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On the slope conjecture of Barja and Stoppino for fibred surfaces

XIN LU AND KANG ZUO

Abstract. Let f : X ! B be a locally non-trivial relatively minimal fibration
of genus g � 2 with relative irregularity q f . It was conjectured by Barja and
Stoppino that the slope � f � 4(g�1)

g�q f . On the one hand, we show the lower bound

� f >
4(g�1)
g�q f /2 , and also prove the Barja-Stoppino conjecture when q f is small

with respect to g. On the other hand, we construct counterexamples violating the
conjectured bound when g is odd and q f = (g + 1)/2.

Mathematics Subject Classification (2010): 14D06 (primary); 14H10, 14D99,
14J29 (secondary).

1. Introduction

A fibred surface, or simply a fibration, is a surjective proper morphism f : X ! B
from a non-singular projective surface X onto a non-singular projective curve B
with connected fibers. A general fiber of f is a smooth curve of genus g � 2. The
fibration is said to be relatively minimal if there is no (�1)-curve contained in the
fibers of f . Here a curve C is called a (�k)-curve if it is a smooth rational curve
with self-intersection C2 = �k. The fibration is called hyperelliptic if its general
fiber is a hyperelliptic curve, smooth if all its fibers are smooth, isotrivial if all its
smooth fibers are isomorphic to each other, locally trivial if it is both smooth and
isotrivial, and semi-stable if all its singular fibers are reduced nodal curves.

The relative canonical sheaf of f is defined to be ! f = !X ⌦ f ⇤!_
B , where

!X (respectively !B) is the canonical sheaf of X (respectively B). For a relatively
minimal fibration f , the relative canonical sheaf! f is numerical effective (nef), i.e.,
! f ·C � 0 for any curve C ✓ X . Let b = g(B), pg = h0(X, !X ), q = h1(X, !X ),
�(OX ) = pg�q+1, and �top(X) be the topological Euler characteristic of X . The
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basic invariants of f are:
8
><

>:

� f = deg f⇤! f = �(OX ) � (g � 1)(b � 1)
!2f = !2X � 8(g � 1)(b � 1)
e f = �top(X) � 4(g � 1)(b � 1).

(1.1)

These invariants satisfy the following properties:

12� f = !2f + e f ; (1.2)
e f � 0; moreover, e f = 0 iff f is smooth;
� f � 0; moreover, � f = 0 iff f is locally trivial;
!2f � 0, if f is relatively minimal.

Unless otherwise stated, f is assumed to be relatively minimal in the following. If
f is not locally trivial, the slope of f is defined to be

� f =
!2f

� f
.

It follows immediately that 0 < � f  12. The main known result is the slope
inequality:

Theorem 1.1 (Cornalba-Harris-Xiao, [7, 23]). If f is not locally trivial, then

� f �
4(g � 1)

g
.

Moreover, the equality in the above lower bound can hold only for the hyperelliptic
fibrations (cf. [7, 11, 22]). Thus, it is natural to investigate the influence of some
properties of the fibration on the behaviour of the slope. For instance, according
to [3, 14], one knows that the Clifford index of the general fiber has some meaning
to the lower bound of the slope. We would like to be concerned about the following
conjecture of Barja and Stoppino (cf. [3, Conjecture 1.1]) on the influence of the
relative irregularity q f := q � b on the lower bound of the slope.

Conjecture 1.2 (Barja-Stoppino). If f is not locally trivial and q f < g � 1, then

� f �
4(g � 1)
g � q f

. (1.3)

The first result in the direction is due to Xiao [23, Theorem3], where he proved
that if q f > 0, then � f � 4 and the equality can hold only when q f = 1. In [3,
Theorem1.3], Barja and Stoppino considered the influence of the Clifford index
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Cliff( f ) of the general fiber and the relative irregularity q f on the lower bound of
the slope simultaneously, and proved that

� f �
4(g � 1)
g � [m/2]

,

where m = min
�
Cliff( f ), q f

 
and [•] stands for the integral part. When the

Clifford index Cliff( f ) is large, this shows that the lower bound � f is increasing
with the relative irregularity q f and it is close to the conjectured bound. In [15,
Corollary 1.5], we proved the above conjecture for hyperelliptic fibrations. This
conjecture remains open in the general case.

Our first main result is a lower bound on the slope, which increases with the
relative irregularity q f .

Theorem 1.3. Let f be a fibration of genus g � 2 which is not locally trivial. If
q f > 0, then

� f >
4(g � 1)
g � q f /2

. (1.4)

Note that the above lower bound improves Barja-Stoppino’s [3]. Our next main
result is towards Conjecture 1.2.

Theorem 1.4. Let f be a fibration of genus g � 2 which is not locally trivial.

(i) If q f  g/9, then (1.3) holds;
(ii) If g is odd and q f = (g + 1)/2, then there exist fibrations violating (1.3).

Pirola constructed in [21] the first example which does not satisfy (1.3), see also [3,
Remark 4.6]. To our knowledge, the only known counterexamples to the bound
(1.3) belong to the extremal case q f = g � 1. According to [23, Corollary 4],
the genus of fibrations with q f = g � 1 is bounded from above (g  7). In our
construction, the genus has no upper bound.

The main idea of the proof of the lower bound on the slope is a combination
of Xiao’s technique [23] and the second multiplication map. Such a combination
has been already applied to study the influence of the gonality of a general fiber on
the lower bound of the slope and the Severi problem [17, 18]. It turns out that the
theorem follows from the combination of these two techniques if the fibration f is
not a double cover fibration. Hence we are reduced to studying the double cover
fibrations.

Double cover fibrations have already been studied earlier by many authors,
see [2,4,8,22] etc. We first define certain local relative invariants for a double cover
fibration and show that the basic invariants as in (1.1) can be expressed by these
local relative invariants and relative invariants of the quotient fibration (cf. Theo-
rem 4.3). Then we study influence of the irregularity of the double cover on these
local relative invariants with the help of the Albanese map (cf. Proposition 4.5),
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which enables us to deduce the required lower bounds on the slope of a double
cover fibration.

Our paper is organized as follows. In Section 2, we prove the lower bounds
on the slope (Theorem 1.3 and Theorem 1.4 (i)). In Section 3, we mainly study the
lower bound on the slope of the non-double cover fibrations using a combination of
Xiao’s technique [23] and the second multiplication map. In Section 4 we consider
the lower bound on the slope of the double cover fibrations. Finally, in Section 5
we provide the counterexamples to (1.3).

ACKNOWLEDGEMENTS. We are grateful to M. Barja and L. Stoppino for the dis-
cussions and many useful suggestions, and to the anonymous referee for his/her
useful comments which improved our paper significantly.

2. Proof of the lower bounds

In this section, we prove the lower bounds on the slope, i.e., we prove Theorem 1.3
and Theorem 1.4 (i). It is based on certain technical lemmas, which will be proved
later.
Definition 2.1. The fibration f is said to be a double cover fibration of type (g, � )
if there is a fibration h0 : Y 0 ! B and a rational map ⇡ : X 99K Y 0 (Y 0 may
be singular) such that the general fiber of h0 is a genus-� curve, deg⇡ = 2 and
h0 � ⇡ = f .

X ⇡
//_______
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}
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Apparently one may assume that Y 0 is smooth and that h0 is relatively minimal. We
also remark that there might exist more than one double cover fibration structure on
a given double cover fibration.

The degree-two morphism ⇡ induces an involution � on X . Let # : eX ! X
be the composition of all the blowing-ups of the isolated fixed points of � , and �̃ the
induced involution on eX . Then the quotient eY := eX/h�̃ i is a smooth surface with a
natural fibrationeh : eY ! B of genus � , which may not be relatively minimal. Let
h : Y ! B be its relatively minimal model.
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Figure 2.1. Double cover fibration.
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Definition 2.2. For any locally free sheaf E on a smooth projective curve B, the
slope of E is defined to be the rational number µ(E) = deg(E)/rank (E). The
sheaf E is said to be semi-stable, if for any coherent subsheaf 0 6= E 0 ( E we
have µ(E 0)  µ(E). The Harder-Narasimhan (H-N) filtration of E is the following
unique filtration:

0 = E0 ⇢ E1 ⇢ · · · ⇢ En = E, (2.1)

such that:

(i) the quotient Ei/Ei�1 is a locally free semi-stable sheaf for each i ;
(ii) the slopes are strictly decreasing µ(Ei/Ei�1) > µ(E j/E j�1) if i < j .

The H-N filtration always exists. In particular, the H-N filtration exists for E =
f⇤! f , and in this case we write

µi = µ(Ei/Ei�1), ri = rank (Ei ), � = g � rn�1.

It follows from Fujita’s theorem [9] that � � q f , and we have µn = 0 when q f > 0.

Lemma 2.3. Let f be a locally non-trivial non-hyperelliptic fibration of genus
g � 3. Assume that either f is not a double cover fibration, or f is a double
cover fibration such that � � g/4 for any possible double cover fibration structure
of type (g, � ) on f . If µn = 0, then

� f >

8
>><

>>:

18g � 47�
4g � 11�

·
g � 1
g + 1

if � 
2g
21

72g � 46�
16g � 13�

·
g � 1
g + 1

if
2g
21

 � 
4g
7

.

(2.2)

Lemma 2.4. Let f be the same as in Lemma 2.3. If � � 2(g+8)
9 , then

� f >
4(g � 1)
g � �/2

. (2.3)

Lemma 2.5. Let f : X ! B be a locally non-trivial, non-hyperelliptic, double
cover fibration of type (g, � ) with g � 4� + 1, and h : Y ! B be the associated
quotient fibration as in Figure 2.1. Assume that either � = 1, or h is locally trivial,
or qh = 0, or qh > 0 and

�h >
4(� � 1)
� � qh/2

.

Then
� f >

4(g � 1)
g � q f /2

. (2.4)

Lemma 2.6. Let f be a locally non-trivial non-hyperelliptic fibration of genus g �
3. If q f  g/2 and f is a double cover fibration of type (g, � ) with g � 4� � 2,
then � f � 4(g�1)

g�q f .
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The proofs of the above four technical lemmas are postponed to Subsections 3.2,
3.3, 4.4, 4.5 respectively. Based on the above lemmas, we will prove the lower
bounds on the slope of fibrations with positive relative irregularity.
Proposition 2.7. Let f be a locally non-trivial non-hyperelliptic fibration of genus
g � 3. Assume that either f is not a double cover fibration, or f is a double
cover fibration such that � � 1 � (g� 1)/4 for any possible double cover fibration
structure of type (g, � ) on f . If q f 6= 0, then

� f �
9
2
. (2.5)

Proof. Because q f 6= 0, we may construct étale covers of X which are still fibred
over B:

eX
⇡

//

f̃
  

@

@

@

@

@

@

@

@

X

f
��~

~

~

~

~

~

~

~

B.

Since ⇡ is étale, the induced fibration f̃ is still not trivial and � f̃ = � f . Moreover,
by the Riemann-Hurwitz formula one has

g̃ = deg⇡ · (g � 1) + 1, where g̃ is the genus of a general fiber of f̃ .

In fact, we can even construct a Galois étale cover ⇡ with deg⇡ being prime.
We claim that
If ⇡ is a Galois étale cover such that deg⇡ is prime and sufficiently large,
then either f̃ is not a double cover fibration, or f̃ is a double cover fibration
such that �̃ �1 � (g̃�1)/4 for any possible double cover fibration structure
of type (g̃, �̃ ) on f̃ .

Assume the above claim. Then (2.5) follows immediately by applying Lemma 2.3
to the new fibration f̃ . It remains to prove the above claim.

We prove the above claim by contradiction. If f̃ is a double cover fibration
of type (g̃, �̃ ) with �̃ � 1 < (g̃ � 1)/4, then there is an involution �̃ on eX . Let
G be the automorphism subgroup of eX induced by the Galois cover ⇡ , and eG the
automorphism subgroup generated by G and �̃ . If G is normal in eG, then �̃ induces
an involution on X , which realizes X as a double cover fibration of type (g, � ) with
� � 1 < (g � 1)/4, contradicting the assumption. Hence G is not normal in eG.
Since p := |G| = deg⇡ is prime, it follows that eG � p(p+1) by Sylow’s theorem.
However, when p is large, this contradicts the linear bound on the automorphism
group of curves (cf. [10, Exercise IV.2.5]): indeed, it is clear that eG acts faithfully
on the general fiber of f̃ , from which it follows that

p(p + 1)  |eG|  84(g̃ � 1) = 84p(g � 1).

This gives a contradiction when p � 84(g� 1). Thus we complete the proof of the
claim, and hence also the proposition.
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Proof of Theorem 1.3. When g = 2, 3, (1.4) follows from [24]. Furthermore, if f
is a locally non-trivial hyperelliptic fibration with q f > 0, then � f � 4(g�1)/(g�
q f ) > 4(g�1)/(g�q f /2) holds by [15, Corollary 1.5]. Hence it suffices to assume
that f is non-hyperelliptic, and we will prove (1.4) by induction on the genus g.

If either f is not a double cover fibration, or f is a double cover fibration such
that � � g/4 for any possible double cover fibration structure of type (g, � ) on f ,
then (1.4) follows directly from (2.5) and (2.3) since � � q f . Thus we may assume
that f is a double cover fibration of type (g, � ) with g � 4� + 1. Let h : Y ! B
be the associated quotient fibration as in Figure 2.1. By induction, we may assume
that

�h >
4(� � 1)
� � qh/2

if � � 2 and h is locally non-trivial.

Hence according to Lemma 2.5, one proves (1.4).

Proof of Theorem 1.4 (i). First by Theorem 1.1, we may assume that q f > 0.
Consider next the case when f is not a double cover fibration, or when f is

a double cover fibration such that � � 1 � (g � 1)/4 for any possible double
cover fibration structure of type (g, � ) on f . Then (1.3) follows from (2.5) since
q f  g/9.

Finally, we consider the case when f is a double cover fibration of type (g, � )
with g � 4� � 2. In this case, (1.3) follows from Lemma 2.6.

Remarks 2.8. (i) The assumption q f  g/9 in Theorem 1.4 (i) might be relaxed a
little. But the proof requires a much more complicated computation.

(ii) We deal here with the case when q f is small with respect to g. If q f is big,
we refer to [4, Theorem3.2] for a similar lower bound on the slope.

3. Slope of non-hyperelliptic fibrations

In this section, we consider the lower bound on the slope of the non-hyperelliptic
fibrations and double cover fibrations of type (g, � ) with g is not big with respect
to � (e.g., g  4� ). The main techniques are Xiao’s technique [23] and the second
multiplication map. We first review these two techniques in Subsection 3.1; and
then prove Lemma 2.3 (respectively Lemma 2.4) in Subsection 3.2 (respectively
Subsection 3.3).

3.1. Preliminaries

In this subsection, we briefly review Xiao’s technique [23] and the second multipli-
cation map developed in [17]. Both techniques are based on the Harder-Narasimhan
(H-N) filtration on the direct image sheaf f⇤! f , which we recall first.

Let E be a (non-zero) locally free sheaf over B. It is said to be positive (re-
spectively semi-positive), if for any quotient sheaf E ⇣ Q 6= 0, one has degQ > 0
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(respectively degQ � 0). Define

µ f (E) = max{degF | E ⌦F_ is semi-positive}.

Then E is positive (respectively semi-positive) if and only if µ f (E) > 0 (respec-
tively µ f (E) � 0).

It is easy to see that µ f (Ei ) = µi . In particular, µ f ( f⇤! f ) = µn � 0 due to
the semi-positivity of f⇤! f . Moreover, one has

� f =
nX

i=1
ri (µi � µi+1), where ri := rankEi and µn+1 := 0. (3.1)

Definition 3.1 ( [23]). Let E 0 be any locally free subsheaf of f⇤! f . The fixed and
moving parts of E 0, denoted by Z(E 0) and M(E 0) respectively, are defined as fol-
lows. Let L be a sufficiently ample line bundle on B such that the sheaf E 0 ⌦ L is
generated by its global sections, and 3(E 0) ✓ |! f ⌦ f ⇤L| be the linear subsystem
corresponding to sections in H0(B, E 0 ⌦ L). Then we define Z(E 0) to be the fixed
part of 3(E 0), and M(E 0) = ! f � Z(E 0). Note that the definitions do not depend
on the choice of L.

For a general fiber F of f , let

◆i : F �! 0i ✓ Pri�1 (3.2)

be the map defined by the restricted linear subsystem 3(Ei )
�
�
F on F if ri 6= 1,

where Ei ✓ f⇤! f is any subsheaf in the H-N filtration of f⇤! f in (2.1). Let
di = M(Ei ) · F , and �i be the geometric genus of 0i . For convention, we define
dn+1 = 2g � 2. It is clear that ◆i factors through ◆ j if i  j , from which it follows
that ⇢

deg(◆ j ) divides deg(◆i ), d j � di and � j � �i 8 i  j
moreover, �i = � j if deg(◆i ) = deg(◆ j ).

(3.3)

Lemma 3.2. If ◆i is not birational, then

di � deg(◆i ) ·min
�
2(ri � 1), ri + �i � 1

 
. (3.4)

If ◆i is birational, then

di � min
⇢
3ri � 5,

g
2

+
3ri
2

� 2
�

. (3.5)

Proof. Let ⌧i : e0i ! 0i be the normalization, and Di = ⌧⇤
i
�
OPri�1(1)

�
2 Pic

�e0i
�

be the pulling-back of the hyperplane section. Then (3.4) follows from the facts that
di = deg(◆i ) · deg(Di ), and

deg(Di ) �

8
<

:

h0
�e0i , Di

�
+ �i � 1 � ri + �i � 1 if h1

�e0i , Di
�

= 0

2
⇣
h0
�e0i , Di

�
� 1

⌘
� 2(ri � 1) if h1

�e0i , Di
�

6= 0.
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Note that we use Clifford’s theorem on special divisors above.
To prove (3.5), we apply Castelnuovo’s bound (cf. [1, Section III.2]) which

asserts that

di �
g
mi

+
(mi + 1)

2
· si � mi �

g
mi

+
(mi + 1)

2
· ri � mi , (3.6)

where si = h0
�
F, M(Ei )|F

�
� ri and mi =

h
di�1
si�2

i
. Hence (3.5) follows immedi-

ately.

Lemma 3.3. Assume that either deg(◆i ) 6= 2, or deg(◆i ) = 2 and �i � g/6. If
di < g � 1, then di � 3(ri � 1).

Proof. It is clear if deg(◆i ) � 3. If deg(◆i ) = 2, then by (3.4) together with the
assumption �i � g/6, one obtains

g � 2 � di � min
�
4(ri � 1), 2(ri � 1) + g/3

 
, =) g � 3ri .

Hence di � min
�
4(ri � 1), 2(ri � 1) + g/3

 
� 3(ri � 1).

If deg(◆i ) = 1, then ri � 3, and according to mi =
⇥
(di � 1)/(si � 2)

⇤


(di � 1)/(si � 2) and Castelnuovo’s bound (3.6), one has

di �

8
>>>>>><

>>>>>>:

mi (ri � 2) + 1 � 3ri � 3 if mi � 5
4ri � 7 � 3ri � 3 if mi = 4 and ri � 4
g
3

+ 2ri � 3 =) di > 3ri � 4 if mi = 3

g
2

+
3ri
2

� 2 =) di > 3ri � 3 if mi = 2.

We use the assumption g > di +1 when mi = 3 or 2 above. To complete the proof,
it remains to consider the case when mi = 4 and r = ri = 3. As ◆i is birational, by
the genus formula for plane curves, one obtains that

di + 1 < g 
(di � 1)(di � 2)

2
,

from which it follows that di � 6 = 3(ri � 1) as required.

Remark 3.4. Assume that either deg(◆i ) 6= 2, or deg(◆i ) = 2 and �i � g/6. If
di = g � 1 or g, then one can show similarly that di � 3ri � 4.

Corollary 3.5. Assume that either deg(◆i ) 6= 2, or deg(◆i ) = 2 and �i � g/6. If r
is an integer such that ri � r and g > 3(r � 1), then di � 3(r � 1).

Proof. Assume that di < 3(r � 1)  3(ri � 1). Hence by Lemma 3.3, di � g � 1.
Thus 3(r � 1) � g, which contradicts the assumption.
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The next proposition, which is due to Xiao, is crucial to the study of the slope
of fibrations.

Proposition 3.6 ([23]). For any sequence of indices 1  i1 < · · · < ik  n, one
has

!2f �
kX

j=1

�
di j + di j+1

��
µi j � µi j+1

�
, where ik+1 = n + 1. (3.7)

In particular, one has

!2f �
nX

i=1

�
di + di+1

��
µi � µi+1

�
. (3.8)

Corollary 3.7. If µn = 0, then

!2f >
(2g � 2)2

(2g � 2) · rn�1 � di · (rn�1 � ri�1)
· � f , 8 1 < i < n. (3.9)

Proof. According to (3.1), one has

� f 
i�1X

j=1
ri (µ j � µ j+1) +

n�1X

j=i
rn�1(µ j � µ j+1) = ri�1 · µ1 + (rn�1 � ri�1) · µi .

By (3.7), one has

!2f � (d1 + di ) · (µ1 � µi ) + (2g � 2+ di ) · µi � di · µ1 + (2g � 2) · µi .

Combining the above inequalities together with Konno’s bound [12, (2.6)]

!2f > (2g � 2)µ1, (3.10)

one gets
 
rn�1 � ri�1
2g � 2

+
ri�1 � di · rn�1�ri�12g�2

2g � 2

!

· !2f > � f .

By rearrangement, we obtain (3.9).

The next proposition on the lower bound of !2f is based on the second multi-
plication map (cf. [17, Subsection 2.2]):

% : S2( f⇤! f ) �! f⇤
�
!⌦2
f
�
.
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Proposition 3.8. Assume that the general fiber F is non-hyperelliptic, ◆n�1 is bira-
tional and µn = 0. Then

!2f �
n�1X

i=1
(2✓i � ri )(µi � µi+1) +

n�1X

i=l̃

✓̃i (µi � µi+1), (3.11)

where

l̃ = min
n
i
�
�
� ri + g � 2rn�1, ◆i is birational, and ri �

g
3

+ 2
o

(3.12)

✓i =

⇢
1 if i = 1 and r1 = 1
min{3ri � 3, 2ri + �i � 1} otherwise;

(3.13)

✓̃i =
3
2
(ri + g � 2rn�1). (3.14)

Proof. Let
µ0
i = max{2µi , µl̃}, 8 1  i  n.

By assumption, one has

µ0
n = µl̃ , ✓n�1 = 3rn�1 � 3, ✓̃i =

3
2
(ri + g � 2) � ✓n�1.

According to [17, Proposition 2.5 and Lemma 2.6] and Lemma 3.9 below with the
decreasing sequence

�
2µ1, · · · , · · · , 2µn�1, µl̃ , · · · , µn�1

 
,

and the increasing sequence
�
✓1, · · · , ✓n�1, ✓n�1 + ✓̃l̃ , · · · , ✓n�1 + ✓̃n�1

 
,

we obtain (we set ✓0 = 0)

!2f + � f �
n�1X

i=1
✓i
�
µ0
i � µ0

i+1
�
+

n�1X

i=l̃

�
✓n�1 + ✓̃i

��
µi � µi+1

�

=
n�1X

i=1
(✓i � ✓i�1)µ

0
i � ✓n�1 · µ0

n +
n�1X

i=l̃

�
✓n�1 + ✓̃i

��
µi � µi+1

�

�
n�1X

i=1
(✓i � ✓i�1) · 2µi � ✓n�1 · µl̃ +

n�1X

i=l̃

�
✓n�1 + ✓̃i

��
µi � µi+1

�

=
n�1X

i=1
2✓i
�
µi � µi+1

�
+

n�1X

i=l̃

✓̃i
�
µi � µi+1

�
.

Hence (3.11) follows from the above inequality together with (3.1).
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Lemma 3.9. If ◆i is birational, then there exists a subsheaf Fi ✓ f⇤
�
!⌦2
f
�
such

that

µ f (Fi ) � µi + µn, rankFi � g + di + ri � 1� h0
�
F, M(Ei )|F

�
, (3.15)

where M(Ei ) is defined in Definition 3.1. In particular, if ◆i is birational and ri �
g
3 + 2, then there exists a subsheaf Fi ✓ f⇤

�
!⌦2
f
�
such that

µ f (Fi ) � µi + µn, rankFi �
3
2
(ri + g � 2). (3.16)

Proof. Let Ei ✓ E = f⇤! f be any subsheaf in the H-N filtration of f⇤! f in (2.1).
Consider the composition map

%i : Ei ⌦ E �! S2
�
f⇤! f

�
�! f⇤

�
!⌦2
f
�
.

It is clear that µ f
�
Im (%i )

�
� µ f

�
Ei
�
+ µ f (E) � µi . To prove (3.15), it suffices to

show that
rank

�
Im (%i )

�
� g + di + ri � 1� h0

�
F, M(Ei )|F

�
. (3.17)

Similar to [17, Lemma 2.5], (3.17) follows from the next lemma since ◆i is bi-
rational. Hence (3.15) is proved. And (3.16) follows from (3.15) together with
Castelnuovo’s bound (3.6).

Lemma 3.10. Let D 2 Pic (Z) be an effective divisor of a smooth curve Z of genus
g, V ✓ H0(Z , D) be a subspace with dim V = r , and

⇢ : V ⌦ H0(Z , KZ ) �! H0(Z , KZ + D)

be the natural multiplication map, where KZ is the canonical divisor of Z . Assume
that D ✓ KZ and the linear system associated to V is free from base points and the
induced map �V on Z is birational. Then

dim
�
Im(⇢)

�
� g + deg D + r � 1� h0(Z , D). (3.18)

Proof. Since �V is birational, the complete linear system |D| automatically de-
fines a birational map �D , and one has the following commutative diagram

�
s =

h0(Z , D)
�
.

Z
�D

//

�V
""

D

D

D

D

D

D

D

D

D

Ps�1

{{w

w

w

w

w

Pr�1.
According to the general position theorem (cf. [1, Section III.1]), there exist s points
{p1, · · · , ps} ✓ Z such that any s� 1 of them give linearly independent conditions
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for the vector space H0(Z , D)
�

◆ V
�
. Hence there exist {v1, · · · vr } ✓ V such

that
v j (p j ) 6= 0, but v j (pi ) = 0, 8 1  i  r and i 6= j.

Let V12 ✓ V be generated by v1 and v2. Consider the subspace

W = hv23, · · · , v2r i ✓ H0(Z , 2D) ,! H0(Z , KZ + D), (3.19)

and the restriction map

' : V12 ⌦ H0(Z , KZ ) �! H0(Z , KZ + D).

According to the base-point-free pencil trick (cf. [1, Section III.3]), one checks
easily that

dim Im(') = 2g � h0
�
Z , KZ � (D � p3 � · · · � pr )

�

= 2g �
⇣
h0
�
Z , (D � p3 � · · · � pr )

�
+ r + g � 3� deg D

⌘

= g + 1+ deg D � h0(Z , D).

The last step follows from the fact that

h0
�
Z , (D � p3 � · · · � pr )

�
= h0(Z , D) � (r � 2),

since {p3, · · · , pr } are in general position. Note that dimW = r�2, and if we view
W as subspace of H0(Z , KZ + D) as in (3.19), then W \ Im(') = 0. Therefore,
(3.18) follows immediately.

3.2. Proof of Lemma 2.3

We follow the notations introduced in the last subsection. According to [17, Lem-
ma 2.2] together with the assumption, we have

�i � g/4 if deg(◆i ) = 2. (3.20)

Consider first the case when ◆n�1 is not birational. Then neither is ◆i for any 1 
i  n � 1 by (3.3). Hence by (3.4) and (3.20), one has

di � min
n
3(ri � 1), 2(ri � 1) +

g
2

o
8 1  i  n � 1.

In particular, taking i = n� 1 one obtains � � min{(g� 1)/3, g/4} � 2g/21. And
one checks easily that

di + di+1 �
72g � 46�
16g � 13�

· ri � 4 8 1  i  n � 1.
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Hence (2.2) follows from the above inequalities together with (3.1) and (3.8).
Next we assume ◆n�1 is birational. Let
8
>><

>>:

x =
2g � 7�
4g � 11�

, �0 =
16� 5x
3

=
18g � 47�
4g � 11�

, if � 
2g
21

;

x =
8g � 14�
16g � 13�

, �0 =
16� 5x
3

=
72g � 46�
16g � 13�

, if � �
2g
21

.

According to (3.8) together with (3.11), one obtains

!2f �
l̃�1X

i=1

�
x(2✓i � ri ) + (1� x)(di + di+1)

��
µi � µi+1

�

+
n�1X

i=l̃

�
x(2✓i � ri + ✓̃i ) + (1� x)(di + di+1)

��
µi � µi+1

�
.

(3.21)

We claim that

x(2✓i � ri ) + (1� x)(di + di+1) � �0 · ri � 4, when 1 i  l̃ � 1, (3.22)
x(2✓i � ri + ✓̃i ) + (1� x)(di + di+1) � �0 · ri � 4, when l̃ i  n � 1. (3.23)

Assume the above claim. Then (2.2) follows directly from (3.21) and (3.10). Hence
it suffices to prove (3.22) and (3.23).

Consider first the case when 1  i  l̃ � 1, and we divide the proof of (3.22)
into several subcases (keep (3.3) in mind).

• deg(◆i ) � 4. In this case, one can show (3.22) easily by using (3.4) and the
definition of ✓i in (3.13).

• deg(◆i ) = 3. According to (3.4) and (3.13), one obtains di+1 � di � 3(ri � 1)
and ✓i � 2ri � 1. Hence

x(2✓i � ri ) + (1� x)(di + di+1)
� x(3ri � 2) + (1� x)(6ri � 6)
= (6� 3x)ri � (6� 4x) � �0 · ri � 4, if ri � 3.

If deg(◆i+1) = 3, then di+1 � 3(ri+1 � 1) � 3ri by (3.4), from which (3.22)
follows immediately. If deg(◆i+1) = 1, we have better bound for di+1 by (3.5),
from which one can also show (3.22) when ri  2.

• deg(◆i ) = 2. We have two possibilities to deal with. If �i � ri � 1, then

✓i = 3ri � 3, di+1 � di � 4(ri � 1),

from which one can show (3.22) easily. If �i  ri � 2, then

✓i = 2ri + �i � 1, and di+1 � di � 2(ri + �i � 1).
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Note that di  2g � 2  8�i � 2, from which it follows that �i � ri/3. Hence

x(2✓i � ri ) + (1� x)(di + di+1)
� x(3ri + 2�i � 2) + (1� x)(4ri + 4�i � 4)
= (4� x)ri + (4� 2x)�i � (4� 2x) � �0 · ri � 4.

• deg(◆i ) = 1. In this case, the maps ◆i and ◆i+1 are both birational. Hence ✓i =
3ri � 3. According to (3.5), one obtains

di + di+1 �

8
>>>>>><

>>>>>>:

3(ri + ri+1) � 10 if ri+1 <
g + 6
3

3ri � 5+
g
2

+
3ri+1
2

� 2 if ri+1 �
g + 6
3

and ri <
g + 6
3

g +
3(ri + ri+1)

2
� 4 if ri �

g + 6
3

.

(3.24)
We only show (3.22) in the last possibility, and leave the proof of (3.22) in the first
two possibilities to the readers. By (3.24), one has di +di+1 � g+3ri �2 in this
case. By the definition of l̃ in (3.12), one has ri + g  2rn�1 � 1 = 2(g� �) � 1,
i.e., g � ri + 2� + 1. Note also that

2(1� x)� � (�0 � x � 4)(g � 2�) � (�0 � x � 4)(ri + 1).

Thus

x(2✓i � ri ) + (1� x)(di + di+1)
� x(5ri � 6) + (1� x)(4ri + 2� � 1)
= (4+ x)ri + 2(1� x)� � (1+ 5x)
� �0 · ri � (5+ 6x � �0) > �0 · ri � 4.

Therefore, (3.22) is proved.

Now we consider the case when l̃  i  n� 1. By the definition of l̃ in (3.12),
◆i is birational, ri � g

3 + 2 and ri � 2rn�1 � g = g � 2�. Hence ✓i = 3ri � 3, and
di + di+1 � g + 3ri � 2 by (3.5). By definition, one checks easily that

3x� +
2� 5x
2

g �
14� 31x

6
ri 8 g � � � ri � g � 2�.

Thus

x(2✓i � ri + ✓̃i ) + (1� x)(di + di+1)

� x
✓
5ri � 6+

3
2
(ri � g + 2�)

◆
+ (1� x)(g + 3ri � 2)

=
⇣
3+

7
2
x
⌘
ri +

✓
3x� +

2� 5x
2

g
◆

� (2+ 4x)

� �0 · ri � 4.

Therefore, (3.23) is proved.
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3.3. Proof of Lemma 2.4

Since � < g, it follows that g � 4 by our assumption. We divide the proof into two
cases according to the relation between � and g.
CASE 1: � � 3g�1

5 . Let

i0 = min
n
i
�
� ri >

rn�1
2

o
= min

n
i
�
� ri �

g � � + 1
2

o
.

If i0 = 1, then d1 � 3
⇣
rn�1+1
2 � 1

⌘
by Corollary 3.5 and (3.20) since rn�1+1

2 
g+2
5 . Hence according to (3.7), we get

!2f � (2g � 2+ d1) · µ1 �
2g � 2+ d1

g � �
· � f >

4(g � 1)
g � �/2

· � f .

If i0 � 2, then ri0�1  rn�1
2 , and ri0�1  rn�1�1

2 when ri0 = rn�1+1
2 . Combining

these with Corollary 3.5 and (3.20), it is easy to show that

di0 · (rn�1 � ri0�1) �

8
<

:

3 if g � � = 2
3
4
�
(g � �)2 � 1

�
if g � � � 3.

Note that g � � � 3 implies g � 7 by the assumption � � 3g�1
5 . Therefore,

according to (3.9) we get

� f >
(2g � 2)2

(2g � 2) · rn�1 � di0 · (rn�1 � ri0�1)

�

8
>>><

>>>:

(2g � 2)2

(2g � 2) · 2� 3
�
4(g � 1)
g � �/2

if g � � = 2

(2g � 2)2

(2g � 2) · (g � �) � 3
4
�
(g � �)2 � 1

� �
4(g � 1)
g � �/2

if g � � � 3.

CASE 2: 3g�25 � � � 2(g+8)
9 . In this case, we have g � 8 since � is an integer.

• SUBCASE 2.1: 3g�25 � � � 2g+2
5 . Let

i1 = min
�
i
�
� di � g � 1

 
.

Then according to (3.7), one has

!2f �
i1�1X

i=1

�
di + di+1

��
µi � µi+1

�
+ (2g � 2+ di1)µi1

=
i1�1X

i=1

�
di + di+1

��
µi � µi+1

�
+

n�1X

i=i1

�
2g � 2+ di1

��
µi � µi+1

�
.

(3.25)
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We claim that

di + di+1 �
2(g � 1)

g � �/2� 1
· (2ri � 1) 8 1  i  i1 � 1 (3.26)

2g � 2+ di1 �
2(g � 1)

g � �/2� 1
· (2ri � 1) 8 i1  i  n � 1. (3.27)

Assuming the above claim, one obtains from (3.25) together with (3.1) that

!2f �
4(g � 1)

g � �/2� 1
· � f �

2(g � 1)
g � �/2� 1

µ1.

Combining this with (3.10), we prove (2.3) in this subcase.
It remains to show (3.26) and (3.27). Since di1 � g � 1, (3.27) follows immedi-
ately since ri  rn�1 = g � �. Note also that 2(g�1)

g��/2�1  3 by our assumption,
and di � 3(ri � 1) for 1  i  i1 � 1 by Lemma 3.3. Hence (3.26) follows
for i  i1 � 2. When i = i1 � 1, by Remark 3.4, we have either di1�1 + di1 �
3(2ri1�1 � 1), or di1�1 + di1 = 6ri1�1 � 4 and ri1�1 2

�
g/3, (g + 1)/3

 
. Since

g � 8, one can also verify (3.26) for i = i1 � 1, except when g = 9, � = 5,
di1 = 8, di1�1 = 6 and ri1�1 = 3. For the exceptional case, we replace i1 by
i1 � 1 in (3.25). Then one can show easily that both (3.26) and (3.27) hold, and
hence proves (2.3).

• SUBCASE 2.2: 2g+15 � � � 2(g+9)
9 , or � = 2g+17

9 or 2g+169 and g  52. Let

x =
2(g � 1)
g � �/2� t

with t =
17
18

i1 = min
�
i
�
� di � g � 1

 

i2 = min
�
i
�
� di � x

�
g � 3�/2� (1� t)

� 
.

Note that 9/4 < x < 3 and i1  i2 by our assumption.
If i1 = i2, then we can show similarly as in the above subcase that

di + di+1 � x(2ri � 1) 8 1  i  i1 � 1
2g � 2+ di1 � x(2ri � 1) 8 i1  i  n � 1.

Hence (2.3) follows from (3.25) together with (3.10).
In the rest part of the proof, we assume that i1 < i2. Before going further, we first
claim that
Claim 3.11. (1). If di < x(g � 3�/2), then di � x(ri � 1).
(2). If di < x(g � 3�/2) � 1

2 � 5(2g+1�5�)
8(2g���t) , then ri < g � (3� � 1)/2.

Proof of Claim 3.11. (1). Let ◆i be defined as in (3.2). Since x  3 by assump-
tion, the claim follows immediately if deg(◆i ) � 3 by (3.4). When deg(◆i )  2,
we prove the claim by contradiction. Assume that

di < x(ri � 1). (3.28)
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Consider first the case when deg(◆i ) = 2. By (3.4) together with (3.28), we may
assume that ri � 1 > �i , and hence di � 2(ri � 1) + 2�i � 2(ri � 1) + g

2 .
Combining this with (3.28), we get
g
2

< (x�2)(ri�1)(x�2)(g���1) <
(g � � � 1)�
g � �/2� t

, which is a contradiction.

We now consider the case when deg(◆i ) = 1, i.e., ◆i is birational. Hence ri � 3.
Moreover, if ri = 3, then 8  g  (di�1)(di�2)

2 , which implies that di � 6 >
x(ri � 1). Hence we may assume that ri � 4 in the following. Since mi =⇥
(di � 1)/(si � 2)

⇤
, one has di � 4ri � 7 � 3(ri � 1) � x(ri � 1) if mi � 4. It

remains to consider the cases when mi = 3 or 2.
When mi = 3, one has di � 1 � 3(ri � 2), i.e., di � 3ri � 5. Since x < 3 by
assumption, it suffices to consider the cases when di = 3ri � 5 or 3ri � 4. By
Castelnuovo’s bound (3.6), we have

di �
g
3

+ 2ri � 3. (3.29)

If di = 3ri � 5, then ri � 1 � g
3 + 1 by (3.29), and 2 > (3� x)(ri � 1) by (3.28).

Hence

� >
2g � 6
3

+
(2� 2t)(g + 1)

(g � 1)
>
2g � 6
3

, which contradicts the assumption.

If di = 3ri � 4, then ri � 1 � g
3 by (3.29), and 1 > (3 � x)(ri � 1) by (3.28).

Hence

� >
2g � 6
3

+ 2(1� t) >
2g � 6
3

, which is still a contradiction.

When mi = 2, one has di � g�1
2 + 3(ri�1)

2 by Castelnuovo’s bound (3.6). Com-
bining this with (3.28) and the assumption di < x(g � 3�/2) respectively, we
obtain 8

>><

>>:

ri � 1 >
(g � 1)(2g � � � 2t)
2g + 3� + 6t � 8

ri � 1 <
(g � 1)(6g � 11� + 2t)

3(2g � � � 6t)
.

Hence
(g � 1)(2g � � � 2t)
2g + 3� + 6t � 8

<
(g � 1)(6g � 11� + 2t)

3(2g � � � 6t)
, =)

0 < �(2g + 5� 9�) +
26g � 34

9
8
>><

>>:


2g + 18
9

· (2g + 5� 2g � 18) +
26g � 34

9
< 0 if � �

2g + 18
9

=
(36�2`)g � `(`�5) � 34

9
< 0, if �=

2g + `

9
with 16`<18 and g52.
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The above contradiction completes the proof.
(2). By (1), one has ri � 1 < g � 3�/2. Hence it suffice to derive a contradiction
if ri = g� (3��1)/2. The proof is similar as above. In fact, one can easily prove
a contradiction except the case when deg(◆i ) = 1 and mi = 2. In the exceptional
case, � � 2g+17

9 since � is odd, and by Castelnuovo’s bound (3.6) we obtain

x
⇣
g �

3�
2

⌘
�
1
2

�
5(2g + 1� 5�)
8(2g � � � t)

> di �
g � 1
2

+
3(ri � 1)

2
= 2g �

9� + 5
4

.

Hence
0 > �(18� � 4g � 33) �

2
9
g +

49
4

.

This is a contradiction since � � 2g+17
9 .

We now come back to the proof of (2.3). By Lemma 3.3 and Remark 3.4, one has
⇢
di + di+1 � 6ri � 3 � 2xri � (2x � 3) if i < i1 � 1
di1�1 + di1 � 6ri1�1 � 3 � 2xri1�1 � (2x � 3) if di1�1 < g � 3.

(3.30)

By Claim 3.11, we have
⇢
di + di+1 � 2xri � x if i < i2 � 1
di2�1 + di2 � 2xri2�1 � x if di2�1 < 1.

(3.31)

Here1 = x(g�3�/2)� 1
2�

5(2g+1�5�)
8(2g���t) . If di2�1 � 1, then ri2�1 = g�(3��1)/2

by Claim 3.11 (1), and hence

di2�1 + di2 � 2di2�1 + 1 � 2xri2�1 � x �
5(2g + 1� 5�)
4(2g � � � t)

. (3.32)

Note also that 2g� 2+ di2 � x
�
2(g� �) � 1

�
. Hence by (3.7) and (3.1), one has

!2f �
i2�1X

i=1

�
di + di+1

��
µi � µi+1

�
+ (2g � 2+ di2)µi2

�

8
>>><

>>>:

2x� f �(2x�3)µ1�(3�x)µi1 if di1�1<g�3 and di2�1<1
2x� f �(2x�3)µ1�(3�x)µi1�1 if di1�1�g�3 and di2�1<1
2x� f �(2x�3)µ1�(3�x)µi1�⇠µi2�1 if di1�1<g�3 and di2�1�1
2x� f �(2x�3)µ1�(3�x)µi1�1�⇠µi2�1 if di1�1�g�3 and di2�1�1.

Here ⇠ = 5(2g+1�5�)
4(2g���t) . By (3.7), we also have

!2f � (d1+di )(µ1�µi )+(2g�2+di )µi � diµ1+(2g�2)µi , 8 1  i  n�1.
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Hence

� f �3=

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

4(g�1)x
2g�2+2x�3+(3�x)

�
1� 1

2
� if di1�1<g�3 and di2�1<1

4(g�1)x
2g�2+2x�3+(3�x)

�
1� g�3

2g�2
� if di1�1�g�3 and di2�1<1

4(g�1)x
2g+2x�5+ 3�x

2 + (2g�2�1)⇠
2g�2

, if di1�1<g � 3 and di2�1�1

4(g�1)x
2g+2x�5+ (g+1)(3�x)

2g�2 + (2g�2�1)⇠
2g�2

, if di1�1�g�3 and di2�1�1.

Note that 1 > g � 1. Thus one shows that 3 > 4(g�1)
g��/2 . This proves (2.3) in this

subcase.
• SUBCASE 2.3: � = 2g+17

9 or 2g+169 and g > 52. In this subcase, (2.3) follows
directly from (2.2).

This completes the proof.

4. Double cover fibrations

In this section, we treat the double cover fibrations. So we always assume in the
section that f : X ! B is a locally non-trivial double cover fibration of type (g, � )
as in Definition 2.1. Since the case where � = 0 has been studied in [15, 25] (see
also [7, 16] for the semi-stable case), � is assumed to be positive in this section
unless otherwise stated explicitly.

In Subsection 4.1, we prove the formulas for the invariants of the double cover
fibrations. In Subsection 4.2, we consider the irregular double cover fibrations.
In Subsection 4.3, we study the slope problems. Finally, we prove Lemma 2.5
(respectively Lemma 2.6) in Subsection 4.4 (respectively Subsection 4.5).

4.1. Invariants of double cover fibrations

In this subsection, we first define the local invariants of the induced double cover,
and then show in Theorem 4.3 that the relative invariants of f can be expressed by
these local invariants and relative invariants of the quotient fibration.

The double cover ⇡̃ in Figure 2.1 induces a double cover ⇡0 : X0 ! Y0 := Y ,
which is determined by the relation OY (R) ⌘ L⌦2 with R =  (eR) and eR being
the branch locus of ⇡̃ . According to Hurwitz formula, one has

R · 0 = 2g + 2� 4� � 0, for any fiber 0 of h. (4.1)
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The surface X0 is normal but not necessarily smooth. Moreover, ⇡̃ is in fact the
canonical resolution of ⇡0 (cf. [5, Section III.7]):

eX Xt
�t

//

⇡̃=⇡t
✏✏

Xt�1
�t�1

//

⇡t�1
✏✏

· · ·
�2

// X1
�1

//

⇡1
✏✏

X0
⇡0

✏✏

eY Yt
 t

// Yt�1
 t�1

// · · ·
 2

// Y1
 1

// Y0 Y.

Figure 4.1. Canonical resolution.

Here  i ’s are successive blowing-ups resolving the singularities of R, and ⇡i :
Xi ! Yi is the double cover determined byOYi (Ri ) ⌘ L⌦2

i with

Ri =  ⇤
i (Ri�1) � 2[mi�1/2]Ei , Li =  ⇤

i (Li�1) ⌦OYi

⇣
E�[mi�1/2]
i

⌘
,

where Ei is the exceptional divisor of  i , mi�1 is the multiplicity of the singular
point yi�1 in Ri�1 (also called the multiplicity of the blowing-up  i ), [ ] stands for
the integral part, R0 = R and L0 = L . A singularity y j 2 R j ✓ Y j is said to be
infinitely near to yi 2 Ri ✓ Yi ( j > i), if  i+1 � · · · �  j (y j ) = yi .

We remark that the order of these blowing-ups contained in  is not unique.
If yi�1 is a singular point of Ri�1 of odd multiplicity 2k + 1 (k � 1) and there is a
unique singular point y of Ri on the exceptional curve Ei of multiplicity 2k+2, then
we always assume that  i+1 : Yi+1 ! Yi is a blowing-up at yi = y. We call such a
pair (yi�1, yi ) a singularity of R of type (2k + 1 ! 2k + 1), and yi�1 (respectively
yi ) the first (respectively second) component. The following definition is more or
less due to Xiao [25].
Definition 4.1. For any singular fiber F of f and j � 2, we define

• if j is odd, s j (F) equals the number of ( j ! j) type singularities of R over the
image f (F);

• if j is even, s j (F) equals the number of singularities of multiplicity j or j + 1
of R over the image f (F), neither belonging to the second component of type
( j �1 ! j �1) singularities nor to the first component of type ( j +1 ! j +1)
singularities.

Let !h̃ = !eY ⌦ h̃⇤!�1
B and eR0 = eR \ eV , where eV is the union of vertical isolated

(�2)-curves in eR. Here a curve C ✓ eR is called to be isolated in eR, if there is no
other curve C 0 ✓ eR such that C \ C 0 6= ;. We define

s2 :=
�
!h̃ + eR0� · eR0 + 2

X

F is singular
s2(F),

s j :=
X

F is singular
s j (F), 8 j � 3.
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Note that the contraction  is unique since � > 0 (although the order of these
blowing-ups contained in  is not unique). Hence the invariants s j ’s are well-
defined. By definition, s j is non-negative for j � 3, but it is not clear whether s2 is
non-negative or not.

Lemma 4.2. Let F be a singular fiber of the fibration f , and eF (respectively e0,
respectively 0) the corresponding fiber in eX (respectively eY , respectively Y ). Then
the (�1)-curves in eF are in one-to-one correspondence to the isolated (�2)-curves
of eR, which are also contained ine0. And the number of these (�1)-curves is equal
to

n2(F) +
X

k�1
s2k+1(F),

where n2(F) is the number of isolated (�2)-curves of R, which are also contained
in 0.

Proof. Note that the (�1)-curves in eF are exactly the inverse image of the isolated
fixed points of � on F , hence fixed by �̃ . It follows that these (�1)-curves in eF
are in one-to-one correspondence to the isolated (�2)-curves of eR, which are also
contained ine0.

Let E be such a (�2)-curve of eR. Then it is the strict inverse image of either
an exceptional curve Ei or an irreducible curve C on 0. In the first case, it is easy
to see that yi�1 =  i (Ei ) is a singularity of Ri�1 with odd multiplicity 2k + 1,
and that Ri has a unique singularity on Ei with multiplicity 2k + 2. Equivalently, it
corresponds to a singularity of R of type (2k + 1 ! 2k + 1). In the later case, let

E =  ⇤(C) �
X

a jE j , with a j � 0.

Then

�2 = E2 = C2 �
X

a2j , 0 = !eY · E = !Y · C +
X

a j .

On the other hand, one has C2  0 and C2 = 0 if and only if 0 = nC for some
n, since C ✓ 0. Hence it follows that C2 6= 0 since � > 0, and that C2 6= �1;
otherwise by construction C must be smooth and hence is a (�1)-curve, which is
impossible due to the relative minimality of h. Therefore, C must be an isolated
(�2)-curve of R, which is also contained in 0.

Conversely, it is clear that each singularity of R of type (2k + 1 ! 2k + 1)
creates an isolated (�2)-curve contained in eR, and that the inverse image of each
isolated (�2)-curve in R is still an isolated (�2)-curve in eR.
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Theorem 4.3. Let f be a double cover fibration of type (g, � ), and si ’s be the
singularity indices as above. Then

(2g + 1� 3� )!2f = x ·
!2h
� � 1

+ yT + zs2 +
X

k�1
aks2k+1 +

X

k�2
bks2k,

(2g + 1� 3� )� f = x̄ ·
!2h
� � 1

+ 2(2g + 1� 3� )�h + ȳT

+ z̄s2 �
2g + 1� 3�

4
· n2 +

X

k�1
āks2k+1 +

X

k�2
b̄ks2k,

e f = 2eh + s2 � 3n2 +
X

k�1
s2k+1 +

X

k�2
2s2k,

where we set !2h
��1 = 0 if � = 1, n2 =

P

F is singular
n2(F), and

x =
(3g + 1� 4� )(g � 1)

2
, y =

3
2
, z = g � 1;

x̄ =
(g + 1� 2� )2

8
, ȳ =

1
8
, z̄ =

g � �

4
.

ak = 12āk � (2g + 1� 3� ), bk = 12b̄k � 2(2g + 1� 3� ),

āk = k
�
g � 1+ (k � 1)(� � 1)

�
, b̄k =

k
�
g � 1+ (k � 2)(� � 1)

�

2
,

T = �

�
(g + 1� 2� )!h � (� � 1)R

�2

� � 1
� 2(� � 1)n2 � 0.

Proof. Recall the canonical resolution  exhibited in Figure 4.1. By Lemma 4.2,
one has

�
!h̃ + eR0� · eR0 � 2

 

n2 +
X

k�1
s2k+1

!

=
�
!h̃ + eR

�
· eR = (!h + R) · R �

tX

i=1

⇣hmi

2

i
� 1

⌘
·
hmi

2

i

= (!h + R) · R �
X

k�1
(8k2+ 4k + 2)s2k+1 �

X

k�2
(4k2 � 2k)s2k � 2

X

F is singular
s2(F).

Combining this with the definition of s2, we get

(!h + R) · R = (s2 � 2n2) +
X

k�1
4k(2k + 1)s2k+1 +

X

k�2
2k(2k � 1)s2k . (4.2)
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Thus by the formulas for double covers (cf. [5, Section V.22]), one obtains:

!2f̃ = 2

 

!2h+!h · R+
R2

4

!

�2

 
X

k�1
(2k2 � 2k + 1)s2k+1+

X

k�2
(k�1)2s2k

!

= x 0 ·
!2h
� � 1

+ y0�T + 2(� � 1)n2
�
+ z0(!h + R) · R (4.3)

�2

 
X

k�1
(2k2 � 2k + 1)s2k+1 +

X

k�2
(k � 1)2s2k

!

,

� f̃ = 2�h +
1
2

 
!h · R
2

+
R2

4

!

�

 
X

k�1
k2s2k+1 +

X

k�2

k(k � 1)
2

s2k

!

= 2�h + x̄ 0 ·
!2h
� � 1

+ ȳ0�T + 2(� � 1)n2
�
+ z̄0(!h + R) · R (4.4)

�

 
X

k�1
k2s2k+1 +

X

k�2

k(k � 1)
2

s2k

!

,

where ⇤0 = ⇤
2g+1�3� for ⇤ = x, y, z, x̄, ȳ or z̄. Note that !2f = !2

f̃
+n2+

P

k�1
s2k+1

and � f = � f̃ by Lemma 4.2. Therefore, the formulas in our theorem follow from
the above equalities together with (4.2) and (1.2).

Note that T = 2(g � 1)!h · R � 0 if � = 1. It remains to show that T � 0 if
� > 1. For this purpose, let V ✓ R be these isolated (�2)-curves contracted by h,
and R0 = R \ V . By Lemma 4.2, the number of components contained in V is n2.
Since 0 ·

�
(g+1�2� )!h � (� �1)R0

�
= 0, one gets by Hodge index theorem that

0 �
�
(g+1�2� )!h�(� �1)R0�2 =

�
(g+1�2� )!h�(� �1)R

�2
+2(� �1)2n2.

Hence T � 0 as required.

4.2. Irregular double cover fibrations

In this subsection, we would like to prove the following restrictions on the invariants
of irregular double cover fibrations.

Definition 4.4. The double cover fibration f is called irregular if the irregularity
q⇡ := q(eX) � q(eY ) of the induced double cover ⇡ is positive, where eX and eY are
the same as in the last subsection.
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Proposition 4.5. Let f : X ! B be a double cover fibration of type (g, � ).

(i) If the double cover ⇡ is irregular, i.e., q⇡ > 0, then

2(g + 1� 2� )s2 (4.5)

 (g+1�2� )2 ·
!2h
��1

+T+
X

k�1
2(4āk+2g+1�3� )s2k+1+

X

k�2
8b̄ks2k .

(ii) If the image J0(eX) ✓ Alb0(eX) is a curve of geometric genus g0 > 0, then

2(g + 1� 2� )

0

@s2 +
g0�1X

k�1
4(2k + 1)ks2k+1 +

g0X

k�2
2(2k � 1)ks2k

1

A (4.6)

 (g+1�2� )2 ·
!2h
��1

+T+
X

k�g0

2(4āk+2g+1�3� )s2k+1+
X

k�g0+1
8b̄ks2k;

where āk’s, b̄k’s are defined in Theorem 4.3, and J0 will be defined in (4.7).

The main tool to prove the above proposition is the usage of Albanese varieties.
We first review the Albanese varieties and show that the ramification divisor is
contracted by J0. Then the proposition follows from the semi-negativity of the
divisors contracted by some non-trivial map.

Let eR = ⇡̃�1(eR) ✓ eX the ramification divisor. Let Alb(eX) (respectively
Alb(eY )) be the Albanese variety of eX (respectively eY ), and ⌧ the generator of
the Galois group Gal(eX/eY ) ⇠= Z/2Z. Then we have a natural map Alb(⇡̃) :
Alb(eX) ! Alb(eY ) and ⌧ has a natural action on Alb(eX). Let

Alb0(eX) =
�
x 2 Alb(eX)

�
� ⌧ (x) = �x

 
.

Then it is clear that Alb(eX) is isogenous to Alb0(eX) � Alb(⇡̃)�1
�
Alb(eY )

�
and

dimAlb0(eX) = q⇡ . Denote by

J0 : eX ! Alb0(eX) (4.7)

the induced map.

Lemma 4.6. The ramification divisor eR is contracted by the map J0.

Proof. Let C ✓ eR be any irreducible component, eC its normalization, j : eC ! eX
the induced map and ' = J0 � j : eC ! Alb0(eX) the composition. We have to
prove that '(eC) is a point.

We argue by contradiction. Assume that '(eC) is not a point. Then the induced
map

'⇤ : H0
⇣
Alb0(eX), �1Alb0(eX)

⌘
�! H0

⇣
eC, �1eC

⌘
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is non-zero. On the other hand, it is clear that '⇤ factors through

H0
⇣
Alb0(eX), �1Alb0(eX)

⌘ J⇤
0�! H0

⇣
eX , �1eX

⌘ j⇤
�! H0

⇣
eC, �1eC

⌘
.

Note that the generator ⌧ of the Galois group Gal(eX/eY ) acts on H0
⇣
eX , �1eX

⌘
. Let

H0
⇣
eX , �1eX

⌘

�1
� H0

⇣
eX , �1eX

⌘

1

be the eigenspace decomposition. Then by construction, the image of J⇤
0 is con-

tained in H0
⇣
eX , �1eX

⌘

�1
. To deduce a contradiction, it suffices to prove that the

restricted map

j⇤
�
�
H0
⇣
eX ,�1eX

⌘

�1

: H0
⇣
eX , �1eX

⌘

�1
�! H0

⇣
eC, �1eC

⌘

is zero.
In fact, let p 2 C be an arbitrary smooth point of C . Locally around p, there

exists local coordinate (x, y) such that the action of ⌧ is given by ⌧ (x, y) = (x,�y)
and C is defined by y = 0. For any 1-form

! = ↵(x, y)dx + �(x, y)dy 2 H0
⇣
eX , �1eX

⌘
,

one has

! 2 H0
⇣
eX , �1eX

⌘

�1
() ↵(x, y) = y↵̃(x, y2), �(x, y) = �̃(x, y2).

Hence if ! 2 H0
⇣
eX , �1eX

⌘

�1
, one gets that j⇤!

�
�
j�1(p) = 0, from which it follows

that j⇤! = 0 since p is arbitrary.

Lemma 4.7. Let y j 2 R j ✓ Y j be a singularity infinitely near to yi 2 Ri ✓ Yi as
in the canonical resolution in Figure 4.1. Then

m j  mi , if mi is even; m j  mi + 1, if mi is odd.

Proof. It suffices to consider the case where j = i + 1 and  i+1(yi+1) = yi .
But this is clear because if mi is even, then Ei+1 * Ri+1; and if mi is odd, then
Ei+1 ✓ Ri+1.

Proof of Proposition 4.5. Recall that those blowing-ups  i ’s are contained in the
canonical resolution  . For convenience, we view  i �  i+1 : Yi+1 ! Yi�1 as a
single blowing-up (but with two exceptional curves) if

Yi+1
 i+1
�! Yi

 i
�! Yi�1
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are blowing-ups of a type-(2k + 1 ! 2k + 1) singularity. For a blowing-up  0

contained in  , the order of  0 is defined to be k + 1 if  0 is a blowing-up of a
type-(2k + 1 ! 2k + 1) singularity, and to be [m0/2] if  0 is a blowing-up of a
singularity of the branch divisor with multiplicity m0. Now we introduce a partial
order on these blowing-ups contained in  : we say  0 �  00 if k0 � k00, where
k0 (respectively k00) is the order of  0 (respectively  00). According to Lemma 4.7,
we can reorder these blowing-ups contained in  such that  i �  j if i < j .
Let M be the maximal order of these blowing-ups contained in  . Then  can be
decomposed as

eY ŶM
 

77

 ̂M
// · · · · · ·

 ̂2
// Ŷ1

 ̂1
// Ŷ0 Y

such that the order of each blowing-up contained in  ̂i is M + 1� i .
Consider any blowing-up  0 contained in  ̂i . If it is a blowing-up of a type-�

2(M � i) + 1 ! 2(M � i) + 1
�
singularity, let E1 and E2 be the two exceptional

curves. By construction, one of them, saying E1 is contained in the branch divisor,
hence its strict inverse image on eX is a rational curve; another one, saying E2, is not
contained in the branch divisor and intersects the branch divisor at most 2

�
M�i

�
+2

points, hence the geometric genus of its strict inverse image on eX is at most M � i
by Hurwitz formula (cf. [10, Section IV.2]). If  0 is an ordinary blowing-up with
one exceptional curve E , then one can prove similarly that the geometric genus of
its strict inverse image on eX is also at most M � i . In any case, we obtain that
the strict inverse image of any exceptional curve of  ̂i has geometric genus at most
M � i .

Consider first the case when J0(eX) is a curve of geometric genus g0 > 0. In
this case, any curve of geometric genus less than g0 is contracted by J0. Hence
combining this with the above arguments and Lemma 4.6, we conclude that the
total inverse image of R̂M�g0 in eX is contracted by J0, where R̂M�g0 ✓ ŶM�g0 is
the image of eR. In particular, the total inverse image of R̂M�g0 is semi-negative
definite, which implies that R̂M�g0 is also semi-negative definite. By construction,
each blowing-up contained in

 ̂M�g0+1 � · · · �  ̂M : eY = ŶM �! ŶM�g0

has order less than or equal to g0. Thus there exist n2 +
P

k�g0
s2k+1 vertical iso-

lated (�2)-curves contained in R̂M�g0 by Lemma 4.2, since the image of any iso-
lated (�2)-curve contained in eR is still an isolated (�2)-curve contained in R̂M�g0 .
Therefore

R̂2M�g0  �2

0

@n2 +
X

k�g0

s2k+1

1

A . (4.8)
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By construction, we have

R̂2M�g0 = R2 �

0

@
X

k�g0

4(2k2 + 2k + 1)s2k+1 +
X

k�g0+1
4k2s2k

1

A

= x̂ ·
!2h
� � 1

+ ŷ
�
T + 2(� � 1)n2

�
+ ẑ (!h + R) · R

�

0

@
X

k�g0

4(2k2 + 2k + 1)s2k+1 +
X

k�g0+1
4k2s2k

1

A ,

where

x̂ =
�(g + 1� 2� )2

(2g + 1� 3� )
, ŷ =

�1
(2g + 1� 3� )

, ẑ =
2g + 2� 4�
2g + 1� 3�

.

Hence (4.6) follows from the above equation together with (4.2) and (4.8).
Finally, let’s consider the case when q⇡ > 0. In this case, J0(eX) is of positive

dimension since J0(eX) generates Alb0(eX) by construction, and any rational curve
in eX is contracted by J0. Hence similarly as above, one sees that R̂M�1 is semi-
negative definite and

R̂2M�1  �2

 

n2 +
X

k�1
s2k+1

!

. (4.9)

Therefore, (4.5) follows from a similar argument as above.

In order to use Proposition 4.5 (ii), we have to know when J0(eX) is a curve,
where J0 is defined in (4.7).

Lemma 4.8 ( [6]). If q⇡ > � + 1, then the image J0(eX) ✓ Alb0(eX) is a curve of
genus at least q⇡ .

Proof. First note that if J0(eX) ✓ Alb0(eX) is a curve, then its genus is at least q⇡
since J0(eX) generates Alb0(eX) and dimAlb0(eX) = q⇡ . Hence it suffices to prove
that J0(eX) is a curve.

Let eF be a general fibre of f̃ , ande0 = ⇡̃(eF) ✓ eY . Consider the linear map

& : ^2H1,0
�
Alb0(eX)

� ⇠= H2,0
�
Alb0(eX)

�
! H1,0(eF)

obtained by composing the linear map

H2,0
�
Alb0(eX)

�
�! H2,0(eX)
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with the restriction map

H2,0(eX) ⇠= H0
�eS, !eS

�
�! H0

�eF, !eF
� ⇠= H1,0(eF),

where !eX (respectively !eF ) is the canonical sheaf of eX (respectively eF). Note that
the generator ⌧ of the Galois group Gal(eX/Y ) acts on H1,0

�
Alb0(eX)

�
by multiply-

ing �1, from which it follows that the image Im(&) is contained in the invariant
subspace H0

�eF, !eF
�⌧ ⇠= H0

�eC, !eC
�
. In particular, one has

dim Im(&)  dim H0
�eC, !eC

�
= � .

On the other hand, if J0(eX) is a surface, then it is proved by Xiao (cf. [24, Theo-
rem2], see also [20, Lemma 1] by Pirola) that

dim Im(&) � q⇡ � 1.

From the two above inequalities it follows that J0(eX) is a curve if q⇡ > � + 1.

4.3. Slope of double cover fibrations

In this subsection, we would like to consider the question on the lower bound of
the slope for double cover fibrations. The main techniques are Theorem 4.3 and
Proposition 4.5.

Based on Theorem 4.3, we can reprove the following lower bound of the slope
for a double cover fibration, which was proved earlier by Barja, Zucconi, Cornalba
and Stoppino.

Theorem 4.9 ([4, Corollary 2.6], [2, Theorem2.1], [8, Theorem3.1, 3.2]).
Let f be a double cover fibration of type (g, � ). If h is locally trivial or g � 4� +1,
then

� f �
4(g � 1)
g � �

. (4.10)

Proof. By Theorem 4.3, for any �, one has

(2g + 1� 3� )(!2f � � · � f ) (4.11)

=

 
(3g+1�4� )(g�1)

2
�

(g+1�2� )2�

8

!

·
!2h
� � 1

� 2(2g + 1� 3� )� · �h

+
12� �

8
· T +

4(g � 1) � (g � � )�

4
· s2 +

(2g + 1� 3� )�

4
· n2

+
X

k�1

⇣
(12� �)k

�
(g � 1) + (k � 1)(� � 1)

�
� (2g + 1� 3� )

⌘
· s2k+1

+
X

k�2

 
(12� �)k

�
(g � 1) + (k � 2)(� � 1)

�

2
� 2(2g + 1� 3� )

!

· s2k .
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Taking � = 4(g�1)
g�� in (4.11), it is easy to see that the coefficients of n2 and s j ’s for

j � 3 are all non-negative due to (4.1). Since T , n2 and s j ’s for j � 3 are also all
non-negative by definition, it follows from (4.11) that

!2f �
4(g�1)
g� �

· � f �
1

2(g�� )

 

(g � 1)2 ·
!2h
� � 1

+ T � 16(g � 1) · �h

!

. (4.12)

If h is locally trivial, then !2h
��1 = �h = 0 and T � 0, from which together with

(4.12) the inequality (4.10) follows immediately.
If g � 4� + 1 and � = 1, then by [5, Section V-Theorem12.1], one has

!h ⇠(numerically equivalent)

 

�h +
nX

i=1

li � 1
li

!

0, (4.13)

where 0 is a general fiber of h and {0i }i=1,··· ,n are the union of multiple fibers
of h with multiplicities {li }i=1,··· ,n . Hence T = 2(g � 1)!h · R � 4(g � 1)2�h .
Therefore, it follows from (4.12) that !2f � 4� f � 2(g � 5)�h � 0.

If g � 4� + 1 and � > 1, then one has !2h � 4(��1)
� · �h � 0 and T � 0.

Hence by (4.12), we get

!2f �
4(g � 1)
g � �

· � f �
4(g � 1)(g � 4� � 1)

2(g � � )�
· �h � 0 as required.

When f is an irregular double cover, we have the following better bounds,
which is a generalization of [15, Theorem1.4].

Theorem 4.10. Let f be an irregular double cover fibration of type (g, � ), and

F(g, � , `) = (g � 1)2 � 4(g � 1)(� `+ � + `) � 4`2(� 2 � 1). (4.14)

(i) If h is locally trivial or F(g, � , 1) � 0, then

� f � 6+
4(� � 1)
g � 1

. (4.15)

(ii) Assume moreover that J0(eX) is a curve, where J0 is defined in (4.7). If h is
locally trivial or F(g, � , q⇡ ) � 0, then

� f � �g,� ,q⇡ := 8�
4(g + 1� 2� )

(q⇡ + 1)
�
(g � 1) + (q⇡ � 1)(� � 1)

� . (4.16)
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Proof. We only prove (ii) here, for the proof of (i) is completely the same except
replacing the usage of (4.6) by (4.5) in the following.

Note that J0(eX) generates Alb0(eX) by construction. Hence the geometric
genus of J0(eX) is at least q⇡ = dimAlb0(eX). Note also that �g,� ,q⇡ � 4(g�1)

g�� ,
since g + 1 � 2� � 0 by (4.1). Hence by (4.6) and (4.11) with � = �g,� ,q⇡ , we
obtain

!2f � �g,� ,q⇡ · � f

�
8(g � 1) � (g + 1� 2� )�g,� ,q⇡

8
·
!2h
� � 1

� 2�g,� ,q⇡ · �h

+
8� �g,� ,q⇡
8(g + 1� 2� )

· T +
�g,� ,q⇡
4

· n2

+
q⇡�1X

k=1
⇠k · s2k+1 +

q⇡X

k=2
⌘k · s2k +

X

k�q⇡

µk · s2k+1 +
X

k�q⇡+1
⌫k · s2k,

(4.17)

where

⇠k = k2�g,� ,q⇡ � (2k � 1)2,

⌘k =
(k � 1)

�
k�g,� ,q⇡ � 4(k � 1)

�

2
,

µk =

�
4k(g � 1) + (2k � 1)2(� � 1)

�
(8� �g,� ,q⇡ ) � (g + 1� 2� )�g,� ,q⇡

4(g + 1� 2� )
,

⌫k =
k
�
(g � 1) + (k � 2)(� � 1)

�
(8� �g,� ,q⇡ ) � 4(g + 1� 2� )

2(g + 1� 2� )
.

It is easy to see that ⇠k � 0 for any 1  k  q⇡ � 1, ⌘k � 0 for any 2  k  q⇡ ,
and

µk � µq⇡ =
2(q⇡�1)
q⇡+1

+
g � �

(q⇡+1)
�
(g�1) + (q⇡�1)(��1)

��0 8 k � q⇡ ,

⌫k � ⌫q⇡+1 = 0 8 k � q⇡ + 1.

Hence by (4.17), one has

!2f � �g,� ,q⇡ · � f

�
8(g�1) � (g +1�2� )�g,� ,q⇡

8
·
!2h
��1

� 2�g,� ,q⇡ · �h+
8� �g,� ,q⇡
8(g+1�2� )

· T .
(4.18)

If h is locally trivial, then !2h
��1 = �h = 0 and T � 0. Hence (4.16) is clearly true.
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If F(g, � , q⇡ ) � 0 and � = 1, then by (4.13) one has T = 2(g � 1)!h · R �
4(g � 1)2�h . Hence it follows from (4.18) that

!2f � �g,1,q⇡ · � f �
2(g � 8q⇡ � 5)

q⇡ + 1
· �h .

Note that the assumption F(g, � , q⇡ ) � 0 implies that g � 8q⇡ + 5 when � = 1.
Thus the above inequality implies that (4.16) holds if � = 1.

Finally, we consider the case when F(g, � , q⇡ ) � 0 and � > 1. In this case
one has !2h � 4(��1)

� · �h � 0 and T � 0. Hence by (4.18), we get

!2f � �g,� ,q⇡ · � f �
2F(g, � , q⇡ )

� (q⇡ + 1)
�
(g � 1) + (q⇡ � 1)(� � 1)

� · �h � 0.

Remark 4.11. Let f be an irregular double cover fibration of type (g, � ). Similarly
as in the above proof, one can show that

� f � 6, if g � 6� + 7. (4.19)

In fact, by (4.5) with (4.11), one obtains that

!2f � 6� f �
8(g � 1) � 6(g + 1� 2� )

8
·
!2h
� � 1

� 12�h +
1

4(g + 1� 2� )
· T

�

8
>><

>>:

� 12�h +
1

4(g � 1)
· 4(g � 1)2�h � 0 if � = 1

8(g � 1) � 6(g + 1� 2� )

8
· 4�h � 12�h � 0 if � � 2.

We end this section with the following lower bound on the slope of double cover
fibrations of type (g, � ) with g being not big. It can be viewed as a supplement to
Theorem 4.9.

Theorem 4.12. Let f be a double cover fibration of type (g, � ). If g  4� +1 and
(g + 1� 2� )2 � 2(2g + 1� 3� ), then

� f �
4(g � 1)(3g + 1� 4� )

(g + 1� 2� )2 + 4� (2g + 1� 3� )
. (4.20)

Proof. Let �0 := 4(g�1)(3g+1�4� )

(g+1�2� )2+4� (2g+1�3� )
. Then 4  �0  4(g�1)

g�� by assumptions.
If � = 1, then the assumptions imply that �0 = 4 and g = 5. Hence (4.20)

follows from (4.10). If � > 1, taking � = �0 in (4.11) and using Lemma 4.13
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below to eliminate s2, one obtains

!2f � �0 · � f

�

 
(3g + 1� 4� )(g � 1)
2(2g + 1� 3� )

�
(g + 1� 2� )2�0
8(2g + 1� 3� )

!

·
!2h
��1

� 2�0 · �h+
(�0�4)
8(��1)

· T

+
�0
4

· n2+
X

k�1

�
k2�0 � (2k�1)2

�
· s2k+1+

X

k�2

⇣k(k � 1)
2

�0 � 2(k � 1)2
⌘

· s2k

�

 
(3g + 1� 4� )(g � 1)
2(2g + 1� 3� )

�
(g + 1� 2� )2�0
8(2g + 1� 3� )

!

·
!2h
� � 1

� 2�0 · �h

�

  
(3g + 1� 4� )(g � 1)
2(2g + 1� 3� )

�
(g + 1� 2� )2�0
8(2g + 1� 3� )

!

·
4
�

� 2�0

!

· �h = 0,

where the second inequality follows from the non-negativity of T, n2 and s j ’s for
j � 3; and the third inequality comes from the slope inequality !2h � 4(��1)

� �h of
the fibration h.

Lemma 4.13.

T + (� � 1)

 

s2 +
X

k�1
4k(2k + 1)s2k+1 +

X

k�2
2k(2k � 1)s2k

!

� 0. (4.21)

Proof. We may assume that � > 1. By (4.2), the inequality (4.21) is equivalent to

T + (� � 1)
�
(!h + R) · R + 2n2

�
� 0. (4.22)

Let R =
mP

i=1
Di be the decomposition into connected components, such that

Di · 0 > 0, 8 1  i  l; Di · 0 = 0, 8 l + 1  i  m,

where 0 is a general fiber of h. We claim that

(!h+Di )·Di � 0, 8 1  i  l; (!h+Di )·Di � �2, 8 l+1  i  m. (4.23)

Indeed, let eDi =
kiP

j=1
eDi j ! Di be the normalization, and

liP

j=1
eDi j be the irreducible

components which are mapped surjectively onto B. Then

(!h + Di ) · Di =
�
2g(B) � 2

�
0 · Di + (!Y + Di ) · Di

�
�
2g(B) � 2

�
0 · Di +

kiX

j=1

�
2g(eDi j ) � 2

�
+ 2(ki � 1)

�
kiX

j=li+1

�
2g(eDi j ) � 2

�
+ 2(ki � 1) � 2(ki � li � 1).
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Hence (4.23) follows. Let D =
Pl

i=1 Di and D0 =
Pm

i=l+1 Di . Then (!h + D) ·
D � 0 by (4.23). Since 0 ·

�
(g + 1� 2� )!h � (� � 1)D

�
= 0, one gets by Hodge

index theorem that

0 �
�
(g + 1� 2� )!h � (� � 1)D

�2

=
�
(g + 1� 2� )!h � (� � 1)R

�2
� (� � 1)2(!h + D0) · D0

+ (� � 1)(2g + 1� 3� )!h · D0

�
�
(g + 1� 2� )!h � (� � 1)R

�2
� (� � 1)2(!h + D0) · D0.

Combining this with the fact that

(!h + R) · R = (!h + D) · D + (!h + D0) · D0 � (!h + D0) · D0,

we obtain (4.22), and hence complete the proof.

4.4. Proof of Lemma 2.5

By Theorem 4.9, we may assume that q f � 2� . Since qh  � , we have q⇡ =
q f � qh � 2� � � = � > 0 and see that ⇡ is an irregular double covering.

We first show the assertion when q⇡  � + 1. By Theorem 4.10 (i), we have
the desired inequality (2.4) if h is locally trivial. If qh = � , then h is globally trivial
and we are done. Hence it suffices to consider the case qh  � � 1 assuming that h
is not locally trivial. Then we have q⇡  � +1 only when qh = � �1 and q f = 2� .
If this is the case, then by Theorem 4.9 we have

!2f �
4(g � 1)
g � �

� f =
4(g � 1)
g � q f /2

� f .

So it suffices to show that we cannot have the equality sign. If � = 1, then [23,
Theorem3] shows � f > 4 and we are done. If � � 2 and !2f = 4(g�1)

g�� � f ,
then as the proof of Theorem 4.9 shows that !2h = 4(h�1)

h �h . This implies that
� � 1 = qh = 0 by [23], which is impossible when � � 2. Therefore � f > 4(g�1)

g�q f /2
in this case.

We next assume that q⇡ > � +1. By Lemma 4.8 together with (4.6) and (4.11)
for � = �0 = 4(g�1)

g�q f /2 , we obtain

!2f � �0 · � f

�
8(g � 1) � (g + 1� 2� )�0

8
·
!2h
� � 1

� 2�0 · �h +
8� �0

8(g + 1� 2� )
· T

+
�0
4

· n2 +
q⇡�1X

k=1
⇠k · s2k+1 +

q⇡X

k=2
⌘k · s2k +

X

k�q⇡

µk · s2k+1 +
X

k�q⇡+1
⌫k · s2k

�
8(g � 1) � (g + 1� 2� )�0

8
·
!2h
� � 1

� 2�0 · �h +
8� �0

8(g + 1� 2� )
· T .
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where

⇠k = k2�0 � (2k � 1)2,

⌘k =
(k � 1)

�
k�0 � 4(k � 1)

�

2
,

µk =

�
4k(g � 1) + (2k � 1)2(� � 1)

�
(8� �0) � (g + 1� 2� )�0

4(g + 1� 2� )
,

⌫k =
k
�
(g � 1) + (k � 2)(� � 1)

�
(8� �0) � 4(g + 1� 2� )

2(g + 1� 2� )
.

If h is locally trivial, then !2h
��1 = �h = 0 and T � 0. Hence !2f � �0 · � f �

0. Moreover, if the equality holds, then the above inequality shows that all the
invariants si ’s, n2 and T are vanishing, which implies that !2f = 0 by Theorem 4.3,
contradicting the non-triviality of f . Hence the strict inequality (2.4) follows.

Next, we consider the case when h is not locally trivial. By Lemma 4.8,
J0(eX) ✓ Alb0(eX) is a curve of genus � 0 � q⇡ since q⇡ > � + 1. Restricting
J0 on the general fiber of f , one obtains a map

J0
�
�
F : F �! J0(eX).

Since f is not locally trivial, deg
�
J0
�
�
F
�

� 2. If deg
�
J0
�
�
F
�

= 2, then J0 ⇥ f
realizes S as a double cover of the trivial fibration J0(eX) ⇥ B; namely, f is a
double cover fibration whose associated quotient fibration is trivial. Hence by the
above arguments, (2.4) holds. Thus deg

�
J0
�
�
F
�

� 3. In particular, by the Riemann-
Hurwitz formula, one has

q⇡ 
g + 2
3

.

If � = 1, then by (4.13) one has T = 2(g � 1)!h · R � 4(g � 1)2�h . Hence

!2f � �0 · � f �

✓
(8� �0)(g � 1)

2
� 2�0

◆
�h > 0.

Assume that � � 2. Since q⇡  (g + 2)/3 and q⇡ � � + 2, we have g �
q f � qh + 2q⇡ � 2 � q f + 2� + 2� qh . Hence

1
�

>
4

g � 1� q f + 2�
, if qh = 0,

and
1

� � qh/2
�

4
g � 1� q f + 2�

, if qh > 0.
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Since h is not locally trivial, !2h � (4 � 4/� )�h by the slope inequality when
qh = 0, and !2h > 4(� � 1)/(� � qh/2)�h by the assumption when qh > 0. It
follows that

!2h >
16(� � 1)

g � 1� q f + 2�
�h .

Therefore,

!2f � �0 · � f �
8(g � 1) � (g + 1� 2� )�0

8(� � 1)
!2h � 2�0�h

>

✓
8(g � 1) � (g + 1� 2� )�0

8(� � 1)
·

16(� � 1)
g�1�q f + 2�

� 2�0
◆
�h=0,

which is what we want.

4.5. Proof of Lemma 2.6

According to Theorem 1.1 and [23, Theorem3], one may assume that q f � 2,
which implies that g � 9q f � 18 by assumption.

• If g � 4� + 1, then according to Theorem 4.9 we may assume that q f > � .
Hence f is an irregular double cover (cf. Definition 4.4), and g � 6� + 7 since
g � 9q f � 9(� + 1). Therefore (1.3) follows from (4.19).

• If 4� + 1 > g � 4� � 2, then (1.3) follows from (4.20), since in this case

4(g � 1)(3g + 1� 4� )

(g + 1� 2� )2 + 4� (2g + 1� 3� )
>
9(g � 1)
2g

�
4(g � 1)
g � q f

.

This completes the proof.

5. Examples

In this section, we construct counterexamples with q f = g+1
2 violating Barja-

Stoppino’s conjecture.
Example 5.1. We construct a relatively minimal fibration f : X ! E of curves of
odd genus g � 3 over an elliptic curve E with q f = g+1

2 and

� f = 8�
4

g � 1
< 8 =

4(g � 1)
g � q f

.

Let E be any elliptic curve, and C be any smooth curve of genus g0 � 3 which
admits a double cover to E :

⌘ : C 2:1
// E .
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Let 1 ✓ C ⇥C be the diagonal, � the involution on C ⇥C defined by exchanging
the two factors, and X = C ⇥ C/h� i the quotient surface. Since � has no isolated
fixed point, X is smooth. According to [19, Section 2.4-Example (b)], we know that
X is minimal of general type with q(X) = g0 and

�(OX ) =
(g0 � 1)2 � (g0 � 1)

2
, !2X = 4(g0 � 1)2 � 5(g0 � 1).

To obtain a fibration on X , we consider first the fibration on C ⇥ C defined by

h : C ⇥ C �! E, (x1, x2) 7! ⌘(x1) + ⌘(x2),

where ‘+’ is the addition associated to the group structure on the elliptic curve E .
It is easy to see that the morphism h factors through X and so induces a fibration
f : X ! E :

C ⇥ C ⇡
//

h
##

G

G

G

G

G

G

G

G

G

X

f
~~}

}

}

}

}

}

}

}

E .

It is clear that f is relatively minimal since X is minimal, and q f = q(X)�g(E) =
g0 � 1. To compute the genus g of a general fiber of f , let H be a general fiber of
h, F = ⇡(H) ✓ X , p = h(H) 2 E , and pr1 (respectively pr2) be the projection
of C ⇥C to the first (respectively the second) factor C . Then for any (x1, x2) 2 H ,
one has ⌘(x1) + ⌘(x2) = p, i.e., ⌘(x1) = �⌘(x2) + p. In other word, one has the
following commutative diagram

H
pr1|H

//

pr2|H
✏✏

C
⌘

✏✏

C
�⌘+p

// E .

The maps in the above diagram are all double covers, and the branch divisor of
pr2|H is

T =
�
x 2 C

�
� y := �⌘(x) + p is a branch point of ⌘ : C ! E

 
,

which is of degree 4g0 � 4. Hence one obtains that g(H) = 4g0 � 3. Note that
H ·1 = 8. Thus by Hurwitz formula, we get that

2g(H) � 2 = 2(2g(F) � 2) + 8.

Hence g = g(F) = 2g0 � 3. Therefore q f = g0 � 1 = g+1
2 , and

� f =
!2f

� f
=

!2X
�(OX )

=
8g0 � 18
g0 � 2

= 8�
4

g � 1
< 8 =

4(g � 1)
g � q f

, as required.
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Example 5.2. We construct a relatively minimal double cover fibration f : X !
P1 of type (g, � ) with 0 < � < (g + 1)/2, q f = (g + 1)/2, and

� f = 8�
4

(g + 1� 2� )�
< 8 =

4(g � 1)
g � q f

.

Consider the ruled surface ⌘0 : P1⇥P1 ! P1. Let30 be a pencil on P1⇥P1 such
that H0 is a section of ⌘0 and H20 = 2 for a general member H0 2 30. Assume
that 30 has two distinct base-points, which are mapped to {p, p0} ✓ P1 by ⌘0. Let
 : P1 ! P1 be a double cover branched exactly over {p, p0}, and consider the
Cartesian product

P1 ⇥ P1 //

⌘

✏✏

P1 ⇥ P1

⌘0
✏✏

P1
 

// P1.
Let 3 be the pulling-back of 30. Then 3 also has two distinct base-points
(H and H 0 are tangent to each other at each of these two base-points for any
two general H, H 0 2 3). Let ⇠ : P1 ⇥ P1 ! P1 be another fibration, and
{D1, D2, · · · , D2�+2} be 2� + 2 fibers of ⇠ such that these two base-points of 3
are contained in D1 and D2 respectively. Let 0 ! P1 be the double cover branched
over

�
⇠(D1), ⇠(D2), · · · , ⇠(D2�+2)}, and

Y =
�
P1 ⇥ P1

�
⇥P1 0 = P1 ⇥ 0

the fiber-product. Let 3Y be the inverse of 3 on Y . Then 3Y has also exactly
two base-points (each of the base-points is of multiplicity two). Blowing up the
base-points of the pencil 3Y , we obtain a fibration

' : eY ! P1.
By construction, the strict inverse images of D1 and D2 in eY are contracted
by '. Let p̃, p̃0 be the images, and 00 ! P1 the double cover branched over
{ p̃, p̃0, x1, · · · , x2� 0}, where � 0 = (g + 1)/2 � � , and x1, · · · , x2� 0 are distinct
general points on P1. Let X be the normalization of the fiber-product eY ⇥P1 0

0 and
f : X ! P1 the induced fibration as follows

00

✏✏

X
�0

oo

⇡

✏✏

f

✓✓

�

**P1 eY
'

oo // Y = P1 ⇥ 0

✏✏

//

h

��

0

✏✏

P1 ⇥ P1
⇠

//

⌘
yys

s

s

s

s

s

s

s

s

s

P1

P1.
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Let eCi = '⇤(xi ) be the fibers of ' for 1  i  2� 0. Then it is clear that

!2eY = �8(� � 1) � 2, �(OeY ) = �(� � 1), !eY · eCi = 4� � 4.

Note that the fibers of ' over p̃ and p̃0 are of multiplicity two. Hence ⇡ is a double
cover branched exactly over eR =

�eC1, · · · , eC2� 0
 
. Therefore, f is a relatively

minimal fibration of genus g, and

!2f = 2
✓
!eY +

1
2
eR
◆2

+ 8(g � 1) = 8(g + 1� 2� )� � 4,

� f = 2�(OeY ) +
1
2

✓
!eY +

1
2
eR
◆

·
eR
2

+ (g � 1) = (g + 1� 2� )� .

Hence f has the required slope. Note that q(eY ) = � and q(X) � q(eY ) = � 0 since
⇡ is the normalization of the fiber-product eY ⇥P1 0

0. Therefore q f = � + � 0 =
(g + 1)/2 as required.
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455–475.

[8] M. CORNALBA and L. STOPPINO, A sharp bound for the slope of double cover fibrations,
Michigan Math. J. 56 (2008), 551–561.

[9] T. FUJITA, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30 (1978), 779–794.
[10] R. HARTSHORNE, “Algebraic Geometry”, Graduate Texts in Mathematics, Vol. 52,

Springer-Verlag, New York-Heidelberg, 1977.
[11] K. KONNO, Nonhyperelliptic fibrations of small genus and certain irregular canonical sur-

faces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 575–595.
[12] K. KONNO, On the irregularity of special non-canonical surfaces. Publ. Res. Inst. Math.

Sci. 30 (1994), 671–688.
[13] K. KONNO, A lower bound of the slope of trigonal fibrations, Int. J. Math. 7 (1996), 19–27.
[14] K. KONNO, Clifford index and the slope of fibered surfaces, J. Algebraic Geom. 8 (1999),

207–220.



1064 XIN LU AND KANG ZUO

[15] X. LU and K. ZUO, On the slope of hyperelliptic fibrations with positive relative irregular-
ity, Trans. Amer. Math. Soc. 369 (2017), 909–934.

[16] X. LU and K. ZUO, The Oort conjecture on Shimura curves in the Torelli locus of hyperel-
liptic curves, J. Math. Pures Appl. (9) 108 (2017), 532–552.

[17] X. LU and K. ZUO, On the gonality and the slope of a fibred surface, Adv. Math. 324
(2018), 336–354.

[18] X. LU and K. ZUO, On Severi type inequalities for irregular surfaces, Int. Math. Res. Not.
IMRN 2019, 231–248.

[19] M. MENDES LOPES and R. PARDINI, The geography of irregular surfaces, In: “Current
Developments in Algebraic Geometry”, Math. Sci. Res. Inst. Publ., Vol. 59, Cambridge
Univ. Press, Cambridge, 2012, 349–378.

[20] G. P. PIROLA, Curves on generic Kummer varieties, Duke Math. J. 59 (1989), 701–708.
[21] G. P. PIROLA, On a conjecture of Xiao, J. Reine Angew. Math. 431 (1992), 75–89.
[22] L. STOPPINO, Slope inequalities for fibred surfaces via GIT, Osaka J. Math. 45 (2008),

1027–1041.
[23] G. XIAO, Fibered algebraic surfaces with low slope, Math. Ann. 276 (1987), 449–466.
[24] G. XIAO, Irregularity of surfaces with a linear pencil, Duke Math. J. 55 (1987), 597–602.
[25] G. XIAO, ⇡1 of elliptic and hyperelliptic surfaces, Int. J. Math. 2 (1991), 599–615.

School of Mathematics
East China Normal University
xlv@math.ecnu.edu.cn

Institut für Mathematik
Universität Mainz
Mainz, Germany, 55099
zuok@uni-mainz.de


