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Nonlinear CR automorphisms of Levi degenerate hypersurfaces
and a new gap phenomenon

MARTIN KOLAR AND FRANCINE MEYLAN

Abstract. We give a complete classification of polynomial models for smooth
real hypersurfaces of finite Catlin multitype in C3, which admit nonlinear in-
finitesimal CR automorphisms. As a consequence, we obtain a sharp 1-jet deter-
mination result for any smooth hypersurface with such a model. The results also
prove a conjecture of the first author about the origin of such nonlinear automor-
phisms (AIM list of problems, 2010). As another consequence, we describe all
possible dimensions of the Lie algebra of infinitesimal CR automorphisms, which
leads to a new “secondary” gap phenomenon.

Mathematics Subject Classification (2010): 32V35 (primary); 32V40 (sec-
ondary).

1. Introduction

This paper provides an important necessary step towards solving the local equiva-
lence problem for hypersurfaces of finite Catlin multitype, by giving a full classifi-
cation of their polynomial models with nonlinear infinitesimal CR automorphisms.
Note that by the classical Chern-Moser theory, the only strongly pseudoconvex hy-
persurface which admits such automorphisms is the sphere (see [9, 27]).

The Levi degenerate case has recently attracted considerable attention and has
led to the discovery of new types of nonlinear symmetries (see, e.g., [12,16,18]). In
contrast to the C2 case, nonlinear infinitesimal CR automorphisms with coefficients
of arbitrarily high degree may arise in Cn, for n > 2 [11,22].

Our aim in this paper is to study systematically nonlinear infinitesimal CR au-
tomorphisms of Levi degenerate hypersurfaces in complex dimension three. The re-
sults provide a description of hypersurfaces of finite Catlin multitype in C3, whose
models admit such automorphisms. Since the Lie algebra of infinitesimal CR auto-
morphisms of a polynomial model is in one-to-one correspondence with the kernel
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of the generalized Chern-Moser operator [17], we can prove a sharp 1-jet determi-
nation result for the biholomorphisms of any such hypersurface.

Moreover, we identify the common source of such automorphisms. In all cases
they arise from suitable holomorphic mappings into a quadric in CK , for K � 3, as
a pull-back of an automorphism of the quadric.

As an application, we will determine all possible dimensions of the Lie algebra
of infinitesimal CR automorphisms for such models, which reveals a “secondary”
gap phenomenon at dimension eight.

Our starting point are the sharp results of [17] which give an effective bound
for the weighted degree of the coefficients of an infinitesimal CR automorphism,
and put restrictions on the possible form of such vector fields.

Our first result deals with a holomorphically nondegenerate model hypersur-
face MH given by a homogeneous polynomial P of degree d > 2 without plurihar-
monic terms,

MH := {Imw = P(z, z̄)}, (z, w) 2 C2 ⇥ C. (1.1)

Notice that the case of d = 2 corresponds to Levi nondegenerate models, i.e.,
hyperquadrics. We showed in [17] and in [18] that the Lie algebra g = aut(MH , 0)
of all germs of infinitesimal automorphisms of MH at 0 admits the weighted grading

g = g�1 � g�1/d � g0 � g⌧/d � g1�1/d � g1, (1.2)

for some integer ⌧ , where 1  ⌧  d � 2. The following theorem shows that if
dim g1�1/d 6= 0, then there is a unique choice for MH .

Theorem 1.1. Let MH be the holomorphically nondegenerate model hypersurface
given by (1.1) with d > 2, and let g1�1/d in (1.2) satisfy

dim g1�1/d > 0. (1.3)

Then MH is biholomorphically equivalent to

Imw = Re z1 z̄d�1
2 . (1.4)

Further we consider the more general case of a holomorphically nondegenerate
weighted homogeneous model of finite Catlin multitype. Let

MH := {Imw = PC(z, z̄)}, (z, w) 2 C2 ⇥ C, (1.5)

where PC is a weighted homogeneous polynomial of degree one with respect to
the multitype weights µ1, µ2 (see Section 2 for the needed definitions). Note that
in order to distinguish the homogeneous and the weighted homogeneous case, we
denote the corresponding polynomial by P in the former and by PC in the later
case.
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As proved in [17], the Lie algebra of infinitesimal automorphisms g =
aut(MH , 0) of MH admits the weighted decomposition given by

g = g�1 �
2M

j=1
g�µ j � g0 � gc � gn � g1, (1.6)

where gc contains vector fields commuting with W = @w and gn contains vector
fields not commuting with W , whose weights in both cases lie in the interval (0, 1).
Note that by a result of [17], vector fields in g j with j < 0 are regular and vector
fields in g0 are linear.

Theorem 1.2. Let PC(z, z̄) be a weighted homogeneous polynomial of degree 1
with respect to the multitype weights, such that the hypersurface

MH := {Imw = PC(z, z̄)}, (z, w) 2 C2 ⇥ C, (1.7)

is holomorphically nondegenerate. Let gn in (1.6) satisfy

dim gn > 0. (1.8)

Then MH is biholomorphically equivalent to

Imw = Re z1 z̄l2 (1.9)

or
Imw = |z1|2 ± |z2|2l . (1.10)

Note that the Levi nondegenerate case, corresponding to l = 1, is covered by The-
orem 1.2. The following result, which deals with the component gc was obtained
in [18].
Definition 1.3. Let Y be a weighted homogeneous vector field. A pair of finite
sequences of holomorphic weighted homogeneous polynomials {U1, . . . ,Un} and
{V 1, . . . , V n} is called a symmetric pair of Y -chains if

Y
�
Un� = 0, Y

�
U j� = c jU j+1, j = 1, . . . , n � 1, (1.11)

Y
�
V n� = 0, Y

�
V j� = d j V j+1, j = 1, . . . , n � 1, (1.12)

where c j , d j are non zero complex constants, which satisfy

c j = �d̄n� j . (1.13)

If the two sequences are identical we say that {U1, . . . ,Un} is a symmetric Y -chain.
The following theorem shows that in general the elements of gc arise from symmet-
ric pairs of chains.
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Theorem 1.4. Let MH be a holomorphically nondegenerate hypersurface given
by (1.7), which admits a nontrivial Y 2 gc. Then PC can be decomposed in the
following way

PC =
MX

j=1
Tj , (1.14)

where each Tj is given by

Tj = Re

0

@
N jX

k=1
Uk
j V

N j�k+1
j

1

A , (1.15)

where {U1j , . . . ,U
Nj
j } and {V 1j , . . . , V

Nj
j } are a symmetric pair of Y -chains.

Conversely, if Y and PC satisfy (1.11)-(1.15), then Y 2 gc.

Note that Y is uniquely and explicitly determined by PC (see [18]). Hence for a
given hypersurface this result also provides a constructive tool to determine gc.
Definition 1.5. If PC satisfies (1.11)-(1.15), the associated hypersurface MH is
called a chain hypersurface.
The description of the remaining component g1 is a consequence of Theorem 4.7
in [17] (see section 2 for the notation).
Definition 1.6. Let PC(z, z̄) be a weighted homogeneous polynomial of degree 1
with respect to the multitype weights. We say that PC is balanced if it can be written
as

PC(z, z̄) =
X

|↵|3=|↵̄|3=1
A↵,↵̄z↵ z̄↵̄, (1.16)

for some pair of nonzero rational numbers 3 = (�1, �2), where

|↵|3 := �1↵1 + �2↵2.

The associated hypersurface MH is called a balanced hypersurface.
Note that PC is balanced if and only if the linear vector field

Y = �1z1@z1 + �2z2@z2

is a complex reproducing field in the terminology of [17], i.e., Y (PC) = PC .

Theorem 1.7. The component g1 satisfies dim g1 > 0 if and only if MH is a bal-
anced hypersurface.

As a consequence, we obtain the following result for a general hypersurface of finite
Catlin multitype.
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Theorem 1.8. Let M be a smooth hypersurface and p 2 M be a point of finite
Catlin multitype with holomorphically nondegenerate model. If its model at p is
neither a balanced hypersurface nor a chain hypersurface, then its automorphisms
are determined by their 1-jets at p.

Our results also confirm a conjecture about the origin of nonlinear automorphisms
of Levi degenerate hypersurfaces formulated by the first author (see [18], [19]).
Recall that two vector fields X1 and X2 are said to be f -related if f⇤(X1) = X2.

Theorem 1.9. Let MH be a holomorphically nondegenerate hypersurface given by
(1.7) and Y be a vector field of strictly positive weight. Then Y 2 aut(MH , 0), if
and only if there exists an integer K � 3 and a holomorphic mapping f from a
neighbourhood of the origin in C3 into CK which maps MH into a Levi nonde-
generate hyperquadric Q ✓ CK such that Y is f -related with an infinitesimal CR
automorphism of Q.

Let us remark that mappings of CR manifolds into hyperquadrics have been studied
intensively in recent years (see, e.g., [1,10] and the references therein). Here we ask
in addition that the mapping be compatible with a symmetry of the hyperquadric.

As an application of our results, we will determine all possible dimensions of
aut(MH , 0). Recall that the dimension of the symmetry group of a Levi nonde-
generate hyperquadric in C3 is equal to 15. In complex dimension two, the possi-
ble dimensions of the symmetry group of a general hypersurface are known to be
1, 2, 3, 4, 5, 8 [23].

The problem of possible dimensions of the symmetry groups of a general hy-
persurface inC3 was considered by Beloshapka in [4]. He proved that for a germ of
(an arbitrary) smooth real hypersurface, which is not equivalent to a hyperquadric,
the dimension is at most 11. For related results on the gap phenomenon, see [25,26].

The following result shows that for polynomial models of finite Catlin multi-
type the largest possible dimension is 10. Further, it demonstrates the existence of
a secondary gap phenomenon in dimension 8.

Let us remark that the term gap phenomenon in this context was introduced by
Kruglikov (see [14,25])

Theorem 1.10. Let MH be a holomorphically nondegenerate hypersurface given
by (1.7), such that 0 is a Levi degenerate point. Then

dim aut(MH , 0)  10.

If the dimension is equal to 10, then MH is equivalent to (1.4). If the dimension is
equal to 9, then MH is equivalent to (1.10). Further, the dimension of aut(MH , 0)
can attain any value from the set

{2, 3, 4, 5, 6, 7, 9, 10}.

In particular, there is no MH with dim aut(MH , 0) = 8.
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The paper is organized as follows. Section 2 contains the necessary definitions used
in the rest of the paper. Section 3 deals with the gn component of the Lie algebra
g. Section 4 contains the proofs of the results, up to Theorem 1.9. Section 5 deals
with possible dimensions of aut(MH , 0) and contains the proof of Theorem 1.10.

2. Preliminaries

In this section we introduce notation and recall briefly some needed definitions (for
more details, see, e.g., [20]).

Consider a smooth real hypersurface M ✓ C3 and let p 2 M be a point of
finite type m � 2 (in the sense of Kohn and Bloom-Graham, [5, 15]).

Let (z, w) be local holomorphic coordinates centered at p, where z = (z1, z2)
and z j = x j + iy j , j = 1, 2, and w = u + iv. We assume that the hyperplane
{v = 0} is tangent to M at p, so M is described near p as the graph of a uniquely
determined real valued function

v = F(z1, z2, z̄1, z̄2, u), (2.1)

with dF(0) = 0. We can assume that (see, e.g., [5])

F(z1, z2, z̄1, z̄2, u) = Pm(z, z̄) + o(u, |z|m), (2.2)

where Pm(z, z̄) is a nonzero homogeneous polynomial of degree m without pluri-
harmonic terms.

The definition of Catlin multitype involves rational weights associated to the
variables w, z1, z2. The variables w, u and v are given weight one, reflecting our
choice of tangential and normal variables. The complex tangential variables (z1, z2)
are treated as follows.

By a weight we understand a pair of nonnegative rational numbers3=(�1,�2),
where 0  � j  1

2 , and �1 � �2. Let 3 = (�1, �2) be a weight, and ↵ = (↵1,↵2),
� = (�1,�2) be multiindices. The weighted degree  of a monomial

q(z, z̄, u) = c↵�l z↵ z̄�ul , l 2 N,

is then

 := l +
2X

i=1
(↵i + �i )�i .

A polynomial Q(z, z̄, u) is weighted homogeneous of weighted degree  if it is a
sum of monomials of weighted degree  .

Analogously, a holomorphic vector field with polynomial coefficients of the
form

2X

j=1
f j (z, w)@z j + g(z, w)@w, (2.3)
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is weighted homogeneous of weighted degree  , provided g(z, w) is weighted ho-
mogeneous of degree +1, and each f j (z, w) is weighted homogeneous of degree
 + � j .
Definition 2.1. For a weight 3, the weighted length of a multiindex ↵ = (↵1,↵2)
is defined by

|↵|3 := �1↵1 + �2↵2.

Similarly, if ↵ = (↵1,↵2) and ↵̂ = (↵̂1, ↵̂2) are two multiindices, the weighted
length of the pair (↵, ↵̂) is

|(↵, ↵̂)|3 := �1(↵1 + ↵̂1) + �2(↵2 + ↵̂2).

Definition 2.2. A weight 3 will be called distinguished for M if there exist local
holomorphic coordinates (z, w) in which the defining equation of M takes form

v = PC(z, z̄) + o3(1), (2.4)

where PC(z, z̄) is a nonzero 3 - homogeneous polynomial of weighted degree 1
without pluriharmonic terms, and o3(1) denotes a smooth function whose deriva-
tives of weighted order less than or equal to one vanish.
It follows from (2.2) that one can always find distinguished weights. When (2.2) is
valid, we can take, e.g., 3 = ( 1m , 1m ).

In the following we shall consider the standard lexicographic order on the set
of pairs. We recall the following definition (see [7]):
Definition 2.3. Let 3M = (µ1, µ2) be the infimum of all possible distinguished
weights 3 with respect to the lexicographic order. The multitype of M at p is
defined to be the pair

(m1,m2),

where

m j =

8
<

:

1
µ j

if µ j 6= 0

1 if µ j = 0.

If no m j is infinity, we say that M is of finite multitype at p. Clearly, since the
definition of multitype includes all distinguished weights, the infimum is a biholo-
morphic invariant.

Coordinates corresponding to the multitype weight 3M , in which the local
description of M has form (2.4), with PC being3M -homogeneous, are called mul-
titype coordinates.
Definition 2.4. Let M be given by (2.4). We define a model hypersurface MH
associated to M at p by

MH =
�
(z, w) 2 Cn+1 | v = PC(z, z̄)

 
. (2.5)

Next let us recall the following definitions:
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Definition 2.5. Let X be a holomorphic vector field of the form

X =
2X

j=1
f j (z, w)@z j + g(z, w)@w. (2.6)

We say that X is rigid if f 1, f 2, g are all independent of the variable w.
We can divide homogeneous rigid vector fields into three types, and introduce

the following terminology:
Definition 2.6. Let X 2 aut(MH , 0) be a rigid weighted homogeneous vector field.
X is called

(1) A shift if the weighted degree of X is less than zero;
(2) A rotation if the weighted degree of X is equal to zero;
(3) A generalized rotation if the weighted degree of X is bigger than zero and less

than one.

3. Computing gn

In this section we describe all holomorphically nondegenerate model hypersurfaces
MH which have a nontrivial gn .

For easier notation, we will write P instead of PC in (1.7). If MH has non-
trivial g�µ j and X 2 g�µ j , then by [17, Lemma 6.1] there exist local holomorphic
coordinates preserving the multitype (with pluriharmonic terms allowed), such that

X = i@z j . (3.1)

By a permutation of indices, if needed, we can assume that j = 1 (hence we allow
here µ1 < µ2).

By assumption, we may write P as

P(z, z̄) =
mX

j=0
x j1 Pj (z2, z̄2), (3.2)

where Pj (z2, z̄2) are real valued homogeneous polynomials and Pm 6= 0.

Lemma 3.1. Let X = i@z1 be in aut(MH , 0) and P be of the form (3.2). If there is
a vector field Y in aut(MH , 0) such that [Y,W ] = X , then m  2, i.e., P has the
form

P(z, z̄) = x21 P2(z2, z̄2) + x1P1(z2, z̄2) + P0(z2, z̄2). (3.3)

Proof. Suppose, by contradiction, that m > 2. We split Y according to the powers
of z1, writing

Y = iw@z1 +
kX

j=�m
Y j , (3.4)
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where each Y j has the form

Y j = '1
j (z2)z1 j+1@z1 + '2

j (z2)z1 j@z2 +  j (z2)z1 j+m@w, (3.5)

with '1 j�1(z2) = '2
j (z2) = 0 for j < 0 and Yk 6= 0. Note that by weighted

homogeneity of Y , each coefficient is homogeneous in z2, hence a monomial.
We claim that 2m � 1  m + k. Indeed, if not, while applying ReY to P � v,

the first term in the right-hand side of (3.4) gives

�
m
2
P2mx1

2m�1

while all other terms give polynomials in which z1 has maximal exponent m + k,
yielding a contradiction that proves our claim.

We will next show that  k(z2) = 0. Indeed, consider the leading term with
respect to the variable z1 in the tangency equation ReY (P � v) = 0. We obtain

�k,m�1mx2m�1
1 P2m = mxm�1

1 PmRe'k1 z
k+1
1

+ 2xm1 Re'k2 zk1
@Pm
@z2

� Im k zk+m1 ,
(3.6)

where � is the Kronecker symbol. We observe that, since m > 2, Im k(z2)z1k+m
cannot contain terms in x1y1m+k�1 and in y1m+k . Hence  k(z2) = 0.

Next we distinguish two cases.

Case 1. Let Pm be nonconstant. We claim that k = m � 1. Indeed, if k > m � 1,
then we have

0 = mPmRe'k1 z
k+1
1 + 2x1Re'k2 zk1

@Pm
@z2

. (3.7)

Since m > 2 and k > 1, the first, but not the second summand in the right-hand
side, is harmonic in z1. That gives a contradiction. Now, setting k = m � 1, we
compare degrees in z2 in (3.6). By homogeneity it follows that 'k1 and Pm have the
same degree. Dividing by xm�1

1 and looking at coefficients of yk+11 we obtain that
'k1 is a constant, hence Pm is a constant, which gives a contradiction.

Case 2. Let Pm be constant. Without loss of generality we will assume Pm = 1. If
k � m, the leading eqation (3.6) must be trivial and we have necessarily

Yk = �z1k@z2 (3.8)

for some constant � 2 C. Further, the weight of z1 is 1m and the weighted degree of
Y is 1� 1

m . It follows that
k
m � µ2 = 1� 1

m and, since µ2  1
2 , we have

k 
3
2
m � 1.



856 MARTIN KOLAR AND FRANCINE MEYLAN

Further we have Yl = 0 for all m  l  k � 1, hence the first nontrivial terms have
degree 2m � 1 in z1 and we obtain

mx2m�1
1 = mxm�1

1 Re'm�1
1 zm1

+ 2x2m�1�k
1 Re�zk1

@P2m�1�k
@z2

� Im m�1z2m�1
1 .

(3.9)

By the same argument as above, we obtain  m�1(z2) = 0. Indeed, we have 2m �
1 � k � 2m � 1 � (32m � 1) = m

2 . Since 2m � 1 � k is an integer, we obtain
2m � 1 � k � 2. Hence  m�1(z2)z2m�1

1 contains no terms in x2m�1
1 or x2m�2

1 y1,
which gives  m�1(z2) = 0. Next, dividing by x2m�1�k

1 we obtain

mxk1 = mxk�m1 Re'm�1
1 zm1 + 2Re�zk1

@P2m�1�k
@z2

. (3.10)

The left, but not the right-hand side, contains a nonzero multiple of zk�m+1
1 z̄m�1

1 .
That gives a contradiction, which settles the case k � m. It remains to consider
k = m � 1. We obtain

mx2m�1
1 = mxm�1

1 Re'm�1
1 zm1 � Im m�1z2m�1

1 . (3.11)

Using the same type of argument, we obtain immediately a contradiction.
This completes the proof of the lemma.

Lemma 3.2. Let X = i@z1 be in aut(MH , 0) and P be of the form (3.2), with
m = 2. If there is a vector field Y in aut(MH , 0) such that [Y,W ] = X , then P has
the form

P(z, z̄) = Cx21 + P1(z2, z̄2)x1 + P0(z2, z̄2) (3.12)

for some nonzero real constant C .

Proof. Let k be as in the definition of Y in (3.4). First assume k = 1. From
coefficients of degree three with respect to z1, we obtain,

2x31 P
2
2 = 2x1P2Re'11z21 + 2x21Re'12z1

@P2
@z2

� Im 1z31. (3.13)

If  1(z2) 6= 0 in (3.13), then it is a constant, by comparing terms in y31 . Hence, by
homogeneity, P2 is constant.

Next, assume that  1(z2) = 0. Comparing degrees in z2, we see that '11 and
P2 have the same degree, or '11 = 0. If '11 6= 0,then from the coefficients of x1y21
we obtain that '11 is a constant, hence P2 is a constant. On the other hand, '

1
1 = 0

implies

x31 P
2
2 = x21Re'12z1

@P2
@z2

(3.14)
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which is impossible, since by positivity, the left hand side contains a nonzero bal-
anced term in z2, while the right-hand side has no such terms, since deg'12 =
deg P2 + 1.

Now assume that k 6= 1. For terms of degree k + 2 we get

0 = 2x1P2Re'k1 z1k+1 + 2x21Re'k2 zk1
@P2
@z2

� Im k z1k+2. (3.15)

From the coefficients of y2+k1 , we see that  k(z2) is a constant. If  k(z2) 6= 0,
then by homogeneity P2 is a constant. Next, let  k(z2) = 0. After dividing by x1,
the first term is harmonic in z1, while the second one is not, unless k = 0. But we
know from the proof of the previous lemma that k � m � 1, hence k = 0 implies
P2 = 0. This completes the proof of the lemma.

In the following lemma we consider the case m = 1. Notice that for m = 1 the
definition of mutitype implies µ1 = µ2.

Lemma 3.3. Let X = i@z1 be in aut(MH , 0) and P be of the form (3.2) with m = 1
and assume that P0 does not contain any harmonic terms. Then there is a vector
field Y in aut(MH , 0) such that [Y,W ] = X if and only if either

P(z, z̄) = x1Re↵zl+12 (3.16)

for some l 2 N, ↵ 2 C, or

P(z, z̄) = x1Re↵z2 + "|z2|2, (3.17)

where ✏ 2 R and ↵ 2 C.

Proof. The vector field Y has the form

Y = iw@z1 +
2X

j=1
' j@z j +  @w. (3.18)

From ReY (P � v) = 0, using Re X (P) = 0, we obtain

P0P1 + x1P21 = 2x1Re'2
@P1
@z2

+ Re'1P1 + 2Re'2
@P0
@z2

� Im . (3.19)

Hence for the constant and linear terms in z1 we have

P0P1 = 2Re'02
@P0
@z2

+ Re'�1
1 P1 � Im �1 (3.20)

and

x1P21 = 2x1Re'02
@P1
@z2

+ Re'01z1P1 + 2Re'12z1
@P0
@z2

� Im 0z1. (3.21)
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Let k be as in (3.4) and let first assume that k > 0. We get

0 = Re'k1 z
k+1
1 P1 + 2x1Re'k2 zk1

@P1
@z2

� Im k zk+11 . (3.22)

Being the only one factoring the monomial z̄1zk1, the middle summand in the right-
hand side is zero. It follows that Re'k1 z

k+1
1 P1 is pluriharmonic, hence P1 is con-

stant. This yields a contradiction, showing that k  0.
Assuming that k = 0, we get

x1P21 = 2x1Re'02
@P1
@z2

+ Re'01z1P1 � Im 0z1. (3.23)

By equating to zero the summands factoring y1, we get

�Im'01 P1 � Re 0 = 0. (3.24)

This implies that P1 is harmonic, namely P1 = cRe'01 for some c 2 R. Notice that
'01 = 0 leads to contradiction. Indeed, if '01 = 0, then  0 = 0, since P1 cannot be
constant. It follows that

P21 = 2Re'02
@P1
@z2

, (3.25)

which is not allowed, since the left hand side contains a nonzero balanced term in
z2, while the right-hand side has no such terms, since deg'02 = deg P1 + 1. This
gives the contradiction. Next consider the equation for the coefficients of x1 in
(3.23),

P21 = 2Re'02
@P1
@z2

+ Re'01 P1 � Im 0. (3.26)

By substituting P1 = cRe'01 , from the mixed terms we obtain c = 1. Set P1 =
Re'01 = Re↵zl2. Notice that the degree of P0 is l + 1, by weighted homogeneity,
since by the definition of the Catlin multitype µ1 = µ2. For terms of order zero we
obtain

P0P1 = Re'�1
1 P1 + 2Re'02

@P0
@z2

� Im �1. (3.27)

Using the form of P1, we obtain

P0Re
�
↵zl2

�
= Re

�
�zl+12

�
Re

�
↵zl2

�
+ Re

✓
�zl+12

@P0
@z2

◆
+ Im � z2l+12 (3.28)

for some �, � , � 2 C. In particular, 2'02 = �zl+12 . We write P0 as

P0(z2, z̄2) =
l+1� j0X

j= j0

A j z
j
2 z̄
l+1� j
2 (3.29)
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with A j0 6= 0. Recall that j0 6= 0 by assumption. Substituting into (3.28) and
comparing coefficients of z j02 z̄

2l+1� j0
2 and zl+1� j0

2 z̄l+ j0
2 we obtain

↵ = j0�, ↵ = (l + 1� j0)�. (3.30)

This gives
2 j0 = l + 1 (3.31)

and � = 2
l+1↵. It follows that l is odd and P0 = d|z|l+1 for some d 2 R. If d 6= 0,

we use the explicit forms of P0 and P1 along with (3.23) and (3.27). By (3.24) we
have

�
1
2
Im
�
'01
�2

= Re 0,

which gives

 0 =
i
2
�
'01
�2

.

From (3.26) we obtain from the equation for the coefficient of z2l2

1
2
↵2 =

l
l + 1

↵2,

which gives l = 1. The vice versa is immediate to verify, using the above calcula-
tions (see also Section 4). That finishes the proof.

Next we turn to the second case, where P2 6= 0. Using rescaling in the z1
variable, we may assume P2 = 1.

Lemma 3.4. Let X = i@z1 be in aut(MH , 0) and P be of the form

P(z, z̄) = x21 + x1P1(z2, z̄2) + P0(z2, z̄2). (3.32)

Then there is a vector field Y in aut(MH , 0) such that [Y,W ] = X , if and only if P
is biholomorphically equivalent, by a change of multitype coordinates, to

P(z, z̄) = x21 + c|z2|2l (3.33)

for some c 2 R \ {0} and l 2 N.

Proof. Since X = i@z1, we have again

Y = iw@z1 + '1@z1 + '2@z2 +  @w. (3.34)

Without any loss of generality, we can assume that both P1 and P0 contain no
harmonic terms. Note that harmonic terms in P1 can be eliminated by a change of
variables z01 = z1 + ↵zl2, where l is the degree of P1 and ↵ is a suitable constant.
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In the first part of the proof, we will show that under this assumption, P1 = 0.
Applying ReY to P � v gives

�(2x1 + P1)
�
x21 + x1P1 + P0

�
+ 2Re'1

@P
@z1

+ 2Re'2
@P
@z2

� Im = 0. (3.35)

Let k be as in (3.4). Assume first that k > 1. If 'k1 6= 0 we get

x1Re'k1 z
k+1
1 �

1
2
Im k zk+21 = 0,

which gives a contradiction, since the second term is harmonic in z1, while the first
one is not. Hence 'k1 = 0 and we have, for terms of degree k + 1 in z1,

2�k,2x31 = 2x1Re'k�11 zk1 + 2x1Re'k2 zk1
@P1
@z2

� Im k�1zk+11 . (3.36)

Looking at the coefficients of yk+11 we see that  k�1 is a real or imaginary constant,
depending on the parity of k. If  k�1 6= 0, then by homogeneity P1 has degree at
most one, hence it must be zero. If  k�1 = 0, after dividing by x1, the right-hand
side is harmonic in z1. It follows that �k,2 = 0, hence k > 2. But then 'k2

@P1
@z2 cannot

contain any mixed terms, hence P1 = 0, as claimed.
Now let us assume that k = 1. For the third order terms in z1 we obtain

2x31 = 2x1Re'11z21 � Im 1z31. (3.37)

Note that this determines '11 and  
1. Looking at terms of second order in z1 we

obtain from (3.35) and (3.32)

�3x21 P1 + 2x1Re'01z1 + 2x1Re'12z1
@P1
@z2

+ 2Re'11z21P1 � Im 0z21 = 0. (3.38)

Looking at coefficients of y21 , we obtain that P1 is harmonic, hence P1 = 0.
We will further assume that P1 = 0. We obtain for terms linear in z1,

�2x1P0 + 2Re z1'12
@P0
@z2

+ 2x1Re'�1
1 � Im �1z1 = 0 (3.39)

which gives equations for coefficients of x1 and y1. Namely

2P0 + 2Re'12
@P0
@z2

+ 2Re'�1
1 � Im �1 = 0 (3.40)

and
�2Im'12

@P0
@z2

� Re �1 = 0. (3.41)



NONLINEAR CR AUTOMORPHISMS OF LEVI DEGENERATE HYPERSURFACES 861

Using '12 = ↵z2 for some ↵ 2 C and the fact that P0 contains no harmonic terms,
it follows that

Im'12
@P0
@z2

= 0, (3.42)

hence
P0 = �'12

@P0
@z2

. (3.43)

It follows that P0 has a complex reproducing field, hence P0 = c|z2|2l , as claimed.
That finishes the proof.

4. Proofs of Theorems 1.1-1.9

In this section we complete the proofs of the results stated in the introduction, up to
Theorem 1.9. Theorem 1.1 is an immediate consequence of Theorem 1.2.

Proof of Theorem 1.2. We apply Lemma 3.1-3.4. Note that by Lemma 3.1 and
Lemma 3.2, we obtain either µ1 = 1

2 , or µ1 = µ2. Hence we can assume without
any loss of generality that i@z1 2 aut(MH , 0). Using suitable scaling, rotation and
adding harmonic terms leads to the form given in the statement of the theorem.

Theorem 1.7 follows immediately from [17, Theorem 4.7]. Combining Theo-
rem 1.2, 1.4 and 1.7 with the results of [17] leads to Theorem 1.8.

Proof of Theorem 1.9. If g1 6= 0, then by [17, Theorem 4.7] we have

P(z, z̄) =
X

|↵|3=|↵̄|3=1
A↵,↵̄z↵ z̄↵̄ (4.1)

for some pair 3 = (�1, �2) (not necessarily equal to the multitype weight). Let K
be the number of nonzero terms in the sum. We order the multiindices and write P
as

P(z, z̄) =
KX

j=1
A j z↵ j z̄↵K+ j . (4.2)

Consider the hyperquadric in C2K+1 defined by

Im ⌘ =
KX

j=1
A j⇣ j⇣K+ j , (4.3)

and the mappping f : C3 ! C2K+1 given by ⌘ = w and ⇣ j = z↵ j for j =
1, . . . , 2K .
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It is immediate to verify that the vector field in aut(MH , 0)

Y =
�
�1z1@z1 + �2z2@z2

�
w +

1
2
w2@w,

is f -related to the infinitesimal automorphism of the above hyperquadric given by

Z =
1
2
⌘
2KX

j=1
⇣ j@⇣ j +

1
2
⌘2@⌘.

Next, if gn 6= 0 we consider the two cases from Theorem 1.2. We have K = 3 in
both cases. In the first case, we define f by ⌘ = w, ⇣1 = z1, ⇣2 = zl2. We verify
that the vector field

Y1 = aw@z1 � i āz1z2l@z1 � i ā
1
l
z2l+1@z2 + 2i āz2lw@w, a 2 C,

in aut(MH , 0) is f -related to the infinitesimal automorphism of the hyperquadric,

Im ⌘ = Re ⇣1⇣2, (4.4)

given by

Z1 = a⌘@⇣1 � i ā⇣1⇣2@⇣1 � i ā⇣ 22 @⇣2 + 2i ā⇣2⌘@⌘, a 2 C.

The second case is completely analogous. The case of gc follows from [18, Theo-
rem 1.2 ]. This finishes the proof.

5. Dimension of aut(MH, 0)

In this section we will again assume that MH is a holomorphically nondegenerate
model given by (1.7).

We will first prove two auxiliary lemmata. Let us denote gt = g�µ1 � g�µ2 ,
the part of aut(MH , 0) containing complex tangential shifts.

Lemma 5.1. Let there exist two regular vector fields in gt whose values at 0 are
linearly independent over R, but dependent over C. Then MH is biholomorphic to

Imw = Cx21 + x1Re↵zl2 + Q(z2, z̄2) (5.1)

for some C 2 R, ↵ 2 C and homogeneous polynomial Q without harmonic terms.

Proof. Let Z1, Z2 be such vector fields. Without loss of generality, we may assume
that Z1 = i@z1 and

Z2 = @z1 +  (z1, z2)@w.
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Note that this form is attained using transformations preserving multitype coordi-
nates (with pluriharmonic terms allowed). The commutator of Z1, Z2 either van-
ishes, or lies in g�1, i.e., it is a real multiple of @w. This leads to  (z1, z2) =
Cz1 + ↵zl2 for some ↵ 2 C, C 2 R and l 2 N. From Re Z1(P) = 0 it follows that

P(z1, z2, z̄1, z̄2) =
mX

j=0
x j1 Pj (z2, z̄2). (5.2)

From Re Z2(P) = 0 we obtain that Re @P
@z1 is pluriharmonic. It follows that

P(z1, z2, z̄1, z̄2) = Cx21 + x1Re↵zl2 + P0(z2, z̄2), (5.3)

which finishes the proof.

Recall that by the results of [17] and [18], dim gc  1 and dim g1  1. The
following lemma considers the case when both components are nontrivial.

Lemma 5.2. Assume that dim gc = dim g1 = 1. Then dim g0 = 3.

Proof. Let Z 2 g0 be a rotation and Y 2 g1 be nonzero vector field. By [17,
Theorem 4.7], Y has the form

Y =
2X

j=1
' j (z)w@z j +

1
2
w2@w (5.4)

where the ' j have the complex reproducing field property

2
2X

j=1
' j (z)Pz j = P(z, z̄). (5.5)

It is immediate to verify that in Jordan normal form the linear vector fieldP2
j=1 ' j (z)@z j is diagonal with real coefficients. We can thus consider multitype

coordinates in which Y is a real multiple of

�
�1z1@z1 + �2z2@z2

�
w +

1
2
w2@w.

We claim that in such coordinates, Z is also diagonal. Indeed, let X 2 gc be a
nonzero vector field. The commutator of X and Y is of weight bigger than one, so
[X,Y ] = 0, by the results of [17]. It follows that the pair (�1, �2) is linearly inde-
pendent with the multitype weights (µ1, µ2). If µ1 6= µ2, any rotation is diagonal.
So we may assume µ1 = µ2, which implies �1 6= �2. The commutator of Z with Y
has to be a real multiple of Y . Computing the commutator, it follows immediately
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that Z is diagonal. Next, the rotations with real coefficients have dimension one,
the coefficients being given by  l1 � µ1 and �1 � µ2. Let us write P in the form

P(z1, z2, z̄1, z̄2) =
X

|↵,↵̂|3M=1
A↵.↵̂z↵ z̄↵̂.

If there exist in addition two linearly independent imaginary rotations, we have
↵1 = ↵̂1, ↵2 = ↵̂2 whenever A↵.↵̂ 6= 0 From the real rotation and weighted ho-
mogeneity we obtain a unique solution for ↵1,↵2, ↵̂1, ↵̂2. That contradicts holo-
morphic nondegeneracy of MH . On the other hand, there is an imaginary rotation
with coefficients i�1, i�2. Hence there are two linearly independent rotations, and
therefore dim g0 = 3.

Lemma 5.3. There exist multitype coordinates in which every rotation is linear.
Moreover,

dim g0  5.

Proof. The first part of the statement is proved in [17, Proposition 3.9]. In the
normalization of [17, Proposition 2.6], it is immediate to check that the nonzero
vector fields given by

Z = (az1 + �z2)@z1 + cz2@z2, (5.6)

where a, c 2 R,� 2 C do not belong to g0. Hence the space of rotations is at most
four dimensional, and dim g0  5.

Proof of Theorem 1.10. First we consider the case when dim gn > 0. By Theorem
1.2 MH is given by (1.4) or (1.10). The vector fields in aut(MH , 0) of (1.4) are
described explicitly in [22], which shows that the dimension is equal to 10. A
completely analogous computation gives all vector fields in aut(MH , 0) for (1.10),
and shows that in this case, dim aut(MH , 0) = 9. Indeed, we have dim g� 1

2
= 2

and dim g 1
2

= 2. Further, since µ1 6= µ2, all rotations have to be diagonal, which
gives immediately dim g0 = 3. By the results of [18], we have dim gc = 0. Since
dim g�1 = dim g1 = 1, we obtain dim aut(MH , 0) = 9.

Next we consider the case when dim gn = 0 and show that in this case

dim aut(MH , 0)  7.

We will consider all possible dimensions of gt , namely 0, 1, 2, 3. Note that if
dim gt = 4, by Lemma 5.1 it follows that µ1 = µ2 = 1

2 , hence MH is a Levi
nondegenerate hyperquadric.

Let us first assume that dim gt = 0. Then by Theorem 1.2, Lemma 5.2 and 5.3
we obtain immediately dim aut(MH , 0)  7.

Next assume that dim gt = 1. If dim gc + dim g1 = 2, then by Lemma 5.2
dim g0  3, and since dim gn = 0, this leads to dim aut(MH , 0)  7. Now let
dim g1+dim gc  1. Without any loss of generality, we can assume Y =@z1 2 gt .By
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the partial normalization [17, Proposition 2.6], the five dimensional linear subspace
of vector fields of the form

Z = (↵z1 + �z2)@z1 + dz2@z2, (5.7)

where ↵,� 2 C, d 2 R has trivial intersection with g0. This follows from Lemma
5.3 and the fact that if Z 2 aut(MH , 0), the commutator of Z and Y has to be
a real multiple of Y . It implies dim g0  4. Since dim gn = 0, we obtain
dim aut(MH , 0)  7.

Next, let dim gt = 2 and the values of two generators of gt at 0 are complex
independent. We claim that dim g0  2. Indeed, let Z1 2 g�µ1 , Z2 2 g�µ2 be two
vector fields, whose values at 0 are complex independent. Since their commutator
is of weight �µ1 � µ2 > �1, it must vanish. We may therefore assume Z1 =
i@z1 , Z2 = i@z2 . Hence P is a function of x1, x2. Again, this form is attained
by a transformation preserving multitype coordinates (with pluriharmonic terms
allowed). Computing commutators of Z1 and Z2 with a rigid element of g0 of the
form

Y = (az1 + bz2)@z1 + (cz1 + dz2)@z2 +  (z1, z2)@w, (5.8)

we see that the coefficients a, b, c, d must be real. It follows that

ReY (P � v) = (ax1 + bx2)
@P
@x1

+ (cx1 + dx2)
@P
@x2

�
1
2
Im (z1, z2) = 0.

The last term is pluriharmonic and the remaining part is a function of x1, x2. It
follows that the pluriharmonic term vanishes, and we obtain

@P
@x2
@P
@x1

= �
ax1 + bx2
cx1 + dx2

.

It follows that a, b, c, d are determined uniquely by P , up to a real mutiple. Note
that the left hand side is nonconstant, otherwise MH is holomorphically degenerate.
Hence dim g0  2. It follows that dim g  7.

If gt contains two complex dependent at 0 vector fields, we use Lemma 5.1
and consider a rotation

Y = (az1 + bz2)@z1 + (cz1 + dz2)@z2 +  (z1, z2)@w. (5.9)

Let first C 6= 0. After scaling in z1 and absorbing the mixed term into x21 , we may
assume

P(z1, z2, z̄1, z̄2) = x21 + Q(z2, z̄2),

where Q is different from |z2|l , since dim gn = 0. We obtain

2x1Re (az1 + bz2) + Re (cz1 + dz2)
@Q
@z2

�
1
2
Im (z1, z2) = 0. (5.10)



866 MARTIN KOLAR AND FRANCINE MEYLAN

From the coefficient of y1 we obtain Im (c @Q@z2 ) = 0, which implies ic@z2 2 gt . It
follows that c = 0. Hence

2x1Re (az1) + 2x1Re (bz2) + Re dz2
@Q
@z2

�
1
2
Im (z1, z2) = 0. (5.11)

The first three terms have different powers of z1, so they must all be pluriharmonic.
It follows that a is purely imaginary and b = d = 0. Hence dim g0  2 which
implies dim g  6.

Let now C = 0, i.e.,

P(z1, z2, z̄1, z̄2) = x1Re↵zl2 + Q(z2, z̄2).

Without any loss of generality, we will assume that Q contains no harmonic terms,
and no (1, l) terms, which can be absorbed into the first term by a change of vari-
ables z⇤1 = z1 + � z2.We have

2Re (az1 + bz2)Re↵zl2 + 2lx1Re
⇣
↵zl�12 (cz1 + dz2)

⌘

+ 2Re

(cz1 + dz2)

@Q
@z2

�
� Im (z1, z2) = 0.

From the equation for the coefficient of z1 z̄1zl�12 we obtain that c = 0. From terms
of order zero in z1, looking at the coefficient of z̄2zl2 we obtain b = 0, since Q
contains no (1, l) terms. From the coefficient of z1 z̄l2 we obtain a + ld̄ = 0. This
gives dim g0  3 and dim g  7.

If dim gt = 3, we use Lemma 5.1 to conclude that P must be biholomorphic
to

Imw = |z1|2 + (Re z2)l , (5.12)

where l > 2. Since µ1 6= µ2, the rotations have to be diagonal. It is immediate
to verify that the only rotations are real multiples of i z1@z1 . Hence dim g0 = 2 and
dim g  7.

To finish the proof, we give examples of models with aut(MH,0)=7,6,5,4,3,2.
The hypersurface given by

Imw =

 
2X

j=1
|z j |2

!2

(5.13)

admits the same rotations as the sphere, hence dim g0 = 5 and dim aut(MH , 0) = 7.
Six-dimensional aut(MH , 0) occurs for

Imw = |z1|2 + (Re z2)3, (5.14)

which has dim gt = 3 and dim g0 = 2.
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Dimension five occurs for

Imw =
2X

j=1
|z j |4,

where dim g0 = 3.
Dimension four occurs for

Imw = (Re z1)3 + (Re z2)4, (5.15)

where dim gt = 2.
Dimension three occurs for

Imw = Re z1 z̄31 + (Re z2)3, (5.16)

with dim gt = 1.
Dimension two occurs for a generic model, e.g.,

Imw = Re
 

2X

j=1
z j z̄3j

!

. (5.17)

This finishes the proof of the theorem.
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