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A sufficient condition for the continuity
of solutions to a logarithmic diffusion equation

NAIAN LIAO

Abstract. This note gives a first sufficient condition that ensures a non-negative,
locally bounded, local solution to a logarithmically singular parabolic equation is
continuous at a vanishing point and an estimate of the modulus of continuity is
given. Moreover, an estimate of the Hausdorff measure of the set of discontinuity
is established.

Mathematics Subject Classification (2010): 35K67 (primary); 35B65, 35B45
(secondary).

1. Introduction and main results

Let E be an open set in RN . For T > 0, let ET denote the cylindrical domain
E ⇥ (0, T ]. Consider the quasi-linear, parabolic differential equation

ut �1 ln u = 0 weakly in ET . (1.1)

This equation is singular since its modulus of ellipticity u�1 ! 1 as u ! 0. A
non-negative function u satisfying

u 2 Cloc
⇣
0, T ; L2loc(E)

⌘
, ln u 2 L2loc

⇣
0, T ;W 1,2

loc (E)
⌘

is called a local, weak sub(super)-solution to (1.1) if for every compact set K ⇢ E
and every sub-interval [t1, t2] ⇢ (0, T ]

Z

K
u'dx

�
�
�
t2

t1
+

Z t2

t1

Z

K

⇣
� u't +

Du
u
D'

⌘
dxdt  (�) 0
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for all non-negative testing functions

' 2 W 1,2
loc

⇣
0, T ; L2(K )

⌘
\ L2loc

⇣
0, T ;W 1,2

o (K )
⌘

.

A function u that is both a local, weak sub-solution and a local, weak super-solution
is a local, weak solution.

For ⇢ > 0 we denote by K⇢(y) the cube centered at y with side length ⇢. If
y = 0 we use K⇢ . For ✓ > 0 introduce the cylinder with “vertex” at (0, 0)

Q⇢(✓) = K⇢ ⇥ (�✓⇢2, 0].

If ✓ = 1 we use Q⇢ . Also a cylinder with “vertex” at (y, s) is

(y, s) + Q⇢(✓) = K⇢(y) ⇥ (s � ✓⇢2, s].

Assume u is a locally bounded, local solution. Let us suppose ⇢ > 0 is so small that
the cylinder (y, s) + Q⇢ ⇢ ET . Up to a translation we may assume (y, s) = (0, 0)
and let

! = ess osc
Q⇢

u.

Without loss of generality we assume !  1 such that

Q⇢(!) ⇢ Q⇢ and ess osc
Q⇢(!)

u  !.

Suppose in addition to the notion of solution that

D ln u 2 L ploc(ET ) for some p >
N + 2
2

. (1.2)

Note that when N = 1 the integrability condition (1.2) is inherent in the notion
of solution while in other cases it has to be imposed. Accordingly we define the
quantity

Ip,⇢(y, s) = ⇢

✓ZZ

(y,s)+Q⇢
|D ln u|p dxdt

◆ 1
p

and Ip,⇢ = Ip,⇢(0, 0). Then we have the following main theorem.

Theorem 1.1. Let u be a non-negative, locally bounded, local solution to (1.1)
and assume (1.2) is satisfied. Then there exist constants C̄ > 1 and ↵ 2 (0, 1)
depending only on N , such that for any µ 2 (0, 1) and 0 < r < ⇢  Ro we have

ess osc
Qr (!)

u  C̄

!

✓
r
Ro

◆(1�µ)↵

+ Ip,R1�µ
o rµ

�

In particular, the solution u is continuous at the origin provided

lim sup
r!0

Ip,r = 0. (1.3)
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Remark 1.2. Strictly speaking, we need the convention that the function ⇢ ! Ip,⇢
is non-decreasing. In order to realize that, we need only to replace Ip,⇢ by

Ĩ p,⇢
def
= sup

0<r<⇢
Ip,r

in Theorem 1.1
Remark 1.3. For � � 0, T > 0 and N � 3, the explicit solution

u(x, t) =
2(N � 2)(T � t)

N
N�2

�+ (T � t)
2

N�2 |x |2
(1.4)

is continuous up to its extinction time T . One verifies that when � > 0 and for any
fixed xo, there is a positive constant C(xo, �, N , p) such that

Ip,r (xo, T )  Cr
4

(N�2)+2 ! 0 as r ! 0.

When � = 0, (1.4) gives an unbounded solution which, in particular, is discontin-
uous at x = 0. Condition (1.3) is verified everywhere except for x = 0. A direct
calculation shows that

D ln u 2 L ploc
⇣
RN ⇥ (�1, T ]

⌘
for any

N + 2
2

< p < N .

Furthermore, there exists some positive constant C(N , p) such that for every t < T

Ip,r (0, t) =

(
C(N , p) N+2

2 < p < N
1 p � N .

Hence the condition (1.2) alone is not sufficient to ensure continuity.
Now define the set S ⇢ ET to consist of all discontinuous points of a local

solution u and

So =

(

(y, s) 2 ET : lim sup
⇢!0

1
⇢N+2�p

ZZ

(y,s)+Q⇢
|D ln u|p dxdt > 0

)

.

As a direct consequence of Theorem 1.1 it is straightforward to see that S ⇢ So.
Moreover we are going to obtain an estimate of the Hausdorff measure of the set So.

The parabolic Hausdorff measure Pk is defined in a way similar to the usual
Hausdorff measure Hk but using the parabolic metric on RN ⇥ R. For any set
U ⇢ RN ⇥ R and k � 0 we define

Pk(U) = lim
�!0

P�k (U),
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where

P�k (U) = inf

(
1X

i=1
rki : U ⇢

[

i
[(yi , ti ) + Qri ], ri < �

)

.

Pk so defined is an outer measure whose � -algebra contains all Borel sets of RN ⇥
R (Chapter 2, [10]). Comparing with the Lebesgue measure LN+1 in RN+1, the
parabolic Hausdorff measure is a more suitable measure to quantify the size of the
discontinuity set S. Also, it should be pointed out that the parabolic Hausdorff
measure dominates the usual Hausdorff measure in the sense that there is some
constant C(N , k) such that for any subset U of RN ⇥ R one has

Hk(U)  CPk(U).

Regarding the Hausdorff measure of the discontinuity set we have the following
consequence of Theorem 1.1.

Theorem 1.4. Let u be a non-negative, locally bounded, local solution to (1.1) and
assume (1.2) is satisfied. Then we have

PN+2�p(S) = 0, N > 1 and
P1(S) = 0, N = 1.

Remark 1.5. When N = 1 the possible discontinuous points of a non-negative,
locally bounded, local solution to (1.1) cannot occupy a line in R2. Generally one
gets less discontinuity as the L p integrability of D ln u increases and eventually, the
solution is continuous at every point if one has p � N + 2.

1.1. Novelty and significance

Equation (1.1) describes the evolution of the Ricci flow for complete R2 [18]. It
also arises from modeling the thickness of a viscous liquid thin film that lies on a
rigid plate under the influence of the van der Waals force [17].

Physical and geometric motivations of (1.1) make sense mainly for N = 2, but
the problem is intriguing in the effort to shed light on the structural properties of
singular diffusion equations.

Questions concerning both existence and non-existence of solutions to the
Cauchy problem of (1.1) and its related elliptic equation are investigated in [1, 2, 4,
5, 11, 12, 16] (just mention few).

The study of local behavior of local solutions to (1.1) has been initiated in [6,7].
Equation (1.1) can be viewed as a formal limit of the porous medium equation

ut � div(um�1Du) = 0 as m ! 0.

A proof of Hölder continuity for non-negative, locally bounded, local solutions to
the porous medium equation can be found in Appendix B of [9]. However, the
local behavior of local solutions to (1.1) presents many striking differences from
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that of local solutions to the porous medium equation. See [14] for more detailed
discussion.

It was shown in [6] that if one assumes that

u 2 Lrloc(ET ) for some r > max
⇢
1,
N
2

�
,

then u is locally bounded. If in addition one assumes that

ln u 2 L1
loc

⇣
0, T ; L ploc(E)

⌘
for some p > N + 2,

then a Harnack-type inequality is established and thus, if the solution does not van-
ish identically on a hyperplane normal to the time axis, then the equation (1.1) is
neither degenerate nor singular in a backward cylinder with its vertex on the hy-
perplane. As a result u is a classical solution in such a cylinder by the classical
parabolic theory (see [13]). In fact, it is shown in [8] that under such circumstances
the solution is analytic in space variables while infinitely differentiable in time.

Nevertheless, these results do not explain why some explicit solutions, (1.4)
for example, could be continuous up to their extinction time. Theorem 1.1 gives
a first sufficient condition that ensures continuity at a vanishing point of u, and an
explicit estimate of the modulus of continuity is given. Moreover, we establish in
Theorem 1.4 an estimate on the Hausdorff measure of the set of discontinuity of u.

This effort being made, it is interesting to ask whether the higher integrability
conditon (1.2) of D ln u for N > 1 can be obtained from the notion of solution
and whether the condition (1.3) is necessary for a point to be a continuity point of
u. Last but not least, can we construct an explicit bounded solution with disconti-
nuity? When N = 1, a solution discontinuous on a line segment was constructed
in [15]. However, the notion of solution used seems different from this note, since
our results indicate such a phenomenon is not allowed for our solutions.

ACKNOWLEDGEMENTS. This paper was finalized during my visit to Vanderbilt
University in November 2016. I am grateful for many helpful discussions with Pro-
fessor Emmanuele DiBenedetto and Professor Ugo Gianazza. Professor Gianazza
also read carefully an early version of this paper and came up with a lot of valuable
comments. I am really indebted to both of them.

2. Proof of Theorem 1.4 assuming Theorem 1.1

The proof of Theorem 1.4 is based on the following

Proposition 2.1. Let f 2 L1loc(RN+1), suppose 0  d < N + 2 and define

3d =

(

(y, s) 2 RN+1 : lim sup
⇢!0

1
⇢s

ZZ

(y,s)+Q⇢
| f | dxdt > 0

)

.
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Then
Pd(3d) = 0.

Proof. This is a parabolic counterpart of a similar result shown in [10, Section
2.4.3]. We include the proof here for the reader’s convenience. We may assume
f 2 L1(RN+1). First, we use the Lebesgue Differentiation Theorem [10, Section
1.7.1] to obtain that

lim
⇢!0

1
⇢d

ZZ

(y,s)+Q⇢
| f | dxdt = 0 with (y, s)+Q⇢ = K⇢(y)⇥(s�⇢2, s+⇢2],

for LN+1 a.e. (y, s), since 0  d < N + 2. Hence

LN+1(3d) = 0.

Next, by the absolute continuity of the Lebesgue integral, for any � > 0 there exists
⌘ > 0, such that

LN+1(U)  ⌘ implies
ZZ

U
| f | dxdt < �.

Define

3✏d =

(

(y, s) 2 RN+1 : lim sup
⇢!0

1
⇢d

ZZ

(y,s)+Q⇢
| f | dxdt > ✏

)

,

which has zero LN+1 measure by the preceding. Therefore there exists an open set
U such that 3✏d ⇢ U , LN+1(U) < ⌘. Now, fix � > 0 and set a family of parabolic
cylinders

F =

⇢
(y, s) +Q⇢ : (y, s) 2 3✏d , 0 < ⇢ < �, (y, s) +Q⇢ ⇢ U,

1
⇢d

ZZ

(y,s)+Q⇢
| f | dxdt > ✏

�
.

By the Vitali covering theorem [10, Section 1.5.1], there exist countable disjoint
cylinders {Qi = (yi , si ) +Q⇢i }1i=1 in F such that

3✏d ⇢
1[

i=1
Q̂i , where Q̂i = (yi , si ) +Q5⇢i .
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As a result,

P20�d (3✏d) 
1X

i=1
(10⇢i )d


10d

✏

1X

i=1

ZZ

Qi

| f | dxdt


10d

✏

ZZ

U
| f | dxdt


10d

✏
�.

By letting � ! 0, and then � ! 0, we obtain

Pd(3✏d) = 0.

Now we are ready to present

Proof of Theorem 1.4. When N > 1, since we assume

D ln u 2 L ploc(ET ) for some p >
N + 2
2

,

a straightforward application of Proposition 2.1 yields the desired conclusion.
When N = 1, the notion of solution gives

D ln u 2 L2loc(ET )

and by the Hölder inequality with p < 2


1

⇢3�p

ZZ

Q⇢
|D ln u|p dxdt

� 1
p




1
⇢

ZZ

Q⇢
|D ln u|2 dxdt

� 1
2
.

Thus

So ⇢

(

(y, s) 2 ET : lim sup
⇢!0

1
⇢

ZZ

(y,s)+Q⇢
|D ln u|2 dxdt > 0

)

and again by Proposition 2.1 we obtain

P1(So) = 0.

This finishes the proof.

The rest of the note is devoted to proving Theorem 1.1.



1168 NAIAN LIAO

3. Some preliminary estimates

3.1. Energy estimates

Proposition 3.1. Let u be a local, weak super-solution to (1.1). Then there is a pos-
itive constant � depending only on N such that for every cylinder (y, s)+Q⇢(✓) ⇢
ET , every k 2 R+, and every non-negative, piecewise smooth cutoff function ⇣
vanishing on @K⇢(y),

ess sup
s�✓⇢2<t<s

1
2

Z

K⇢(y)
(u � k)2�⇣

2 dx + k�1
ZZ

(y,s)+Q⇢(✓)
|D[(u � k)�⇣ ]|2 dxdt


1
2

Z

K⇢(y)
(u � k)2�⇣

2(x, s � ✓⇢2) dx

+
ZZ

(y,s)+Q⇢(✓)
(u � k)2�⇣ |⇣t | dxdt

+ k�1
ZZ

(y,s)+Q⇢(✓)
(u � k)2�|D⇣ |2 dxdt

+ 2
ZZ

(y,s)+Q⇢(✓)
|D ln u|(u � k)�|D⇣ |⇣ dxdt.

Proof. Wemay assume (y, s) = (0, 0). In the weak formulation for super-solutions
to (1.1), we take the test function

' = �(u � k)�⇣ 2

over the cylinder

Qt = K⇢ ⇥ (�✓⇢2, t] for t 2 (�✓⇢2, 0],

modulo a standard Steklov averaging process. This gives

�
ZZ

Qt

u⌧ (u � k)�⇣ 2 dxd⌧ �
ZZ

Qt

⇣ 2D ln uD(u � k)� dxd⌧


ZZ

Qt

2⇣(u � k)�D ln uD⇣ dxd⌧.

The first term on the left-hand side is estimated by

�
ZZ

Qt

u⌧ (u � k)�⇣ 2 dxd⌧

�
1
2

Z

K⇢
(u � k)2�⇣

2(x, t) dx �
1
2

Z

K⇢
(u � k)2�⇣

2(x,�✓⇢2) dx

�
ZZ

Q⇢(✓)
(u � k)2�⇣ |⇣⌧ | dxd⌧,
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while the second term is estimated by

�
ZZ

Qt

⇣ 2D ln uD(u � k)� dxd⌧ � k�1
ZZ

Q⇢(✓)
|D(u � k)�|2⇣ 2 dxd⌧.

Next the term on the right side is
ZZ

Qt

2⇣(u � k)�D ln uD⇣ dxd⌧  2
ZZ

Q⇢(✓)
|D ln u|(u � k)�|D⇣ |⇣ dxd⌧

Combining all these estimates yields the conclusion.

Proposition 3.2. Let u be a local, weak sub-solution to (1.1) in ET . There exists
a positive constant � = � (N ), such that for every cylinder (y, s) + Q⇢(✓) ⇢
ET , every k 2 R+, and every non-negative, piecewise smooth cutoff function ⇣
vanishing on @K⇢(y),

ess sup
s�✓⇢2<ts

Z

K⇢(y)
(u � k)2+⇣

2(x, t)dx

�
Z

K⇢(y)
(u � k)2+⇣

2(x, s � ✓⇢2)dx

+
ZZ

(y,s)+Q⇢(✓)

|D[(u � k)+⇣ ]|2

u
dxdt

 �

ZZ

(y,s)+Q⇢(✓)
(u � k)2+⇣ |⇣t |dxdt

+ �

ZZ

(y,s)+Q⇢(✓)

(u � k)2+
u

|D⇣ |2dxdt.

(3.1)

Proof. After a translation may assume (y, s) = (0, 0). Take the test function ' =
(u � k)+⇣ 2 over Qt modulo a standard Steklov averaging process, and perform
standard calculations. The various integrals are extended over the set [u > k] and
since k > 0, they are all well defined.

3.2. A logarithmic estimate for sub-solutions

Introduce the logarithmic function

 (u) = ln+


H
H � (u � k)+ + c

�
(3.2)

where
H = ess sup

(y,s)+Q⇢(✓)
(u � k)+, 0 < c < min{1; H},



1170 NAIAN LIAO

and for s > 0
ln+ s = max{ln s; 0}.

In the cylinder (y, s)+Q⇢(✓) take a non-negative, piecewise smooth cutoff function
⇣ independent of t .

Proposition 3.3. Let u be a non-negative, locally bounded, local, weak sub-solution
to equation (1.1) in ET . There exists a constant � , depending only on N , such that
for every cylinder

(y, s) + Q⇢(✓) ⇢ ET

and for every level k � 0 we have

ess sup
s�✓⇢2<t<s

Z

K⇢(y)
 2(u)(x, t)⇣ 2(x)dx


Z

K⇢(y)
 2(u)(x, s � ✓⇢2)⇣ 2(x)dx + �

ZZ

(y,s)+Q⇢(✓)

 (u)
u

|D⇣
�
�2dxdt.

(3.3)

Proof. Take (y, s) = (0, 0) and work within the cylinder Qt introduced before in
the energy estimates. In the weak formulation of (1.1) take the testing function

' =
@

@u
⇥
 2(u)

⇤
⇣ 2 = 2  0⇣ 2.

By direct calculation
⇥
 2(u)

⇤00
= 2(1+  ) 02 2 L1

loc(ET )

which implies that such ' is an admissible testing function, modulo a Steklov aver-
aging process. Since  (u) vanishes on the set where (u � k)+ = 0, we have

ZZ

Qt

u⌧ [ 2]0⇣ 2dxd⌧ =
Z

K⇢
 2(x, t)⇣ 2dx �

Z

K⇢
 2(x,�✓⇢2)⇣ 2dx .

As for the remaining term
ZZ

Qt

Du
u

· D'dxd⌧

� 2
ZZ

Qt

(1+  ) 02 |Du|2

u
⇣ 2dxd⌧ � 4

ZZ

Qt

|Du|
u
  0⇣ |D⇣ |dxd⌧

�
ZZ

Qt

(1+  ) 02 |Du|2

u
⇣ 2dxd⌧ � �

ZZ

Qt

 

u
|D⇣ |2dxd⌧.

Collecting these estimates establishes the proposition.
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4. De Giorgi-type lemmas

For a cylinder (y, s) + Q2⇢(✓) ⇢ ET denote by µ± and !, numbers satisfying

µ+ � ess sup
(y,s)+Q2⇢(✓)

u, µ�  ess inf
(y,s)+Q2⇢(✓)

u, ! = µ+ � µ�.

Denote by ⇠ and a fixed numbers in (0, 1).

Lemma 4.1. Let u be a non-negative, locally bounded, local, weak super-solution
to (1.1). Then there is a constant ⌫� depending on the data and ✓, ⇠, !, a, such
that if

|[u  µ� + ⇠!] \ [(y, s) + Q2⇢(✓)]|  ⌫�|Q2⇢(✓)|,

then either
⇠!  Ip,⇢(y, s),

or
u � µ� + a⇠! a.e. in (y, s) + Q⇢(✓).

Proof. We may take (y, s) = (0, 0). Set

⇢n = ⇢ +
⇢

2n
, Kn = K⇢n , Qn = Kn ⇥ (�✓⇢2n , 0].

Consider a non-negative, piecewise smooth cutoff function on Qn of the form
⇣(x, t) = ⇣1(x)⇣2(t), where

⇣1 =

8
<

:

1 in Kn+1

0 in RN � Kn
|D⇣1| 

1
⇢n � ⇢n+1

=
2n+1

⇢

⇣2 =

8
<

:

0 for t < �✓⇢2n

1 for t � �✓⇢2n+1

0  ⇣2,t 
1

✓(⇢2n � ⇢2n+1)

22(n+1)

✓⇢2
.

Now apply the energy estimate to (u � kn)� in the cylinder Qn with

kn = µ� + a⇠! +
1� a
2n

⇠!

to obtain

ess sup
�✓⇢2<t<0

Z

Kn
(u � kn)2�⇣

2(x, t) dx +
1

µ� + ⇠!

ZZ

Qn

|D[(u � kn)�⇣ ]|2 dxdt


4n

✓⇢2

ZZ

Qn

(u � kn)2� dxdt +
4n

(µ� + a⇠!)⇢2

ZZ

Qn

(u � kn)2� dxdt

+ 4n
M⇠!
⇢

|[u < kn] \ Qn|
1� 1

p
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where

M =

✓ZZ

Q⇢
|D ln u|p dxdt

◆ 1
p
.

Let An = [u < kn] \ Qn . By the standard parabolic embedding theorem (Proposi-
tion 3.1, Chapter 1 of [3]), we obtain

✓
1� a
2n+1

⇠!

◆2
|An+1|


ZZ

Qn

(u � kn)2�⇣
2 dxdt



✓ZZ

Qn

[(u � kn)�⇣ ]2
N+2
N dxdt

◆ N
N+2

|An|
2

N+2



✓ZZ

Qn

|D[(u � kn)�⇣ ]|2 dxdt
◆ N

N+2

⇥

✓
ess sup

�✓⇢2<t<0

Z

Kn
(u � kn)2�⇣

2(x, t) dx
◆ 2

N+2
|An|

2
N+2

 4n|An|
2

N+2 (µ� + ⇠!)
N

N+2

⇥

✓
1
✓

+
1

µ� + a⇠!

◆
(⇠!)2

⇢2
|An| +

M⇠!
⇢

|An|
1� 1

p

�
.

Setting

Yn =
|An|
|Qn|

,

we have

Yn+1 
� 42n

(1� a)2

✓✓
µ� + ⇠!

✓

◆ N
N+2

+ �o

✓
✓

µ� + a⇠!

◆ 2
N+2

◆
Y
1+ 2

N+2
n

+
Ip,⇢
⇠!

✓
µ� + ⇠!

✓

◆ N
N+2

Y
1� 1

p+ 2
N+2

n

�

where

�o =

✓
µ� + ⇠!

µ� + a⇠!

◆ N
N+2

.
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Suppose Ip,⇢  ⇠!; we have

Yn+1 
� 42n

(1� a)2

✓
µ� + ⇠!

✓

◆ N
N+2

+ �o

✓
✓

µ� + a⇠!

◆ 2
N+2

�
Y 1+�n

where
� =

2
N + 2

�
1
p

> 0.

It follows from [3, Lemma 4.1, Chapter 1] that Yn tend to 0 provided

Yo  ⌫�
def
= A� 1

� 16
� 1
�2 , (4.1)

where

A =
�

(1� a)2

✓
µ� + ⇠!

✓

◆ N
N+2

+ �o

✓
✓

µ� + a⇠!

◆ 2
N+2

�
.

This finishes the proof.

Some remarks are in order.
Remark 4.2. Without loss of generality, we may assume that µ� < 1

2⇠!. In such
a case the quantity A above reduces to

A =
�

(1� a)2

"✓
⇠!

✓

◆ N
N+2

+

✓
✓

a⇠!

◆ 2
N+2

#

.

Remark 4.3. The either-or conclusion is necessary. Without ⇠! > Ip,⇢(y, s), in
general one cannot obtain

u � µ� + a⇠! a.e. in (y, s) + Q⇢(✓).

See [14, Remark C.1 in Appendix C].

Lemma 4.4. Let u be a non-negative, locally bounded, local, weak sub-solution to
equation (1.1), in ET . Assume that

! �
1

b + 1
µ+, (4.2)

for some positive parameter b to be chosen later. There exists a positive number
⌫+, depending upon !, ✓ , ⇠ , a and N , such that if

|[u � µ+ � ⇠!] \ [(y, s) + Q2⇢(✓)]|  ⌫+|Q2⇢(✓)|

then
u  µ+ � a⇠! a.e. in (y, s) + Q⇢(✓).



1174 NAIAN LIAO

Proof. Assume (y, s) = (0, 0) and for n = 0, 1, . . . set

⇢n = ⇢ +
⇢

2n
, Kn = K⇢n , Qn = Kn ⇥ (�✓⇢2n ].

Let ⇣ be a non-negative, piecewise smooth cutoff function on Qn defined as in the
previous lemma. Introduce the sequence of truncating levels

kn = µ+ � ⇠n! with ⇠n = a⇠ +
1� a
2n

⇠,

and write down the energy estimates (3.1) over the cylinder Qn , for the truncated
function (u � kn)+. Taking also into account (4.2), this gives

ess sup
�✓⇢2n<t0

Z

Kn
(u � kn)2+⇣

2(x, t)dx +
ZZ

Qn

|D[(u � kn)+⇣ ]|2

u
dxd⌧

 �
22n

⇢2
(⇠!)2

ZZ

Qn

⇣ 1
(1� ⇠)!

+
1
✓

⌘
�[u>kn]dxd⌧

 �
22n

⇢2
(⇠!)2

1
(1� ⇠)!

⇣
1+

!

✓

⌘
|[u > kn] \ Qn|.

To estimate below the second integral on the left-hand side, take into account that
u  µ+ and (4.2). This gives

ZZ

Qn

|D[(u � kn)+⇣ ]|2

u
dxd⌧ �

1
(b + 1)!

ZZ

Qn

|D[(u � kn)+⇣ ]|2dxd⌧.

Setting

An = [u > kn] \ Qn and Yn =
|An|
|Qn|

,

and combining these estimates gives

ess sup
�✓⇢2n<t0

Z

Kn
(u � kn)2+⇣

2(x, t)dx

+
1

(b + 1)!

ZZ

Qn

|D[(u � kn)+⇣ ]|2dxd⌧

 �
22n

⇢2
(⇠!)2

(1� ⇠)!

⇣
1+

!

✓

⌘
|An|.

(4.3)
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Apply Hölder’s inequality and the embedding [3, Proposition 3.1 in Chapter 1], and
recall that ⇣ = 1 on Qn+1, to get
⇣1� a
2n+1

⌘2
(⇠!)2|An+1| 

ZZ

Qn+1

(u � kn)2+dxd⌧



✓ZZ

Qn

[(u � kn)+⇣ ]2
N+2
N dxd⌧

◆ N
N+2

|An|
2

N+2

 �
⇣ ZZ

Qn

|D[(u � kn)+⇣ ]|2dxd⌧
⌘ N
N+2

⇥
⇣
ess sup

�✓⇢2n<t0

Z

Kn
[(u � kn)+⇣ ]2(x, t)dx

⌘ 2
N+2

|An|
2

N+2

for a constant � depending only upon N . Combine this with (4.3) to get

|An+1| 
� 24n

(1� a)2⇢2
(b + 1)

N
N+2

(1� ⇠)

1

!
2

N+2

⇣
1+

!

✓

⌘
|An|1+

2
N+2 .

In terms of Yn = |An |
|Qn |

this can be rewritten as

Yn+1 
� 24n(b + 1)

N
N+2

(1� a)2(1� ⇠)

⇣ ✓
!

⌘ 2
N+2

⇣
1+

!

✓

⌘
Y
1+ 2

N+2
n .

By [3, Lemma 4.1 in Chapter 1], {Yn} ! 0 as n ! 1, provided

Yo =
|Ao|
|Qo|



"
(1� a)2(1� ⇠)

� 4N+2(b + 1)
N

N+2

# N+2
2 !

✓
�
1+ !

✓

� N+2
2

def
= ⌫+. (4.4)

This finishes the proof.

5. Proof of Theorem 1.1

Fix (xo, to) 2 ET and let ⇢ > 0 be so small that (xo, to) + Q⇢ ⇢ ET ; we may
assume that (xo, to) coincides with the origin. Set

µ+ = ess sup
Q⇢

u, µ� = ess inf
Q⇢

u, ! = µ+ � µ�.

Without loss of generality we may assume !  1, such that

Q⇢(!) ⇢ Q⇢ and ess osc
Q⇢(!)

u  !.

The proof now unfolds along several cases.
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5.1. Case I

First of all, let us suppose

µ� �
1
8
! , µ+  9µ�.

Without loss of generality we may assume µ+  1 such that

Q⇢(µ+) ⇢ Q⇢ and ess osc
Q⇢(µ+)

u  !.

Introduce the change of time variable and unknown function

⌧ = µ�1
+ t and v(·, ⌧ ) =

u(·, t)
µ+

.

Then
v⌧ � div

Dv

v
= 0 weakly in Q⇢

with
1
9

 v  1.

Thus, by the classical parabolic theory [13], there exists ⌘ 2 (0, 1) depending only
on N such that

ess osc
Q ⇢
2

v  (1� ⌘) ess osc
Q⇢

v.

Returning to the original coordinates we conclude that

ess osc
Q ⇢
2
(!)

u  ess osc
Q ⇢
2
(µ+)

u  (1� ⌘) ess osc
Q⇢(µ+)

u  (1� ⌘)!.

5.2. Case II

Now suppose
µ+ > 9µ�,

which is equivalent to

! >
8
9
µ+.

Suppose in addition that
�
�
�
�


u  µ� +

1
2
!

�
\ Q⇢(!)

�
�
�
�  ⌫�|Q⇢(!)|

where ⌫� is defined in (4.1) with ⇠ = 1
2 and ✓ = !. Then by Lemma 4.1 with

a = 1
2 , we have either

!  2Ip,⇢
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or
u � µ� +

1
4
! a.e. in Q ⇢

2
(!).

The latter implies

ess osc
Q ⇢
2
(!)

u 
3
4
!.

5.3. Case III

As in the previous case suppose that

! >
8
9
µ+,

but �
�
�
�


u  µ� +

1
2
!

�
\ Q⇢(!)

�
�
�
� > ⌫�|Q⇢(!)|.

Then there exists some
�!⇢2  s  �

1
2
⌫�!⇢

2

such that �
�
�
�


u(·, s) < µ� +

1
2
!

�
\ K⇢

�
�
�
� >

1
2
⌫�|K⇢ |. (5.1)

Indeed, if the above inequality does not hold for any s in the given interval, then
�
�
�
�


u < µ� +

1
2
!

�
\ Q⇢(!)

�
�
�
� =

Z � 1
2 ⌫�!⇢

2

�!⇢2

�
�
�
�


u(·, s) < µ� +

1
2
!

�
\ K⇢

�
�
�
� ds

+
Z 0

� 1
2 ⌫�!⇢

2

�
�
�
�


u(·, s) < µ� +

1
2
!

�
\ K⇢

�
�
�
� ds

 ⌫�|Q⇢(!)|.

Since µ+ � 1
4! > µ� + 1

2! always holds, (5.1) implies
�
�
�
�


u(·, s) > µ+ �

1
4
!

�
\ K⇢

�
�
�
� 

✓
1�

1
2
⌫�

◆
|K⇢ |.

Based on this, we use the logarithmic estimate to show that such a measure theoret-
ical information propagates in time.

Lemma 5.1. There exists a positive integer n⇤ depending only on N such that
�
�
�
h
u(·, t) > µ+ �

!

2n⇤

i
\ K⇢

�
�
� 

✓
1�

1
4
⌫2�

◆
|K⇢ | for all s < t < 0.
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Proof. In the logarithmic estimate we take

k = µ+ �
1
4
!, c =

!

2n+2
.

This gives

 (u) = ln+

"
H

H � [u � (µ+ � 1
4!)]+ + !

2n+2

#

where
H = ess sup

K⇢⇥(s,0)
(u � k)+.

Choose a cutoff function ⇣ which satisfies ⇣ = 1 on K(1�� )⇢ and ⇣ = 0 on @K⇢ ,
such that

|D⇣ | 
1
�⇢

.

Hence, for all s < t < 0,
Z

K(1�� )⇢

 2(u)(x, t)dx 
Z

K⇢
 2(u)(x, s)dx +

�

(�⇢)2

Z 0

s

Z

K⇢

 (u)
u

dxdt.

Note that
  n ln 2.

The first term on the right-hand side is estimated by
Z

K⇢(y)
 2(u)(x, s)dx  n2 ln2 2

✓
1�

1
2
⌫�

◆
|K⇢ |.

The second term is estimated by

�

(�⇢)2

Z 0

s

Z

K⇢

 (u)
u

dxdt 
� n

(�⇢)2
(!⇢2)!�1|K⇢ | 

� n
� 2

|K⇢ |.

The left-hand side is estimated below by integrating over the smaller set
h
u(·, t) > µ+ �

!

2n+2
i

\ K(1�� )⇢ .

On such a set

 2 � ln2
 

!
4
!
2n+1

!

= (n � 1)2 ln2 2.

Thus, combining all above estimates yields

�
�
�
h
u(·, t) > µ+ �

!

2n+2
i

\ K(1�� )⇢

�
�
� 

✓
n

n � 1

◆2 ✓
1�

1
2
⌫�

◆
|K⇢ | +

�

n� 2
|K⇢ |
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for all s < t < 0. On the other hand,
�
�
�
h
u(·, t) > µ+ �

!

2n+2
i

\ K⇢
�
�
�


�
�
�
h
u(·, t) > µ+ �

!

2n+2
i

\ K(1�� )⇢

�
�
� + |K⇢ � K(1�� )⇢ |


�
�
�
h
u(·, t) > µ+ �

!

2n+2
i

\ K(1�� )⇢

�
�
� + N� |K⇢ |.

Therefore,

�
�
�
h
u(·, t) > µ+ �

!

2n+2
i

\ K⇢
�
�
� 

"✓
n

n � 1

◆2 ✓
1�

1
2
⌫�

◆
+

�

n� 2
+ N�

#

|K⇢ |.

The claim is proved by choosing � so small, and then n large enough.

Using the measure theoretical information obtained for every time level of the
cylinder

Q⇢
✓
1
2
⌫�!

◆
= K⇢ ⇥

✓
�
1
2
⌫�!⇢

2, 0
�

in Lemma 5.1, we are able to show

Lemma 5.2. For any ⌫⇤ 2 (0, 1) there exists a positive integer l such that
�
�
�
�
h
u > µ+ �

!

2n⇤+l

i
\ Q⇢

✓
1
2
⌫�!

◆��
�
�  ⌫⇤

�
�
�
�Q⇢

✓
1
2
⌫�!

◆��
�
� .

Proof. Let Q = Q⇢(12⌫�!) and Q0 = Q2⇢(12⌫�!). Write down the energy esti-
mate over Q0 for

(u � k j )+ where k j = µ+ �
!

2 j
for j = n⇤, · · · , n⇤ + l.

Choose a cutoff function ⇣ which satisfies ⇣ = 1 on Q, and vanishes on the
parabolic boundary of Q0, such that

|D⇣ | 
1
⇢

, |⇣t | 
1

⌫�!⇢2
.

Then keeping in mind we assumed at the beginning that ! > 8µ+/9, the energy
estimate gives

!�1
ZZ

Q
|D(u � k j )+|2 dxdt 

�

⌫�!⇢2

✓
!

2 j

◆2
|Q|. (5.2)
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Next, we apply the discrete isoperimetric inequality on page 15 of [3] to u(·, t) for
�1
2⌫�!⇢

2 < t < 0, over the cube K⇢ , for levels k j < k j+1. Taking into account
the measure theoretical information from Lemma 5.1, this gives

!

2 j+1
|[u(·, t) > k j+1] \ K⇢ |


�⇢N+1

|[u(·, t) < k j ] \ K⇢ |

Z

[k j<u(·,t)<k j+1]\K⇢
|Du| dx


�

⌫2�
⇢

✓Z

[k j<u(·,t)<k j+1]\K⇢
|Du|2 dx

◆ 1
2

⇥ |([u(·, t) > k j ] � [u(·, t) > k j+1]) \ K⇢ |
1
2 .

Set
A j = [u > k j ] \ Q

and integrate the above estimate in dt over �1
2⌫�!⇢

2 < t < 0; we obtain

!

2 j
|A j+1| 

�

⌫2�
⇢

✓ZZ

Q
|D(u � k j )+|2 dxdt

◆ 1
2
(|A j | � |A j+1|)

1
2 .

Now square both sides of the above inequality and use (5.2) to estimate the term
containing D(u � k j )+, to obtain

|A j+1|
2 

�

⌫5�
|Q|(|A j | � |A j+1|).

Add these inequalities from n⇤ to n⇤ + l � 1 to obtain

l|An⇤+l |
2 

n⇤+l�1X

j=n⇤

|A j+1|
2 

�

⌫5�
|Q|2.

From this

|An⇤+l | 
1

p
l

s
�

⌫5�
|Q|.

Given a number ⌫⇤ 2 (0, 1), we can choose l large enough to guarantee

1
p
l

s
�

⌫5�
< ⌫⇤.

This finishes the proof.
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Now we are ready to finish Case III. Choosing a = 1
2 , b = 1

8 and ✓ = 1
2⌫�!,

the constant ⌫+ from (4.4) becomes

⌫+ =
1
�
⌫
N
2

� (1� ⇠)
N+2
2

with
⇠ =

1
2n⇤+l

, n⇤ and l to be determined.

Then after choosing n⇤ from Lemma 5.1, we can choose l so large that

1
p
l

s
�

⌫5�
<
1
�
⌫
N
2

�

✓
1�

1
2n⇤+l

◆ N+2
2

.

By Lemma 4.4 and Lemma 5.2, we obtain that

u  µ+ �
!

2n⇤+l+1
in Q ⇢

2 ( 12 ⌫�!).

This in turn implies

ess osc
Q ⇢
2 ( 12 ⌫�!)

u  (1� �)! where � =
1

2n⇤+l+1
.

Proof of Theorem 1.1. Combining all these cases above, we have proved that once
we have

ess osc
Q⇢(!)

u  !,

we can find positive constants

c = min
⇢
1
2
,

r
⌫�

8

�
and � = min

⇢
3
4
, 1� ⌘, 1� �

�

such that
ess osc
Qc⇢(�!)

u  max{�!, 2Ip,⇢}.

Relabel the quantities ⇢ and ! chosen above as ⇢o and !o. Now let

!1 = max{�!o, 2Ip,⇢o} and ⇢1 = c⇢o

such that
Q⇢1(!1) ⇢ Qc⇢o(�!o) and ess osc

Q⇢1 (!1)
u  !1.

The above set inclusion is verified if

!1⇢
2
1 = max{�!o, 2Iq,⇢o}(c⇢o)

2  �!o(c⇢o)2.
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This holds naturally unless
�!o  2Ip,⇢o ,

but then there is nothing to prove since

ess osc
Q⇢o (!o)

u 
2
�
Ip,⇢o .

Hence, with such a choice of c we now have

ess osc
Q⇢1 (!1)

u  !1.

According to what we have shown, one has

ess osc
Qc⇢1 (�!1)

u  max{�!1, 2Ip,⇢1}.

Now define
!2 = max{�!1, 2Ip,⇢1} and ⇢2 = c⇢1,

and we want to show that

Q⇢2(!2) ⇢ Qc⇢1(�!1) and hence ess osc
Q⇢2 (!2)

u  !2.

The above set inclusion is verified if

!2⇢
2
2 = max{�!1, 2Ip,⇢1}(c⇢1)

2  �!1(c⇢1)2.

This holds naturally unless
�!1  2Ip,⇢1,

but then there is nothing to prove since

ess osc
Q⇢1 (!1)

u 
2
�
Ip,⇢1 .

Iterating in this fashion, one concludes that there are positive numbers c, � 2 (0, 1)
such that constructing

⇢n = cn⇢o and !n = max{�!n�1, 2Ip,⇢n�1},

one obtains
ess osc
Q⇢n (!n)

u  max
⇢
!n,

2
�
Ip,⇢n�1

�
.

Let 0 < r < ⇢o  Ro be fixed. Since the sequence {!n⇢2n} is strictly decreasing
and gives a partition of the interval (0, !o⇢2o), there must be some positive integer
n such that

⇢2n+1!n+1  r2!o < ⇢2n!n.
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Noting that
!n  !o and !n+1 � �n+1!o,

this implies that r < ⇢n and

n + 1 �
ln
� r
⇢o

�

ln(
p
�c)

.

Then it is not hard to see that

Qr (!o) ⇢ Q⇢n (!n),

and either

ess osc
Qr (!o)

u  !n or !n�1 
2
�
Ip,⇢n�1 .

Note that

!n = max
�
�n!o, 2�n�1 Ip,⇢o , · · · , 2�Ip,⇢n�2, 2Ip,⇢n�1

 

 �n!o +
2

1� �
Ip,⇢o .

Here we made the convention that the function ⇢ ! Ip,⇢ is non-decreasing. Other-
wise, one could use

Ĩ p,⇢ = sup
0<⌧<⇢

Ip,⌧ .

Thus, there is some ↵ 2 (0, 1) depending only on N such that

ess osc
Qr (!o)

u  �n!o + C Ip,⇢o  C̄

!o

✓
r
⇢o

◆↵
+ Ip,⇢o

�

where

↵ =
ln �

ln(
p
�c)

and C̄ = max
⇢

2
1� �

,
2
�

�
.

One verifies easily that ⇢o can be replaced by any ⇢̃ 2 (r, ⇢o) in the above oscillation
estimate. Then choose ⇢̃ = R1�µ

o rµ, and conclude we have

ess osc
Qr (!o)

u  C̄

!o

✓
r
Ro

◆(1�µ)↵

+ Ip,R1�µ
o rµ

�
.
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