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Residue-type indices and holomorphic foliations

ARTURO FERNANDEZ-PEREZ AND ROGERIO MOL

Abstract. We investigate residue-type indices for germs of holomorphic folia-
tions in the plane and characterize second type foliations — those not containing
tangent saddle-nodes in the reduction of singularities — by an expression involving
the Baum-Bott, variation and polar excess indices. These local results are applied
in the study of logarithmic foliations on compact complex surfaces.

Mathematics Subject Classification (2010): 32S65 (primary); 37F75 (sec-
ondary).

1. Introduction

In 1997 M. Brunella [3] proved the following result:

Theorem. Let F be a non-dicritical germ of holomorphic foliation at (C%, p) and
let S denote the union of all its separatrices. If F is a generalized curve foliation
then

BB,(F) =CS,(F,S) and GSV,(F,S) =0.

The foliation F is said to be a generalized curve if there are no saddle-nodes in
its reduction of singularities. This concept was introduced in [4] and delimits a
family of foliations whose topology is closely related to that of their separatrices —
local invariant curves — which in this case are all analytic. In the statement of the
theorem, non-dicritical means that the separatrices are finite in number. Further,
BB, CS and GSV stand for, respectively, the Baum-Bott, the Camacho-Sad and the
Gomez-Mont-Seade-Verjovsky indices.

Generalized curve foliations are part of the broader family of second type fo-
liations, introduced by J.-F. Mattei and E. Salem in [17]. Foliations in this family
may admit saddle-nodes in the reduction of singularities, provided they are not ran-
gent saddle-nodes (Definition 2.1). A second type foliation satisfies the remarkable
property of getting reduced once its set of separatrices — including the formal ones

Work supported by MATH-AmSud Project CNRS/CAPES/Concytec and by Universal/CNPq.

Received March 2, 2017; accepted in revised form November 29, 2017.
Published online September 2019.



1112 ARTURO FERNANDEZ-PEREZ AND ROGERIO MOL

— is desingularized. Recently, second type foliations have been the object of some
works. We should mention [10] — which deals with the “realization problem”, that
is, the existence of foliations with prescribed reduction of singularities and projec-
tive holonomy representations — and [11] — which studies local polar invariants and
applications to the study of the Poincaré problem for foliations. Our main goal
in this article is to give a characterization of second type foliations by means of
residue-type indices, providing a generalization of Brunella’s result.

Our work is strongly based on the notion of balanced set or balanced equation
of separatrices ([10] and Definition 2.3). This is a geometric object formed by a
finite set of separatrices with weights — possibly negative, corresponding to poles —
that, in the non-dicritical case, coincides with the whole separatrix set. A balanced
set of separatrices provides a control of the algebraic multiplicity of the foliation
and, for second type foliations, it actually determines it (Proposition 2.4). In the
text, we will preferably see this object as a divisor of formal curves B — a balanced
divisor of separatrices — having a decomposition B = By — B as a difference of
effective divisors of zeros and poles.

To a germ of foliation F and a finite set of separatrices C — which can contain
purely formal ones — we associate a triplet of residue-type indices: the afore men-
tioned CS-index and GSV-index, along with the variation index Var — that turns out
to be the sum of the two first indices (definitions in [5,12] and [13]; see equation
(3.10) below). We then form a quadruplet of indices by including the polar excess
index A ([11] and Definition 3.1). This one is calculated by means of polar invari-
ants and can be seen as a measure of the existence of saddle-nodes in the reduction
process of F (Theorem 3.2 and Propostion 3.5). All these indices are subject of a
more detailed discussion in Section 3.

Let I,(F, C) denote some index in the quadruplet. In the non-dicritical case,
if C is the curve formed by the complete set of separatrices, the index is said to
be total and is denoted as I,,(F ). We extend the notion of total index to dicritical
foliations, employing a balanced divisor of separatrices B = By — B in place of
the curve C in the following way (Definition 3.4):

I,(F) :=1,(F, By) —1,(F, Bxo).

This definition is particularly well suited to the Var-index and to the A-index, since
both of them are additive in the separatrix set.

The main result of this article is the following:
Theorem I. Let F be a germ of holomorphic foliation at (C2, p). Then F is of
second type if and only if

BB, (F) = Var,(F) + Ap(F),

where BB, (F') is the Baum-Bott index, Var,(F ) and A ,(F) are the total varia-
tion and polar excess indices. Moreover, F is a generalized curve foliation if and
only if

BB, (F) = Var,(F).
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Indeed, for an arbitrary foliation, we can evaluate the difference of the left and right
sides of the expression in the theorem as a non-negative integer that assembles the
contribution of tangent saddle-nodes along the reduction of singularities. This is
done in Theorem 5.2, from which Theorem I is a corollary. In the non-dicritical
case, A,(F) = GSV,(F) (Theorem 3.3) and F is a generalized curve foliation
if and only if GSV,(F) = 0. Theorem I thus recovers the statement of Brunella’s
theorem simultaneously providing its converse: a non-dicritical F is a generalized
curve foliation if and only if BB, (F) = CS,(F).

The article is structured as follows. In section 2 we present some basic defi-
nitions and properties of local foliations with a specific view on second type foli-
ations. Section 3 is a brief review on residue-type indices, where we explain the
case of formal separatrices and define the total index. In section 4 we introduce
a new invariant, the second variation index — the sum of the variation and polar
excess indices — and calculate its change by blow-up maps. Then, in section 5,
we compare second variation and Baum-Bott indices (Theorem 5.2) and derive the
proof of Theorem I. Next, as an application of Theorem I, we obtain in section 6
a characterization of non-dicritical logarithmic foliations in terms of second type
foliation, both in the complex projective plane (Proposition 6.1) and in the more
general setting of projective surfaces with infinite cyclic Picard group (Proposition
6.2). We close this article by presenting, in section 7, numerical data of a pair of
examples.

ACKNOWLEDGEMENTS. The authors thank J.-P. Brasselet for early conversations
that led to this article and the referee for his suggestions.

2. Basic definitions and notation

In order to fix terminology and notation, we recall some basic concepts of local
foliation theory. Let F be a holomorphic foliation with isolated singularities on a
complex surface X. Let p € X be a singular point of . In local coordinates (x, y)
centered at p, the foliation is given by an analytic 1-form

w= P(x,y)dx + Q(x, y)dy, 2.1

or by its dual vector field
0 a
v=Q(x, y)a— - P(x,y)—, (22)
X ay

where P, Q € C{x, y} are relatively prime.
A separatrix for F is an invariant formal irreducible curve, that is, an object
given by an irreducible formal series f € C[[x, y]] satisfying

wAdf = (fhydx Ady
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for some formal series & € C[[x, y]]. The separatrix is said to be analytic or
convergent if we can take f € C{x, y}. Itis said to be purely formal otherwise. We
denote by Sep,,(F) the set of all separatrices of F at p.

We say that p € C? is a reduced or simple singularity for JF if the linear part
Duv(p) of the vector field v in (2.2) is non-zero and has eigenvalues A1, A, € C
fitting in one of the two cases:

(i) AA2 #0and Ay /Ay & QT (non-degenerate or complex hyperbolic singular-
ity);
(i) A1 #0and Ay =0 (saddle-node singularity).
In case (i), there are analytic coordinates in (x, y) in which F is induced by the
equation
w=x(r +ax,y)dy — y(ra + b(x, y))dx, (23)

where a, b € C{x, y} are non-unities, so that Sep » (F) is formed by two transversal
analytic branches given by {x = 0} and {y = 0}. In case (ii), up to a formal change
of coordinates, the saddle-node singularity is given by a 1-form of the type

w = x*dy — y(1 4+ raxF)dx, (2.4)

where A € C and k € Z-( are formal invariants [16]. The curve {x = 0} is
an analytic separatrix, called strong, whereas {y = 0} corresponds to a possibly
formal separatrix, called weak or central. The integer k + 1 > 1 is called rangency
index of JF with respect to the weak separatrix, weak index for short, and will be
denoted as Ind%’ (F).

Let 7 : (f( ,D) - (C%,p)bea composition of blow-up maps. The divisor
D is a finite union of components which are embedded projective lines, crossing
normally at corners. If F is the foliation defined by the 1-form w, we denote by
F = n* F the strict transform of FF, the germ of foliation on (X, D) defined locally
by 7 *w, after cancelling one-dimensional singular components. For a uniform anal-
ysis, we include the possibility of = being the identity map and, abusing notation,
we set in this case X = C2, D = {p} and F = F.

With respect to the the divisor D, the foliation J at a point ¢ € D can be:

e Regular, if there are local analytic coordinates (x, y) at g such that D C {xy =
0} and F : dx =0;

e Singular, if it is not regular;

e Reduced or simple, if g is a reduced singularity for FandD C Sep, (F).

For simplicity, we employ the terminology D-regular, D-singular and D-reduced.
When D = {p}, these notions coincide with the ordinary concepts of regular point,
singular point and reduced singularity. We say that 7 : ()Z’ , D) — (C?, p)isa
reduction of singularities or desingularization for F if all points ¢ € D are either
D-regular or D-reduced singularities. There always exists a reduction of singular-
ities [4,20]. Besides, there exists a minimal one, in the sense that it factorizes any
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other reduction of singularities by an additional sequence of blow-ups. All along
this text, reductions of singularities are supposed to be minimal.

Given a germ of foliation F at (CZ, p), we introduce the set Z »(F) of infinitely
near points of F at p. This is defined in a recursive way along the reduction of
singularities of . We do as follows. Given a sequence of blow-ups 7 : (X,D) -
(C?, 0) — an intermediate step in the reduction process — and a point ¢ € D we set:

e If F is D-reduced at q,thenZ, (.7:') ={q};

o If Fis ‘D-singular but not D-reduced at ¢, we perform a blow-up o : (X, 15) —
(X, D) at q, where D = o~ (D) = (6*D) U D is the union of the strict
transform o*D = o~ 1(D\ {g}) and of D = o7 (q). If q1,...,q¢ are all
ﬁ—singular points of F =0o*F on D, then

T,(F) = (g} U T, (F)U... UL, (F).

In order to simplify notation, we settle that a numerical invariant for a foliation F
at g € Z,(F ) actually means the same invariant computed for the strict transform
of F at q. Context will make this clear.

For a fixed a reduction process 7 : (X, D) — (C?, p) for F, a component
D C D canbe:

e Non-dicritical, if D is F-invariant. In this case, D contains a finite number of
simple singularities. Each non-corner singularity carries a separatrix transversal
to D, whose projection by  is a curve in Sep ,(F);

e Dicritical, if D is not F-invariant. The definition of reduction of singularities
gives that D may intersect only non-dicritical components and that Fis every-
where transverse do D. The m-image of a local leaf of F at each non-corner
point of D belongs to Sep,,(F).

Denote by Sep, (D) C Sep,(F) the set of separatrices whose strict transforms by
7 intersect the component D C D. If B € Sep »(D) with D non-dicritical, B is
said to be isolated. Otherwise, it is said to be a dicritical separatrix. This engenders
the decomposition Sep, (F) =Iso,(F)UDic, (F ), where notation is self evident.
The set Iso, (F) is finite and contains all purely formal separatrices. It subdivides
further in two classes: weak separatrices — those arising from the weak separatrices
of saddle-nodes — and strong separatrices — corresponding to strong separatrices of
saddle-nodes and separatrices of non-degenerate singularities. On the other hand,
if non-empty, Dic,(F) is an infinite set of analytic separatrices. A foliation F is
said to be dicritical when Sep,(F) is infinite, which is equivalent to saying that
Dic, (F) is non-empty. Otherwise, F is called non-dicritical.

Along the text, we would rather adopt the language of divisors of formal
curves. More specifically, a divisor of separatrices for a foliation F at (C?, p)
is a formal sum

B= Z ag - B,
BeSep, (F)
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where the coefficients ap € Z are zero except for finitely many B € Sep » (F). We
denote by Div,, (F') the set of all these divisors, which turns into a group with the
canonical additive structure. We follow the usual terminology and notation:

e BB > 0 denotes an effective divisor, one whose coefficients are all non-negative;

e There is a unique decomposition B = By — B, where By, Boo > 0 are respec-
tively the zero and pole divisors of B;

e The algebraic multiplicity of Bis v,(B) = ZBESepp(]—') ap vy (B).

Given a formal meromorphic equation F, whose irreducible components define
separatrices B; with multiplicities v;, we associate the divisor (ﬁ ) =Y, vi-Bi.
A curve of separatrices C, associated to a reduced equation F, is identified to the
divisor C = (ﬁ ). Such an effective divisor is named reduced, that is, all coefficients
are either O or 1. In general, B € Div,(F ) is reduced if both By and B, are reduced
effective divisors. A divisor B is said to be adapted to a curve of separatrices C if
By — C > 0. Finally, the usual intersection number for formal curves at (C?, P,
denoted by (-, -)p,is canonically extended in a bilinear way to divisors of curves.
Let F be a germ of foliation at (C?, p) with reduction process 7 : ()N( , D) —
(C?, p) and let F = w*F be the strict transform foliation. A saddle-node singu-
larity ¢ € Sing(J”? ) is is said to be a tangent saddle-node if its weak separatrix is
contained in the exceptional divisor D. We have the following definition [17]:

Definition 2.1. A foliation is in the second class or of second type if there are no
tangent saddle-nodes in its reduction process.

Given a a component D C D, we denote by p (D) its multiplicity, which coincides
with the algebraic multiplicity of a curve y at (C2, p) whose strict transform 7*y
meets D transversally outside a corner of D. The following invariant is a measure of
the existence of tangent saddle-nodes in the reduction of singularities of a foliation:

Definition 2.2. The tangency excess of F is defined as 7,(F) = 0, when p is a
reduced singularity, and, in the non-reduced case, as the number

T, (F) = Z p(Dg)(Ind¥ (F) — 1),
geSN(F)

where SN(JF) stands for the set of tangent saddle-nodes on the reduction divisor D.
In the formula, if g € SN(F ), we denote by D, the component of D containing its

weak separatrix and by Indj’ (F) > 1its weak index.
Of course, 7,(F ) > 0. In the non-reduced case, 7,(F ) =0 if and only if SN(F )=

. Thus, 7,(F ) =0 if and only if F is of second type. We introduce the following
object [10,11]:

Definition 2.3. A balanced divisor of separatrices for JF is a divisor of the form

B= Y B+ >  ap B

Belso, (F) BeDic, (F)
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where the coefficients ap € Z are non-zero except for finitely many B € Dic,(F),
and, for each dicritical component D C D, the following equality is respected:

Z ag = 2 — Val(D).

BeSep, (D)

The integer Val(D) stands for the valence of a component D C D in the reduction
process, that is, it is the number of components of D intersecting D other from D
itself.

A balanced divisor B is called primitive if, for every dicritical component D € D
and every B € Sep p(D), we have agp = —1,0 or 1. Recall that a balanced divisor
B is adapted to a curve of separatrices C if By — C > 0. A balanced equation
of separatrices is a formal meromorphic function F whose associated divisor is a
balanced divisor. A balanced equation is reduced, primitive or adapted to a curve
C if the same is true for the underlying divisor.

The tangency excess measures the extent that a balanced divisor of separatrices
computes the algebraic multiplicity, as expressed in the following result [10]:

Proposition 2.4. Let F be a germ of singular foliation at (C2, p) with B as a
balanced divisor of separatrices. Denote by v,(F ) and v,(B) their algebraic mul-
tiplicities. Then

Vp(F) =v,(B) = 1+ 1,(F).

Moreover,

Vp(F) =v,(B) =1
if and only if F is a second type foliation.

3. Indices of foliations

In this section we briefly recall definitions and main properties of some indices
associated to singular plane foliations, following the presentation in [3]. Some of
these indices are calculated with respect to invariant analytic curves and we explain
how to extend their definitions to formal invariant curves. We shall also present
the polar excess index, introduced in [11]. In our exposition, invariant curves are
identified with reduced divisors of separatrices. Calculations and definitions apply
to germs of foliations lying on a complex surface, but we can transfer them to the
complex plane by taking local analytic coordinates.

3.1. The Baum-Bott index

Let F be a germ of foliation defined either by a holomorphic 1-form w as in (2.1) or
by a holomorphic vector field v as in (2.2). If J (x, y) denotes the Jacobian matrix of
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(Q, —P) in the variables (x, y), then the following residue defines the Baum-Bott
index at p € Sing(F) [1]:

(trJ)?

BBp(]:) = Resp {m

dx/\dy}.

For a reduced singularity with local models (2.3) and (2.4), this becomes:

wJ(p)? A A
e/ p))” =240 p is non-degenerate
BB,(F) =1 detJ(p) 22 M (3.1

2k+2+4+ A if p is a saddle-node.

On a compact surface M, the sum of Baum-Bott indices of a foliation F is expressed
in terms of the first Chern class of the normal bundle N of the foliation [1,2]:

> BB,(F)=ci(Np). (32)
peSing(F)

3.2. The Camacho-Sad index

Let C be an invariant analytic curve for F defined by a reduced function f €
C{x, y}. Then there are germs g, k € C{x, y}, with k and f relatively prime, and a
germ of analytic 1-form 7 such that

gw=kdf + fn (3.3)
(see, for instance, [15,21]). The Camacho-Sad index [5] is the residue

1 1
CS,(F, C)=—% aC %n. (34)

The integral is over 9C = C N $3, the link of C oriented as the boundary of C N B4,
where B* is a small ball centered at 0 € C? and S° = 9B*. If C; and C, are
F-invariant curves without common components, then the following adjunction
formula holds:

CS,)(F,C1+C2) =CS,(F,C1) +CS,(F,Cr) +2(Cy - C2)p. (3.5)

A decomposition (3.3) also exists for a branch of formal separatrix B with formal
equation f € C[[x, y]], yielding g, k and 5 as formal objects. In this context, we
can extend the definition of the Camacho-Sad index to B by taking y (T), a Puiseux
parametrization for B such that y(0) = p, and setting

1
CS,(F, B) = —Res;—oy* (ﬂ) :
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Clearly, when B is convergent, this coincides with (3.4). Finally, the CS-index
may be defined for a reducible curve of separatrices containing some purely formal
branches by applying the adjunction formula (3.5).

The following result is known as Camacho-Sad index Theorem [5]: if C C M
is a compact curve invariant by a foliation F on a complex surface M, then

Y CS,(F.0)=cC-C. (3.6)
peSing(F)NC

3.3. The Gomez-Mont-Seade-Verjovsky index

The decomposition (3.3) is also used to calculate the GSV-index (due to Gomez-
Mont, Seade and Verjovsky, [12]) with respect to an JF-invariant curve C:

1 g [k
GSV,(F,C) = — =dl—-).
r ) 2ri Jac k (8)

The adjunction formula now reads:
GSV,(F,Ci1 4+ C2) =GSV,(F,C1) +GSV,(F,Cr) —2(C1 - C2)p,  (3.7)

where C and C; are F-invariant curves without common components.

The extension of this definition to a purely formal branch of separatrix B is
done as previously: take y (T") a Puiseux parametrization for B such that y (0) = p
and set

GSV ,(F, B) = Res;—oy* <%d (g)) — ord,—g (g o y(t)) .

Then, use the adjunction formula (3.7) in order to define the GSV-index for an
invariant curve C containing some purely formal branches.

For the GSV-index, we can also state a result of global nature [2]: if the com-
pact curve C C M is invariant by a foliation F on a complex surface M, then

GSV,(F,C) =ci(NF)-C —C - C. (3.8)
pEeSing(F)NC

3.4. The variation index

Each point g in a small punctured neighborhood of p € C? is regular for F. Then
there exists a germ of holomorphic 1-form ¢ at g such that dw = ¢ A w. If ¢’ is
another such 1-form, we have that ¢ and ¢’ coincide over every leaf of F. Therefore,
in this punctured neighborhood, we can define a multi-valued 1-form, still denoted
by ¢, with single-valued restriction to each leaf of F, satisfying the equation

do = ANw.
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The variation index [13] for an F-invariant analytic curve C is defined as

1
Var,(F,C) = — .
arp( ) 2mi /g;c ;
This index is additive in the separatrices of F:
Var,(F, Ci + C3) = Var,(F, Cy) + Var,(F, C2) (3.9

whenever C; and C, are F-invariant curves without common components. Thus,
for a divisor of separatrices B =) ap - B we can define

Var,(F. B) = ) _apVar,(F, B).
B

For an analytic invariant curve C, we have the relation [3, Proposition 5]
Var,(F,C) = CS,(F,C) +GSV,(F, C). (3.10)

Now, when it comes to defining Var,(F, B) for a formal branch of separatrix B,
the strategy followed for the CS and the GSV indices is unsuitable, since the 1-form
¢ does not define a formal object at p € C?. However, knowing CS,(F, B) and
GSV,(F, B) for a formal separatrix B, we can adopt formula (3.10) as a definition
for Var,(F, B) and use (3.9) in order to compute Var,(F, C) for a multi-branched
invariant curve C.

The variation index satisfies a property of global nature expressed in the fol-
lowing terms: if F is a foliation on a complex surface M and C C M is a compact
invariant curve, then

> Var,(F.C)=ci(NF) - C. (3.11)
peSingFNC

3.5. The polar excess index

Let 1 be a formal meromorphic 1-form with trivial divisor of zeros, written in coor-
dinates (x, y) as
n=P(x,y)dx + QO(x, y)dy,

where P, Q are formal meromorphic functions. For (a : b) € P!, the polar curve
of n with respect to (a : b) is the formal curve 73(’70:17) associated to the equation
aP 4+ bQ = 0. Let B be an irreducible curve, not contained in the pole divisor
(7)o, having y (¢) as a Puiseux parametrization. We say that B is invariant by n
if y*n = 0. In this case, we define the polar intersection number of n and B at p
(see [6,11]) as the generic value of

(P, B), = (P&:b), B)p — ord;_o((aP +b0) o y)

for (a : b) € P'. If ) is holomorphic, defining a germ of foliation 7, we also denote
this number by (P, B) p- This is an ingredient for the following definition:
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Definition 3.1. Let F be a germ of singular foliation at (C2, p). Let B be a branch
of separatrix and F be a reduced balanced equation of separatrices adapted to B.
The polar excess index [6,11] of F with respect to B is the integer

— (P, B) .

Ap(F, B) = (P, B) )

p
For a curve of separatrices C, with irreducible components By, ..., B, we define
the polar excess index in an additive way:

r

Ap(F.C) =Y ApF B) =Y ((P7. By = (PF, B)y).
i=1 j

1=

This definition is independent of the balanced equation, so, in order to compute
the polar excess for a multi-branched curve, a balanced equation simultaneously
adapted to all its branches can be employed. The additive character of the A-
index enables us to extend its definition to an arbitrary divisor B = ) pap - B
in Div, (F):

Ap(F.B) = _apA,(F,B).
B

We can also formulate the A-index as the residue of the logarithmic derivative of
the ratio of equations of polar curves for F and for dF, where F is an irreducible
balanced equation of separatrices adapted to the invariant curve. More precisely, if
w = Pdx 4+ Qdy induces F, we define, for (a : b) € P!, the formal meromorphic
1-form

_af; +bﬁyd ( aP +bQ ) _d@P+bQ) d(aF, +bFy)
N(a:b) = = .

aP +bQ al:“x—}—bﬁy aP +bQ al:“x—}—bﬁy
Then, for generic (a : b),
A, (F, B) = Res;—oy *N(ap)-

Moreover, if C is an F-invariant analytic curve, then, still for generic (a : b),

1
A, (F,C)=— )
ol ) 2t Je N(a:b)

The following simple calculations are done in [11] for an F-invariant branch B:

e If F is non-singular then A ,(F, B) = 0;
e If p is a non-degenerated reduced singularity for J, then

A,(F, B) =0;
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e If p is a saddle-node singularity for 7 with weak index k+ 1, we have two possi-
bilities: either A, (F, B) = 0, when B is the strong separatrix, or A, (F, B) =
k > 0, when B is the weak separatrix.

In general, taking into account the behavior of the A-index under blow-ups (equa-
tion (4.1) below), we have

Z vq(f?)rq (ﬁ ) if B is a strong or dicritical separatrix
g€, (F)
Ap(F.B)= . (3.12)
k+ Z vy (B)7y(F) if B is a weak separatrix,
q€Ly(F)

where k+1 is the weak index associated to B. Thus, A, (F, B)>0and A ,(F,B) =
0 if and only if F is a second class foliation and B is either a dicritical separatrix or
an isolated one associated to a non-degenerate singularity. The polar excess index
is a measure of the existence of saddle-nodes singularities in the desingularization
of F. This interpretation derives from the following result of [11], which is a con-
sequence of formula (3.12):

Theorem 3.2. If F is a germ of singular foliation at (C?, p) and C is a curve of
separatrices, then A, (F,C) > 0. Moreover, if B is a balanced divisor of separa-
trices of F, then F is a generalized curve foliation if and only if

Ap(F, By) =0.
The polar excess and the GSV-index are interrelated by the following result [11]:

Theorem 3.3. Let F be a germ of singular foliation at (C?, p). Let C be a curve
of separatrices and B be a balanced divisor adapted to C . Then

GSV,(F,C) = Ap(F,C) +(C, By — C) ) — (C, Beo) p-

In particular, when F is non-dicritical and C is the complete set of separatrices,
then

GSV,(F,C) = A,(F, C).

3.6. The total index

Let I,,(F, C) denote one of the four residue-type indices relative to a curve of sep-
aratrices C defined so far — CS, GSV, Var or A. When F is non-dicritical and C
is the complete set of separatrices, it is usual to say that 1,(F, C) is total. When
it comes to dicritical singularities, an attempt to establish a definition of total index
involves the choice of a finite subset of Sep,, (F) as areference. We propose to use
balanced divisors of separatrices for this goal:
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Definition 3.4. Let F be a foliation at (C?, p) and B3 be a primitive balanced divi-
sor of separatrices. The fotal index of F at p is defined as

I,(F,Bo) —1,(F, B)
and denoted by
I,(F)=CS,(F), GSV,(F), Var,(F) or A,(F).

Observe that 1,(F, B) is the same for all branches B € Sep p(D) associated to
the same dicritical component D C D. This results from formula (3.12) for the A-
index and, for the three other indices, from similar formulas based on their behavior
under blow-ups (see [3]). As a consequence, I,(F ) does not depend on the choice
of the primitive balanced divisor. We inherit a connecting relation similar to (3.10):

Var,(F) = CS,(F) +GSV,(F).

The total Var and the total A indices may be calculated using any balanced divisor
of separatrices B3, not necessarily a reduced one:

Var,(F) = Var,(F,B) and A,(F)=A,(F,B).

Next we state a slightly modified version of Theorem 3.2 involving the total A.
We remark that, when the desingularization divisor D of F is devoid of dicritical
components of valence two or higher, there are no poles in a primitive balanced
divisor of separatrices and the statement below is precisely that of Theorem 3.2.

Proposition 3.5. F is a generalized curve foliation at (C?, p) if and only if
Ap(F)=0.

Proof. A generalized curve foliation is in particular second class and all its separa-
trices are either strong or dicritical. Thus, formula (3.12) gives A, (F, B) = 0 for
every B € Sep,,(F ), which on its turn implies that A, (F, B) = 0 for any divisor
of separatrices B and, in particular, for a balanced divisor.

The converse proof is based on the following fact: if D is the desingularization
divisor of F, then there is at least one isolated separatrix crossing each component
of the F-invariant part of D [18, Proposition 4]. Thus, the number of isolated
separatrices is at least 1 + ), (Val(D) — 1), where the sum is over all dicritical
components D C D. Let I3 be a primitive balanced divisor and D C D be a
dicritical component of Val(D) > 2 . The pole divisor By, contains Val(D) — 2
separatrices of Sep, (D). Note that D appears in the desingularization process as a
component of valence 0, 1, or 2 (when it results, respectively, from the blow-up at p
itself, at a non-corner singularity or at a corner singularity). So at least Val(D) — 2
points of D will be blown-up in the subsequent steps of the reduction process and
to each one of them we can associate an isolated separatrix. Therefore, to each
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dicritical separatrix B appearing in B, We can associate in an injective way one
such isolated separatrix B. It follows from (3.12) that

Ap(F, B) < Ap(F, B). (3.13)

Denote by By the divisor obtained by summing up these B. We have A »(F, By —
Bx) > 0 by (3.13). Now we decompose By = By + Bo as a sum of effective
divisors, where By is non-trivial. Then

0= A,(F,B) = Ap(F, By) — Ap(F, Boo) = Ap(F, Bo) + A, (F, By — Buo).

The terms at the right are non-negative and thus both are zero. This implies, in par-
ticular, that A ,(F, B) = 0 for every separatrix B in l’;’o. Formula (3.12) then gives
at once that J is a second type foliation and that every isolated B in l';'o is a strong
separatrix. For the separatrices in l’;’o, remark that each inequality (3.13) is actually
an equality, and this is possible only if B is a strong separatrix. Summarizing, F
is a second class foliation having only strong isolated separatrices. It is therefore a
generalized curve foliation. O

4. Second variation index

In order to condense notation and terminology, we assemble the variation and the
polar excess indices in a new invariant:

Definition 4.1. Let F be a germ of singular foliation at (C2, p) and C be a curve
of separatrices. The second variation index of F along C is defined as

£,(F,C) = Var,(F,C) 4+ A, (F, C).

The variation and the polar excess are additive in the separatrices and this property
is inherited by the {-index. We can therefore define it for a divisor of separatrices
and have a total second variation index by means of a balanced divisor B:

Ep(F) =¢p(F, B) = Var,(F) + A, (F).

Next, we describe the behavior of the second variation under a blow-up o': (@2 ,D)—
(C?, p). As usual, we denote respectively by 0*F = F and 0*B = B the strict
transforms of the foliation F and of a branch of separatrix B € Sep » (F). A divisor

of separatrices B = 3" ap - B is said to be of order ¢ € D if BN D = q whenever
ap # 0. If this is so, the strict transform of B is defined as B =) g ap - B, which
is a divisor of separatrices for F atg € D.
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Lemma 4.2. With the notation above, if ¢ = BN D, then
8 (F, B) = £p(F, B) = (mp(F) + 1p(F)vp(B),

where T, (F) is the tangency excess of F at p and

v, (F), if o is non-dicritical
mp(F) = vp(]:) +1 i;g is dicritical
» .

Moreover, if B is a divisor of separatrices of order q € D, then
8q(F, B) = ¢p(F, B) = (mp(F) + 1p(F))v,p (B).

Proof. The formula for a branch B C Sep,(F ) is a consequence of known formu-
las for the behavior under blow-ups for the variation [3] and the polar excess [11]
indices:

Var, (F, B) = Var,(F, B) — m ,(F )v,(B),

L 4.1)
Ay(F,B) = Ap(F, B) — 15(F)vy(B).

The expression for a divisor is then a consequence of the additiveness of the second
variation index. 0

Now we examine the total second variation. We have that ,(F) = ¢, (F, B),
where B is a balanced divisor of separatrices. Suppose that the D-singular points

of F are q1, ..., qe. In order to calculate the total ¢ at these points we need to
relate the strict transform of B with balanced divisors at the points ¢ ;. Denote by
S(g;) C Sep,(F) the subset of all separatrices of order g; € D and decompose

4 4
B= Z aB~B=Z Z aB-BZZBj,
j=1 Jj=1

BeSepp (F) =1 BeS(q;)

where B = ) 5. S(g;) 9B * B. As before, denote by B ; the strict transform of B;.
There are two situations [11]:

e ois anon-dicritical blow-up, meaning that the exceptional divisor is F-invariant.
Then B + D is a balanced divisor for F at qj, where we keep denoting by D
the germ of the exceptional divisor at g ;

e o is adicritical blow-up, one such that the exceptional divisor is not F-invariant.
Then 5 is a balanced divisor for F at g;.

We can state the following result:
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Proposition 4.3. Let o : (Cz, D) — (C?, p) be a blow-up at p € C?. Suppose

that q1, . . ., qe are the D-singular points of F. Then
g ~
Z Cq; (F) + 1)12) (F)— '513(,7:) if o is non-dicritical
Lp(F) =177
8g;(F) + (wp(F) + D> —t3(F) if o is dicritical.
j=l1

Proof. We split the proof in two parts.

FPart 1: The non-dicritical case. The total ¢ at each g is
8q;(F) = &4, (F. Bj + D) = ¢,;(F. B)) + ¢4, (F. D). (4.2)
We first calculate

4 14
> ¢y (F.D) =) Vary (F.D)+ Y _ Ay (F. D). 4.3)

14

The sum of Var-indices along D is given by equation (3.11):

4
> Vary (F, D) = (ci(Ng)) - D = (=vp(F) D) - D = v, (F). (44)
j=1

On the other hand, B j + D is a balanced divisor of separatrices at ¢; € D. Thus,
we get from Theorem 3.3 that

4 4 4
Y Ay (F. D)= GSV,,(F, D)= Y (D, B));. 4.5)
j=l1 j=1 j=1

Now, we use (3.8) to compute the sum of GSV-indices along D:

¢

ZGSqu(ﬁ’ D)y=c(Nz)-D—D-D

j=1
=(_Vp(-7:)D)'D—D~D
=v,(F)+ 1.
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Since
]

0
DBy, =Y vpB)) =vp(B),

j=1 j=l

using Proposition 2.4, equation (4.5) turns into
g ~
D AG(F. D) =vp(F)+ 1= v,(B) = 1,(F).
j=1
It follows from (4.3), (4.4) and (4.6) that

¢
> 4g (F.D) = vp(F) + 1p(F).
j=1
Combining (4.2) and (4.7), we find
¢ ~ ¢ o
D 8, (F) =g, (F. B)j) +vp(F) + 1p(F).
j=1 j=1
Now Lemma 4.2 implies that

4

J4
Z;q, (F.B Z;p (F.Bj) = (vp(F) +1,(F)) Y _vp(B;

Jj=1

—gp(j:)_(Vp(f)+fp(~7'-))vp(8)-

From (4.8) and (4.9),

£
[p(F) = Z;qj<ﬁ> + (Vp(F) + () (vp(B) — 1)

MN

~.
Il
_

Il
MN

Cg, (F) +v3(F) — T4(F)

~.
Il
_

and we are done.

é—qj(f)“‘(Vp(]:)“"fp(f))(‘)p(f) Tp(f))

1127

(4.6)

4.7)

(4.8)

4.9)
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Part 2: The dicritical case. Now B' is a balanced divisor of separatrices for F at
qj. Then, it follows from Lemma 4. 2 and Proposition 2.4 that

l
0p(F) = ¢4,(F.B)j)

4
Bj)+ p(F) + 1+ 1,(F)N D v,(B))
j=1

I
~.
[~ 1
\’\{'
\«
~~
e

~.
Il

Lgi (F) + Wp(F) + 1+ 1,(F ), (B)

Il
MN

~.
Il
-

Il
.MN

~
Il
-

8a; () + (p(F) + 1+ 15 (F)Wp(F) + 1 = 1,(F))

8q;(F) + (p(F) + 1)? — 13(F).

Il
. MN

-
Il
—

This completes the proof of the proposition. O

5. Proof of Theorem I

In this section we compare second variation and Baum-Bott indices and achieve a
proof for Theorem I. We start with a look at reduced singularities:

Lemma 5.1. Let F be a reduced germ of foliation at (C?, p). Then
é—p(]:) = BBp(F)-

Proof. A reduced foliation is non-dicritical and so A,(F) = GSV,(F), which
implies ¢, (F ) = Var,(F) 4+ GSV,(F). We only need to assemble information
from [3] (see the two examples on page 538).

On the one hand, when p is non-degenerate with local model given by (2.3),

we have: A N
Var,(F) = BB,(F) = = + 2L 42,
S ]
This implies our result, since GSV ,(F) = 0.
On the other hand, for a saddle-node singularity, with normal form as in (2.4),
we have

Var,(F) =k+2+ A and GSV,(F) =k,

while
BB, (F) =2k +2+A. 0

In the non-reduced case, we have:
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Theorem 5.2. Let F be a germ of singular foliation at (C?, p). Then

BB,(F) =0p(F)+ > 1(F)>
q€Ly(F)

where the summation runs over all infinitely near points of F at p.

Proof. We recall the behavior of the Baum-Bott index under blow-ups [3, Proposi-
tion 1]: if o : (C2, D2 — (C?, p) is a blow-up at p € C? and ¢, . . ., q¢ are the
D-singular points of F, then

4
BB,(F) =Y BBy, (F)+ci(Ng).

j=1
This translates into
é ~
Z BBy, (F) + vf, (F) if o is non-dicritical
BB,(F)=1'7' (5.1)
BBy, (F) + (v,(F)+1)? if o is dicritical.

j=1

Define

9p(F) =BB,(F) = {p(F)— Y. 1,(F)>
q€L,(F)

We first observe that, if 7 is reduced, then Z,(F ) = {p} and 7, (F ) = 0, resulting
in ¥, (F) = 0 by the application of Lemma 5.1. In general, if ¥ is non-reduced,
for a blow-up o as above, we take into account the decomposition

?
Yo uF)=mF)+Y | D wd
q€Lp(F) j=1 quqj(f)

along with Propositions 4.3 and formula (5.1) in order to conclude that

4
9p(F) =D 0, (F).

j=1

Finally, an induction argument gives that ¢,,(F ) = 0, proving the theorem. O
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We recall that ¢,(F) = Var,(F) + Ap(F) and Var,(F) = CS,(F) +
GSV,(F). When F is non-dicritical, A ,(F ) = GSV ,(F ) and the theorem reads:

Corollary 5.3. If F is non-dicritical, then

BB, (F) =CS,(F)+2GSV,(F)+ Y  1,(F)"
q€Ly(F)

Since both A,(F) and GSV ,(F) are integers, and GSV,(F) > 0 when F is
non-dicritical, the following corollary turns evident from Theorem 5.2:

Corollary 5.4. Let F be a germ of foliation at p € C?. Then
BB, (F) —CS,(F) € Z.
This integer is non-negative when JF is non-dicritical.

Indeed, this corollary could also be proved by following Baum-Bott indices along
the reduction of F — equation (5.1) — and comparing them with CS-indices for the
reduced singularities. Baum-Bott’s Theorem (equation (3.2)) brings the following
consequence for global foliations:

Corollary 5.5. Let F be a singular holomorphic foliation on a compact surface
M. Then
Y CSy(F)el.
peSing(F)

We have now all elements to complete the proof of Theorem I:

Proof of Theorem 1. The first statement follows straight from Theorem 5.2. If F is
of second type at p, so is it at all infinitely near points, implying 7,(F) = 0 for
allg € Z,(F) and BB,(F) = ¢,(F) = Varp,(F) + A,(F). Conversely, the
equality of indices implies that the summation in Theorem 5.2 vanishes, giving, in
particular, that 7,(F) = 0 and that F is of second type. The second statement is
then a consequence of Proposition 3.5. O

6. Logarithmic foliations on the complex projective plane

Let F be a holomorphic foliation on the complex projective plane P?. The degree
of F is the number deg(F ) of tangencies between JF and a generic line. The ques-
tion concerning the existence of a bound for the degree deg(S) of an F-invariant
algebraic curve S in terms of deg(JF') is known in foliation theory as Poincaré prob-
lem [19]. When all singularities of F over S are non-dicritical, it is proved in [7]
that the inequality deg(S) < deg(F) + 2 holds. The limit case for this bound
is reached by logarithmic foliations, those defined by logarithmic 1-forms, as ex-
plained next. Suppose that an F-invariant algebraic curve S C P? is defined by a
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homogeneous polynomial equation P = Py P, - -- P, = 0, where each polynomial
P; is irreducible of degree d;. Suppose further that that F is non-dicritical at each
point g € S. Then the following statements are equivalent [3,6,8]:

(1) deg(S) = deg(F) +2;
(2) There are residues A; € C* with Y "_, A;d; = 0 such that F is givenby w = 0,
where o is the global closed logarithmic 1-form in P? defined by

. dP;
w = Z;)\iTi§
1=

(3) The foliation F is a generalized curve foliation at each p € Sing(F) N S and
S contains all branches of Sep ,(F') at each p.

As an application of Theorem I, we propose the following characterization of non-
dicritical logarithmic foliations:

Proposition 6.1. Let F be a holomorphic foliation on P2. Suppose that F leaves
invariant an algebraic curve S such that:

e Sing(F) C S,
e All points p € Sing(F') are non-dicritical and of second type;
e S contains all local branches of Sepp (F) at each p € Sing(F).

Then deg(S) = deg(F) + 2 and F is a logarithmic foliation.

Proof. Denote by dy = deg(S) and d = deg(F). On the one hand, by Baum-Bott’s
Theorem (equation (3.2)), we have

> BB,(F)=(d+2)"
peSing(F)
On the other hand, by Theorem I and formulas (3.6) and (3.8),
> BB,(F)= ) CS,(F)+2GSV,(F)
peSing(F) peSing(F)
= d} +2 (@ +2)do — &)
=2(d +2)do — dj.
These two equations give dyp = d + 2, which implies that F is logarithmic. O

Actually, Proposition 6.1 can be stated in a more general setting, in the spirit of
[3,14], switching IP? to a compact projective surface M with Picard group Pic(M) =
Z. We need a definition: a meromorphic 1-form w on a complex manifold M is
logarithmic if both @ and dw have simple poles over (w)so. Then we can state:



1132 ARTURO FERNANDEZ-PEREZ AND ROGERIO MOL

Proposition 6.2. Let M be a compact projective surface with Picard group
Pic(M) = Z. Let F be a holomorphic foliation on M that leaves invariant a com-
pact curve S satisfying the conditions listed in Proposition 6.1. Then F is induced
by a closed logarithmic 1-form having simple poles over S.

Proof. Summing up BB, (F ) = CS,(F)+2GSV ,(F) overall p € Sing(F ), we
find

cl(NF)?> =8-S+ 2(ci(Ng)-S— S - 8) = (c1(NF) — c1(Os))* = 0.

Since Pic(M) = Z, the line bundle L = N} ® Oy is trivial, that is, Ny = Os.
Now, the proof follows the steps of Proposition 10 in [3]. We have that F is induced
by a meromorphic 1-form w on M with empty zero divisor and whose pole divisor
is S with order one. The comment preceding that result also works here: if o is a
blow-up at p € Sing(JF), then o*w has a pole of first order over o ~!(S). This is
because JF is non-dicritical and second type, implying that C, the complete curve of
separatrices at p, satisfies vo(F) = vo(C) — 1 by Proposition 2.4. Finally, taking
T:M—> Ma desingularization for S, the curve S=x"1 (S) has normal crossings
and ® = m*w has a simple pole over S. Since § is invariant by @, the exterior
derivative d@ also has a simple pole over S. That is, & is a logarithmic form and
Deligne’s Theorem [9] asserts that it is closed, giving that w is also closed. O

7. Examples

We present two examples that give a numerical illustration of our results.

Example 7.1 (Suzuki’s example). Let F be the germ of foliation at (C2, 0) de-
fined by

w = (y* +y* = xy)dx — (2xy* + xy — x?)dy.
JF is a dicritical generalized curve foliation having the transcendental first integral

x (y(y + 1))
y X

and admitting no meromorphic first integrals [22]. After one blow-up, the foliation
is regular and has a unique leaf that is tangent to the exceptional divisor with tan-
gency order one. It corresponds to the unique isolated separatrix B;. The transverse
leaves give rise to dicritical separatrices. Chose one of them and denote by B, the
corresponding dicritical separatrix. Then B = B + B is a balanced divisor of
separatrices. It follows from (5.1) that
BBo(F) = ((F)+1)> =2+ 1> =09.

The following simple calculation follow from (4.1):

Varg(F, B)) =6

= Varg(F ) = Varg(F, B; + By) =09.
Varo(f, Bz) =3

Since we are in the generalized curve case, Ag(F ) = 0 and Theorem I is verified.
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Tangent leaf Dicritical separatrix

B.
2
/< Blow-up at 0 MJ \\ Isolated
0 f separatrix
B, -

B, +B, is a balanced divisor

Example 7.2. Let F be the Riccati foliation at (C2, 0) given by
w = (y2 +xy + x2)dx + xzdy.

JF is non-dicritical and has two separatrices By : {y = —x} and B : {x = 0}. After
one blow-up, the foliation has two reduced singularities. The one corresponding
to By, say pi, is a tangent saddle-node with weak index 2. The other singularity,
D2, is hyperbolic with eigenvalue ratio —1. Therefore F is not second type and
70(F ) = 1. The divisor B = B + B; is a balanced one. Simple calculations using
(4.1) lead to:

Vary(F, B1) =3

Vi =V , B By)) =5
Varg(F. By) — 2 = Varo(F) aro(F, B1 + B>)

BFBO =T\ (F) = Ao(F, B + Bay =2
Ao(F, By) =1 T AR

)kpz : hyperbolic point
B’)

Blow-up at 0
«—

: tangent saddle-node

B,

B + B, is the balanced divisor
The expression of Theorem 5.2 is verified, since, from (5.1),

BBo(F) = BB, (F) +BB,,(F) +1w0(F)> =4+0+2>=8.

References

[1] P. BAUM and R. BOTT, Singularities of holomorphic foliations, J. Differential Geometry 7
(1972),279-342.

[2] M. BRUNELLA, Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci.
Ecole Norm. Sup. (4) 30 (1997), 569-594.



1134 ARTURO FERNANDEZ-PEREZ AND ROGERIO MOL

(3]
(4]
(5]
(6]
(7]
(8]

(9]
(10]

(11]
(12]
(13]
(14]

(15]

[16]
(17]
(18]
(19]
[20]
(21]

(22]

M. BRUNELLA, Some remarks on indices of holomorphic vector fields, Publ. Mat. 41
(1997), 527-544.

C. CAMACHO, A. LINS NETO and P. SAD, Topological invariants and equidesingulariza-
tion for holomorphic vector fields, J. Differential Geom. 20 (1984), 143—-174.

C. CAMACHO and P. SAD, Invariant varieties through singularities of holomorphic vector
fields, Ann. of Math. (2) 115 (1982), 579-595.

F. CANO, N. CORRAL and R. MOL, Local polar invariants for plane singular foliations,
Expo. Math (2018), to appear, https://doi.org/10.1016/j.exmath.2018.01.003.

M. CARNICER, The Poincaré problem in the nondicritical case, Ann. of Math. (2) 140
(1994),289-294.

D. CERVEAU, Formes logarithmiques et feuilletages non dicritiques, J. Singul. 9 (2014),
50-55.

P. DELIGNE, Théorie de Hodge. 11, Inst. Hautes Etudes Sci. Publ. Math. 40 (1971), 5-57.
Y. GENZMER, Rigidity for dicritical germ of foliation in C2, Int. Math. Res. Not. IMRN
2007, Art. ID rnm072.

Y. GENZMER and R. MOL, Local polar invariants and the Poincaré problem in the dicriti-
cal case,J. Math. Soc. Japan 70 (2018), 1419-1451.

X. GOMEZ-MONT, J. SEADE and A. VERJOVSKY, The index of a holomorphic flow with
an isolated singularity, Math. Ann. 291 (1991), 737-751.

B. KHANEDANI and T. SUWA, First variation of holomorphic forms and some applications,
Hokkaido Math. J. 26 (1997), 323-335.

S. LICANIC, Logarithmic foliations on compact algebraic surfaces, Bol. Soc. Brasil. Mat.
(N.S.) 31 (2000), 113-125.

A. LINS NETO, Algebraic solutions of polynomial differential equations and foliations in
dimension two, In: “Holomorphic Dynamics” (Mexico, 1986), Lecture Notes in Math.,
Vol. 1345, Springer, Berlin, 1988, 192-232.

J. MARTINET and J.-P. RAMIS, Problemes de modules pour des équations différentielles
non linéaires du premier ordre, Inst. Hautes Etudes Sci. Publ. Math. 55 (1982), 63-164.
J.-F. MATTEI and E. SALEM, Modules formels locaux de feuilletages holomorphes,
arXiv:math/0402256 (2004).

R. MoL, Meromorphic first integrals: some extension results, Tohoku Math. J. (2) 54
(2002), 85-104.

H. POINCARE, Sur l'intégration algébrique des équations différentielles du premier ordre
et du premier degré, Rend. Circ. Mat. Palermo 5 (1891), 161-191.

A. SEIDENBERG, Reduction of singularities of the differential equation Ady = Bdx,
Amer. J. Math. 90 (1968), 248-269.

T. SuwA, “Indices of Vector Fields and Residues of Singular Holomorphic Foliations”,
Actualités Mathématiques [Current Mathematical Topics], Hermann, Paris, 1998.

M. SUZUKI, Sur les intégrales premieres de certains feuilletages analytiques complexes, In:
“Fonctions de Plusieurs Variables Complexes”, III (Sém. Francois Norguet, 1975-1977),
Vol. 670 of Lecture Notes in Math., 394, Springer, Berlin, 1978, 53-79.

Departamento de Matematica — ICEX
Universidade Federal de Minas Gerais, UFMG
Av. Antonio Carlos 6627

31270-901 — Belo Horizonte-MG, Brasil
fernandez@ufmg.br

rmol@ufmg.br



