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Exceptional zeros of L-series and Bernoulli-Carlitz numbers

BRUNO ANGLES, TUAN NGO DAC AND FLORIC TAVARES RIBEIRO

Abstract. Bernoulli-Carlitz numbers were introduced by L. Carlitz in 1935.
They are analogues in positive characteristic of Bernoulli numbers. We prove
a conjecture formulated by F. Pellarin and the first author on the non-vanishing
modulo a given prime of families of Bernoulli-Carlitz numbers. The proof is
intimately connected to the arithmetic properties of the L-series introduced by
F. Pellarin. Finally, we formulate a conjecture concerning the exceptional zeros
of these L-series and prove it in various cases.
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1. Introduction

There is a well-known analogy, started in the 1930s by Carlitz, between the arith-
metic of number fields and global function fields. Some recent advances in the
arithmetic of function fields [16,17] and more specifically in the context of cyclo-
tomic extensions [5, 18] have contributed to striking enrichments of this analogy.
We briefly review some of these new results.

Let I, be a finite field having ¢ elements, g being a power of a prime num-
ber p. Let A = [ [f] with 6 an indeterminate over F,, K = F,(0), Koo =
Fq((é)) and let Cy, be the completion of a fixed algebraic closure of K. For
d € N, Ay 4 denotes the set of monic elements in A of degree d. For n € Z, the
value at n of the Carlitz-Goss zeta function is defined as follows

¢a(n) = Z Z ain € Koo.

d>0 a€A+,d

One can show that ¢4(n) € A if n < O (this is a consequence of [11, Lemma
8.8.1])and even {4(n) =0ifn <O0andn =0 (mod ¢ — 1) [11, Example 8.13.9].
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Furthermore, for all n > 1, £4(n) € KZ and can be written as a Euler product

1 —1
am=[] (1-ﬁ) .

P monic
P irreducible

Choose Ay € Coo such that Ag_l = —0. The Carlitz period, 7 € C%, is defined by
the following convergent product

7F=10]] (1 _ 9‘—4’)71.

j=1
In the analogy developed by Carlitz, the A-module 7 A plays the role of the Z-
module 2irZ. It is the kernel of the Carlitz exponential, exp, defined by

expc(z) =z | | (1 — ;) forall z € Co.
Ta
acA\{0}

One can show that [11, Chapter 3]

¢
expc(z) = Z ZD— for all z € Cq,
j=0 7J

where Dgp = 1, and for j > 1, D; = (qu — 0)D?_1. It satisfies the functional
equation

expc(0z) = 6 expe(z) + expe(2)? forall z € Co.

One can see that the Carlitz exponential induces a short exact sequence of A-
modules
0> 7TA— Cyp = C(Cyx) — 0,

where C(Cy) denotes the I, -vector space C, equipped with the A-module struc-
ture given by
0-z=0z+79 for all z € Cwo.

Letn € N. Weexpand ninbase ¢ : n = Zj>0njq-i withn; € {0,...,qg —1}. The
Carlitz factorial, I1(n) € A, is defined by =~

M =[] D},
j=0

In 1935, L. Carlitz has introduced analogues of the Bernoulli numbers for A [8].
For all n > 0, the Bernoulli-Carlitz numbers, BC, € K are defined as follows. Let
X be an indeterminate over K, then

X _ Z BCy X"
expc (X) =0 I(n)
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It follows that BCyp = 1, BC,, =0ifn %0 (mod g — 1), and [11, Paragraph 9.2]

;A(n) o BC,
an Il(n)

foralln >1,n=0 (modgq —1).

Compare with the classical Euler formulas

¢m) 1B,
Qim)* 2 n!

foralln > 1,n =0 (mod 2),

where ¢(.) denotes the Riemann zeta function, and By denotes the k-th Bernoulli
number. The von-Staudt-Clausen Theorem [21, Theorem 5.10] asserts that for all

n > 1, we have
1
By, + Z ; €.

p prime

(p—DI2n
There exists an analogue of the above result for Bernoulli-Carlitz numbers [11,
Paragraph 9.2]. In particular, if P denotes a monic irreducible polynomial in A of
degree d, then BC, is P-integral forn € {0, ..., qd —2}.

Let p be a prime number and let w, be the p-adic Teichmiiller character, let

1 <n < p—1besuchthatn =1 (mod 2), then K. Ribet proved the following
result [14]

(CHQ(rp)) ®7 Zp) (@) # {0} & Bp—y =0 (mod p),

where C1(Q(up,)) denotes the ideal class group of the ring of integers of Q( ), and

(CHQ1p)) Rz Z p)(a)g) denotes the isotypic component attached to the character

a)g. We recall that the prime number p is said to be regular if Cl(Q(up)) ®z Z), =

{0}, p is said to be irregular otherwise. We also recall that there exist infinitely

many irregular primes [21, Theorem 5.17], and that the prime number p is regular
-3

P
if and only if Her By, # 0 (mod p) [21]. In [21, page 63], a heuristic argument
shows that 60, 65% of all primes should be regular. It is conjectured that there
exist infinitely many regular primes. In particular, this latter conjecture implies the
following conjecture.

Conjecture A. If k£ > 3 is an odd integer then there exist infinitely many primes p
such that B, ; # 0 (mod p).

Let us consider the function field case. Let P be a monic irreducible polynomial in
A of degree d. Let E = K (expc (%)) be the P-th cyclotomic function field which
is the analogue of Q(x,,) in our context. Let O be the integral closure of A in E.
Quite recently, L. Taelman has introduced a class module H (Ofg) attached to O
and the Carlitz exponential exp, [16,17]. This latter module can be viewed as an
A-analogue in our context of the ideal class group of a number field. It is defined
by
Exo

Of + expe(Ex)’

H(Of) =
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where Eoo = E ®k Koo L. Taclman proved that H(OE) is a finite A-module [16].
Let Ap be the P-adic completion of A and wp be the P-adic Teichmiiller character.
Let] <n < g?—1besuchthatn = 1 (mod g—1), we have an analogue of Ribet’s
theorem [5,18]

(H(Op) ®a Ap)(w) # {0} & BCpa_, =0 (mod P).

Under the light of the above analogies, it is natural to ask if Conjecture A is valid
in the carlitzian context. In this paper, we prove a stronger result which answers
positively to this question and also to a Conjecture formulated in [2].

Theorem B. Let N > 2 be an integer, N = 1 (mod g — 1). Let £,(N) be the sum
of the digits in base q of N. Let P € A be a monic irreducible polynomial of degree

d such that g% > N.Ifd > (Zq((IJZ)l—1> N, then

BCh_y #0 (mod P).

Note that the above result is due to L. Carlitz when N is a power of ¢ ([11, Lemma
8.22.4], see also [20, Theorem 4.16.1] and [12, Paragraph 3.4]). To prove our the-
orem, we use the deep connection between the several variable L-series introduced
in [13] and the Bernoulli-Carlitz numbers, which will be explained in Sections 3
and 4.

Let s > 1 be an integer and let T's be the Tate algebra in s variables 71, .. ., f,
with coefficients in Cso. In 2012, F. Pellarin [13] introduced the following remark-
able elements in T} called the several variable L-series

a(ty) ---a(ts)
Lug=Y Y Gt
d>0 L{EA.{_’d
For s = 1, he proved the following identity [13, Theorem 1]

Litho(m) 1

T _9—1‘1

where w (1) is the special function introduced in [1] and defined by

—1
t
o) =x ] (1 - 9%) e T}.

j=0

Fors > 2and s = 1 (mod g — 1), F. Pellarin and the first author ([2, Corol-
lary 21], see also [4, Corollary 7.4]) showed that there exists a polynomial B, €
Fylt1, ..., t]1[0] such that

Ls(ty) w(t) - - - o(t5)
T

— (—1)iTB,.
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Further, these several variable Bernoulli-type objects B, are linked by a class for-
mula a la Taelman [17] to the several variable L-series L(z,) [4, Theorem 5.11].

We expand N in base g
)
N == qui7
i=1
withe; € N, e1 <ep < - < e;. We set

BN(t76)=IBS | é’iqu[l"Q]

ti=t4

and
Ly(t) = Ly(t)) |, € Kooll]1.

Using the combinatorial properties of these polynomials B, (Proposition 3.7), we
show that (see Section 4.3)

Theorem C. Let N > 2 be an integer, N =1 (mod g — 1). Then for alli € N,
By (t,0) |,_p.i # 0.

Theorem B is a direct consequence of Theorem C, see Section 4.4.
In the remaining sections, we propose a refinement of Theorem C. In Section 5,
we study the series Ly (¢). We show that this series is an entire function on Cy.

Further, we prove that the elements of Sy = {Q‘IZ, ieZ,N qi > 1} are zeros of
this entire series. We call them the trivial zeros of L y(t). The other zeros are called
exceptional zeros of Ly (t). It turns out that each exceptional zero of L (¢) is a root
of By (¢, 8), with the same multiplicity. Motivated by Theorem C, we formulate the
following conjecture.

Conjecture D. Let N > 2 be an integer, N = 1 (mod g —1). Then the polynomial
Bn/(z,0) (in the variable ¢) has no zeros in the set {#9',i € Z}.

In Section 6, we will prove this conjecture when ¢ = p (Theorem 6.8). For the
general case (Section 7), we are able to settle the conjecture when N is g-minimal,
that is N satisfies certain combinatorial conditions (Theorem 7.7). Our proof uses
combinatorial techniques introduced by F. Diaz-Vargas [10] and J. Sheats [15].

Theorem E. Conjecture D holds in the following cases:

1) g=p;
2) q > p and N is qg-minimal.
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An analogue of Greenberg’s pseudo-cyclicity Conjecture for the Iwasawa module
associated to the p-part of the ideal class groups along the cyclotomic Z,-extension
of Q(up) (p is an odd prime number) was proved in [6, Theorem 4]. As an appli-
cation of our methods, we deduce another proof of this latter result. Finally, we
present some numerical evidence to support our conjecture when N is no longer
g-minimal.

ACKNOWLEDGEMENTS. The authors would like to thank David Goss and Federico
Pellarin for useful comments on an earlier version of this text.

2. Notation

In this paper, we will use the following notation:

e N: the set of non-negative integers;

e N* =N\ {0}: the set of positive integers;

e 7: the set of integers;

o [,: afinite field having g elements;

e p: the characteristic of [F;

e 0: an indeterminate over IF;

e A: the polynomial ring I, [6];

e A, : the set of monic elements in A;

e Ford € N, A 4 denotes the set of monic elements in A of degree d;

o K =1IF,(6): the fraction field of A;

e oo : the unique place of K which is a pole of 9;

® VU : the discrete valuation on K corresponding to the place oo normalized such
that v () = —1;

o Koo = Fq((%)) : the completion of K at co;

e Cy : the completion of a fixed algebraic closure of K. The unique valuation
of C which extends vy, will still be denoted by veo;

e Ap :afixed (¢ — 1)th-root of —0 in Coo;

e Fors e N, {11, 1, ...,1} denotes a set of s variables and we will also denote
this set by 7.

3. The several variable polynomials B,

3.1. Tate algebras

Let L be an extension of K, in Cy such that L is complete with respect to veo |1 -
The absolute value of L is defined by

la| = ¢7'*@  fora e L.
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Let s € N be a non-negative integer. The polynomial ring L[t,] = L[t1, ..., t] is
equipped with the Gauss valuation: for a polynomial f € L[t ], if we write

i] ic
f= E aiy,..ity -t ai.i €L,

then the Gauss valuation of f is defined by

Voo (f) := inf{veo(aiy,...i;) . i1, - - ., is € N},

By definition, the Tate algebra T (L) in the variables ¢1, . .., t; with coefficients in
L is the completion of L[z,] with respect to the Gauss valuation. Explicitly, T, (L)
is the set of formal series

such that

] lim Uoo(ail,...,is) = +400.
i1+...+igs—400

When L = Cq, we will write Ty instead of T;(Cy). Let T : Ty — T, be the
continuous homomorphism of IF, [z ]-algebras such that

7(c) =c?, VceCx.

Explicitly, for a formal series f € Ty, we write

§ : i1 i
f = aiy,...ist LS, a i € (Coo,

then

3.2. The several variable polynomials B

For the rest of this section, we will always suppose that s >2 and s=1 (mod g —1).

We set
s—q

q — 1
Recall that Ag is a fixed (g — 1)th-root of —6 in C,. We have set

N1
7 =16 [ | (1 - 91—4’) e Cx,

j=1

e N.
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andfori =1,...,s, we set
N
N — _ x
() = g ]_[ (1 W) e TX.
j=0
Furthermore, we introduce
a(ty) ---a(ty)
Lay=Y Y “a) e
d=0acA,. 4 a

We observe that it can be written as a Euler product

-1
Lay=[] (1_w> |

Pe A+
P irreducible

We define

B, = (—1)3%'1 Ls(Ls)w(fL) o (ts)

e T, (3.1
then by [4, Lemma 7.6] (see also [2, Corollary 21]), we know that:

Proposition 3.1. The element By is a polynomial in IF4[t, 6]. Moreover, it is a
monic polynomial in 0 of degree r = jI_T‘{ and a symmetric polynomial in t .

The polynomial By is intimately connected to the class module Hy of a certain
Drinfeld A[z;]-module ¢ of rank one as follows (we refer the interested reader

to [4, Section 7] for more details). Let ¢ : A[z;] — T[z,]{r} be the Drinfeld
Alt ]-module over T given by a homomorphism of I, [z, ]-algebras such that

po=(0{1—0)---(ts —0)T +6.

There exists a unique formal series exp, € Ts{{r}} called the exponential series
attached to ¢ such that
expy =1 (mod 1)

and
ba eXpy = eXpy a, Va € Alt,].

One can show that the exponential series induces a natural I, [z, ]-linear map
expy T, — T,.
Following Taelman [17,18], we define the class module Hy by
o ¢ (T, (Koo))
P expy(Ts (Koo)) + (AlL D)
where ¢ (A[t,]) is the [F,[z,]-module A[z,] equipped with the A[z,]-module struc-
ture induced by ¢. Then by [4, Proposition 7.2], the class module Hy is a finitely

generated I [¢,]-module of rank r = Z_T‘{. The importance of the polynomials B
is dictated by [4, Theorem 7.7].
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Theorem 3.2. We denote by Fitta(, |(Hy) the Fitting ideal of the torsion Alt]-
module of finite type Hy. Then

FittA[Ly](H¢) = BSA[LS].

In particular,

B, = det (Z-Id— ) . 32
Y o b0 |Hy@r,11,1F, 12,1121 ) |2=6 (3.2)

We are now ready to give a few explicit examples of the polynomials B;. We need to
introduce some more notation. Denote by S the set of all (finite) sequences of non-
negative integers m. For any sequence m = (my, ..., my) € N? of non-negative
integers, we set

mo=s—(mi+---+mg) €L

and
d
og(m) =oy(mi.....ma)=> []]]#
u=liely
where the sum runs through the disjoint unions J; | |---| |Js C {1, ..., s} such

that | J, |= my, for 1 <u < d. In particular, os(m) = 0if m; 4+ --- +myg > s,
which is equivalent to mo < 0. The reader should keep in mind that m; may be 0.
For example,

N
0,(0,0, 1) =Y 1.
i=1
Here are some more explicit examples that will appear in Lemma 3 4.

024-1(q) = > liy - Tig,

I1<iy<--<ig=<2q-—1

q
03g-2(q) = > JBER

I<ij<--<ig=<3q-2 j=I1

2g—1

03q—22q — 1) = Z l_[ lijs

I<ij<-<izg—1=3¢g-2 j=1

2q
034-2(2q) = > JBER

1<ij<-<ipg<3q-2 j=I

q—1 q 5
-l = Y > 11
I<ij<-<ig-1=3¢q-2 1<kj<-<ky<3q-2 j=1 j'=1

ki
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We remark that any symmetric polynomial f in [F,[#,] can be uniquely written as a
combination

f= E amos(m) witha, € F,.
meS
0<mo<s

Lemma 3.3. Letm € S. We have
05 (m) lt,_(y_o)=..=t,=0= Os5—(g—1)(m).
In particular, if mg < g — 1, we have
03 (m) i,y 2=ty =0= 0.
Proof. This is a straight computation. O

Lemma 3.4. With the previous notation, we have
B, =1;
2) Bog—1 =0 —o024-1(q);
3) Bsg—2 = 02 —0[039-2(q) + 039-2(2q — D1+ [039-2(q — 1, @) + 039—2(29)].
Proof. We follow closely [4, Proposition 7.2] and its proof.
1) See [4, Corollary 7.3];
2) Remark that the formula for B, _; is already given in [4, Section 1.2]. We

provide a proof for the convenience of the reader. Recall that T, _1(Koo) is the
Tate algebra in the variables 11, .. ., 41 with coefficients in K. We set

N = {f € Tqul(Koo)’ Voo (f) = 2}-
By [4, Proposition 7.2] and its proof, we obtain

(i) Tog—1(Koo) = FAlt1, ... 1g— 1] B N;
(i) N = expy(Tog—1(Koo));
(iii) Hy is afree Fy[t, ..., try—1]-module of rank one generated by %.

‘We observe that

ti - tiq
1 1<iy<..<ig=<2q-—1
bo 5 = 0 (mod A[tl,...,l2q—1]@N).
By Theorem 3.2, we have
Bag-1= Fq[tl,.gtezfrl][Z] (Zld_ P60 | Hy®rq1....00 - Faltt . ’2‘1*1][2]) |2=0

=0 — Z Lip o1

I<iy<..<ig=<2q-—1

q

=0 —024-1(q)-

3) The calculation is similar, but more involved and left to the reader. O
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Lemma 3.5. Fors >2g —1,s =1 (mod g — 1), we have
By (t1, -0 fs—(g—1),0, .., 0) = (0 — 11+ 15— (1)) Bs—g—1) (11, - -+ Ls—(g—1))-
Proof. By (3.1), we obtain

Bs(tl’ "'9t57(q71)’07 ’O)

s—1 ... . _1
:(_9)(_1)217] w(tl)-..C;(ts—(q—l)) 1—[ (1 _ P(t) f)(ts—(q—l)))

PcA +
P irreducible
P60

ﬂa)(l‘l)...w(ts_(q_l))
=(0 —t1 - -te_(,_ —1)¢-1 —
(0 =11 ty—g-n)(=1) =

I | P PUgn)
P

PEA+
P irreducible

=0 -t tig1)Begn(tn - o)

The proof is finished. O]

Let p : Fy[t,] — N U {4-00} be the valuation given by
(i) If f =0, then
p(f) = +o0;

(i) Otherwise, we write f =Y a;, ;1" -+ -1 witha;, i € F,, then

.....

p(f) g Inf{ll + “ o +iS’ ail,...,is #0}

Remark 3.6. Observe that for any sequence m = (my,...,my) € S, we have

mi+2my+...+dmg ifmi+---+myg <s,

p(os(m)) = -

400 otherwise.
By Proposition 3.1, B, € IF,[z,, 6] is a monic polynomial in 6 of degree r = ;_T‘{
and a symmetric polynomial in ¢,. We write

r .
By =) Bi 6", (33)
i=0

where B; ; € IF,[t,] are symmetric polynomials, and By = 1.
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We are now ready to prove the key result of this section.
Proposition 3.7. Fori =1, ...,r, we have
p(Bis) =z i(g —1)+ 1.

Proof. The proof is by induction on r. If r = 1, then s = 2¢ — 1. By Lemma 3.4
2), we know that

Byg—1 =0 —02g-1(q),
and the proposition is verified.

We suppose that r > 2 and that the proposition is true for r — 1, i.e., for
i=1,...,r — 1, we have

p(Bis—g-1) =ilg — 1)+ 1.

We set Br,s—(q—l) =0.
We will now prove that fori =1, ..., r, we have

p(Bis) =i(g —1) + 1.

Let i be an integer with 1 <i <r. Since B; ; € F,[¢t,] is symmetric, we write

Bis = Z a;j m0s (m) with a; , € IFy.
meS
0<mo=<s

We put

Bi,s = E ai,mo's(ﬂ),
meS
0<mo<g—1

Bis = Z ai,mﬁv(ﬂ)

meS
q—1<mo<s

Then
Bi,s = Bi,s + Bi,s-

Lemma 3.8. We have
p(Bis) =r(g—1) +2.
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Proof of Lemma 3.8. If E,s = 0 then p(I/S\,-,S) = +400 and we are done. Otherwise,
B; s # 0. By definition of the valuation p and Remark 3.6, we have

p(Bis)=p| Y aimos(m)

mesS
0<mp<g—1

:Inf{m1+2m2+-..+dmd|0§m0<q_1andai,ﬂ7&0}
ZInf{m1+m2+...+md|0§m0<q_1andai»ﬂ7é0}
zlnf{s—mo|0§mo<q_landai,m#0}
>s—(@q@—2)=r(@—1)+2.

The proof of Lemma 3.8 is finished. O

Lemma 3.9. We have _
p(Bis) 2 itg — D +1.

Proof of Lemma 3.9. By Lemma 3.3, we have

Bi,S |ts,(q,2)=...=ls=0 = Oa
i,s |ts_(q_2)=...=t3=0 = E ai,mo's—(q—l)(m)-
meS
g—1<mo=<s
Hence,
Bi,s |ts_(q_2)=...=lS=O = Bi,S |t5_(q_2)=...=l‘x=0 +Bi,s |ts—(q—2):---:ts20

= Bl’,S |t5—(q—2):---:t.&':0

= Z ajmOs—(g—1)(m).

meS
g—1<mo=<s

Since the polynomials B; s are symmetric, it follows that
P(Bis |ty gr=mt;=0) = P(Bis li,_n=..=tr=0 ) = p(Bis).  (34)
By Lemma 3.5, we know that
By 1ty gp=mti=0= (0 = 11"+ ts—(g—1)) Bs—(g—)-
Therefore, we get

Bis lty=..=t,_(y2=0= Bis—(g—1) —t1 - ts—(g—1) Bi—1,5—(q—1)- (3.5)
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Now, by the induction hypothesis, we have already known
P(Bis—g—1) — 11 ts—g—1)Bi—1,5—(q—1)) = ilg — 1) + 1.
Combined with (3.4) and (3.5), we obtain
p(Bis) Zilg—1D+1.
The proof of Lemma 3.9 is finished. O

We are back to the proof of Proposition 3.7. Note that B; ; = §, s+§i, s- Hence,
the proposition is an immediate consequence of Lemma 3.8 and Lemma 3.9. O

4. The two variable polynomials By (¢, #)

Let N > 2 be an integer such that N = 1 (mod g — 1). We denote by £,(N) the
sum of the digits of the expansion in base g of N. Let us assume that £,(N) > 2.
We set

s =4L4(N),

thens >2ands =1 (mod g — 1). We put

s—q
qg—1

e N.

r =

Let us expand N in base ¢

N

N:qu",

i=1

withe; € N, e] < ey < --- < e5. We remark that each identical exponent appears
at most ¢ — 1 times in the above expansion of N.
4.1. The two variable polynomials By (¢, 6)

In the previous section, we have defined the several variable polynomial By €
Fylt,, 6]. We define

By(1,0) =By |, _,.i € Fylt.0].

By Proposition 3.1, By (¢, 8) is a monic polynomial in 6 of degree r.
The following lemma summarizes some properties of the polynomial By (¢,6).

Lemma 4.1. We keep the previous notation. Then

1) By(@?,0P) = By(t,0)P;
2) BqN(t, 0) = BN(l‘q, 0);
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3) If N =0 (mod p), then By (t,0) € F,[t?, 0],
4) By(t,0) =0 —1t)" —r@ — 1) "1(t? — 1) (mod (t1 — 1)*F,[t, 0]).

Proof. 1) By (3.1), we deduce the following formula

s—1

—1)4e-1 N s e
By(.0) = ¢ 7; > a(;) [ Teo(r™). (4.1)
i=1

dZO a€A+7d

Note that
N . 1
~—1 qc _
# [Tt )eIE"p<<9>)[[t]]

and

> 3 emnan[5]]

d>0 aeA+yd

Therefore, we obtain By(t,0) € IF[¢, 0]. Thus the assertion 1) follows immedi-
ately.

2) This is a consequence of the definition of By (¢, 6).

3) Since N =0 (mod p), from the formula (4.1), we deduce

By(t,0) € IF, (1] ((é)) .

By the assertion 1), we know that By (¢, 0) € F [z, 0]. Hence we get

B (t,0) € F,[t7] ((é)) NF,l1, 6] = F [, 6].

4) Let ¢ € IF,. By [3, Theorem 2.9], we have

T
(1) li=¢= expc (ﬁ) ,

where exp. : Coo — Cq is the Carlitz exponential introduced in the Introduction
(see [11, Chapter 3, Paragraph 3.2]). Now, by [13, Theorem 1], we get

N ~
Z Z a(;) |t:;=2 Z a(g) _ 1

d>0a€Ay 4 d=0acArq ¢ (0 — &) expe (%)

7\ o
expc (ﬁ) =—(0—-29).

Note that
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Thus we obtain
BN(t,0) li=c= (0 — ). 4.2)

Now, we will calculate 4 7 Bn(t,0) |1=¢. We have expanded N = Zl 1 g¢ in base
q. We set
no = Card{l <i <s,e¢; =0}

Note that ) <ng <g —landng = N (mod ¢g). By (4.1), we get

d _mpe Dyt 1;1 o d,(a(r))a(rw ' amV )
=" ey 3 (° S

i=1 d>0aecA; 4

Observe that

La@)aO " a@)V Liw@®)
> > - li=¢
a a w(t)

d>0acAy 4
Yy @) a@) F@) |
d>0acAy g a a o) =
a(¢)#0

In particular, the latter expression does not depend on N. We claim that it vanishes.
In fact, take No = 1 + (¢ — 1)g. Then £,(No) = q. By Lemma 3.4, we have
By, (t,0) = 1. It implies
d
t,0 =
7 By, (t,0) li=c=
As a consequence of the previous discussion, we obtain

%(a(t)) a(t) dz(“)(t))
> 2\ g =0.
a a o)

d>0acA; 4
a(¢)#0

It follows that we always have

d
BN(.6) =0 forallf e F,. 4.3)

We are now ready to prove the assertion (4). From (4.2), we deduce that
By(#,0) =@ —1t)" (modt? —1).

We write
Byn(t,0) =0 -1+ W1 —1)

for some polynomial W € IF, [z, 0]. From (4.3), we deduce that

d
EBNU’ 0) =0 (mod 9 —1).
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It implies —r (0 — )"~ — W =0 (mod 9 — 1) and
W=—r@—1)"" (modt?—r).
Thus we get the assertion (4), i.e.
BN, 0)=@® —1) —r@ —1)"'t? —1) (mod (19 —1)*F,lt, 0]).
The proof is finished. O

Lemma 4.2. We keep the previous notation. Then the total degreeint, 6 of By (t,0)
is smaller than Max{r N +r — 1, 0}. Furthermore, By (t, 0) (as a polynomial in t)
is a primitive polynomial.

Proof. Recall that if r = 0, then By (z,0) = 1 and we are done. We can assume
thatr > 1. By Lemma 4.1 (4), we have

ByN(t,0)=—(=t)" "'t +r@? — 1)) (mod (17 — 1)*Fplt]).

In particular, deg, By (t,6) > p.
Let x € Cq be such that v (x) > —%. then for any a € Ay 4, we get

Yoo (a(x)N/a> = Nuso(@(x)) +d = d(Nveo(x) + 1).

Since vy (x) > —%, it follows

N
Iim vy <a(x) > =400
a

dega—+o00
Hence, the sum ) ;o> ¢ Aia (a)N converges to an element of CX. It follows
that X
N NN\~
a(x P(x
Sy - I (1-75) ecn
d=0acA a PeA P
- +.d €EA4

P irreducible

By (4.1), we have

s—

—_1)q=1 N s
By(t,0) lim= 1,7; > “(x) H ) i -

d>0 a€A+,d

Since .
a)(tq ') li=xe C5, foralll <i <s,

we obtain
Bn(t,0) |1=x# 0.

Hence, we have shown that if x € Cy isarootof By (¢, 0), then v (x) < —% < 0.
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We set m = deg, By (t, 0). Recall that
m .
By(t,0) = 0" + Zait’
i=1

with a; € IF,[6] and degy a; < r. It implies the following expression in Co[7]

By(t,0) =1 ][t —x))
=1

J

with & € F,[0]\ {0} such that degy A <r — 1 and xy, ..., x,, € Cx. Thus we get
m
0" = (—1)m,\]_[xj.
j=1

We have proved that forall 1 < j < m, voo(x;) < —%. Therefore
m
dego A —r < ——.
£o =N

We finally obtain
m =deg, By(t,0) < (r —degg A)N <rN.

Since By (¢, 0) is a monic polynomial in 6, the total degree in ¢, 6 of By(¢, 0) is
smaller than its degree in ¢ plus » — 1 which is less than orequal tor N +r — 1.
To conclude, observe by Lemma 4.1 (4) that By (1,60) = (6 — 1)". Now write
Bn(t,60) = aF with o € F,[0] non zero and F' € F,[0][¢] primitive. Then it
follows immediately that o | 6" and & | (6 — 1)". Since r > 1, a € F . The proof
is finished. O

4.2. Relations with Bernoulli-Carlitz numbers

Recall that in the Introduction, for n € N, we have introduced the coefficients D,,,
the Carlitz factorials IT(n) and the Bernoulli-Carlitz numbers BC,. We refer the
interested reader to [11, Chapter 9] for more details.

Proposition 4.3. We keep the previous notation.
1) Letd > 1 be such that g¢¢ > N, then we have the following equality in Cso

By(6,067") s BCu_y

a-1 =D R n@ =N
O M@ =N

i=1n=0,n#e;
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2) Let P be a monic irreducible polynomial in A of degree d > 1 such that
g% > N. Then

BCyi_ny =0 (mod P) <= Byn(0,0) =0 (mod P).

Proof. 1) This assertion is a consequence of the proof of [2, Theorem 2]. For the
convenience of the reader, we give a proof of this result. We will use the notation of
Section 3. Recall that 7 : Ty — Ty is the homomorphism of [, [z,]-algebras such
that v(x) = x4 for all x € Cy. Since AY = —O1y, we have

T(w(t)) =t —Ow(t;) foralli=1,...,s
Applying ¢ to the equation (3.1), we obtain
o (B,) st T (Ly (1))
7-[‘1

d—1 =(= 1):1
[Tt —69") - (t;, —09")
n=0

w(1) ... o)

or equivalently,

!Byt —69") - (6 — 097)

d—1
H (t1 —09") - (t; — 09")

_ T
T4

— 232 (1 = 01 D) .. (1 — 09 o (ty).
Now, we specialize to t; = 19 for 1 <i < s. Recall that, by (4.1), we have
By |, 1= BN (t.0).

Moreover, by [13], formula (24), for 1 <i < s, we have

e,

¢ 7q"
(l‘l’ — 04 )a)(t,') |t,-:9‘1€i = — Del. .
Putting altogether, we finally obtain

By (1,67 = BCu_y

= o= (—1)a1 -
s d—1 N . I[T(N)I1(g¢ — N)
T I e =6
i=1n=0,n#e;

2) The assertion follows from the fact that

BN (6,0) = BN(e, 9‘1") (mod P). 0
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4.3. Proof of Theorem C

We prove a slightly stronger version of Theorem C.
Theorem 4.4. Forall a € Fq [6], we have
By(t,0) |i=a# 0.
Proof. By Proposition 3.7, we have
Bn(t,0) — 0" €1t(t,0)

where (7, 6) denotes the ideal of Fq [#, 0] generated by ¢ and 6. The theorem follows
immediately. O

44. Proof of Theorem B

Fors =1,i.e.,£,(N) = 1, the result is well-known and is a consequence of [11,
Lemma 8.22.4]. Thus, we can assume that s = £, (N) > ¢. Recall that r = ;_T‘{.
Thenr > 0andr < s < N. By Lemma 4.2, the total degree in ¢, 6 of By (¢, 60) is
at most Max{r N +r — 1, 0}, hence strictly less than (r + 1) N. In particular,

degy By(0,60) < (r + 1)N.

Now, by Theorem 4.4,

By (9,6) £ 0.
Since P is a monic irreducible polynomial of degree d in A such that
Ly(N) —1
d =degy P > 71N=(r+1)N,
q—

we get
Bn(0,0) #0 (mod P).

Hence, the theorem follows from Proposition 4.3 2) since ¢¢ > N. The proof is
finished.

5. The L-series Ly (?)

5.1. The L-series Ly (t)

Let N > 1 be an integer. We set

N
savo =3 ek, azo,

a€A+,d

and

a@®)N N
L@ =) San®=3 > ——eT

d>0 d>0acAy 4
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0]

Lemma 5.1. Ford > [ 1+ 2, we have

£g(N)
Voo (Sun () = d + ¢ T 11,

Proof. Let d be an integer such that d > [L]q @
monic polynomial a in A, we set

_a 1
o0 = g <+ 8 5]

] + 2. Following D. Goss, for a

It follows
a1 _
San®)= Y =— Y anV@y.
a 0
aeA+4 a€A+d
We write
L,(N
m=d-—2-— [ﬁ} e N,
g—1
and we set
m
ym =Y (q—1q".
n=0
Then

ym =—1 (mod qm'H) and  £,(ym) =(m+1)(g—1).

Therefore, we obtain

voo [ D0 aMa)d = YT aN@X | = ¢" . (5.1)

aEA+,d a€Ay 4

Now, we will use the following elementary fact ([2, Lemma 4], see also [11, Lemma
8.8.1]).

Fact. Let s > 1 be an integer and let 71, ..., t; be s variables over Fq. If d is an
integer such that d(¢ — 1) > s, then we have

Z at))---a(ty) = 0.

a€A+,d

Since £4(N) + £y (ym) = L£4(N) + (m +1)(g — 1) < d(g — 1), the previous claim
implies

> awVa'm =o0. (5.2)

a€A+,d
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From (5.1) and (5.2), we deduce that

voo [ D a@May | =g

acAy g4
We finally obtain
1 _ d—pla®™q_
Voo (San () =vso | 57 D aWV@ | zd+q" T =d g T
a€A+,d
as required. [

Corollary 5.2. The function Ly (t) is an entire function in Co.

Proof. Since deg, (Sq n(t)) < Nd, this corollary is an immediate consequence of
the above lemma. O

Lemma 53. Let j € Z. Then Ly (1) |,_,,i=0ifand only if N =1 (mod g — 1),
and g/ N > 1.

Proof. Because of Lemma 5.1, we have

= M_ Ng/—1
LN | _pi=Y > S =R Y aM

d>0 GEA+_d d>0 a€A+’d
The lemma follows immediately from the following facts:

1) For n < 0, we always have Zdzo Za€A+d al,, #0;
2) Forn>0, Zdzo ZaeAMa” =0ifandonlyifn>1,n=0 (mod ¢ — 1). O

5.2. Basic sums
Letd > 1 be an integer. For a tuple k = (ko, ..., kqg—1) € Nd, we set

(k) = d e N*,
K| =ko+ -+ kg_1 €N,
w(k) =kg—1 + -+ (d — Dky +dko € N,
K[!

Ch=—" €T,
K kol kgl P

Ifa=ayg+a0+-+as_109"+ 69 with q; € ¥, , then we write
d—1

k;
a¥ = Hai’

i=0
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with 0° := 1. Finally, we will attach to the above tuple k another d-tuple
k=(ko,....,kq—1) €{0,...,q —1}¢
defined as follows: for0 <i <d — 1,k; € {0, ..., g — 1} is the least integer such

that k; + k; € (g — 1)N*,
Now we write

Ly =Y ain®07",  witho n(t) € Fylt]. (5.3)

i>0

It is immediate that org, v (#) = 1. We give an explicit expression for the polynomials
o; n(¢) in the following lemma.

Lemma 54. Fori > 0, we have

aun®= Yy DM Y amNak.

L(k)+wk)=i aEAJr’g(k)
Proof. Leta € Ay 4. We expand
1 1 1
= Nkl gk—
= 0d Z (=D Cka™ 5
a 0 keNd 0

It follows that

N 1 1
3 a(;) - Z(_l)\klckew(k) > amNa-.

acAy g keNd acAiq
We finally get
an®= Y (=DMce Y amnNd-
R +wk)=i acAi k)
The proof is finished. O

We analyze the basic sums

Z at)Ndk (5.4)

acAyd

which appear in the previous expressions «; ,(¢). We see that

Z amNa* = Z Z Ca®a™ i H2mattdma

acAyd acAy g n‘leﬁd“
m|=N
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Recall that by Lucas’ theorem, Cp, # O if and only if the sum N =mg + --- +my
has no carryover in base p. Furthermore, for n € N, we see immediately that

DM #£0s ne(g— DN
rely

Thus form € N4t we have

3 gn o [V im0 ma) € (@ - DN

0 otherwise.
acAiq

Following J. Sheats [15, Section 1], ford > 1,k € {0,...,q — l}d, we denote by
Uy(N, K) the set of tuples m € N9+! such that:

1) There is no carryover of p-digits in the sum N =mqg + - - - + my;
2) Forn =0,...,d — 1, we have m, — k,, € (¢ — 1)N.

Form € U;(N, k), we set
degm = m + 2my + --- +dmy.
An element m € Uy (N, k) is called optimal if
degm = Max{degn,n € U;(N,Kk)}.

If Ui (N, k) £, the greedy element of Uz (N, K) is the element m = (my, . ..,mg) €
Uy (N, K) such that (mg, ..., my) is largest lexicographically.
To summarize, we have shown that:

Lemma 5.5. With the previous notation, we have

Z a(t)Nak — (—l)d Z Cmtdegm

acAiq meU; (N k)

where K is the d-tuple attached to k defined at the beginning of this section.

5.3. An example: the series L{(¢)

For the convenience of the reader, we treat a basic example: N = 1. We keep the
previous notation. We will write S;(¢) instead of Sy 1(¢). Thus we get

Li(t) =) Sa(t)
d>0

where

Sa(t) = Z a;_t) e K[t].

a€A+,d



BERNOULLI-CARLITZ NUMBERS 1005

We set
o =1,
zdz(e—eq)---(e—eqd), d>1.

Lemma 5.6. Ford > 0, we have

{JEA+V,1

Proof. This is a well-known consequence of a result of Carlitz [11, Theorem 3.1.5].
The equality is immediate for d = 0. We can assume that d > 1. We put

eqs(X) = ]—[ (X —a) € A[X].

acA
degy a<d

By [11, Theorem 3.1.5], we have

d D, g
ea(X) =) ——X7,

i=0 Dil,_;
where Do =1, and fori > 1, D; = («9‘7i — 9)Diq71. Now observe that

Al o)

eq(X —69) a

acAqq a
Since ¢4 (Gd ) = Dy [11, Corollary 3.1.7], we get the desired result. O]
Lemma 5.7. Ford > 0, we have

(t—e).--(t—eqd’l)

Sq(t) = >

Proof. The equality is immediate for d = 0. We can assume that d > 1. Recall that

a(r)

Sa(t) = Z — € K[1].
a
a€A+,d
Then fori =0, ...,d — 1, it is immediate that
Sa(®) |, _ge = 0.
1

Furthermore, by Lemma 5.6, S;(¢) has degree d in ¢ and the coefficient of 4 is 7
The lemma follows. O
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We write

Ly(t) = Zadtd € Kool[t]] withay € Keo.
d>0

Recall that the Newton polygon for L(z) is the lower convex hull in R? of the
points

(d, voo(ad))da=0-

Its sides determine the valuation of the entire series L1(¢): if the Newton polygon
of L1(¢) has a side of slope « whose projection onto the horizontal axis has length
k,then L(t) has precisely k zeros (counted with multiplicity) with valuation —c.

Lemma 5.8. The edge points of the Newton polygon of Li(t) are (d, qqqd%ll) with
deN.

Proof. Letd € N. We claim that

1

voo(ad)=qq .
q—1

In fact, for any d’ > 0, we denote by ay(d’) € Ko the coefficient of ¢ in the
polynomial S, (t) € Koo[t]. It follows that

oy = Z ag(d).

d'>0
By Lemma 5.7, we get

1) Ford' < d,we getay(d') =0;
2) Ford' = d,we getay(d) = i and the

1 41
Voo (@ (d)) = voo | ) = ¢ ;
lg qg—1
3) Ford' > d,we get the following inequality
d d'—1 g’ -1
Voo (g(d) = —voolg) —q — - —q®~ >Qq_1
Our claim is proved and the lemma follows immediately. O

Recall that 19 € CX is a fixed (¢ — 1)-th root of —6. As a consequence of
Lemma 5.8, we obtain the following formula due to F. Pellarin [13, Theorem 1].
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Proposition 5.9. Recall that

N1
7 =6 ] (1 —9‘—‘1’> e Cx.

j=1

O — )L, (1) = %]‘[(1—#).

0 j=0

Then we have

Proof. By Lemma 5.8, the entire function (r — 0)L;(7) has simple zeros in Koo
whose valuations lie in the set {—¢g/, j € N}. By Lemma 5.3,

Li(t)],_pi=0 forall j>1.

Thus there exists « € CZ such that
t
(t — )L (1) :al_[ (1 - 97>
Jj=0

‘We observe that

M0
—[I(1= ) =0
)“gjzl 64’

and
L) =1.
Hence we conclude -
o=—.
Ag
The proof is finished. O

5.4. Exceptional zeros of the series L y(¢)

For the rest of this section, we will suppose that N > 2and N =1 (mod g — 1).
We recall that £, (N) denotes the sum of the digits of the expansion in base ¢
of N. We assume that £,(N) > 2. We set

s =Lg(N),

thens >2ands =1 (mod g — 1). We put
r=""9¢N.

q—1

We write N in base ¢

k
N =Y nq" with0<n; <q—landn #0. (5.5)
i=0
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Observe that

and
qk <N <qk+1.

We will often use the second expression of this expansion

s
N=) 4% (5.6)
i=1
withe; € N, e] < ey < --- < e = k. We remark that each identical exponent

appears at most ¢ — 1 times in the above expansion of N.
By Lemma 5.3, the elements of the set

sw={67"j = k]

are zeros of the entire series Ly (#). We call them the trivial zeros of Ly (t). The
other zeros are called exceptional zeros of Ly (t). It turns out (Proposition 5.10)
that they are intimately connected to several variable polynomials B and their spe-
cializations By (t, 6) which are introduced in [2] (see also [4]).
By (3.1), we get
(_1)r+17’.‘[’
By(t,0)———— = Ln(1). 5.7

[T @)

i=1
From this relation, we get immediately:

Proposition 5.10. Each exceptional zero of Ly(t) is a root of By(t, 6), with the
same multiplicity. In particular, the set of exceptional zeros counted with multiplic-
ity is finite.

We recall (Section 4.4) that Theorem B is a direct consequence of the fact thatt = 6

is not a root of By (¢, ). Further, Theorem 4.4 implies that fori € N, = 64 " is not
a root of By (¢, 0). Hence it is natural to ask whether all the roots of By(t, 8) (as
a polynomial in ¢) are exceptional zeros of Ly (¢). It is tempting to make a slightly
stronger conjecture which is Conjecture D in the Introduction.

Conjecture 5.11. The polynomial By (¢, 6) in the variable 7 has no zeros in the set
{09 ,i € 7).

Remark 5.12. When [;(N) = ¢, Lemma 3.4 1) implies that By(z,6) = 1 and
Conjecture 5.11 holds.

We will prove this conjecture when ¢ = p (Theorem 6.8). The case ¢ > p is
more subtle to handle. However, we are able to settle the conjecture when N is
g-minimal, that is /V satisfies certain combinatorial conditions (Theorem 7.7). Fur-
ther, we present some numerical evidence to support our conjecture when N is no
longer g-minimal.
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6. Exceptional zeros of L-series: the case ¢ = p

In this section we suppose that ¢ = p. We will fix an integer N > 2 such that
N=1 (mod p—1)and!,(N) > p (see Remark 5.12).

We will use the notation of Section 5. For the convenience of the reader, we try
to keep the text of this section as self-contained as possible. We refer the interested
reader to [20, Paragraph 5.8], for a proof of the Riemann hypothesis for the Carlitz-
Goss zeta function in the case g = p.

6.1. Preliminaries

We will use the second expression (5.6) of the expansion of N in base g = p
N
N = Z P, (6.1)
i=l

withe; € N, e < ep < --- < e, = k. We will generalize several results in [10,
Lemma 6.1 and Proposition 6.2].

Lemma 6.1. Let d > 1 andk = (ko, ..., kq—1) € {0, ..., p — 1}¢. We assume
that |K| < £,(N). We set

0 ifi =0
o = an iflfifd
Lp(N) ifi=d+1.

Denote by mK) = (mo, ..., mg) € Nt the element defined by

On+1
Z P ifon < Oopt1
I’l:O,...,d, mn: i:O‘n-"-l
0 otherwise.

Then m(k) € Uy(N, K). Furthermore, m(Kk) is the greedy element of Ug(N, k). In
particular, _ _
Uas(N,K) # 0 ifand only if K| < £,(N).

Proof. Observe that o = k| < £,(N). Thus m(k) is well-defined. It is then

straightforward to verify that m(k) € Uy(N, k) and that m(k) is the greedy element
of Uy(N, k).

To conclude, we have to show that if Uy (N, k) # @, then |k| < £,(N). As-
sume that Uy (N, k) # §. Letm’ = (mj, ..., m})) € Ug(N,K). Then

n=0,....d—1, ¢£,(m,)=k, (modp—1).
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Since 0 <k, < p — 1, we deduce that

n=0,....d =1, €y(m},)= k.

Thus
d—1
Lp(N) = Y ep(m)) = K]
n=0
The proof is finished. O

Proposition 6.2. Letd > 1 and Kk € N¢. We consider the tuple Kk attached to k
(see Section 5.2) and assume that |K| < £,(N). Then Uy(N,K) contains a unique

optimal element which is equal to the greedy element of Ug(N, k).
In particular,

> a®Na* £0  ifandonlyif K| < £,(N).

a€A+,d
Proof. Let m®&) = (mo,...,my) € Nt be the greedy element of Ud(N,_E)
defined in Lemma 6.1. Let m’ = (myy, ..., m)) € Ug(N, k) such that m" # m(k).
We will show that m’ is not optimal.
Write ¢, = £,(m)) forn =0,...d — 1. Thenforn =0,...,d — 1, we get

¢n>kpandc, =k, (mod p—1).

Forn =0,...,d — 1, there exist e, < --- < e,, such that we can write in a
unique way
Cn
m, = E poi.
i=1

We distinguish two cases.

Case 1: There exists an integer j,0 < j <d — 1,such that¢; > Ej.

Letm” = (my, ..., m/}) € N1 be defined by
m, if0<n<d-1,n#j
k)
m, =13 pei ifn=
i=1
N—my—...—mj_, ifn=d.

Then m” € Uy (N, k) and
degm” = degm’ + (d — j)(m/j —m’]f) > degm’.

Thus m’ is not optimal.
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Case2: Forn =0,...,d — 1, we have ¢, = k,,.
Let j € {0, ...d — 1} be the smallest integer such that m’J # m . Then by the

construction of m(k), we have
/

m;

>Inf

Thus there exists an integer / € N such that the number of times p! appears in the
sum of m/j as k j powers of p is strictly greater than the number of times it appears
in the sum of m ; as k ; powers of p. Also, there exists an integer v € N such that
the number of times p" appears in the sum of m; as k j powers of p is strictly
greater than the number of times it appears in the sum of m/] as k; powers of p.
Therefore, there exists an integer # > j such that p? appears in the sum of m; as
£, (m}) powers of p. By the construction of m(k), we can choose v and / such that

v<Il.Letm” = (mg,...,m)) € N?*1 be defined by
m’j—pl—i—p” ifn=j
m,=m, —p’+p' ifn=t
m’ otherwise.

n

Thenm” € Uy (N, k) and

d
degm” = ang =degm’ + (t — j)(p' — p’) > degm’.
n=0
Thus m’ is not optimal. O

We have the following key result.

Proposition 6.3. Letd > 1 such thatd(p — 1) < £,(N) — p andk € N¢. Then

Nd—1) <deg, Y  a®Na* < Nd.

acAiy

Proof. 1t is clear that
deg, Z a(t)Nak < Nd.

aeA.hd

Next, since k € N9, we get [k| < d(p — 1). Denote by m(k) the greedy element of
Uy (N, K) defined by Lemma 6.1. By Proposition 6.2, we have

d d
deg, Z a(t)Nak = ann =dN — and—n-
n=0 n=1

acAy g
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Recall that s = £,(N) and

is the expansion of N in base g.
We claim that for 1 <n <d,

mg_p, < (p—Lps17".
Infact,fix 1 <n <d.Sinced(p —1) < Lp(N) — p=s— p, we get
Ko+ +kica<(p—Dd—n+1)<s—p—(p—Dn-1.
By the above discussion, we deduce that
ot tky, = €s—p—(p—D(n—1) = €s—1 — N.

It implies
Ma—n < kg p For+han < (p — 1) p&=17".

If x e R\ {1}, we have

Xd: oo L= x® o d+ 1) — Dx?
nx = .
(x — 1)?

n=1

It follows that

d —d —d
_ p—p “—Wd+D(p-Dp p
-1 np " = < .
(p )n;p P 51

Putting all together, we obtain

d
deg, Z a(t)Nak =dN — and_,,
n=1

aEA+,d

d
>dN—(p—Dp“'Yy np™"

n=1

) pe!
p—1
> (d—1)N.

The proof is finished.
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6.2. Newton polygon of truncated L-series

Recall that

k
N =Y nip" with0 <n; < p—1landn #0,
i=0

s=€,(N) and r=;__li

e N.

We consider the truncated L-series (truncation of (5.3)):
r .
Arn(@) =Y N0 € Knolt].
i =0

Fori > 0, we set
Si(Ny= Y a@)V eF,lt].
(lEA+.,‘

This is a particular case of the basic sums (5.4) withk = (0,...,0) € N¢, By
——

i times
Proposition 6.2, we have

U N, (p—1,...,p—1 | #0.

r times

Therefore, we have S;(N) £ 0fori =0,...,r.

Lemma 6.4.
1) Fori =0,...,r — 1, we have
P!> deg, Sip1(N) — deg, 5;(N) > p";
2) Fori=1,...,r — 1, we have

deg, S;(N) — deg, S;—1(N) > deg, Si+1(N) — deg, Si(N).

Proof. We can assume that r > 1. Let m € N 1 be the optimal element of
UN,(p—1,...,p—1)) given by Lemma 6.1 and Proposition 6.2. For i =

r times
0,...,r,letm@) = (mo, ..., mi_1, N—Z;_:lo m,) € NIt Then again by Lemma
6.1 and Proposition 6.2, m(i) is the optimal element of U; (N, (p — 1, ..., p — 1)).

i times
Therefore,
deg, Si(N) = degm(i)
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fori =0,...,r.Fori =0, ...,r,we have:
i—1

pk+1 > N — Zmn > nkpk.
n=0

Now,leti € {0, ...,r — 1}, we have

i
P > degm(i + 1) — degm(i) = N = Y “m, > p.

(6.2)
n=0
Thus, we get the assertion 1).
Furthermore, we observe that fori € {1, ...,r — 1}, we have:
degm(i) —degm(i — 1) > degm(i + 1) — degm(i).
We get the assertion 2) and the proof is finished. O
Proposition 6.5. Fori =0, ...,r, we have
deg, o; n(t) = deg, Si(N).
Proof. We can assume that » > 1. By Proposition 6.3, fori =0, ...
Max {deg, > a®)Na* wik) + (k) =i
a€A+,g(k)
is attained for a unique tuple k which is (0,...,0) € N. It remains to apply
Lemma 5.4 to finish the proof. O

Proposition 6.6. The truncated L-series A, n(t) is a polynomial in t of degree

deg, S, (N). The edge points of its Newton polygon are

(deg; S;(N), 1)

Jor i = 0,...,r. Furthermore, all the roots of A, n(t) are of valuation strictly

greater than —p~%.

Proof. This is a consequence of Lemma 6.4 and Proposition 6.5.
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6.3. Newton polygon of the polynomial By (¢, 0)

In the following lemma, we do not suppose that ¢ = p. We compare the Newton
polygon of a truncated series with the truncation of the Newton polygon of this
series.

Lemma 6.7. Let F(t) = 14+ Y, B € Flrll[51], Bu(t) € Fyll, and
suppose that F (t) converges on Coo. Let M > 1, set Fp(t) = 1+ nyzl Bn (t)ei,, €
K[t], let p € R be the last slope of the Newton polygon of Fy (t) and let 1, denote
the multiset of the roots ¢ of F of valuation veo(¢) > —p, counted with multiplicity.
If — delp Voo (&) < M, then all the edge points of the Newton polygon of Fy(t)
are edge points of the Newton polygon of F(t).

Proof. First, we remark that the Newton polygon of F(¢) and Fj(¢) is the lower
convex hull of the points (0, 0) and (deg, (8,(¢)), n), withn < M for Fy,.

> degy(Bn)

o Newton polygon of Fis _-o~ Newton polygons of possible
_.-»~""series F with a same given

" truncation Fis

If (w, n) is the end point of a side of slope « of the Newton polygon of F, then
— Y Vso(¢) = n where the sum runs over all roots ¢ of F of valuation veo(¢) >
—a, counted with multiplicity. Thus, the hypothesis on the roots of F asserts that
the end point of the last side of slope < p of the Newton polygon of F is of the
form (deg, (B, (t)), no), withng < M.

Since the Newton polygon of F' can only lie under the one of Fyy,(deg, (B, (¢)).,
np) is an edge point of the Newton polygon of Fy,. Finally, if np < M, then the
next side of the Newton polygon of F is not a side of the one of Fj, its end point
is then of the form (deg; (B, (¢)), n1) with n; > M, and of slope strictly less than
0, which is a contradiction. O

We are now ready to prove the main theorem of this section.
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Theorem 6.8.

1) The polynomial By (t, 6) is of total degree deg, S, (N) int, 6 and has only one
monomial of total degree deg, S, (N), which is t3& 5 (N) ;
2) The edge points of the Newton polygon of 6" By (t, 0) are

(deg; Si(N),1)

fori = 0,...,r. In other words, the polynomial 67" By (t, 0) has the same
Newton polygon as that of Ay n(t);

3) The polynomial By (t, 0) in the variable t has no zeros in {0pi, i el
Remark 6.9. The assertion 3) proves Conjecture D when g = p.

Proof. First, we prove the assertion 2). By the formula (5.7), the roots of Ly (), are
the roots of By (z, 6) and the roots of w1 (tP"). The latter ones are all of the form
0P’ with j > 0and ¢; < k, thus of valuation less than or equal to —p‘k. Thus,
the roots of Ly (¢) of valuaton strictly greater than — p’k are all roots of By (¢, 0).
Therefore, we have — Y v50(¢) < r where the sum runs over all roots ¢ of Ly (t)
of valuation ve. () > —p~*, counted with multiplicity.

Combining Lemma 6.7 and Proposition 6.6, we get that the Newton polygon
of A, n(t) is a truncation of the Newton polygon of Ly (¢). As it describes the
roots of By (¢, 6), we obtain that the polynomial 6" By (¢, 8) has the same Newton
polygon as that of A, y(¢). We get the assertion 2).

Second, the assertion 3) is then a consequence of Lemma 6.4: the roots of
By (t, 0) have valuation w with —p~% < w < —p~*+D),

Finally, we prove the assertion 1). The total degree of 8,(t)0" " is d where
(d,r) is the end point of the segment starting at (deg, 8,(¢), n) and of slope 1.
Since the slopes of the Newton polygon of 8" By (¢, 0) are all less than p~*, the
total degree of By (¢, 0) is obtained forn = r. ]

Corollary 6.10. The polynomial By (t, 0) (viewed as a polynomial in ) has r sim-
ple roots and all its roots are contained in Fp((%)) \ {tf" ,i €Z}.

Proof. As before, we write
07" Bn(t,0) = Z,B,- (10" with Bi(t) € Fplt].
i=0

Observe that Bp(¢) = 1 and by Theorem 6.8,
deg, Bi(t) =deg, S;i(N), i=0,...,r.
By Lemma 6.4, we deduce that,fori =1,...,r — 1,

deg, Bit1(t) —deg, Bi (1) < deg, Bi(t) — deg, Bi—1(t).



BERNOULLI-CARLITZ NUMBERS 1017

Thus the edge points s of the Newton polygon of 6" By (¢, 9) viewed as a polyno-
mial in % are
(i, —deg, Si(N)), i=0,...,r

We obtain the corollary. O

7. Exceptional zeros of L-series: toward the general case

In this section, g is no longer assumed to be equal to p.

7.1. The work of J. Sheats

Let N > 1 be an integer. For d > 1, we set

Us(N)=Uaq | N.(q—=1,....9—1)

d times

Recall (Section 5.2, [15], Section 1) that Uz (N) is the set of tuples m € N4+1 such
that

1) There is no carryover of p-digits in the sum N =mqg + - - - + my;
2) Forn =0,...,d — 1, we have m,, € (¢ — 1)N*,

Thus, by Lemma 5.5,
Sy(N) := Z at)N = (=1 Z Cptdee™.

acAi g meU;(N)

J. Sheats proved ([15], Theorem 1.2 and Lemma 1.3) that if Uy(N) # @, Us(N)
has a unique optimal element. Further, the optimal element is the greedy element
of Uj(N). In particular,

Uis(N) #0 < Sa(N) #0.

Observe that if m = (mq, ..., my) € Ug(N), then (mg, ..., mg_n,mqg_1 +my) €
Ug—1(N). In particular, Uy (N) # @ implies Uy_1(N) # 0.

Proposition 7.1. Let d > 1 such that Us(N) # (. Then
1) Fori=1,...,d —1,
deg, S;(N) —deg, S;—1(N) > deg, Si+1(N) —deg, S;(N);

2) Further, if N = 0 (mod g — 1) and if there is an element (my, ..., mg) €
Ug(N) such that mg # 0. Then

deg, S4(N) > N(d — 1);
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3) Fori=1,...,d,
deg, S4(N) < Nd.

Proof. 1) This assertion is a consequence of the proof of [15, Theorem 1.1], (see
[15, pages 127 and 128]).

2) This assertion is proved in [15, Proposition 4.6].

3) This assertion is immediate. O

Lemma 7.2. Let d > 1 such that Uy (N) # . Let m = (my, ..., mq41) be the
greedy element of Ug41(N). Then

deg, S4(N) > N(d — 1),

and
deg, Sd(N) — deg, Sd—l (N) > MmMdg+1-

Proof. We setm’ = (my, ..., mg) € Uy(N — mgy1). Then
mg=0 (modg—1), mg>qg—1.

Furthermore, observe that m'’ is the greedy element of Uy (N — mg41). By Proposi-
tion 7.1, assertion 2), we get

deg; S¢(N —mg41) > (N —mgy1)(d —1).
Letm” = (mo, ..., mg_1,mq +mgy1) € Uy(N). We have
deg, Sq(N) = degm” =my +-- -+ (d — 1)(mag_1) + d(mg + ma1).
Thus
deg, S¢(N) = deg, Sy(N —mqy1) +dmgyq
> (N —mgr1)d—1)+dmgyy = (d — 1N +mgy.
It implies that
deg, S4(N) > N(d — 1),
deg; Sq(N) — deg; Sg—1(N) = deg, Sa(N) — (d — DN > mgy;. O

Proposition 7.3. Let d > 1 such that Uj11(N) # (. We consider the truncated
L-series

d
Aan (@) =) (007 € Kuolt].
i=0
Then
deg, Ag,n(t) = deg, Su(N).

Further, the edge points of the Newton polygon of Aq n(t) are
(degtSi(N),i), i=0,...,d.
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Proof. The proof uses similar arguments as that used in the proof of Proposition 6.6.
Leti > 0. By Lemma 5.4, we have

an@®= > (=DMce Y amNdt

Lk)+wk)=i acAy k)

Observe that
deg, Y a®Na* <tm@N.

a€A+‘g(k)

Thus, fori =0, ..., d, by Proposition 7.1, assertion 2), we get
deg, o; n(t) = deg, Si(N).

In particular, again by Proposition 7.1, assertion 2),
deg, Ay n(t) = deg, Sq(N).

Finally, by Proposition 7.1, assertion 1), (deg, S;(N),i),i =0, ..., d, are the edge
points of the Newton polygon of Ay n(2). O

To conclude this paragraph, we recall the following crucial result which is
implicit in [15] after G. Bockle [7, Theorem 1.2].

Theorem 7.4. We keep the previous notation. Then

UsN) 20 & Si(N) £0 & d(q—l)gMin{eq(p"N),ieN}.

7.2. The g-minimal case

An integer N > 1 will be called g-minimal if

A Pz ]
qg—1 qg—1

Remark 7.5. Observe that if ¢ = p, then every integer N > 1 is g-minimal.

For the rest of this section, we always suppose that N > 2 is q-minimal such that
N =1 (mod g —1)andl;(N) > q (see Remark 5.12).
We will use the first expansion (5.5) of N in base g

k
V=3 g
i=0
with ng, ..., nx € {0, ..., q — 1} and nx # 0. By Theorem 7.4, we know that

UsN) #0 & Si(N)#0 & d§r+1=Min{[&;(p+le)],ieN}.
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Proposition 7.6. We keep the previous notation. Then fori € {1, ...,r}, we have
q" < deg, Si(N) — deg, S;—1(N) < ¢"*".
Proof. By Proposition 7.1, fori € {1,...,r},
deg, S;(N) — deg, S;_1(N) < deg, S{(N) < N < ¢"*1.

Let m = (mo, ..., m,11) be the greedy element of U,;1(N). Since £4(N) =
(r +1)(g — 1) + 1, we must have £,(m, 1) = 1.
Ifmgy = qk, then by Lemma 7.2 and Proposition 7.1, fori € {1,...,r}, we
have
deg, S;(N) — deg, Si_1(N) > g*.

Suppose now that mgy1 # qk. Since m is the greedy element of U,;+1(N), p
divides ny. Otherwise, we would have mg 41 = qk. In particular, ny > 2, and it
follows that nqu > %N.

For alli € N, we have

LN —mg) | 1PN
q—1 a1 -

By Theorem 7.4, we deduce that U, (N — nqu) # 0. Letu = (uo, ..., u,) be the
greedy element of U, (N — nkg®). Thenw' = (uo, . .., ur + ngg®) is an element of
U,(N),and u’ = (ug, ..., u,_1) is the greedy element of U,_1(N — nxq* — uz).
By Proposition 7.1, assertion 2), we have degu” > (r — 2)(N — nqu — uy). Thus
we get
deg, S, (N) > degu’
= degu” +r(nkq* +uy)
> (r—2)(N - nig* — ug) + r(nqu + uy)
k 3,1 k
> (l" - Z)N +2nk6] == (r - 2)N + Enkq + Enkq
> (r — N +¢*

where the last inequality comes from both estimations n; > 2, and nzg* > %N .
By Proposition 7.1, assertion (3), we know that

deg, S,—1(N) < N(r —1).
‘We obtain

deg, S, (N) —deg, S,—1(N) > N(r — ) +¢* = N(r = 1) = ¢~
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Now, by Proposition 7.1, assertion 1), fori € {1, ...,r}, we have
deg, S;(N) — deg, Si—1(N) > deg, S, (N) — deg, S,—1(N).
Therefore,
deg, S;(N) — deg, S;_1(N) > g*.

The proof is complete. O]

Theorem 7.7.

1) The polynomial By (t, ) is of total degree deg, S, (N) int, 8 and has only one
monomial of total degree deg, S, (N), which is rdeg: S-(N) .
2) The edge points of the Newton polygon of 6" By (¢, 0) are

(degt S;(N), i) fori=0,...,r;

3) The polynomial By (t, 0) in the variable t has no zeros in {qu, i 7).

Remark 7.8. The assertion 3) proves Conjecture D when N is g-minimal. In fact,
we prove a stronger assertion, which says that all the roots of By (¢, 6) in the vari-
able ¢ are of valuation w with —g =% < w < —g~*+D

Proof. The proof is similar to that of Theorem 6.8. Indeed, Proposition 7.3 com-
bined with Proposition 7.6 show the equivalent of Proposition 6.6: the truncated
L-series

Arn() = N0 € Koolt]
i=0

is a polynomial in ¢ of degree deg, S, (N). The edge points of its Newton polygon
are (deg, S;(N),i) fori = 0, ..., r. Furthermore, all the roots of A, y(t) are of
valuation w with —¢ ¥ < w < —g~*+D_ The rest of the proof is identical. O

This theorem implies immediately the following:
Corollary 7.9. We assume that r > 1. Then:
1) The zeros of By (t, 0) are algebraic integers (i.e., they are integral over A);

2) By(t,0) (viewed as a polynomial in 0) has only simple roots and its roots
belong to F, (1)) \ {t7',i € Z}.
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7.3. Final remarks

As an application, we will deduce some properties on the several variable polyno-
mials B;.

Proposition 7.10. Let s be an integer such that s > 2 and s = 1 (mod g — 1).
Then

1) The polynomial By is square-free, i.e., By is not divisible by the square of a
non-trivial polynomial in Fy[t, ..., t;,0];
2) Foralli,n € N, By is relatively prime to (tfl — an);
3) For all monic irreducible primes P of A, By is relatively prime to P(t1)---
P(t;) — P.
Proof. We choose N =¢q°! +...4+¢g% with0 <e] < ey < ... < ¢es. Then

By(1,0) =B |

o
ti=t4""

We see immediately that N is g-minimal. Corollary 7.9, assertion 2) implies that
By (t, 0) is square-free and has no roots in {9‘1', i € Z}. This proves 1) and 2).
We will prove the assertion 3). Let P be a monic irreducible polynomial in
A. Suppose that that P(z1) --- P(t;) — P and B, are not relatively prime. Then
P(t)N — P and By (t, 0) are not relatively prime. By Remark 7.8, if « € C is a
root of By (¢, 6), then
k

Voo(t) > —q~ " > N

Now, observe that if 8 € Cu is a root of P(t) — P, then vso(8) = —%. This
leads to a contradiction. O

The assertion 1) of the above proposition implies immediately the cyclicity
result of [6, Theorem 4] by a completely different method.

Finally, we present an example of an integer N which is not g-minimal, so that
our method does not apply. We choose g = 4 and

N=0682=24+2x4+2x4>+2x4%>+2x4*

We get l,(N) = 10 = 3g — 2 so that degy (By (¢, 0)) = 2. Moreover, [,(pN) =5
so that N is not g-minimal. Since

q* =256 < N < ¢° = 1024,

we get k = 4 and the set of trivial zeros of the series Ly () is {qu, j = —4}. By
using the explicit examples given in Section 3, we get

BN(I,9)=92+9 <t10+t34+t40+ll30+l136+t160+l514+[520+1544+l640>

+ (t170+t554+t650+t674+t680>.
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The Newton polygon of By(t,6) has then the end points (0, —2), (640, —11),

(680, 0). We deduce that By (7, ¢) has 640 distinct zeroes of valuation w; = — 5
and 40 distinct zeros of valuation wy = —%. The explicit bounds in Remark 7.8
do not hold: wy = —% < —q7F = _ﬁle' However, Conjecture D still holds for

N =682, i.e., By(t,0) has no zero of the form qu, i €.
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