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L p Hardy inequality on C1,� domains

PIER DOMENICO LAMBERTI AND YEHUDA PINCHOVER

Abstract. We consider the L p Hardy inequality involving the distance to the
boundary of a domain in the n-dimensional Euclidean space with nonempty com-
pact boundary. We extend the validity of known existence and non-existence
results, as well as the appropriate tight decay estimates for the corresponding
minimizers, from the case of domains of class C2 to the case of domains of class
C1,� with � 2 (0, 1]. We consider both bounded and exterior domains. The up-
per and lower estimates for the minimizers in the case of exterior domains and the
corresponding related non-existence result seem to be new even for C2-domains.

Mathematics Subject Classification (2010): 49R05 (primary); 35B09, 35J92
(secondary).

1. Introduction

Let� be a domain in Rn , n � 2 with nonempty boundary, and let �(x) = d(x, @�)
denote the distance of a point x 2 Rn to the boundary of�. Fix p 2]1,1[. We say
that the L p Hardy inequality is satisfied in � if there exists c > 0 such that

Z

�
|ru|p dx � c

Z

�

|u|p

� p
dx for all u 2 C1

c (�). (1.1)

The L p Hardy constant of � is the best constant for inequality (1.1) which is de-
noted here by Hp(�). It is a classical result that goes back to Hardy himself (see for
example [3, 22]) that if n = 1 and � is a bounded or unbounded interval, then the
L p Hardy inequality holds and Hp(�) coincides with the widely known constant

cp =

✓
p � 1
p

◆p
.
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It is also well-known that if � is bounded and has a sufficiently regular boundary
in Rn , then the L p Hardy inequality holds and Hp(�)  cp [1, 24]. Moreover, if
� is convex, and more generally if it is weakly mean convex, i.e., if 1d  0 in
the distributional sense in �, then Hp(�) = cp [6, 11, 24]. On the other hand, it
is also well-known (see for example [3, 22]) that if � = Rn \ {0} and p 6= n, then
the L p-Hardy inequality holds and Hp(�) coincides with the other widely known
constant

c⇤p,n =

�
�
�
�
p � n
p

�
�
�
�

p
,

which indicates that the L p Hardy inequality does not hold forRn \{0} if p = n (for
a short proof of this inequality see [14,15]). It also follows (see [10,24]) that if� is
an exterior domain (i.e., an unbounded domain with nonempty compact boundary)
with sufficiently regular boundary and p 6= n, then the L p Hardy inequality holds
with Hp(�)  cp,n , where

cp,n = min{cp, c⇤p,n}.

The L p Hardy constant can be seen as the infimum of a Rayleigh quotient, namely

Hp(�) = inf
u2eW 1,p(�)

u 6=0

R
� |ru|p dx
R
�

|u|p
� p dx

, (1.2)

where

eW 1,p(�) :=
n
u 2 W 1,p

loc (�) | kukL p(�;��p) + krukL p(�) < 1
o

,

and kukL p(�;��p) := (
R
� |u|p��p dx)1/p is the natural weighted L p norm associ-

ated with this problem. Note that if � is a bounded domain with regular boundary,
say of class C1, then eW 1,p(�) = W 1,p

0 (�) (one can use the same argument as
in [24, Appendix B]), while the two spaces do not coincide if, for example, � is an
exterior domain and p > n, in which case the first space contains functions that are
constant or even unbounded at infinity.

It is important to note that if the infimum for (1.2) is achieved at a function u,
then u satisfies the corresponding Euler-Lagrange equation

�1pu �
Hp(�)

� p
Ipu = 0, (1.3)

in �, where �1pv := �div
�
|rv|p�2rv

�
is the celebrated p-Laplace operator,

and the operator Ip is defined by Ipv := |v|p�2v. In this case, Hp(�) can be
considered as the principal weighted eigenvalue of the p-Laplacian with respect to
the Hardy weight, and u is a corresponding principal eigenfunction. In particular, it
turns out that if the minimizer u exists, then it is unique up to scalar multiples, and
u does not change its sign in �.
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We refer to [24] for an introduction to this topic and to [1,3,6,9–13,22,23,25]
and references therein for more information. We refer also to [2,4,5,7,8,14,16] for
recent developments in this subject.

The focus of the present paper is on the problem of the existence of minimizers
for (1.2). In the case of bounded domains of class C2 this problem was solved
in [24,25] where, among other results, it was proved that a minimizer exists for (1.2)
if and only if Hp(�) < cp. In the case of exteriorC2-domains, it was proved in [10]
that if Hp(�) < cp,n , then a minimizer exists for (1.2). Importantly, in [10, 24, 25]
the assumption that� is of class C2 is used in a substantial way, and weakening this
assumption seems highly nontrivial. Indeed, many arguments used in such papers
are based on the well-known tubular neighbourhood theorem which allows to use
tubular coordinates near the boundary of a domain of classC2. Moreover, in [24,25]
the assumption that � is of class C2 is used also to guarantee that the distance
function � is of class C2 in a neighbourhood of the boundary, which in turn allows
to use � for the construction of suitable positive subsolutions and supersolutions of
equation (1.3). However, the tubular neighbourhood theorem does not hold if �
is of class C1,� with 0 < � < 1 and the distance function � is not guaranteed to
be differentiable near the boundary (the classical example is given by the parabolic
open set � = {(x, y) 2 R2 : y > |x |1+� }, in which case � is not differentiable at
all points (0, y) of � close to (0, 0)).

In the present paper, we prove that the existence and non-existence results
in [10, 24, 25] hold under the assumption that � is of class C1,� with � 2 (0, 1],
and we prove that the decay estimates for the minimizers in [24, 25] still hold.
Moreover, we provide decay and growth estimates for the minimizers also in the
case of exterior domains near the boundary and infinity. Our approach develops
some ideas used in [24] for the case p = 2. In particular, we use the notion of
spectral gap and Agmon ground state, and elaborate the constructions of appropriate
subsolutions and supersolutions which replace those considered in [24, 25]. To do
so, we first compute the so-called Hardy constant at infinity, i.e., the constant

�p,1(�) = sup
⇢
� 2 R | 9K b � and u 2 W 1,p

loc (� \ K̄ ) such that

u > 0 and� 1pu �
�

� p
Ipu � 0 in � \ K̄

�
,

(1.4)

where we write A b O if O is open, A is compact and A ⇢ O .
We prove that if � is a C1,� -domain with compact boundary, then �p,1(�) =

cp if � is bounded, and �p,1(�) = cp,n if � is unbounded.
By a criterion in [28, Lemma 4.6] (proved there only for the linear case), it

follows that if Hp(�) < �p,1(�), then the operator �1p �
Hp(�)

� p Ip is critical in
�, which means that it admits an Agmon ground state, i.e., a positive solution of
equation (1.3) in � which has minimal growth near @� and infinity. We note that
the quantity �p,1(�) � Hp(�) is also referred to as the spectral gap, since in the
linear case (p = 2), �2,1(�) is the bottom of the essential spectrum of the operator
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��21, see [24, Section 3]. Thus, the condition �2,1(�) � H2(�) > 0 implies
that H2(�) belongs to the discrete spectrum, and hence, it is an eigenvalue whose
eigenfunction is the required minimizer.

The last step in the proof of the existence result, consists in proving that in
the case of a spectral gap, the above mentioned Agmon ground state u belongs to
the space eW 1,p(�) and this is done by constructing a supersolution v to equation
(1.3) which belongs to L p(�; ��p): indeed, u being of minimal growth, it follows
that 0 < u  Cv near the boundary and infinity, for some constant C > 0, hence
u 2 L p(�; ��p).

In a similar way, the non-existence of minimizers follows by a comparison
principle proved in [24,25] combined with the construction of a suitable subsolution
which does not belong to L p(�; ��p).

It is clear that one of the major ingredients of our arguments is the construction
of subsolutions and supersolutions with the appropriate growth and this is used not
only to provide the required estimates for the minimizers, but also for computing
�p,1(�). In [24, 25] the construction of subsolutions and supersolutions was done
by using the so-called Agmon trick, namely, the subsolutions and supersolutions
were given by functions of the type �↵ + �� and �↵ � �� , respectively, for suitable
constants ↵,� > 0. As we have mentioned above, if � is of class C1,� with
0 < � < 1 such functions cannot be used. In this paper, we replace them by
functions of the form G↵ + G� and G↵ � G� , where G is a p-harmonic function
defined in a neighbourhood of the boundary and infinity. At infinity, the function
G is simply given by G(x) = |x |� for an appropriate �. Near the boundary of
�, the function G can be any positive p-harmonic function vanishing at @� (for
example, one may consider the positive minimal Green function of the p-Laplacian,
see Section 2 for details). It is exactly at this point that the regularity of � plays
a crucial role. First, the assumption @� 2 C1,� guarantees that the p-harmonic
function G is of class C1,�̃ up to @� for some �̃ 2 (0, � ). Second, the same
assumption allows to use the Hopf lemma and to conclude that rG(x) 6= 0 for all
x 2 @�. The condition rG(x) 6= 0 is of fundamental importance for our analysis,
since it allows to control the asymptotic behaviour of rG(x)/G(x) as x ! @� in
a precise way as it is explained in Lemma 3.2. We believe that Lemma 3.2 is of
independent interest since it is proved without the use of the tubular neighbourhood
theorem and actually allows to bypass it. We note that the Hopf lemma holds also
if @� is of class C1,Dini (see, [26]) and this allows to gain some generality as it is
explained in Remark 4.2.

Finally, we point out that our results could be of help in relaxing the boundary
regularity assumptions of those statements in [4, 5] the proofs of which require the
existence of a minimizer for the variational problem (1.2).

The paper is organized as follows. In Section 2 we recall a number of notions
concerning critical and subcritical operators and in particular, we reformulate and
generalize the criterion [28, Lemma 4.6] in Lemma 2.3. Section 3 is devoted to
the construction of subsolutions and supersolutions, and in particular it contains the
technical Lemma 3.2 which is applied to prove the key Lemmas 3.4 and 3.5. In
Section 4, we prove the existence of minimizers and the corresponding decay and
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growth estimates, see Theorems 4.1 and 4.4, and also Theorem 4.3 for a further
relaxation of the boundary conditions. We conclude the paper in Section 5, where
we prove the lower estimates and the corresponding non-existence results, namely
Theorems 5.1 and 5.4.

ACKNOWLEDGEMENTS. The authors are grateful to the anonymous referee for
reading the paper very carefully and pointing out one blunder of technical type
which was possible to fix.

2. Preliminaries

In this section we recall the notions of positive minimal Green function, Agmon
ground state, and subcritical and critical operators. Moreover, we discuss a crite-
rion for ensuring the existence of Agmon ground states for equation (1.3). We refer
to [15, 16, 28–30] and references therein for details and proofs, and for extensive
discussions on this subject.

Fix p 2]1,1[, and let � be a domain (i.e., an open connected set) in Rn ,
where n � 2. Let V 2 L1

loc(�) (in fact, this assumption is not optimal, and we may
assume that V belongs to an appropriate local Morrey space, see [29]). Consider
the operator

QV (u) := �1pu + V |u|p�2u,

and the corresponding formQ defined by

QV (u,') :=
Z

�
|ru|p�2ru · r' dx +

Z

�
V |u|p�2u' dx,

for all u 2 W 1,p
loc (�) and ' 2 C1

c (�). As customary in the theory of quasilinear
equations, we say that u is a (weak) solution for the equation QV (v) = 0 in �

(or simply that QV (u) = 0 in �) if u 2 W 1,p
loc (�) and QV (u,') = 0 for all

' 2 C1
c (�). We also say that u is a subsolution (respectively supersolution) for the

equation QV (v) = 0 in� ifQV (u,')  0 (respectivelyQV (u,') � 0) for all ' 2
C1
c (�) with ' � 0; in these cases, we also simply write QV (u)  0 (respectively

QV (u) � 0) in �. Recall that by Allegretto-Piepenbrink theory [29, 30], there
exists a positive solution (or equivalently, a positive supersolution) for the equation
QV (u) = 0 in� if and only ifQV (',') � 0 for all ' 2 C1

c (�), in which case the
operator QV is called non-negative in � (and we write QV � 0 in �). Obviously,
the operator QV is non-negative if V � 0.

We recall briefly some basic regularity results concerning solutions of the
quasilinear equations appearing in the present paper. It is well known that if V 2
L1
loc(�), then solutions of the equation

(�1p + VIp)u = 0
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in � are in C1,↵(�), and positive solutions satisfies the local Harnack inequality
(see for example [20,21,27]). Moreover, if the potential V is bounded up to a C1,�
portion of @�, then solutions of the above equation are C1,↵ up to this portion.
Furthermore, the Hopf lemma holds for p-harmonic functions in C1,� domains and
even under weaker assumptions (see Remark 4.2).

Definition 2.1. Given a compact set K contained in �, we say that a positive solu-
tion u to the equation QV (u) = 0 in � \ K is a positive solution of minimal growth
in a neighbourhood of infinity in � (briefly u 2MQV

�,K ) if for any bounded smooth
open set K with K ⇢ K b � and any positive supersolution v to the equation
QV (u) = 0 in � \ K̄ we have that the condition u  v on @K implies that u  v
on � \ K̄.
We have the following theorem which includes the definitions of the notions men-
tioned above.

Theorem 2.2 ([19,29,30]). Assume that the operator QV is non-negative in� and
fix x0 2 �. Then there exists a solution u 2MQV

�,{x0} of QV (u) = 0, and it is unique
up to a multiplicative constant. Moreover, the following alternative holds:

(A) either u has a singularity at the point x0 with the following asymptotic be-
haviour

u(x) ⇠

8
><

>:

|x � x0|
p�n
p�1 if 1 < p < n

� log |x � x0| if p = n
1 if p > n ,

(2.1)

as x ! x0, in which case u is called a positive minimal Green function with
pole at x0 for QV in �, and the operator QV is called subcritical in �;

(B) or u is a global positive solution of the equation QV (v) = 0 in �, in which
case u is called Agmon ground state for QV and the operator QV is called
critical in �.

Let �0 be a subdomain of a domain � such that �0 ⇢ �. If QV is non-negative in
�, then QV is subcritical in �0 [30]. Therefore, if � is a domain with nonempty
compact boundary and @� is sufficiently regular, then the p-Laplacian (that is, QV
with V = 0) is subcritical in�, and hence, the corresponding function u 2MQV

�,{x0}
is a positive minimal Green function. Such a minimal Green function G provides
us with a positive p-harmonic function defined in a relative neighbourhood of @�
which will be used in the sequel. Importantly, if @� is of classC1,� with 0 < � < 1,
then G is C1,↵ up to the boundary, G(x) = 0 and rG(x) 6= 0 for all x 2 @� since
the Hopf lemma holds, see [26].

In the case of linear elliptic equations, it was stated and proved in [28, Lem-
ma 4.6] that the existence of a spectral gap implies the existence of an Agmon
ground state. The statement and the proof in [28] can be adapted to our case and for
the convenience of the reader we indicate here how to do it.
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Lemma 2.3. Let � be a domain in Rn such that the L p Hardy inequality holds,
and let V := �Hp(�)/� p. If the operator QV has a spectral gap, i.e., Hp(�) <
�p,1(�), then QV is critical.

Proof. Following [28, Lemma 4.6], we set

S :={t 2R |Q�t��p �0 in �}, S1 :={t 2R |Q�t��p �0 in �\K̄ for some K b �}.

Clearly, S and S1 are intervals, and since QV has a spectral gap, it follows that

S = ]� 1, Hp(�)]  S1 ✓ ]� 1, �1,p(�)].

For simplicity, we set �0 = Hp(�). Let �1 2 S1 \ S.

Claim. There exists a nonzero non-negative potential V 2 L1(�) with compact
support in � such that Q��1��p+V � 0 in �.

Since �0 < �1 < �1,p, there exists a smooth open set K0 b � such that the
equation Q��1��p (u) = 0 in � \ K̄0 admits a positive solution.

Fix a smooth open set K satisfying K0 b K b �. We first show that there
exists a positive solution v of the equation Q��1��p (u) = 0 in � \ K̄ satisfying
v = 0 on @K .

To this end, consider a smooth exhaustion {�i }i2N of � by smooth relatively
compact subdomains such that x0 2 �1 \ K̄ and such that K̄ ⇢ �i�1 b �i for all
i > 1. Let vi be the unique positive solution of the Dirichlet problem

(
Q��1��p (u) = fi in �i \ K̄

u = 0 on @(�i \ K̄ ),

where fi is a nonzero nonnegative function in C1
c (�i \ �i�1) normalized in such

a way that vi (x0) = 1. The existence and uniqueness of such a solution is guaran-
teed by [29, Theorem 3.10] combined with the fact that Q��1��p (u) = 0 admits a
positive solution in � \ K̄0.

By the Harnack principle and elliptic regularity (see for example, [29]) the
sequence {vi }i2N admits a subsequence converging locally uniformly to a positive
solution v of the equation Q��1��p (u) = 0 in � \ K̄ satisfying v = 0 on @K . Note
that by classical regularity theory we have that v is of class C1,↵ up to @K .

Let K1 be an open set such that K b K1 b � and let minx2@K1 v(x) = m > 0.
Let " > 0 be fixed in such a way that 8" < m. Let F be aC2 function from [0,+1[
to [0,+1[ such that F(t) = " for all 0  t  2" and F(t) = t for all t � 4" and
such that F 0(t) 6= 0 for all t > 2". Assume also that |F 0(t)|p�2F 00(t) ! 0 as
t ! 2", hence the function t ! |F 0(t)|p�2F 00(t) (defined identically equal to zero
on [0, 2"]) is continuous on [0,+1[ (for this purpose, it is enough for example that
F is chosen to be of the type " + (t � 2")� for all t > 2" sufficiently close to 2"
and � > max{p/(p � 1), 2}). We set v̄(x) = F(v(x)) for all x 2 K1 \ (� \ K̄ ).
By definition, it follows that there exists an open neighborhood U of @K such that
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v̄(x) = " for all x 2 U \ (� \ K̄ ), and there exists an open neighborhood U1
of @K1 such that v̄(x) = v(x) for all x 2 U1 \ K1 . Thus v̄(x) can be extended
continuously into the whole of� by setting v̄(x) = " for all x 2 K̄ and v̄(x) = v(x)
for all x 2 � \ K1. By [16, Lemma 2.10] we have that

�1pv̄(x) = �|F 0(v(x))|p�2[(p�1)F 00(v(x))|rv(x)|p+F 0(v(x))1pv(x)] (2.2)

for all x 2 K1 \ K̄ . By our assumptions on F and v, it follows that �1pv̄(x) is a
continuous function which vanishes onU \ (�\ K̄ ) and equals �1�

�pv inU1\K1.
In particular, it makes sense to compute1pv̄ in �, and it turns out that1pv̄ = 0 in
K and �1pv̄ = �1�

�pv in � \ K̄1. We can now define the potential V by setting

V =
|Q��1��p (v̄)|

v̄ p�1
.

By construction, V is a bounded function with compact support in� and v̄ is a posi-
tive supersolution of the equation Q��1��p+V(u) = 0 in�. Hence, Q��1��p+V � 0
in �, and the Claim is proved.

We set �t = t�1 + (1� t)�0. By using [16, Lemma 4.3] (see also [30, Propo-
sition 4.3]), it follows that the set

{(t, s) 2 [0, 1] ⇥ R : Q��t ��p+sV � 0 in �}

is a convex set. Hence, the function ⌫ : [0, 1] ! R defined by

⌫(t) := min{s 2 R : Q��t ��p+sV � 0 in �}

is convex . Since V has compact support it follows by [29, Proposition 4.19] that
Q��t ��p+⌫(t)V is critical for all t 2 [0, 1]. We note that by definition ⌫(t) > 0 for
all t 2]0, 1], while ⌫(0)  0. Since ⌫ is convex, we must have ⌫(0) = 0, and hence
Q��0��p is critical.

3. Construction of subsolutions and supersolutions

The proofs of our main theorems are based on the construction of suitable subsolu-
tions and supersolutions to equations of the form�1pu����p|u|p�2u = 0, which
is carried out in this section. To do so, we need a number of preliminary results.

Recall our notation Ipu = |u|p�2u. By Rn [ {1} we denote the standard
one-point compactification of Rn (note that in this paper the symbol1 will not be
used with reference to the one point compactification of a bounded domain �, as
often is done in the related literature). Finally, for ↵ 2 [0, 1] we set

�↵ := (p � 1)↵ p�1(1� ↵). (3.1)

Observe that �↵ = cp if ↵ = (p � 1)/p, the function �↵ is increasing with respect
to ↵ 2 [0, (p � 1)/p] and decreasing for ↵ 2 [(p � 1)/p, 1].

The first part of the following lemma is taken from [16, Proposition 4.5].
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Lemma 3.1. Let U be an open set in Rn . Let G be a positive function defined on
U such that �1pG = 0 in U . Let W := |rG/G|p. Then for every ↵ 2 (0, 1) we
have

(�1p � �↵WIp)G↵ = 0, in U. (3.2)

Moreover, if x0 2 U , where the closure U of U is taken in Rn [ {1}, and

lim
x!x0

|rG(x)|
G(x)

d(x) = c (3.3)

for some c > 0, where d is a positive function defined in a relative punctured
neighborhood of x0. Then for every " > 0 there exists an open neighbourhood U"

of x0 such that
✓

�1p �
cp�↵ � "

d p
Ip
◆
G↵ � 0 in (U" \U) \ {x0}. (3.4)

Proof. For the proof of (3.2) we refer to [16, Proposition 4.5]. In order to prove
(3.4) we note that

✓
�1p �

cp�↵ � "

d p
Ip
◆
G↵ =

✓
�1p � �↵WIp

◆
G↵

+ cp�↵

✓
W
cp

�
1
d p

◆
IpG↵ + "

IpG↵

d p

=
�
�↵(Wd p � cp) + "

� IpG↵

d p
.

(3.5)

By (3.3), it follows that there exists an open neighbourhood U" of x0 such that
�↵(W (x)d(x)p � cp) � �" for all x 2 (U" \U) \ {x0} which combined with (3.5)
yields (3.4).

The proof of the following lemma would be straightforward for open sets � of
class C2, in which case the tubular neighbourhood theorem holds and no boundary
point can be approached by points from the cut locus of�. However, assuming that
� is of class C1,� with 0 < � < 1, or even just of class C1 as we do here, requires
a more detailed analysis.

As usual, by modulus of continuity of a real or vector-valued function f de-
fined on a subset A of Rn we mean an increasing function ! : [0,1[! [0,1[
such that w(t) ! 0 as t ! 0 and such that | f (x) � f (y)|  !(|x � y|) for all
x, y 2 A.

Lemma 3.2. Let � be an open set in Rn of class C1, x0 2 @� and U be an open
neighbourhood of x0. Let G 2 C1(� \U) be a non-negative function such that
G(x) = 0, rG(x) 6= 0 for all x 2 U \ @�. Then

lim
x!x0

|rG(x)|
G(x)

�(x) = 1. (3.6)
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Moreover, if ! is a modulus of continuity of rG in a neighbourhood of x0, then
�
�
�
�
rG(x)
G(x)

�
�
�
� =

1
�(x)

+
O(!(�(x)))

�(x)
as x ! x0. (3.7)

Proof. Since � is of class C1, it can be represented locally around x0 as the sub-
graph of a C1 function. This means that there exists an open neighbourhood B
of x0 and an isometry R such that R(B) = 5n

i=1]ai , bi [ for ai , bi 2 R and
R(� \ B) = {x 2 5n

i=1]ai , bi [: xn < '(x1, . . . , xn�1)} where ' is a suitable
C1 function from 5n�1

i=1 [ai , bi ] to ]an, bn[. To shorten our notation, in the sequel
we write x̄ for (x1, . . . xn�1). Moreover, we may assume directly that the isometry
R is the identity and that B b U . We now proceed dividing the proof in three steps.

Step 1. We prove that there exists an open neighbourhood B̃ ⇢ B of x0 and c > 0
such that

c�(x)  G(x)  c�1�(x) (3.8)

for all x 2 B̃ \ �. Since rG is continuous up to @�, G vanishes on @� and rG
does not vanish at any point of @�, it follows that if x 2 � \ B is sufficiently close
to @�, then @G(x)

@xn 6= 0, hence there exists c1 > 0 such that

c1 

�
�
�
�
@G(x)
@xn

�
�
�
�  c�11 (3.9)

for all x 2 B̃ \ �, where B̃ is an open neighbourhood of x0 with B̃ ⇢ B. Now,
by the Lagrange’s mean value theorem, we have G(x̄, xn) = @G(x̄,⇠x )

@xn (xn � '(x̄))
where ⇠x 2]xn,'(x̄)[, hence

c1('(x̄) � xn)  G(x)  c�11 ('(x̄) � xn) (3.10)

for all x 2 B̃ \ �. By standard arguments and by possibly shrinking B̃, we have
that there exists c2 > 0 such that

�(x)  '(x̄) � xn  c2�(x) (3.11)

for all x 2 B̃ \ �, which combined with (3.10) yields (3.8).

Step 2. Let ! be a modulus of continuity of rG on � \ B as in the statement. For
every x 2 � we denote by P(x) a point in @� of minimal distance of x from @�,
which means that �(x) = |x � P(x)|. We prove that

G(x) = rG(x) · (x � P(x)) + O(!(�(x)))�(x) as x ! x0. (3.12)

By the Lagrange’s mean value theorem applied to the function

t 7! G(P(x) + t (x � P(x))), where t 2 [0, 1],
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and x is fixed in � \ B, we obtain
G(x) = G(P(x)) + rG(P(x) + ⌘x (x � P(x))) · (x � P(x))

= rG(x) · (x � P(x))
+ (rG(P(x) + ⌘x (x � P(x))) � rG(x)) · (x � P(x)),

(3.13)

for some ⌘x 2]0, 1[. Then we have
|(rG(P(x) + ⌘x (x � P(x))) � rG(x)) · (x � P(x))|

 !(|(⌘x � 1)(x � P(x))|)|x � P(x)|  !(�(x))�(x),
(3.14)

for all x 2 � \ B. By combining (3.13) and (3.14) we obtain (3.12).
Step 3. We note that

lim
x!x0

P(x) = x0 and
x � P(x)
|x � P(x)|

= ⌫(P(x)), (3.15)

where ⌫(P(x)) is the unit inner normal to @� at the point P(x). By (3.12) and the
second equality in (3.15) we have

rG(x)
G(x)

· ⌫(P(x)) =
1

�(x)
+
O(!(�(x)))

G(x)
. (3.16)

Consequently, by (3.8) and using the fact that !(�(x)) ! 0 as x ! x0, we deduce
that

lim
x!x0

rG(x)
G(x)

· ⌫(P(x))�(x) = 1. (3.17)

Thus, by (3.17)

lim
x!x0

|rG(x)|
G(x)

�(x) = lim
x!x0

|rG(x)|rG(x) · ⌫(P(x))
G(x)rG(x) · ⌫(P(x))

�(x)

=
|rG(x0)|

rG(x0) · ⌫(x0)
= 1,

(3.18)

where in the last equality we have used the fact that rG(x0) = rG(x0)·⌫(x0)⌫(x0)
and rG(x0) · ⌫(x0) > 0 since ⌫ points inwards. This completes the proof of (3.6).
Step 4. For x 2 U \ � we consider an orthonormal basis

{V1(P(x)), . . . , Vn�1(P(x))}
of the tangent hyperplane to @� at the point P(x). Since G vanishes onU \ @� we
have rG(P(x)) · Vi (P(x)) = 0 for all i = 1, . . . , n � 1 hence

rG(x) =
n�1X

i=1
rG(x) · Vi (P(x))Vi (P(x)) + rG(x) · ⌫(P(x))⌫(P(x))

=
n�1X

i=1
(rG(x) � rG(P(x))) · Vi (P(x))Vi (P(x))

+ rG(x) · ⌫(P(x))⌫(P(x))
= O(!(�(x))) + rG(x) · ⌫(P(x))⌫(P(x)),

(3.19)

which combined with (3.8) and (3.16) yields (3.7).
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We also need the following lemma which represents a special case of a general
statement proved in [16, Lemma 2.10]. Formula (3.20) has to be understood in the
distributional sense.

Lemma 3.3. Let U be an open set in Rn , and let G be a positive function of class
C1(U). Then for all ↵,� > 0 we have

1p(G↵ ± G�) =
�
�
�↵G↵�1 ± �G��1

�
�
�
p�2

⇣
↵G↵�1 ± �G��1

⌘
1pG

+ (p � 1)|rG|p
h
(↵2 � ↵)G↵�2 ± (�2 � �)G��2

i�
.

(3.20)

We are now ready to prove the following theorem which guarantees the existence
of the above mentioned subsolutions and supersolutions in a neighbourhood of a
compact boundary.

Lemma 3.4. Let � be a domain in Rn with nonempty compact boundary of class
C1 and U be an open neighbourhood of @�. Let � 2]0, 1] and G 2 C1,� (� \U)
be a positive function such that 1pG = 0 in � \ U and G(x) = 0 for all x 2
@�. Let ↵,� 2 (0, 1) be such that (p � 1)/p  ↵ < � < ↵ + � . Then there
exists an open neighbourhood U of @�, U ⇢ U , such that the functions G↵ + G�

and G↵ � G� are a subsolution and a supersolution, respectively, for the equation
�1pv = �↵Ipv/� p in � \ U , where �↵ = (p � 1)↵ p�1(1� ↵). Moreover, U can
be chosen to be independent of small perturbations of ↵ and �.

Proof. First we consider the case of the subsolution. By Lemma 3.3 and (3.7), it
follows that

� 1p(G↵ + G�)

=
⇣
↵G↵�1 + �G��1

⌘p�2 ✓ �↵

↵ p�2G
↵�2 +

��

� p�2G
��2

◆
|rG|p

=G↵(p�1) �↵ + �G��↵
�p�2

✓
�↵

↵ p�2 +
��

� p�2G
��↵

◆ ��
�
�
rG
G

�
�
�
�

p

 G↵(p�1)(↵ + �G��↵)p�2
✓

�↵

↵ p�2 +
��

� p�2G
��↵

◆✓
1
� p

+ O(���p)

◆
.

(3.21)

By (3.21), in order to guarantee that G↵ + G� is a subsolution as required in the
statement, it suffices to impose the condition

G↵(p�1)�↵ + �G��↵
�p�2

✓
�↵

↵ p�2 +
��

� p�2G
��↵

◆✓
1
� p

+ O(���p)

◆


�↵

� p
(G↵ + G�)p�1



HARDY INEQUALITY 1147

which can written in the form

�
↵+�G��↵

�p�2
✓

�↵

↵ p�2+
��

� p�2G
��↵

◆
�
1+O(�� )

�
 �↵(1+G��↵)p�1. (3.22)

Since G��↵ = 0 on @�, by expanding both sides of (3.22) in G��↵ up to the first
order, inequality (3.22) can also be written in the form

(�↵+AG��↵+o(G��↵))
�
1+ O(�� )

�
 �↵(1+(p�1)G��↵+o(G��↵)), (3.23)

where
A := (p � 2)�↵�/↵ + ��↵ p�2/� p�2.

Note that since G(x) is asymptotic to �(x) as x ! @� and � �↵ < � , we have that
�(x)� /G(x)��↵ ! 0 as x ! @�. Moreover, by a direct computation and by using
condition (p � 1)/p  ↵ < �, one can easily verify that A < (p � 1)�↵ . Thus,
passing to the limit as x ! @� in both sides of (3.23), one can see that condition
(3.23) is satisfied in�\U , where U is a suitable neighbourhood of @�which can be
chosen to be independent of ↵ and �, if ↵ and � are as in the statement and belong
to small neighbourhoods of two fixed parameters ↵0, �0 satisfying the conditions
(p � 1)/p  ↵0 < �0.

We now consider the case of the supersolution. Proceeding as above, we see
that in order to guarantee that G↵ � G� is a positive supersolution as required in
the statement, we clearly may first take a small neighbourhood U1 of @� such that
G↵ � G� is positive in � \ U1. So, it suffices to impose the condition

G↵(p�1)��↵ � �G��↵
�
�p�2

✓
�↵

↵ p�2 �
��

� p�2G
��↵

◆✓
1
� p

� O(���p)

◆

�
�↵

� p
(G↵ � G�)p�1

in�\U2, where U2 is a smaller neighbourhood of @�. The latter inequality can be
written in the form

(�↵�AG��↵+o(G↵��))
�
1� O(�� )

�
� �↵(1�(p�1)G��↵+o(G↵��)), (3.24)

where A is the same constant defined above. Again, since A < (p�1)�↵ we easily
deduce as in the case of the subsolution the desired assertion.

We now construct sub- and super-solutions near1 for the operator

�1p � �↵

�
�
�
�
p � n
p � 1

�
�
�
�

p Ip
� p

on an unbounded domain � with compact boundary. Recall that if p = n, then for
such a domain Hp(�) = 0. So, for our purpose, we need to consider only the case
where p 6= n.
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Lemma 3.5. Let� be an unbounded domain inRn with nonempty compact bound-
ary. Let G be the function defined inRn \{0} by G(x) := |x |

p�n
p�1 for all x 2 Rn \{0}.

Then the following statements hold:
(i) If p < n and ↵,� 2 (0, 1) are such that

p � 1
p

 ↵ < � < ↵ +
p � 1
n � p

,

then there exists M > 0 such that the functions G↵ + G� , G↵ �G� are
a subsolution and a supersolution, respectively, for the equation �1pv =

�↵

�
�
�p�np�1

�
�
�
p
Ipv/� p on {x 2 Rn : |x | > M}.

(ii) If p > n and ↵,� 2 (0, 1) are such that � < ↵  (p� 1)/p, then there exists
M > 0 such that the functions G↵ + G� , G↵ � G� are a subsolution and a
supersolution respectively, for the equation �1pv = �↵

�
�
� p�np�1

�
�
�
p
Ipv/� p on

{x 2 Rn : |x | > M}.
Proof. By Lemma 3.3 it follows that

�1p(G↵± G�)=
�
�
�↵G↵�1 ± �G��1

�
�
�
p�2

✓
�↵

↵ p�2G
↵�2 ±

��

� p�2G
��2

◆
|rG|p

= G↵(p�1) ��↵ ± �G��↵
�
�p�2

✓
�↵

↵ p�2 ±
��

� p�2G
��↵

◆ ��
�
�
rG
G

�
�
�
�

p

= G↵(p�1)��↵ ± �G��↵
�
�p�2

✓
�↵

↵ p�2 ±
��

� p�2G
��↵

◆��
�
�
p�n
p�1

�
�
�
�

p 1
|x |p

.

Since @� is compact, it follows that |��p � |x |�p|  O(��1)��p as |x | ! 1.
Thus, in order to verify that G↵ + G� is a subsolution as required in the statement,
it suffices to impose the condition

(↵ + �G��↵)p�2
✓

�↵

↵ p�2 +
��

� p�2G
��↵

◆⇣
1+ O(��1)

⌘

 �↵(1+ G��↵)p�1.

(3.25)

Similarly, in order to guarantee that G↵ � G� is a supersolution as required in the
statement, it suffices to impose the condition

�
�↵ � �G��↵

�
�p�2

✓
�↵

↵ p�2 �
��

� p�2G
��↵

◆⇣
1� O(��1)

⌘

� �↵|1� G��↵|p�2(1� G��↵).

(3.26)

By assumptions, in both cases p < n and n < p, we have that G��↵(x) ! 0 as
|x | ! 1. Thus, condition (3.25) can be written as

(�↵ + AG��↵ + o(G��↵))
⇣
1+ O(��1)

⌘

 �↵(1+ (p � 1)G��↵ + o(G��↵)),
(3.27)
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while condition (3.26) can be written as

(�↵ � AG��↵ + o(G��↵))
⇣
1� O(��1)

⌘

� �↵(1� (p � 1)G��↵ + o(G��↵)),
(3.28)

where in both cases A = (p � 2)�↵�/↵ + ��↵ p�2/� p�2 is the same constant
appearing in the proof of Lemma 3.4. As it was noted in the proof of Lemma 3.4,
if (p � 1)/p  ↵ < �, then A < (p � 1)�↵ . However, it can be easily seen that
A < (p � 1)�↵ also if 0 < � < ↵  (p � 1)/p. It follows that in order to verify
the validity of conditions (3.27) and (3.28) for |x | large enough, it suffices to verify
that O(��1)G↵�� = o(1) as |x | ! 1. This condition is satisfied because G(x) is
asymptotic to �(x)

p�n
p�1 as |x | ! 1 and |↵ � �| < |(p � 1)/(p � n)|.

4. Upper bounds and existence of minimizers

Using the results of the previous section, we can prove the following existence
result for bounded domains. Note that, assuming that � is of class C1,� as we
do here, would allow to skip a few steps in our proof. However, we prefer to write
down more details which explain how our method could be adapted to more general
situations as described in Theorem 4.3, see Remark 4.2 below.

Theorem 4.1. Let� be a bounded domain inRn of classC1,� with � 2]0, 1]. Then
�p,1(�) = cp. Moreover, if Hp(�) < cp, then there exists a positive minimizer
u 2 W 1,p

0 (�) for (1.2). In particular, if ↵ 2 ](p�1)/p, 1[ is such that �↵ = Hp(�),
then

0 < u(x)  C�↵(x) 8x 2 �. (4.1)

Proof. Let x̃0 2 � and G be the positive minimal Green function in � of the p-
Laplacian with pole at x̃0. Recall that since � is of class C1,� , then G is of class
C1,�̃ away from x̃0 and up to @�, for some �̃ 2 (0, � ), and G(x) = 0, rG(x) 6= 0
for all x 2 @� by the Hopf lemma (see Section 2). Thus, G satisfies equality (3.6)
for all x0 2 @�. In particular, choosing ↵ = (p� 1)/p in Lemma 3.1, we have that
G↵ satisfies (3.4) with �↵ = cp and c = 1.

Since @� is compact, it follows that G(p�1)/p is a supersolution to the equation
�1pv � (cp � ")Ipv/� p = 0 in a relative neighbourhood of @�. By passing to the
limit as " ! 0 and using definition (1.4), we get that �p,1(�) � cp.

On the other hand, since � is of class C1, any point at the boundary has a tan-
gent hyperplane, hence locally around any fixed point at the boundary it is possible
to apply the same argument of [24, Theorem 5] and conclude that �p,1(�)  cp.

More precisely, let P 2 @� be fixed and 5 be the tangent hyperplane at @�
in P . We claim that condition (2.2) in [24, Theorem 5] is satisfied, that is, for all
x 2 � in a suitable neighborhood of P we have

|d(x,5) � �(x)|  o(1)d(x, P) (4.2)
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where o(1) is a quantity which tends to zero as x ! P . To prove (4.2) we argue
as follows. Since � is of class C1, we can assume without loss of generality that
P = 0 (the origin of the coordinate system),5 = {x 2 Rn : xn = 0} and that there
exists an open neighborhood U of P such that

� \U =
n
(x̄, xn) 2 Rn : x̄ 2 5n�1

i=1 ]ai , bi [, an < xn < g(x̄)
o

,

for suitable real numbers ai , bi , where g is a function of class C1(5n�1
i=1 ]ai , bi [)

such that g(0) = 0 and rg(0) = 0. Given x = (x̄, xn) 2 � \ U , we set rx =
d(x, P) = |x | and Lx = supz2B(x,2rx )\� |rg(z̄)|. We note that Lx is well-defined
for x sufficiently close to P and that �(x) = infy2B(x,2rx )\� d(x, (ȳ, g(ȳ)). Thus,
for any y 2 B(x, 2rx ) \ � we have

|xn � g(x̄)|  |xn � g(ȳ)| + |g(ȳ) � g(x̄)|
 |xn � g(ȳ)| + Lx |x̄ � ȳ|
 (1+ Lx )d(x, (ȳ, g(ȳ))

hence

|xn � g(x̄)|  (1+ Lx ) inf
y2B(x,2rx )\�

d(x, (ȳ, g(ȳ)) = (1+ Lx )�(x). (4.3)

It follows from (4.3) that

|xn|  |xn � g(x̄)| + |g(x̄)|  (1+ Lx )�(x) + Lx |x̄ |  (1+ Lx )�(x) + Lxd(x, P)

hence
|xn| � �(x)  Lx�(x) + Lxd(x, P)  2Lxd(x, P). (4.4)

On the other hand,

�(x)  |xn � g(x̄)|  |xn| + Lx |x̄ |  |xn| + Lxd(x, P). (4.5)

In conclusion, combining (4.4) and (4.5) we get

||xn| � �(x))|  2Lxd(x, P) (4.6)

where Lx ! 0 as x ! P since rg is continuous. Thus condition (4.2) is satisfied.
Now, condition (4.2) (together with the fact that a segment perpendicular to5

is contained in �, which is clearly satisfied in our case) is used in [24, Theorem 5]
to prove that for any open neighbourhood V of P and any " > 0 there exists a
function ' 2 C1

c (V \ �) such that
R
� |r'|p dx
R
�

|'|p
� p dx

 (1+ ")(cp + ")
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which allows us to conclude that the admissible numbers � in (1.4) satisfy �  (1+
")(cp + ") for any " > 0 (recall the Allegretto-Piepenbrink theory mentioned at the
beginning of Section 2). Hence, �p,1(�)  cp. This proves that �p,1(�) = cp.

We assume now that Hp(�) < cp and prove the existence of a minimizer for
(1.2). First of all we note that since Hp(�) < �p,1(�), Lemma 2.3 implies that the

positive function of minimal growth u 2M
Q�Hp(�)��p

�,{x0} is an Agmon ground state.

We now prove that u 2 L p(�; ��p). Since �↵ = cp if ↵ = (p � 1)/p and
Hp(�) < cp, we can choose ↵̃ > (p�1)/p close enough to (p�1)/p so that �↵̃ >

Hp(�). Note that this choice of ↵̃ implies that G↵̃ 2 L p(�, ��p). As above, using
(3.4) and the compactness of @� it follows that the function G↵̃ is a supersolution
to the equation �1pv � (�↵̃ � ")Ipv/� p = 0 in a relative neighbourhood of @�.
Hence, in such a neighbourhood

✓
�1p � Hp(�)

Ip
� p

◆
G↵̃ �

✓
�1p � (�↵̃ � ")

Ip
� p

◆
G↵̃ � 0, (4.7)

provided that " > 0 is small enough to guarantee that Hp(�)  �↵̃ � ". Thus, G↵̃

is a positive supersolution to the equation �1pv � Hp(�)
Ipv
� p = 0 in a relative

neighbourhood of @�. Therefore, the ground state u satisfies the condition 0 <
u  kG↵̃ in a relative neighbourhood of @� for a suitable positive constant k. This
implies that u 2 L p(�, ��p).

We now prove that ru 2 L p(�). Note that since u  kG↵̃ in a relative
neighbourhood of @�, we have that u(x) ! 0 as x ! @�, hence u is continuous
up to the boundary of �. Then we use a standard truncation argument as follows.
For any " > 0 we consider the real-valued function F" defined on [0,1[ by setting
F"(x) = 0 if 0  x < "/2, F"(x) = 2x � " if "/2 < x < ", F"(x) = x if x � ".
Moreover, we set u" = F" � u. Since u" has compact support in �, it can be used
as a test function in the weak formulation of the problem solved by u, namely

Z

�
|ru|p�2rur' dx = Hp(�)

Z

�

|u|p�2u'
� p

dx, (4.8)

where one can see by a standard approximation argument that it is possible to
choose not only test functions ' 2 C1

c (�) but also functions in W 1,p(�) with
compact support. Plugging u" in (4.8) we get

Z

{x2�: u(x)�"}
|ru|p dx + 2

Z

{x2�: "/2<u(x)<"}
|ru|p dx

= Hp(�)

Z

�

|u|p�2uu"

� p
dx

(4.9)

which in particular yields
Z

{x2�: u(x)�"}
|ru|p dx  Hp(�)

Z

�

|u|p�2uu"

� p
dx . (4.10)
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Finally, passing to the limit in (4.10) as " ! 0, we get that
Z

�
|ru|p dx  Hp(�)

Z

�

|u|p

� p
dx < 1 (4.11)

as required. Thus u 2 W 1,p
0 (�) since the Sobolev norm of u is finite and u vanishes

at the boundary of �.
In order to prove estimate (4.1) we proceed as follows. Let ↵ be as in the

statement and let � 2 (0, 1) be such that ↵ < � < ↵ + �̃ . Then we can apply
Lemma 3.4 and conclude that in a suitable relative neighbourhood of @�
✓

�1p � Hp(�)
Ip
� p

◆
(G↵ � G�) =

✓
�1p � �↵

Ip
� p

◆
(G↵ � G�) � 0. (4.12)

Thus G↵ � G� is a positive supersolution to the equation �1pv � Hp(�)
Ipv
� p = 0

in a relative neighbourhood of @�. Since u is a positive solution of minimal growth
in a neighbourhood of infinity in �, it follows that u satisfies u  C(G↵ � G�) in
a relative neighbourhood of @� for a suitable positive constant C . Since G(x) is
asymptotic to �(x) as x ! @�, we deduce the validity of (4.1).

Remark 4.2. In the proof of Theorem 4.1, the assumption � 2 C1,� was used in a
substantial way only to prove the validity of (4.1), and to establish the upper bound
�p,1(�)  cp. Note that �p,1(�)  cp holds provided there exists one point
z 2 @� which admits a tangent hyperplane in the sense of [24, Theorem 5].

On the other hand, the proof of inequality �p,1(�) � cp and the proof of the
existence of a minimizer inW 1,p

0 (�) under the condition Hp(�) < cp, rely only on
the assumption that� is of classC1 and on the existence of a p-harmonic function u
defined in a relative neighbourhood of @� such that u(x) = 0 andru(x) 6= 0 for all
x 2 @�. Under these weaker assumptions, it was also proved that a slightly weaker
estimate holds for the positive minimizer u. Namely, estimate (4.1) holds with the
power ↵ replaced by any power ↵̃ smaller than ↵. We recall in particular that the
condition ru(x) 6= 0 for all x 2 @� is guaranteed by the Hopf lemma which holds
under weaker assumptions on @�, for example under the assumption that � is of
class C1,Dini, see [26]. Recall also that the Hopf lemma does not hold in general
under the sole assumption that � is of class C1, see e.g., [20, Subsection 3.2].

Following the observations of the previous remark, we can state the following
variant of the previous theorem.
Theorem 4.3. Let � be a bounded domain in Rn of class C1 such that the Hopf
lemma holds for the p-Laplacian (namely, any positive p-harmonic function u de-
fined in a relative neighbourhood of @� such that u = 0 on @� satisfies ru(x) 6= 0
for all x 2 @�). Then �p,1(�) � cp. Moreover, if Hp(�) < cp, then there exists
a positive minimizer u 2 W 1,p

0 (�) for (1.2). In particular, if ↵ 2 ](p � 1)/p, 1[ is
such that �↵ = Hp(�), then for any " > 0 there exists C" > 0 such that

0 < u(x)  C"�
↵�"(x) 8x 2 �.
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We can also consider the case of exterior domains. Recall that c⇤p,n = | p�np |p and
cp,n = min{cp, c⇤p,n}. It is well known that if p = n, then Hp(�) = �p,1(�) = 0
[24]. Therefore, in the following theorem we consider the case p 6= n.

Theorem 4.4. Let � be an unbounded domain in Rn with nonempty compact
boundary of class C1,� with � 2]0, 1], and let p 6= n. Then �p,1(�) = cp,n .

Moreover, if Hp(�) < cp,n , then there exists a positive minimizer u2 eW 1,p(�)
for (1.2). Finally, let ↵,↵1 2 ](p � 1)/p, 1[ and ↵2 2 ]0, (p � 1)/p[ be such that
�↵ = Hp(�), �↵1 = �↵2 = |(p � 1)/(p � n)|pHp(�). Then there exists C > 0,
an open neighbourhood U of @�, and M > 0 such that u satisfies the following
estimates:

(i) 0 < u(x)  C�↵(x) for all x 2 � \ U ;
(ii) If p < n, then 0 < u(x)  C|x |

↵1(p�n)
p�1 for all |x | > M;

(iii) If p > n, then 0 < u(x)  C|x |
↵2(p�n)
p�1 for all |x | > M .

Proof. Let x̃0 2 � and let G be a positive function defined on � which coincides
in a relative neighbourhood of @� with the positive minimal Green function in� of
the p-Laplacian with pole at x̃0, and such that G(x) = |x |

p�n
p�1 for all x in a neigh-

bourhood of1 (note that the specific definition of G outside such neighbourhoods
is irrelevant here).

Since G satisfies (3.6) for all x0 2 @�, we can apply the same argument as in
the proof of Theorem 4.1 to conclude that for any ↵ 2 (0, 1) and " > 0 sufficiently
small the function G↵ is a positive supersolution to the equation

�1pv � (�↵ � ")Ipv/� p = 0 (4.13)

in a neighbourhood of @�.
We note now that1pG = 0 also in a neighbourhood of1 and that G satisfies

(3.3) with x0 = 1 and c = |p � n|/(p � 1). Thus, by (3.4) it follows that for any
↵ 2 (0, 1) and " > 0 sufficiently small the function G↵ is a supersolution to the
equation

�1pv �

✓��
�
�
p � n
p � 1

�
�
�
�

p
�↵ � "

◆ Ipv
� p

= 0 (4.14)

in a neighbourhood of1.
Recall that for ↵ = (p � 1)/p we have �↵ = cp, hence

�
�
� p�np�1

�
�
�
p
�↵ = c⇤p,n .

Thus, choosing ↵ = (p � 1)/p and looking at the equations (4.13) and (4.14) we
immediately see that for any " > 0 sufficiently small the function G(p�1)/p is a su-
persolution of equation�1pv � (cp,n �")Ipv/� p = 0 in a relative neighbourhood
of @�[{1}. Thus, passing to the limit as " ! 0 we conclude that �p,1(�) � cp,n .

As in the proof of Theorem 4.1, we can use the argument of [24, Theorem 5]
in a relative neighbourhood of any point of @� to prove that �p,1  cp. Moreover,
by [24, Example 2] it also follows that �p,1(�)  c⇤n,p. So, �p,1(�)  cp,n .
Thus, �p,1(�) = cp,n .
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Assume now that Hp(�) < cp,n .We need to prove the existence of a minimizer
for (1.2). As in the proof of Theorem 4.1, since Hp(�) < �p,1(�), by Lemma 2.3

it follows that the positive function of minimal growth u 2 M
Q�Hp(�)��p

�,{x̃0} is an
Agmon ground state. Arguing as in the proof of Theorem 4.1 we choose � 2 (↵, 1)
such that � < ↵ + �̃ where �̃ 2 (0, � ) is such that G is of class C1,�̃ in a relative
neighbourhood of @�. Exactly as in the proof of Theorem 4.1, it turns out that
G↵ � G� is a positive supersolution to the equation �1pv � Hp(�)

Ipv
� p = 0 in

a relative neighbourhood of @�. Hence, the Agmon ground state u satisfies the
condition u  C(G↵ � G�) in a relative neighbourhood of @� which provides the
validity of the estimate in statement (i) for the function u.

In order to analyze the behaviour of u at 1, we use Lemma 3.5. We consider
first the case p < n. Let � 2 (0, 1) be such ↵1 < � < ↵1 + (p� 1)/(n� p). Then
by Lemma 3.5 we have

�1p(G↵1 � G�) � �↵1

�
�
�
�
p � n
p � 1

�
�
�
�

p
Ip(G↵1 � G�)/� p = Hp(�)Ip(G↵1 � G�)/� p

in a neighbourhood of 1, which means that G↵1 � G� is a supersolution. Thus
u satisfies the condition u(x)  C(G↵1 � G�), which implies that u satisfies the
estimate in statement (ii) in a neighbourhood of1 (note that for p < n, G(x) ! 0
as |x | ! 1, hence the leading term in G↵1 � G� is given by G↵1).

As far as the case p > n we argue in the same way. We consider � 2 (0, 1)
such that 0 < � < ↵2 and we get that G↵2 � G� is a supersolution in a neighbour-
hood of1. Thus the Agmon ground state u satisfies the estimate in statement (iii)
in a neighbourhood of1 (note that for p > n, G(x) ! 1 as |x | ! 1, hence the
leading term in G↵2 � G� is given by G↵2).

In conclusion, we have proved that u satisfies the appropriate estimates in state-
ments (i), (ii), (iii). This implies that u 2 L p(�; ��p).

It remains to prove that ru 2 L p(�). We can apply the same argument used
in the proof of Theorem 4.1 to conclude that ru 2 L p(U), where U is a relative
neighbourhood of @�. On the other hand, since the operator �1p �

Hp(�)
� p Ip has

a Fuchsian type singularity at infinity, it follows from [19, Lemma 2.6] that there
exists r0 > 0 such that

|ru(x)|  C
u(x)
|x |

for all |x | > r0. (4.15)

Since u 2 L p(�; ��p), it follows from (4.15) that ru 2 L p(�).

5. Lower bounds and non-existence of minimizers

In the present section we prove that the existence of a minimizer to the variational
problem implies the existence of a spectral gap (equivalently, the absence of a spec-
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tral gap implies the non-existence of minimizers). In the case of a bounded do-
main, the proof is based on a construction of a suitable subsolution for the equa-
tion �1pv � cp��pIpv = 0 and a comparison principle proved in [25, Propo-
sition 3.1]. In the case of unbounded domains, the proof is also based on the
use of positive solutions of minimal growth at infinity for equations of the type
�1pv � �|x |�pIpv = 0.

Theorem 5.1. Let � be a bounded domain in Rn of class C1,� with � 2]0, 1] and
fix 0 < �  Hp(�). Let ↵ 2 [(p � 1)/p, 1) be such that �↵ = �, and let U be
an open neighbourhood of @�. If u 2 C(� \ U \ @�) is a positive solution of the
equation

�1pv �
�

� p
Ipv = 0 (5.1)

in � \ U , then there exists a constant C > 0 such that

�(x)↵  Cu(x) in � \ U . (5.2)

Hence, if u is a minimizer in (1.2), then Hp(�) < cp.

Proof. Let x0 2 � be fixed, and let G be the positive minimal Green function in
� for the p-Laplacian with pole at x0, and note that G vanishes at @�. Recall that
since � is of class C1,� , by standard regularity theory there exists an open neigh-
bourhood U0 of �̄ and �̃ 2]0, � ] such that G is of class C1,�̃ (� \U0). Moreover,
since � is of class C1,� , the Hopf lemma holds, and hence, rG(x) 6= 0 for all
x 2 @�. Fix � 2 (0, 1) such that ↵ < � < (p � 1)/p + �̃ . In light of Lemma 3.4,
there exist " > 0 and an open neighbourhood U ⇢ U0 of @� such that for all
↵ < ↵̃ < ↵ + " < �, the function v := G↵̃ + G� satisfies �1pv  �↵̃

� p Ipv in
� \U . Hence,

�1pv 
�↵

� p
Ipv in � \U.

Let C be a positive constant such that v  Cu on � \ @U for all ↵̃ 2 (0, 1) suffi-
ciently close to ↵. Then by the comparison principle proved in [25, Proposition 3.1],
we can conclude that

v  Cu, in � \U (5.3)

provided

lim inf
r!0

1
r

Z

Dr
v p

 �
�
�
�
rv

v

�
�
�
�

p�1
+

�
�
�
�
ru
u

�
�
�
�

p�1
!

dx = 0, (5.4)

where Dr = {x 2 � : r/2 < �(x) < r}. Since ↵̃ > (p � 1)/p, condition (5.4)
can be verified exactly as in the proof of [25, Lemma 5.1], where v is replaced
by �↵̃ + �� : for this purpose, note in particular that G(x) is asymptotic to �(x)
as x ! @� and that [25, Proposition 2.1 (ii)] holds true also in the case of C1,�
domains (and actually also in the case of C0,1 domains) as it can be easily verified.
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Since the constant C in (5.3) does not depend on ↵̃ for ↵̃ close enough to ↵, it
follows that

G↵  Cu

in a relative neighbourhood of @�, by which we can immediately deduce (5.2) (here
one should take C sufficiently large in order to control the function G↵ not only in a
small relative neighbourhood of @� but also in the whole of�\U ). If Hp(�) = cp,
then ↵ = (p � 1)/p. Therefore, (5.2) clearly implies that u /2 W 1,p

0 (�), hence u
cannot be a minimizer.

Combining the results of Lemma 3.4 and Theorem 5.1 we obtain the following
tight upper and lower bounds for positive solutions of minimal growth near @�.

Corollary 5.2. Let � be a bounded domain in Rn of class C1,� with � 2]0, 1] and
fix 0 < �  cp. Let ↵ 2 [(p � 1)/p, 1) be such that �↵ = �, and let U be an
open neighbourhood of @�. Let u 2 C(� \ U \ @�) be a positive solution of the
equation

�1pv �
�

� p
Ipv = 0 in � \ U (5.5)

of minimal growth in a neighbourhood of infinity in �.
Then there exists a constant C > 0 such that

C�1�(x)↵  u(x)  C�(x)↵ in � \ U . (5.6)

Remark 5.3. In the limiting case � = 0, and under the mild regularity assumptions
of Lemma 3.2, one obtains from estimate (3.8) that (5.6) holds with the limiting ex-
ponent ↵ = 1. This gives a strong indication to our feeling that in general, estimate
(5.6) does not hold if the bounded domain � is merely in the C1 class. Indeed,
note that (5.6) does not hold in the class of bounded Lipschitz domains. Indeed, for
n = 2, p = 2, � = 0 one can take the Lipschitz domain � =]0, 1[⇥]0, 1[, and note
that the function u(x, y) = xy is a harmonic function of minimal growth near (0, 0)
that does not satisfy estimate (5.6) with ↵ = 1. For other examples concerning the
case of a general conic point, p = 2 and 0 < �  c2, see [17].
Next, we prove that for a C1,� -exterior domain, the existence of a minimizer to the
variational problem implies the existence of a spectral gap.

Theorem 5.4. Assume that � is an unbounded domain in Rn with nonempty com-
pact boundary of class C1,� with � 2]0, 1]. Fix p 6= n and 0 < �  Hp(�).
Let ↵,↵1 2 [(p � 1)/p, 1[ and ↵2 2 ]0, (p � 1)/p] be such that � = �↵ :=
(p � 1)↵ p�1(1� ↵), �↵1 := �↵2 = |(p � 1)/(p � n)|p�.

If u is a positive solution of the equation (5.1), then there exists C > 0, an open
neighbourhood U of @� and M > 0 such that u satisfies the following estimates:

(i) u(x) � C�↵(x) for all x 2 � \ U ;
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(ii) If p < n, then u(x) � C|x |
↵1(p�n)
p�1 for all |x | > M;

(iii) If p > n, then u(x) � C|x |
↵2(p�n)
p�1 for all |x | > M .

Hence, if u is a minimizer for (1.2), then Hp(�) < cp,n .

Proof. Without loss of generality, we may assume that 0 2 Rn \ �̄, and let R > 0
be such that Rn \ � ⇢ B(0, R). Recall that by Theorem 4.4, Hp(�)  cp,n .

Let u be any positive solution of the equation (5.1). Since Hp(�)  cp,n  cp,
estimate (i) follows from the proof of Theorem 5.1.

On the other hand, for any 0 < µ  c⇤p,n consider the equation

�1pv �
µ

|x |p
Ipv = 0 (5.7)

in Rn \ {0}. Then vµ(x) := |x |�(µ) is a positive solution of (5.7) of minimal growth
near1, where �(µ)  (p� n)/p is the larger (respectively, smaller) root if p < n
(respectively, if p > n) of the transcendental equation

��|�|p�2[�(p � 1) + n � p] = µ,

see, [18, Example 1.1]. Note that �(µ) = (p � n)/p if and only if µ = c⇤p,n . Note
also that �(µ) = ↵(µ)(p�n)/(p�1) where ↵(µ) is the is the larger (respectively,
smaller) positive real number such that �↵(µ) = |(p � 1)/(p � n)|pµ if p < n
(respectively, if p > n).

Take, µ = �. Then u is a positive supersolution of (5.7) in Rn \ B(0, R) since
u is a solution of (5.1) and �(x)  |x | for all x 2 Rn \ B(0, R). Therefore, there
exists a positive constant c such that c|x |�(µ)  u(x) inRn \B(0, R), and we obtain
estimate (ii) if p < n and (iii) if p > n.

Estimates (i)-(iii) for u clearly imply that if � = Hp(�) = cp,n , then any
positive solution u satisfies u /2 W 1,p

0 (�), and therefore, the variational problem
does not admit a minimizer.

Finally, by combining the results of Lemma 3.5, Corollary 5.2, and Theo-
rem 5.4, we obtain for C1,� -exterior domains � tight upper and lower bounds for
positive solutions of minimal growth in a neighbourhood of infinity in �, that is, a
neighbourhood of @� [ {1}.

Corollary 5.5. Let � be an unbounded domain in Rn with nonempty compact
boundary of classC1,� with � 2]0, 1], and fix p 6= n and 0 < �  cp,n . Let ↵,↵1 2
[(p�1)/p, 1[ and ↵2 2 ]0, (p�1)/p] be such that � = �↵ = (p�1)↵ p�1(1�↵),
�↵1 = �↵2 = |(p � 1)/(p � n)|p�. If u is a positive solution of the equation (5.1)
of minimal growth in a neighbourhood of infinity in �, then there exists C > 0,
an open neighbourhood U of @� and M > 0 such that u satisfies the following
estimates:

(i) C�1�↵(x)  u(x)  C�↵(x) for all x 2 � \ U ;
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(ii) If p < n, then C�1|x |
↵1(p�n)
p�1  u(x)  C|x |

↵1(p�n)
p�1 for all |x | > M;

(iii) If p > n, then C�1|x |
↵2(p�n)
p�1  u(x)  C|x |

↵2(p�n)
p�1 for all |x | > M .
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