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The homotopy sequence for regular singular stratified bundles

GIULIA BATTISTON AND LARS KINDLER

Abstract. A separable proper morphism of varieties with geometrically con-
nected fibers induces a homotopy exact sequence relating the étale fundamen-
tal groups of source, target and fiber. Extending work of dos Santos, we prove
the existence of an analogous homotopy exact sequence for fundamental group
schemes classifying regular singular stratified bundles, under the additional as-
sumption that the morphism in question can be (partially) compactified to a log
smooth morphism.

Mathematics Subject Classification (2010): 14F10 (primary); 14F35, 14L15
(secondary).

1. Introduction

As proved in [7], if f : Y ! X is a separable, proper morphism of schemes
with geometrically connected fibers, and if ȳ is a geometric point of Y , then the
étale fundamental groups of Y , X and of the fiber Y f (ȳ) are related via the exact
sequence

⇡1(Y f (ȳ), ȳ)! ⇡1(Y, ȳ)! ⇡1(X, f (ȳ))! 1. (1.1)

In this article, we establish the existence of an exact sequence analogous to (1.1) for
the affine group schemes classifying regular singular stratified bundles (Section 2)
on X,Y and Y f (ȳ).

Sequences similar to (1.1) have been studied for many different kinds of fun-
damental groups (see for example [3, 4, 8, 19, 24, 25]). This article was inspired by
the following two particular examples.

• In [8], it is proved that if f : Y ! X is a log smooth morphism of fs log schemes
with X connected and log regular, then there is an exact sequence (1.1) with
the log fundamental group (which can be seen as a generalization of the tame
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fundamental group, see [9, Example 4.7, (c)]) instead of the étale fundamental
group;

• In [4], it is proved that if f is smooth, projective and if Y , X are smooth con-
nected varieties over an algebraically closed field k of arbitrary characteristic,
then there is a homotopy exact sequence (1.1) for the affine k-group schemes
which are obtained via Tannaka duality from the category of stratified bundles,
that is from the category ofO-coherent D-modules.

The objects studied in this article morally lie in the intersection of the above ex-
amples, as the notion of regular singularity for an O-coherent D-module naturally
specializes to the notion of a tamely ramified covering (see Section 2 for details and
definitions).

The main result is as follows. If k is an algebraically closed field of positive
characteristic and if X is a smooth k-variety, let us denote by 5rs(X, x) the affine
k-group scheme corresponding to the category of regular singular stratified bundles
on X with respect to the base point x 2 X (k) (see Definition 2.1).

Main Theorem (see Theorem 6.1). Let f : Y ! X be a smooth, projective mor-
phism of smooth, connected k-varieties with geometrically connected fibers, and
assume that X admits a good compactification X (Definition 2.1, (b)). Assume
furthermore that:

(i) There is a good partial compactification Y ✓ Y such that f extends to f̄ :
Y ! X and f̄ (Y ) contains every codimension 1 point of X;

(ii) f̄ is log smooth with respect to the natural fs log structure induced on X and
Y by their divisors at infinity (see Remark 3.1).

Then, for every x 2 X (k) and y 2 Yx (k), there is an exact sequence of k-group
schemes

5rs(Yx , y)
j⇤
�! 5rs(Y, y)

f ⇤
�! 5rs(X, x)! 1.

Moreover, the theorem admits a refinement dealing with the notion of regular sin-
gularity with respect some specific good partial compactification of X , therefore we
obtain information which is not conditional on the existence of a good compacti-
fication of X . We would like to stress that the log smoothness assumption in (ii)
cannot be dropped entirely. Namely (see Remark 6.2), we prove that the example
described in Section 4, which is due to Raynaud, provides a counterexample to the
exactness of the homotopy sequence in general.

The article is organized as follows. In Section 2 we recall the definitions of
stratified bundles and of regular singularity; in Section 3 we recall the notion of log
smoothness and study the pullback of logarithmic differential operators along such
morphisms. In Section 4 we present the example of Raynaud. Section 5 establishes
a criterion for a sequence of affine k-group schemes to be exact, and the proof of
the main theorem is carried out in Section 6.
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2. Regular singular stratified bundles

Let k be an algebraically closed field of characteristic p � 0. We begin by recalling
some basic facts about stratified bundles and regular singularity. For full details we
refer to [5, 16].

Definition 2.1. Let X be a smooth, separated, finite type k-scheme.

(a) A stratified bundle on X is a left-DX/k-module E which is coherent as an
D0X/k = OX -module. Here DX/k is the sheaf of differential operators defined
in [6, Section 16], and DnX/k , n � 0, the subsheaf of operators of order at
most n. The category of stratified bundles with morphisms the morphisms of
left-DX/k-modules, is denoted by Strat(X);

(b) If X is a smooth, separated, finite type k-scheme, such that there is an open
immersion X ,! X , such that X \ X is the support of a strict normal crossings
divisor, then the pair (X, X) is called a good partial compactification of X . If
X is proper, then (X, X) is called a good compactification of X ;

(c) If (X, X) is a good partial compactification of X and if D := (X \ X)red is the
associated strict normal crossings divisor, then an object E 2 Strat(X) is said
to be (X, X)-regular singular if there exists a D X/k(log D)-module E , which
is torsion-free and coherent with respect to the induced OX -module structure,
such that there is an isomorphism

E ⇠= E |X

in Strat(X). The sheaf D X/k(log D) is the sheaf of subrings of D X/k gener-
ated by operators fixing all powers of the ideal of D. For more details see [1,5,
17] or [16, Paragraph 3].
We denote by Stratrs((X, X)) the full subcategory of Strat(X) with objects
the (X, X)-regular singular stratified bundles. If X is connected, then after
fixing a base point x 2 X (k), Stratrs((X, X)) is a neutral Tannakian category
over k [16, Proposition 4.5] and we denote the associated group scheme by
5rs
1 ((X, X), x). If (X, X) is a good compactification, then this group scheme is

independent of the choice of X [5, Theorem 3.13], so we also write5rs
1 (X, x).

Finally, we denote by51(X, x) the associated group scheme to Strat(X).

It is proved in [16, Theorem 5.2] that E in Definition 2.1, (c) can be required to be
a locally free OX -module without changing the definition. In this article, we also
use the following simple criterion.
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Lemma 2.2. Let X be a smooth, separated, finite type k-scheme, let (X, X) a good
partial compactification, let D := (X \ X)red be the associated strict normal cross-
ings divisor, and let j : X ,! X be the associated open immersion. Let E be a
stratified bundle on X , and let E be any locally free, coherent OX -module extend-
ing E . Then the adjunction map E ! j⇤ j⇤E = j⇤E is injective and we consider
E as a sub-OX -module of j⇤E . Recall that j⇤E carries a natural D X/k(log D)-
action. The following statements are equivalent.

(a) E is (X, X)-regular singular;
(b) The D X/k(log D)-submodule of j⇤E generated by E isOX -coherent.

Proof. Only (a)) (b) is nontrivial. We may assume that X = Spec A is affine and
D regular, defined by t 2 A. Assume that E is (X, X)-regular singular. According
[16, Theorem 5.2] there exists a locally free, coherentOX -module E

0 with an action
of D X/k(log D), such that E 0|X ⇠= E as DX/k-modules. Then there exists some
N � 0, such that E ✓ t�N E 0 as coherentOX -submodules of j⇤E . Note that t

�N E 0

is also a D X/k(log D)-submodule of j⇤E . Thus the DX/k(log D)-submodule of
j⇤E generated by E is contained in t�N E

0 and hence coherent, which is what we
wanted to prove.

3. Logarithmic differential operators and logarithmic smoothness

For the details of the theory of logarithmic schemes we refer to [10], but we briefly
recall the facts that we use in this article. More details can also be found in [13, 2.1].

Remark 3.1. The notion of an fs (fine and saturated) log structure can be under-
stood as a generalization of the notion of a good partial compactification (Defini-
tion 2.1). Let k be a field. If X is a smooth, separated, finite type k-scheme and
(X, X) a good partial compactification of X , write MX := M(X,X) for the presheaf
given by

M(X,X)(U) :=
�
g 2 OX (U) | g|U\X 2 OX (X \U)⇥

 
,

forU ✓ X open. This is in fact a sheaf of monoids and the natural map MX ! OX
makes (X ,MX ) into an fs log scheme.

It is easy to write down local charts for this log scheme. IfU = Spec A ✓ X is
an affine open subset such that the boundary divisor is defined by V (t1 · · · . . . · tr ),
where t1, . . . , tr are part of a regular system of parameters for A, then we obtain a
morphism of monoids Nr ! MX (U), (m1, . . . ,mr ) 7!

Qr
i=1 t

mi
i . This defines a

chart (U,MX |U )! SpecZ[Nr ].
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More generally, given a finite set of units u1, . . . , un 2 A⇥, the morphism of
monoids

Zn �Nr ! MX (U), (e1, . . . , en,m1, . . . ,mr ) 7!
nY

i=1
ueii

rY

i=1
tmi
i

also induces a chart.
For a particular example of a chart for a morphism arising from good com-

pactifications, and for what it means for such a morphism to be log smooth, see
Example 3.7.

Definition 3.2. As in the non-log case, if (X,MX ) is an fs (S,MS)-log scheme,
for every n � 0, one defines the sheaf P n

(X,MX )/(S,MS)
of logarithmic principal

parts of order n as the structure sheaf of the n-th order thickening of a certain log
diagonal [10, Remark 5.8]. It is equipped with three ring homomorphisms

OX P n
(X,MX)/(S,MS) OX

d1

d2

∆

such that id = 1 � d1 = 1 � d2.
The sheaf of logarithmic differential operators of order  n is then defined as

Dn(X,MX )/(S,MS)
= HomOX

⇣
P n

(X,MX )/(S,MS)
,OX

⌘
,

and the sheaf of logarithmic differential operators as

D(X,MX )/(S,MS) =
[

n
Dn(X,MX )/(S,MS)

.

Proposition 3.3. If f : (X,MX ) ! (S,MS) is a log smooth morphism of fs
log schemes, then for every n � 0, the sheaf of logarithmic principal parts
P n

(X,MX )/(S,MS)
is locally free of finite rank with respect to both its left and right

OX -structures.
More precisely, let d1, d2 : OX ! P n

(X,MX )/(S,MS)
denote the two struc-

ture maps. Let x̄ be a geometric point of X and let m1, . . . ,mr 2 MX,x̄ be el-
ements such that dlog(m1), . . . , dlog(mr ) freely generate �1

(X,MX )/(S,MS),x̄ . Then
d1(mi ) = d2(mi ) · ui with ui 2 (P n

(X,MX )/(S,MS)
)⇥x̄ . The assignment mi 7! ui

extends to a functorial morphism of monoids µ : MX ! (P n
(X,MX )/(S,MS)

, ·) and
P n

(X,MX )/(S,MS),x̄ is freely generated as either left- or right-OX,x̄ -module by mono-
mials of degree  n in 1� µ(m1), . . . , 1� µ(mr ).

Proof. The proof is completely analogous to the proof of [10, Proposition 6.5],
forgetting about divided powers.
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Proposition 3.4. Let (S,MS) be a fs log scheme and let f : (Y,MY )! (X,MX )
be a log smooth (S,MS)-morphism of fs log schemes which are log smooth over
(S,MS). Then the natural map

D(Y,MY )/(S,MS)! f ⇤D(X,MX )/(S,MS)

is surjective.

Proof. The argument is almost the same as in the non-log case and essentially in
[18]. We recall it for completeness.

By definition we have

Dn(X,MX )/(S,MS)
= HomOX

⇣
P n

(X,MX )/(S,MS)
,OX

⌘
,

where n � 0 and P n
(X,MX )/(S,M) is the sheaf of the n-th log principal parts. As

(X,MX ) is log smooth over (S,MS), the OX -modulesP n
(X,MX )/(S,MS)

are locally
free with respect to both their left- and right-OX -structure. It follows that it is
enough to show that for every n � 0 the canonical morphism

f ⇤P n
(X,MX )/(S,MS)

!P n
(Y,MY )/(S,MS)

(3.1)

is injective. This follows from the fact [10, 3.12] that the natural morphism

f ⇤�1
(X,MX )/(S,MS)

! �1
(Y,MY )/(S,MS)

(3.2)

is injective and that its image is locally a direct summand.
Indeed, étale locally on X , there exist sections m1, . . . ,mr of MX , such

that dlog(m1) . . . , dlog(mr ) freely generate �1
(X,MX )/(S,MS)

. As (3.2) is locally
split, this means that locally there are sections m0r+1, . . . ,m

0
d of MY , such that

�1
(Y,MY )/(S,MS)

is freely generated by

dlog( f ⇤m1), . . . , dlog( f ⇤mr ), dlogm0r+1, . . . , dlogm
0
d .

Finally, by Proposition 3.3 there are natural maps

µX : MX !P n
(X,MX )/(S,MS)

, µY : MY !P n
(Y,MX )/(S,MS)

,

such that

(i) P n
(X,MX )/(S,MS)

is freely generated by the set of monomials of degree  n in

1� µX (m1), . . . , 1� µX (mr );
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(ii) P n
(Y,MY )/(S,MS)

is freely generated by the set of monomials of degree  n in

1� µY ( f ⇤m1), . . . , 1� µY ( f ⇤mr ), 1� µY (m0r+1), . . . , 1� µY
�
m0d

�
;

(iii) f ⇤P n
(X,MX )/(S,MS)

!P n
(Y,MY )/(S,MS)

is given by 1� µX (mi ) 7! 1� µY ( f ⇤mi ).

This shows that (3.1) is injective and that its image locally is a direct summand of
P n

(Y,MY )/(S,MS)
.

Corollary 3.5. Let k be an algebraically closed field, let X,Y be smooth, sepa-
rated, finite type k-schemes with good partial compactifications (X, X), (Y,Y ), and
write DX := (X \ X)red and DY := (Y \ Y )red. Let f : Y ! X be a morphism
which extends to a morphism f̄ : Y ! X with the following properties:

(a) f̄ (Y ) contains all generic points of DX ;
(b) f̄ is log smooth with respect to the log structures on Y and X defined by DY ,

respectively DX .

If E is a stratified bundle on X such that f ⇤E is (Y,Y )-regular singular, then E is
(X, X)-regular singular.

Remark 3.6. We keep the notations from Corollary 3.5. One of the main results
of [16] is that a stratified bundle E on X with finite monodromy is (X, X)-regular
singular if and only if the associated Picard-Vessiot torsor on X (which is just a
Galois covering) is tamely ramified along DX . Thus, for stratified bundles with
finite monodromy, Corollary 3.5 is a special case of [1, Proposition 7.7], as first
lines of the proof of the theorem show that we can assume that f̄ is faithfully
flat.

Proof of Corollary 3.5. Without loss of generality we can assume that X and Y are
connected. Let Y 0 ✓ Y be the largest open subset on which f̄ is flat [6, The-
orem 11.1.1]. Then Y ✓ Y 0, as f is smooth. Moreover, f̄ (Y 0) ✓ X is open,
X ✓ f̄ (Y 0), and according to assumption (a), f̄ (Y 0) contains all generic points of
DX . Indeed, if ⌘ 2 X is a generic point of DX , then OX ,⌘ is a discrete valuation
ring, and thus the dominant morphism f̄ is flat in a neighborhood of f̄ �1(⌘). If
E is a stratified bundle on X , then it is (X, X)-regular singular if and only if it is
(X, f̄ (Y 0))-regular singular ( [16, Proposition 4.3]). Similarly, if f ⇤E is (Y,Y )-
regular singular, then it is also (Y,Y 0)-regular singular. Replacing Y by Y 0, and X
by f̄ (Y 0), we may assume that f̄ is faithfully flat.
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Now the argument is almost identical to the proof of [14, Proposition 6.1],
using Proposition 3.4 instead of the analogous surjectivity statement for the relative
Frobenius morphism. We fix notations as in the following diagram:

Y Y

X X .

i

f f̄

j

Let E be a stratified bundle on X and assume that f ⇤E is regular singular. Fix a
locally free extension E 0 ✓ j⇤E of E to X . Denote by E ✓ j⇤E theD X/k(log DX )-
submodule of j⇤E generated by E 0; in other words E is the image of the evaluation
map

D X/k(log DX )⌦OX
E 0 ! j⇤E . (3.3)

The OX -module E is quasi-coherent, and to show that E is regular singular, it
suffices to show that E is coherent. As f̄ is faithfully flat by assumption, it is
enough to show that f̄ ⇤E is coherent. Note that f̄ ⇤E is the image of the pullback
of (3.3) along f̄ .

Next, write G for the DY/k(log DY )-submodule of i⇤ f ⇤E = f̄ ⇤ j⇤E spanned
by f̄ ⇤E 0. In other words, G is the image of the evaluation map

DY/k(log DY )⌦OY
f̄ ⇤E 0 ! f̄ ⇤ j⇤E . (3.4)

Note that ( f̄ ⇤E 0)|Y ⇠= f ⇤E . Thus, as f ⇤E is (X, X)-regular singular by assump-
tion, Lemma 2.2 shows that G is coherent. We show that G ⇠= f̄ ⇤E .

By the definition of the DY/k(log DY )-action on f̄ ⇤ j⇤E = i⇤ f ⇤E , the maps
(3.3) and (3.4) fit into the following commutative diagram

f̄ ∗
(
DX/k(log DX) ⊗OX

E ′
)

f̄ ∗j∗E

f̄ ∗DX/k(log DX) ⊗ f̄−1OX
f̄ − 1E ′

DY /k(log DY ) ⊗ f̄−1OX
f̄ − 1E ′

DY /k(log DY ) ⊗OY
f̄ ∗E ′ i∗f

∗E,

f̄∗((4))

γ⊗ id

(5)

where
� : DY/k(log DY )! f̄ ⇤D X/k(log DX )
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is the functoriality morphism for logarithmic differential operators. According to
Proposition 3.4, this map is surjective, so the images of f̄ ⇤(3.3) and (3.4) agree,
which shows that G = f̄ ⇤E .

Example 3.7. Here are two fundamental (equicharacteristic) examples for log
smoothness. Let k be a field of characterstic p > 0, R = Spec k[[t]], S = Spec R,
K = k((t)).

(a) Define
X1 := Spec R

h
x1, . . . , xn

i.⇣
xm11 · . . . · xmn

n � t
⌘

with m1, . . . ,mn � 0 and at least one mi prime to p;
(b) Define

X2 := Spec R
h
u±1, x1, . . . , xn

i.⇣
ux`1
1 · . . . · x`n

n � t
⌘

with `1, . . . , `n 2 Z. Note that if there exists one `i which is prime to p,
then we can replace X2 by a Kummer covering to arrive in case (a). Thus we
assume that `1, . . . , `n 2 pZ.

Equip S, X1 and X2 with the logarithmic structure induced by the reduced spe-
cial fiber. Then X1 ! S and X2 ! S are both log smooth. Indeed, S admits
the chart N ! R, m 7! tm , and X1 admits the chart Nn ! H0(X1,OX1),
(a1, . . . , an) 7!

Qn
i=1 x

ai
i . The morphism '1 : N ! Nn, a 7! (am1, . . . , amn)

induces a commutative diagram

X1 Spec Z[Nn]

S Spec Z[N],

ϕ1

which is easily checked to be a chart for the morphism X1! S.
Let 'gp1 : Z ! Zn be the homomorphism of abelian groups associated with

'1. By [10, Theorem 3.5], X1 is log smooth over S if and only if coker('
gp
1 ) has

no p-torsion, and if the induced morphism X1! S ⇥SpecZ[N] SpecZ[Nn] is étale.
These conditions are easily seen to be satisfied if one of the m1, . . . ,mn is coprime
to p = char(k).

For X2, we can choose the chart

Z�Nn ! H0
�
X2,OX2

�
, (a0, a1, . . . , an) 7! ua0

nY

i=1
xaii ,

and '2 : N! Z�Nn , '2(a) = (a, a`1, . . . , a`n), induces a chart for the morphism
X2! S. We see that X2! S is log smooth.
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We conclude the example by verifying Proposition 3.4 in this situation for
X2 = Spec k[[t]][u±1, x]/(ux` � t). The (completed) ring of differential opera-
tors DS/k(log(t)) is isomorphic to

L
m�0 k[[t]]�

(m)
t , where �

(m)
t is the differential

operator such that �(m)
t (tr ) =

� r
m
�
tr (i.e., the characteristic free version of t

m

m!
@m

@tm ).
The functions x and u are a system of coordinates for X2 relative to k, and the
(completed) ring of differential operators of X2 relative to k is

L
m,n�0(k[[t]]�

(m)
u �

k[[t]]�(n)
x ). We compute

�(m)
u

�
tr
�

= �(m)
u

�
ur x`r �

= �(m)
u

�
ur

�
x`r

=

✓
r
m

◆
ur x`r

=

✓
r
m

◆
tr .

This shows that the map
M

m,n�0

⇣
k[[t]]�(m)

u � k[[t]]�
(n)
x

⌘
!

M

m�0
k[[t]]�(m)

t

induced by X2! S is surjective.

4. An example of Raynaud

The log smoothness condition in Corollary 3.5 cannot be dropped, as the following
example shows. It is a variant of [21, Remark 9.4.3 (c)] and is contained in a letter
from M. Raynaud to H. Esnault dated May 15, 2009.

We will show: there is a smooth affine curve S over an algebraically closed
field k of characteristic p > 0, a closed point s 2 S, a morphism f : X ! S, and a
finite map g : S0 ! S, such that

(a) X is regular, hence smooth over k;
(b) f is faithfully flat;
(c) If D = f �1(s)red, then X \ D! S \ {s} is smooth, projective, with geometri-

cally connected fibers;
(d) g : S0 ! S is étale over S \ {s};
(e) g : S0 ! S is wildly ramified over s;
(f) If X 0 is the normalization of X⇥S S0, then the finite map gX : X 0 ! X is étale.

The wildly ramified covering g pulls back to an étale covering of X , and a fortiori to
a tamely ramified covering. Translated into the language of stratified bundles, this
means that if 6 ✓ D is a 0-dimensional subset such that D \ 6 is regular, then the
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stratified bundle (g⇤OS0)|S\{s}, which is irregular over s, pulls back to a stratified
bundle on X \ D which extends to X . In particular, this pullback is (X \6, D \6)-
regular singular, so the conclusion of Corollary 3.5 fails.

Let S be an affine smooth curve over an algebraically closed field of char-
acteristic p > 0 and let E ! S be a family of ordinary elliptic curves. In
particular, E is an abelian S-scheme (the Néron model of its generic fiber). Af-
ter possibly replacing S by a étale open, we may assume that E contains an S-
subgroup scheme G which is isomorphic to (Z/pZ)S . Indeed, according to [12,
12.3], if Ep is the kernel of E

·p
�! E , then Ep sits in a short exact sequence

0! ker(F)! Ep ! ker(V )! 0, where F and V denote the absolute Frobenius
and Verschiebung. As E is ordinary, V is étale and ker(V ) is a cyclic finite étale
S-group scheme of order p. This means that there is a finite separable extension
L of K (S) over which (Ep)L = ker(F)L ⇥L (Z/pZ)L . We replace S by the inte-
gral closure of a suitable open subset in L , and from now on assume that there is a
S-subgroup scheme G ✓ E with G ⇠= (Z/pZ)S .

Pick a closed point s 2 S, write K = K (S), Ks := Frac( dOS,s), fix separable
closures K sep ✓ (Ks)sep. Consider the following commutative diagram of Galois
cohomology groups:

H 1(K, G (K sep)) H 1(K, E (K sep))

H 1(Ks, G(K sep
s )) H 1(Ks, EKs(K

sep
s )).

ϕ

Claim 4.1. There exists an element ↵ 2 H1(K ,G(K sep)) of order p, such that
'(↵) 6= 0.

Proof. Write R = dOS,s and let Rsep be the integral closure of R in K
sep
s . If ER is

the elliptic curve on Spec R obtained by restricting E , then

ER
�
K seps

�
= ER

�
Rsep

�
⇣ ER(k(s)),

where k(s) = k is the algebraically closed residue field of R. Moreover, if ER(k(s))
is equipped with the trivial Gal(K seps /Ks)-action, we obtain a commutative diagram
of continuous Gal(K seps /Ks)-modules

EKs(K
sep
s ) E (k(s))

G(K sep
s ) G(Ks) G(k(s))
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and consequently

H 1(Ks, E (K sep
s )) Hom cont(Gal( K sep

s /K s), E (k(s)))

H 1(Ks, G(K sep
s )) Hom cont(Gal( K sep

s /K s), G(k(s))).

This shows we can find ↵s 2 H1(Ks,G(K seps )) of order p with nontrivial image in
H1(Ks, E(K seps )).

Finally, note that the theorem of Katz-Gabber [11, Theorem 1.7.2] shows that
there is a surjective morphism Gal(K sep/K ) ⇣ Gal(K seps /Ks), so we can lift ↵s
to ↵ 2 H1(K ,G(K sep)) ⇠= Homcont(Gal(K sep/K ), Z/pZ) of order p, such that
'(↵) 6= 0.

The element ↵ corresponds to an Artin-Schreier extension of K (S), totally
wildly ramified in s. Let S0 be the integral closure of S in this Artin-Schreier exten-
sion. After possibly shrinking S around s, we can assume that g : S0 ! S is étale
away from s.

The image of ↵ in H1(K , EK (K sep)) corresponds to an EK -torsor XK !
Spec K which becomes trivial on K (S0). Let f : X ! S be the minimal regular
model of XK . In [20, pages 82–83] it is shown that X can be constructed as a quo-
tient of ES0 by a finite flat equivalence relation. After perhaps shrinking S around
s, we may assume that f : X ! S is smooth away from s. Let X 0 ! S0 be the
normalization of XS0 . Then X 0 ⇠= ES0 . Indeed, the quotient map ES0 ! X induces
a birational, integral map ES0 ! XS0 . As ES0 is normal (even regular), this means
that ES0 ⇠= X 0.

We restrict this situation to a local setup: Let s0 2 S0 be a point over s, and
write R := dOS,s , R0 := [OS0,s0 . We obtain the following commutative diagram:

XR XR′ X ′
R′

Spec R Spec R .′

As S is excellent, X 0R0 ! XR0 is the normalization of XR0 . Indeed, we can proceed
as in [22, Tag 07TD]: X 0R0 is integral over XR0 , X 0R0 is normal by [6, Proposi-
tion 6.14.1] , and as X 0R0 ! X 0 is flat, X 0R0 ! XR0 is birational. This means we
have a factorization as in the following diagram:

(XR′)norm X ′
R′ X′

XR′ X   .S′

normalization

∼=

birat.

flat

normalization
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It now suffices to prove that the finite map

ER0 ⇠= X 0R0 ! XR (4.1)

is étale.
Note that XR is the minimal regular model of XKs [17, Proposition 9.3.28]

over R, and that XKs is the EKs -torsor associated with the cohomology class ↵s
from above. By [20, pages 82–83], the EKs -action on XKs extends to an ER-action
on XR . If Xs and Es are the special fibers of X and E , then the induced action of
the abelian variety Es on Xs is set-theoretically transitive. This means that (Xs)red
is isomorphic to Es/H where H is some subgroup scheme of Es .

Recall that we assume the existence of a finite étale group scheme G ✓ E ,
G ⇠= (Z/pZ)S . Write F := E/G. By construction ↵s is the image of a GKs -torsor,
so there is a canonical EKs -equivariant morphism uKs : XKs ! FKs . By func-
toriality of the minimal regular model, it extends to an ER-equivariant morphism
uR : XR ! FR . We obtain an Es-equivariant morphism

(us)red : Es/H ⇠= (Xs)red! (Fs)red ⇠= Es/Gs .

This shows that H ✓ Gs and that H is finite étale over k(s). On the other hand, Gs
acts trivially on (Xs)red (thus implying that H = Gs), as the residue field extension
of R ✓ R0 is trivial and XR ! Spec R factors through Spec R0 ! Spec R: this
is clear if for example one construct the correspondence between first cohomology
classes and torsors using Weil’s descent, remembering that K 0 corresponds to the
class ↵ in H1(K ,G(K sep)) and XK corresponds to its image in H1(K , EK (K sep)).

Finally, the map (4.1) is finite of degree p, and X 0R0 ⇠= ER0 . We have seen that
on reduced special fibers, this map induces an étale map of degree p:

Es0 = Es ! (Xs)red = Es/Gs .

This implies that (4.1) is étale.

5. An exactness criterion for sequences of affine group schemes

In this section we establish an additional technical result, which characterizes the
exactness of a sequence of affine k-group schemes in terms of the exactness of the
induced sequences of their algebraic quotients.

Definition 5.1. Let (T ,!) be a neutral Tannakian category over a field k and let S
be a subset of its objects.

(a) The T -span hSiT⌦ of S is the smallest full sub-Tannakian category of T con-
taining S which is closed under subquotients and isomorphisms. When the
ambient category is clear, we also drop the superscript T and write hSi⌦;



882 GIULIA BATTISTON AND LARS KINDLER

(b) We write 5T
S , or simply 5S when no confusion is possible, for the affine k-

group scheme associated with (hSi⌦,!) via the Tannaka formalism. If S =
{S} is a singleton, we simply write5S instead of5{S};

(c) A sub-Tannakian category T 0 of T is called replete if it is equal to the T -span
of its objects. By [2, Proposition 2.21] replete sub-Tannakian categories of T
correspond to quotients of5T := Aut⌦(!).

Recall that every affine group scheme over a field is the inverse limit of its finite type
quotients (see for example [23, 3.3, corollary]). From the Tannakian perspective,
this can be seen as follows: if (T ,!) is a neutral Tannakian category over a field
k, and if S1, S2 are two objects of T , then for i = 1, 2, there are full embeddings
hSi i⌦ ,! hS1 � S2i⌦,which induce quotient maps5S1�S2 ⇣ 5Si . These maps are
the transition maps in a projective system {5S|S 2 T }, and

5T ⇠= lim
 �
S2T

5S.

Lemma 5.2. Let �
T 00,!00

� B
�! (T ,!)

A
�!

�
T 0,!0

�

be a sequence of additive, exact, tensor functors between neutral Tannakian cate-
gories over a field k, and let

5T 0
a
�! 5T

b
�! 5T 00 (5.1)

be the associated sequence of affine k-group schemes.
The following statements are equivalent:

(a) The sequence (5.1) is exact in the middle;
(b) For every object S 2 T the sequence

1! 5A(S)
ā
�! 5S

b̄
�! 5TS ! 1 (5.2)

of affine k-group schemes is fpqc-exact, where TS is the set of objects in hSi⌦
which are in the span of the essential image of B.

Proof. Let I be the essential image of A and let J be the essential image of B.
Then, by [2, Proposition 2.21] the sequence (5.1) factors as

ΠT ′ ΠT ′
I ΠT ΠT

J ΠT ′′ .

a b

By replacing T 0 with hIiT 0⌦ and T 00 with hJ iT⌦ , we can and will assume that a is
injective (or, equivalently a closed immersion, see [23, Theorem 15.3]) and that b
is faithfully flat.
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We already remarked that

5T ⇠= lim
 �
S2T

5S.

Moreover, as a is a closed immersion, [2, Proposition 2.21] shows that for every
S0 2 T 0 there exists S 2 T such that S0 2 hA(S)i⌦, in particular the algebraic
groups5A(S) are cofinal in the projective system {5S0}S02T 0 and thus

5T 0 ⇠= lim
 �
S2T

5A(S).

As b is faithfully flat, B is fully faithful and the essential image of B is replete in
T . In particular for every object S00 2 T 00 one has that5S00 = 5B(S00) and thus

5T 00 ⇠= lim
 �
S2T

5TS , (5.3)

where TS consists of all objects in hSi⌦ that are in the essential image of B.
All together, we proved that the sequence (5.1) is the inverse limit over the

sequences (5.2), indexed by the objects of T .
If (5.2) is exact for every S 2 T , then (5.1) is exact in the middle because for

a projective system {Gi }i of k-group schemes and for any commutative ring R, we
have (lim

 �
Gi )(R) = lim

 �
(Gi (R)) and the inverse limit is a (left) exact functor. This

proves (b)) (a).
To prove (a) ) (b), assume that (5.1) is exact. Recall that we may assume

that a is a closed immersion and that b is faithfully flat. We get the following
commutative diagram

1 ΠT ′ ΠT ΠT ′′ 1

1 ΠA(S) ΠS ΠTS 1

a

pr′

b

pr pr′′

ā b̄
(5.4)

where all vertical arrows are faithfully flat. We want to prove that the bottom row
is exact. It follows directly from [2, Proposition 2.21] that the morphism ā is a
closed immersion and that b̄ is faithfully flat. It is also clear that b̄ · ā is the trivial
morphism. It remains to prove that (5.2) is exact in the middle.

We can write5S as5T /H and5A(S) as5T 0/H 0, for some normal subgroup
schemes H, H 0. As a is injective, we see that ker(pr �a) = 5T 0 \ H , and as ā is
injective, H 0 = ker(ā � pr0). As (5.4) commutes, the two kernels must agree and
thus H 0 = 5T 0 \ H .

In particular, this shows that5A(S) is normal in5S . Thus to prove that (5.2) is
exact, it is enough to prove that5TS is the cokernel of ā. By the universal property
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of the cokernel, together with [2, Corollary 2.9, Proposition 2.21], the cokernel of ā
corresponds uniquely to a replete sub-Tannakian category C of hSi⌦, characterized
by the property that for every S0 2 hSi⌦, A(S0) is trivial if and only if S0 2 C,
where by trivial we mean that A(S0) is the direct sum of copies of the unit object
of T 00. Our assumptions imply that 5T 00 is the cokernel of a, hence if S0 2 T ,
A(S0) is trivial if and only if S0 2 T 00, hence by definition TS is the maximal replete
sub-Tannakian category of hSi⌦ whose objects are trivialized by A, which finishes
the proof.

6. The homotopy exact sequence for regular singular stratified bundles

We return to the notations that were introduced in Section 2. In particular, k is an
algebraically closed field of characteristic p > 0 and X is a smooth, connected,
separated scheme of finite type over k. We recall that given x 2 X (k), we have
associated k-group schemes5(X, x),5rs(X, x) and5rs((X, X), x), where (X, X)
is a good partial compactification of X (Definition 2.1).

Note that according to [16, Proposition 4.5], Stratrs((X, X)) is a replete sub-
Tannakian category of Strat(X) and hence there is a quotient map 5(X, x) ⇣
5rs((X, X), x).

Theorem 6.1. Let X and Y be smooth, connected, separated k-schemes of finite
type and let f : Y ! X be a smooth projective morphism with geometrically
connected fibers. Fix good partial compactifications (X, X) and (Y,Y ) and write
DX := (X \ X)red, DY := (Y \ Y )red. Let f̄ : Y ! X be an extension of f
satisfying:

(a) f̄ (Y ) contains all generic points of DX ;
(b) f̄ is log smooth when Y and X are equipped with the log structures defined by

DY , respectively DX (Remark 3.1).

If y 2 Y is a closed point, define x := f (y) and let j : Yx ,! Y be the fiber over
x . Then the sequence

5(Yx , y)
j⇤
�! 5rs((Y,Y ), y)

f ⇤
�! 5rs((X, X), x)! 1 (6.1)

of affine k-group schemes is fpqc exact.

Proof. Notice that the assumptions of the theorem imply that Yx is proper, hence all
stratified bundles on Yx are trivially regular singular. We will deduce the theorem
from [4, Theorem 1], which states that under our hypotheses the sequence

5(Yx , y)! 5(Y, y)! 5(X, x)! 1
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is exact. In particular, the top horizontal arrow in the commutative diagram

Π(Y, y ) Π(X, x )

Πrs((Y, Y ), y ) Πrs((X, X ), x)

f∗

πY πX

f∗

is faithfully flat, and so are the vertical arrows. This shows that the bottom horizon-
tal arrow is faithfully flat as well.

If E 2 Stratrs((Y,Y )), then [16, Proposition 4.5] shows that the span hEi⌦ is
independent of whether we compute it in Stratrs((Y,Y )) or the ambient category
Strat(Y ).

Similarly, if E 2 Stratrs((Y,Y )), then we can consider the span of j⇤E in
Strat(Yx ) and we write5 j⇤E = 5

Strat(Yx )
j⇤E for the affine k-group scheme attached to

it. By Lemma 5.2, to prove that (6.1) is exact, it is enough to prove that for every
(Y,Y )-regular singular stratified bundle E , the sequence

1! 5 j⇤E ! 5E ! 5T rsE ! 1 (6.2)

is exact, where T rsE are the objects of hEi⌦ that are also in Stratrs(X, X) (seen as a
full replete sub-Tannakian category of Stratrs(Y,Y ) via f ⇤).

By [4, Theorem 1] the sequence

5(Yx , y)
j⇤
�! 5(Y, y)

f ⇤
�! 5(X, x)! 1

is exact. Hence, the sequence

1! 5 j⇤E ! 5E ! 5TE ! 1 (6.3)

is exact for every E 2 Stratrs((Y,Y )) (Lemma 5.2), where TE are the objects of
hEi⌦ that are also in Strat(X). By Corollary 3.5, we have TE = T rsE , so the
sequence (6.3) is isomorphic to the sequence (6.2), which is then exact. Using
Lemma 5.2 again, this concludes the proof.

Remark 6.2. The proof above shows a little more: namely, if there exists a strat-
ified bundle E on X which is not (X, X)-regular singular but such that f ⇤E is
(Y,Y )-regular singular (e.g., as in the example of Section 4), then the sequence
(6.1) cannot be exact.

To see this, note that under the conditions of Theorem 6.1 the surjectivity of

f ⇤ : 5rs((Y,Y ), y)! 5rs((X, X), x)
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holds even without the log smoothness hypothesis on f̄ . This allows us to see
Strat(X) and Stratrs(X, X) as replete sub-Tannakian categories of Strat(Y ). As in
the proof of Theorem 6.1, consider the full subcategories

T f ⇤E :=
⌦
f ⇤E

↵
⌦ \ Strat(X) ✓ Strat(Y ),

and
T rsf ⇤E :=

⌦
f ⇤E

↵
⌦ \ Strat

rs((X, X)) ✓ Strat(Y ).

The exactness of (6.3) for f ⇤E reduces to the isomorphism 5 f ⇤E ⇠= 5T rsf ⇤E . Note
that indeed by [4, Theorem1] and arguing as in the proof of Theorem 6.1 one has
that 5 f ⇤E ⇠= 5T f ⇤E . On the other hand, if E is not (X, X)-regular singular, then
f ⇤E 62 T rsf ⇤E , so the inclusion T rsf ⇤E ✓ T f ⇤E is strict. This means that the induced
morphism 5 f ⇤E ! 5T rsf ⇤E is not an isomorphism, so it follows from Lemma 5.2
the sequence (6.1) cannot be exact in the middle. This shows that the log smooth-
ness assumption in Theorem 6.1 cannot be dropped entirely.

A stratified bundle E on X is called regular singular if it is (X, X)-regular sin-
gular for every good partial compactification X . We denote by 5rs(X, x) the Tan-
nakian fundamental group associated with the full subcategory of Strat(X) given by
all regular singular stratified bundles [16, Proposition 7.4]. By [16, Proposition 7.5]
if X admits a good compactification X , then a stratified bundle E is regular singu-
lar if and only if it is (X, X)-regular singular. Together with [15, Theorem 1.3] this
implies the following.

Corollary 6.3. Retain the notations and assumptions of Theorem 6.1, and assume
furthermore that X is proper. Then the sequence

5(Yx , y)
j⇤
�! 5rs(Y, y)

f ⇤
�! 5rs(X, x)! 1

is fpqc exact.

Corollary 6.4 (Künneth formula). Let X and Y be smooth, connected k-varieties
with Y projective, let x 2 X (k), y 2 Y (k) and let z 2 (Y ⇥k X)(k) be the point
induced by x and y. Then, the natural morphism induced by the projections

5rs(X ⇥k Y, z)! 5rs(X, x)⇥5rs(Y, y)

is an isomorphism.

Proof. Note that Y is proper, hence5(Y, y) = 5rs(Y, y).
The strategy of the proof is exactly the same as in [7, X, Corollary 1.7]. In

order to make use of Theorem 6.1, we only need to remark that for every partial
good compactification X of X there exists a good partial compactification of X ⇥Y
(log) smooth over X , namely X ⇥ Y .
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