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KAM, ↵-Gevrey regularity
and the ↵-Bruno-Rüssmann condition

ABED BOUNEMOURA AND JACQUES FÉJOZ

Abstract. We prove a new invariant torus theorem, for ↵-Gevrey smooth Hamil-
tonian systems, under an arithmetic assumption which we call the ↵-Bruno-
Rüssmann condition, and which reduces to the classical Bruno-Rüssmann con-
dition in the analytic category. Our proof is direct in the sense that, for ana-
lytic Hamiltonians, we avoid the use of complex extensions and, for non-analytic
Hamiltonians, we do not use analytic approximation nor smoothing operators.
Following Bessi, we also show that if a slightly weaker arithmetic condition is
not satisfied, the invariant torus may be destroyed. Crucial to this work are new
functional estimates in the Gevrey class.

Mathematics Subject Classification (2010): 70H08 (primary); 70H09, 26E10,
37C75, 37J40 (secondary).

1. Introduction

1.1. The general question

We consider small perturbations of an integrable Hamiltonian system, defined by

q̇ = rpH(q, p), ṗ = �rq H(q, p)

where H is a Hamiltonian of the form

H(q, p) = h(p) + ✏ f (q, p), (q, p) 2 Tn ⇥ Rn, 0  ✏ < 1

where n � 2, Tn = Rn/Zn , !0 = rh(0) 2 Rn , and r2h(0) 2 Mn(R) is non-
degenerate. When ✏ = 0, the torus T0 of equation p = 0 is invariant and quasi-
periodic of frequency !0. The general question we are interested in is the persis-
tence of this torus for ✏ 6= 0 sufficiently small : does there exist a torus T✏ which
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is invariant and quasi-periodic of frequency !0 and which converges (in a suitable
sense) to T0 as ✏ goes to zero?

This question was answered positively by Kolmogorov in his foundational pa-
per [22] under the assumption that H is real-analytic and !0 is a ⌧ -Diophantine vec-
tor (⌧ � n� 1): there exists � > 0 such that for all k 2 Zn \ {0}, |k ·!0| � � |k|�⌧ .
As a conclusion, the perturbed torus is real-analytic. It became clear that a regular-
ity assumption on H and an arithmetic condition on !0 were necessary, and then
further works investigate the interplay between the analysis and the arithmetic.

It was certainly a remarkable contribution of Moser (see [29]) to realize that
the question can also be answered for Hamiltonians which are only finitely differ-
entiable. More precisely (see [37]), if !0 is ⌧ -Diophantine and if H is of class
Cr , with r > 2(⌧ + 1), then the torus persists and it is of class Cr 0+⌧+1 for any
r 0 < r � 2(⌧ + 1). If H is smooth, that is C1, there is no restriction on ⌧ and
the perturbed torus is smooth. It follows from a recent result of Cheng-Wang [14]
(which uses an idea of Bessi [2]) that the result is false if H is of class Cr , with
r < 2(⌧ + 1). Thus in the finitely differentiable or smooth case, one may consider
this Diophantine condition as essentially optimal.

In the real-analytic setting, the Diophantine condition is not necessary. Indeed,
it is sufficient to assume that !0 satisfies the weaker Bruno-Rüssmann condition
(see Subsection 2.2 for a definition), as was first proved by Rüssmann in [36]; an
equivalent condition was actually introduced earlier by Bruno [8, 9] in a different
but related small divisors problem, the Siegel linearization problem. The necessity
of this condition turns out to be a more subtle problem. In the Siegel problem,
it is optimal in dimension one (this is a celebrated result of Yoccoz [43, 44]) but
in higher dimension it is unknown. In the Hamiltonian problem we are considering
here, the only general result we are aware of is due to Bessi [2] (extending an earlier
result of Forni [16] for twist maps of the annulus) in which a torus with a frequency
not satisfying a slightly weaker condition can be destroyed by an arbitrary small
analytic perturbation. This leaves open the possibility of slightly improving the
Bruno-Rüssmann condition.

1.2. Main results of the paper

Real-analytic functions are characterized by a growth of their derivatives of order
s�|k|k! for some analyticity width s > 0; in the periodic case, this is equivalent to a
decay of Fourier coefficients of order e�s|k|. Given a real parameter ↵ � 1, allowing
a growth of the derivatives of order s�|k|k!↵ or, equivalently, a decay of Fourier
coefficients of order e�↵s|k|1/↵ , one is lead to consider ↵-Gevrey functions, which
thus corresponds to real-analytic functions when ↵ = 1. Since the introduction by
Gevrey of the class of functions now baring his name [17], there has been a huge
amount of works on Gevrey functions, mainly for PDEs, but also more recently
in other fields, including dynamical systems (see Subsection 1.3 for some related
works in dynamical systems dealing with Gevrey regularity).

In this paper, we study the persistence when ✏ is small of the torus T0, as a
Gevrey quasiperiodic invariant torus T", under the assumptions that H itself has
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Gevrey regularity. The only general result so far is due to Popov [32] who proved
that the latter holds true if ! satisfies a Diophantine condition. This result, the proof
of which uses analytic approximation, extends the result of Kolmogorov when ↵ =
1 but not the one of Rüssmann: clearly one would expect an arithmetic condition
which does depend on ↵ and that reduces to the Bruno-Rüssmann condition when
↵ = 1.

The main result of the paper is to solve this persistency problem, assuming that
the frequency !0 satisfies some arithmetic condition which we call the ↵-Bruno-
Rüssmann condition, which is weaker than the Diophantine condition and agrees
with the Bruno-Rüssmann condition when ↵ = 1. This is the content of Theo-
rem A; Theorem B and Theorem C deal respectively with the iso-energetic and
time-periodic versions. We will also state and prove a Gevrey analogue of Arnold’s
normal form theorem for vector fields on the torus (Theorem E). Theorem H is a
more precise, quantitative statement, with parameters, which does not require non-
degeneracy, and from which Theorem A and Theorem E follow. We also notice
that Bessi’s ideas [2] may be adapted to the Gevrey setting, to provide a necessary
arithmetic condition for the invariant torus to persist (Theorem D). The so-obtained
condition fails to agree with the sufficient condition of Theorem A and, as in the
analytic case, it remains open to determine the optimal condition. Finally, we will
also give discrete versions of Theorem A and Theorem E, which are, respectively,
Theorem F and Theorem G.

When a Hamiltonian is not real analytic, it is often the case that there is still
some control on its derivatives and that it has Gevrey regularity. This may happen
for example for the restriction of an analytic Hamiltonian restricted to a Gevrey,
symplectic, central manifold. Technically, Gevrey regularity luckily extends the
well-behaved analytic regularity in KAM theory: the effect of small denominators
in Fourier series reduces to decreasing the “Gevrey width” s, the analogue of the
analyticity width. This makes it possible to adapt Kolmogorov’s proof of his invari-
ant torus theorem without using analytic approximations or smoothing operators as
in the smooth setting. Yet there are two issues one needs to solve.

The first and main issue is that the estimates needed in the general problem
of perturbation theory were missing. This is why we provide an appendix with
an adequate choice of norms and spaces, together with the estimates needed in
our proof. In particular, Proposition B.10 provides a “geometric” estimate of the
composition of two Gevrey functions, in which the loss of Gevrey width is arbi-
trarily small when composing a function to the right by a diffeomorphism close
to the identity, in continuity with the real-analytic setting. Starting with the work
of Gevrey itself [17], there have been many results concerning the composition of
Gevrey functions (see, for instance, Yamanaka [42], Marco-Sauzin [30], Cadeddu-
Gramchev [10], Popov [32]) but none of them allowed an arbitrarily small loss of
width except in some particular cases (the one-dimensional case and the analytic
case). To our knowledge, our composition result is new and may be of independent
interest.

The second and minor issue is that to reach a weak arithmetic condition, it is
usually better not to solve exactly the cohomological equation but an approximate
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version of it, and hence one cannot proceed as in Kolmogorov’s proof. The strat-
egy of Rüssmann, that we could have tried to pursue here, consists in solving this
equation not for the original perturbation but for a polynomial approximation of it.
We will rather adopt the strategy of [3, 4] in which periodic approximations of the
frequency are used and only cohomological equations associated to periodic vectors
need to be solved: estimates on the solution are straightforward in this case, unlike
the cohomological equation associated to a non-resonant vector.

As a further remark concerning the proof, in invariant tori problems derivatives
in the angle and action directions do not play the same role: in the analytic case it
is customary to introduce anisotropic norms. However, as Theorem H and its proof
show, we can still get good estimates if we keep track separately of the sizes of
various terms in the expansion of the Hamiltonian with respect to the actions: this
turns out simpler than using anisotropic Gevrey norms. Such a feature is not present
in dealing with linearization problem such as in Theorem E; a direct proof of the
latter result would have been much simpler.

1.3. Related results

Apart from the work of Popov that we have already mentioned, there have been
several works dealing with Gevrey regularity in a related context.

The first setting is the so-called Siegel-Sternberg linearization problem. Un-
der a non-resonance condition, a formal solution to the conjugacy problem always
exists and Sternberg proved that the solution is in fact smooth. In the analytic
case, under the Bruno-Rüssmann condition the conjugacy is analytic; this arith-
metic condition is thus sufficient but also necessary in (complex) dimension one
(a result of Yoccoz we already mentioned). In the Gevrey setting, still under the
Bruno-Rüssmann condition, Carletti-Marmi [12] and Carletti [11] have shown that
the formal solution still has Gevrey growth (with the same Gevrey exponent); an
interesting feature of their result is that allowing a worse Gevrey exponent for the
formal solution, one can relax accordingly the arithmetic condition. All these results
are actually valid for a class of ultra-differentiable functions that includes analytic
and Gevrey functions. It was then proved by Stolovitch [39] that this formal Gevrey
solution actually give rise to a Gevrey smooth solution, and recently, Pöschel [34]
gave a very general version of the Siegel-Sternberg theorem for ultra-differentiable
functions that contains all the previous results (the smooth, analytic, Gevrey and
ultra-differentiable cases). Let us mention that all these results do use stability by
composition, but a precise composition result is not needed as they do not require
to keep track of the width.

In the analytic setting, the Siegel problem and the problem of the linearization
of circle diffeomorphisms are solved under the same arithmetic condition [31]. But
this may well be incidental, and, to our knowledge, it may well not be true in the
Gevrey setting. The only result concerning Gevrey circle diffeomorphism we are
aware of is due to Gramchev-Yoshino [19]: they proved the linearization theorem
under a condition which is weaker than the Diophantine condition but stronger than
the ↵-Bruno-Rüssmann condition (they actually introduce a condition equivalent to
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our ↵-Bruno-Rüssmann condition and conjecture that the result should hold under
this condition). To prove such a result, they use a composition result but in one
dimension only; in this special case, as we already pointed out above, good compo-
sition estimates are known (see, for instance, [30]). As a matter of fact, Theorem G
(the discrete version of Theorem E) gives linearization of Gevrey torus diffeomor-
phism close to a translation under the ↵-Bruno-Rüssmann condition, extending the
result in [19] (and giving a positive answer to their conjecture).

1.4. Further results

Let us describe some further results that could be achieved using the techniques
of this paper. The literature on KAM theory is enormous and so there are many
potential applications; we will only describe here some of those that may have
some interest.

First, and more importantly, the technical estimates we derive in Appendix B
for Gevrey functions actually hold true for a larger class of ultra-differentiable func-
tions that includes Gevrey (and thus analytic) functions as a particular case. This
not only leads to a further extension of the KAM theorems we state and prove here,
but also allows us to generalize other perturbative results such as the Nekhoroshev
theorem (extending the result of [30] in the convex case and [6] in the steep case).
To keep this paper to a reasonable length, all these results will be derived in a sub-
sequent article [5].

Then, our main result Theorem A deals with the persistence of Lagrangian
tori; KAM theory also deals with lower-dimensional tori (see, for instance, [36] for
a comprehensive treatment in the analytic case), and one may expect that our result
extend to such a setting.

Finally, one may consider the problem of reducibility of quasi-periodic cocy-
cles close to constant. In the analytic case, the Bruno-Rüssmann condition is suffi-
cient, as was shown in [13]; in the ↵-Gevrey case, the ↵-Bruno-Rüssmann condition
is sufficient. In fact, this setting is simpler from a technical point of view and our
Gevrey estimates are not necessary to obtain such a result; one simply needs to go
through the proof of [13]. A possible explanation for this is that for quasi-periodic
cocycles, composition occur in a linear Lie group, thus only estimates for linear
composition (product of matrices) are necessary and so everything boils down to
good estimates for the product of two functions.

1.5. Plan of the paper

The plan of the paper is as follows.
In Section 2, we describe precisely the setting, namely we properly define the
Gevrey norms we will use and the ↵-Bruno-Rüssmann condition. In Section 3 we
state our main results:

• Theorem A about the persistence of a torus in a non-degenerate Hamiltonian
system under the ↵-Bruno-Rüssmann condition;
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• Theorem B, the iso-energetic version of Theorem A;
• Theorem C, the non-autonomous time-periodic version;
• Theorem D about the destruction of a torus in the same context not assuming a
condition weaker that the ↵-Bruno-Rüssmann condition;

• Theorem E about linearization of vector fields on the torus close to constant
(we will also discuss necessary arithmetic conditions here, albeit in a restricted
context);

• Theorem F, the discrete version of Theorem A, about the persistence of a torus
in a non-degenerate exact-symplectic map;

• Theorem G, the discrete version of Theorem E, about the linearization of diffeo-
morphisms of the torus close to a translation.

In Section 4 we state Theorem H, the main technical result of this paper, which is a
KAM theorem which do not require non-degeneracy but depends on parameters. In
Section 5, we give the proof of Theorems A and E, assuming Theorem H. Section 6
contains the proof of Theorem H. Section 7 contains the proof of Theorem D, a
straightforward extension of the work of Bessi [2].

Finally, two appendices contain technical results. Appendix A provides var-
ious characterizations of the ↵-Bruno-Rüssmann condition. Appendix B, which
is absolutely crucial in this work, provides estimates on Gevrey functions (and in
particular our composition result Proposition B.10) which are use throughout the
paper.

2. Setting

2.1. Gevrey Hamiltonians

Recall that n � 1 is an integer, Tn = Rn/Zn and let B ✓ Rn be a bounded
open domain containing the origin. For a small parameter ✏ � 0, we consider a
Hamiltonian function H : Tn ⇥ B ! R of the form

(
H(q, p) = h(p) + ✏ f (q, p)
rh(0) := !0 2 Rn.

(⇤)

The Hamiltonian h is non-degenerate at the origin if the matrix r2h(0) itself is
non-degenerate. We shall assume that the Hamiltonian H is ↵-Gevrey on Tn ⇥ B̄,
with ↵ � 1 and where B̄ denotes the closure of B in Rn: H is smooth on a open
neighborhood of Tn ⇥ B̄ in Tn ⇥ Rn and there exists s0 > 0 such that, using
multi-indices notation (see Appendix B) and |k| =

P2n
i=1 ki ,

|H |↵,s0 :=c sup
(✓,I )2Tn⇥B̄

 

sup
k2N2n

(|k|+1)2s0↵|k||@k H(✓,I )|
|k|!↵

!

<1, c :=4⇡2/3. (2.1)
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This definition can be extended to vector-valued function X : Tn ⇥ B̄ ! Rp by
setting

|X |↵,s0 := c sup
(✓,I )2Tn⇥B̄

 

sup
k2N2n

(|k| + 1)2s0↵|k||@k X (✓, I )|1
|k|!↵

!

< 1 (2.2)

where | . |1 is the l1-norm of vectors in Rp, or the sum of the absolute values of the
components. As a rule, we will use the l1-norm for vectors, so for simplicity we
shall write | . |1 = | . |. To emphasize the role of the “Gevrey width” s0, we shall
also say that H is (↵, s0)-Gevrey if (2.1) holds. Observe that a function is 1-Gevrey
if and only it is real-analytic, in which case the parameter s0 > 0 is the width of
analyticity.

Properties of these Gevrey norms are described in Appendix B; in particular
we explain there the (inessential) role of the factor (|k| + 1)2 and the normalizing
constant c > 0 in (2.1).

2.2. The ↵-Bruno-Rüssmann condition

Given !0 2 Rn , define the function

9!0 : [1,+1)! [9!0(1),+1], Q 7!max{|k ·!0|�1 | k2Zn, 0< |k|Q}. (2.3)

This function9!0 measures the size of the so-called small denominators which will
come into play in our computations. Call BR the set of vectors !0 satisfying the
so-called Bruno-Rüssmann condition,

Z +1

1

ln(9!0(Q))

Q2
dQ < 1 (BR)

and, given ↵ � 1, call BR↵ the set of vectors !0 satisfying the ↵-Bruno-Rüssmann
condition, which we define as

Z +1

1

ln(9!0(Q))

Q1+
1
↵

dQ < 1. (BR↵)

These conditions prevent9!0 from growing too fast at infinity. If !0 2 BR = BR1,
in particular9!0(Q) is finite for all Q, i.e. !0 is non-resonant. Besides, the set BR↵
decreases with respect to ↵. For example, if 9!0(Q) = exp(Q�) then !0 2 BR↵ if
and only if � < 1/↵ (we let the reader check, using continued fractions if n = 2,
that the set of vectors !0 having such function 9!0 is not empty).

Let D⌧ be the set of ⌧ -Diophantine vectors (⌧ � n � 1), i.e. for which there
exists � > 0 such that 9(Q)  Q⌧/� for all Q � 1. D⌧ is non-empty and has full
measure if ⌧ > n � 1 [35]. As definitions show, for all ↵ � 1, we have D⌧ ⇢ BR↵ .
Thus, as Example A.4 shows,

\↵�1BR↵ \ [⌧�n�1D⌧

has zero-measure but is non-empty.
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Now assume that !0 is non-resonant. The function 9!0 is non-decreasing,
piecewise constant, and has a countable number of discontinuities. In the sequel, it
will be more convenient to work with a continuous version of 9!0 : it is not hard
to prove (see, for instance, Appendix A of [3]) that one can find a continuous non-
decreasing function 9 : [1,1) ! [9(1),+1) such that 9(1) = 9!0(1) and

9!0(Q)  9(Q)  9!0(Q + 1), Q � 1. (2.4)

For all k 2 Zn \ {0}, we still have

|k · !0| � 1/9(|k|)

and in the condition (BR↵) (which defines !0 2 BR↵), one may use 9 instead of
9!0 .

Let us now define the function

1 : [1,+1) ! [9(1),+1), Q 7! Q9(Q).

It is continuous and increasing, and thus is a homeomorphism, whose functional
inverse is

1�1 : [9(1),+1) ! [1,+1), 1�1 �1 = 1 �1�1 = Id.

In Appendix A we show that the set BR↵ agrees with the set A↵ defined by the
condition Z +1

1(1)

dx

x(1�1(x))
1
↵

< 1. (A↵)

3. Main results

3.1. KAM theorem for non-degenerate integrable Hamiltonians

The image of the map 20 : Tn ! Tn ⇥ B, q 7! (q, 0), is an embedded torus in-
variant by the flow of h carrying a quasi-periodic flow with frequency !0. We shall
prove that this quasi-periodic invariant Gevrey-smooth embedded torus is preserved
by an arbitrary small perturbation, provided h is non-degenerate, H is ↵-Gevrey and
!0 satisfies the ↵-Bruno-Rüssmann condition.
Theorem A. Let H be as in (⇤), where H is (↵, s0)-Gevrey, !0 2 BR↵ and h is
non-degenerate. Then there exists 0 < s00 < s0 such that for ✏ small enough, there
exists an (↵, s00)-Gevrey torus embedding 2!0 : Tn ! Tn ⇥ B such that 2!0(Tn)
is invariant by the Hamiltonian flow of H and quasi-periodic with frequency !0.
Moreover, 2!0 is close to 20 in the sense that

|2!0 �20|↵,s00  c
p
✏

for some constant c > 0 independent of ✏.
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Theorem A will be deduced from a KAM theorem for a Hamiltonian with param-
eters, for which a quantitative statement is given in Section 4. Let us also state the
corresponding iso-energetic and non-autonomous time-periodic versions.

We say that the integrable Hamiltonian h is iso-energetically non-degenerate
at 0 if the so-called bordered Hessian of h,

✓
r2h(0) trh(0)
rh(0) 0

◆
,

has a non-zero determinant. Under this assumption, the unperturbed torus p = 0,
with energy h(0), can be continued to a torus with the same energy but with a
frequency of the form �!0 for � close to one.
Theorem B. Let H be as in (⇤), where H is (↵, s0)-Gevrey, !0 2 BR↵ and h is iso-
energetically non-degenerate. Then there exists 0 < s00 < s0 such that for ✏ small
enough, there exist � 2 R⇤ and an (↵, s00)-Gevrey torus embedding 2!0 : Tn !
Tn ⇥ B such that 2!0(Tn) is invariant by the Hamiltonian flow of H , contained in
H�1(h(0)) and quasi-periodic with frequency �!0. Moreover, � is close to one and
2!0 is close to 20 in the sense that

|�� 1|  c
p
✏, |2!0 �20|↵,s00  c

p
✏

for some constant c > 0 independent of ✏.
We can also look at the non-autonomous time-periodic version; we consider a
slightly different setting by looking at a Hamiltonian function H̃ : Tn⇥B⇥T ! R
of the form (

H̃(q, p) = h(p) + ✏ f (q, p, t)
rh(0) := !0 2 Rn.

(⇤̃)

It is better to consider the unperturbed torus p = 0 as an invariant torus for the
integrable Hamiltonian h̃ : B ⇥ R defined by h̃(p, e) := h(p) + e: it is then quasi-
periodic with frequency !̃0 := (!0, 1), has dimension n+ 1 and is the image of the
trivial embedding 2̃0 : Tn ⇥ T ! Tn ⇥ B ⇥ T.
Theorem C. Let H̃ be as in (⇤̃), where H̃ is (↵, s0)-Gevrey, !0 2 BR↵ and h is
non-degenerate. Then there exists 0 < s00 < s0 such that for ✏ small enough, there
exists an (↵, s00)-Gevrey torus embedding 2̃!0 : Tn ⇥ T ! Tn ⇥ B ⇥ T such that
2̃!0(Tn ⇥ T) is invariant by the Hamiltonian flow of H̃ and quasi-periodic with
frequency !̃0. Moreover, 2̃!0 is close to 2̃0 in the sense that

|2̃!0 � 2̃0|↵,s00  c
p
✏

for some constant c > 0 independent of ✏.
Theorem B and Theorem C are essentially equivalent statements and can be easily
deduced from Theorem A; in the analytic case details are given in [40, Chapter 2],
but it is plain to observe that the arguments still work in the Gevrey case.
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3.2. Destruction of invariant tori

According to Theorem A, the ↵-Bruno-Rüssmann condition is sufficient for the
preservation of an invariant torus under an ↵-Gevrey perturbation. A natural ques-
tion is: is it necessary? To this question, here we only bring a partial answer, which
circumscribes the optimal arithmetic condition, if any. Following Bessi [2], one can
show that if ! = !0 satisfies a condition (the condition (B↵) defined below), the
torus can be destroyed. In particular, this shows that the exponent 1+1/↵ in (BR↵)
cannot be replaced by a strictly larger exponent. As a matter of fact, the example
of Bessi already shows this in the analytic case ↵ = 1; our observation here is that
Bessi’s example gives a similar result for any ↵ � 1.

Theorem D. Given ↵ � 1, assume that the vector ! 2 Rn satisfies the following
condition:

lim sup
Q!+1

ln(9!(Q))

Q1/↵
> 0. (B↵)

Then an invariant torus with frequency ! can be destroyed by an arbitrarily small
↵-Gevrey perturbation.

Thus the condition that !0 does not satisfy (B↵), namely

lim
Q!+1

ln(9!(Q))

Q1/↵
= 0, (R↵)

is a necessary condition for the conclusion of Theorem A to hold true. For ↵ = 1,
this condition (R↵) is actually a sufficient (and most probably necessary) condition
to solve the cohomological equation associated to ! (see [35]); in the general case
↵ � 1 this should also be true but we couldn’t find a reference. Let us also note
that (R↵) is implied by (but clearly not equivalent to) the condition that ! 2 BR↵ ,
see Remark A.2 in Appendix A.

For a more precise statement and how this follows from [2], we refer to The-
orem 7.2 in Section 7. It is likely that one could improve this result for ↵ > 1 by
using perturbations with compact support as in [14].

Observe that for any ↵ � 1 and any 0 < � < ↵, vectors ! 2 Rn for which

9!(Q) ⇠ eQ
1/↵

satisfies (B↵) but also the �-Bruno-Rüssmann condition. (That such vectors do exist
is a classical matter in number theory.) The following corollary is then obvious.

Corollary 3.1. For any ↵ � 1 and any 0 < � < ↵, there exist invariant tori with
frequency vectors ! 2 BR� which can be destroyed by an arbitrary small ↵-Gevrey
perturbation. In particular, there exist invariant tori with frequency vectors ! 2 BR
which can be destroyed by an arbitrary small Gevrey non-analytic perturbation.
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3.3. KAM theorem for constant vector fields on the torus

Now we state a Gevrey version of Arnold’s normal form theorem for vector fields
on the torus.
Theorem E. Let !0 2 BR↵ and X 2 G↵,s(Tn, Rn) a vector field on Tn of the form

X = !0 + B, |B|↵,s  µ.

Then, for µ sufficiently small, there exist a vector !⇤
0 2 Rn and an (↵, s/2)-Gevrey

diffeomorphism 4 : Tn ! Tn such that X + !⇤
0 � !0 is conjugate to !0 via 4:

4⇤(X + !⇤
0 � !0) = !0.

Moreover, we have the estimate

|!⇤
0 � !0|  cµ, |4� Id|↵,s/2  cµ

for some constant c � 1 independent of µ.
Observe that because of the shift of frequency !⇤

0 � !0, in general this result does
not give any information on the vector field X . Under some further assumption (for
instance, if !0 belongs to the rotation set of X , see [20]), then this shift vanishes
and Theorem E implies that X is conjugated to !0.

An even more restricted setting is when X is proportional to !0 (so that the
flow of X is a re-parametrization of the linear flow of frequency !0 and thus !0 is
the unique rotation vector of X); Theorem E applies in this case to give a conjugacy
to !0, assuming that !0 2 BR↵ , but the proof is actually much simpler in this case
(it boils down to solve only once the cohomological equation) and should require
the weaker condition that !0 satisfies (R↵), as it is stated in the case ↵ = 1 in [15].
Still in [15], it is proved that for ↵ = 1 (there are also versions in the Cr case),
if !0 satisfies (B↵), then there is a dense set of reparametrized linear flow which
are weak-mixing (and so cannot be conjugated to the linear flow); thus a necessary
condition for Theorem E to hold true is that !0 satisfies (R↵) (and this is also a
sufficient condition if we impose that X is proportional to !0)1. Clearly, this should
extend to the general case ↵ � 1 and thus the condition that !0 does not satisfy (B↵)
is a necessary condition for Theorem E to hold true, as in Theorem A.

3.4. KAM theorem for maps

In this section, we give the statement of discrete versions of Theorem A and Theo-
rem E.

Let us start with the discrete analogue of Theorem A. Given a function h :
B̄ ! R, we define the exact-symplectic map

Fh : Tn ⇥ B̄ ! Tn ⇥ B̄, (q, p) 7! (q + rh(p), p).

As before, let us fix ↵ � 1 and s0 > 0.

1 We would like to thank B. Fayad for a discussion on this topic.
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Theorem F. Let F : Tn ⇥ B̄ ! Tn ⇥ B̄ be an (↵, s0)-Gevrey exact symplectic map
with

|F � Fh|↵,s0  ✏.

Assume that !0 = rh(0) 2 BR↵ and that h is non-degenerate. Then there exists
0 < s00 < s0 such that for ✏ small enough, there exists an (↵, s00)-Gevrey torus
embedding 2!0 : Tn ! Tn ⇥ B such that 2!0(Tn) is invariant by F and 2!0
gives a conjugacy between the translation of vector !0 on Tn and the restriction of
F to 2!0(Tn). Moreover, 2!0 is close to 20 in the sense that

|2!0 �20|↵,s00  c
p
✏

for some constant c > 0 independent of ✏.
Theorem F follows at once from Theorem B (or Theorem C) provided one has a
suitable quantitative “suspension” result; in the analytic case ↵ = 1 this was proved
in [25] and in the Gevrey non-analytic case ↵ > 1 this is contained in [28].

In the same way, we have the following discrete analogue of Theorem E. Given
!0 2 Rn , let T!0 be the translation of Tn of vector !0:

T!0 : Tn ! Tn, ✓ 7! ✓ + !0.

Let ↵ � 1 and s > 0.
Theorem G. Let !0 2 BR↵ and T 2 G↵,s(Tn, Tn) a diffeomorphism of Tn of the
form

T = T!0 + B, |B|↵,s  µ.

Then, for µ sufficiently small, there exist a vector !⇤
0 2 Rn and an (↵, s/2)-Gevrey

diffeomorphism 4 : Tn ! Tn such that T + !⇤
0 � !0 is conjugate to T!0 via 4:

4�1 � (T + !⇤
0 � !0) �4 = T!0 .

Moreover, we have the estimate

|!⇤
0 � !0|  cµ, |4� Id|↵,s/2  cµ

for some constant c � 1 independent of µ.

4. Statement of the KAM theorem with parameters

Let us now consider the following setting. Fix !0 2 Rn \ {0}. Re-ordering the
components of !0 and re-scaling the Hamiltonian allow us to assume without loss
of generality that

!0 = (1, !̄0) 2 Rn, !̄0 2 [�1, 1]n�1.
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Given real numbers r > 0 and h > 0, we let

Dr :={I 2 Rn | |I |  r}, D!0h :={! 2 Rn | |! � !0|  h}, Dr,h :=Dr ⇥ D!0h .

Our Hamiltonians will be defined on Tn ⇥Dr,h , a neighborhood of Tn ⇥ {0}⇥ {!0}
in Tn ⇥ Rn ⇥ Rn .

Let ↵ � 1, s > 0, ⌘ � 0 a fixed parameter, " � 0 and µ � 0 two small
parameters. We consider a function H 2 G↵,s(Tn ⇥ Dr,h) of the form
8
><

>:

H(✓, I,!) = e(!) + ! · I| {z }
N (I,!)

+ A(✓,!) + B(✓,!) · I| {z }
P(✓,I,!)

+M(✓, I,!) · I 2| {z }
R(✓,I,!)

|A|↵,s  ", |B|↵,s  µ, |r2I R|↵,s  ⌘

(4.1)

where the notation M(✓, I,!)· I 2 stands for the vector I given twice as an argument
to the symmetric bilinear form M(✓, I,!). Observe that A : Tn ⇥ D!0h ! R,
B : Tn ⇥ D!0h ! Rn whereas M : Tn ⇥ Dr,h ! Mn(R) with Mn(R) the ring of
real square matrices of size n. Observe that we do not assume " = µ because these
two small parameters play different roles in applications (in Theorem A we will
have µ =

p
" while in Theorem E, " = 0 and µ will be the only small parameter).

The function H in (4.1) should be considered as a Gevrey Hamiltonian on
Tn⇥Dr , depending on a parameter ! 2 D!0h ; for a fixed parameter ! 2 D!0h , when
convenient, we will write

H!(I, ✓) = H(I, ✓,!),

N!(I ) = N (I,!),

P!(I, ✓) = P(I, ✓,!),

R!(I, ✓) = R(I, ✓,!).

The image of the map80 : Tn ! Tn⇥Dr , ✓ 7! (✓, 0) is a smooth embedded torus
in Tn⇥Dr , invariant by the Hamiltonian flow of N!0+R!0 and quasi-periodic with
frequency !0. The next theorem asserts that this quasi-periodic torus will persist,
being only slightly deformed, as an invariant torus not for the Hamiltonian flow of
H!0 but for the Hamiltonian flow of H!⇤

0
, where !⇤

0 is a parameter close to !0,
provided " and µ are sufficiently small and !0 satisfies the ↵-Bruno-Rüssmann
condition. Here is the precise statement.
Theorem H. Let H be as in (4.1), with !0 2 BR↵ . Then there exist positive con-
stants c1  1, c2  1 and c3 � 1 depending only on n and ↵ such that if

p
"  µ  h/2,

p
"  r, h  c1(Q09(Q0))�1 (4.2)

where Q0 � n + 2 is sufficiently large so that

Q� 1
↵

0 + (ln 2)�1
Z +1

1(Q0)

dx

x(1�1(x))
1
↵

 c2(1+ ⌘)�1/↵s, (4.3)
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there exist a vector !⇤
0 2 Rn and an (↵, s/2)-Gevrey embedding

8⇤
!0 : Tn ⇥ Dr/2 ! Tn ⇥ Dr

of the form
8⇤
!0(✓, I ) = (✓ + E⇤(✓), I + F⇤(✓) · I + G⇤(✓))

with the estimates
|!⇤
0 � !0|  c3µ,

|E⇤|↵,s/2  c39(Q0)µ,

|F⇤|↵,s/2  c31(Q0)µ,

|G⇤|↵,s/2  c31(Q0)"

(4.4)

and such that

H!⇤
0
�8⇤

!0(✓, I ) = e⇤0 + !0 · I + R⇤(✓, I ), R⇤(✓, I ) = M⇤(✓, I ) · I 2,

with the estimates
�
�e⇤0 � e!⇤

0

�
�  c3",

�
�r2I R

⇤ � r2I R!⇤
0

�
�
↵,s/2  c3⌘1(Q0)µ.

Theorem A follows quite directly from Theorem H, introducing the frequencies
! = rh(p) as independent parameters, taking µ =

p
", and tuning the shift of fre-

quency !⇤
0 � !0 using the non-degeneracy assumption on the unperturbed Hamil-

tonian. Theorems E follows also from Theorem H by realizing X as the restriction
of a Hamiltonian vector field on an invariant torus, setting " = ⌘ = 0 and letting µ
be the only small parameter. These arguments are made precise in Section 5.

5. Proofs of Theorems A and E, assuming Theorem H

5.1. Proof of Theorem A

In this section we assume Theorem H and we show how it implies Theorem A,
following [33] (in the analytic case) and [32] (in the Gevrey case).

Proof of Theorem A. As noticed at the beginning of Section 4, we may assume that
!0 is of the form

!0 = (1, !̄0) 2 Rn, !̄0 2 [�1, 1]n�1.

For p0 2 B, we expand h in a small neighborhood of p0: writing p = p0 + I for I
close to zero, we get

h(p) = h(p0) + rph(p0) · I +
Z 1

0
(1� t)r2ph(p0 + t I ) · I 2 dt.
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Similarly, we expand ✏ f with respect to p, in a small neighborhood of p0:

✏ f (q, p) = ✏ f (q, p0) + ✏rp f (q, p0) · I + ✏

Z 1

0
(1� t)r2p f (q, p0 + t I ) · I 2 dt.

Since rph : B ! � is a diffeomorphism, instead of p0 we can use ! = rph(p0)
as a new variable, and letting r!g := (rh)�1, we write

h(p) = e(!) + ! · I + Rh(I,!)

with

e(!) := h(r!g(!)), Rh(I,!) :=
Z 1

0
(1� t)r2ph(r!g(!) + t I ) · I 2 dt

and also, letting ✓ = q,

✏ f (q, p) = ✏ Ã(✓,!) + ✏ B̃(✓,!) · I + ✏R f (✓, I,!)

with
Ã(✓,!) := f (✓,r!g(!)), B̃(✓,!) := rp f (✓,r!g(!))

and

R f (✓, I,!) := ✏

Z 1

0
(1� t)r2p f (✓,r!g(!) + t I ) · I 2 dt.

Finally, we can set

A := ✏ Ã, B := ✏ B̃, R := Rh + ✏R f = M(✓, I,!) · I 2,

so that h + ✏ f can be written as

H(✓, I,!) = e(!) + ! · I + A(✓,!) + B(✓,!) · I + R(✓, I,!),

and we have

r2I R(✓, I,!) = r2I h(r!g(!) + I ) + ✏r2I f (✓,r!g(!) + I ).

By assumption, h and f are (↵, s0)-Gevrey onTn⇥B̄, and since the space of Gevrey
functions is closed under taking derivatives, products, composition and inversion
(up to restricting the parameter s0, see Appendix B for the relevant estimates), we
claim that we can find2 s > 0, r > 0, h > 0 and c̃ > 0 which are independent of ✏
such that H is (↵, s)-Gevrey on the domain Tn ⇥ Dr,h with the estimates

|A|↵,s  c̃✏, |B|↵,s  c̃✏,
�
�r2I R

�
�
↵,s  c̃.

2 There is a local clash of notations here, since one should not mix up the integrable Hamiltonian
h of Theorem A and the width parameter h of Theorem H.
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We may set
" := c̃✏, µ :=

p
", ⌘ := c̃

and assuming ✏ small enough, we have c̃✏  µ =
p
". Thus we have

|A|↵,s  ", |B|↵,s  µ,
�
�r2I R

�
�
↵,s  ⌘.

Having fixed s > 0 and r > 0, we may choose Q0 sufficiently large so that (4.3)
holds true, and then by further restricting first h, and then ✏, we may assume that
the condition (4.2) is satisfied. Theorem H applies: there exist an (↵, s/2)-Gevrey
embedding 7!0 : Tn ! Tn ⇥ Dr , defined by

7!0(✓) := 8!0(✓, 0) = (✓ + E⇤(✓),G⇤(✓))

where 8!0 is given by Theorem H, and a vector !⇤
0 2 Rn such that 7!0(Tn) is

invariant by the Hamiltonian flow of H!⇤
0
and quasi-periodic with frequency !0.

Moreover, !⇤
0 and 7!0 satisfy the estimates

|!⇤
0 � !0|  cµ, |E⇤|↵,s/2  c9(Q0)µ, |G⇤|↵,s/2  cQ09(Q0)"

for some large constant c > 1. Since h is non-degenerate, there exists p⇤
0 such that

rh(p⇤
0) = !⇤

0 and, up to taking c > 1 larger and recalling that µ =
p
", the above

estimates imply

|p⇤
0 |  c

p
", |E⇤|↵,s/2  c9(Q0)

p
", |G⇤|↵,s/2  cQ09(Q0)". (5.1)

Now observe that an orbit (✓(t), I (t)) for the Hamiltonian H!⇤
0
corresponds to an

orbit (q(t), p(t)) = (✓(t), I (t) + p⇤
0) for our original Hamiltonian. Hence, if we

define T : Tn ⇥ Rn ! Tn ⇥ Rn by T (✓, I ) = (✓, I + p⇤
0) and

2!0 = T �7!0 : Tn ! Tn ⇥ Rn, 2!0(✓) = (✓ + E⇤(✓),G⇤(✓) + p⇤
0)

then 2!0 is an (↵, s/2)-Gevrey torus embedding such that 2!0(Tn) is invariant by
the Hamiltonian flow of H and quasi-periodic with frequency !0. The estimates on
the distance between2!0 and the trivial embedding20 follows directly from (5.1),
which finishes the proof.

5.2. Proof of Theorem E

Now we show how Theorem E follows from Theorem H.

Proof of Theorem E. Consider the vector field X = !0 + B 2 G↵,s(Tn, Rn) as in
the statement. It can be trivially included into a parameter-depending vector field:
given h > 0, let X̂ 2 G↵,s(Tn ⇥ D!0h , Rn) be such that

X̂(✓,!) = X̂!(✓) = ! + B(✓), ! 2 D!0h , X̂!0 = X.
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Now given any r > 0, consider the Hamiltonian H defined on Tn ⇥ Dr,h by

H(✓, I,!) = H!(✓, I ) := ! · I + B(✓) · I. (5.2)

Clearly, for any parameter !, the torus Tn ⇥ {0} is invariant by the Hamiltonian
vector field XH! , and, upon identifying Tn ⇥ {0} with Tn , the restriction of XH! to
this torus coincides with X̂!.

Now the Hamiltonian H defined in (5.2) is of the form (4.1) with " = ⌘ = 0
(and e = 0) and therefore for µ sufficiently small, Theorem H applies: there exist a
vector !⇤

0 2 Rn and an (↵, s/2)-Gevrey embedding

8⇤
!0 : Tn ⇥ Dr/2 ! Tn ⇥ Dr

here of the form

8⇤
!0(✓, I ) = (✓ + E⇤(✓), I + F⇤(✓) · I )

with the estimates

|!⇤
0 � !0|  c3µ, |E⇤|↵,s/2  c39(Q0)µ, |F⇤|↵,s/2  c31(Q0)µ

and such that
H!⇤

0
�8⇤

!0(✓, I ) = !0 · I. (5.3)

The embedding 8⇤
!0 clearly leaves invariant the torus Tn ⇥ {0} and induces a dif-

feomorphism of this torus that can be identified to 4 := Id + E⇤. Writing the
equality (5.3) in terms of Hamiltonian vector fields, we have, upon restriction to the
invariant torus and recalling that the restriction of XH! coincides with X̂!,

4⇤
⇣
X̂!⇤

0

⌘
= !0.

But X̂!⇤
0

= X̂!0 + !⇤
0 � !0 = X + !⇤

0 � !0 and therefore

4⇤�X + !⇤
0 � !0

�
= !0

which, together with the estimates on !⇤
0 and 4 � Id = E⇤, was the statement we

wanted to prove.

6. Proof of Theorem H

This section is devoted to the proof of Theorem H, in which we will construct, by
an iterative procedure, a vector !⇤

0 close to !0 and a Gevrey-smooth torus embed-
ding 8⇤

!0 whose image is invariant by the Hamiltonian flow of H!⇤
0
. We start, in

Subsection 6.1, by recalling the Diophantine result of [3] which will be used in our
approach. Then, in Subsection 6.2, we describe an elementary step of our iterative
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procedure, and finally, in Subsection 6.3, we will show that infinitely many steps
may be carried out, to converge towards a solution.

In this paper, we do not pay attention to how constants depend on the dimen-
sion n or the Gevrey-exponent ↵, both being fixed. Hence in this section, we shall
write

u<· v (respectively u ·<v)

if, for some constant C � 1 depending only on n and ↵, we have u  Cv (respec-
tively Cu  v). In particular, u ·<v is stronger than u<· v.

6.1. Approximation by rational vectors

Recall that we have written !0 = (1, !̄0) 2 Rn with !̄0 2 [�1, 1]n�1. For a given
Q � 1, it is always possible to find a rational vector v = (1, p/q) 2 Qn , with p 2
Zn�1 and q 2 N, which is a Q-approximation in the sense that |q!0 � qv|  Q�1,
and for which the denominator q satisfies the upper bound q  Qn�1: this is essen-
tially the content of Dirichlet’s theorem on simultaneous rational approximations,
and it holds true without any assumption on !0. In our situation, since we have as-
sumed that !0 is non-resonant, there exist not only one, but n linearly independent
rational vectors in Qn which are Q-approximations. Moreover, one can obtain not
only linearly independent vectors, but rational vectors v1, . . . , vn of denominators
q1, . . . , qn such that the associated integer vectors q1v1, . . . , qnvn form a Z-basis
of Zn . However, the upper bound on the corresponding denominators q1, . . . , qn is
necessarily larger than Qn�1, and is given by a function of Q that we can call here
9 0
!0 (see [3] for more precise and general information, but note that in this refer-

ence, 9 0
!0 was denoted by 9!0 and 9!0 , which we defined in (2.3), was denoted

by 9 0
!0). A consequence of the main Diophantine result of [3] is that this function

9 0
!0 is in fact essentially equivalent to the function 9!0 .

Proposition 6.1. Let !0 = (1, !̄0) 2 Rn be a non-resonant vector, with !̄0 2
[�1, 1]n�1. For any Q � n + 2, there exist n rational vectors v1, . . . , vn , of
denominators q1, . . . , qn , such that q1v1, . . . , qnvn form a Z-basis of Zn and for
j 2 {1, . . . , n},

|!0 � v j |<· (q j Q)�1, 1  q j <·9(Q).

For a proof of the above proposition with 9!0 instead of 9, we refer to [3, Theo-
rem 2.1 and Proposition 2.3]; now by (2.4), 9!0  9 and so one may replace 9!0
by 9.

Now given a q-rational vector v and a smooth function H defined onTn⇥Dr,h ,
we define

[H ]v(✓, I,!) =
Z 1

0
H(✓ + tqv, I,!)dt. (6.1)

Given n rational vectors v1, . . . , vn , we let [H ]v1,...,vd = [· · · [H ]v1 · · · ]vd . Finally
we define

[H ](I,!) =
Z

Tn
H(✓, I,!)d✓ . (6.2)
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The following proposition is a consequence of the fact that the vectors q1v1, ..., qnvn
form a Z-basis of Zn .

Proposition 6.2 ([7, Corollary 6]). Let v1, . . . , vn be rational vectors, of denomi-
nators q1, . . . , qn , such that q1v1, . . . , qnvn form a Z-basis of Zn , and H a function
defined on Tn ⇥ Dr,h . Then

[H ]v1,...,vn = [H ].

6.2. KAM step

Now we describe an elementary step of our iterative procedure. Such a step consists
in pulling back the Hamiltonian H by a transformation of the form

F = (8,') : (✓, I,!) 7! (8(✓, I,!),'(!));

8 is a parameter-depending change of coordinates and ' a change of parameters.
Moreover, our change of coordinates will be of the form

8(✓, I,!) = 8!(✓, I ) = (✓ + E(✓,!), I + F(✓,!) · I + G(✓,!))

with

E : Tn ⇥ D!0h ! Rn, F : Tn ⇥ D!0h ! Mn(R), G : Tn ⇥ D!0h ! Rn

and for each fixed parameter !, 8! will be symplectic. For simplicity, we shall
write 8 = (E, F,G); the composition of such transformations F = (8,') =
(E, F,G,') is again a transformation of the same form, and we shall denote by G
the groupoid of such transformations.

Proposition 6.3. Let H be as in (4.1), with !0 = (1, !̄0) 2 Rn non-resonant,
consider 0 < � < s, 0 < � < r , Q � n + 2, and assume that

p
"  µ  h/2,

p
"  r,

h ·<(Q9(Q))�1,

rµ ·< �(Q9(Q))�1,

(1+ ⌘) ·< Q�↵.

(6.3)

Then there exists an (↵, s � � )-Gevrey symplectic transformation

F = (8,') = (E, F,G,') : Tn ⇥ Dr��,h/2 ! Tn ⇥ Dr,h 2 G,

with the estimates
8
>>><

>>>:

|E |↵,s�� <·9(Q)µ, |rE |↵,s�� <· ��↵9(Q)µ,

|F |↵,s�� <· ��↵9(Q)µ, |rF |↵,s�� <· ��2↵9(Q)µ,

|G|↵,s�� <· ��↵9(Q)", |rG|↵,s�� <· ��2↵9(Q)",

|' � Id|↵,s��  µ, |r' � Id|↵,s�� <· ��↵µ,

(6.4)
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such that

H �F(✓, I,!) = e+(!) + ! · I| {z }
N+(I,!)

+ A+(✓) + B+(✓) · I| {z }
P+(✓,I,!)

+M+(✓, I,!) · I 2| {z }
R+(✓,I,!)

,

with the estimates
(

|A+|↵,s��  "/16, |B+|↵,s��  µ/4,
|e+ � e � '|↵,s��  |A|↵,s,

�
�r2I R

+ � r2I R �F
�
�
↵,s�� <· ⌘|F |↵,s�� .

(6.5)

Proof. We divide the proof of the KAM step into five small steps. Except for the
last one, the parameter ! 2 D!0h will be fixed, so for simplicity, in the first four
steps we will drop the dependence on the parameter ! 2 D!0h . Let us first notice
that (6.3) clearly implies the following seven inequalities:

h ·<(Q9(Q))�1 (6.6)
9(Q)µ ·< �↵ (6.7)
"  rµ (6.8)
rµ��↵9(Q) ·< � (6.9)
µ ·<(Q9(Q))�1 (6.10)
(1+ ⌘) ·< Q�↵ (6.11)
µ  h/2. (6.12)

It is also important to notice that the implicit constant appearing in (6.11) is in-
dependent of the other implicit constants; we may choose it as large as we want
without affecting the other implicit constants. In the first three steps, the term R
which contains terms of order at least 2 in I will be ignored, that is we will only
consider Ĥ = H � R = N + P .

1. Rational approximations of !0 and ! 2 D!0h
Since!0 is non-resonant, given Q � n+2, we can apply Proposition 6.1: there exist
n rational vectors v1, . . . , vn , of denominators q1, . . . , qn , such that q1v1, . . . , qnvn
form a Z-basis of Zn and for j 2 {1, . . . , n},

|!0 � v j |<· (q j Q)�1, 1  q j <·9(Q).

For any ! 2 D!0h , using (6.6) and q j <·9(Q), we have

|! � v j | |! � !0| + |!0 � v j |<· h + (q j Q)�1<· (Q9(Q))�1

+ (q j Q)�1<· (q j Q)�1.
(6.13)
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2. Successive rational averagings

Let us set A1 := A, B1 := B so that P1(✓, I ) := A1(✓)+B1(✓)· I satisfies P1 = P .
Recalling that [ . ]v denotes the averaging along the periodic flow associated to a
periodic vector v 2 Rn (see (6.1)), we define inductively, for 1  j  n,

A j+1 := [A j ]v j , Bj+1 := [Bj ]v j , Pj+1 := [Pj ]v j

so in particular Pj (✓, I ) = A j (✓)+ Bj (✓) · I for 1  j  n. Let us also define X j ,
for 1  j  n, by

X j (✓, I ) := C j (✓) + Dj (✓) · I

where

C j (✓)=q j
Z 1

0

�
A j�A j+1

��
✓+tq jv j

�
tdt, Dj (✓)=q j

Z 1

0

�
Bj�Bj+1

��
✓+tq jv j

�
tdt.

If we further define N j by N j (I ) = e(!) + v j · I , it is then easy to check, by a
simple integration by parts, that the equations

�
C j , N j

 
= A j � A j+1,

�
Dj , N j

 
= Bj � Bj+1, 1  j  n, (6.14)

and then �
X j , N j

 
= Pj � Pj+1, 1  j  n, (6.15)

are satisfied, where { . , . } denotes the usual Poisson bracket. Moreover, we have
the estimates

|A j |↵,s  |A|↵,s  ", |Bj |↵,s  |B|↵,s  µ, (6.16)

and then

|C j |↵,s q j |A j |↵,s q j"<·9(Q)", |Dj |↵,s q j |Bj |↵,s q jµ<·9(Q)µ. (6.17)

Next, for any 0  j  n, define r j = r � n�1 j� and s j = s � (2n)�1 j� . We have
rn = r � �  r j  r0 = r while sn = s� �/2  s j  s0 = s. Let Xtj be the time-t
map of the Hamiltonian flow of X j . Using (6.17), together with inequalities (6.7),
(6.8) and (6.9), the condition (B.22) and (B.24) of Proposition B.12, Appendix B,
are satisfied, so the latter proposition can be applied: for 1  j  n, Xtj maps
Tn ⇥ Br j into Tn ⇥ Br j�1 for all t 2 [0, 1] and it is of the form

Xtj (✓, I ) = (✓ + Etj (✓), I + Ftj (✓) · I + Gt
j (✓))

with 8
><

>:

|Etj |↵,s j  |Dj |↵,s j�1 <·9(Q)µ

|Ftj |↵,s j <· ��↵|Dj |↵,s j�1 <· ��↵9(Q)µ

|Gt
j |↵,s j <· ��↵|C j |↵,s j�1 <· ��↵9(Q)".

(6.18)
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Now we define 80 := Id to be the identity and inductively 8 j := 8 j�1 � X1j for
1  j  n. Then 8 j maps Tn ⇥ Br j into Tn ⇥ Br and one easily checks, by
induction using the estimates (6.18), that 8 j is still of the form

8 j (✓, I ) = (✓ + E j (✓), I + F j (✓) · I + G j (✓))

with the estimates, for j = 1, ..., n,
�
�E j ��

↵,s j
<·9(Q)µ,

�
�F j ��

↵,s j
<· ��↵9(Q)µ,

�
�G j ��

↵,s j
<· ��↵9(Q)". (6.19)

3. New Hamiltonian

Let us come back to the Hamiltonian Ĥ = H � R = N + P = N + P1. We claim
that for all 0  j  n, we have

Ĥ �8 j = N + Pj+1 + P+
j+1, P+

j+1(✓, I ) = A+
j+1(✓) + B+

j+1(✓) · I

with the estimates
�
�A+

j+1
�
�
↵,s j

<· (Q�↵)�1",
�
�B+

j+1
�
�
↵,s j

<· (Q�↵)�1µ. (6.20)

Let us prove the claim by induction on 0  j  n. For j = 0, we may set
P+
1 := 0 and there is nothing to prove. So let us assume that the claim is true for
some j � 1 � 0, and we need to show it is still true for j � 1. By this inductive
assumption, we have

Ĥ �8 j = Ĥ �8 j�1 � X1j = (N + Pj + P+
j ) � X1j

with �
�A+

j
�
�
↵,s j�1

<· (Q�↵)�1",
�
�B+

j
�
�
↵,s j�1

<· (Q�↵)�1µ. (6.21)

Let S j = ! · I � v j · I so that N = N j + S j and thus

Ĥ �8 j =
�
N j + S j + Pj + P+

j
�
� X1j =

�
N j + S j + Pj

�
� X1j + P+

j � X1j .

Let us consider the first summand of the last sum. Using the equality (6.15), a
standard computation based on Taylor’s formula with integral remainder gives

�
N j + S j + Pj

�
� X1j = N +

⇥
Pj

⇤
v j

+ P̃j+1 = N + Pj+1 + P̃j+1

with

P̃j+1 =
Z 1

0
Ut
j+1 � Xtjdt, Ut

j+1 :=
�
(1� t)Pj+1 + t Pj + S j , X j

 
.
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Clearly, Ut
j+1 is still of the form

Ut
j+1(✓, I ) = Ut

j+1(✓, 0) + rIU t
j+1(✓, 0) · I

as this is true for Pj , S j , X j and that this form is preserved under Poisson bracket.
Using the estimates for Pj (✓, 0), rI Pj (✓, 0), X j (✓, 0), rI X j (✓, 0) (given respec-
tively in (6.16) and in (6.17)), the fact that

S j (✓, 0) = 0, rI S j (✓, 0) = ! � v j

with the inequality (6.13), and the estimates for the derivatives and the product of
Gevrey functions (given respectively in Proposition B.4, Corollary B.5 and Propo-
sition B.6, Corollary B.8, Appendix B), one finds, for all t 2 [0, 1]

|Ut
j+1(✓,0)|↵,s j<·

�
��↵q j"µ+��↵q j"µ+��↵q j"(q j Q)�1

�
<· ��↵q j"µ+(Q�↵)�1".

Since q j<·9(Q), using (6.10) the latter estimate reduces to
�
�Ut

j+1(✓, 0)
�
�
↵,s j

<· (Q�↵)�1".

Similarly, one obtains
�
�rIU t

j+1(✓, 0)
�
�
↵,s j

<· (Q�↵)�1µ.

Then, using the expression of Xtj and the associated estimates (6.18), a direct com-
putation, still using (6.10), gives

�
�P̃j+1(✓, 0)

�
�
↵,s j

<· (Q�↵)�1"

and �
�rI P̃j+1(✓, 0)

�
�
↵,s j

<· (Q�↵)�1µ.

Using again the estimates of Xtj given by (6.18), and the inductive assumption
(6.21), we also find �

�P+
j � X1j (✓, 0)

�
�
↵,s j

<· (Q�↵)�1"

and �
�rI (P+

j � X1j )(✓, 0)
�
�
↵,s j

<· (Q�↵)�1µ.

Eventually, we may define

P+
j+1 := P̃j+1 + P+

j � X1j

so that

Ĥ �8 j = N + Pj+1 + P+
j+1, P+

j+1(✓, I ) = A+
j+1(✓) + B+

j+1(✓) · I
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and these last estimates imply that
�
�A+

j+1
�
�
↵,s j

<· (Q�↵)�1", |B+
j+1|↵,s j <· (Q�↵)�1µ.

The claim is proved. So we may set

8 := 8n, (E, F,G) := (En, Fn,Gn),

with, as (6.19) tells us with j = n and sn = s � �/2,

|E |↵,s��/2<·9(Q)µ, |F |↵,s�/2<· ��↵9(Q)µ, |G|↵,s��/2<· ��↵9(Q)". (6.22)

Observe that Pn+1 = [· · · [P]v1 · · · ]vn = [P]v1,...,vn , and thus by Proposition 6.2,
Pn+1 = [P], and as a consequence

Ĥ �8(✓, I ) = e + ! · I + [A] + [B] · I + A+
n+1(✓) + B+

n+1(✓) · I

with the estimates
�
�A+

n+1
�
�
↵,s��/2<·

�
Q�↵

��1
",

�
�B+

n+1
�
�
↵,s��/2<·

�
Q�↵

��1
µ. (6.23)

4. Estimate of the remainder

Now we take into account the remainder term R that we previously ignored: we
have H = Ĥ + R, and therefore

H �8(✓, I ) = e+ ! · I + [A] + [B] · I + A+
n+1(✓) + B+

n+1(✓) · I + R �8(✓, I ).

Let us decompose

R �8(✓, I ) = R �8(✓, 0)| {z }
R0(✓)

+rI (R �8)(✓, 0)| {z }
R1(✓)

·I + R̃(✓, I )

and let us define
Ã := A+

n+1 + R0, B̃ := B+
n+1 + R1.

We have R(✓, I ) = M(✓, I ) · I 2 and as H and R differ only by terms of order at
most one in I , r2I H = r2I R so

M(✓, I ) =
Z 1

0
(1� t)r2I H(✓, t I )dt =

Z 1

0
(1� t)r2I R(✓, t I )dt

and therefore |M|↵,s  ⌘. Then, as 8(✓, 0) = (✓ + E(✓),G(✓)), we have the
expression

R0(✓) = R(8(✓, 0)) = M(✓ + E(✓),G(✓)) · G(✓)2
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and so using the above estimate on M , together with the estimates on E , G and the
estimates for the product and compostion of Gevrey functions (given respectively
in Proposition B.6 and Proposition B.10, Appendix B), we find

|R0|↵,s��/2<· ⌘|G|2↵,s��/2<· ⌘(��↵9(Q)µ)2"<· ⌘(Q�↵)�2"<· ⌘(Q�↵)�1".

Then, we have rI R(✓, I ) = M̂(✓, I ) · I 2 with

M̂(✓, I ) =
Z 1

0
r2I H(✓, t I )dt =

Z 1

0
r2I R(✓, t I )dt

and hence |M̂|↵,s  ⌘. Since

|rI8� Id|↵,s�� = |F |↵,s�� <· ��↵9(Q)µ ·< 1 (6.24)

we obtain, using the fact that "  µ2 and proceeding as before,

|R1|↵,s��/2<· ⌘|G|↵,s��/2<· ⌘��↵9(Q)"<· ⌘
�
��↵9(Q)µ

�
µ<· ⌘

�
Q�↵

��1
µ.

These last estimates on R0 and R1, together with (6.23), imply

| Ã|↵,s��/2<· (1+ ⌘)(Q�↵)�1", |B̃|↵,s��/2<· (1+ ⌘)
�
Q�↵

��1
µ.

We can finally now use (6.11) to ensure that

| Ã|↵,s��/2  "/16, |B̃|↵,s��/2  µ/4. (6.25)

It is important to recall here that we may choose the implicit constant in (6.11)
as large as we want (in order to achieve (6.25)) without affecting any of the other
implicit constants. Then observe also that H �8 and R̃ differ only by terms of order
at most one in I , so

r2I (H �8) = r2I R̃, r2I H = r2I R

and therefore using the formula for the Hessian of a composition, (6.24) and the
fact that r2I8 is identically zero, one finds

�
�r2I R̃ � r2I R �8

�
�
↵,s��/2<· ⌘|F |↵,� . (6.26)

We also set ẽ := e + [A] and observe that

|ẽ � e|↵,s��/2  |[A]|↵,s  |A|↵,s . (6.27)
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5. Change of frequencies and final estimates

Let us now write explicitly the dependence on the parameter ! 2 D!0h : we have

H �8(✓, I,!) = ẽ(!) + (! + [B](!)) · I + Ã(✓,!) + B̃(✓,!) · I + R̃(✓, I,!).

Consider the map �(!) := ! + [B(!)], it satisfies

|� � Id|↵,s  |[B]|↵,s  |B|↵,s  µ

and therefore the conditions (B.25) of Proposition B.13 are satisfied: the first condi-
tion of (B.25) follows, from instance, from condition (6.7) and the fact that9(Q) �
Q � 1, whereas the second condition of (B.25) is implied by condition (6.12).
Hence Proposition B.13 applies and one finds a unique ' 2 G↵,s��/2(D

!0
h/2, D

!0
h )

such that � � ' = Id and

|' � Id|↵,s��/2  |� � Id|↵,s  µ. (6.28)

We do have '(!) + [B('(!))] = ! and thus, setting F := (8,'), this implies that

H �F(✓, I,!) = H �8(✓, I,'(!))

= ẽ('(!)) + ! · I + Ã(✓,'(!))+ B̃(✓,'(!)) · I+ R̃(✓, I,'(!))

and at the end we set

e+ := ẽ � ', A+ := Ã � ', B+ := B̃ � ', R+ := R̃ � '.

Using once again Proposition B.10, the inequalities (6.25), (6.26) and (6.27) imply
8
>>>>><

>>>>>:

|A+|↵,s�� = | Ã � '|↵,s��  | Ã|↵,s��/2  "/16
|B+|↵,s�� = |B̃ � '|↵,s��  |B̃|↵,s��/2  µ/4
|e+ � e � '|↵,s�� = |(ẽ � e) � '|↵,s��  |ẽ � e|↵,s��/2  |A|↵,s
|r2I R

+ � r2I R �F | =
�
��r2I R̃ � r2I R �8

�
� '

�
�
↵,s��


�
�r2I R̃ � r2I R �8

�
�
↵,s��/2<· ⌘|F |↵,s��

which were the estimates (6.5) we needed to prove. The transformation F =
(8,') = (E, F,G,') 2 G maps Tn ⇥ Dr��,h/2 into Tn ⇥ Dr,h and it follows
from (6.22) and (6.28) that

8
>>><

>>>:

|E |↵,s�� <·9(Q)µ |rE |↵,s�� <· ��↵9(Q)µ

|F |↵,s�� <· ��↵9(Q)µ |rF |↵,s�� <· ��2↵9(Q)µ

|G|↵,s�� <· ��↵9(Q)" |rG|↵,s�� <· ��2↵9(Q)"

|' � Id|↵,s��  µ |r' � Id|↵,s�� <· ��↵µ

which were the wanted estimates (6.4). This concludes the proof.
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6.3. Iterations and convergence

We now define, for i 2 N, the following decreasing geometric sequences:

"i := 16�i", µi := 4�iµ, �i := 2�i�2r, hi = 2�i h. (6.29)

Next, for a constant Q0 � n + 2 to be chosen below, we define 1i and Qi , i 2 N,
by

1i = 2i1(Q0), Qi = 1�1(1i ) = 1�1�2i1(Q0)
�
, (6.30)

and then we define �i , i 2 N, by

�i = CQ� 1
↵

i (6.31)

where C � 1 is a sufficiently large constant so that the last condition of (6.3) is
satisfied for � = �0 and Q = Q0 (and thus for � = �i and Q = Qi , for any
i 2 N); clearly, this constant is of the form C =· (1 + ⌘)1/↵ . Finally, we define si
and ri , i 2 N, by

s0 = s, si+1 = si � �i , r0 = r, ri+1 = ri � �i . (6.32)

Obviously, we have
lim

i!+1
ri = r �

X

i2N
�i = r/2.

We claim that, assuming 1�1 satisfies (A↵), which is equivalent to !0 2 BR↵ , we
can choose Q0 sufficiently large so that

lim
i!+1

si � s/2 ()
X

i2N
�i  s/2.

Indeed, since Qi = 1�1(1i ) = 1�1 �2i1(Q0)
�
, we have

X

i�1
Q� 1

↵
i =

X

i�1

1
�
1�1

�
2i1(Q0)

�� 1
↵


Z +1

0

dy
�
1�1 (2y1(Q0))

� 1
↵

=
Z +1

1(Q0)

(ln 2)�1dx

x(1�1(x))
1
↵

< +1

where we made a change of variables x := 2y1(Q0), and the last integral converges

since 1�1 satisfies (A↵). Now as �i = CQ� 1
↵

i , we have

X

i2N
�i = C

X

i�0
Q� 1

↵
i = CQ� 1

↵
0 + C

X

i�1
Q� 1

↵
i

 CQ� 1
↵

0 + C
Z +1

1(Q0)

(ln 2)�1dx

x(1�1(x))
1
↵

 s/2
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provided we choose Q0 sufficiently large in order to have

Q� 1
↵

0 +
Z +1

1(Q0)

(ln 2)�1dx

x(1�1(x))
1
↵

 (2C)�1s. (6.33)

Applying inductively Proposition 6.3 we will easily obtain the following proposi-
tion.

Proposition 6.4. Let H be as in (4.1), with !0 2 BR↵ , and fix Q0 � n + 2 suffi-
ciently large so that (6.33) is satisfied. Assume that

p
"  µ  h/2,

p
"  r, h ·<1(Q0)�1. (6.34)

Then, for each i 2 N, there exists an (↵, si )-Gevrey smooth transformation

F i = (8i ,'i ) = (Ei , Fi ,Gi ,'i ) : Tn ⇥ Dri ,hi ! Tn ⇥ Dr,h 2 G,

such that F i+1 = F i �Fi+1, with

Fi+1 = (8i+1,'i+1)

= (Ei+1, Fi+1,Gi+1,'i+1) : Tn ⇥ Dri+1,hi+1 ! Tn ⇥ Dri ,hi 2 G,

satisfying the following estimates
8
>>>>><

>>>>>:

|Ei+1|↵,si+1 <·9(Qi )µi |rEi+1|↵,si+1 <· ��↵
i 9(Qi )µi

|Fi+1|↵,si+1 <· ��↵
i 9(Qi )µi |rFi+1|↵,si+1 <· ��2↵

i 9(Qi )µi

|Gi+1|↵,si+1 <· ��↵
i 9(Qi )"i |rGi+1|↵,si+1 <· ��2↵

i 9(Qi )"i

|'i+1 � Id|↵,si+1  µi |r'i+1 � Id|↵,si+1 <· ��↵
i µi

(6.35)

and such that

H �F i (✓, I,!) = ei (!) + ! · I| {z }
Ni (I,!)

+ Ai (✓) + Bi (✓) · I| {z }
Pi (✓,I,!)

+Mi (✓, I,!) · I 2| {z }
Ri (✓,I,!)

with the estimates
8
>><

>>:

|Ai |↵,si+1  "i , |Bi |↵,si+1  µi ,

|ei+1 � ei � 'i+1|↵,si+1  |Ai |↵,si ,

|r2I R
i+1 � r2I R

i �Fi+1|↵,si+1 <· ⌘|Fi+1|↵,si+1 .

(6.36)
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Let us emphasize that the implicit constants in the above proposition depend only
on n and ↵ and are thus independent of i 2 N.

Proof. For i = 0, we let F0 be the identity, e0 := e, A0 := A, B0 := B, R0 := R,
M0 := M and there is nothing to prove. The general case follows by an easy
induction. Indeed, assume that the statement holds true for some i 2 N so that H �
F i is (↵, si )-Gevrey on the domain Tn ⇥ Dri ,si . We want to apply Proposition 6.3
to this Hamiltonian, with " = "i , µ = µi , r = ri , s = si , h = hi , � = �i and
Q = Qi . First, by our choice of Q0 and �0 it is clear that 0 < �i < si , 0 < �i < ri ,
and Qi � n + 2. Then we need to check that the conditions
p
"i µi hi/2,

p
"i ri , hi ·<1(Qi )

�1, riµi ·<�i1(Qi )
�1, 1·<Qi�

↵
i

are satisfied. Since

1(Qi ) = 1
�
1�1(1i )

�
= 1i , 2�i r  ri  r,

it is sufficient to check the conditions
p
"i µi hi/2,

p
"i 2�i r, hi ·<1�1

i , rµi ·<�i1
�1
i , 1·<Qi�

↵
i . (6.37)

The last condition of (6.37) is satisfied, for all i 2 N, simply by the choice of the
constant C in the definition of �i . As for the other four conditions of (6.37), using
the fact that the sequences "i , µi , hi , 1�1

i and �i decrease at a geometric rate with
respective ratio 1/16, 1/4, 1/2, 1/2 and 1/2, it is clear that they are satisfied for any
i 2 N if and only if they are satisfied for i = 0. The first three conditions of (6.37)
for i = 0 are nothing but (6.34). Moreover, using our choice of �0 = r/4, the fourth
condition of (6.37) for i = 0 reads µ ·<1�1

0 and this also follows from (6.34).
Hence Proposition 6.3 can be applied, and all the conclusions of the statement

follow at once from the conclusions of Proposition 6.3.

We can finally conclude the proof of Theorem H, by showing that one can pass
to the limit i ! +1 in Proposition 6.4.

Proof of Theorem H. Recall that we are given " > 0, µ > 0, r > 0, s > 0,
h > 0 and that we define the sequences "i , µi , �i , hi in (6.29), and then we chose
Q0 � n + 2 satisfying (6.33) to define the sequences 1i , Qi in (6.30) and �i
in (6.31) and finally, si and ri were defined in (6.32). Moreover, we have

8
>><

>>:

limi!+1 "i = lim
i!+1

µi = lim
i!+1

hi = 0,

lim
i!+1

ri =r �
+1P

i=0
�i =r/2, lim

i!+1
si = s �

+1P

i=0
�i � s/2

(6.38)
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and for later use, let us observe that the following series are convergent and can be
made as small as one wishes thanks to condition (4.2) of Theorem H:

+1X

i=0
��↵
i µi 

+1X

i=0
Qiµi =

+1X

i=0
(9(Qi ))

�11iµi 2(9(Q0))�110µ=2Q0µ (6.39)

+1X

i=0
µi  2µ (6.40)

+1X

i=0
��↵
i 9(Qi )µi 

+1X

i=0
1iµi  210µ = 2Q09(Q0)µ (6.41)

+1X

i=0
9(Qi )µi 

+1X

i=0
Q�1
i 1iµi  2Q�1

0 10µ = 29(Q0)µ (6.42)

+1X

i=0
��↵
i 9(Qi )"i 

+1X

i=0
1i"i  210" = 2Q09(Q0)". (6.43)

Now the condition (4.2) of Theorem H implies that the condition (6.34) of Propo-
sition 6.4 is satisfied; what we need to prove is that the sequences given by this
Proposition 6.4 do converge in the Banach space of (↵, s/2)-Gevrey functions. Re-
call that F0 = (E0, F0,G0,'0) is the identity, while for i � 0,

(Ei+1, Fi+1,Gi+1,'i+1) = F i+1 = F i �Fi+1
=

�
Ei , Fi ,Gi ,'i

�
� (Ei+1, Fi+1,Gi+1,'i+1)

from which one easily obtains the following inductive expressions:
8
>>>>>>><

>>>>>>>:

Ei+1(✓,!) = Ei+1(✓,!) + Ei (✓ + Ei+1(✓,!),'i+1(!))

Fi+1(✓,!) = Fi+1(✓,!) + Fi (✓ + Ei+1(✓,!),'i+1(!))

·(Id+ Fi+1(✓,!))

Gi+1(✓,!) = (Fi (✓ + Ei+1(✓,!),'i+1(!)) + Id) · Gi+1(✓,!)

+Gi (✓ + Ei+1(✓,!),'i+1(!))

'i+1 = 'i � 'i+1.

(6.44)

Let us first prove that the sequence 'i converges. We claim that for all i 2 N, we
have

�
�r'i

�
�
↵,si

<·
iY

l=0

�
1+ ��↵

l µl
�
<· 1

where the fact that the last product is bounded uniformly in i 2 N follows from
(6.39). For i = 0, '0 = Id and there is nothing to prove; for i 2 N since 'i+1 =
'� + 'i+1 we have

r'i+1 =
⇣
r'i � 'i+1

⌘
· r'i+1
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so that using the estimate for 'i+1 and r'i+1 given in (6.35), Proposition 6.4, the
claim follows by induction. Using this claim, and writing

'i+1 � 'i = 'i � 'i+1 � 'i =

 Z 1

0
r'i � (t'i+1 + (1� t)Id)dt

!

· ('i+1 � Id)

one finds �
�'i+1 � 'i

�
�
↵,si+1

<· |'i+1 � Id|↵,si+1,

and therefore �
�'i+1 � 'i

�
�
↵,si+1

<·µi .

Using the convergence of (6.38) and (6.40), one finds that the domain of definition
of 'i shrinks to a point and the sequence 'i converges to a trivial map

'⇤ : {!0} ! D!0h , '⇤(!0) := !⇤
0

such that
|!⇤
0 � !0|<·µ.

Now let us define

Vi+1(✓,!) := (✓ + Ei+1(✓,!),'i+1(!)), Vi+1 = (Id+ Ei+1,'i+1)

and observe that since 9(Qi ) � 1, then the estimates for Ei+1, rEi+1, 'i+1 and
r'i+1 given in Proposition 6.4 implies that

|Vi+1 � Id|↵,si+1 <·9(Qi )µi , |rVi+1 � Id|↵,si+1 <· ��↵
i 9(Qi )µi .

Using these estimates, and the fact that Ei+1 can be written as

Ei+1 = Ei+1 + Ei � Vi+1

we can proceed as before, using the convergence of (6.41) to show first that

�
�rEi

�
�
↵,si

<·
iX

l=0
��↵
l 9(Ql)µl <· 1

and then �
�Ei+1 � Ei

�
�
↵,si+1

<·
�
�Ei+1

�
�
↵,si+1

<·9(Qi )µi .

Using the convergence of (6.38) and (6.42), this shows that Ei converges to a map

E⇤ : Tn ⇥ {!0} ! Tn ⇥ D!0h

such that
|E⇤|↵,s/2<·9(Q0)µ.



1256 ABED BOUNEMOURA AND JACQUES FÉJOZ

For the Fi , we do have the expression

Fi+1 = Fi+1 +
�
Fi � Vi+1

�
·
�
Id+ Fi+1

�

or alternatively

Fi+1 =
�
Id+ Fi � Vi+1

�
· Fi+1 + Fi � Vi+1

and thus

Fi+1 � Fi =
�
Id+ Fi � Vi+1

�
· Fi+1 + Fi � Vi+1 � Fi .

As before, using the estimates on Fi+1 and rFi+1 given in Proposition 6.4, one
shows that

�
�rFi

�
�
↵,si

<·
iX

l=0
��2↵
l 9(Ql)µl

but however, here, the sum above is not convergent. Yet we do have

�↵i
�
�rFi

�
�
↵,si

<· �↵i

iX

l=0
��2↵
l 9(Ql)µl <·

iX

l=0
��↵
l 9(Ql)µl <· 1

from (6.42) and using the fact that the estimate for Vi+1 can be written as

|Vi+1 � Id|↵,si+1 <· �↵i �
�↵
i 9(Qi )µi

one obtains �
�Fi � Vi+1 � Fi

�
�
↵,si+1

<· ��↵
i 9(Qi )µi .

By induction, one shows that

�
�Fi

�
�
↵,si

<·
iX

l=0
��↵
l 9(Ql)µl <· 1

from which one obtains �
�Id+ Fi � Vi+1

�
�
↵,si

<· 1

and as a consequence,
�
�Fi+1 � Fi

�
�
↵,si+1

<· ��↵
i 9(Qi )µi .

Using the convergence of (6.38) and (6.41), this shows that Fi converges to a map

F⇤ : Tn ⇥ {!0} ! Tn ⇥ D!0h

such that
|F⇤|↵,s/2<· Q09(Q0)µ.
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For Gi , we have the expression

Gi+1 =
�
Fi � Vi+1 + Id

�
· Gi+1 + Gi � Vi+1

and thus

Gi+1 � Gi =
�
Fi � Vi+1 + Id

�
· Gi+1 + Gi � Vi+1 � Gi .

Proceeding exactly as we did for Ei and Fi , using the convergence of (6.38), (6.41)
and (6.43), one finds that Gi converges to a map

G⇤ : Tn ⇥ {!0} ! Tn ⇥ D!0h

such that
|G⇤|↵,s/2<· Q09(Q0)".

In summary, the map F i converges to a map

F⇤ : Tn ⇥ Dr/2 ⇥ {!0} ! Tn ⇥ Dr,h

which belongs to G, of the form
(
F⇤(✓, I,!0) = (8⇤

!0(✓, I ),!
⇤
0),

8⇤
!0(✓, I ) = (✓ + E⇤(✓), I + F⇤(✓) · I + G⇤(✓))

with the estimates

|E⇤|↵,s/2<·9(Q0)µ, |F⇤|↵,s/2<· Q09(Q0)µ,

|G⇤|↵,s/2<· Q09(Q0)", |!⇤
0 � !0|<·µ.

(6.45)

Then from the estimates
�
�Ai

�
�
↵,si

 "i ,
�
�Bi

�
�
↵,si

 µi ,

given in (6.36), Proposition 6.4, and the convergence (6.38), it follows that both Ai
and Bi converge to zero. Next from the estimates

(�
�ei+1 � ei � 'i+1

�
�
↵,si+1


�
�Ai

�
�
↵,si

,
�
�r2I R

i+1 � r2I R
i �Fi+1

�
�
↵,si+1

<· ⌘|Fi+1|↵,si+1

still given in (6.36), Proposition 6.4, one can prove in the same way as we did
before, that ei converges to a trivial map

e⇤ : {!0} ! D!0h , e⇤(!0) := e⇤0

such that �
�e⇤0 � e!⇤

0

�
�<· " (6.46)
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whereas Mi converges to a map

M⇤ : Tn ⇥ Dr/2 ⇥ {!0} ! Tn ⇥ Dr,h

such that, setting R⇤(✓, I ) = M⇤(✓, I )I · I ,
�
�r2I R

⇤ � r2I R!⇤
0

�
�
↵,s/2<· ⌘Q09(Q0)µ. (6.47)

Therefore we have

H �F⇤(✓, I,!0) = H!⇤
0
�8⇤

!0(✓, I ) = e⇤0 + !0 · I + R⇤(✓, I ),

which, together with the previous estimates (6.45), (6.46) and (6.47), is what we
wanted to prove.

7. Proof of Theorem D, following Bessi

The goal of this short section is to show how Theorem D follows directly from the
work of Bessi in [2].

In Bessi, one starts with a non-resonant vector ! 2 Rn which is assumed to be
“exponentially Liouville” in the following sense: there exists s0 > 0 and a sequence
k j 2 Zn with |k j | ! +1 as j ! +1 for which

0 < |k j · !|  e�s0|k j |. (C1,s0)

Given this sequence of k j 2 Zn , one can find another sequence k̃ j 2 Zn such that
for all j 2 N, |k̃ j |  |k j |, k̃ j · k j = 0 and |k̃ j · !| � c|k̃ j | for some constant c > 0
independent of j .

Then one defines the following sequence of Hamiltonians onRn/(2⇡Zn)⇥Rn

(which are similar to the Hamiltonian considered by Arnold in [1]):
8
><

>:

H1, j",µ(✓, I ) := 1
2 I · I + F1, j",µ(✓), (✓, I ) 2 Rn/(2⇡Zn) ⇥ Rn

F1, j",µ(✓) := "⌫1, j,s(1� cos(k j · ✓))(1+ µ⌫̃1, j,s cos(k̃ j · ✓))

0 < "  1, 0 < µ  1, ⌫1, j,s := e�s|k j |, ⌫̃1, j,s := e�s|k̃ j |.
(H1, j,s)

Observe that the only role of the sequences ⌫1, j,s and ⌫̃1, j,s is to ensure that the
sequence of perturbations F1, j",µ satisfy, for all j 2 N and all 0  µ  1:

�
�F1, j",µ

�
�
s := sup

✓2Cn/(2⇡Zn), |Im(✓)s|

�
�F1, j",µ(✓)

�
�  4".

In [2], Bessi proved the following theorem.
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Theorem 7.1 (Bessi). Assume that ! 2 Rn satisfy (C1,s0). Then, if s0 > s, for any
0  "  1, there exists µ" > 0 and j" 2 N such that for any 0 < µ  µ" and
any j � j", the Hamiltonian system defined in (H1, j,s) does not have any invariant
torus T satisfying
(i) T projects diffeomorphically to Tn;
(ii) There is a C1 diffeomorphism between Tn and T which conjugates the flow

on T to the linear flow on Tn of frequency !.
It is clear that it is the regularity of the perturbation, here the analyticity which
causes the exponential decay of the Fourier coefficients, that forces the condi-
tion (C1,s0). If the perturbation is assumed to be only of class Cr for some r 2 N,
then (C1,s0) can be weakened to cover frequencies ! which are Diophantine with an
exponent ⌧ which is related to r (this can be obtained from Bessi’s work; one can
find a better quantitative result in [14], which also uses ideas of [2]).

Here we would like to consider the case where the perturbation is ↵-Gevrey;
we will consider a slight modification of the family of Hamiltonians (H1, j,s) to a
family of Hamiltonians (H↵, j,s) depending on ↵ � 1, which are still analytic but
for which the perturbation are bounded and small only in a ↵-Gevrey norm.

First we need to compute the Gevrey of the function Pk(✓) := cos(k · ✓) for an
arbitrary k 2 Zn . Using the fact that (l + 1)2  4l for any l 2 N we have

|Pk |↵,s = c sup
l2N

(l + 1)2s↵l |k|l

l!↵
 c sup

l2N

(4|k|s↵)l

l!↵

 c

 

sup
l2N

((4|k|)1/↵s)l

l!

!↵
 ces↵(4|k|)

1
↵
.

Now, given ↵ � 1, we introduce the following condition on the non-resonant vector
! 2 Rn: there exists s0 > 0 and a sequence k j 2 Zn with |k j | ! +1 as j ! +1
for which

0 < |k j · !|  e�s0↵(4|k j |)
1
↵
. (C↵,s0)

For ↵ = 1, this condition reduces to (C1,s0). Then we consider the following modi-
fied sequence of Hamiltonians, which once again corresponds exactly to H1, j,s for
↵ = 1:
8
><

>:

H↵, j
",µ (✓, I ) := 1

2 I · I + F↵, j",µ (✓), (✓, I ) 2 Rn/(2⇡Zn) ⇥ Rn

F↵, j",µ (✓) := "⌫↵, j,s(1� cos(k j · ✓))(1+ µ⌫̃↵, j,s cos(k̃ j · ✓))

0<"1, 0<µ1, ⌫↵, j,s := e�s↵(4|k j |)
1
↵ , ⌫̃↵, j,s := e�s↵(4|k̃ j |)

1
↵ .

(H↵, j,s)

With these choices of ⌫↵, j,s and ⌫̃↵, j,s we have that, for all j 2 N and all 0  µ  1:
�
�F↵, j",µ

�
�
s,↵  C"

for some constant C > 1 independent of " and µ. The argument of Bessi goes
exactly the same of way for this family of Hamiltonians (H↵, j,s) under the condi-
tion (C↵,s0), and thus we have the following statement.
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Theorem 7.2. Assume that ! 2 Rn satisfy (C↵,s0). Then, if s0 > s, for any 0 
"  1, there exists µ" > 0 and j" 2 N such that for any 0 < µ  µ" and any
j � j", the Hamiltonian system defined in (H↵, j,s) does not have any invariant
torus T satisfying

(i) T projects diffeomorphically to Tn;
(ii) There is a C1 diffeomorphism between Tn and T which conjugates the flow

on T to the linear flow on Tn of frequency !.

Now Theorem 7.2 implies Theorem D, as if ! satisfies (B↵), then it satisfies (C↵,s0)
for some s0 > 0 and it is sufficient to consider a Hamiltonian system as in (H↵, j,s)
with s < s0.

Appendix

A. On the ↵-Bruno-Rüssmann condition

Recall from Subsection 2.2 that the arithmetic function on [1,+1) associated with
a vector ! 2 Rn is given by

9!(Q) = max
n
|k · !|�1, k 2 Zn, 0 < |k|  Q

o

and that we have introduced a continuous version 9 which satisfies (2.4). We have
further defined 1 by 1(Q) = Q9(Q) and its functional inverse 1�1.

Also recall that, by definition, if ↵ � 1, A↵ consists of those vectors ! for
which Z +1

1(1)

dx

x(1�1(x))
1
↵

< 1, (A↵)

whereas BR↵ consists of vectors ! satisfying the ↵-Bruno-Rüssmann condition:

Z +1

1

ln(9!(Q))

Q1+
1
↵

dQ < 1 ,
Z +1

1

ln(9(Q))

Q1+
1
↵

dQ < 1. (BR↵)

In the proof of Theorem H, we use the following fact.

Proposition A.1. For any ↵ � 1, A↵ = BR↵ .

Proof. We aim at showing that the two integrals

Z +1 dx

x(1�1(x))
1
↵

and
Z +1 ln(9(Q))

Q1+
1
↵

dQ
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converge or diverge simultaneously. Equivalently, choosing for example t=1�1(1)
and, in the first integral, making the change of variable x = 1(Q), we may compare
the following two quantities:

a↵ =
Z 1

t

d1(Q)

Q
1
↵ 1(Q)

and b↵ =
Z 1

t

ln1(Q)

Q1+
1
↵

dQ.

A (Riemann-Stieltjes) integration by part shows that, if T > 1,
Z T

t

d1(Q)

Q
1
↵ 1(Q)

=
ln1(T )

T
1
↵

+
1
↵

Z T

t

ln1(Q)

Q1+
1
↵

dQ. (A.1)

On the one hand, the two integrals in this equality have a (possibly infinite) limit as
T tends to +1, and ln1(T )

T
1
↵

� 0, thus (A.1) yields, as T tends to infinity,

a↵ �
b↵
↵

.

On the other hand, since 1 is increasing,

ln1(T )

T
1
↵

=
ln1(T )

↵

Z +1

T

dQ

Q1+
1
↵


1
↵

Z +1

T

ln1(Q)

Q1+
1
↵

dQ

so, letting T tend to +1, (A.1) entails

a↵ 
b↵
↵

.

So, a↵ = b↵
↵ , whence the conclusion.

Remark A.2. From the proof above, one easily see that if ! 2 BR↵ , then

lim
Q!+1

ln(1(Q))

Q1/↵
= 0.

But ln(1(Q)) = ln(Q9(Q)) = ln Q + ln(9(Q)) and therefore

lim
Q!+1

ln(9(Q))

Q1/↵
= 0

which means that ! satisfies R↵ .
We refer to [3, Proposition 2.2] for related, more precise results. In the next lemma,
we give alternative characterizations of the ↵-BR condition, so as to facilitate com-
parisons with other arithmetic conditions.
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Lemma A.3. Let ↵ � 1, � = 1 + 1
↵ and ! 2 Rn non-resonant. The following

conditions are equivalent to each other:

1.
R +1
1

ln9!(Q)
Q� dQ < 1;

2.
P

Q�1
ln9!(Q)

Q� < 1;

3.
P

l�0
ln9!(2l )
2l/↵ < 1;

4. if n = 2 and ! = (1, ⌫),
P

k�1
ln qk+1
q1/↵k

< 1, where the qk’s are the main

denominators of the continued fraction of ⌫.

In the case ↵ = 1, the equivalence (1 , 2) is proved in [36], whereas (2 , 3 , 4)
is proved in in [18].

Proof. (1 , 2) As already noticed in Subsection 2.2, 9! is constant on intervals
of the form [Q, Q + 1), Q 2 N⇤. So,

Z 1

1

ln9!(Q)

Q�
dQ =

+1X

Q=1
ln9!(Q)

Z Q+1

Q
q�� dq

= ↵
X

Q�1
ln9!(Q)

⇣
Q�1/↵ � (Q + 1)�1/↵

⌘
.

Since the general term of this series is positive and Q�1/↵ � (Q+ 1)�1/↵ ⇠Q!+1

Q�� , the first two conditions are equivalent to one another.

(2 , 3) We want to show that f2 =
P

Q�1
ln9!(Q)

Q� and f3 =
P

l�0
ln9!(2l )
2l/↵ are

simultaneously finite or infinite. Since 9! is non-decreasing,

f2 �
X

l�0
ln9!

�
2l
� X

2lQ2l+1�1

1
Q�

,

where
X

2lQ2l+1�1

1
Q�

�
Z 2l+1

2l

dQ
Q�

�
↵

2
1
2l/↵

,

so that
f2 �

↵

2
f3.

Conversely, again using the fact that 9! is non-decreasing,

f2 
X

l�0
ln9!

�
2l+1

� X

2lQ2l+1�1

1
Q�

,
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where

X

2lQ2l+1�1

1
Q�


1
2l�

+
Z 2l+1�1

2l

dQ
Q�


1
2l/↵

✓
1
2l

+ ↵

◆

1+ ↵

2l/↵
=
21/↵(1+ ↵)

2(l+1)/↵

so that
f2  21/↵(1+ ↵) f3.

(2 , 4) Now assume n = 1 and ! = (1, ⌫), ⌫ 2 R. Let (pk/qk) be the sequence
of convergents of ⌫: one has then the following explicit expression

9!(Q) = |qk⌫ � pk |�1, qk  Q < qk+1

as was proved in [3, Proposition 2.7]. Hence,

S :=
X

Q�1

ln(9!(Q))

Q�
=

X

k�1

 

ln |qk⌫ � pk |�1
qk+1�1X

Q=qk

1
Q�

!

.

Bounding the first factor by

ln qk+1  ln |qk⌫ � pk |�1  ln(2qk+1)

and the second one by

↵

q1/↵k

�
↵

q1/↵k+1


qk+1�1X

Q=qk

1
Q�


1+ ↵

q1/↵k

(obtained by comparing the series with an integral) yields

↵
X

k�1

 
ln qk+1
q1/↵k

�
ln qk+1
q1/↵k+1

!

 S  (1+ ↵)
X

k�1

ln(2qk+1)
q1/↵k

= (1+ ↵)
X

k�1

 
ln 2
q1/↵k

+
ln(qk+1)
q1/↵k

!

.

Since the sequence (qk)k�0 increases at least geometrically, namely qk � 2k/2 for
any k � 0, we have

X ln qk+1
q1/↵k+1

< 1,
X 1

q1/↵k

< 1

and therefore
S < 1 ,

X ln qk+1
q1/↵k

< 1.
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Example A.4. Let ⌫ =
P

n�1 10�n!. Recall from [21, Theorem 30] that if p/q 2
Q satisfies

|p � q⌫| <
1
2q

,

then p/q is a best approximation of ⌫. So, we see that
P
1nQ 10�n! are best

approximations, and thus qn = 2n!. The 4th criterion of Lemma A.3 thus tells us
that ! = (1, ⌫) 2 BR↵ for all ↵ � 1, while ! is not Diophantine.

B. Gevrey estimates

Let us start by recalling some notations and definitions. Given an integer m � 1
and k = (k1, . . . , km) 2 Nm , we define

|k| =
mX

i=1
ki , k! =

mY

i=1
ki !.

Given x 2 Rm , we set

xk =
mY

i=1
xkii .

Let K be a compact set of the form

K = Tm1 ⇥ B̄m2, m1 + m2 = m,

where B̄m2 is the closure of an open subset Bm2 of Rm2 . Let f : K ! R be a
smooth function, meaning that f extends smoothly to an open neighborhood of K .
Such an extension is by no means unique, but note that, by continuity, the partial
derivatives of f over K , at any order, do not depend on the extension. For a 2 K
and k 2 Nm we set

@k f (a) = @k1x1 · · · @kmxm f (a). (B.1)

Given real numbers ↵ � 1 and s > 0, the function f is said to be (↵, s)-Gevrey if

| f |↵,s := c sup
a2K

 

sup
k2Nm

(|k| + 1)2s↵|k||@k f (a)|
|k|!↵

!

< 1, c := 4⇡2/3. (B.2)

The space of such functions will be denoted by G↵,s(K ), and equipped with the
above norm, it is a Banach space. Our definition of Gevrey norm is not quite stan-
dard, but up to decreasing or increasing the parameter s, it is comparable to the
Gevrey norms that have been used in Hamiltonian perturbation theory (as for in-
stance in [30] or in [32]). On the one hand, the role of the factor (|k| + 1)2 is to
simplify the estimates for the product and composition of Gevrey functions (see
respectively Lemmas B.7 and B.9). On the other hand, the role of the normalizing
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constant c > 0 in the definition is to ensure that G↵,s(K ) is a Banach algebra (see
Lemma B.7).

The above definition can be extended to vector-valued functions f=( fi )1ip :
K ! Rp for p � 1 by setting

�
�@k f (a)

�
� :=

X

1ip

�
�@k fi (a)

�
�, a 2 K

in (B.2). The space of such vector-valued functions is still a Banach space with
the above norm, and it will be denoted by G↵,s(K , Rp). The case of matrix-valued
functions, say with values in the space Mm,p(R) of matrix with m rows and p
columns, is reduced to the case of vector-valued functions by simply identifying
Mm,p(R) to Rmp.

B.1. Majorant series and Gevrey functions

The definition of Gevrey functions can be conveniently reformulated in terms of
majorant series with one variable (see [23], [24] and also [38]).

But first let us consider a formal power series inm variables X=(X1, . . . , Xm)
with coefficients in a normed real vector space (E, | . |E ), which is a formal sum of
the form

A(X) =
X

k2Nm
Ak Xk, Ak = Ak1,...,km 2 E .

Such a formal series is said to be majorized by another formal power series with
real non-negative coefficients

B(X) =
X

k2Nm
Bk Xk, Bk = Bk1,...,km 2 R,

and we write A ⌧ B, if

|Ak |E  Bk, 8 k 2 Zm . (B.3)

Next, following [38], we introduce a notion of a smooth function being majorized
by a formal power series in one variable. So let f : K ! Rp be a smooth function,
and F be a formal power series in one variable with non-negative coefficients, that
we shall write as

F(X) =
+1X

l=0

Fl
l!
Xl .

We will say that f is majorized by F on K , and we will write f ⌧K F (or
f (x) ⌧K F(X)), if for all a 2 K and all k 2 Nm , we have

�
�@k f (a)

�
�  F|k|. (B.4)
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To better understand this definition, recall that given f : K ! Rp and a 2 K , we
can define its formal Taylor series at a by

Ta f (X) :=
X

k2Nm

@k f (a)
k!

Xk,

which is a formal power series in m variables that takes values in Rp. To a formal
series F in one variable, one can associate a formal series F̂ in m variables simply
by setting

F̂(X1, . . . , Xm) := F(X1 + · · · + Xm).

If is then easy to check that f ⌧K F , in the sense of (B.4), if and only if for all
a 2 K , Ta f ⌧ F̂ , in the sense of (B.3) (with E = Rp and | . |E the norm given by
the sum of the absolute values of the components).

Now, given ↵ � 1 and s > 0, let us define the following formal power series
in one variable

M↵,s(X) := c�1
+1X

l=0

l!↵�1

(l + 1)2

✓
X
s↵

◆l
= c�1

+1X

l=0

Ml

l!
Xl ,

Ml =
l!↵

(l + 1)2s↵l
, c = 4⇡2/3.

(B.5)

The following characterization of Gevrey functions is evident from the definitions
(B.2) and (B.4).

Proposition B.1. If f : K ! Rp is a smooth function,

| f |↵,s = inf
�
C 2 [0,+1] | f ⌧K CM↵,s

 
.

Henceforth ↵ � 1 will be fixed, so in the sequel we will simply write M↵,s = Ms .

B.2. Properties of majorant series

We collect here some properties of majorant series that will be used later on. It is
clear how to define the derivatives of a formal power series in one variable, and
also a linear combination and the product of two such formal power series. We then
have the following lemma.

Lemma B.2. Let f, g : K ! Rp be smooth functions, F,G be two formal power
series in one variable, and assume that

f ⌧K F, g ⌧K G.
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Then
@k f ⌧K @

|k|F, k 2 Nm, (B.6)

� f + µg ⌧K |�|F + |µ|G, � 2 R, µ 2 R. (B.7)

Moreover, if we define f · g : K ! R by

f · g =
pX

i=1
fi gi ,

then
f · g ⌧K FG. (B.8)

For a proof, we refer to [38], Lemma 2.2, in which the case p = 1 is considered;
but the general case p � 1 is entirely similar.

Given two formal power series in one variable F and G, we define the compo-
sition F � G of F and G by

F � G(X) :=
+1X

l=0

Fl
l!

(G(X) � G(0))l .

Lemma B.3. Let f : K ! Rp be a smooth function, g : L ! Tm1 ⇥Rm2 another
smooth function such that g(L) ✓ K , and assume that

f ⌧K F, g ⌧L G.

Then
f � g ⌧L F � G.

Once again, for a proof we refer to [38, Lemma 2.3].

B.3. Derivatives

In this section, we will show that the derivatives of a Gevrey function are still
Gevrey, at the expense of reducing the parameter s > 0; these are analogues of
Cauchy estimates for analytic functions.

Proposition B.4. Let f 2 G↵,s(K , Rp), and 0 < � < s. Then for any k 2 Nm ,
@k f 2 G↵,s�� (K , Rp) and we have

�
�@k f

�
�
↵,s�� 

✓
|k|↵

�↵

◆|k|
| f |↵,s .
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Proof. It is enough to prove the case |k| = 1, as the general case follows by an easy
induction. From Proposition B.1 and (B.6) of Lemma B.2, to prove the case |k| = 1
it is sufficient to prove that

@1Ms ⌧ ��↵Ms�� (B.9)

where Ms is the formal power series defined in (B.5). We have

@1Ms(X) = c�1
+1X

l=1

l!↵

(l + 1)2sl↵(l � 1)!
Xl�1 = c�1

+1X

l=0

(l + 1)!↵

(l + 2)2s(l+1)↵l!
Xl

and hence (B.9) is true if, for all l 2 N,
⇣
� s�1

⌘↵ ⇣
1� � s�1

⌘l↵
(l + 1)↵  1. (B.10)

Since 0 < � s�1 < 1, we have ln(1� � s�1)  �� s�1 and thus
⇣
1� � s�1

⌘l↵
(l + 1)↵ = el↵ ln(1�� s

�1)(l + 1)↵  e�l↵� s
�1

(l + 1)↵.

Let � = � s�1, and consider the function u(x) = (x + 1)↵e�↵�x for x � 0. This
function reaches its maximum at x = ��1(1� �), the value of which is

u
⇣
��1(1� �)

⌘
= ��↵e(��1)↵  ��↵.

Therefore, for all l 2 N, we have
⇣
1� � s�1

⌘l↵
(l + 1)↵  ��↵ =

⇣
� s�1

⌘�↵

which is exactly the inequality (B.10) we wanted to prove.

For f : K ! R, let r f : K ! Rm be the vector-valued function formed by
the partial derivatives of f of order one, and more generally, for f : K ! Rp, we
let r f : K ! Mm,p(R) ' Rmp be the matrix-valued function whose columns are
given by r fi where f = ( fi )1ip. Then we have the following obvious corollary
of Proposition B.4.

Corollary B.5. Let 0 < � < s. If f 2 G↵,s(K , R), then r f 2 G↵,s�� (K , Rm)
and

|r f |↵,s��  m��a| f |↵,s
and if f 2 G↵,s(K , Rp), then r f 2 G↵,s�� (K , Rmp) and

|r f |↵,s��  mp��a| f |↵,s .
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B.4. Products

In this section we shall prove that the product of Gevrey functions is still a Gevrey
function.
Proposition B.6. Let f, g 2 G↵,s(K , Rp). Then f · g 2 G↵,s(K , R) and we have

| f · g|↵,s  | f |↵,s |g|↵,s .

Once again, in view of Proposition B.1 and (B.8) of Proposition B.2, Proposi-
tion B.6 is a direct consequence of the following lemma.
Lemma B.7. We have M2

s ⌧ Ms .

The proof given below follows [26]. It is this lemma that motivates the introduction
of the normalizing constant in Ms (and thus in the Gevrey norm); without this
constant one would have M2

s ⌧ c2Ms . Let us point out that the proof given below
is elementary thanks to the factor (|k| + 1)2 in the definition of Ms ; without this
factor, the statement is true (with a different normalizing constant) but the proof is
more involved (see [38, Lemma 2.7]).

Proof. Recall that

Ms(X) = c�1
+1X

l=0

Ml

l!
Xl , Ml =

l!↵

(l + 1)2s↵l

and so the assertion of the lemma amounts to prove that for all l 2 N,
lX

j=0

( j !)↵�1((l � j)!)↵�1

( j + 1)2(l � j + 1)2
 c

(l!)↵�1

(l + 1)2
, c =

4⇡2

3
. (B.11)

Observe that the sum in the left-hand side of (B.11) is symmetric with respect to
j 7! l � j , and that since ↵ � 1 � 0, ( j !)↵�1((l � j)!)↵�1  (l!)↵�1 for all l 2 N.
Hence,

lX

j=0

( j !)↵�1((l � j)!)↵�1

( j + 1)2(l � j + 1)2
 2

l/2X

j=0

( j !)↵�1((l � j)!)↵�1

( j + 1)2(l � j + 1)2

 2(l!)↵�1
l/2X

j=0

1
( j + 1)2(l � j + 1)2

.

Then for any 0  j  l/2, (l � j + 1)2 � (l/2+ 1)2 � (l + 1)2/4, and therefore
lX

j=0

( j !)↵�1((l � j)!)↵�1

( j + 1)2(l � j + 1)2

8(l!)↵�1

(l + 1)2
l/2X

j=0

1
( j + 1)2


8(l!)↵�1

(l + 1)2
+1X

j=0

1
( j + 1)2

=
4⇡2

3
(l!)↵�1

(l + 1)2

which is the inequality we wanted to prove.
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Proposition B.6 can be extended to matrix-valued functions. More precisely,
given f : K ! Mm,p(R) and g : K ! Mp,q(R) where f = ( fi, j )1im, 1 jp
and g = (g j,k)1 jm, 1kp, we define f · g : K ! Mm,q(R) by f · g :=
(( f · g)i,k)1im, 1kq where

( f · g)i,k :=
pX

j=1
fi, j g j,k .

Then the following statement is an obvious corollary of Proposition B.6.

Corollary B.8. Let f 2 G↵,s(K ,Mm,p(R)), g 2 G↵,s(K ,Mp,q(R)). Then f · g 2
G↵,s(K ,Mm,q(R)) and we have

| f · g|↵,s  | f |↵,s |g|↵,s .

B.5. Compositions

Our goal here is to prove that the composition of Gevrey functions are still Gevrey.
But first we need to define two additional formal power series associated to Ms , the
latter being defined in (B.5). So we define M̄ by

M̄s(X) := Ms(X) � Ms(0) = c�1
+1X

l=1

l!↵�1

(l + 1)2

✓
X
s↵

◆l
(B.12)

and M̃ by

M̃s(X) := c�1
+1X

l=0

(l + 1)!↵�1

(l + 2)2

✓
X
s↵

◆l
. (B.13)

It is clear that
s�↵X M̃s(X) = M̄s(X). (B.14)

Lemma B.9. We have

M̃2
s ⌧ M̃s, M̃s M̄s ⌧ M̄s .

As for Lemma B.7, the factor (|k| + 1)2 in the definition of Ms makes the proof
simple, but the statement is still true with this factor (see [38, Lemma 2.4]).

Proof. It is enough to prove the first part of the statement, as the second part of the
statement follows from it; indeed, if M̃2

s ⌧ M̃s , then using (B.14) we have

M̃s(X)M̄s(X) = s�↵X M̃s(X)M̃s(X) ⌧ s�↵X M̃s(X) = M̄s(X).

As in Lemma B.7, to prove that M̃2
s ⌧ M̃s one needs to show

lX

j=0

(( j + 1)!)↵�1((l � j + 1)!)↵�1

( j + 2)2(l � j + 2)2
 c

((l + 1)!)↵�1

(l + 2)2
, c =

4⇡2

3
. (B.15)
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The sum in the left-hand side of (B.15) is still symmetric with respect to j 7! l� j ,
and therefore

lX

j=0

(( j + 1)!)↵�1((l � j + 1)!)↵�1

( j + 2)2(l � j + 2)2
 2

l/2X

j=0

(( j + 1)!)↵�1((l � j + 1)!)↵�1

( j + 2)2(l � j + 2)2
.

Then, for any l 2 N and any 0  j  l/2, since ↵ � 1 � 0 we have

(( j + 1)!)↵�1((l � j + 1)!)↵�1  ((l + 1)!)↵�1

as one may easily check. Then, as in Lemma B.7, for any 0  j  l/2, (l� j+2)2 �
(l/2+ 2)2 � (l + 2)2/4, and therefore

lX

j=0

(( j + 1)!)↵�1((l � j + 1)!)↵�1

( j + 2)2(l � j + 2)2

8((l + 1)!)↵�1

(l + 1)2
l/2X

j=0

1
( j + 2)2


4⇡2

3
((l + 1)!)↵�1

(l + 2)2

and this concludes the proof.

Proposition B.10. Let f 2 G↵,s(K , Rp), 0 < � < s, and g 2 G↵,s�� (L , Tm1 ⇥
Rm2) such that g(L) ✓ K . Assume that g = Id+ u with

|u|↵,s��  �↵. (B.16)

Then f � g 2 G↵,s�� (L , Rp) and

| f � g|↵,s��  | f |↵,s . (B.17)

When f et g are analytic, the analogue of estimate (B.17) with the supremum
norm is obvious, for the obvious reason that the supremum of a function is a non-
increasing function of the domain.

As it will be clear in the proof, the conclusions of Proposition B.10 holds true
under the slightly weaker assumption that

|u|↵,s�� � sup
a2K

|u(a)|  s↵ � (s � � )↵

but this will not be needed.

Proof. Let
a := | f |↵,s, b := |u|↵,s��

so that, from Proposition B.1,

f (x) ⌧K aMs(X), u(x) ⌧L bMs�� (X)
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and consequently

f (x) ⌧K aMs(X), g(x) ⌧L X + bMs�� (X).

We now apply Lemma B.3 and, recalling the definition of M̄s and M̃s given respec-
tively in (B.12) and (B.13), we obtain

f (g(x)) ⌧L aMs
�
X + bM̄s�� (X)

�

= aMs(0) + aM̄s
�
X + bM̄s�� (X)

�

= aMs(0) + aM̄s

⇣
X + b(s � � )�↵X M̃s�� (X)

⌘

= aMs(0) + a
+1X

l=1

l!↵�1

(l + 1)2

 
X + b(s � � )�↵X M̃s�� (X)

s↵

!l

= aMs(0) + a
+1X

l=1

l!↵�1

(l + 1)2

✓
X
s↵

◆l ⇣
1+ b(s � � )�↵ M̃s�� (X)

⌘l
.

(B.18)

From the first part of Lemma B.9, for any j 2 N, we have

M̃ j
s�� ⌧ M̃s��

and therefore
⇣
1+ b(s � � )�↵ M̃s�� (X)

⌘l
=

lX

j=0

✓
l
j

◆
b j (s � � )� j↵ M̃s�� (X) j

⌧ M̃s�� (X)
lX

j=0

✓
l
j

◆
b j (s � � )� j↵

= M̃s�� (X)
�
1+ b(s � � )�↵

�l
.

Now, from (B.16) we get

b = |u|↵,s��  �↵  s↵ � (s � � )↵

and thus
1+ b(s � � )�↵  s↵(s � � )�↵.

This gives
⇣
1+ b(s � � )�↵ M̃s�� (X)

⌘l
⌧ M̃s�� (X)(s↵(s � � )�↵)l

which, together with (B.18), yields

f (g(x)) ⌧L aMs(0) + aM̃s�� (X)
+1X

l=1

l!↵�1

(l + 1)2

✓
X

(s � � )↵

◆l

= aMs(0) + aM̃s�� (X)M̄s�� (X).
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Using the second part of Lemma B.9, this gives

f (g(x)) ⌧L aMs(0) + aM̄s�� (X)

and since Ms(0) = Ms�� (0), we arrive at

f (g(x)) ⌧L a(Ms�� (0) + M̄s�� (X)) = aMs�� (X).

Using Proposition B.1, we eventually obtain

| f � g|↵,s��  a = | f |↵,s

and this concludes the proof.

B.6. Flows

In this section and the next one, we shall state and prove some estimates adapted to
the situation considered in Section 6: that is we consider functions H = H(✓, I,!)
which are defined and Gevrey smooth on a domain of the form

Tn ⇥ Dr,h = Tn ⇥ Dr ⇥ D!0h ✓ Tn ⇥ Rn ⇥ Rn

where Dr is the ball of radius r > 0 centered at the origin and D!0h is an arbitrary
ball of radius h > 0. In the lemma and proposition below, the variables ! 2 D!0h
play the role of a fixed parameter, hence to simplify the notations we will explicitly
suppress the dependence on ! 2 D!0h .

Moreover, throughout this section and the next one, for simplicity we shall
write u<· v (respectively u ·<v), if, for some constant C � 1 which depends only
on n and ↵ and could be made explicit, we have u  Cv (respectively Cu  v).

Let us first start with a vector-valued function D : Tn ! Rn which depends
only on ✓ 2 Tn , and that we shall considered as a vector field on Tn .

Lemma B.11. Given D 2 G↵,s(Tn, Rn), let 0 < � < s and assume that

|D|↵,s ·< �↵. (B.19)

Then for any t 2 [0,1], the time-t map Dt of the flow of D belongs toG↵,s�� (Tn,Tn)
and we have the estimate

|Dt � Id|↵,s��  |D|↵,s . (B.20)

The proof of the above lemma is a variant of the proof of [28, Lemma B.3].

Proof. The fact that Dt is smooth and defined for all t 2 [0, 1] (in fact, for all t 2 R)
follows from the compactness of Tn and the classical result on the existence and
uniqueness of solutions of differential equations (even though this will essentially
be re-proved below); the only thing we need to prove is the estimate (B.20). So
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let us consider the space V := C([0, 1],G↵,s�� (Tn, Tn)) of continuous map from
[0, 1] to G↵,s�� (Tn, Tn): given an element 8 2 V and t 2 [0, 1], we shall write
8t := 8(t) and consequently 8 = (8t )t2[0,1]. We equip V with the following
norm:

||8|| := max
t2[0,1]

|8t |↵,s��

which makes it a Banach space, and if we set ⇢ := |D|↵,s , we define

B⇢V := {8 2 V | ||8� Id||  ⇢}.

We can eventually define a Picard operator P associated to D by

P : B⇢V ! B⇢V, 8 7! P(8)

where P(8) = (P(8)t )t2[0,1] is defined by

P(8)t := Id+
Z t

0
D �8⌧d⌧.

To prove the lemma, it is sufficient to prove that P has a unique fixed point 8⇤ 2
B⇢V , as necessarily (8t

⇤)t2[0,1] = (Dt )t2[0,1]. Therefore it is sufficient to prove
that P induces a well-defined contraction on B⇢V , as the latter is a complete subset
of the Banach space V .

First we need to show that P maps B⇢V into itself. So assume 8 2 B⇢V ,
using (B.19) this implies that for all t 2 [0, 1],

|8t � Id|↵,s��  ⇢  �↵

so that (B.16) of Proposition B.10 is satisfied (with f = D and g = 8t for any
t 2 [0, 1]) and the latter proposition applies: this gives

|D �8t |↵,s��  |D|↵,s = ⇢, t 2 [0, 1]

hence
�
�P(8)t � Id

�
�
↵,s�� =

�
�
�
�

Z t

0
D �8⌧d⌧

�
�
�
�
↵,s��

 t⇢  ⇢, t 2 [0, 1]

and therefore
||P(8) � Id||  ⇢ .

This proves that P maps B⇢V into itself.
It remains to show that P is a contraction. So let 81,82 2 B⇢V , then for any

t 2 [0, 1],

P(81)
t � P(82)

t =
Z t

0

�
D �8⌧1 � D �8⌧2

�
d⌧

=
Z t

0

 Z 1

0
rD � (s8⌧1 + (1� s)8⌧2)ds

!

· (8⌧1 �8⌧2)d⌧.
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Using Proposition B.10, Corollary B.5 and Corollary B.8, we obtain, for any t 2
[0, 1],

|P(81)
t�P(82)

t |↵,s�� <· ��↵|D|↵,s max
0⌧t

|8⌧1�8
⌧
2 |↵,s�� <· ��↵|D|↵,sk81�82k

and hence
kP(81) � P(82)k<· ��↵|D|↵,sk81 �82k.

Using (B.19), we can then insure that P is a contradiction, which concludes the
proof.

Now let us consider a Hamiltonian function X on Tn ⇥ Dr , of the form

X (✓, I ) := C(✓) + D(✓) · I, C : Tn ! R, D : Tn ! Rn. (B.21)

The Hamiltonian equations associated to X are given by:
(
✓̇(t) = rI X (✓(t), I (t)) = D(✓(t)),
İ (t) = �r✓ X (✓(t), I (t)) = �rC(✓(t)) � rD(✓(t)) · I.

The equations for ✓ are uncoupled from the equations of I (and hence can be in-
tegrated independently), while the equations for I are affine in I ; it is well-known
that these facts lead to a simple form of the Hamiltonian flow associated to X (see,
for instance, [41]).

Proposition B.12. Let X be as in (B.21)withC2G↵,s(Tn,R) and D2G↵,s(Tn,Rn).
Let 0 < � < s and assume that

|D|↵,s ·< �↵. (B.22)

Then for any t 2 [0, 1], the time-t map Xt of the Hamiltonian flow of X is of the
form

Xt (✓, I ) = (✓ + Et (✓), I + Ft (✓) · I + Gt (✓))

where Et 2 G↵,s�� (Tn, Rn), Ft 2 G↵,s�� (Tn, Rn2) and Gt 2 G↵,s�� (Tn, Rn)
with the estimates

|Et |↵,s��  |D|↵,s, |Ft |↵,s�� <· ��↵|D|↵,s, |Gt |↵,s�� <· ��↵|C|↵,s . (B.23)

As a consequence, given 0 < � < r , if we further assume that

r��↵|D|↵,s + ��↵|C|↵,s ·< � (B.24)

then Xt maps Tn ⇥ Dr�� into Tn ⇥ Dr .
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Proof. The second part of the statement clearly follows from the first part, so let us
prove the latter. From the specific form of the Hamiltonian equations associated to
X , one has, for any t 2 [0, 1],

Xt (✓, I ) = (✓ + Et (✓), I + Ft (✓) · I + Gt (✓))

with
8
><

>:

Et (✓) =
R t
0 D(✓ + E⌧ (✓))d⌧,

Ft (✓) = �
R t
0 rD(✓ + E⌧ (✓))d⌧ �

R t
0 rD(✓ + E⌧ (✓)) · F⌧ (✓)d⌧

Gt (✓) = �
R t
0 rC(✓ + E⌧ (✓))d⌧ �

R t
0 rD(✓ + E⌧ (✓)) · G⌧ (✓)d⌧.

Because of (B.22), Lemma B.11 applies and the flow Dt (✓) = ✓ + Et (✓) satis-
fies (B.20), and therefore

|Et |↵,s�� = |Dt � Id|↵,s��  |D|↵,s

which gives the first estimate of (B.12). Using this estimate and (B.22), we can
apply Proposition B.10 and Corollary B.5 (both with �/2 instead of � ) to obtain,
for any 0  ⌧  t  1,

|rD � D⌧ |↵,s��  |rD|↵,s��/2<· ��↵|D|↵,s .

Looking at the expression of Ft , this gives

|Ft |↵,s�� <· ��↵|D|↵,s

✓
1+

Z t

0
|F⌧ |↵,s��d⌧

◆

which, by Gronwall’s inequality and (B.22), implies that for all t 2 [0, 1],

|Ft |↵,s�� <· ��↵|D|↵,s

which is the second estimate of (B.12). For the third estimate of (B.12), observe
that the same argument yields

|Gt |↵,s�� <· ��↵|C|↵,s + ��↵|D|↵,s

Z t

0
|G⌧ |↵,s��d⌧

and again, by Gronwall’s inequality and (B.22), for all t 2 [0, 1] we have

|Gt |↵,s�� <· ��↵|C|↵,s .

This concludes the proof.
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B.7. Inverse functions

In this last section, we shall prove that if a Gevrey map is sufficiently close to the
identity, then its local inverse is still Gevrey. To prove this in a setting adapted
to Section 6, let us consider a map � which depends only on ! 2 Dh , that is
� : Dh ! Rn .

Proposition B.13. Given � 2 G↵,s(Dh, Rn), let 0 < � < s and assume that

|� � Id|↵,s ·< �↵, |� � Id|↵,s  h/2 (B.25)

Then there exists a unique ' 2 G↵,s�� (Dh/2, Dh) such that � � ' = Id and

|' � Id|↵,s��  |� � Id|↵,s . (B.26)

Proof. Let us define V := G↵,s�� (Dh/2, Rn), which is a Banach space with the
norm || . || = | . |↵,s�� , and for ⇢ := |� � Id|↵,s , we set

B⇢V := { 2 V | || � Id||  ⇢}.

Let us define the following Picard operator P associated to �:

P : B⇢V ! B⇢V,  7! P( ) = Id� (� � Id) �  .

It is clear that � � ' = Id if and only if ' is a fixed point of P , and therefore the
proposition will be proved once we have shown that P has a unique fixed point in
B⇢V , and to do this it is enough to prove that P is a well-defined contraction of
B⇢V .

First let us prove that P maps B⇢V into itself. So let  2 B⇢V , and using the
second part of (B.25), observe that since

sup
!2Dh/2

| (!) � !|  || � Id||  ⇢  h/2

then  maps Dh/2 into Dh . This, together with the first part of (B.25) allows us to
apply Proposition B.10 to get

||(� � Id) �  || = |(� � Id) �  |↵,s��  |� � Id|↵,s = ⇢

and thus
||P( ) � Id|| = ||(� � Id) �  ||  ⇢,

that is, P maps B⇢V into itself. To show that P is a contraction, using Corol-
lary B.5, Corollary B.8 and Proposition B.10 one gets, for any  1, 2 2 B⇢V :

||(� � Id) �  1 � (� � Id) �  2||<· ��↵|� � Id|↵,s || 1 �  2||

and from the first part of (B.25), one can make sure that P is a contraction. This
ends the proof.

Comment. After this work was made public on Arxiv, an independent and interest-
ing proof of a special case of Theorem E appeared in the preprint [27].
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