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A geometric second-order-rectifiable stratification
for closed subsets of Euclidean space

ULRICH MENNE AND MARIO SANTILLI

Abstract. Defining the m-th stratum of a closed subset of an n dimensional
Euclidean space to consist of those points, where it can be touched by a ball from
at least n � m linearly independent directions, we establish that the m-th stratum
is second-order rectifiable of dimension m and a Borel set. This was known for
convex sets, but is new even for sets of positive reach. The result is based on a
sufficient condition of parametric type for second-order rectifiability.

Mathematics Subject Classification (2010): 52A20 (primary); 28A78, 49Q15
(secondary).

1. Introduction

The main purpose of the present paper is to establish the following theorem; our
notation is based on [5, pages 669–676], see the end of this introduction.

Structural theorem on the singularities of closed sets (see Theorem 4.12)

Suppose A is a closed subset of Rn , for a 2 A, Dis(A, a) is the set of v 2 Rn
satisfying A \ {x : |x � (a + v)| < |v|} = ?, m is an integer, 0  m  n, and

B = A \ {a : Dis(A, a) contains at least n � m linearly independent vectors}.

Then, B can be H m almost covered by the union of a countable collection of
m dimensional, twice continuously differentiable submanifolds of Rn .

In the terminology of [11, page 1018] for m � 1, the conclusion asserts that B
is countably (H m,m) rectifiable of class 2. If A is convex, then B consists of
the set of points, where the dimension of the normal cone of A is at least n �
m, see Remark 4.14. Hence, our theorem contains the structural theorem on the
singularities of convex sets, see [1, Theorem 3] or [18, Theorem 3]. We also prove,
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that B is a countably m rectifiable Borel set, see Theorem 4.12; in particular, if
m � 1, then B can be covered (without exceptional set) by a countable family
of images of Lipschitzian functions from Rm into Rn , and, if m = 0, then B is
countable.

Our approach rests on two pillars. The first may be stated as follows.

Sufficient condition of parametric type for second-order rectifiability (see Cor-
ollary 2.5)

Suppose W is an L n measurable subset of Rn , m is an integer, 1  m  n,
f : W ! R⌫ is a locally Lipschitzian map,

Z = R⌫ \ {z :H n�m( f �1[{z}]) > 0},

and, for H m almost all z 2 Z , there exists an m dimensional subspace U of R⌫

satisfying

lim sup
y!x

|y � x |�2 dist( f (y) � f (x),U) < 1 whenever x 2 f �1[{z}].

Then, Z can be H m almost covered by the union of a countable collection of
m dimensional, twice continuously differentiable submanifolds of R⌫ .
Note that f �1[{z}] abbreviates {x : f (x)= z}, see below. The key to reduce this suf-
ficient condition to the nonparametric case is the construction (in Theorem 2.1) of a
countable collection G of m rectifiable subsets P of W withH m(Z⇠ f [

S
G])= 0

such that, for each P 2 G, the restriction f |P is univalent and its inverse ( f |P)�1 is
Lipschitzian. The nonparametric case was comprehensively studied in [11]; how-
ever, for the present purpose, also [14] would be sufficient (see Remark 2.6).

The second pillar of the proof of the structural theorem is the next result that
we state here for the special case of a convex set A. It concerns the relation of the
nearest point projection, ⇠ A, with the tangent and normal cones of A.

A geometric observation for convex sets (see Lemma 4.11 together with Lem-
ma 3.9 (1) (3), and Remark 4.4)

If A is a nonempty closed convex subset of Rn , m is an integer, 1  m < n,
x 2 Rn ⇠ A, a = ⇠ A(x), dimNor(A, a) � n�m, U is an m dimensional subspace
of Rn , U ⇢ Tan(A, a), and x � a belongs the relative interior of Nor(A, a), then

lim sup
y!x

|y � x |�2 dist(⇠ A(y) � a,U) < 1.

This geometric observation and its generalisation to closed sets in Lemma 4.11
owe much to Federer’s treatment of sets of positive reach (a concept that embraces
convex sets and submanifolds of class 2) in [4]. Since it is elementary, that the
set B in the structural theorem is countably m rectifiable, the sufficient condition
of parametric type for second-order rectifiability then is readily applied with the
function f = ⇠ A|W for suitable W .
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Connection to curvature measures Instead of using second-order rectifiability,
curvature properties can also be studied via general Steiner formulae. This approach
was taken, for sets of positive reach and various more general classes of sets, by
Federer in [4], Stachó in [16], Zähle in [17], Rataj and Zähle in [10], and Hug,
Last, and Weil in [6]; in fact, [16] and [6] treat arbitrary closed subsets of Euclidean
space. The relation of both notions of curvature is characterised by the second
author in the sequel [13].
Connection to varifold theory The original motivation of the first author for the
present study was to create a deeper understanding of a relation proven by Almgren
in his area-mean-curvature characterisation of the sphere in [2]. There, an equation
relating the curvature measures (similar to those of [17]) of the convex hull of the
support of a certain varifold to the perpendicular part of the mean curvature of
the varifold is established in [2, Section 6 (2)]. The results of the present paper
shall serve as tools for further investigations of both authors of the second-order
rectifiability properties of classes of varifolds.
Notation Our notation and terminology is that of [5, pages 669–676], except that,
as in [7, page 8], we denote the image of A under a relation r by

r[A] = {y : (x, y) 2 r for some x 2 A}.

ACKNOWLEDGEMENTS. The first author thanks the participants of an online read-
ing seminar on [2] for their early interest in these developments. The material of
this paper originates from the PhD thesis of the second author, supervised by the
first author, at the University of Potsdam (see [12]). The paper was written while
both authors worked at the Max Planck Institute for Gravitational Physics (Albert
Einstein Institute) and the University of Potsdam.

2. Coarea formula

The purpose of the present section is to prove the sufficient condition for second-
order rectifiability in Corollary 2.5. We begin by establishing a theorem that allows
to construct univalent parametrisations from a Lipschitzian given one.

Theorem 2.1. Suppose W is an L n measurable subset of Rn , m is an integer,
1  m  n, and f : W ! R⌫ is a locally Lipschitzian map. Then, there exists a
countable collection G of compact subsets P of W , such that f |P is univalent and
( f |P)�1 is Lipschitzian, satisfying

H m�R⌫ \ {z :H n�m( f �1[{z}]) > 0}⇠
S

{ f [P] : P 2 G}
�

= 0.

Moreover, each member of G is contained in some m dimensional affine plane.
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Proof. We firstly consider the special case that W is a compact subset of Rn .
Choose F : Rn ! R⌫ with F |W = f and Lip F = Lip f < 1 by Kirszbraun’s
theorem [5, 2.10.43]; in particular, D F is a Borel function whose domain is a Borel
set by [5, 3.1.2]. Defining Zi = R⌫ \ {z :H n�m( f �1[{z}]) � 1/ i} whenever i is
a positive integer, we note that

R⌫ \ {z :H n�m( f �1[{z}]) > 0} =
S1

i=1 Zi .

Moreover, the sets Zi are Borel sets by [5, 2.10.26] and (H m,m) rectifiable by
[5, 3.2.31]. We define, for every positive integer i , the class �i to consist of all
families G of compact subsets P of f �1[Zi ] such that

f [P] \ f [Q] 6= ? if and only if P = Q

whenever P, Q 2 G, and such that

H m(P) > 0, f |P is univalent, ( f |P)�1 is Lipschitzian,
P is contained in some m dimensional affine subspace of Rn

whenever P 2 G. Clearly, each member of �i is countable. Using Hausdorff’s
maximal principle (see [7, page 33]), we choose maximal elements Gi of �i . The
proof of the present case will be concluded by establishing

H m�Zi ⇠
S

{ f [P] : P 2 Gi }
�

= 0 for every positive integer i .

For this purpose, fix such i and define Borel sets T = Zi ⇠
S

{ f [P] : P 2 Gi } and
S = f �1[T ]. If T had positiveH m measure, then, noting [5, 2.10.35],

B = S \
�
w : k

V
m D F(w)k > 0

 

would be a Borel set and have positive L n measure by the coarea formula [5,
3.2.22 (3)] with W , Z , and f replaced by S, T , and f |S, since

(L n x S, n) apD( f |S)(w) = D F(w) forL n almost all w 2 S

by [5, 2.10.19 (4)].
Consequently, identifying Rn ' Rm ⇥ Rn�m , there would exist a linear isom-

etry g : Rn ! Rn such thatL n(A) > 0 with

A = B \
�
w :

V
m(D F(w)|g[Rm ⇥ {0}]) 6= 0

 

= g
⇥
g�1[B] \ {x :

V
m(D(F � g)(x)|Rm ⇥ {0}) 6= 0}

⇤

and, as A would be a Borel set, ⌘ 2 Rn�m so thatL m(R) > 0 with

R = Rm \ {⇠ :(⇠, ⌘) 2 g�1[A]}
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by Fubini’s theorem, see [5, 2.6.2 (3)]. Since R would be a Borel set, we could
apply [5, 3.2.2] to the function h : Rm ! R⌫ defined by h(⇠) = (F � g)(⇠, ⌘) for
⇠ 2 Rm , and use the Borel regularity ofH m to construct a subset P of g[R ⇥ {⌘}]
with Gi [ {P} 2 �i , contrary to the maximality of Gi .

To treat the general case, we pick an increasing sequence of compact sub-
sets Ki of Rn with L n�W ⇠

S1
i=1 Ki

�
= 0. Since, in conjunction with [5, 2.4.5],

[5, 2.10.25] applied with A replaced by W ⇠
S1

i=1 Ki implies that

H n�m� f �1[{z}]⇠
S1

i=1 Ki
�

= 0 forH m almost all z 2 R⌫

and limi!1 H n�m( f �1[{z}] \ Ki ) = H n�m( f �1[{z}]) for such z, we readily
infer the conclusion.

Remark 2.2. The contradiction argument is inspired by [5, 3.2.21].
Remark 2.3. For the nearest point projection onto a set of positive reach, the idea
of exhaustion by means of images from lower dimensional parts of the domain of f
is employed in [4, 4.15 (3)]. The important additional feature of members P in our
collection G is the Lipschitz continuity of ( f |P)�1.
Remark 2.4. One readily verifies that Theorem 2.1 also holds with m = 0, but this
will not be needed in the present paper.

The sufficient condition of parametric type for second-order rectifiability now
reads as follows.

Corollary 2.5. Under the hypotheses of Theorem 2.1, if

Z = R⌫ \ {z :H n�m( f �1[{z}]) > 0},

and, for H m almost all z 2 Z , there exists an m dimensional subspace U of R⌫

satisfying

lim sup
y!x

|y � x |�2 dist( f (y) � f (x),U) < 1 whenever x 2 f �1[{z}],

then Z can be H m almost covered by the union of a countable collection of m di-
mensional submanifolds of R⌫ of class 2.

Proof. Whenever P 2 G, as ( f |P)�1 is Lipschitzian, we note, forH m almost all
z 2 Z \ f [P], there exists an m dimensional subspace U of R⌫ such that

lim sup
f [P]3⇣!z

|⇣ � z|�2 dist(⇣ � z,U) < 1.

Therefore, the conclusion follows from [11, 5.4] and [5, 3.1.15].

Remark 2.6. With little additional effort, the final argument could have been based
on [14, A.1] instead of [11, 5.4] and [5, 3.1.15].
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Remark 2.7. In conjunction with the preceding corollary, the following observa-
tion will be useful. If B is a countably (H m,m) rectifiable subset of R⌫ , then, for
H m almost all b 2 B, there exists an m dimensional subspace U of R⌫ such that
U ⇢ Tan(B, b); in fact, [5, 2.1.4, 3.1.21] reduce the problem to Borel sets B, in
which case [5, 2.10.19 (4), 3.2.17, 3.2.18] apply.

3. Convex sets

In the present section, we mainly collect some basic properties of convex sets and
related definitions in Definition 3.1–Remark 3.11 for convenient reference. Ad-
ditionally, we note an observation concerning convex cones in Definition 3.12–
Corollary 3.14.
Definition 3.1. Suppose A ⇢ Rn and x 2 Rn . Then, the distance of x to A is
denoted by dist(x, A) = inf{|x � a| : a 2 A}.
Remark 3.2. If A 6= ?, then dist(·, A) is real valued and Lip dist(·, A)  1.
Remark 3.3. If R = (Rn ⇥ A) \ {(x, a) : |x � a| = dist(x, A)}, then, using Re-
mark 3.2, one verifies that {a : (x, a) 2 R for some x 2 B} is bounded whenever B
is a bounded subset of Rn . Moreover, if A is closed, so is R.
Definition 3.4 (see [4, 4.1]). Suppose A ⇢ Rn and U is the set of all x 2 Rn such
that there exists a unique a 2 A with |x � a| = dist(x, A). Then, the nearest
point projection onto A is the map ⇠ A : U ! A characterised by the requirement
|x � ⇠ A(x)| = dist(x, A) for x 2 U .
Remark 3.5. Using Remark 3.3, we obtain that the function ⇠ A is continuous.
Moreover, if A is closed, then dmn ⇠ A is a Borel set; in fact, one verifies, by means
of Remark 3.3, that the function mapping x 2 Rn onto

d(x) = diam{a :(x, a) 2 R} 2 R

is upper semicontinuous, and dmn ⇠ A = {x : d(x) = 0}.
Definition 3.6 (see [15, page xix]). If A ⇢ Rn , then aff A denotes the affine hull
of A.
Definition 3.7 (see [15, page 7, page xx]). Suppose C is a convex subset of Rn .
Then, the dimension ofC , denoted by dimC , is defined to be the dimension of affC ,
and the relative boundary [interior] of C is defined to be the boundary [interior] of
C relative to affC .
Remark 3.8. If V is the relative interior of C , then V is convex, dim V = dimC ,
and

c + t (v � c) 2 V whenever v 2 V , c 2 C , and 0 < t  1;

in fact, reducing to the case affC = Rn , this is [15, 1.1.9, 1.1.10, 1.1.13].

Lemma 3.9. Suppose C is a nonempty closed convex subset of Rn .
Then, the following four statements hold.
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(1) There holds dmn ⇠C = Rn and Lip ⇠C  1;
(2) If c 2 C , then Tan(C, c) = Rn \ {u : u • v  0 for v 2 Nor(C, c)} and

C ⇢ {c + u : u 2 Tan(C, c)} ⇢ affC;

in particular, dimC = dimTan(C, c);
(3) If c 2 C , then

Nor(C, c) = {v : ⇠C(c + v) = c} = Rn \ {v : v • (x � c)  0 for x 2 C};

(4) If B is the relative boundary of C , then

B = C \ {c : c + v 2 affC for some v 2 Sn�1 \ Nor(C, c)}.

Proof. (1) is asserted in [5, 4.1.16]. In view of (1), the first equation and the first in-
clusion in (2) are contained in [4, 4.8 (12)] and [4, 4.18], respectively; the remaining
items of (2) then follow. The first equation in (3) follows from (1) and [4, 4.8 (12)].
The second equation in (3) follows from [9, I.2.3]. Finally, (4) is implied by [15,
1.3.2].

Theorem 3.10. Suppose X = Rn \ B(0, 1), F is the family of nonempty closed
subsets of X endowed with the Hausdorff metric, and G = F \ {C :C is convex}.

Then, the following four statements hold.

(1) The families F and G are compact;
(2) The function mapping (x, B) 2 X ⇥ F onto dist(x, B) 2 R is continuous;
(3) The function mapping C 2 G onto dimC 2 Z is lower semicontinuous;
(4) If8 = (G⇥ F)\ {(C, B) : B is the relative boundary of C}, then8 is a Borel

function whose domain equals the Borel set G \ {C : dimC � 1}.

Proof. (1) is contained in [5, 2.10.21]. (2) follows from Remark 3.2. We observe
that, in order to prove (3) and (4), it sufficient to establish the following assertion.
If k is an integer, Ci is a sequence in G with dimCi = k, C 2 G, and Ci ! C
as i ! 1, then dimC  k and, in case of equality with k � 1, we additionally
have 8(C) = limi!1 8(Ci ). For this purpose, we assume, possibly passing to a
subsequence, that for some affine subspace Q of Rn

dist(v, affCi ) ! dist(v, Q) as i ! 1 for v 2 Rn,

and, if k � 1, that for some B 2 F , we have 8(Ci ) ! B as i ! 1. It follows
C ⇢ Q, whence we infer dimC  dim Q  k. Therefore, if dimC = k � 1, then
Q = affC and we could assume, possibly replacing Ci by g�1

i [Ci ] for a sequence
of isometries gi of Rn with limi!1 gi (x) = x for x 2 Rn and using Remark 3.2,
that Ci ⇢ Q for each index i ; in which case 8(C) = B follows readily from
Lemma 3.9 (4).

Remark 3.11. We observe that (2)–(4) imply that, if A is a Borel subset of Rn and
0 : A ! G is a Borel function, then the set of (a, v) 2 A⇥Rn such that v belongs
to the relative interior of 0(a) is a Borel subset of Rn ⇥ Rn .
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The corollary to the next theorem on convex cones will be one of the ingredi-
ents to the geometric observation for convex sets described in the introduction.
Definition 3.12. A subset C of Rn is said to be a cone if and only if �c 2 C
whenever 0 < � < 1 and c 2 C .

Theorem 3.13. Suppose C is a convex cone in Rn ,

D = Rn \ {d : d • c  0 for c 2 C},

U is an m dimensional plane in Rn , U ⇢ D, dimC � n � m, and v belongs to the
relative interior of C .

Then, dimC = n � m and there exists 0  � < 1 satisfying

dist(d,U)  �� d • v for d 2 D.

Proof. Defining V = Rn \ {v : u • v = 0 for u 2 U}, we see C ⇢ V from [4, 4.5],
hence affC = V ; in particular, dimC = n � m. Since D is closed under addition
andU ⇢ D, D is invariant under directions inU . Therefore, it is sufficient to prove
the existence of 0  � < 1 such that the inequality holds for d 2 D \ V \ Sn�1.
If there were no such � , then, by compactness, there would exist d 2 D\V \Sn�1
with d • v = 0 which would imply that v belongs to the relative boundary of C , as
d 2 affC .

Corollary 3.14. Under the hypotheses of Theorem 3.13, there holds

dist(b,U)  �� b • v + (1+ � |v|) dist(b, D) for b 2 Rn.

Proof. In view of Remark 3.2 and Lemma 3.9 (1), one may apply Theorem 3.13 to
d = ⇠ D(b).

4. Distance bundle

In this section, we introduce the distance bundle in Definition 4.1–Remark 4.6; its
nonzero directions correspond to the normal bundle employed by Hug, Last, and
Weil in [6], see Remark 4.6. Then, we extend (in Theorem 4.7) some basic esti-
mates from Federer’s treatment of sets of positive reach in [4] which lead to an im-
portant one-sided estimate for the nearest point projection in Corollary 4.9. Finally,
we derive the geometric observation, described for convex sets in the introduction,
in Lemma 4.11, and the main structural theorem on the singularities of closed sets
in Theorem 4.12.
Definition 4.1. Suppose A ⇢ Rn . Then, the distance bundle of A is defined by

Dis(A) = (Rn ⇥ Rn) \ {(a, v) : a 2 Clos A and |v| = dist(a + v, A)}.

Moreover, we let Dis(A, a) = {v :(a, v) 2 Dis(A)} for a 2 Rn .
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Remark 4.2. Clearly, Dis(A)=Dis(Clos(A)), Dis(A) is closed, and 0 2 Dis(A, a)
if and only if a 2 Clos A. Moreover, Dis(A, a) is a convex subset of Nor(A, a) for
a 2 Rn by [4, 4.8 (2)].
Remark 4.3. Whenever X and G are as in Theorem 3.10, the function, that maps
a 2 Clos A onto Dis(A, a)\X 2 G, is a Borel function; in fact, Remark 4.2 implies
that, in the terminology of [3, II.20], the function in question is an upper semicon-
tinuous multifunction, whence the assertion follows by [3, III.3].
Remark 4.4. If a 2 A, v 2 Dis(A, a), and 0  t < 1, then ⇠ A(a + tv) = a. In
particular, ⇠ A(a + v) = a whenever v belongs to the relative interior of Dis(A, a),
and Dis(A, a) is the closure of {v : ⇠ A(a + v) = a}.
Remark 4.5. In view of Remark 4.4, we could have alternatively formulated
our main theorem (see Theorem 4.12), for closed sets, in terms of the bundle
{(a, v) : ⇠ A(a + v) = a} which would be more in line with Stachó’s definition
of prenormals in [16, page 192]. Our choice of bundle is motivated by the fact that
Dis(A) is closed.
Remark 4.6. If A is closed, then Remark 4.4 yields that

�
(a, |v|�1v) : (a, v) 2 Rn ⇥ Rn and 0 6= v 2 Dis(A, a)

 

equals the normal bundle of A defined in [6, page 239].
Basic estimates for the distance bundle are collected in the following theorem.

Theorem 4.7. Suppose A ⇢ Rn . Then, the following three statements hold.

(1) If 0 < q < 1, a 2 Clos A, b 2 Clos A, v 2 Rn , and

either v = 0 or q|v|�1v 2 Dis(A, a),

then (b � a) • v  (2q)�1|b � a|2|v|;
(2) If 0 < r < q < 1, x 2 Rn , y 2 Rn , a 2 A, b 2 A, and

|x � a| = dist(x, A)  r, |y � b| = dist(y, A)  r,

either x = a or q|x � a|�1(x � a) 2 Dis(A, a),

either y = b or q|y � b|�1(y � b) 2 Dis(A, b),

then ⇠ A(x) = a, ⇠ A(y) = b, and

|b � a|  q(q � r)�1|y � x |;

(3) If 0 < q < 1, a 2 Clos A, b 2 Clos A, C is a convex cone in Rn ,

qv 2 Dis(A, a) whenever v 2 C \ Sn�1,

and D = Rn \ {u : u • v  0 for v 2 C}, then

dist(b � a, D)  (2q)�1|b � a|2.
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Proof. To prove (1), we assume v 6= 0, let w = |v|�1v, and compute

|a + qw � b| � dist(a + qw, A) = q, |a � b|2 + 2qw • (a � b) + q2 � q2,

2qw • (b � a)  |b � a|2, v • (b � a)  (2q)�1|b � a|2|v|.

To prove (2), we notice that a = ⇠ A(x) and b = ⇠ A(y) by Remark 4.4 and infer

(b � a) • (x � a)  |b � a|2r/(2q), (a � b) • (y � b)  |b � a|2r/(2q)

from applying (1) twice; once with v replaced by x � a and once with a, b, and v
replaced by b, a, and y � b. Therefore, we obtain

|b � a||y � x | � (b � a) • (y � x)

= (b � a) • ((b � a) + (a � x) + (y � b)) � |b � a|2(1� r/q),

whence we infer |x � y| � |a � b|(q � r)/q.
To prove (3), we suppose a = 0. Whenever v 2 C , we notice that

v • b  (2q)�1|b|2|v|

by (1), and estimate

|b � v|2 = |b|2 + |v|2 � 2b • v � |b|2 + |v|2 � |b|2|v|/q � |b|2 � |b|4/(4q2).

Consequently, dist(b,C)2 � |b|2 � |b|4/(4q2) and (3) is implied by [4, 4.16].

Remark 4.8. The proof is almost verbatim taken from [4, 4.8 (7) (8), 4.18 (2)],
where slightly stronger hypotheses were made.

Next, we derive a crucial one-sided estimate for the nearest point projection.

Corollary 4.9. Suppose A ⇢ Rn , 0 < s < r < q < 1, and

x 2 dmn ⇠ A, s  dist(x, A)  r, v =
x � ⇠ A(x)
|x � ⇠ A(x)|

, qv 2 Dis(A, ⇠ A(x)),

y 2 dmn ⇠ A, s  dist(y, A)  r, w =
y � ⇠ A(y)

|y � ⇠ A(y)|
, qw 2 Dis(A, ⇠ A(y)).

Then, there holds
(⇠ A(x) � ⇠ A(y)) • v  |y � x |2,

where  = (2s)�1(1+ 2q/(q � r))2.
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Proof. We let a = ⇠ A(x) and b = ⇠ A(y), hence we have a = x � |x � a|v and
b = y � |y � b|w. Next, we estimate

(a � b) • v  (2s)�1|y � x |2

in case that dist(x, A) = dist(y, A) = s; in fact, noting dist(y, A)  |y � a| and
|v| = |w| = 1, we obtain

s2  |y � (x � sv)|2, (x � y) • v  (2s)�1|y � x |2, (w � v) • v  0,
(a � b) • v = (x � y) • v + s(w � v) • v  (2s)�1|y � x |2.

In the general case, we let (see Lemma 3.9 (1))

↵ = a + ⇠B(0,s)(x � a), � = b + ⇠B(0,s)(y � b),

notice ↵ = a + sv and � = b + sw, and infer

↵ 2 dmn ⇠ A, ⇠ A(↵) = a, � 2 dmn ⇠ A, ⇠ A(�) = b,
|� � ↵|  |y � x | + 2|b � a|  (1+ 2q/(q � r))|y � x |

from Remark 4.4, Lemma 3.9 (1), and Theorem 4.7 (2). Therefore, we may apply
the previous case with x and y replaced by ↵ and � to deduce the conclusion.

Remark 4.10. One could also derive a two-sided estimate; in fact, this is done
in [12, 6.6 (1)].

We now have all ingredients at our disposal to derive the geometric observa-
tion, formulated in the introduction for convex sets, in full generality.

Lemma 4.11. Suppose A ⇢ Rn , 0 < q < 1, m is an integer, 1  m < n, W is
the set of y 2 dmn ⇠ A satisfying

0 < dist(y, A) < q and q|y � ⇠ A(y)|
�1(y � ⇠ A(y)) 2 Dis(A, ⇠ A(y)),

x 2 W , a = ⇠ A(x), dimDis(A, a) � n � m, U is an m dimensional subspace
of Rn , U ⇢ Tan(A, a), and

q|x � a|�1(x � a) belongs to the relative interior of Dis(A, a).

Then,
lim sup
W3y!x

|y � x |�2 dist(⇠ A(y) � a,U) < 1.

Proof. Assume a = 0, choose s and r such that 0 < s < |x | < r < q, and let
Q = aff Dis(A, 0). Then, the set X of all v 2 Q⇠{0}, such that q|v|�1v belongs
to the relative interior of Dis(A, 0), is relatively open in Q and x 2 X . This implies
the existence of " > 0 such that the convex cone

C = Q \ {v : |rv � x | < " for some 0 < r < 1}
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satisfies C \ {v : |v| = |x |} ⇢ X , hence
qv 2 Dis(A, 0) whenever v 2 C \ Sn�1;

in particular, C ⇢ Nor(A, 0) by Remark 4.2. We note that dimC = dim Q � n�m
and that x belongs to the relative interior of C , as Q \ U(x, ") ⇢ C . Abbreviat-
ing D = Rn \ {d : d • c  0 for c 2 C}, we observe U ⇢ D from [4, 4.5], and
employing 0  � < 1 from Theorem 3.13 with v = x , we estimate

dist(⇠ A(y),U)  �� ⇠ A(y) • x + (1+ � |x |) dist(⇠ A(y), D)

 � |x ||y � x |2 + (1+ � |x |)(2q)�1|⇠ A(y)|
2  �|y � x |2

whenever y 2 W and s  dist(y, A)  r by Corollary 3.14, Corollary 4.9, Theo-
rem 4.7 (3), and Theorem 4.7 (2), where

 = (2s)�1(1+ 2q/(q � r))2, � = � |x | + (1+ � |x |)2�1q(q � r)�2.

Finally, x belongs to the interior of W \ {y : s  dist(y, A)  r} relative to W by
Remark 3.2.

Finally, we establish the structural theorem on the singularities of closed sets;
in fact, we may formulate it for arbitrary subsets of Euclidean space.

Theorem 4.12. Suppose A ⇢ Rn , m is an integer, and 0  m  n. Then,
{a : dimDis(A, a) � n � m}

is a countably m rectifiable Borel set which can be H m almost covered by the
union of a countable family of m dimensional submanifolds of Rn of class 2.

Proof. Let B = {a : dimDis(A, a) � n�m}. We assume A to be a nonempty closed
set by Remark 4.2, and also m < n. As 0 2 Dis(A, a) for a 2 A by Remark 4.2,
we obtain

dimDis(A, a) = dim(Dis(A, a) \ B(0, 1)) for a 2 A

from Lemma 3.9 (2); in particular, B is a Borel set by Theorem 3.10 (3) and Re-
mark 4.3. We define N to be the set of all (a, v) 2 A ⇥ Rn such that v belongs to
the relative interior of Dis(A, a) \ B(0, 1), hence N is a Borel set by Remark 3.11
and Remark 4.3. By Remark 4.4, we have

⇠ A(x + v) = a whenever (a, v) 2 N .

Noting Remark 3.2 and Remark 3.5, we define Wi to be the Borel set consisting of
all x 2 ⇠�1

A [B] such that

0 < dist(x, A) < i�1 and
�
⇠ A(x), i

�1|x � ⇠ A(x)|
�1(x � ⇠ A(x))

�
2 N

for every positive integer i . Then, ⇠ A|Wi is locally Lipschitzian by Theorem 4.7 (2)
and Remark 3.2, and

(⇠ A(x), x � ⇠ A(x)) 2 N for x 2 Wi
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by Remark 3.8. We observe that this implies that

H n�m�(⇠ A|Wi )
�1[{⇠ A(x)}]

�
> 0 whenever x 2 Wi ,

since (⇠ A|Wi )
�1[{⇠ A(x)}] is relatively open in {⇠ A(x)+v : v 2 aff Dis(A, ⇠ A(x))}.

We choose a countable family F of m dimensional affine planes in Rn such
that Q \

S
F is dense in Q, whenever Q is an affine subspace of Rn satisfying

dim Q � n � m; in fact, one may take F to be a countable dense subset in the
family of all m dimensional affine planes in Rn . Thence, we deduce, employing
Remark 3.8, that

B =
S1

i=1 ⇠ A
⇥
Wi \

S
F
⇤
;

in fact, whenever a 2 B, we take Q = {a + v : v 2 aff Dis(A, a)}, pick a positive
integer i such that, for some x 2 Q with 0 < |x�a| < i�1, we have that the vector
i�1|x � a|�1(x � a) belongs to the relative interior of Dis(A, a) \ B(0, 1), choose
such x within

S
F , and conclude x 2 Wi with ⇠ A(x) = a, as (a, x � a) 2 N . It

follows that B is countably m rectifiable.
To prove the remaining property of B, we assume m � 1. Then, in view

of Remark 2.7 and Lemma 4.11, we may apply Corollary 2.5 with f = ⇠ A|Wi for
every positive integer i to obtain the conclusion.

Remark 4.13. Our proof of the countable m rectifiability follows [4, 4.15 (3)],
where the case of sets of positive reach was treated.
Remark 4.14. If A is a closed convex set, this property was proven, by different
methods, in [1, Theorem 3]; the agreement, in this case, of the normal bundle used
there with our distance bundle follows from Lemma 3.9 (1) (3) and Remark 4.4.
Remark 4.15. For 1  m < n, the preceding theorem may not be strengthened by
replacing the distance bundle by the normal bundle, as is evident from considering a
closed m dimensional submanifold of Rn of class 1 that meets every m dimensional
submanifold of Rn of class 2 in a set ofH m measure zero; the existence of such A
follows from [8].
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[14] R. SCHÄTZLE, Lower semicontinuity of the Willmore functional for currents, J. Differential
Geom. 81 (2009), 437–456.

[15] R. SCHNEIDER, “Convex Bodies: the Brunn-Minkowski Theory”, Encyclopedia of Math-
ematics and its Applications, Vol. 151, Cambridge University Press, Cambridge, expanded
edition, 2014.
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