � 1)
(2� p)2

�
.

Choosing an " satisfying (4.5) and substituting it in (4.4) we get

1
q
d
dt

k kqq  0.

For any fixed t 2 (0, T ), ⌫ > 0 and '� 2 C1
0 (E) we consider the following

problem, adjoint of (4.3)

's(s) � ⌫1'(s) � r · (B⌘(t; s, x)r'(s)) = 0 , in (0, t) ⇥ E,

'(s, x) = 0 , on (0, t) ⇥ @E,

'(0, x) = '�(x), on {0} ⇥ E .

(4.6)
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Lemma 4.2. Let E be a bounded C2 domain of Rn . For any '� 2 C1
0 (E) let ' be

the unique solution of (4.6). Then for any p 2 (1, 2) and r 2
⇥
2� 4(p�1)

p2 , 2
⇤

k'(s)kr  k'�kr , 8s 2 [0, t].

Proof. For any arbitrary function  � 2 C1
0 (E) and � 2 [0, t], let  be the solution

of problem (4.3). The system (4.6) has an unique solution, by [20, Theorem IV.9.1],
and the solution ' is also regular enough to multiply (4.6) by  (� � s). Integrating
the product by parts on [0, � ] ⇥� gives

('(� ), �) � ('�, (� )) +
Z �

0
('(s), s(� � s)) ds � ⌫

Z �

0
('(s),1 (� � s)) ds

�
Z �

0

�
r ·

�
B⌘(t; s)r (� � s)

�
,'(s)

�
ds = 0.

Since  is a solution of (4.3), substituting in the integrals � � s = ⌧ , we get

('(� ), �) = ('�, (� )) . (4.7)

Since r 2
⇥ 2p2+4
p2+4p , 2

⇤
we have that r 0 2

⇥
2, 2+ 4(p�1)

(2�p)2
⇤
and we can apply Lemma 4.1

to get
|('�, (� ))|  k'�krk (� )kr 0  k'�krk �kr 0

for any  � 2 C1
0 (E). By a density argument and (4.7) we get the thesis.

Lemma 4.3. Let E be a bounded C2 domain of Rn , p > 2n
n+2 , r 2

⇥
2� 4(p�1)

p2 , 2
⇤

and '� 2 C1
0 (E). If ' is the solution of problem (4.6) we have

k'(s)k2  cM(µ, v)
(2�p)�
2 k'�kr

⇣
t
1
p � (t � s)

1
p
⌘�p�

, 8s 2 (0, t],

with M(v, ⌘) defined in (4.1) and

� = � (r) := n(2�r)
r(2p�2n+np) . (4.8)

Proof. We refer to [11, Lemma 2.4] remarking that even if the range for r is differ-
ent, the proof remains unchanged.

5. Estimates for the time derivative

We begin the section gathering some results taken from [11, Section 3] concerning
the following non-singular (µ > 0, ⌫ > 0) parabolic system on the bounded C2
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domain E

vt � ⌫1v � r ·

 
⇣
µ + |(rv)|2

⌘ (p�2)
2

rv

!

= 0 , in (0, T ) ⇥ E,

v(t, x) = 0 , on (0, T ) ⇥ @E,

v(0, x) = v�(x), on {0} ⇥ E .

(5.1)

We have the following results, for which we refer to [11, Propositions 3.1 and 3.2]

Proposition 5.1. Let ⌫ > 0, µ > 0 and p 2 (1, 2). Assume that v� belongs to
C1
0 (E). Then there exists a unique weak solution v of system (5.1) such that

v 2 C
�
0, T ; L2(E)

�
\ L2

�
0, T ;W 1,2

0 (E)
�
,

vt 2 L1�
0, T ; L2(E)

�
\ L2

�
0, T ;W 1,2(E)

�
,

lim
t!0+

kv(t) � v�k2 = 0 .

Moreover
�
�
�t

1
p rv

�
�
�
L1(0,T ;L p(E))

 c B(µ, v�)
1
p , (5.2)

kt vtkL1(0,T ;L2(E))  cB(µ, v�)
1
2 (5.3)

where
B(µ,w) := kwk22 + µ

p
2 T |E | . (5.4)

With this tool at our disposal we can state the following crucial result:

Proposition 5.2. Let p > 2n
n+2 , q 2

⇥
2, 2+ 4(p�1)

(2�p)2
⇤
and� a bounded or exteriorC2

domain of Rn . Let u be the unique solution of (1.1) corresponding to u� 2 L2(�).
Then t1+� ut 2 L1(0, T ; Lq(�)), with � = � (q 0) given by (4.8). Moreover the
following estimate holds

kut (t)kq 
c
t 1+�

ku�k
(2�p)�+1
2 , a.e in (0, T ). (5.5)

Proof. The proof follows substantially the one of [11, Proposition 5.1]. For the
reader’s convenience we reproduce here only the main lines to make clear the fun-
damental role played by the adjoint problem (4.6). First we consider a bounded
C2 domain E and a solution v of the system (5.1). We have to keep in mind that
v depends on the parameters ⌫, µ an also another one, say m, used in the approx-
imation of the initial data in L2(E) by means of smooth functions. We regularize
(5.1)1 in time, introducing another parameter ⇢ arising from the mollifier, and we
differentiate with respect to t . Finally we multiply the result by '(t � ⌧ ) where '
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is a solution of (4.6) hence it depends on ⌘. Omitting the indexes ⌫, µ,m, ⇢, ⌘ and
performing only the formal computations we get

 

v⌧⌧ (⌧ ) � ⌫1v⌧ (⌧ ) � (p � 2)r ·
⇣
µ + |rv(⌧ )|2

⌘ p�4
2

(rv(⌧ ) ⌦ rv(⌧ )) · rv⌧ (⌧ )

+
⇣
µ + |rv(⌧ )|2

⌘ p�2
2

rv⌧ (⌧ )

!

· '(t � ⌧ ) = 0.

An integration of the above identity on E and between t
2 and t with respect to ⌧ ,

provides

(vt (t),'�) �

✓
vt

✓
t
2

◆
,'

✓
t
2

◆◆

= �
Z t

t
2

(v⌧ (⌧ ),'⌧ (t � ⌧ )) d⌧ � ⌫

Z t

t
2

(rv⌧ (⌧ ),r'(t � ⌧ )) d⌧

� (p � 2)
Z t

t
2

 
⇣
µ + |rv(⌧ )|2

⌘ p�4
2

(rv(⌧ ) ⌦ rv(⌧ )) · rv⌧ (⌧ ),r'(t � ⌧ )

!

d⌧

�
Z t

t
2

 
⇣
µ + |rv(⌧ )|2

⌘ p�2
2

rv⌧ (⌧ ),r'(t � ⌧ )

!

d⌧

=
Z t

t
2

(v⌧ (⌧ ),�'⌧ (t � ⌧ ) + ⌫1'(t � ⌧ )) d⌧

� (p � 2)
Z t

t
2

0

@rv(⌧ ) ⌦ rv(⌧ ) · r'(t � ⌧ )
�
µ + |rv(⌧ )|2

� 4�p
2

,rv⌧ (⌧ )

1

A d⌧

�
Z t

t
2

0

@ r'(t � ⌧ )
�
µ + |rv(⌧ )|2

� 2�p
2

,rv⌧ (⌧ )

1

A d⌧

=
Z t

t
2

(v⌧ (⌧ ),�'⌧ (t � ⌧ ) + ⌫1'(t � ⌧ )) d⌧

+
Z t

t
2

0

@r ·

0

@rv(⌧ ) ⌦ rv(⌧ ) · r'(t � ⌧ )
�
µ + |rv(⌧ )|2

� 4�p
2

+
r'(t � ⌧ )

�
µ + |rv(⌧ )|2

� 2�p
2

1

A, v⌧ (⌧ )

1

A d⌧.

At this point we have to remark that if we replace rv with J⌘(rv) in the denom-
inators of the last integral, we obtain that the right-hand side is zero, since ' is a
solution of (4.6). This can be made rigorous by a careful passage to the limit as
⌘ goes to 0. The details are completely described in the proof of [11, Proposition
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5.1]. In the end, by (5.3) and Lemma 4.3, we get

(vt (t),'�) =

✓
vt

✓
t
2

◆
,'

✓
t
2

◆◆


�
�
�
�vt

✓
t
2

◆��
�
�
2

�
�
�
�'

✓
t
2

◆��
�
�
2


cB(µ, v�)

1
2

t
M(µ, v)

(2�p)�
2 k'�kq 0

t�
.

Using the definition of M(µ, v) given in (4.1) and (5.2), we get

M(µ, v)  c
⇣
µ

p
2 T |E | + B(µ, v�)

⌘
 cB(µ, v�)

hence

(vt (t),'�) 
cB(µ, v�)

(2�p)�
2

t1+�
k'�kq 0

for any '� 2 Lq 0
(E). It follows that vt (t) 2 Lq(E) and kvt (t)kq  cB(µ,v�)

(2�p)�
2

t1+� .
To conclude the proof we need to pass to the limit in all the parameters. The process
is quite involved and it is described in [11, Proposition 3.2 and Theorem 1.1]. The
result is the convergence of v to the solution u of (1.1) likewise the smooth initial
data v� approximate u� in L2(E). Moreover we get that B(µ, v�) ! cku�k22 and
the thesis for a bounded domain follows.

To extend the result to an exterior domain� we use the same sequence {Ek} of
bounded sets invading � as in the proof of Theorem 3.2. In estimate (5.5) the norm
of u� is evaluated on Ek but it can be increased uniformly with respect to k to the
norm on the whole �. Hence we have that t1+� u(t) 2 L1(0, T ; Lq(�)) and (5.5)
holds true also in �.

6. L2 estimates for D2u

In this section we prove L1(", T ; L2(�)) estimates for the solution of problem
(1.1). Despite the fact that our main interest goes towards exterior domains, we
consider also the case of a bounded domain. Indeed, in this case, we improve [11,
Theorem 1.2] removing some constraints on p and moving down its lower bound.

Proof of Theorem 1.1. Let us fix t > 0 and consider the system (1.1) as an elliptic
problem in the variable x . By Proposition 5.2 we get that ut (t) 2 Lq(�) for any
q 2

⇥
2, 2 + 4(p�1)

(2�p)2
⇤
. We want to apply Theorem 2.4 using ut (t) as the force term.

To this aim, we show that ut belongs to Lr̂ (�) with r̂ defined in (2.7). We remark
that the number 2 + 4(p�1)

(2�p)2 is an increasing quantity with respect to p 2 (1, 2). In
our hypotheses p 2

� 2n
n+2 , 2

�
, hence we have that, for any p in this interval,

2+
4(p � 1)
(2� p)2

>
n2 + 4
4

.
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We need to compare the two quantities n2+4
4 and r̂ . Consider first the case n � 3.

By a straightforward computation it is easy to check that

n2 + 4
4

>
2n

n(p � 1) + 2(2� p)
() p >

n3 � 4n2 + 12n � 16
(n2 + 4)(n � 2)

and

n3 � 4n2 + 12n � 16
(n2 + 4)(n � 2)

<
2n
n + 2

() n4 � 2n3 + 4n2 � 24n + 32 > 0.

But

n4 � 2n3 + 4n2 � 24n + 32 = (n � 2)2(n2 + 2n + 8) > 0 8n 2 N, n � 3.

Hence, for any p 2
� 2n
n+2 , 2

�
we have that r̂ 2

⇥
2, 2+ 4(p�1)

(2�p)2
⇤
.

If n=2 it is enough to observe that the intersection
�
2, 2

p�1
�
\
⇥
2, 2+ 4(p�1)

(2�p)2
⇤

is not empty.
In both cases, by Proposition 5.2, ut (t) 2 Lr̂ (�) and, by Theorem 3.2, ut (t) 2

W�1,p0
(�). We can apply Theorem 2.4 with f (x) = ut (t, x) obtaining that u(t) 2

W 2,2(�) and, by (3.3), (5.5)

�
�D2u(t)

�
�
2c

✓
kut (t)k

1
p�1
r̂ +kut (t)k

1
p�1
�1,p0

◆


c

t
1+�
p�1

ku�k
(2�p)�+1

p�1
2 +

c

t
1
p
ku�k

2
p
2 (6.1)

with � = � (r̂ 0) = (n�2)(2�p)
p(n+2)�2n if n � 3 (for the notation see (4.8) and (2.7)) or

� = � (r 0) = r�2
r(p�2) for any r 2

�
2, 2

p�1
�
\
⇥
2, 2+ 4(p�1)

(2�p)2
⇤
if n = 2.

7. Higher integrability of D2u

In this section we increase the integrability of D2u to a power greater than 2. The
greatest exponent of integrability depends on p and increases as p approaches 2
from below. In a fashion that is common to this kind of results, see [3, 4, 10–12],
the range for p is constrained to be close to 2 in dependence of the summability q
required for the second derivatives. For a bounded domain, the following theorem
improves the previous result obtained in [11, Theorem 1.2] extending the range for
q and removing some constraints on p.

Proof of Theorem 1.2. We set g(p) = 2 + 4(p�1)
(2�p)2 and we remark that g is an in-

creasing function on the interval (1, 2). Hence

g(p) � g
✓
2n
n + 2

◆
= 1+

n2

4
8p 2

✓
2n
n + 2

, 2
◆

.
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Since 1+ n2
4 > n for any n � 3 we have that g(p) > n for any p, n in the hypotheses

of our theorem, hence the interval for q goes beyond n (in the case n = 2 the whole
interval is trivially beyond n). Since the behavior is different for q over, behind or
equal to n, we will distinguish three cases.

Let us consider first the case q 2
�
n, 2+ 4(p�1)

(2�p)2
⇤
. By Proposition 5.2 we have

that ut 2 L1(", T ; Lq(E)). Since p > max{�(2),�(q)} and q > n we can use ut
as the force term in Theorem 2.5 to get that u 2 L1(", T ;W 2,q(E)).

If q = n, choose any p > inf
q>n

�
2 � 1

C(q)

 
. There exists q1 > n such that

p > 2� 1
C(q1)

and, by Proposition 5.2, ut 2 L1(", T ; Lq1(E)). Again, by Theorem
2.5, u 2 L1(", T ;W 2,q1(E)) ⇢ L1(", T ;W 2,n(E)).

If q 2 [2, n), n � 3 then let q = qn
n(p�1)+q(2�p) . We remark that, since

2  q < n, we have

q >
2n

n(p � 1) + n(2� p)
= 2, q <

qn
q(p � 1) + q(2� p)

= n < g(p).

Applying Proposition 5.2 we get that ut 2 L1(", T ; Lq(E)). Following the nota-
tion of Theorem 2.5 we have that q̂ = q and q > 2n

n(p�1)+2(2�p) . Since p > �(q)

we can apply the quoted theorem achieving that u 2 L1(", T ;W 2,q(E)).

Proof of Theorem 1.3. Let us fix q 2
⇥
2, 2+ 4(p�1)

(2�p)2
⇤
and " > 0. By Theorem 1.1 we

have that ut 2 L1(", T ; Lq(�)) and by Theorem 3.2 ut 2 L1(", T ; (bW 1,p
0 (�))0).

As in the proof of Theorem 1.2 we consider different ranges for q.
If q > n then, by Theorem 2.6 there exists p(q) such that for any p 2

(p(q), 2), D2u 2 L1(", T ; Lq(�)).
If 2  q  n we set p̂ = inf

�
p(q) : n < q  2 + 4(p�1)

(2�p)2
 
. For any p > p̂

there exists q1 > n such that p > p(q1). Using the result just achieved we get that
D2u 2 L1(", T ; Lq1(�)). By Theorem 1.1 D2u 2 L1(", T ; L2(�)) and we get
the thesis by interpolation.

The above result is at first sight a little bit confusing about a sort of cross refer-
ence between p and q. Which one depends on the other, or there is simply a mutual
dependence between them? For instance, if we choose p > 2n

n+2 , which is the best
q we can reach? We point out that, generally speaking, for an exterior domain, the
highest does not necessarily means the best. Fortunately, for our solution we always
have D2u 2 L1(", T ; L2(�)) hence we can interpolate and the best q is actually
the highest we can achieve. Hence, for fixed p > 2n

n+2 we can expect to find q
which is at best 2 + 4(p�1)

(2�p)2 . But now we have to take one step back and check if

p > p(q). In this framework, the best q is sup{q  2 + 4(p�1)
(2�p)2 : p(q) < p}. As

a result, the statement of the theorem is not very charming, especially because we
are not able to prove (although it sounds very reasonable) that the quantity p(q) is
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increasing with respect to q. Hence we choose to give the result leaving someway
implicit the relation between p and q. On the other side, if we ask which is the
lowest p that is allowed to get D2u in Lq there is a very clean answer which is
stated in the following

Corollary 7.1. Let � be an exterior C2 domain of Rn and q > 2. If

p > max
⇢
2n
n + 2

,
2(q � 1�

p
q � 1)

q � 2
, p(q)

�

with p(q) as in Theorem 1.3, then D2u 2 L1(", T ; Lq(�)), where u is the unique
solution of (1.1).

Proof. The result follows straightforward solving the inequality q  2 + 4(p�1)
(2�p)2

with respect to p. We only remark that the condition q > 2 in the statement is
not necessary, since for q = 2 the quantity 2(q�1�

p
q�1)

q�2 tends to 1, giving a trivial
constraint for p. This is perfectly in line with the result of Theorem 1.3 which
holds true also for q = 2. Nevertheless we want to notice that the case q = 2
is covered also by Theorem 1.1 which is sharper, since allows the whole range
p 2

⇣
2n
n+2 , 2

⌘
.

8. Hölder continuity of ru

In this section we investigate the Hölder continuity of ru, up to the boundary of
the exterior domain �. We start introducing the relevant quantity for evolution
problems that is the parabolic Hölder seminorm defined by

[w]� = sup
t
sup
x 6=y

|w(t, x) � w(t, y)|
|x � y|�

+ sup
x
sup
t 6=s

|w(t, x) � w(s, x)|

|t � s|
�
2

. (8.1)

We rely on the following result on Bochner spaces (see [29, Theorem 2.1] and [11,
Lemma 2.7]).

Lemma 8.1. Let � be a bounded or exterior C2 domain of Rn , " > 0 and q > n.
There exists a constant C , such that if u 2 L1(", T ;W 2,q(�) \ W 1,q

0 (�)) and
ut 2 L1(", T ; Lq(�)) then

[ru]�  C
✓
sup
t

⇣
kut (t)kq +

�
�D2u(t)

�
�
q

⌘
+ sup

t
ku(t)kq

◆

with � = 1� n
q .

Proof. The case � bounded is considered in [11, Lemma 2.7]. If � is exterior it
is enough to remark that [29, Theorem 2.1] is based on an extension argument and
does not make use of the boundedness of �.
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Let u be the solution of problem (1.1). We choose q > n and we consider
p satisfying the hypotheses of Corollary 7.1. By the Sobolev-Nirenberg-Gagliardo
inequality we have

ku(t)kq  c
�
�D2u(t)

�
�✓
qku(t)k

1�✓
2 (8.2)

with ✓ = (q�2)n
(q�2)n+4q . Hence, by Corollary 7.1 and (3.1), u 2 L1(", T ;W 2,q(�)).

Since p > 2(q�1�
p
q�1)

q�2 we have that q < 2 + 4(p�1)
(2�p)2 hence, by Proposition 5.2,

ut 2 L1(", T ; Lq(�)). We are now in the position to apply Lemma 8.1 and obtain
the Hölder continuity of ru. Gathering together the estimates for kutkq , kD2ukq
and the interpolation estimate (8.2) we can formulate the following result. In a fash-
ion similar to Corollary 7.1, we write the statement choosing the Hölder exponent
� and finding the correct range for p.

Theorem 8.2. Let � be an exterior C2 domain of Rn , " > 0 and � 2 (0, 1). If

p > max
⇢
2n
n + 2

,
2(n + �� 1�

p
(1� �)(n + �� 1)

n + 2�� 2
, p

✓
n

1� �

◆�

with p(·) as in Theorem 1.3, and u is the unique solution of problem (1.1), then ru
is Hölder continuous in [", T ] ⇥ � and its parabolic seminorm (8.1) is evaluated
by

[ru]� 
c
"�

ku�k
↵
2

where

✓=
n�2+2�
n+2+2�

, ↵=max
⇢
(2� p)�+1,

2
p
, (2� p)� ✓ + 1

�
, �=max{1+ � , p0}

and � = �
� n
n�1+�

�
(see (4.8)).

9. Existence with data in Ls(�)

In this section we investigate the existence of a solution of problem (1.1) when the
initial data are in Ls(�) with 1  s < 2. To this purpose we need to adapt the
definition of solution to the new framework in the following way
Definition 9.1. Let � be a bounded or exterior domain with boundary of class C2
and u� 2 Ls(�), 1  s < 2. A field u : (0, T ) ⇥ � ! RN is said a solution of
system (1.1) if

u 2 L1(0, T ; Ls(�)) \ L
ps
2

✓
0, T ; bW 1, ps2

0 (�)

◆
,

Z T

0

h
(u, t )�

⇣
|ru|p�2 ru,r 

⌘i
dt=�(u�, (0)), 8 2C1

0 ([0, T )⇥�)

(9.1)
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and
lim
t!0+

ku(t) � u�ks = 0 .

Before we state the main theorem of this section, we need to define a number which
will be crucial for the existence of the solution. Let be

sex =

8
>><

>>:

n
✓
2
p

� 1
◆

if
2n
n + 2

< p <
2n
n + 1

1 if
2n
n + 1

 p < 2.

Theorem 9.2. Let� be a bounded or exterior domain of classC2 and p2
� 2n
n+2 , 2

�
.

If u� 2 Ls(�) with s 2 (sex, 2), then there exists a solution u of problem (1.1) in
the sense of Definition 9.1. Moreover we have that, for any " > 0 the estimates
(3.1)-(3.6) hold true in the interval t 2 [", T ] assuming u(") as initial data in place
of u� and, for suitable � ,↵ > 0

ku(t)k2  c
ku�k↵s
t�

8t > 0. (9.2)

Proof. Let be� an exterior domain and, for any k 2 N, Ek = �\ B(0, k). We take
k large enough to have (Rn \ �) ⇢ B(0, k). If � is a bounded domain we simply
take Ek = � for any k. We can find a sequence {uk�} ⇢ C1

0 (Ek) converging to u�

in Ls(�). Since uk� 2 L2(Ek), by Theorem 3.1, there exists a unique solution of
problem (1.1) in (0, T ) ⇥ Ek , corresponding to the initial data uk�, that we denote
by uk . Following Remark 2.3 we fix � > 0 and we use (� + |uk |2)

s�2
2 uk as a test

function in equation (2.6). Integrating by parts we get
Z t

0

⌧
ukt ,

⇣
�+

�
�uk

�
�2
⌘s�2
2 uk

�
d⌧+

Z t

0

Z

Ek

�
�ruk

�
�p�2ruk · r

✓⇣
�+

�
�uk

�
�2
⌘s�2

2 uk
◆
dx d⌧=0

hence

1
s

�
�
�
�
⇣
� +

�
�uk(t)

�
�2
⌘ 1
2
�
�
�
�

s

s
+

Z t

0

Z

Ek

�
�ruk

�
�p
⇣
� + |uk |2

⌘ s�2
2 dx d⌧

+ (s � 2)
Z t

0

Z

Ek

�
�ruk

�
�p�2

�
�ruk · uk

�
�2
⇣
� + |uk |2

⌘ s�4
2 dx d⌧

=
1
s

�
�
�
�
⇣
� +

�
�uk�

�
�2
⌘ 1
2
�
�
�
�

s

s
.

Since

�
�ruk

�
�p�2

�
�ruk · uk

�
�2
⇣
� +

�
�uk

�
�2
⌘ s�4

2


�
�ruk

�
�p
⇣
� +

�
�uk

�
�2
⌘ s�2

2
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we have that
�
�
�
�
⇣
� +

�
�uk(t)

�
�2
⌘ 1
2
�
�
�
�

s

s
+ s(s � 1)

Z t

0

Z

Ek

�
�ruk

�
�p
⇣
� +

�
�uk

�
�2
⌘ s�2

2 dx d⌧



�
�
�
�
⇣
� +

�
�uk�

�
�2
⌘ 1
2
�
�
�
�

s

s
.

(9.3)

Since 1 < s < 2 it follows that
�
�
�uk(t)

�
�
�
s

s


�
�
�
⇣
� +

�
�uk(t)

�
�2
⌘ 1
2
�
�
�
s

s
 �

s
2 |Ek | +

�
�uk�

�
�s
s . (9.4)

We can apply the Inequality 2.7 with exponents s
2 and

s
s�2 to obtain

Z

Ek

�
�ruk

�
�p
⇣
� +

�
�uk

�
�2
⌘ s�2

2 dx�

✓Z

Ek

�
�ruk

�
�
ps
2 dx

◆ 2
s
✓Z

Ek

⇣
� +

�
�uk

�
�2
⌘ s
2 dx

◆ s�2
s

.

Hence, by (9.3)

Z

Ek

�
�ruk

�
�
ps
2 dx

✓Z

Ek

�
�ruk

�
�p
⇣
� +

�
�uk

�
�2
⌘ s�2

2 dx
◆ s
2 ✓Z

Ek

⇣
� +

�
�uk

�
�2
⌘ s
2 dx

◆ 2�s
2

c
✓Z

Ek

�
�ruk

�
�p
⇣
� +

�
�uk

�
�2
⌘ s�2

2 dx
◆ s
2
�
�
�
�
⇣
� +

�
�uk�

�
�2
⌘ 1
2
�
�
�
�

s(2�s)
2

s
.

Integrating in time, by means of the Hölder inequality and (9.3), we have
Z t

0

Z

Ek

�
�ruk

�
�
ps
2 dx d⌧ c

�
�
�
�
⇣
� +

�
�uk�

�
�2
⌘ 1
2
�
�
�
�

s

s
t
2�s
2 c

⇣
�
s
2 |Ek | +

�
�uk�

�
�s
s

⌘
t
2�s
2 . (9.5)

Since the sequence {uk�} converges to u� in Ls(�), we have that kuk�kss  cku�kss
and, letting � ! 0, by (9.4) we get

�
�uk(t)

�
�s
s 

�
�uk�

�
�s
s  cku�k

s
s 8k 2 N, 8t 2 [0, T ] (9.6)

and, by (9.5), also
Z t

0

Z

Ek

�
�ruk

�
�
ps
2 dx d⌧  cku�k

s
s, 8t 2 [0, T ]. (9.7)

Extending to 0 the functions uk in� \ Ek and using the uniform bounds (9.6), (9.7)
we can extract a subsequence (not relabeled) and find a function u such that

uk
⇤
* u weakly⇤ in L1 �

0, T ; Ls(�)
�
,

ruk * ru weakly in L
ps
2
⇣
0, T ; L

ps
2 (�)

⌘
.

(9.8)
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By the strong convergence of uk� towards u� in Ls(�) and by the weak convergence
of ruk , letting k ! 1 in (9.6) and in (9.7) we get

kukL1(0,T ;Ls(�))  ku�ks, kruk
L
ps
2 (0,T ;L

ps
2 (�))

 cku�k
2
p
s . (9.9)

Let us define vk = uk(� + |uk |2)
s�2
2p . A straightforward computation shows that

�
�rvk

�
�p 

✓
1+

✓
2� s
2p

◆p◆ �
�ruk

�
�p

⇣
� +

�
�uk

�
�2
⌘ s�2

2
. (9.10)

The Sobolev’s inequality, (9.10) and (9.3) lead to

Z t

0

✓Z

Ek

�
�vk

�
�p⇤

dx
◆ n�p

n
d⌧  c

Z t

0

Z

Ek

�
�rvk

�
�p dx d⌧  c

�
�
�
�
⇣
� +

�
�uk�

�
�2
⌘ 1
2
�
�
�
�

s

s
.

In terms of uk the above inequality becomes

Z t

0

 Z

Ek

�
�uk

�
�
np
n�p

⇣
� +

�
�uk

�
�2
⌘ (s�2)n
2(n�p) dx

! n�p
n

d⌧  c
⇣
�
s
2 |Ek | +

�
�uk�

�
�s
s

⌘
.

Since s < 2, letting � ! 0, by monotone convergence we get

Z t

0

✓Z

Ek

�
�uk

�
�
n(p+s�2)

n�p dx
◆ n�p

n
d⌧  cku�k

s
s .

If we set s1 = n(p+s�2)
n�p we have that uk 2 L

s1(n�p)
n (0, T ; Ls1(Ek)) uniformly in k.

We have that
s1 � s =

p(s + n) � 2n
n � p

and if s > sex then s1 � s > 0 hence, iterating the process, we obtain an increasing
sequence {sm} such that sm+1 � sm > sm � sm�1. In a finite number of steps we
get that uk 2 L

s̄(n�p)
n (0, T ; Ls̄(Ek)) with s̄ � 2. We remark that, if p > 2n

n+1 then
s1 � s > 0 for any s 2 (1, 2) and we have no restrictions on s. On the contrary, if
p  2n

n+2 then s1 � s  0 for any s 2 (1, 2) and the iteration is useless. In the end
we get Z t

0

�
�uk

�
�
s̄(n�p)

n
s̄ d⌧  cku�k

s
s (9.11)

and, since s̄ � 2 we can interpolate L2 between Ls and Ls̄ obtaining

�
�uk

�
�
2 

�
�uk

�
�1�#
s

�
�uk

�
�#
s̄ , # =

(2� s)s̄
2(s̄ � s)

. (9.12)
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It we set a = s̄(n�p)
n# = 2(n�p)(s̄�s)

2�s , by (9.12), (9.6) and (9.11) we get
Z t

0

�
�uk

�
�a
2  sup

⌧

�
�uk(⌧ )

�
�a(1�#)

s

Z t

0

�
�uk

�
�a#
s̄  cku�k

s((n�p)(s̄�2)+2�s)
2�s

s . (9.13)

Now we go back to the equation (2.6), we use uk as a test function and we differen-
tiate with respect to t getting

1
2
d
dt

�
�uk(t)

�
�2
2 +

�
�ruk(t)

�
�p
p = 0 8 t 2 [0, T ]. (9.14)

By the above equality it follows that, if there exists t̄ such that kuk(t̄)k2 = 0 then
kuk(t)k2 = 0 for any t � t̄ hence we can suppose kuk(t)k2 > 0 for any t , otherwise
what follows is trivially true. Multiplying by t we have

0 �
t
2
d
dt

�
�uk(t)

�
�2
2 = t

�
�uk(t)

�
�
2
d
dt

�
�uk(t)

�
�
2

= t
�
�uk(t)

�
�2�a
2

✓�
�uk(t)

�
�a�1
2

d
dt

�
�uk(t)

�
�
2

◆
=

t
a
�
�uk(t)

�
�2�a
2

d
dt

�
�uk(t)

�
�a
2

and, multiplying by akuk(t)ka�22

0 � t
d
dt

�
�uk(t)

�
�a
2 =

d
dt

⇣
t
�
�uk(t)

�
�a
2

⌘
�

�
�uk(t)

�
�a
2.

Integrating the above inequality, by (9.13), we have

�
�uk(t)

�
�
2 

c

t
1
a

ku�k
s((n�p)(s̄�2)+2�s)

2(n�p)(s̄�s)
s 8 t 2 (0, T ] (9.15)

with the constant c not depending on k. Fixing " > 0 and integrating in time the
identity (9.14), by (9.15) we get

Z T

"

Z

Ek

�
�ruk(⌧ )

�
�p dx d⌧ 

c

"
2
a

ku�k
s((n�p)(s̄�2)+2�s)

(n�p)(s̄�s)
s . (9.16)

Estimates (9.15) and (9.16) are enough to say that, up to a subsequence

uk
⇤
* u weakly⇤ in L1�

", T ; L2(�)
�
,

ruk * ru weakly in L p
�
", T ; L p(�)

�
.

(9.17)

We remark that the limit point of above convergences is actually u by the conver-
gences (9.8) and the uniqueness of the weak limit.

By (9.15) and up to further subsequences, we can find2,3 2 L2(�) such that

uk(") *2, uk(T ) *3 weakly in L2(�). (9.18)
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The estimate (9.16) allows to find a function � 2 L p0
(", T ; L p0

(�)) such that, up
to a subsequence

�
�ruk

�
�p�2ruk * � weakly in L p

0�
", T ; L p

0
(�)

�
. (9.19)

Let us choose  2 C1
0 ((", T ) ⇥ �) and k large enough to have  (t, x) = 0 for

any (t, x) 2 (", T ) ⇥ (� \ Ek). Since uk is a solution on Ek we can use  as a test
function in (2.4) (substituting uk in place of u and Ek in place of�). Integrating by
parts we get

Z T

"

�
uk, t

�
dt �

Z T

"

⇣�
�ruk

�
�p�2ruk,r 

⌘
dt = 0.

Passing to the limit as k ! 1, thanks to (9.17) and (9.19), we have
Z T

"
(u, t ) dt �

Z T

"
(�,r ) dt = 0 8 2 C1

0 ((", T ) ⇥�) .

As a consequence of the above identity ut 2 L p0
(", T ; bW 1,p

0 (�)0) and, by density
Z T

"
hut , i dt +

Z T

"
(�,r ) dt = 0 8 2 L p

⇣
", T ; bW 1,p

0 (�)
⌘
. (9.20)

Now we take  2 C1
0 ([", T ] ⇥�) in (2.6) to get

Z T

"

�
uk, t

�
�
⇣�
�ruk

�
�p�2ruk,r 

⌘
dt=

⇣
uk(T ), (T )

⌘
�
⇣
uk("), (")

⌘
. (9.21)

Passing to the limit for k ! 1 and remembering (9.18) we obtain
Z T

"
(u, t ) � (�,r ) dt = (3, (T )) � (2, (")) . (9.22)

Since u 2 C([", T ]; L2(�)) we can integrate (9.20) by parts to gain

�
Z T

"
(u, t ) dt + (u(T ), (T )) � (u("), (")) +

Z T

"
(�,r ) dt = 0. (9.23)

Comparing the identity (9.23) with (9.22), by the arbitrariness of  we get

u(") = 2, u(T ) = 3. (9.24)

Now we choose an arbitrary function  2 C1
0 ([", T ) ⇥�) and we use it in equa-

tion (9.21) obtaining
Z T

"

�
uk, t

�
�

⇣�
�ruk

�
�p�2ruk,r 

⌘
dt = �

⇣
uk("), (")

⌘
. (9.25)
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If we apply Theorem 1.1 to the function uk on
�
"
2 , T

�
⇥ Ek , using uk( "2 ) as initial

data, we get
�
�D2uk(t)

�
�
2 

c
�
t � "

2
��

�
�
�uk

⇣"
2

⌘��
�
↵

2
, 8t 2

⇣"
2
, T

i

for suitable ↵, � > 0. We remark that the constant c does not depend on k. This
is not totally trivial but it is a consequence of Theorem 2.4 and [10, Corollary 3.1]
and it relies on the fact that c depends on the geometric properties of the boundary
of Ek and not on its measure. Now we use (9.15) with t = " to get

�
�D2uk(t)

�
�
2 

c
"�1

ku�k
↵1
s , 8t 2 [", T ] (9.26)

for suitable ↵1, �1 > 0 and c not depending on k. Now let be K ⇢ Rn an open
bounded set such that  (t, x) = 0 for any (t, x) 2 [", T ] ⇥ (Rn \ K ). By estimate
(9.26) we have that uk 2 L1(", T,W 2,2(K )) uniformly in k and, by the Rellich-
Kondrachov theorem,

ruk(t, x) �! ru(t, x) a.e. in [", T ] ⇥ K

up to a subsequence. Since, by (9.16)
Z T

"

Z

K

�
�
�
�
�ruk

�
�p�2ruk

�
�
�
p0

dx dt  c

uniformly in k, we can apply [23, Lemma I.1.3] to obtain that
�
�ruk

�
�p�2ruk * |ru|p�2ru weakly in L p

0�
", T, L p

0
(K )

�
(9.27)

and, by (9.19)

� = |ru|p�2ru for a.e. (t, x) 2 (", T ) ⇥ K .

We remark once again that the function u is defined by the global weak conver-
gences (9.8) hence, by the arbitrariness of  and ", we get that the above identity
holds almost everywhere in (0, T )⇥�. Passing to the limit for k ! 1 in equation
(9.25) with the aid of (9.27) we have

Z T

"
(u, t ) �

⇣
|ru|p�2ru,r 

⌘
dt = � (u("), (")) . (9.28)

Now we complete the existence proof taking a test function  2 C1
0 ([0, T ) ⇥�).

By equation (9.28) we get
Z T

0
(u, t ) �

⇣
|ru|p�2ru,r 

⌘
dt

=
Z "

0
(u, t ) �

⇣
|ru|p�2ru,r 

⌘
dt � (u("), (")) .

(9.29)



942 FRANCESCA CRISPO, CARLO ROMANO GRISANTI AND PAOLO MAREMONTI

Using the continuity of the Lebesgue integral with respect to the domain of inte-
gration we get that the first integral on the right-hand side of the above identity
vanishes as " ! 0. It remains to estimate the term (u("), (")). We have

|(u("), (")) � (u�, (0))| 
�
�
�
⇣
u(") � uk("), (")

⌘��
�

+
�
�
�
⇣
uk("), (")

⌘
�

⇣
uk�, (0)

⌘��
� +

�
�
�
⇣
uk� � u�, (0)

⌘��
�

=: Ak(") + Bk(") + Ck .

(9.30)

By (9.18) and (9.24) we get, for any " > 0

lim
k!1

Ak(") = 0.

Since uk is a solution in Ek , for any k large enough to contain the spatial support of
 , we have (see (2.5))

Bk(") 
Z "

0

�
�
�
�
uk, t

�
�

⇣�
�ruk

�
�p�2ruk,r 

⌘��
� dt


�
�uk

�
�
L1(0,T ;Ls(�))

k tkL1(0,";Ls0 (�))

+
�
�ruk

�
�p�1
L
ps
2 (0,T ;L

ps
2 (�))

kr k
L
⇣ ps
2(p�1)

⌘0

(0,";L
⇣ ps
2(p�1)

⌘0

(�))

 B(")

where, by (9.6) and (9.7), B(") is a function not depending on k and infinitesimal
as " ! 0. Finally,

Ck 
�
�uk� � u�

�
�
sk (0)ks0 �! 0 for k ! 1

by hypothesis on uk�. Passing to the limit for k ! 1 in (9.30) we get

|(u("), (")) � (u�, (0))|  B(") (9.31)

and passing to the limit for " ! 0 in (9.29) we get that u is a solution with initial
data u� 2 Ls(�).

It remains to prove that the initial datum is assumed strongly in Ls(�). Let us
fix ' 2 C1

0 (�), 0 < � < T and set 8(x, t) = '(x)✓(t) with ✓ 2 C1 ([0, T )) and
✓(t) = 1 for any t 2 [0, �]. Using 8 as a test function and reasoning exactly as in
the evaluation of Bk("), by (9.31) we can get

|(u(t) � u�,')|  B(t)

for any t 2 [0, �], hence

lim
t!0+

(u(t) � u�,') = 0 8' 2 C1
0 (�).



PARABOLIC p-LAPLACIAN IN EXTERIOR DOMAINS 943

The density of C1
0 (�) in Ls(�) gives the weak convergence in Ls(�) of u(t) to

u�. By lower semicontinuity we also get

ku�ks  lim inf
t!0+

ku(t)ks .

By (9.9) we have
lim sup
t!0+

ku(t)ks  ku�ks

hence
lim
t!0+

ku(t)ks = ku�ks

and the uniform convexity of Ls(�) gives the strong convergence

lim
t!0+

ku(t) � u�ks = 0.

Finally, the estimate (9.2) follows passing to the limit as k ! 1 in (9.15) using
(9.17) and lower-semicontinuity.

10. Extinction of the solutions

Proof of Theorem 1.4. Let us consider, for any R > 0, the smooth cut-off function
hR defined in (2.1). Let us fix � 2 (sex, s] and consider the solution u solution
obtained in Theorem 9.2 with initial data u� 2 L� (�). Then, for any " > 0 we
have that u solves equation (2.6) in (", T ) ⇥ � hence we can differentiate it with
respect to t obtaining

hut , i = �
⇣
|ru|p�2ru,r 

⌘
8 2 V p,p0

(", T ;�). (10.1)

For any � > 0, and R suitably large, we have that

hRu
�
|u|2 + �

� ��2
2 2 V p,p0

(", T ;�)

hence we can use it as a test function in (10.1) obtaining

�
1
�

d
dt

�
�
�
�h
1/�
R

⇣
|u|2 + �

⌘1/2
�
�
�
�

�

�

=
Z

�
|ru|p�2ru · (rhR ⌦ u)

⇣
|u|2 + �

⌘ ��2
2 dx

+
Z

�
|ru|phR

⇣
|u|2 + �

⌘ ��2
2 dx + (� � 2)

Z

�
|ru|phR|u|2

⇣
|u|2 + �

⌘ ��4
2 dx .

Since �  2, setting ER,2R = {x 2 � : R < |x | < 2R}, we have

1
�

d
dt

�
�
�
�h
1/�
R

⇣
|u|2 + �

⌘1/2
�
�
�
�

�

�

+ (� � 1)
Z

�
|ru|phR

⇣
|u|2 + �

⌘ ��2
2 dx


c
R

Z

ER,2R

|ru|p�1
⇣
|u|2 + �

⌘ ��1
2 dx .

(10.2)
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Applying the Hölder inequality with exponents p�
2(p�1) ,

�
��1 and

� p
2�p on the integral

on the right-hand side of (10.2) we get
Z

ER,2R

|ru|p�1
⇣
|u|2 + �

⌘ ��1
2 dx

 ckrukp�1
L
p�
2 (ER,2R)

�
�
�
�
⇣
|u|2 + �

⌘1/2
�
�
�
�

��1

L� (ER,2R)

R
n(2�p)
� p .

(10.3)

Using Inequality 2.7 with exponents �2 and
�
��2 on the integral on the left-hand side

of (10.2) we have
Z

�
|ru|phR

⇣
|u|2+�

⌘ ��2
2 dx =

Z

�
|ru|ph3��R

⇣⇣
|u2| + �

⌘
h2R

⌘ ��2
2 dx

�

�
�
�
�|ru|h

3��
p

R

�
�
�
�

p

p�
2

�
�
�
�
⇣
|u|2 + �

⌘1/2
hR

�
�
�
�

��2

�

�

�
�
�
�|ru|h

3��
p

R

�
�
�
�

p

p�
2

�
�
�
�
⇣
|u|2 + �

⌘1/2
h1/�R

�
�
�
�

��2

�

.

(10.4)

Now we remark that

d
dt

�
�
�
�
⇣
|u|2 + �

⌘1/2
h1/�R

�
�
�
�

2

�

=
2
�

�
�
�
�
⇣
|u|2 + �

⌘1/2
h1/�R

�
�
�
�

2��

�

d
dt

�
�
�
�
⇣
|u|2 + �

⌘1/2
h1/�R

�
�
�
�

�

�

hence we multiply inequality (10.2) by
�
� �|u|2+�

�1/2 h1/�R
�
�2��
�

obtaining, by (10.3)
and (10.4)

1
2
d
dt

�
�
�
�
⇣
|u|2 + �

⌘1/2
h1/�R

�
�
�
�

2

�

+ (� � 1)
�
�
�
�|ru|h

3��
p

R

�
�
�
�

p

p�
2

 ckrukp�1
L
p�
2 (ER,2R)

�
�
�
�
⇣
|u|2 + �

⌘1/2
�
�
�
�
L� (E2R)

R
n(2�p)
� p �1

.

Let us integrate in time the above inequality to get
�
�
�
�
⇣
|u(t)|2 + �

⌘1/2
h1/�R

�
�
�
�

2

�

+ 2(� � 1)
Z t

"

�
�
�
�|ru|h

3��
p

R

�
�
�
�

p

p�
2

d⌧

 cR
n(2�p)
� p �1

Z t

"
krukp�1

L
p�
2 (ER,2R)

�
�
�
�
⇣
|u|2 + �

⌘1/2
�
�
�
�
L� (E2R)

d⌧

+

�
�
�
�
⇣
|u(")|2 + �

⌘1/2
h1/�R

�
�
�
�

2

�

.
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Keeping count that all the above integrals are evaluated on the bounded set E2R , we
can apply the dominated convergence theorem letting � ! 0 in order to obtain

�
�
�u(t)h1/�R

�
�
�
2

�
+ 2(� � 1)

Z t

"

�
�
�
�|ru|h

3��
p

R

�
�
�
�

p

p�
2

d⌧

 cR
n(2�p)
� p �1

Z t

"
krukp�1

L
p�
2 (ER,2R)

kukL� (E2R) d⌧ +
�
�
�u(")h1/�R

�
�
�
2

�
.

(10.5)

We remark that

n(2� p)
� p

� 1 < 0 () � > n
✓
2
p

� 1
◆

= sex

hence, passing to the limit as R ! 1 in (10.5) we have

ku(t)k2� + 2(� � 1)
Z t

"
krukpp�

2
d⌧  ku(")k2� . (10.6)

Using the strong continuity of u in L� for t = 0 (see Theorem 9.2) we can pass to
the limit for " ! 0 in the above inequality obtaining

ku(t)k2� + 2(� � 1)
Z t

0
krukpp�

2
d⌧  ku�k

2
� . (10.7)

Now we remark that, being the right-hand side of (10.7) bounded, we have

lim
�!sex

ku(t)k� = ku(t)ksex, lim
�!sex

ku�k� = ku�ksex,

lim
�!sex

kru(t)k p�
2

= kru(t)k psex
2

(10.8)

and, by Fatou lemma
Z t

"
krukppsex

2
d⌧  lim inf

�!sex

Z t

"
krukpp�

2
d⌧.

Passing to the lim inf in inequality (10.6) we get

ku(t)k2sex + 2(sex � 1)
Z t

"
krukppsex

2
d⌧  ku(")k2sex . (10.9)

By means of the Sobolev inequality, observing that
� psex
2

�⇤
= sex, we have

ku(t)k2sex + c
Z t

"
ku(⌧ )kpsex d⌧  ku(")k2sex . (10.10)
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Now we set w(t) = ku(t)k2sex obtaining

w(t) + c
Z t

"
w(⌧ )

p
2 d⌧  w("), 8 0  "  t. (10.11)

Let us consider the Cauchy problem
8
><

>:

z0 + cz
p
2 = 0

z(0) = ku�k2sex
z(t) � 0

whose solution is z(t)=
�
ku�k

2�p
sex �c 2�p

2 t
� 2
2�p which exists if t 2

c(2�p)ku�k2sex =:
Tsex .

We want to prove that w(t)  z(t) for any t . By contradiction, let us suppose
that there exists t̄ < Tex and � > 0 such that w(t̄) = z(t̄) and w(t) > z(t) for any
t 2 (t̄, t̄ + �) (we remind that u 2 C([0, T ]; L2(�)). By integration we get

z(t) + c
Z t

t̄
z(⌧ )

p
2 d⌧ = z(t̄). (10.12)

Writing (10.11) with " = t̄ and subtracting from it identity (10.12) we have

w(t) � z(t) + c
Z t

t̄
w(⌧ )

p
2 � z(⌧ )

p
2 d⌧  w(t̄) � z(t̄) = 0, 8t 2 (t̄, t̄ + �)

which is impossible sincew(t) > z(t). This concludes the proof in the case of finite
time extinction.

The uniqueness of the solution if u� 2 Lsex(�) \ L2(�) follows by Theo-
rem 3.2.

Let us now consider the case p= 2n
n+1 and u� 2 L1(�) \ Ls(�) with 1<s2.

We remark that in this case sex = 1 and, as before, we consider the solution u
provided by Theorem 9.2. With this choice of exponents, inequality (10.9) becomes

ku(t)k1  ku�k1. (10.13)

Substituting  with u in equation (10.1) we get

d
dt

ku(t)k22 + 2kru(t)k
2n
n+1
2n
n+1

= 0 8t 2 (", T ). (10.14)

By means of the Gagliardo-Nirenberg inequality we have

ku(t)k2  ckru(t)k
n

n+1
2n
n+1

ku(t)k
1

n+1
1
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hence, by (10.13), we obtain

kru(t)k
2n
n+1
2n
n+1

� c
ku(t)k22

ku(t)k
2

n+1
1

� c
ku(t)k22

ku�k
2

n+1
1

.

Substituting the above estimate in identity (10.14) we get the differential inequality

d
dt

ku(t)k22 +
c

ku�k
2

n+1
1

ku(t)k22  0 8t 2 (", T )

which gives
d
dt
log

⇣
ku(t)k22

⌘
 �

c

ku�k
2

n+1
1

and, integrating on (", t)

ku(t)k22  ku(")k22 e
�c(t�")ku�k

�2/(n+1)
1 .

Thanks to (9.2) we finally get

ku(t)k2 
c
"�

ku�k
↵
s e

�c(t�")ku�k
�1/(n+1)
1 8t > ".

11. The energy relation for linear parabolic systems:
an extension to Lq norm, q 2 (1, 2]

In this last section we prove Theorem 1.5.

Proof. The existence and uniqueness for this problem is a classical result. To ob-
tain the estimate (1.10) we multiply equation (1.3)1 by u(|u|2 + �)

��1
2 hR , with hR

defined in (2.1). We remark that, Theorem 1.4 is stated for p < 2 but the computa-
tions in its proof make perfectly sense also for p = 2, since the existence is known.
Hence we can proceed as in the proof of Theorem 1.4, substituting p = 2 to get
(10.7) that becomes

ku(t)k2� + 2(� � 1)
Z t

0
kruk2� d⌧  ku�k

2
� , 8t > 0.
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[4] H. BEIRÃO DA VEIGA and F. CRISPO, On the global W2,q regularity for nonlinear N-
systems of the p-Laplacian type in n space variables, Nonlinear Anal. 75 (2012), 4346–
4354.

[5] V. BOGELEIN, F. DUZAAR and G. MINGIONE, “The Regularity of General Parabolic Sys-
tems with Degenerate Diffusion”, Mem. Amer. Math. Soc., Vol. 221, 2013.

[6] Y. Z. CHEN and E. DIBENEDETTO, Boundary estimates for solutions of nonlinear degen-
erate parabolic systems, J. Reine Angew. Math. 395 (1989), 102–131.
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[8] H. CHOE,Hölder continuity of solutions of certain degenerate parabolic systems, Nonlinear
Anal. 8 (1992), 235–243.

[9] A. CIANCHI and V. MAZ’YA, Second-order regularity for parabolic p-Laplace problems,
ArXiv:1810.08153 (2018).

[10] F. CRISPO, C. R. GRISANTI and P. MAREMONTI, On the high regularity of solutions to
the p-Laplacian boundary value problem in exterior domains, Ann. Mat. Pura Appl. (4) 195
(2016), 821–834.

[11] F. CRISPO and P. MAREMONTI, Higher regularity of solutions to the singular p-Laplacian
parabolic system, Adv. Differential Equations 18 (2013), 849–894.

[12] F. CRISPO and P. MAREMONTI, On the higher regularity of solutions to the p-Laplacean
system in the subquadratic case, Riv. Mat. Univ. Parma (N.S.) 5 (2014), 39–63.

[13] F. CRISPO and P. MAREMONTI, A high regularity result of solutions to modified p-Stokes
equations, Nonlinear Anal. 118 (2015), 97–129.

[14] E. DIBENEDETTO, “Degenerate Parabolic Equations”, Universitext, New York, Springer-
Verlag. XV, 1993.

[15] E. DIBENEDETTO, On the local behavior of solutions of degenerate parabolic equations
with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), 487–535.

[16] E. DIBENEDETTO and A. FRIEDMAN, Regularity of solutions of nonlinear degenerate
parabolic systems, J. Reine Angew. Math. 349 (1984), 83–128.

[17] E. DIBENEDETTO and A. FRIEDMAN, Hölder estimates for non-linear degenerate para-
bolic systems, J. Reine Angew. Math. 357 (1985), 1–22.

[18] F. DUZAAR, G. MINGIONE and K. STEFFEN, “ Parabolic Systems with Polynomial Growth
and Regularity”, Mem. Amer. Math. Soc., Vol. 214, 2011.

[19] M. A. HERRERO and J. L. VAZQUEZ, Asymptotic behaviour of the solutions of a strongly
nonlinear parabolic problem, Ann. Fac. Sci. Toulouse Math. (5) 3 (1981), 113–127.

[20] O. A. LADYZHENSKAYA, V. A. SOLONNIKOV and N. N. URAL’CEVA, “Linear and Quasi-
linear Equations of Parabolic Type”, American Mathematical Society, Providence R.I.,
1968.

[21] C. LEONE, A. VERDE and G. PISANTE, Higher integrability results for non smooth
parabolic systems: the subquadratic case, Discrete Contin. Dynam. Syst. B 11 (2009),
177–190.

[22] C. LEONE, M. MISAWA and A. VERDE, The regularity for nonlinear parabolic systems of
p-Laplacian type with critical growth, J. Differential Equations 256 (2014), 2807–2845.

[23] J.-L. LIONS, “Quelques méthodes de résolution des problèmes aux limites non linéaires”,
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