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On the Picard numbers of Abelian varieties

KLAUS HULEK AND ROBERTO LAFACE

Abstract. In this paper we study the possible Picard numbers ⇢ of an Abelian va-
riety A of dimension g. It is well known that this satisfies the inequality 1  ⇢ 
g2. We prove that the set Rg of realizable Picard numbers of Abelian varieties
of dimension g is not complete for every g � 3, namely that Rg ( [1, g2] \ N.
Moreover, we study the structure of Rg as g ! +1, and from that we de-
duce a structure theorem for Abelian varieties of large Picard number. In con-
trast to the non-completeness of any of the sets Rg for g � 3, we also show
that the Picard numbers of Abelian varieties are asymptotically complete, i.e.,
limg!+1 #Rg/g2 = 1. As a byproduct, we deduce a structure theorem for
Abelian varieties of large Picard number. Finally we show that all realizable Pi-
card numbers in Rg can be obtained by an Abelian variety defined over a number
field.

Mathematics Subject Classification (2010): 14K05 (primary); 14C22, 14K22
(secondary).

1. Introduction

For an algebraic variety X over the field of complex numbers the Lefschetz
(1, 1)-theorem says that the Néron-Severi group

NS(X) = H2(X, Z) \ H1,1(X).

Consequently, the rank ⇢(X) of the Néron-Severi group, the so-called Picard num-
ber, satisfies the inequality 1  ⇢(X)  h1,1(X). Computing the Picard number
is in general a difficult question, as already the case of projective surfaces shows.
For example, the Picard number of a quintic surface S in P3 satisfies the inequality
⇢(S)  45. It is known that all numbers between 1 and 45 can be obtained if one
allows the surface to have ADE-singularities, but it remains an open problem for
smooth surfaces, where the maximum known is 41 [15,16].
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In this article we will concentrate on the Picard numbers of Abelian varieties.
To put this into perspective it is worthwhile to recall the situation for surfaces. For
Abelian surfaces all possible Picard numbers between 1 (or 0 if one includes the
non-algebraic case) and 4 occur. Indeed, a very general Abelian surface has ⇢ = 1,
whereas Picard numbers from 2 to 4 can be realized by taking a product E1 ⇥ E2
of two elliptic curves. If the two elliptic curves are not isogenous, then ⇢ = 2, if
they are isogenous but they do not have complex multiplication, then ⇢ = 3, while
if they also have complex multiplication ⇢ = 4. For the other surfaces with trivial
canonical bundle the situation is similar: for K3 surfaces all possibilities between
1 (respectively 0) and 20 can occur, as can be seen by the Torelli theorem for K3
surfaces. Enriques surfaces and bi-elliptic surfaces have no holomorphic 2-forms,
and thus their Picard number is 10 and 2 respectively.

For higher-dimensional varieties with numerically trivial canonical bundle the
situation is as follows. By the Beauville-Bogomolov decomposition theorem [4],
every Kähler manifold with trivial first Chern class admits a finite cover which
is a product of tori, Calabi-Yau varieties and irreducible holomorphic symplectic
manifolds (IHSM), also know as hyperkähler manifolds. For higher dimensional
Calabi-Yau varieties Y we always have ⇢(Y ) = b2(Y ) as h2,0(Y ) = h0,2(Y ) =
0. For irreducible holomorphic symplectic manifolds X one can use Huybrechts’
surjectivity of the period map [11] to conclude, as in the case of K3 surfaces, that
all values 0  ⇢(X)  b2(X) � 2 can be obtained. This leaves us with the case
of Abelian varieties which is the topic of this note. Surprisingly little seems to be
known about the possible Picard numbers of Abelian varieties. Our aim is to make
a first start to remedy this situation, using mostly elementary methods.

Let A be a complex torus of dimension g. Its cohomology is the exterior
algebra over H1(A, Z) ⇠= Z2g. In particular, this implies that the kth Betti numbers
are bk(A) =

�2g
k
�
. As Hp,0(A) ⇠= H0(A,�

p
A), we get h

p,0(A) =
�g
p
�
, and thus

h1,1(A) = g2. We shall from now on exclude the case of non-algebraic tori and
concentrate on Abelian varieties. By the above we know that

1  ⇢  g2.

As we have already seen, any number 1  ⇢(A)  4 can be achieved for Abelian
surfaces. However, the situation changes significantly in higher dimension.

Given an arbitrary Abelian variety A, we can invoke the Poincaré complete
reducibility theorem [7, Theorem 5.3.7] to pass to a better representative in its isog-
eny class, namely

A �! An11 ⇥ · · · ⇥ Anrr ,

where Ai is a simple Abelian variety (i = 1, . . . , r), and Ai is not isogenous to
A j if i 6= j . Moreover, the Abelian varieties Ai and the integers ni are uniquely
determined up to isogeny and permutations. A result of Murty [12, Lemma 3.3]
describes the Picard number of a self-product Bk of a simple Abelian variety in
terms of k and the dimension of B. In light of this, we prove in Proposition 2.2
a splitting result concerning the Picard group of varieties of the form A ⇥ B with
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Hom(A, B) = 0, which allows us to compute the Picard number of such products.
This, together with Murty’s result in [12], provides us with a theoretical algorithm
for computing the Picard number of a given Abelian variety.

It is then a combinatorial question as to determine the set Rg of possible Picard
numbers of Abelian varieties for a given genus g. Very little seems to be known
about this. The purpose of this paper is to take a first step in the analysis of Rg. As
a first result we show that there are gap series for the possible Picard numbers of
Abelian varieties, and therefore that the sets Rg are not complete for every g � 3. In
fact, it is not hard to show that R3 = {1, . . . , 6, 9}: indeed, a very general Abelian
threefold has Picard number ⇢ = 1; a product S ⇥ E , S being a very general
Abelian surface and E being an elliptic curve, has Picard number ⇢ = 2; all other
Picard numbers can be obtained by using suitable products of elliptic curves. This
phenomenon had previously been noticed by Shioda in [21, Appendix].

As the dimension g grows larger, clear gaps in the set of possible Picard num-
bers start to appear. Moreover, more and more gaps occur as g ! 1. The fol-
lowing result shows the existence of two precise gaps and characterizes the three
largest Picard numbers for an Abelian variety.

Theorem 1.1.

(1) Fix g � 4. There does not exist any Abelian variety of dimension g with Picard
number ⇢ in the following range:

(g � 1)2 + 1 < ⇢ < g2;

(2) Fix g � 7. There does not exist any Abelian variety of dimension g with Picard
number ⇢ in the following range:

(g � 2)2 + 4 < ⇢ < (g � 1)2 + 1.

We would like to remark that the conditions on the dimension g given in Part 1
and 2 of Theorem 1.1 are necessary. In fact, as for Part 1, for g = 2 all Picard
numbers occur, and for g = 3 there exists an Abelian threefold of Picard number
⇢ = 6 (namely, the product of three isogenous elliptic curves without complex
multiplication). Similar considerations can be made for Part 2 of Theorem 1.1 and
g  6. After some preliminary work in Section 2, we shall prove this theorem
in Section 3. As an application of our analysis we derive in Section 4 a structure
theorem for Abelian varieties with large Picard number, namely Theorem 4.2.

The above results are a first indication of a much more general phenomenon
which we study more systematically in Section 7, where we consider the behaviour
of the set Rg asymptotically, namely as g grows. In particular, we define the asymp-
totic density of Picard numbers to be the quantity

� := lim
g!+1

#Rg
g2

.

Contrary to the non-completeness of any of the sets Rg, we prove asymptotic com-
pleteness in Theorem 7.1, namely
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Theorem 1.2. The Picard numbers of Abelian varieties are asymptotically com-
plete:

� = lim
g!+1

#Rg
g2

= 1.

By using similar techniques, we are also able to describe the distribution of the
Picard numbers within [1, g2] \ N (Theorem 7.4). As a consequence, we obtain a
structure theorem for Abelian varieties of large Picard number in Corollary 7.6. We
also provide a practical algorithm which allows to compute the sets Rg inductively.

Finally we show that all realizable Picard numbers ⇢ 2 Rg can be obtained by
an Abelian variety defined over a number field.
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2. Preliminary work

In this section we will develop the basic tools of our analysis. Some of these results
are of independent interest in their own right.

2.1. Additivity of the Picard number for non-isogeneous products

As the Picard number of an Abelian variety is invariant under isogenies [6, Chap-
ter 1, Proposition 3.2], we can pick a convenient representative in its isogeny class.
Such a choice is indicated by the following result [7, Theorem 5.3.7]:

Theorem 2.1 (Poincaré’s complete reducibility theorem). Given an Abelian va-
riety A, there exists an isogeny

A �! An11 ⇥ · · · ⇥ Anrr ,

where Ai is a simple Abelian variety (i = 1, . . . , r), and Ai is not isogenous to
A j if i 6= j . Moreover, the Abelian varieties Ai and the integers ni are uniquely
determined up to isogeny and permutations.

Let us now consider a product of simple Abelian varieties as in Theorem 2.1. The
fact that Ai is not isogenous to A j for i 6= j yields the following splitting of the
Picard group:
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Proposition 2.2. Let A1, . . . , Ar be simple Abelian varieties, such that Ai is not
isogenous to A j for i 6= j . Then the (exterior) pullback of line bundles yields an
isomorphism

rY

i=1
Pic

�
Anii

� ⇠= Pic

 
rY

i=1
Anii

!

.

Clearly, exterior pull-back of line bundles always yields an injective map, but sur-
jectivity is a special feature. In fact, if E is an elliptic curve, the Abelian surface
E ⇥ E has Picard number ⇢ 2 {3, 4}, depending on the presence of CM. Therefore,
the exterior pull-back map

Pic(E) ⇥ Pic(E) �! Pic(E ⇥ E)

cannot be surjective, as otherwise we would get a surjective map of the correspond-
ing Néron-Severi groups, hence yielding a contradiction, since NS(E) ⇠= Z.

Proof. Exterior pullback of line bundles

 (L1, . . . , Lr ) = L1 ⇥ · · · ⇥ Lr

defines the following commutative diagram

0 // Pic0
�Qr

i=1 A
ni
i
�

// Pic
�Qr

i=1 A
ni
i
�

// NS
�Qr

i=1 A
ni
i
�

// 0

0 //

OO

Qr
i=1 Pic

0 �Anii
�

 0

OO

//

Qr
i=1 Pic

�
Anii

�
 

OO

//

Qr
i=1 NS

�
Anii

�
 NS

OO

// 0.

OO

We will show that  0 and  NS are isomorphisms, thus proving the proposition.
Clearly  0 is injective, and since  0 is a homomorphism of Abelian varieties of the
same dimension it must be an isomorphism. To prove that  NS is an isomorphism
we recall from [7, Chapter 2] that a polarization on an Abelian variety A is given
by a finite isogeny f : A ! A_ whose analytic representation is hermitian. By
assumption the Abelian varieties Ai and A j are not isogeneous for i 6= j . Hence
Hom(Ai , A j ) = Hom(Ai , A_

j ) = 0 and every isogeny

f :
rY

i=1
Anii �!

 
rY

i=1
Anii

!_

is of the form f = ( f1, . . . , fr ) where fi : Anii �! (Anii )_ is an isogeny. Since
a direct sum of endomorphisms is hermitian if and only if all its summands are,
the claim follows, as every class in the Néron-Severi group can be written as the
difference of two ample classes (i.e., two polarizations).
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As a consequence, we get that the Picard number is additive (but not strongly
additive) for product varieties coming from the Poincaré’s complete reducibility
theorem.

Corollary 2.3. Let A1, . . . , Ar be simple Abelian varieties, such that Ai is not
isogenous to A j for i 6= j . Then,

⇢

 
rY

i=1
Anii

!

=
rX

i=1
⇢
�
Anii

�
.

2.2. Picard numbers of self-products

Due to additivity, we are left to see how to compute the Picard number in the case
of a self-product of a simple Abelian variety. The endomorphism ring End(A) of an
Abelian variety A is a finitely generated free Abelian group and hence
F := End(A) ⌦ Q ⌘ EndQ(A) is a finite dimensionalQ-algebra. Any polarization
L on A defines an involution on F , the so-called Rosati involution. If A is a sim-
ple Abelian variety, then F is a finite-dimensional skew field admitting a positive
anti-involution. Such pairs were classified by Albert [1, 3], see also [7, Proposition
5.5.7] for a summary.

Let K be the centre of F . We will say that F is of the first kind if the Rosati
involution acts trivially on K , and of the second kind otherwise. Let us denote by
K0 the maximal real subfield of K , and let us consider the following invariants of F :

[F : K ] = d2, [K : Q] = e, [K0 : Q] = e0.

Notice that, as K is the center of F , [F : K ] is always a square.
As a useful example, we can consider quaternion algebras over a field K . Let

us recall the reader that any quaternion algebra F/K is either a division ring or it is
isomorphic to M2(K ). In light of this, we can define the ramification locus of F as

Ram(F) = {p 2 SpecOK | Kp is a division ring}.

A quaternion algebra is ramified at a finite even number of places. The ramifica-
tion locus governs the isomorphism classes of quaternion algebras: there is a 1:1
correspondence between isomorphism classes of quaternion algebras and subsets of
non-complex places of K of even cardinality.

By [7, Proposition 5.5.7] the classification divides into four types, where the
first three are of the first kind:

(1) Type I: F is a totally real number field, so that d = 1 and e = e0;
(2) Type II: F is a totally indefinite quaternion algebra over a totally real number

field K , i.e.

; = Ram(F) \ {archimedean places of K } and Ram(F) 6= ;.

In particular, we have that d = 2 and e = e0;
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(3) Type III: F is a totally definite quaternion algebra over K , i.e.

; 6= Ram(F) ◆ {archimedean places of K }

holds. Again, we have d = 2 and e = e0;
(4) Type IV: F is of the second kind, and it center Z(F) = K is a CM field with

maximal real subfield K0.

The following result, due to Murty, gives a complete description of the Picard num-
ber of a self-product of a simple Abelian variety.

Proposition 2.4 ([12, Lemma 3.3]). Let A be a simple Abelian variety. Set
e := [K : Q], d2 := [F : K ]. Then, for k � 1, one has

⇢
�
Ak

�
=

8
>>>>><

>>>>>:

1
2
ek(k + 1) Type I

ek(2k + 1) Type II
ek(2k � 1) Type III
1
2
ed2k2 Type IV.

In fact, Murty’s result is in terms of the maximal commutative subfield E of F ,
which has degree [E : K ] over K . However, the proof of [12, Lemma 2.2] implies
that [E : K ]2 = [F : K ]. Proposition 2.4 enables us to compute the following
bound for the Picard number of a self-product of a simple Abelian variety:

Corollary 2.5. Let A be a simple Abelian variety of dimension n, and let k � 1.
Then ⇢(Ak)  1

2nk(2k + 1).

Proof. Proposition 2.4 applied with k = 1 allows us to compute the Picard number
of A:

⇢ = ⇢(A) =

8
>>>><

>>>>:

e Type I
3e Type II
e Type III
1
2
ed2 Type IV.

Now, plugging this back in Proposition 2.4 gives the following reformulation in
terms of the Picard number of A:

⇢(Ak) =

8
>>>>>><

>>>>>>:

1
2
⇢k(k + 1) Type I

1
3
⇢k(2k + 1) Type II

⇢k(2k � 1) Type III
⇢k2 Type IV.
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The divisibility conditions for ⇢ given by [7, Proposition 5.5.7] imply that

⇢ 

8
>>>>>><

>>>>>>:

n Type I
3
2
n Type II

1
2
n Type III

n Type IV

and, therefore, we see that

⇢(Ak) 

8
>>>>>>>><

>>>>>>>>:

1
2
nk(k + 1) Type I

1
2
nk(2k + 1) Type II

1
2
nk(2k � 1) Type III

nk2 Type IV

from which the result follows.

In the case of a self-product of an elliptic curve this gives the well-known :

Corollary 2.6. If E is an elliptic curve, then

⇢(Ek) =

8
<

:

1
2
k(k + 1) E has no CM

k2 E has CM.

We will use these results, in particularly the case of a self-product of elliptic curves,
frequently in the proof of Theorem 1.1. Notice that Corollary 2.5 provides us with
a bound on the Picard number of Ak which is independent of the type of the endo-
morphism ring of A.

3. Restrictions on the Picard number

3.1. Some bounds on the Picard number

We would like to show that there are better bounds on the Picard number, if one is
given a partition of the dimension. More precisely, letting A be an Abelian variety,
we define r(A) to be the length of a decomposition according to Poincaré complete
reducibility theorem. In other words, given an Abelian variety A, Theorem 2.1
gives an isogeny

A �! An11 ⇥ · · · ⇥ Anrr ,



ON THE PICARD NUMBERS OF ABELIAN VARIETIES 1207

and we set r(A) := r . Notice that this quantity is well-defined because the factors
Ai and the powers ni are determined up to permutations and isogenies. Then, for
r  g, we define Mr,g as

Mr,g := max{⇢(A) | dim A = g, r(A) = r}.

In other words, Mr,g is the largest Picard number that can be realized by a
g-dimensional Abelian variety that splits into a product of r non-isogenous pieces
in its isogeny class.

Proposition 3.1. For integers r, g2N such that rg, one has Mr,g=[g�(r�1)]2+
(r � 1). This value is attained as the Picard number of Eg�r+1⇥ E1⇥ · · ·⇥ Er�1,
where E is a CM elliptic curve not isogenous to any of the Ei ’s, and Ei and E j are
not isogenous for i 6= j .

Proof. If A ⇠ A1 ⇥ · · · ⇥ Ar , Hom(Ai , A j ) = 0 for i 6= j , then

⇢(A)  k21 + · · · + k2r

where ki := dim Ai (i = 1, . . . , r) and k1 + · · · + kr = g. Hence we are looking
for the maxima of the function

h(x1, . . . , xr ) = x21 + · · · + x2r�1 + x2r

on the integral points of the simplex

�r,g = {(x1, . . . , xr ) | xi � 1, x1 + . . . xr = g}.

These points are precisely the vertices
�
(g � r + 1, 1, . . . , 1), (1, g � r + 1, 1, . . . , 1), . . . , (1, . . . , 1, g � r + 1)

 
.

By the symmetry of h, the maximum is attained at any of these points, with value

h(g � r + 1, 1, . . . , 1) = [g � (r � 1)]2 + (r � 1).

Therefore, we conclude that ⇢(A)  [g�(r�1)]2+(r�1). By applying Proposition
2.2 and Corollary 2.6 one can see that the Abelian variety

Eg�r+1 ⇥ E1 ⇥ · · · ⇥ Er�1

with E a CM curve and E, Ei , E j for i 6= j not pairwise mutually isogeneous, has
Picard number [g � (r � 1)]2 + (r � 1), and we are thus done.

Corollary 3.2. Let A be an Abelian variety. Then,

⇢(A) = Mr(A),g () A ⇠ Eg�(r�1) ⇥ E1 ⇥ · · · ⇥ Er�1,

where E is a CM elliptic curve not isogenous to any of the Ei ’s, and Ei and E j are
not isogenous for i 6= j .
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Remark 3.3. The numbers Mr,g give the following (strictly) increasing sequence
of positive integers:

g = Mg,g < Mg�1,g < · · · < M3,g < M2,g < M1,g = g2.

We will now proceed with the proof of Theorem 1.1, which we divide into two
parts.

3.2. Proof of part (1)

Let A be an Abelian variety of dimension g � 4 with Picard number ⇢ = ⇢(A).
We will divide our analysis of the Picard number ⇢ into the following cases:

(a) A has length at least two, i.e., r(A) � 2;
(b) A is a self-product of a lower dimensional Abelian variety.

Case (a). Since r(A) � 2, we have that A ⇠ A1 ⇥ A2 with Hom(A1, A2) = 0. Let
n := dim A1, so that dim A2 = g � n. Then, ⇢(A)  n2 + (g � n)2. Consider the
function

f (x) := x2 + (g � x)2

on � = [1, g � 1]. It attains its maximum at x = 1 and x = g � 1, with value
f (1) = f (g � 1) = (g � 1)2 + 1. Therefore, ⇢(A)  (g � 1)2 + 1.

Case (b). Let B be an m-dimensional simple Abelian variety, and suppose A is
isogenous to Bk , for k := g/m. If m = 1 (i.e., B is an elliptic curve), then again by
Corollary 2.6

⇢(Bg) =

8
<

:

✓
g + 1
2

◆
B has no CM

g2 B has CM.

If B has CM, then A attains the maximal Picard number g2; if B does not have CM,
then

⇢(A) =

✓
g + 1
2

◆
 1+ (g � 1)2

because g � 4. The case of a self-product of an elliptic curve being dealt with, we
can assume k  g/2. Then, by Corollary 2.5 we have

⇢
�
Bk

�

1
2
g(2k + 1) 

1
2
g(g + 1)

and the claim follows, since the equality

1
2
g(g + 1)  (g � 1)2 + 1

holds for g � 4.
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3.3. Proof of part (2)

To start with observe that, if r(A) � 3, then

⇢(A)  Mr(A),g  M3,g < (g � 2)2 + 4.

Therefore, we can assume r(A)  2. Suppose that A is an Abelian variety with
r(A) = 1, i.e., A ⇠ Bk with dim B = b and bk = g. If b = 1, then B is an elliptic
curve and we have two cases according to whether B has complex multiplication. If
B does have complex multiplication, then ⇢(A) = g2 (the maximal Picard number),
otherwise ⇢(A) = 1

2g(g + 1) < (g � 2)2 + 4 (as g � 7). If b > 1, then k  g/2
and thus, by Corollary 2.5,

⇢
�
Bk

�

1
2
g(2k + 1) 

1
2
g(g + 1)  (g � 2)2 + 4

again because g � 7. The last remaining case is r(A) = 2, which we will divide
into three steps.

Step 1. We deal with Abelian varieties of the form En1 ⇥ Eg�n2 , where E1 and E2
are elliptic curves, and 1  n  g � n. If n = 1, then, by Proposition 2.3

⇢
⇣
E1 ⇥ Eg�12

⌘
= 1+ ⇢

⇣
Eg�12

⌘

which equals M2,g if E2 has complex multiplication, and 1+ 1
2g(g� 1) otherwise.

In the CM case, we obtain the second largest attainable Picard number, in the non-
CM case instead one sees that it is always the case that 1+ 1

2g(g�1)  (g�2)2+4.
Suppose now that n � 2: we have that ⇢(En1 ⇥ Eg�n2 )  n2 + (g � n)2, and we
want to bound the right-hand side. The function

f (x) := x2 + (g � x)2

attains its maximum on the interval� = [2, g�2] at x = 2 and x = g�2 with value
f (2) = f (g� 2) = (g� 2)2+ 4. This implies that ⇢(En1 ⇥ Eg�n2 )  (g� 2)2+ 4.

Step 2. We now consider Abelian varieties of the form Ek ⇥ Al , with E an elliptic
curve, dim A = a > 1, k � 1, l � 1 and g = k + al. Notice that, by Proposition
2.3 and Lemma 2.5, one has

⇢
�
Ek ⇥ Al

�
 k2 +

1
2
al(2l + 1) = k2 +

1
2
(g � k)(2l + 1).

Consider the function

f (x, y) = x2 +
1
2
(g � x)(2y + 1)
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in the domain � := {(x, y) 2 R2 | x � 1, y � 1, x + 2y  g}. We will prove that
f is bounded from above by (g � 2)2 + 4 in �.

By looking at the partials

@ f
@x

(x, y) = 2x � y �
1
2
,

@ f
@y

(x, y) = g � x,

we see that f is increasing on the lines where x is constant. Thus the maximum of
f in � will lie on the line x + 2y = g. Therefore, we have reduced ourselves to
studying the function

g(y) := f (g � 2y, y) = (g � 2y)2 + 2y2 + y

on [1, (g � 1)/2]. Its maximum is at ymax = 1, with value

g(ymax) = (g � 2)2 + 3 < (g � 2)2 + 4.

Step 3. The last case is that of products of the form Ak ⇥ Bl , with dim A = a > 1,
dim B = b > 1, k � l � 1 and g = ak + bl. One has,

⇢
�
Ak ⇥ Bl

�

1
2
ak(2k + 1) +

1
2
bl(2l + 1)


1
2
ak(2k + 1) +

1
2
bl(2k + 1)

=
1
2
g(2k + 1) 

1
2
g(g � 1) < (g � 2)2 + 4.

4. Structure of Abelian varieties with large Picard number

As an application of Theorem 1.1, we will now derive a structure result for Abelian
varieties of large Picard number (up to isogeny). Our starting point is the following
result:

Theorem 4.1 ([7, Exercise 5.6.10]). Let A be an Abelian variety of dimension g.
The following are equivalent

(1) ⇢(A) = g2;
(2) A ⇠ Eg, for some elliptic curve E with complex multiplication;
(3) A ⇠= E1 ⇥ · · · ⇥ Eg, for some pairwise isogenous elliptic curves E1, . . . , Eg

with complex multiplication.

This result points out how the Picard number can force the structure of an algebraic
variety to be in some sense rigid. Algebraic varieties with the maximum Picard
number possible have shown to possess interesting arithmetic and geometric prop-
erties: for example, see [19,20], or [5] for a recent account.
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The aim of this section is to prove a similar statement for Abelian varieties
whose Picard number is the second or third largest attainable according to Theorem
1.1, namely (g � 1)2 + 1 or (g � 2)2 + 4. However, unlike in the case of maxi-
mal Picard number, one cannot expect a statement which is analogous to Theorem
4.1(3). Already for ⇢(A) = (g�1)2+1, one can construct Abelian varieties which
are isogenous to Eg�11 ⇥ E2, but which are not isomorphic to a product of elliptic
curves.

The following result describes the structure of these Abelian varieties up to
isogeny. It should be noticed that, in contrast with Theorem 4.1, the result depends
on the dimension of the Abelian varieties we consider: on one hand we need The-
orem 1.1, and on the other we need to guarantee that the Abelian varieties having
such Picard numbers all belong to a unique isogeny class.

Theorem 4.2. Let A be an Abelian variety of dimension g.

(1) Suppose g � 5. Then,

⇢(A) = (g � 1)2 + 1 () A ⇠ Eg�11 ⇥ E2,

where E1 has complex multiplication and E1 and E2 are not isogeneous;
(2) Suppose g � 7. Then,

⇢(A) = (g � 2)2 + 4 () A ⇠ Eg�21 ⇥ E22,

where E1 and E2 both have complex multiplication but are not isogeneous.

Proof. Recall that we have the following (strictly) increasing sequence of positive
integers:

g = Mg,g < Mg�1,g < · · · < M3,g < M2,g < M1,g = g2.

Assume ⇢(A) = (g�1)2+1 = M2,g and g � 5. By definition of Mr,g it follows
that r(A)  2; we claim that r(A) = 2. Indeed, if r(A) = 1, then necessarily
A⇠ Eg. But then either ⇢(A) = g2 if E has CM (by Theorem 4.1) or ⇢(A) =

�g+1
2
�

otherwise, either of which is a contradiction. Therefore r(A) = 2 and (1) follows
from Corollary 3.2.

Now let A have Picard number ⇢(A) = (g � 2)2 + 4, and let g � 7. As
⇢(A) > M3,g, we deduce r(A)  2. If r(A) = 1 we again get a contradiction as
above (this time, we also use g � 7), hence r(A) = 2. In a similar fashion to the
proof of the Theorem 1.1, we distinguish three cases:

(a) Let A ⇠ Ak ⇥ Bl , with dim A > 1 and dim B > 1. Then, as we have seen in
Step 3 of the proof of Theorem 1.1

⇢(A) 
1
2
g(g � 1) < (g � 2)2 + 4,

which gives a contradiction;
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(b) Let A ⇠ Ek ⇥ Bl , with dim B > 1 and dim E = 1. Then, as we have seen in
Step 2

⇢(A)  (g � 2)2 + 3 < (g � 2)2 + 4,
again a contradiction;

(c) Let A ⇠ En1 ⇥ Eg�n2 , for two elliptic curves E1 and E2. Then, the cases
n = 1 and n = g � 1 can be discarded, by previous discussions. Therefore,
let us suppose 2 n  g�2. We claim that ⇢(A) < (g � 2)2+4, unless both
E1 and E2 have complex multiplication. Indeed, if one of the factors does
not have complex multiplication then ⇢(A)  3 + (g � 2)2 < 4 + (g � 2)2.
Therefore both E1 and E2 must have complex multiplication, and so
⇢(A) = ⇢(En1 ⇥ Eg�n2 ) = n2 + (g � n)2. The maximum of this expres-
sion is achieved for n = 2 or n = g � 2, and this corresponds to a product
E21 ⇥ Eg�22 .

We have thus shown that the only possible case is A ⇠ E21 ⇥ Eg�22 , for two non-
isogeneous elliptic curves E1 and E2 with complex multiplication, hence proving
(2), and in this case the Picard number is as stated.

Clearly, one can continue this analysis along arguments used above. However,
one cannot, in general, expect to obtain a unique decomposition for a given Picard
number. Already for ⇢ = (g � 2)2 + 3 there are two possible isogeny decomposi-
tions, namely:

(1) Eg�21 ⇥ E22 , E1 being an elliptic curve with complex multiplication and E2 not
having complex multiplication;

(2) Eg�2 ⇥ S, E being an elliptic curve with complex multiplication and S being
a simple Abelian surface of type II (these do exist by results of Shimura [18],
see also the discussion in Section 5).

Remark 4.3. The Picard numbers g2 and (g � 2)2 + 4 both lead to cases which
have no complex moduli, whereas the intermediate Picard number (g�1)2+1 leads
to 1-dimensional families. This is in striking contrast to the case of K3 surfaces
where increasing the Picard number by one corresponds to a decrease in the number
of moduli by one. This is clear from the Torelli theorem for K3 surfaces. The
difference lies in the fact that the Torelli theorem for K3 surfaces works with a
weight 2 Hodge structure, wheres Abelian varieties are governed by weight 1 Hodge
structures.

5. Computing Picard numbers

In this section we approach the question how to compute the set Rg of possible
Picard numbers of Abelian varieties of a given dimension g. To this end, let us fix
a positive integer G, such that we are interested in computing RG . Because of the
structure of RG , we will in fact have to compute the sets Rg for all g  G. In order
to do this, we need to compute the Picard numbers of simple Abelian varieties of
dimension g, for every g  G.
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5.1. Picard numbers of simple Abelian varieties

Let g � 1 be a fixed integer. If X is a simple Abelian variety of dimension g, its
Picard number ⇢ = ⇢(X) must respect some divisibilty conditions [7, Proposition
5.5.7], namely

(I) Type I: ⇢|g;
(II) Type II: ⇢ 2 3N and 23⇢|g;
(III) Type III: 2⇢|g;
(IV) Type IV: ⇢|g.

For a fixed dimension g, we would like to understand which ⇢ satisfying condition
(I), (II), (III or (IV) above can actually appear as the Picard number of a simple
Abelian variety of the corresponding type. For the notation used in the statement
and in the proof of the next result, we refer the reader to Section 2 and to [7, Chap-
ter 9] (in particular Section 9.6).

Proposition 5.1. Let g be a fixed positive integer. For all positive integers ⇢ that
satisfy one of the conditions above, there exists a simple Abelian variety X of di-
mension g of the corresponding type such that ⇢(X) = ⇢, unless we are in one of
the five following exceptional cases:

(1) F is of type III, and m := g/2e = 1;
(2) F is of type III, m := g/2e = 2, and there exists a totally positive element

↵ 2 K such that N (T ) = ↵2 (N being the reduced norm of M2(F) to K );
(3) F is of type IV,

Pe0
⌫=1 r⌫s⌫ = 0;

(4) F is of type IV, m :=g/d2e0=2, d=1 and r⌫=s⌫=1 for all ⌫=1, . . . , e0;
(5) F is of type IV,m := g/d2e0 = 1, d = 2 and r⌫ = s⌫ = 1 for all ⌫ = 1, . . . , e0.

Proof. It is a theorem of Shimura that given an endomorphism structure (F, 0, ◆)
one has that a general member (X, H, ◆) of the moduli space A(M, T ) has the
property EndQ(X) = ◆(F), except in the cases above (for example see [18], or [7]
for a modern approach).

In fact, under the assumption that our Abelian variety X be simple, one can
show that these cases never occur:

(1) X is isogenous to a square Y 2, where Y is an Abelian variety of dimension e0,
contradicting the fact that X is simple;

(2) Same argument as above;
(3) X is isogenous to Yd2m , where Y is an Abelian variety of dimension e0, thus

d = m = 1, while d = 2 because F is a quaternion algebra over its center;
(4) EndQ(X) contains a totally indefinite quaternion algebra F̃ over K0 with

F = K ⇢ F̃ , so that F = K ⇢ F̃ ⇢ EndQ(X) = F , contradiction;
(5) As in (1) and (2).
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For details, consult [7, Chapter 9, Example 9.10(1)–(5)], or see the original paper
by Shimura [18]. By work of Gerritzen [9] and Albert [1–3], this implies that given
an involutorial division algebra F of type I–IV outside of the five exceptional cases
above, there exists a simple Abelian variety whose endomorphism algebra is F . For
a survey on these results, see [14].

We are now left to show that for any integer ⇢ satisfying one of the conditions
(I-IV) and outside of (1)-(5), we can actually construct an involutorial division al-
gebra F of the corresponding type, such that there exists an Abelian variety X with
EndQ(X) ⇠= F and ⇢(X) = ⇢. We will divide our analysis according to the type.

5.1.1. Type I Let ⇢ be a positive integer such that ⇢|g. In this case, it is enough to
construct a totally real number field F of degree ⇢ over Q. However, given a finite
Abelian group G, it is always possible to construct a totally real number field F
such that Gal(F/Q) ⇠= G as a subfield of a suitable cyclotomic field. This implies,
in particular, that we can exhibit a totally real number field of degree ⇢ over Q.
5.1.2. Type II It is enough to construct a totally indefinite quaternion algebra F
over a totally real number field K of degree e = [K : Q] over Q, such that F is a
division ring, as then ⇢ = 3e satisfies the required condition. We are able to exhibit
such an algebra for any e|g by simply considering a quaternion algebra F whose
ramification is non-empty and disjoint from the archimedean place of K , i.e.

; = Ram(F) \ {archimedean places of K } and Ram(F) 6= ;.

5.1.3. Type III In this situation, we aim at constructing a totally definite quater-
nion algebra F over a totally real number field K of degree e = [K : Q] over Q,
such that F is in fact a division ring. It is enough to consider a quaternion alge-
bra F whose ramification locus is non-empty (this ensures the condition of being a
division ring) and fulfills the condition

; 6= Ram(F) ◆ {archimedean places of K }.

5.1.4. Type IV We are left with the case corresponding to an involutorial division
algebra F of the second kind, whose center K is a CM field with maximal real
subfield K0. In this case, it is enough to consider CM fields K such that the degree
e0 = [K0 : Q] of the maximal totally real subfield K0 of K ranges among all
divisors of g (i.e., we are considering the case d = 1).

6. Additivity of the range of Picard numbers

6.1. Additivity

As before we denote by Rg the set of realizable Picard numbers of g-dimensional
Abelian varieties, i.e.

Rg :=
�
⇢ | 9X Abelian variety, dim X = g, ⇢(X) = ⇢

 
.

Conventionally, let us set R0 = {0}. The main result of this section is
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Proposition 6.1. For any integers g, h � 0 we have an inclusion

Rg + Rh :=
�
x + y | x 2 Rg, y 2 Rh

 
⇢ Rg+h .

Clearly, the idea is to use the additivity of Picard numbers for products of non-
isogeneous Abelian varieties, as proven in Corollary 2.3. In order to be able to
us this we need that for any k 2 Rg we find countably many Abelian varieties of
dimension g and Picard number k in different isogeny classes. The case of elliptic
curves illustrates how this can be proved: Suppose E and E 0 are two elliptic curves,
and let F := EndQ(E) and EndQ(E 0) be their endormorphism algebras. If E and
E 0 have CM, then they are mutually isogenous if and only if F ⇠= F 0. However, if
they don’t have CM, then F ⇠= F 0 ⇠= Q but E and E 0 are not necessarily isogenous.
However, by removing CM elliptic curves fromM1,1, we get an uncountable set
of isomorphism classes of elliptic curves. Since each isogeny class consists of
countably many (isomorphism classes of) elliptic curves, we must have infinitely
many isogeny classes of non-CM elliptic curves. We first note

Proposition 6.2. Let X and X 0 be two simple Abelian varieties of dimension g,
and let F and F 0 be the corresponding endomorphisms algebras. Then, if X is
isogenous to X 0, then F ⇠= F 0.

Proof. The isomorphism ◆ : EndQ X 0 �! EndQ X is defined by sending ↵ 7�!  �
↵ � �, where � : X �! X 0 is an isogeny, and  : X 0 �! X is the unique isogeny
such that  �� = eX and �� = eY , e being the exponent of � (or  respectively).
Surjectivity and injectivity of ◆ follow from the fact that multiplication maps are
invertible in the endomorphism Q-algebra.

The key result of this section is the following:

Proposition 6.3. Given an integer k 2 Rg, then there exist at least countably many
isogeny classes of Abelian varietiss of dimension g and Picard number k.

Proof. Assume that k 2 Rg and that this integer is realized by an Abelian variety A
of dimension g. We first assume that F := EndQ(X) 6⇠= Q. We will now go through
the various types of endomorphism algebras and start with type I and [F : Q] > 1.

For type I, the endomorphism algebra is a totally real number field F , and the
Picard number of a simple Abelian variety with such an endomorphism algebra is
the degree e := [F : Q] of F . One can find infinitely many totally real num-
ber fields of a fixed degree e > 1. By taking the corresponding (infinitely many)
Abelian varieties, we are done.

For type II-III, the endomorphism algebra is a quaternion algebra F over a
totally real number field K . In this case, the Picard number is ⇢ = 3e for type II
and ⇢ = e for type III, where e := [K : Q]. Since by the previous argument there
exist infinitely many totally real number fields of degree e, it follows that we can
find infinitely many (totally definite or totally indefinite) quaternion algebras. By
considering the corresponding Abelian varieties, we have shown the claim for types
II-III.
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For type IV, the endomorphism algebra F has degree [F : K ] = d2 over a
CM field K , e := [K : Q]. If K0 is the totally real subfield of K , of degree
e0 := [K0 : Q], the Picard number is ⇢ = e0d2. Similarly to the argument in
the proof of Proposition 5.1, we can restrict ourselves to consider Abelian varieties
whose endomorphism algebra satisfies the condition d = 1: under this assumption,
⇢ = e0. Since there are infinitely many totally real number fields, we find infinitely
many CM fields (by just adding the imaginary unit), and the same argument as in
the previous cases shows the statement for type IV Abelian varieties.

This leaves us with the general situation where F = EndQ(X) ⇠= Q. The ppav
of this type are given by removing from Ag a countable union of proper Shimura
varieties. SinceAg has positive dimension and the set of ppav isogeneous to a given
Abelian variety is countable, the claim follows.

Proof of Proposition 6.1. This now follows immediately from Proposition 6.3 and
the additivity proved in Corollary 2.3.

6.2. Computing Rg

Our final aim is to find all realizable Picard numbers of Abelian varieties of a given
dimension. We can use Proposition 6.1 to easily show that some of the lower one
indeed occur.

Proposition 6.4. Given g � 2, consider the set Rg of Picard numbers of Abelian
varieties of dimension g. Then, {1, . . . , 2g} ⇢ Rg.

Proof. As R2 = {1, . . . , 4} is complete and R3 � {1, . . . , 6}, the result easily
follows by induction on g.

Remark 6.5. In fact, it is not hard to prove that all Picard numbers ⇢ satisfying the
inequality g  ⇢  2g are attained by products of elliptic curves.
This now allows us to formulate an algorithm which computes the ranges Rg induc-
tively.

• Set R1 = {1} and R2 = {1, 2, 3, 4};
• For all g in the range 3  g  G, we compute Rg as follows:
(i) By Proposition 6.4, Rg � {1, . . . , 2g � 1} (in particular, all Picard numbers
of simple Abelian varieties of dimension g are in this range);

(ii) Compute all possible Picard numbers of self-product Abelian varieties Ak ,
where dim A = g/k;

(iii) For every pair (g1, g2) of positive integers such that g1 + g2 = g, compute
Rg1 + Rg2 ;

(iv) Assemble everything in light of

Rg =
[

k|g

�
⇢(Ak) | A simple, dim A = g/k

 
[

[

1ng�1

�
Rn + Rg�n

�
.
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7. Asymptotic behaviour of Picard numbers of Abelian varieties

7.1. Asymptotic completeness of Picard numbers

In the course of this note, we have shown that for every g � 3 the set Rg of Picard
numbers of g-dimensional Abelian varieties is not complete, or in other words that
#Rg < g2. The ratio �g := #Rg/g2 is the density of Rg in [1, g2] \ N, and it de-
scribes how many admissible Picard numbers (according to the Lefschetz Theorem
on (1, 1)-classes) can actually be attained. One may wonder about the asymptotic
density of Picard numbers of Abelian varieties: this is the quantity defined as

� := lim
g!+1

�g.

We now show that the Picard numbers of Abelian varieties are asymptotically com-
plete, namely that � = 1, contrary to the fact that �g < 1 for every g � 3.

Theorem 7.1 (Asymptotic completeness). The sets of Picard numbers of Abelian
varieties are asymptotically dense, i.e., � = 1.

The proof relies on Lagrange’s four-square theorem and the following lemma,
whose proof follows readily from the additivity of the Picard number.

Lemma 7.2. Suppose g � 1 and 1  n  g2, where g and n are two integers.
Assume that there exist positive integers n1, . . . , nk such that

n � 1 = n21 + · · · + n2k and n1 + · · · + nk  g � 1.

Then, there exists a g-dimensional Abelian variety X with ⇢(X) = n.

Proof of Proposition 7.1. Let n1 be the largest positive integer such that

n21  n � 1 < (n1 + 1)2.

Then,
0  n � 1� n21 < (n1 + 1)2 � n21 = 2n1 + 1,

from which it follows that

0  n � 1� n21  2n1  2
p
n � 1 < 2

p
n  2g.

Lagrange’s four-square theorem implies that

m := n � 1� n21 = n22 + n23 + n24 + n25,

for some n2, n3, n4, n5 2 N. We will now show that n1 + · · · + n5 < g for g � 0:
indeed, by looking at the power means of n2, . . . , n5 one has that

n2 + · · · + n5
4



s
n22 + n23 + n24 + n25

4
=
1
2
p
m 

1
2
p
2g.
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Therefore,
n1 + · · · + n5 

p
n � 1+ 2

p
2g,

and the right-hand side is strictly smaller than g if and only if

n < g2 + 8g + 1� 4
p
2g3/2 =: bg.

This implies that all Picard numbers in the range [1, bg) indeed occur, by virtue of
the lemma above. Hence, we have that asymptotically #Rg � bg�1= g2 + 8g �
4
p
2g3/2, and thus � = 1.

7.2. Distribution of large Picard numbers

We are interested in describing the distribution of large Picard numbers within
[1, g2] \ N. As we have already observed, for every g � 1, the set Rg has the
following structure

Rg =
[

k|g

n
⇢
�
Ak

�
| A simple, dim A = g/k

o
[

[

1ng�1

�
Rn + Rg�n

�
.

The proof of Theorem 1.1(1) shows that all Picard numbers of Abelian varieties
of dimension g that are isogenous to a self-product of a simple Abelian variety are
bounded by 12g(g+1), unless we are considering the g-fold product of a CM elliptic
curve, in which case the maximal Picard number is attained.

In order to begin our analysis, we need to specify what we mean by “large
Picard numbers”. First of all, we will require large Picard numbers to satisfy the
inequality ⇢ > g(g + 1)/2. In particular, this implies that we need not concern
ourselves with those Abelian varieties whose isogeny decomposition only has one
factor. Therefore, we can focus on the following subset of Rg:

[

1ng�1

�
Rn + Rg�n

�
.

Now we need a little bit of notation. Let us set

Rg,n :=
�
(g � n)2 + x | x 2 Rn

 
.

In other words, Rg,n is the subset of Rg obtained by translating Rn to the right by
(g � n)2 inside N. Notice that given g, k, n 2 N, one has by Proposition 6.1 that

Rg,k + Rn ⇢ Rg+n,k+n.

As we want to consider large Picard numbers only, we will be concerned only with
some of the Rg,s’s, namely those for which the inequality

1
2
g(g + 1)  (g � s)2 + 1 (7.1)
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holds (1  s  g), which implies that the Abelian varieties we are considering are
not self-products of simple Abelian varieties. This in particular implies that g � 4
(because s � 1) and

s 
2g �

p
2(g2 + g � 2)
2

.

Finally, let us look at the mutual interaction of the Rg,s’s. For a fixed g, there might
exist positive integers a and b such that Rg,a \ Rg,b 6= ;. However, if a and b are
distinct and small enough with respect to g, then Rg,a \ Rg,b = ;. Indeed, for a
fixed g, the inequality

[g � (s + 1)]2 + (s + 1)2 < (g � s)2 + 1 (7.2)

holds for all positive integers s < �2 +
p
2g + 3. Hence Rg,a \ Rg,b = ; for a

and b in this range.
We are now able to define precisely what “large Picard number” means. We

will say that a Picard number ⇢ is large if ⇢ 2 Rg,s with s satisfying conditions (1)
and (2). This condition can be made explicit:

Proposition 7.3. Let g � 4. Then, ⇢ 2 Rg,s is a large Picard number if and only if

s  min

(
2g �

p
2(g2 + g � 2)
2

,�1+
p
2g + 3

)

.

The theorem we are going to discuss next describes the distribution of the large Pi-
card numbers inside [1, g2]\N. The argument we use is inductive and its initial step
is a proof of an asymptotic version of Theorem 1.1(2) starting from an asymptotic
version of Theorem 1.1(1).

Theorem 7.4 (Distribution of large Picard numbers). For every positive integer
` there exists a genus g` such that for all g � g` large Picard numbers in Rg are
distributed as follows:

Rg,` · · · Rg,4 Rg,3 Rg,2 •(g�1)2+1 •g
2
.

In other words, for all g � g`, we have that

h
(g � `)2 + 1, g2

i
\ Rg = Rg,` t Rg,`�1 t · · · t Rg,2 t Rg,1 t Rg,0.

Remark 7.5. In particular this shows that, as g ! 1 more and more gaps arise in
Rg as we go down from the maximum Picard number g2.
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Proof. We will give a proof by induction. To start with, note that we can (and will)
always assume that g is large enough, so that there is no overlapping between the
sets Rg,n that we wish to consider.

Let us start with a pair (`, g`) such that the following holds: there is no Abelian
variety of dimension g � g` and Picard number ⇢ such that (g � t)2 + t2 < ⇢ <
(g � t + 1)2 + 1 for 2  t  ` or (g � 1)2 + 1 < ⇢ < g2. Then, the claim is that
we can find g`+1 � g` such that there is no Abelian variety of dimension g � g`+1
and Picard number ⇢ such that [g � (`+ 1)]2 + (`+ 1)2 < ⇢ < (g � `)2 + 1.

As the start of the induction, we will now show how to recover the second part
of Theorem 1.1 from the first one, at least asymptotically (we will not be able to
get any bound on g, but of course it is always possible to do so). Suppose that
for all g � g1 there is no Abelian variety X of dimension g and Picard number
(g � 1)2 + 1 < ⇢(X) < g2 (notice that in light of Theorem 1.1, we can choose
g1 = 4). We will now prove that there exists g2, g2 � g1, such that for every g � g2
there is no Abelian variety Y of dimension g and Picard number (g � 2)2 + 4 <
⇢(Y ) < (g � 1)2 + 1.

Let g2 be such that for all g � g2 conditions (1) and (2) above are satisfied (i.e.,
the Picard numbers ⇢ in the range (g�2)2+4 < ⇢ < (g�1)2+1 are large according
to our definition). Suppose Y is an Abelian variety whose Picard number contradicts
the statement we want to prove, namely (g � 2)2 + 4 < ⇢(Y ) < (g � 1)2 + 1.
Then, as ⇢(Y ) is large, Y is isogenous to a product of two Abelian varieties, i.e.,
Y ⇠ An ⇥ Ag�n , where n  g � n and Hom(An, Ag�n) = 0, (here the subscripts
indicate the dimension). Since ⇢ > (g � 2)2 + 4, we have that n = 1 necessarily.
Therefore Y ⇠ E ⇥ Ag�1, where E is an elliptic curve and Hom(E, Ag�1) = 0.
As ⇢(Y ) = 1+ ⇢(Ag�1), we readily see that

(g � 2)2 + 1 < ⇢(Ag�1) < (g � 1)2,

a contradiction. This is first step of the induction.
Now, let us assume that there exists g` such that for all g � g` there is no

Abelian variety X of dimension g and Picard number in the following ranges:

(1) (g � 1)2 + 1 < ⇢(X) < g2;
(2) (g � 2)2 + 4 < ⇢(X) < (g � 1)2 + 1;

...

(`) (g � `)2 + `2 < ⇢(X) < [g � (`� 1)]2 + 1.

We claim that there exists g`+1 such that for all g � g`+1 there is no Abelian variety
Y of dimension g and Picard number satisfying

(`+ 1) [g � (`+ 1)]2 + (`+ 1)2 < ⇢(Y ) < [g � `]2 + 1.
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Again, let us let g grow bigger so that the Picard numbers we wish to consider can
only be realized by Abelian varieties that are not a self-product of a simple Abelian
variety. By contradition, let Y be an Abelian variety that contradicts the statement
we want to prove. Then Y ⇠ An⇥Ag�n , where n  g�n and Hom(An, Ag�n) = 0.
It is straightforward to see that n  `, as ⇢(Y ) > [g � (` + 1)]2 + (` + 1)2. By
additivity of the Picard number

⇢(Y ) = ⇢(An ⇥ Ag�n) = ⇢(An)| {z }
⇢n

+⇢(Ag�n)| {z }
⇢g�n

.

As ⇢(Y ) > [g � (`+ 1)]2 + (`+ 1)2, we see that

⇢g�n > [g � (`+ 1)]2 + (`+ 1)2 � ⇢n > [g � (`+ 1)]2 + (`+ 1)2 � n2

> [(g � n) � (`� n + 1)]2 + (`+ 1)2 � n2

> [(g � n) � (`� n + 1)]2 + (`� n + 1)2.

Similarly,

⇢g�n<(g�`)2+1�⇢n(g�`)2=[(g�n)�(`�n)]2< [(g � n)�(`� n)]2+1,

and summing up we have shown that

[(g�n)�(`�n+1)]2+(`�n+1)2<⇢(Ag�n)< [(g � n) � (`� n)]2 + 1,

which contradicts the (`� n + 1)-st condition above.

As a striking consequence of Theorem 7.4, we get the following structure the-
orem for Abelian varieties of large Picard number up to isogeny, which generalizes
the results in Section 4. As we had already noticed in Section 4, we cannot expect
a structure theorem up to isomorphism, hence this is the strongest result we could
hope for.

Corollary 7.6. (Structure theorem for Abelian varieties of large Picard num-
ber). For every positive integer ` there exists a genus g` such that for all g � g`
the following are equivalent:

(1) ⇢(X) 2 Rg,n for some n  `;
(2) X ⇠ Eg�n ⇥ An , where E is an elliptic curve with complex multiplication, An

is an Abelian variety of dimension n, and Hom(E, An) = 0.

Proof. Let us set g` as in the proof of Theorem 7.4, and let X be an Abelian variety
of Picard number ⇢(X) 2 Rg,n for some n  `. By means of the Poincaré reducibil-
ity theorem, we can write X ⇠ Et⇥Ag�t , where E is an elliptic curve with complex
multiplication, Ag�t is an Abelian variety of dimension g� t , Hom(E, Ag�t ) = 0,
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and t is the largest integer appearing as exponent of an elliptic curve with complex
multiplication in the isogeny decomposition of X . Let us now set for simplicity
t = g � m, so that X ⇠ Eg�m ⇥ Am . In particular, it follows that ⇢(X) 2 Rg,m .
However, by Theorem 4.2, Rg,n cannot intersect Rg,m unless n = m, from which
the statement follows.

8. Abelian varieties defined over number fields

In this section we show that every realizable Picard number ⇢ 2 Rg can be obtained
by an Abelian variety defined over a number field.

Theorem 8.1. Let (X, �) be a polarized complex Abelian variety, let D = End0(X)
be the endomorphism algebra of X and let ⇤ be the Rosati involution on D. Then
there exists a polarized Abelian variety overQ, or equivalently over a number field,
which has the same endomorphism algebra with involution (D, ⇤).

Proof of Ben Moonen. To prove the assertion, choose a Q-subalgebra R ⇢ C of
finite type and a polarized Abelian scheme (Y, µ) over S := Spec(R) such that
(Y, µ) ⌦R C is isomorphic to (X, �) and such that all endomorphisms of X are
defined over R, in the sense that the natural map

End0(Y/R) �! End0(X)

is an isomorphism. The existence of such a model follows from [10, Proposi-
tion (8.9.1)] together with the fact that End(X) is a finitely generated algebra (in
fact, it is even finitely generated as an Abelian group). By construction, if ⌘
is the generic point of S, we have End0(Y⌘) ⇠= D as algebras with involution.
If s is a point of S, we have a specialization homomorphism is : End0(Y⌘) ,!
End0(Ys), and we are done if we can find a closed point s for which is is an isomor-
phism.

Let ` be a prime number. For s a point of S, let T`(s) := T`(Ys) denote the
`-adic Tate module of Ys , and let

⇢s : Gal
�
(s)/(s)

�
! GL(V`(s))

denote the Galois representation on V`(s) = T`(s)⌦ZQ`. By a result of Faltings [8,
Theorem 1], End0(Ys) ⌦ Q` is the endomorphism algebra of V`(s) as a Galois
representation, namely

End0(Ys) ⌦ Q`
⇠= EndGal((s)/(s))

�
V`(s)

�
.

For s 2 S, the image of ⇢s may be identified with a subgroup of im(⇢⌘); the sub-
group we obtain is independent of choices only up to conjugacy. By a result of
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Serre [17] (see also [13, Proposition 1.3]), there exist closed points s 2 S for which
im(⇢s) = im(⇢⌘), and for all such points the specialization map is on endomor-
phism algebras is an isomorphism (see [13, Corollary 1.5]).

As the Picard number only depends on (D, ⇤) this immediately implies

Corollary 8.2. Every realizabe Picard number ⇢ 2 Rg can be obtained by an
Abelian variety defined over a number field.
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