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Del Pezzo elliptic varieties of degree d  4

ANTONIO LAFACE, ANDREA L. TIRONI AND LUCA UGAGLIA

Abstract. Let Y be a smooth del Pezzo variety of dimension n � 3, i.e., a
smooth complex projective variety endowed with an ample divisor H such that
�KY = (n � 1)H . Let d be the degree Hn of Y and assume that d  4. Con-
sider a linear subsystem of |H | whose base locus is zero-dimensional of length
d. The subsystem defines a rational map onto Pn�1 and, under some mild extra
hypothesis, the general pseudofibers are elliptic curves. We study the elliptic fi-
bration X ! Pn�1 obtained by resolving the indeterminacy and call the variety
X a del Pezzo elliptic variety. Extending the results of [7] we mainly prove that
the Mordell-Weil group of the fibration is finite if and only if the Cox ring of X is
finitely generated.

Mathematics Subject Classification (2010): 14C20 (primary); 14Q15, 14E05,
14N25 (secondary).

1. Introduction

Let Y be a smooth del Pezzo variety of degree d at most 4 and dimension n at least
3, and let H be an ample divisor such that �KY = (n � 1)H . A linear subsystem
V ✓ |H | whose base locus is a zero-dimensional subscheme of length d defines a
rational map onto Pn�1 whose general pseudofibers are curves of arithmetic genus-
one. We focus on the case when the general pseudofiber is smooth and denote by

⇡ : X ! Pn�1

the elliptic fibration obtained by resolving the indeterminacy. We call the variety X
a del Pezzo elliptic variety and the fibration ⇡ a del Pezzo elliptic fibration. In [5]
the case of general V is considered in relation with the Morrison-Kawamata cone
conjecture. In this paper we extend the results of [7] to del Pezzo elliptic varieties of
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degree d  4. Our first result is about the Mordell-Weil groups of the corresponding
del Pezzo elliptic fibrations (the notation will be explained in Section 3).

Theorem 1.1. The Mordell-Weil groupsMW(⇡) of the del Pezzo elliptic fibrations
⇡ : X ! Pn�1 of degree d  4 and dimension n � 3 are the following:

Table 1.1.
d Type of X MW(⇡) d Type of X MW(⇡)

1 X1 h0i 4 X40 Z3
2 X11 Z X41, X30 Z2

XSS Z/2Z X42 Z � Z/2Z
X2 h0i X31, X20, X

0
20, X

0
21 Z

3 X111 Z2 X43 (Z/2Z)2

XS11, X12 Z X21, X22 Z/2Z
XSSS Z/3Z X10, X11 h0i
XS2 Z/2Z
X3, XS h0i

Our second result relates the finite generation of the Cox ring of del Pezzo elliptic
varieties with the finiteness of the Mordell-Weil group of the corresponding ellip-
tic fibration. We recall that an important result along this line was obtained by
Totaro [11] in dimension two and his work has been the starting point for further
developments (see, e.g., [5] and [7]).

Theorem 1.2. Let X be a del Pezzo elliptic variety of degree d  4 and dimension
n � 3. Then the following are equivalent:

(1) The Cox ring of X is finitely generated;
(2) The Mordell-Weil group of ⇡ : X ! Pn�1 is finite.

We prove Theorem 1.2 showing that any del Pezzo elliptic variety whose corre-
sponding elliptic fibration has finite Mordell-Weil group, is a Mori dream space
and vice versa. Then we conclude by Hu and Keel characterization of Mori dream
spaces [8, Proposition 2.9]. The proof of our second theorem makes use of a de-
tailed study of the structure of the moving and effective cones of del Pezzo elliptic
varieties. In particular we prove the following result.

Theorem 1.3. Let ⇡ : X ! Pn�1 be a del Pezzo elliptic fibration of degree d  4,
with n � 3 and having finite Mordell-Weil group. Then the effective cone Eff(X) is
generated by the vertical classes and the classes of sections and the moving cone
Mov(X) is the dual of Eff(X) with respect to the bilinear form introduced in (2.2).
The intersection graphs for the effective cones are given in the following table.

Each vertex corresponds either to a section or a prime vertical class D explic-
itly given in Table 4.1 of Proposition 4.1; the label in the vertex is �(D, D) while
the label on the edge connecting two vertices D and D0 is (D, D0) (we omit the
label when it is equal to 1).
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The paper is structured as follows. In Section 2 we introduce del Pezzo elliptic
fibrations and del Pezzo elliptic varieties and we define the bilinear form on the
Picard group of such varieties. In Section 3 we study the geometry of these varieties
and in the Section 4 we use these results in order to classify theMordell-Weil groups
of the del Pezzo elliptic fibrations, their vertical classes and sections. Section 5
contains the description of the nef, effective and moving cones of del Pezzo elliptic
varieties and moreover in the same section we prove Theorem 1.2. In the last section
we provide the Cox rings of the del Pezzo elliptic varieties whose fibration has finite
Mordell-Weil group and having degree one an two and a lemma about the Cox ring
of the blowup of the complete intersection of two quadrics at one point.

We work over an algebraically closed field of characteristic 0.

ACKNOWLEDGEMENTS. We thank the referee for careful reading of the manuscript
and useful comments.

2. Del Pezzo elliptic varieties

Let Y be a del Pezzo variety of dimension n � 3 such that �KY = (n � 1)H ,
with H ample and d := Hn  4. It is well known (see for instance [9]) that
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the Picard group of Y has rank one and it is generated by the class H . If d = 1
then Y is a smooth hypersurface of degree six of the weighted projective space
P(3, 2, 1, . . . , 1) and H is the restriction of a degree one class of the ambient space.
If d = 2 then Y is a double cover of Pn branched along a smooth quartic hy-
persurface and H is the pull-back of a hyperplane of Pn . If d 2 {3, 4} then Y
is a projectively normal subvariety of Pn+d�2 and H is the class of a hyperplane
section.

Let us consider an (n � 1)-dimensional linear subsystem of |H |, whose base
locus Z has dimension zero and length d. In particular, if d = 1 we have Z =
V (x3, . . . , xn+2), if d = 2, Z is preserved by the covering involution and if d 2
{3, 4}, Z spans a linear subspace3 ✓ Pn+d�2 of dimension d�2. Let us denote by
⇡Z : Y 99K Pn�1 the rational map defined by the given subsystem and by ⇡ : X !
Pn�1 the resolution of the indeterminacy of ⇡Z . The variety X comes with two
morphisms:

X ⇡
//

�

✏✏

Pn�1

Y
⇡Z

==

z

z

z

z

where � is the composition of d blowing-ups �1, . . . , �d at points q1, . . . , qd , re-
spectively. Moreover the general fiber of ⇡ is a smooth genus-one curve if d 
3 or if d = 4 and 3 is not contained in the tangent space of Y at any point
of Z .

In what follows, by abuse of notation, we use the same letter H to denote the
pull-back of H via � while we denote by Ei the pull-back of the exceptional divisor
of �i , for i 2 {1, . . . , d}. Observe that some of the points q2, . . . , qd can lie on the
exceptional divisor of one of the �i ’s. Therefore Ei can be either a Pn�1 or the
union of a Pn�1 with some other components isomorphic to the projectivization of
the vector bundleOPn�1 �OPn�1(1). In any case, we can write

Pic(X) = hH, E1, . . . , Edi,

where, with abuse of notation, we are adopting the same symbols for the divisors
and for their classes. We will also adopt the following notation

F := �
1

n � 1
KX . (2.1)

Observe that F is the pull-back of a hyperplane section of Pn�1 via ⇡ , so that
F = H �

Pd
i=1 Ei .

Remark 2.1. The map � is a composition of blowups at points and we claim that
we blow up at most one point on each exceptional divisor. Indeed, since by assump-
tion a general pseudofibre is smooth, when we blow up a point in the base locus the
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proper transform of a general pseudofibre only meets the exceptional divisor in one
point.

2.1. A bilinear form on the Picard group

We are now going to introduce a bilinear form on Pic(X), where X is the blowup
of Y at r general points. A similar form has been introduced for the blowup of
products of projective spaces in [4] and [3].

Using the above notation for F , we define

(A, B) := Fn�2 · A · B (2.2)

for any two divisors A and B on X . Thus the quadratic form q induced by the above
bilinear form is hyperbolic and the matrix with respect to the basis (H, E1, . . . , Er )
is diagonal with entries d,�1, . . . ,�1. Since (F, F) = d � r , the sublattice F? is
negative definite if 1 < r < d and it is negative semidefinite if r = d. In the first
case, a basis consists of the classes E1 � E2, . . . , Er�1 � Er , while in the second
case it consists of the above classes plus F . These are roots lattices of type Ar�1
and Ãd�1, respectively.

When r = d and the linear system |F | on the blowup X induces the ellip-
tic fibration ⇡ : X ! Pn�1, we observe that Fn�2 is rationally equivalent to a
smooth rational elliptic surface S which is the preimage via ⇡ of a line. Thus we
have (A, B) = A|S · B|S , where the right hand side is the intersection product in
Pic(S).

Proposition 2.2. Let A and B be effective divisors of X with B a prime divisor. If
(A, B) < 0 then B is contained in the stable base locus of |A|.

Proof. Let ` be a general line of Pn�1 and let S be the surface ⇡�1(`). According
to the definition of the bilinear form we have A|S · B|S < 0. Being B prime and `
general, the divisor B|S of S is prime as well. Thus the linear series |A|S| contains
B|S into its base locus and the same holds for the linear series |A|. Varying ` we
get the claim.

In particular the above proposition implies that the moving cone of X is con-
tained in the dual of the effective cone with respect to the bilinear form. We will
see in Section 5 that under an extra hypothesis on the fibration the two cones are
indeed equal.

3. Types

In this section we are going to describe the possible types of del Pezzo elliptic
varieties of degree d  4.
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3.1. Degree one

In this case Y is a degree 6 hypersurface of the (n + 1)-dimensional weighted pro-
jective space P(3, 2, 1, . . . , 1). A defining equation for Y has the form

x21 + x1x2 f1 + x1 f3 + x32 + x22 f2 + x2 f4 + f6 = 0,

where ft is a degree t homogeneous polynomial in x3, . . . , xn+2. After applying
the change of coordinates x1 7! x1 � 1

2 x2 f1 � 1
2 f3 the above equation takes the

form
x21 + x32 + x22 f

0
2 + x2 f 0

4 + f 0
6 = 0.

By further applying the change of coordinates x2 7! x2 � 1
3 f

0
2 and exchanging the

sign of x3 the equation takes the form

x21 � x32 + x2 f4 + f6 = 0, (3.1)

where with abuse of notation we are denoting by ft the new coefficients after the
last change of coordinates. The blowup � : X ! Y is centred at the point q =
(1, 1, 0, . . . , 0)2Y and the rational map Y99KPn�1 is defined by (x1, . . . , xn+2) 7!
(x3, . . . , xn+2).

3.2. Degree two

In this case Y is a double cover ' : Y ! Pn branched along a smooth quartic
hypersurface 6 = V ( f ). A defining equation for Y has the form

x2n+2 = f. (3.2)

In order to distinguish the different cases that can occur, we observe that the preim-
age of a line ` through a point p := '(q1) is one of the following:

'�1(`) =

8
><

>:

elliptic curve if |` \ 6| = 4
rational nodal curve if |` \ 6| = 3
union of two smooth rational curves if ` is bitangent to 6.

(3.3)

Therefore we distinguish three different cases depending on the position of p with
respect to 6 and on the dimension of the variety B ✓ Pn spanned by all the bitan-
gent lines to 6 passing through p.
Case 1. The point p does not lie on 6 and B is not a hypersurface. In this case the
preimage of p in the double covering Y ! Pn consists of two distinct points q1 and
q2. We denote by X11 the variety that we obtain by blowing up these two points.
Case 2. The point p does not lie on 6 and B is a hypersurface. In this case after
a linear change of coordinates we can assume that p = (0, . . . , 0, 1). The defining
polynomial for 6 in (3.2) is

f = x4n+1 f0 + x3n+1 f1 + x2n+1 f2 + xn+1 f3 + f4, (3.4)
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where fd 2 C[x1, . . . , xn] is a homogeneous polynomial of degree d, with f0 6= 0.
Let us consider a point q 2 6 and the line parametrised by �p + q. The line is
tangent to6 at q if and only if f (�p+q) has a double zero at � = 0 or equivalently
if the partial derivative @ f vanishes at q, where @ := @/@xn+1, that is q lies on the
polar Pp(6) to p with respect to6. In order to be a bitangent line, the discriminant
of the quadratic polynomial f (�p+ q)/�2 must vanish. An easy calculation shows
that this is equivalent to q lying on the quadric Qp(6) defined by the polynomial
(@3 f )2 � 3(@2 f )(@4 f ). Thus the locus of bitangency is

Z := (B \ 6)red ✓ 6 \ Pp(6) \ Qp(6). (3.5)

Since we are in characteristic zero, a general generatrix ` of the cone B intersects
Z transversally. Being ` bitangent to 6, for any z 2 ` \ Z we have the inclusion
Tz` ✓ Tz6. Thus the tangent spaces Tz B and Tz6 are equal, being both equal to
Tz Z � Tz`. In particular we have an equality of divisors B \ 6 = mZ for some
m 2 {2, 4}. Being 6 a quartic hypersurface of dimension at least two, its Picard
group is torsion free, so that by the previous argument the class of Z in Pic(6) is
linearly equivalent to a multiple sL of the hyperplane section L (observe that L
must be a primitive class since Ln�1 = 4). In particular we have deg B = ms. By
Bertini’s second theorem [2] the intersection of 6 with a general plane 5 through
p is a smooth plane quartic curve C . By (3.5) the degree of Z \ 5 is at most 8 so
that B \ 5 is the union of at most 4 lines, which implies that deg B  4. Therefore
the only possible values for (m, s) are (2, 1), (4, 1) and (2, 2). The case (2, 1) does
not occur since L has degree 4 and can not be contained in the intersection of the
quadric B with a hyperplane. We conclude that deg B = 4 and Z is cut out either
by a quadric or a hyperplane. The defining polynomial for 6 in (3.2) is therefore

f = g + h2, (3.6)

where g 2 C[x1, . . . , xn] is a homogeneous polynomial of degree four such that
B = V (g), while h 2 C[x1, . . . , xn+1] is homogeneous of degree two, possibly
a square. We denote by XSS the variety obtained by blowing up the two distinct
points q1 and q2 in the preimage of p.

Case 3. The point p lies on 6. As before we can suppose that p = (0, . . . , 0, 1) so
that the defining polynomial for 6 in (3.2) is

f = x3n+1 f1 + x2n+1 f2 + xn+1 f3 + f4, (3.7)

where fd 2 C[x1, . . . , xn] is homogeneous of degree d. In this case in order to get
an elliptic fibration we need to blow up the point q1 := '�1(p) and the point on
the exceptional divisor which is invariant with respect to the lifted involution. We
denote by X2 the variety that we obtain after the blowing-ups.
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3.3. Degree four

Let us first collect some facts about smooth complete intersections of two hyper-
quadrics Y := Q \ Q0 ✓ Pn+2, for n � 3 (see also [10]). Observe that any quadric
in the pencil 3 generated by Q and Q0 has rank at least n + 2, since otherwise Y
would not be smooth, and there are n + 3 singular quadrics in the pencil, counting
muliplicities. We claim that there are exactly n+ 3 quadrics of rank n+ 2 and their
vertices are in general position in Pn+2. Indeed, let us suppose that either there are
less than n + 3 vertices or that they are not in general position.

In the former case the pencil of quadrics is tangent to the discriminant hyper-
surface at some point. Without loss of generality we can assume Q to be a cone
of vertex p = (1, 0, . . . , 0) in diagonal form g and the pencil 3 : g + tg0 = 0
is tangent to the discriminant hypersurface at t = 0. If the Hessian matrix of g is
M = (mi j ) and that of g0 is M 0 = (m0

i j ), the above tangency condition is equivalent
to the vanishing of the following derivative

d
dt
Det

�
M + tM 0�|t=0.

Expanding the above derivative and using the fact that M is diagonal we see that
the above is equivalent to m0

11 = 0, that is p 2 Q0. This is not possible since it
contradicts the smoothness of Y .

In the latter case there exists a hyperplane H ✓ Pn+2 containing all the vertices
and if we restrict 3 to H we obtain a pencil 3H of quadrics in Pn+1, containing
at least n + 3 singular quadrics (counting multiplicities). Hence all the quadrics of
3H must be singular and by Bertini’s theorem their vertices are contained in the
base locus of 3H . This implies that all the vertices of these cones are in Y and this
is a contradiction since they give singular points of Y .

Let us prove now the following result that will be useful in the next section.

Proposition 3.1. Let Y ✓ Pn+2 be a smooth complete intersection of two quadrics
defining a pencil 3. Let q1 and q2 be two, possibly infinitely near, points of Y such
that the line hq1, q2i is not contained in Y . Then the following are equivalent:

(1) The conics of Y through q1 and q2 span a hypersurface of Y ;
(2) The line hq1, q2i passes through the vertex of a singular quadric of 3.

Proof. To prove (1) ) (2), let us suppose that the conics through q1 and q2 span a
hypersurface S, i.e. there exists an (n � 2)-dimensional family of such conics. If C
is a conic contained in Y then its linear span hCi is contained in a quadric Q of the
pencil 3 which passes through a point of hCi \ C . There is only one such quadric
Q in the pencil since otherwise we would have the inclusions hq1, q2i ✓ hCi ✓ Y ,
contradicting the hypothesis.

Moreover all such planes have to be contained in the same quadric Q since
otherwise their common line hq1, q2i would be contained in Y , again contradicting
the hypothesis. We claim that Q is a cone whose vertex lies on the line hq1, q2i.
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Indeed if we take a point q 2 hq1, q2i, the tangent space TqQ intersects Q along an
n-dimensional quadric that contains all the linear spaces through q. In particular this
quadric must be the union of the (n � 2)-dimensional family of planes containing
the line hq1, q2i and hence it is singular along the whole line. We conclude that Q
must have a singular point on this line.

In order to prove (2) ) (1), let p be the vertex of a quadric Q 2 3 lying on
the line hq1, q2i, so that this line is a generatrix of the cone Q. We can write Y =
Q \ Q0, where Q0 is any other quadric of the pencil. We conclude observing that
there exists an (n � 2)-dimensional family of planes of Q containing a generatrix
and each of them intersects Q0 along a conic through the two fixed points.

In what follows we will denote by Q1, . . . , Qn+3 the singular quadrics of the
pencil3 and by p1, . . . , pn+3 the corresponding vertices. By the above discussion,
we can assume that pi is the i-th fundamental point of Pn+2 for i = 1, . . . , n +
3, so that Q1 and Q2 are defined by diagonal forms. Moreover, after possibly
rescaling the variables, we can assume the quadrics to be defined by the following
polynomials

x22 � x23 + x24 + · · · + x2n+3 x21 � x23 + ↵4x24 + · · · + ↵n+3x2n+3 (3.8)

respectively, where the coefficients ↵i are distinct and not in {0, 1}.
Let us fix now a plane 5 ✓ Pn+2 and let us analyze the different types of del

Pezzo elliptic varieties of degree four. By Proposition 3.1 the type depends not only
on the number of points we blow up but also on the number of vertices pi contained
in the plane5. Hence we are going to use the symbol Xkl to denote the variety that
we obtain by choosing a plane 5 intersecting Y in k distinct points and containing
l vertices.

Let us spend few words about the geometry of this construction and about the
possible values of k and l for Xkl . We remark that we can write

5 \ Y = C \ C 0

where C := Q \ 5 and C 0 := Q0 \ 5 are two plane conics. We discuss four cases.

Case 1. If 5 contains no vertices, then we have two smooth conics, whose inter-
section consists of k distinct points, for k 2 {1, 2, 3, 4} and hence we get the types
X10, X20, X 0

20, X30, X40. Observe that when k = 2 we have two possibilities: ei-
ther C and C 0 are tangent at their two intersection points q1 and q2, or they intersect
transversally at q2 and with multiplicity three at q1(we denote this last case by X 0

20).

X
10

X
20

X
20

X
30

X
40‘
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Case 2. If 5 contains one vertex, say p1, then we can suppose that C is a smooth
conic while C 0 := 5 \ Q1 has (at least) a singular point at the vertex p1 2 5.
The intersection of C and C 0 consists of k points, for k 2 {1, 2, 3, 4} and we obtain
the types X11, X 0

21, X31, X41. As before, when k = 2 we have two possibilities.
Either C 0 is the union of two distinct lines and each of them is tangent to the conic
C , or C 0 is a double line (which means that 5 is tangent to Q1) intersecting C in
two distinct points (we denote this last case by X 0

21).

p
1

p
1

p
1

p
1

p
1

X
11

X
21

X
21

X
31

X
41‘

Case 3. If 5 contains two vertices, say p1 and p2, then we can suppose that both
C and C 0 are singular and they can not intersect at the vertices, since Y is smooth,
so that k can be either 1, 2 or 4. Moreover, when k = 1 we deduce that the plane
5 is contained in the tangent space to Y at the only intersection point q1. We are
not going to consider this case since it does not give an elliptic fibration, being
all the fibers singular rational curves. Hence we have only the two types X22 and
X42.

p
1

p
2

p
1

p
2

X
22

X
42

Case 4. Finally, observe that if 5 contains three vertices, say p1, p2 and p3, then
it can intersect Y only at four distinct points (as it follows from (3.8)), giving case
X43.

p
1

p
2

p
3

X
43
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Remark 3.2. We provide here an example of defining equations for 5 for each of
the following five types:

X43 :5 = V (x4, x5, . . . , xn+3)
X22 :5 = V (x3 � x4, x5, . . . , xn+3)

X21 :5 = V
⇣p

↵4 + ↵5 · x2 �
p

↵4 + ↵5 � 2 · x3, x4 � x5, . . . , xn+3
⌘

X11 :5 = V (x1 � ↵4 x2 + (↵4 � 1) x3, x5, . . . , xn+3)
X10 : 5 = V (2x1 � (↵4 + ↵5)x2 + (↵4 + ↵5 � 2)x3, x4 � x5, x6, . . . , xn+3),

where ↵4 + ↵5 6= 0, 2 in cases X21 and X10.

Remark 3.3. We recall that if Y = Q \ Q0 ✓ Pn+2 and n � 3, then through any
point of Y we have at least one line of Y . So let us fix a point qi 2 Y and a line
` of Y , passing through this point, and let us describe the fiber of ⇡ : X ! Pn�1
containing the strict transform of that line. The image of this fiber inside Y is the
curve obtained by intersecting Y with the P3 spanned by the plane 5 and the line
`. This can also be described as the base locus of the pencil of quadric surfaces
obtained by restricting 3 to the P3 that we are considering. Observe that any time
we have a vertex pi in 5, the intersection of Qi with the P3 is a quadric cone
containing a line not passing through pi . Hence it must be the union of two planes
intersecting along a line passing through pi . Therefore, in Case 1 the image of the
fiber inside Y is obtained by intersecting two smooth quadric surfaces sharing a line
and hence it is the union of that line and a rational normal cubic, intersecting in
two points. In Case 2 the base locus is the intersection of a smooth quadric with a
reducible one and then it is the union of two lines and a smooth conic. In Case 3
the base locus is the intersection of two reducible quadrics and hence it consists of
four lines. Finally, in Case 4 we have the base locus of a pencil containing three
reducible quadrics. Thus, after a possible renaming of the coordinates, the pencil
has the form (x21 � x22) + t (x22 � x23). All the quadrics in this pencil are singular
at the point p = (1, 1, 1, 1) and the base locus of the pencil consists of four lines
intersecting at the point p. We remark that in this last case the corresponding fiber
in X is the union of four rational components passing through one point and hence
it is a type that does not appear in the Kodaira’s list of singular fibers for elliptic
surfaces. As a consequence this fibre is not contained in any nonsingular elliptic
surface inside X .

4. Mordell-Weil groups

The main result of this section is the proof of Theorem 1.1 but we postpone it
to the end of the section and we begin by studying the prime vertical classes
of all the del Pezzo elliptic fibrations of degree d  4, that is classes of prime
divisors whose support does not dominate Pn�1. If d = 1, then Pic(X) has rank
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two and is generated by the class E1 of the exceptional divisor together with F =
H � E1.

When d = 2, recall that there is a double covering ' : Y ! Pn branched
along a smooth quartic hypersurface 6 and � : X ! Y is the blowup of Y at two
points q1, q2 exchanged by the covering involution. If D is a prime vertical class
of X whose class is not a multiple of F , then either D is a prime component of
the exceptional locus of � , or by (3.3) '(D) is covered by bitangent lines to 6.
Therefore in case X11 there are no vertical classes other than multiples of F .

In case XSS we have the two vertical classes 2H � 4E1, 2H � 4E2, and as-
suming that Y has the equation (3.6), they are the classes of the strict transforms of
V (xn+2 � h) and V (xn+2 + h), respectively.

Finally, in case X2, E1 � E2 and H � 2E1 are the only prime vertical classes.
The case d = 3 has already been studied in [7] and we refer to that paper for

the classification of the prime vertical classes.
For d = 4, if D is a prime vertical class, then D is properly contained in the

support of ⇡⇤⇡(D). Let � be a general fiber of ⇡ over a point q 2 ⇡(D) and let us
denote by C the image � (� ) in Y . Then either (j) C is an irreducible rational curve
or (jj) it contains lines and/or conics.

In case (j), C is singular at one of the points qi 2 5 \ Y and the union of these
curves gives a prime vertical class having class H � 2Ei � E j � Ek . In order to
obtain the class of a fiber we have to add some exceptional prime vertical classes of
the form Ei � Ei+1 for some i .

In case (jj), observe that by [5, Section 2.2] through any point of Y there is
only a (n � 3)-dimensional family of lines and hence they can not fill up a divisor.
Therefore the curve C must contain a conic through two points qi and q j of5 \ Y ,
possibly infinitely near. By Proposition 3.1 the line hqi , q j i passes through one ver-
tex pk and hence pk 2 5. In this case the class of one of the irreducible components
of ⇡⇤⇡(D) is of the form H � 2Ei � 2E j . For instance, in case X31 we can write
Y = Q1 \ Q, where Q1 is a cone with vertex p1 2 5 and Q is a smooth quadric.
Furthermore, Q intersects5 along a smooth conic C while Q1 \ 5 is the union of
two generatrices and one of them is tangent to C at q1 while the other one intersects
C in q3 and q4. Therefore we have the prime vertical class H � 2E1 � 2E2 corre-
sponding to the conics through q1 and whose tangent line at q1 is the line hq1, p1i
and the prime vertical class H � 2E3 � 2E4 corresponding to the conics through
q3 and q4. Observe that the sum of these classes gives twice a fiber. Moreover, we
also have the prime vertical class E1 � E2 sitting inside the exceptional locus and
the prime vertical class H � 2E1 � E3 � E4 which is spanned by the union of the
strict transforms of the singular rational quartic curves of Y obtained intersecting it
with a hyperplane tangent to Y at q1.

We summarise the above observations in the following:

Proposition 4.1. Let ⇡ : X ! Pn�1 be a del Pezzo elliptic fibration of degree
d  4 and dimension n � 3. Then for each type of X the sections and the vertical
classes are as follows:
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Table 4.1. Sections and prime vertical classes of del Pezzo elliptic fibrations with d  4.

d Type Sections Prime vertical classes (omitting F)
1 X1 E1
2 X11 E1, E2

XSS E1, E2 2H � 4E1, 2H � 4E2
X2 E2 E1 � E2, H � 2E1

3 X111 E1, E2, E3
XS11 E1, E2, E3 H � 3E1, 2H � 3E2 � 3E3
XSSS E1, E2, E3 H � 3E1, H � 3E2, H � 3E3
X12 E1, E3 E2 � E3, H � E1 � 2E2
XS2 E1, E3 H�3E1, 2H�3E2�3E3, E2�E3, H�E1�2E2
X3 E3 E1 � E2, E2 � E3, H � 2E1 � E2
XS E3 E1 � E2, E2 � E3, H � 3E1

4 X40 E1, E2, E3, E4
X41 E1, E2, E3, E4 H � 2E1 � 2E2, H � 2E3 � 2E4
X42 E1, E2, E3, E4 H � 2E1 � 2E2, H � 2E3 � 2E4

H � 2E1 � 2E3, H � 2E2 � 2E4
X43 E1, E2, E3, E4 H � 2Ei � 2E j , 1  i < j  4
X30 E2, E3, E4 E1 � E2, H � 2E1 � E3 � E4
X31 E2, E3, E4 H � 2E1 � 2E2, H � 2E3 � 2E4

E1 � E2, H � 2E1 � E3 � E4
X20 E3, E4 E1 � E3, H � 2E1 � E2 � E4, E2 � E4, H � E1 �

2E2 � E3
X 0
20 E3, E4 E1 � E3, E3 � E4, H � 2E1 � E2 � E3

X21 E3, E4 E1� E3, E2� E4, H �2E1�2E3, H �2E2�2E4
H � 2E1 � E2 � E4, H � E1 � 2E2 � E3

X 0
21 E3, E4 E1 � E3, E2 � E4, H � 2E1 � E2 � E4, H � E1 �

2E2 � E3
X22 E3, E4 H � 2E1 � 2E3, H � 2E2 � 2E4

E1 � E3, E2 � E4, H � 2E1 � 2E2
X10 E4 E1 � E2, E2 � E3, E3 � E4, H � 2E1 � E2 � E3
X11 E4 E1 � E2, E2 � E3, E3 � E4, H � 2E1 � 2E2

Proof of Theorem 1.1. Recall that the Mordell-Weil group of the elliptic fibration
⇡ : X ! Pn�1 is the group of rational sections of ⇡ or, equivalently, the group of
K = C(Pn�1)-rational points X⌘(K ) of the generic fiber X⌘ of ⇡ once we choose
one of such points O as an origin for the group law. Let T be the subgroup of
Pic(X) generated by the prime vertical classes and by the class of the section O .
There is an exact sequence [12, Section 3.3]:

0 // T // Pic(X) // X⌘(K ) // 0. (4.1)

In degree d, the Picard group of X is free of rank d + 1, generated by the classes
H, E1, . . . , Ed . Observe that if F is defined as in (2.1), then hF, Edi ✓ T holds
and by Proposition 4.1 and the sequence (4.1) we get the statement.
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5. Cones

The aim of this section is to provide a description of the nef, effective and moving
cone of a del Pezzo elliptic variety X in order to prove Theorem 1.2. We will show
that the moving cone Mov(X) is a finite union of polyhedral chambers, each of
which is the pullback of the semiample cone of a small modification of X . Accord-
ing to Hu and Keel theorem [8, Proposition 2.9] this decomposition will provide a
proof for Theorem 1.2.

5.1. The nef cones

Given a subset I of {1, . . . , d}, in what follows we denote by FI the divisor H �P
i2I Ei . Moreover we denote by ei the class of a line in the exceptional divisor Ei

and by h the class of the preimage of a degree one curve of Y .

Theorem 5.1. Let ⇡ : X ! Pn�1 be a del Pezzo elliptic fibration with n � 3. Then
the extremal rays of the nef cone Nef(X) are all the FI such that I ✓ {1, . . . , d}
and (FI , V ) � 0 for each exceptional vertical class V .

Proof. Let us consider the subcone C of the Mori cone of X generated by the fol-
lowing classes:

• ei such that Ei is a section;
• ei � e j such that Ei � E j is a prime vertical divisor;
• h � ei for each qi 2 Y .

Let D := ↵H �
P
mi Ei be a class in the dual C⇤. Then we have the following

inequalities: mi � 0 8i , mi � m j if the point q j lies on the exceptional divisor
of the blowing-up at qi and finally ↵ � mi 8i . Let us write {m1, . . . ,md} =
{µ1, . . . , µr }, where r  d and 0 = µ0  µ1 < · · · < µr , and let us denote by
Ii := { j | m j � µi }, for each i = 1, . . . , r . Then we can write

D = (↵ � µr )H +
rX

i=1
(µi � µi�1)FIi ,

where the FIi are nef and their product with any effective E j � Ek is non negative.
In order to conclude the proof we need to show that these FI are extremal rays of
the nef cone.

Let us first suppose that X is obtained by blowing up d distinct points on Y .
In this case, we have to consider all the FI as I varies in the subsets of {1, . . . , d},
and by induction on d it can be proved that they are vertices of a d-dimensional
hyper-cube. In particular, they are extremal rays of the cone they generate.

In addition, we can also infer that no FI lies in the convex hull of the remaining
and hence the general case follows.
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5.2. The effective and moving cones

We now restrict our attention to del Pezzo elliptic fibrations of degree d  4 and
having finite Mordell-Weil group, proving Theorem 1.3.

Proof of Theorem 1.3. Let us consider, for each del Pezzo elliptic variety X the
coneM of PicQ(X) generated by the vertical classes and the sections of ⇡ . Let
%1, . . . , %n be the extremal rays ofM. We claim that the following inclusions hold

n\

i=1
cone(%1, . . . ,

_
%i , . . . , %n) ✓ Mov(X) ✓ Eff(X)_ ✓M_. (5.1)

In order to prove the first inclusion let us denote by Di a prime divisor whose class
generates the ray ⇢i and let D be a divisor whose class is in the above intersection.
Observe that the support of D is contained in the union of D1, . . . , Dn and more-
over [D] 2 cone(%1, . . . ,

_
%i , . . . , %n) implies that, up to multiples, D is linearly

equivalent to an effective divisor that do not contain Di in its support. Since the
above condition is true for any i = 1, . . . , n, we conclude that the stable base locus
of |D| does not contain any Di , for i = 1, . . . , n, and hence it can not be diviso-
rial. In particular [D] is a movable class. The second inclusion is a consequence
of Proposition 2.2 while the last one follows fromM ✓ Eff(X), so that the claim
holds. Now the proof goes as follows. If the degree d is at most three, then the
Cox ring is known (Theorem 6.1 for degree one or two and [7] for degree three)
and a direct computation shows that the rays ofM_ are movable. When d = 4 and
X is of type X43, X22, X21, the Test function presented in the appendix shows that
the first cone and the last one in (5.1) are equal and hence the two assertions of the
theorem follow. In the remaining cases, we are going to check that the rays ofM_

are movable.
If X is of type X11, looking at the Magma session in the appendix we see that

the only class we have to check is H � 2E1 (all the other rays ofM_ being nef
classes). We are going to see that the base locus of the linear system |H � 2E1| has
codimension two. Indeed, this linear system corresponds on Y to the linear system
of hyperplane sections containing the tangent space at q1, whose base locus is the
union of the lines passing through q1. When we blow up q1, the strict transforms
of these lines intersect E1 along a subvariety of codimension two. Observe that the
second point q2 that we blow up do not lie on this subvariety, since otherwise the
plane 5 would intersect Y along a line. Then the base locus of |H � 2E1| can not
be divisorial.

In case X10, looking again at the Magma session in the appendix we see that
the only classes we have to check are H � 2E1 and 3H � 4E1� 4E2. The first one
can be done as in case X11 while the second one can be obtained as the image of H
via the Geiser involution described in Subsection 5.3, and hence it is movable.

As a consequence of Theorem 1.3, if X is a del Pezzo elliptic variety of degree
d  4 such that theMordell-Weil group of ⇡ : X ! Pn�1 is finite, then the effective
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cone Eff(X) can be read from Table 4.1. The graphs of the quadratic form on the
primitive generators of the extremal rays of Eff(X) are listed in Theorem 1.3.

Let us consider an example in which the Mordell-Weil group of the fibration is
not finite and the moving cone is the union of infinitely many chambers.

When the elliptic fibration has degree d = 2 and type X11, we have seen that
the Mordell-Weil group is h� i ⇠= Z. The action of � on the Picard group of X , with
respect to the basis B := (H � E1 � E2, E2 � E1, E1), is given by the following
matrix 0

@
1 2 0
0 1 1
0 0 1

1

A .

The cone � k(Nef(X)) is generated by the classes corresponding to the columns of
the matrix 0

@
1 k2 + k + 1 k2 � k + 1 2k2 + 1
0 k + 1 k 2k + 1
0 1 1 2

1

A ,

with respect to the basis B. We claim that the classes � k(H) are extremal rays of
the moving cone and generate it, so that the following equality holds

Mov(X) =
[

k2Z
� k(Nef(X)).

First of all, observe that for each k 2 Z the cones � k(Nef(X)) and � k+1(Nef(X))
share the two-dimensional face generated by F and � k(H � E1) = � k+1(H � E2).
Moreover � k(H) + � k+1(H) = 4� k(H � E1), so that the union of the cones
� k(Nef(X)) is a convex cone and the classes � k(H � Ei ), i = 1, 2, are on its
boundary but they are not extremal rays. Now observe that the right hand side cone
is contained in Mov(X).

H – E1

H – E2

H F
s(Nef(X))

Nef(X)

Finally, since the property of lying on the boundary of Mov(X) is preserved by � k ,
we only have to prove that the two faces hH, H � Ei i, for i = 1, 2, are on the
boundary of the moving cone Mov(X). We conclude observing that if we move
outside from Nef(X) along a direction orthogonal to the face hH, H � E1i (respec-
tively hH, H � E2i) we obtain classes containing E2 (respectively E1) in the stable
base locus.
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5.3. Generalized Bertini and Geiser involutions

We consider here a generalization of the classical Bertini and Geiser involutions
to blowups of del Pezzo varieties. Let Y be a degree d � 3 del Pezzo variety
and let Z ✓ Y be a zero-dimensional subscheme such that dimhZi = l(Z) � 1,
where l(Z) is the length of Z , and the intersection of n � 1 general elements of
LZ := |OY (1) ⌦ IZ | is a smooth curve of genus-one. We denote by � : YZ ! Y
the blowup of Y along Z as in Section 2.

If l(Z) = d � 2, then the general (d � 2)-dimensional linear space containing
Z intersects Y \ Z at two distinct points. The birational involution obtained by
exchanging these two points induces a birational involution �G on the blowup YZ
of Y at Z . We call this �G a generalized Geiser involution. Observe that a general
(d � 1)-dimensional linear space 3 containing Z cuts on Y a genus-one curve C ,
preserved by the Geiser involution. The quotient of C by the induced involution
is the P1 given by the pencil of hyperplanes in 3 containing Z . In particular �G
restricts to an hyperelliptic involution on C .

When l(Z) = d�1, denote by F the divisor on YZ defined as before. The base
locus of the linear system |F | consists of one point q while |2F | defines a morphism
'. Since Fn = 1, we have that Fn�1 is rationally equivalent to an elliptic curve
C passing through q and the restriction '|C is a double covering of a line passing
through the point p := '(q). Hence the image '(YZ ) is a cone V . If we denote by
E the exceptional divisor corresponding to the last blowup of � , we have that the
restriction '|E is the 2-veronese embedding v2 of Pn�1. We conclude that V is a
cone over v2(Pn�1) and ' induces a birational involution �B on YZ that we call a
generalized Bertini involution. We remark that if X is the del Pezzo elliptic variety
obtained by blowing up YZ at q, then �B induces on X the hyperelliptic involution
with respect to the origin given by the exceptional divisor.
Remark 5.2. If Y has degree four and the line hZi does not contain any vertex
pi , then the indeterminacy locus of the corresponding Geiser involution �G has
codimension two. Moreover, it lifts to an isomorphism in codimension one for the
elliptic varieties of type X21 and X10. The action on the Picard group of X in each
case is given by the following matrices respectively

�21 =

0

B
B
B
@

3 1 1 0 0
�4 �2 �1 0 0
�4 �1 �2 0 0
0 0 0 0 1
0 0 0 1 0

1

C
C
C
A

�10 =

0

B
B
B
@

3 1 1 0 0
�4 �1 �2 0 0
�4 �2 �1 0 0
0 0 0 1 0
0 0 0 0 1

1

C
C
C
A

.

To prove this, we first claim that the lifted birational map preserves the elliptic
fibration ⇡ and thus it is a flop. Indeed, if f is a fibre of ⇡ whose image C in Y is
cut out by a three-dimensional linear space L and we fix a point y 2 C , then the
plane spanned by y and hZi is contained in L and thus it intersects C at a fourth
point, so that �( f ) = f , which proves the claim. Since � preserves the fibration ⇡ ,
its pull-back �⇤ must preserve the set of sections of ⇡ and the set of vertical classes
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of X . A direct calculation shows that the representative matrix for �⇤ with respect
to the basis (H, E1, . . . , E4) is one of the above in each case.

As we remarked before, the Geiser involution induces an hyperelliptic involu-
tion on a general fiber and thus on the generic fiber as well. Moreover �10 has a
fixed point on the generic fiber, defined over the function field C(Pn�1), which cor-
responds to the only section E4. On the other hand �21 has no fixed points defined
over C(Pn�1) since it exchanges the two sections E3 and E4.

5.4. Mori chambers

Let X be a del Pezzo elliptic variety of degree four with finite Mordell-Weil group.
We provide here the Mori chamber decomposition of the moving cone Mov(X) of
X . In the following proposition, we will denote by N the nef cone of X and by

Ni := cone({FI : i 2 I and FI 2 N } [ {H � 2Ei }).

Proposition 5.3. Let X be a del Pezzo elliptic variety of degree four such that the
corresponding elliptic fibration has finite Mordell-Weil group. Then the Mori cham-
ber decomposition ofMov(X) is given in the following table.

Table 5.1.

Type of X Cones

X43 N , N1, N2, N3, N4
X22 N , N1, N2
X21 N , N1, N2, � ⇤

21(N ), � ⇤
21(N1), �

⇤
21(N2)

X11 N , N1
X10 N , N1, � ⇤

10(N ), � ⇤
10(N1)

Proof. Let X ! Xi be the flop of the class h � ei of the strict transform C of a
line through the point qi 2 Y . Note that such a flop exists by [5]. We show that the
nef cone of Xi is Ni and then observe that the union of the cones in the table in the
statement is Mov(X) for each type. To prove the claim, we begin by showing that
the primitive generators of the extremal rays of the cone Ni are nef in Xi . Observe
that each FI 2 Ni is nef in both X and Xi since FI · (h � ei ) = 0 by our definition
of Ni . Hence we only have to check that also H � 2Ei is nef in Xi . Since H � 2Ei
is the pull-back of a class on the blowup eY of Y at qi , it is enough to prove the claim
on eY . By Lemma 6.2 the Cox ring of eY is finitely generated and the moving cone
decomposes as follows:

Mov(eY ) = cone(H, H � Ei ) [ cone(H � Ei , H � 2Ei ).

Thus, after flopping h � ei the class H � 2Ei becomes nef as claimed so that we
have the inclusion Ni ✓ Nef(Xi ). To prove that this is indeed an equality, we show
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that the extremal rays of the dual cone of Ni are classes of effective curves of Xi .
To this aim we make use of [5, Lemma 4.1] which asserts that if 0 is a curve of X
which meets C transversally at k points, and no other effective curve of class h�ei ,
then the flop image 00 of 0 has class

[00] = [0] + k[C]. (5.2)

By a direct calculation we see that the extremal rays of the dual cone of Ni are the
following (here we list only the case i = 1, being the remaining cases analogous):

Table 5.2.

Type Extremal rays Extremal rays
of the Mori cone of the dual cone of N1

X43 e1, e2, e3, e4 �h + e1, e2, e3, e4,
h � e1, h � e2, h � e3, h � e4 2h�e1�e2, 2h�e1�e3, 2h�e1�e4

X22, X21 e2, e4 �h + e1, e2, e4
h � e1, h � e3 2h � e1 � e2, 2h � e1 � e3
e1 � e2, e3 � e4 e3 � e4

X11, X10 h � e1, e4, e1 � e2 �h + e1, e4, e2 � e3,
e2 � e3, e3 � e4 e3 � e4, 2h � e1 � e2

We are going to show that any class on the right column is effective since it can
be obtained, by means of (5.2), from a curve of X having the same class and not
intersecting any curve with class h � e1. The assertion is straightforward for the
classes ei and ei � ei+1, with i > 1 and hence in order to conclude we have to
consider the case in which 0 is a curve such that [0] = 2h � e1 � ei , with i > 1.
We can assume that 0 is the strict transform of a smooth conic C of Y passing
through q1 and qi (possibly infinitely near to q1). The tangent line to C at q1 can
not be contained in Y since otherwise the plane spanned by C and this line would be
contained into each quadric of the pencil and thus in Y . This gives a contradiction,
since the line through q1 and qi is not contained in Y by hypothesis. Therefore any
line of Y through q1 is not tangent to C at this point so that their strict transforms
do not intersect.

We conclude that N1 = Nef(X1) and anagously we can obtain the same equal-
ity for i > 1, proving the assertion for X43, X22 and X11 (since in these cases the
union of the cones Ni is the whole moving cone).

In case X = X21 the chamber � ⇤
21(N ) is the pull-back of the nef cone N =

Nef(X) via the flop �21. Since �21 is the generator of the Mordell-Weil group of
⇡ , we deduce that �21(X) is a del Pezzo elliptic variety of the same type. Thus
each chamber � ⇤

21(Ni ), for i = 1, 2, is a flop image of � ⇤
21(N ) exactly as Ni is a

flop image of N . In particular the chamber � ⇤
21(Ni ) is generated by finitely many

semiample classes of �21(Xi ).
Finally, in case X = X10 we proceed as we did for X21, considering �10 instead

of �21.
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Proof of Theorem 1.2. By [7, Lemma 3.5] (1) implies (2), so let us suppose that the
Mordell-Weil group of ⇡ is finite. If d = 1 or 2, then we conclude by means of
Theorem 6.1, while the case d = 3 has been proved in [7, Theorem 3.6]. Finally,
when d = 4, we observe that by Proposition 5.3, if the Mordell-Weil group of the
fibration is finite, then the moving cone Mov(X) satisfies all the hypotheses of Hu
and Keel theorem [8, Proposition 2.9].

6. Cox rings

In this section we provide a presentation for the Cox rings of the del Pezzo elliptic
varieties of degree d  2. We recall that given a normal projective variety X with
finitely generated Picard group, its Cox ringR(X) can be defined as (see [1])

R(X) =
M

[D]2Pic(X)

H0(X,OX (D)).

We apply [6, Algorithm 5.4] and we will explain all the steps in the algorithm for
the convenience of the reader. Let Y1 be a smooth projective variety with finitely
generated Cox ring R1, which admits a presentation R1 = C[T1, . . . , Tr1]/I1. Note
that R1 is K1-graded, where K1 = Cl(Y1). Define Y 1 = Spec(R1) and let bY1 ✓ Y 1
be the characteristic space of Y1 with characteristic map p : bY1 ! Y1. Let Y2 be the
blowup of Y1 at a point q 2 Y1. Let I ✓ R1 be the ideal of p�1(q) in Y 1, and let
J ✓ R1 be the irrelevant ideal, i.e. the ideal of Y 1 \ bY1. Then the Cox ring of Y2 is
isomorphic to the extended saturated Rees algebra:

R1[I ]sat =
X

m2Z
(Im : J1)t�m,

where Im = R1 if m  0. An element of Im : J1 defines a hypersurface of Y1
which has multiplicity at least m at q. We choose a finite set of elements gi 2 Imi :
J1, with 1  i  k and form the subalgebra A = R1[g1t�m1, . . . , gkt�mk , t] of
R1[I ]sat, which admits a presentation C[T1, . . . , Tr1+k, S]/I2, where

I2 =
⌦
Tr1+1S

m1 � g1, . . . , Tr1+k S
mk � gk

↵
+ I1 : hSi1. (6.1)

The test to verify the equality A = R1[I ]sat is to check whether the inequality

dim I2 + hSi > dim I2 + hS, T⌫i, (6.2)

holds, where T⌫ is the product of all the Ti ’s, for 1  i  r1, such that Ti does not
vanish identically at p�1(q).

6.1. Degree one and two

In this subsection we provide a presentation for the Cox rings of the del Pezzo
elliptic varieties of degree at most two with finite Mordell-Weil group. Our main
result is the following.
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Theorem 6.1. Let ⇡ : X ! Pn�1 be a del Pezzo elliptic fibration of degree d  2
having finite Mordell-Weil group. Then the Cox ring of X and its grading matrix
are listed in the following table:

Table 6.1.

Type Cox ring Grading matrix

X1
C[T1, . . . , Tn+2, S]

hT 21 � T 32 + T2 f̃4S4 + f̃6S6i


3 2 1 . . . 1 0
0 0 �1 . . . �1 1

�

f̃d := fd(T1, T2, T3S, . . . , Tn+2S)

XSS
C[T1, . . . , Tn+3, S1, S2]

hTn+2S41 � Tn+3S42 + 2h̃, Tn+2Tn+3 � g̃i

" 1 . . . 1 1 2 2 0 0
�1 . . . �1 0 �4 0 1 0
�1 . . . �1 0 0 �4 0 1

#

h̃ := h(T1S1S2, . . . , TnS1S2, Tn+1),
g̃ := g(T1, . . . , Tn)

X2
C[T1, . . . , Tn+2, S1, S2]
hT 2n+2 � S22 f̃ � TnT 3n+1i

" 1 . . . 1 1 1 2 0 0
�1 . . . �1 �2 0 �1 1 0
�1 . . . �1 0 0 0 �1 1

#

f̃ :=
f (T1S1S22 , . . . , Tn�1S1S

2
2 , TnS

2
1 S
2
2 , Tn+1)

S21 S
2
2

Proof. In order to prove the case X1, let Y1 be the del Pezzo variety given by the
polynomial (3.1) and let q 2 Y1 be the point of coordinates (1, 1, 0, . . . , 0). The
ring R1 equals C[T1, . . . , Tn+2]/I1, where I1 is the principal ideal generated by
the polynomial (3.1). We take I, J ✓ R1 as before and we choose the following
homogenous elements g1, . . . , gn:

T3, . . . , Tn+2 2 I

i.e. for all of them we have mi = 1. Observe that the saturated ideal (6.1) is

I2 = hTn+2+i S � gi : 1  i  ni + I1

since, after applying the substitution T2+i = Tn+2+i S for each i = 1, . . . , n, the
resulting polynomial T 21 � T 32 + T2 f̃4S4 + f̃6S6 is not divisible by S. Finally,
according to (6.2), we need to show that

dim I2 + hSi > dim I2 + hS, T1T2i,

and this is easily checked, being I1 a principal ideal. We conclude that the ring
C[T1, . . . , T2n+2, S]/I2 is isomorphic to the the Cox ring of the blowup X1 of Y at
q. After eliminating the fake linear relations and renaming the variables, we get the
claimed presentation for the Cox ring.
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We now prove the case XSS . Let Y1 be the del Pezzo variety given by the poly-
nomial (3.6) and let q 2 Y1 be the point of coordinates (0, . . . , 0, 1, 1). The ring R1
equals C[T1, . . . , Tn+2]/I1, where I1 is the principal ideal generated by the poly-
nomial (3.6). We take I, J ✓ R1 as before and choose the following homogeneous
elements g1, . . . , gn+1:

T1, . . . , Tn 2 I, Tn+2 � h 2
�
I 4 : J1�

,

that is the first n sections have mi = 1, while mn+1 = 4. Observe that the ideal
in (6.1) is

I2 =
⌦
Tn+2+i Smi

1 � gi : 1  i  n + 1
↵
+

⌦
T 22n+3S

4
1 + 2 h0T2n+3 � g0↵,

where h0 = h(Tn+3S1, . . . , T2n+2S1, Tn+1) and g0 = g(Tn+3, . . . , T2n+2). Accord-
ing to (6.2), we can easily check that the following inequality holds:

dim I2 + hS1i > dim I2 + hS1, Tn+1Tn+2i.

Thus, after eliminating the fake linear relations from I2 and renaming the variables,
we can conclude that the Cox ring and the grading matrix of the blowup Y2 of Y1 at
q are the following

R2 =
C[T1, . . . , Tn+2, S1]⌦

T 2n+2S
4
1 + 2h00Tn+2 � g00

↵


1 . . . 1 1 2 0
�1 . . . �1 0 �4 1

�

where h00 = h(T1S1, . . . , TnS1, Tn+1) and g00 = g(T1, . . . , Tn). The irrelevant ideal
is J2 = hT1, . . . , Tn, Tn+2i \ hTn+1, S1i. We now repeat the procedure blowing-up
Y2 at the point q 0

2 which lies over q2 = (0, . . . , 0, 1,�1) 2 Y . Recall that there is a
C⇤-equivariant embedding of total coordinate spaces

Y 1 ! Y2 (T1, . . . , Tn+2) ! (T1, . . . , Tn+1, Tn+2 � h, 1)

which induces the birational map Y1 99K Y2. The image of q2 is the point of
homogeneous coordinates q 0

2 = (0, . . . , 0, 1,�2, 1). We choose the following ho-
mogenous elements g1, . . . , gn+2:

T1, . . . , Tn, 2T 2n+1 + Tn+2S41 2 I, Tn+2S41 + 2h00 2
�
I 4 : J1�

,

that is the first n + 1 sections have mi = 1, while mn+2 = 4. The ideal in (6.1) is

I3 =
⌦
Tn+3+i Smi

2 � gi : 1  i  n + 2
↵
+

⌦
T 2n+2S

4
1 + 2Tn+2h000 � S42g

000↵

where h000 = h(Tn+4S1S2, . . . , T2n+3S1S2, Tn+1) and g000 = g(Tn+4, . . . , T2n+3).
After eliminating the fake linear relations from the above ideal and renaming the
variables, we get the statement for XSS .

Finally, let us prove the statement for X2. Let Y1 be the del Pezzo variety given
by x2n+2 � f , where f is the polynomial appearing in (3.7), and let q 2 Y1 be the
point of coordinates (0, . . . , 0, 1, 0). After a linear change of coordinates we can
suppose that f1 = xn . The ring R1 equals C[T1, . . . , Tn+2]/I1, where I1 is the
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principal ideal generated by the polynomial of Y1. We take I, J ✓ R1 as before and
choose the following homogenous elements g1, . . . , gn+1:

T1, . . . , Tn�1, Tn+2 2 I, Tn 2
�
I 2 : J1�

,

that is the first n sections have mi = 1, while mn+1 = 2. Observe that the ideal
in (6.1) is

I2 =
⌦
Tn+2+i Sdi � gi : 1  i  n + 1

↵
+

⌦
T 22n+2 � f 0 � T2n+3T 3n+1

↵

with f 0 = S�2 f (Tn+3S1, . . . , T2n+1S, TnS2, Tn+1). According to (6.2) it can be
easily checked that

dim I2 + hSi > dim I2 + hS, Tn+1i.

Thus, after eliminating the fake linear relations from I2 and renaming the variables,
we conclude that the Cox ring and the grading matrix of the blowup Y2 of Y1 at q
are the following

R2 =
C[T1, . . . , Tn+2, S]⌦
T 2n+2 � f 00 � TnT 3n+1

↵


1 . . . 1 1 1 2 0
�1 . . . �1 �2 0 �1 1

�

with f 00 = S�2 f (T1S1, . . . , Tn�1S, TnS2, Tn+1). The irrelevant ideal of R2 is
J2 = hT1, . . . , Tn�1, Tn+2i \ hTn, Si. Now repeat the procedure by blowing up
Y2 at the point q 0

2 = (0, . . . , 0, 1, 1, 1, 0) which is the invariant point with respect
to the lifted involution (T1, . . . , Tn+2, S) 7! (T1, . . . , Tn+1,�Tn+2, S), and it cor-
responds to the generator of the kernel of the differential d'q . We choose the fol-
lowing homogenous elements g1, . . . , gn:

T1, . . . , Tn�1, S 2 I,

i.e. mi = 1 for all the sections. The ideal in (6.1) is

I3 =
⌦
Tn+3+i S2 � gi : 1  i  n

↵
+

⌦
T 2n+2 � f̃ � TnT 3n+1

↵

where f̃ = T�2
2n+3S

�2
2 f 00(Tn+4T2n+3S22 , . . . , TnT

2
2n+3S

2
2 , Tn+1). After eliminating

the fake linear relations from the above ideal and renaming the variables, we obtain
the statement for X2.

6.2. Degree four

In this last subsection we provide the following presentation for the Cox ring of the
blowup of a del Pezzo variety of degree four at a point. This is used in the proof of
Proposition 5.3.

Lemma 6.2. Let Y be a smooth complete intersection of two quadrics of Pn+2.
After applying a linear change of coordinates, the ideal of Y is generated by x2x3�
x1x2+ f (x4, . . . , xn+3) and x2x3� x1x3+ g(x4, . . . , xn+3). The blowup eY of Y at
the point q = (1, 0, . . . , 0) 2 Y has the following Cox ring and grading matrix

C[T1, . . . , Tn+3, S]⌦
T2T3S2 � T1T2 + f, T2T3S2 � T1T3 + g

↵

1 1 1 1 . . . 1 0
0 �2 �2 �1 . . . �1 1

�

respectively, where f = f (T4, . . . , Tn+3) and g = g(T4, . . . , Tn+3).
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Proof. After applying a linear change of coordinates, we can assume that q is a
point of Y = Q \ Q0, where Q is singular at (1, 1, 0, 0, . . . , 0) and Q0 is singular
at (1, 0, 1, 0, . . . , 0), and that the tangent hyperplanes to Q and Q0 at q are V (T2)
and V (T3), respectively. This proves the first claim.

To prove the second statement, we take R1 to be C[T1, . . . , Tn+3]/I1, where
I1 is the ideal of Y , and we apply [6, Algorithm 5.4]. We take I, J ✓ R1 as before
and choose the following homogenous elements g1, . . . , gn+2:

T4, . . . , Tn+3 2 I, T2, T3 2
�
I 2 : J1�

,

that is the first n sections have mi = 1, while mn+1 = mn+2 = 2. The ideal in (6.1)
is

I2 =
⌦
Tn+3+i Smi � gi : 1  i  n + 2

↵
+

+
⌦
T2n+4T2n+5S2 � T1T2n+4 + f̃ , T2n+4T2n+5S2 � T1T2n+5 + g̃

↵
,

where f̃ := f (Tn+4, . . . , T2n+3) and g̃ := g(Tn+4, . . . , T2n+3). According to (6.2)
it can be easily checked that

dim I2 + hSi > dim I2 + hS, T1i.

After eliminating the fake linear relations from I2 and renaming the variables, we
get the second statement.

Appendix

In this appendix we provide some Magma programs used in the proof of Theo-
rem 1.3. First of all we describe the function Test that verifies if the inclusions
in (5.1) are in fact equalities.'

&

$

%

L := ToricLattice(5);
H := Basis(L)[1];
E := Basis(L)[2..5];
D := DiagonalMatrix([4,�1,�1,�1,�1]);

Test := function(C)
DualC := Cone([L!r : r in Rays(Dual(C*D))]);
CapC := &meet[Cone(Remove(Rays(C),i)) : i in [1..#Rays(C)]];
return DualC eq CapC;

end function;

We now proceed to use the above function Test to check that (5.1) are equalities
for X43, X22, X21.
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'

&

$

%

C43 := Cone(E[1..4] cat [H-2*E[i]-2*E[j] : i,j in [1..4] — i lt j]);
C22 := Cone(E[3..4] cat [E[1]-E[3], E[2]-E[4]] cat
[H-2*E[1]-2*E[2], H-2*E[1]-2*E[3], H-2*E[2]-2*E[4]]);

C21 := Cone(E[3..4] cat [E[1]-E[3], E[2]-E[4]] cat
[H-2*E[1]-2*E[3], H-2*E[2]-2*E[4], H-2*E[1]-E[2]-E[4], H-E[1]- 2*E[2]-
E[3]]);

for C in [C43,C22,C21] do Test(C); end for;

Finally we compute the primitive generators of the extremal rays of the dual cone
M_ for X11 and X10.'

&

$

%

> C11 := Cone([E[4],H-2*E[1]-2*E[2]] cat [E[i]-E[i+1] : i in [1..3]]);
> C10 := Cone([E[4],H-2*E[1]-E[2]-E[3]]cat [E[i]-E[i+1]: i in [1..3]]);
> for C in [C11,C10] do
Rays(Cone([L!r : r in Rays(Dual(C*D))]));

end for;
[
(1, -2, 0, 0, 0),
(1, -1, -1, -1, -1),
(1, -1, -1, -1, 0),
(1, -1, -1, 0, 0),
(1, 0, 0, 0, 0)

]
[
(1, -2, 0, 0, 0),
(1, -1, -1, -1, -1),
(1, -1, -1, -1, 0),
(1, 0, 0, 0, 0),
(3, -4, -4, 0, 0)

]
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