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Flatness results for nonlocal minimal cones and subgraphs

ALBERTO FARINA AND ENRICO VALDINOCI

Abstract. We show that nonlocal minimal cones which are non-singular sub-
graphs outside the origin are necessarily halfspaces.

The proof is based on classical ideas of [14] and on the computation of the
linearized nonlocal mean curvature operator, which is proved to satisfy a suitable
maximum principle.

With this, we obtain new, and somehow simpler, proofs of the Bernstein-
type results for nonlocal minimal surfaces which have been recently established
in [20]. In addition, we establish a new nonlocal Bernstein-Moser-type result
which classifies Lipschitz nonlocal minimal subgraphs outside a ball.

Mathematics Subject Classification (2010): 35R11 (primary); 53A10, 49Q05
(secondary).

1. Introduction

Recently, a Bernstein-type problem for nonlocal minimal surfaces has been settled
in [20]. The two main results of [20] consist in:

• First, a “Lipschitz implies C1” regularity result for nonlocal minimal surfaces;
• Then, a “no singular cones implies Bernstein theorem in one more dimension”.

The precise statements of these results will be explicitly recalled later on, in Theo-
rems 1.2 and 1.3. From these results, one obtains also interesting byproducts, such
as the fact that s-minimal subgraphs are necessarily flat if the ambient space has
dimension less than or equal to 3, or less than or equal to 8 under the additional
assumption that the fractional parameter is large enough.

The goal of this paper is to establish that nonlocal minimal cones with the
structure of a non-singular subgraph outside the origin are necessarily flat. Inter-
estingly, this result holds in any dimension and provides also a nonlocal version of
the Bernstein theorem for classical minimal surfaces proved by J. Moser in [27]. As
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a byproduct, we also obtain new results for s-minimal subgraphs outside a ball. Fur-
thermore, the approach of this paper presents an alternative, and somehow simpler,
proof of the results in [20].

The mathematical setting in which we work is that introduced in [5], that we
now recall. We consider an ambient space of dimension N := n + 1 2 N. For any
disjoint (measurable) subsets X and Y of RN and any s 2 (0, 1), we consider the
s-interaction of X and Y , defined by

Is(X,Y ) :=
ZZ

X⇥Y

dx dy
|x � y|N+s .

Given a (say, bounded and Lipschitz) set � ⇢ RN , and E ✓ RN , one defines the
s-perimeter of E in � as the sum of all the interactions of E and Ec := Rn \ � to
which the domain � contributes, namely

Pers(E,�) :=Is
�
E \ �,Ec \ �

�
+Is

�
E \ �,Ec \ �c�+Is

�
E \ �c,Ec \ �

�
.

As customary, the superscript “c” denotes the complementary set. Then, one says
that E is an s-minimal set in � (or that @E is an s-minimal surface in �) if it is a
local minimizer in � of the s-perimeter functional, i.e., if Pers(E,�) < +1 and

Pers(E,�) 6 Pers(F,�)

for every F ✓ RN such that F \ �c = E \ �c.
We also say that E is an s-minimal set if it is an s-minimal set in BR for

all R > 0.
The study of s-minimal surfaces is extremely challenging and fascinating, and

their complete regularity theory is one of the most important open problems in the
topic of fractional analysis. Till now, it is known that s-minimal surfaces are C1 in
the interior of the reference domain when the dimension N of the ambient space is
less than or equal to 3 (see [30]) and when the dimension N of the ambient space is
less than or equal to 8 as long as the fractional exponent s is sufficiently close to 1
(see [7] and also [2]).

The boundary regularity is somehow a different story with respect to the inte-
rior case, since s-minimal surfaces have the tendency to stick at the boundary of the
domain and to detach in a C1,

1+s
2 fashion1 from it, see [4, 17].

Nonlocal perimeters and nonlocal minimal surfaces have also a number of ap-
plications, and they naturally arise for instance as interfaces of long-range phase
coexistence models (see [29]) and models for cellular automata (see [6]). An in-
tense research activity has been done concerning nonlocal isoperimetric problems

1 As a “philosophical remark”, let us mention that the exponent 1+s2 is somehow consistent
with the kernel in computations like that in (3.2) in this paper, in which the kernel is of the
form n+2S, with S := 1+s

2 . These types of operators are sort of nonlinear S-Beltrami Laplacian
along manifolds of dimension n embedded into RN = Rn+1.
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(see, e.g., [19, 21–23]) constant nonlocal mean curvature surfaces (see, e.g., [3, 10]
and also [12]) and nonlocal geometric flows (see [8, 9, 25, 28]), and the topic is
rich of very challenging and important open questions, with many links to other
subjects, see, e.g., [11, 18] for recent surveys.

We say that a set E ✓ RN is a cone (with respect to the origin) if for every p 2
E we have that tp 2 E for any t > 0.

We say that a set E ✓ RN is an s-minimal cone if it is an s-minimal set and it
is a cone.

It is also interesting to consider the case in which sets have the structure of
subgraphs (say, for definiteness, with respect to the last coordinate). That is, we
say that E ✓ RN = Rn+1 is a subgraph if there exists a (measurable) function u :
Rn ! R such that

E = {xn+1 < u(x1, . . . , xn)}. (1.1)

We say that E is an s-minimal subgraph if it is an s-minimal set and a subgraph.
We remark that the notion of subgraph fits well into the nonlocal minimal sur-

face setting, since if one considers cylindrical domains � = �o ⇥ R ⇢ Rn+1

with �o ⇢ Rn and prescribes the data of the set outside � to be a subgraph, then
the s-minimal sets in� possess a subgraph structure, though with possible disconti-
nuities along the boundary of the cylinder (see [16], and this boundary discontinuity
is an important difference with respect to the classical minimal surfaces).

In this context, the main result of this paper is the following:

Theorem 1.1. Let n > 1 and E be an s-minimal cone in Rn+1. Assume that E is a
subgraph, as in (1.1).

Suppose that
u is Lipschitz continuous in Rn . (1.2)

Then E is a halfspace.

This result2 is the nonlocal analogue of that on [14, page 79] for the minimizers of
the classical perimeter functional.

2 Concerning assumption (1.2), we point out that it is equivalent to require that u is locally
Lipschitz continuous in Rn \ {0}, or simply Lipschitz continuous in @B1. Indeed, since u is
homogeneous, due to the cone property, ifL is the Lipschitz norm of u in @B1 and Ex := x

|x | , we
have that

|u(x) � u(y)| =
�
�|x |u(Ex) � |y|u(Ey)

�
� 6

�
�|x |u(Ex) � |x |u(Ey)

�
�+

�
�|x |u(Ey) � |y|u(Ey)

�
�

6 L |x | |Ex � Ey| + L
�
�|x | � |y|

�
� = L

�
�
�
�x �

|x | y
|y|

�
�
�
�+ L

�
�|x | � |y|

�
�

6 L |x � y| + L

�
�
�
�y �

|x | y
|y|

�
�
�
�+ L

�
�|x | � |y|

�
�

= L |x � y| + L

�
�
�
�
y

|y|
�
|y| � |x |

�
�
�
�
�+ L

�
�|x | � |y|

�
�= L |x � y| + 2L

�
�|x | � |y|

�
� 6 3L |x � y|

for all x , y 2 Rn \ {0} (and thus for all x , y 2 Rn by defining u(0) := 0).
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Theorem 1.1 can be also recasted for conical subgraphs with zero fractional
mean curvature. For this, given E ⇢ RN and x 2 @E , with @E of class C1,↵
with ↵ > s at x , we define the s-mean curvature of E at x as

H E
s (x) :=

Z

Rn

�Ec(y) � �E (y)
|x � y|n+s

,

in the principal value sense. See [1,5,19,26] for the basic properties ofH E
s and for

the fact that it can be considered as the first variation of Pers . In this setting, one can
restate Theorem 1.1 by saying that if a set is a subgraph and a cone, that is smooth
outside the origin, and with H E

s = 0 on @E \ {0}, then it must be a halfspace.
The structural assumptions of such statement are somehow sharp, since the cones
discussed in [13, Theorem 3] are smooth outside the origin and have zero fractional
mean curvature in any dimension, without being halfspaces (but such cones are not
subgraphs).

As an immediate consequence of Theorem 1.1, we obtain a new proof of the
following two results, which have been recently proved, with other methods, in [20]:

Theorem 1.2 ([20, Theorem 1.1]). Let n>1 and let E be an s-minimal set in B1⇢
Rn+1. Suppose that @E \ B1 is locally Lipschitz. Then @E \ B1 is C1.

Theorem 1.3 ([20, Theorem 1.2]). Let E = {xn+1 < u(x1, . . . , xn)} be an s-
minimal subgraph, and assume that there are no singular s-minimal cones in di-
mension n (that is, ifC ⇢ Rn is a non-empty s-minimal cone, thenC is a halfspace).
Then u is an affine function (thus E is a halfspace).

The proofs of Theorems 1.2 and 1.3 are based on the classification of blow-up and
blow-down cones respectively (see, e.g., [20, Section 3] or Section 2 here for a
detailed discussion on blow-up and blow-down cones). In [20] such classification
of limit cones is obtained by geometric methods: roughly speaking, the idea in [20]
is to use the cone itself as a barrier, modifying it in a given region by adding a “small
bump” to the original cone and sliding this modified surface to a first contact point
with the original one (on the one hand, the effect of this bump should change only by
little the nonlocal mean curvature at a smooth point, on the other hand such nonlocal
mean curvature is influenced from far-away points by an order one contribution in
a non-flat picture, and these two observations provide a contradiction).

Very roughly speaking, the idea for the argument of [20] is quite geometric
and sketched in Figure 1.1 (after a dilation, for instance, the subgraph reduces to
a cone, which is touched from below by the dashed surface, which should have a
small nonlocal mean curvature if the additional bump is small, in contradiction with
the mass produced in the grey region).

In this paper instead we obtain Theorems 1.2 and 1.3 directly from Theo-
rem 1.1, which classifies the blow-up and blow-down cones without any other ad-
ditional geometric argument and only relying on analytical methods, such as lin-
earization and maximum principle.
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Figure 1.1. A geometric idea in [20].

It is also interesting to point out that our results can also comprise the more general
settings of subgraphs outside a ball. Namely, we say that E ✓ RN = Rn+1 is a
subgraph outside a ball if there exists a ball B ⇢ Rn and a function u : Rn ! R
such that

E \ (B ⇥ R) = {xn+1 < u(x1, . . . , xn)} \ (B ⇥ R). (1.3)

We say that E is an s-minimal subgraph outside a ball if it is an s-minimal set and
a subgraph outside a ball.

The setting that we provide in Theorem 1.1 is strong enough to establish a
classification result for Lipschitz s-minimal subgraphs outside a ball, which goes as
follows:

Theorem 1.4. Let n > 1 and E be an s-minimal subgraph outside an open ball B,
as in (1.3). Suppose also that

u is globally Lipschitz continuous in Rn \ B. (1.4)

Then E is a halfspace.

Theorem 1.4 can be seen as the nonlocal counterpart of the results for classical
minimal surfaces that were obtained in [27, Section 7] by means of Harnack-type
inequalities. As far as we know, Theorem 1.4 is new even for s-minimal subgraphs
as in (1.1).

We also point out that a strengthening of Theorem 1.2 holds true, where one
can drop the Lipschitz assumption if no singular cones exist in one dimension less,
according to the following statement:

Theorem 1.5. Let n > 1 and let E be an s-minimal subgraph in B1 ⇢ Rn+1.
Assume also that there are no singular s-minimal cones in dimension n. Then @E \
B1 is C1.

From Theorem 1.5 here and [30, Theorem 1], it plainly follows that:

Corollary 1.6. Let n 2 {1, 2} and let E be an s-minimal subgraph in B1 ⇢ Rn+1.
Then @E \ B1 is C1.

Similarly, from Theorem 1.5 here and [7, Theorem 2], we obtain:

Corollary 1.7. Let n 2 {1, . . . , 7}. Then there exists "n 2 (0, 1) such that if s 2
(1� "n, 1) and E is an s-minimal subgraph in B1 ⇢ Rn+1, it holds that @E \ B1
is C1.
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Corollaries 1.6 and 1.7 can be seen as a positive answer when n 2 {1, 2} (or
when n 2 {1, . . . , 7} and s is close enough to 1) to the open problem in [11, Sec-
tion 7.3].

The rest of this paper is mostly devoted to the proof of Theorem 1.1, which
in turn will imply Theorems 1.2 and 1.3 right away. We then give the proofs of
Theorems 1.4 and 1.5, by exploiting Theorem 1.1. Before presenting the main
arguments of the proof of Theorem 1.1, we present some basic facts about blow-up
and blow-down cones.

The paper ends with an appendix collecting some ancillary (but nontrivial)
estimates to check that some integrals are well-defined and can be differentiated.

ACKNOWLEDGEMENTS. It is a pleasure to thank Serena Dipierro for very interest-
ing discussions.

2. An overview on blow-up and blow-down cones for s-minimal sets

Given an s-minimal set E , with 0 2 @E , for any r > 0, we consider the family of
sets Er := E/r . By density estimates and monotonicity formulas, we know that Er
converges up to subsequences to some E0 as r & 0 and to some E1 as r % +1.
In addition, the sets E0 and E1 are s-minimal cones, see [5, Theorem 9.2].

The cone E0, which is called in jargon “blow-up cone”, corresponds to the
action of “looking the picture close to the origin by performing a zoom-in” and its
flatness is equivalent to the regularity of the original set E in a neighborhood of the
origin. Indeed, from [5, Theorem 6.1] and [2, Theorem 5], we have that

if E0 is a halfspace, then @E \ B⇢ is C1, (2.1)

for some ⇢ > 0.
The cone E1 is called in jargon “blow-down cone” and corresponds to the

action of “looking the picture from far, by making a zoom-out” and its flatness is
equivalent to the flatness of the original set E . Indeed, we have that

if E1 is a halfspace, then E = E1, and so E is a halfspace. (2.2)

See, e.g., [20, Lemma 3.1].
Moreover, we recall the following dimensional reduction of [5, Theorem 10.3]

(see also [26, Theorem 5.33]):

Lemma 2.1. Let E be an s-minimal cone in Rn+1. Let p 2 @E , with p 6= 0.
Let F := E � p and let F0 be the blow-up cone for F .
Then F0 can be written up to a rotation as the Cartesian product F̃⇥R, where

F̃ is an s-minimal cone in Rn .
Also, if @E is not C1 at p, then F̃ is singular at the origin.
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From Lemma 2.1, we obtain that if no singular s-minimal cones exist in one dimen-
sion less, then the origin is the only possible singularity of s-minimal cones (i.e.,
if no singular s-minimal cones exist in Rn , then the s-minimal cones in Rn+1 are
either halfspaces or singular only at the origin):

Corollary 2.2. Let E be an s-minimal cone in Rn+1. Assume that there are no
singular s-minimal cones in dimension n. Then, @E is C1 outside the origin.

Proof. Suppose, by contradiction, that @E is not C1 at some point p 2 @E ,
with p 6= 0. Then Lemma 2.1 produces a singular minimal cone F̃ in Rn , which is
in contradiction with our assumption.

The dimension reduction of Lemma 2.1 can be strengthened in case of Lip-
schitz subgraphs. To this end, we first give a detailed blow-up argument when a
Lipschitz assumption is taken:

Lemma 2.3. Let E be an s-minimal cone in Rn+1. Let  2 R and p = (0, . . . , 0,
1, ) 2 @E and suppose that @E is a Lipschitz subgraph in a neighborhood of p.

Let F := E � p and let F0 be the blow-up cone for F . Then, F0 is the
subgraph of some Lipschitz function v0 : Rn ! R. Furthermore, there exists a
Lipschitz function v? : Rn�1 ! R such that

v0(x̂, xn) = v?(x̂) + xn, (2.3)

for any (x̂, xn) 2 Rn�1 ⇥ R.
In addition, for any t > 0 and any x̂ 2 Rn�1,

v?(t x̂) = tv?(x̂). (2.4)

Furthermore, if
�
�⇡
2 , ⇡

2
�

3 ✓ := arctan  and we consider the rotation given by

Rn�1 ⇥ R ⇥ R 3 (ŷ, yn, yn+1) := R✓ (x̂, xn, xn+1),

with ŷ := x̂,
✓
yn
yn+1

◆
:=

✓
cos ✓ sin ✓

� sin ✓ cos ✓

◆✓
xn
xn+1

◆
,

(2.5)

we have that R✓ (F0) = F? ⇥ R, where F? is an s-minimal cone in Rn (with
variables (ŷ, yn+1)) and it is the subgraph {yn+1 < cos ✓v?(ŷ)}.

Proof. We let en := (0, . . . , 0, 1) 2 Rn and en+1 := (0, . . . , 0, 0, 1) 2 Rn+1. In
this way, we can write p = (en, 0) + en+1. We let u be the subgraph describing E
near p and v(x) := u(x+ en)� . The function v describes the subgraph of F near
the origin. Let M > 0 be the Lipschitz constant of u in B%(en), for some % > 0.
Then the Lipschitz constant of v in B% is bounded by M .

We also define vr (x) := v(r x)
r . By construction, v(0) = u(en) �  = 0

and so vr (0) = 0. Also, the Lipschitz constant of v in B%/r is bounded by M .
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Consequently, from the Arzelà-Ascoli theorem, up to subsequence, as r & 0, vr
converges locally uniformly to some Lipschitz function v0.

Now, since E is a cone, for any ŷ 2 Rn�1 and t > 0, we have that

u(t ŷ, t) = tu(ŷ, 1).

Accordingly, fixed x̂ 2 Rn�1 and ⌧ > �1
r , taking t := r⌧ + 1 > 0 and ŷ :=

r x̂
r⌧+1 = r x̂

t , we see that

v(r x̂, r⌧ )=u(r x̂, r⌧ +1)� =u
�
t ŷ, t

�
� = tu(ŷ, 1)� =r⌧u(ŷ, 1)+u(ŷ,1)�

= r⌧u
✓

r x̂
r⌧ + 1

, 1
◆

+ u
✓

r x̂
r⌧ + 1

, 1
◆

� 

and thus

vr (x̂, ⌧ ) = ⌧u
✓

r x̂
r⌧ + 1

, 1
◆

+
u
⇣

r x̂
r⌧+1 , 1

⌘
� u(r x̂, 1)

r
+
u(r x̂, 1) � 

r
. (2.6)

So, we now fix ⌧ 2 R and x̂ 2 Rn�1. We take r > 0 so small that ⌧ > �1
r . Also,

for small r , we have that
⇣

r x̂
r⌧+1 , 1

⌘
and (r x̂, 1) belong to B%/2(en) and therefore

�
�
�
�
�
�

u
⇣

r x̂
r⌧+1 , 1

⌘
� u(r x̂, 1)

r

�
�
�
�
�
�
6

M
�
�
� r x̂
r⌧+1 � r x̂

�
�
�

r

6 M |x̂ | |⌧ | r, which is infinitesimal as r & 0.

(2.7)

We also setwr (x̂) := u(r x̂,1)�
r . Notice thatwr (0) = u(0,1)�

r = 0, andwr has Lip-
schitz constant locally bounded by M when r is small. Thus, up to a subsequence,
we suppose that wr converges locally uniformly to a Lipschitz function v?.

Using this information and (2.7), we can pass to the limit in (2.6) and conclude
that

v0(x̂, ⌧ ) = lim
r&0

vr (x̂, ⌧ )

= lim
r&0

⌧u
✓

r x̂
r⌧ + 1

, 1
◆

+
u
⇣

r x̂
r⌧+1 , 1

⌘
� u(r x̂, 1)

r
+ wr (x̂)

= ⌧u(0, 1) + v?(x̂)
= ⌧ + v?(x̂).

This establishes (2.3), as desired.
Now, from (2.3) and the fact that F0 is a cone, we have that

v?(t x̂) + t xn = v0(t x̂, t xn) = tv0(x̂, xn) = t
�
v?(x̂) + xn

�
= tv?(x̂) + t xn,

from which (2.4) easily follows.
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xn+1

v*(x)̂
q

xn

Figure 2.1. The effect of the rotation R✓ on the plane (xn, xn+1) for a fixed x̂ 2 Rn�1.

Now, we consider the rotation in (2.5), and we perform a geometric argument to
complete the proof of Lemma 2.3, as described by Figure 2.1.

The analytic details go as follows. We substitute x̂ = ŷ, xn = cos ✓ yn �
sin ✓ yn+1 and xn+1 = sin ✓ yn + cos ✓ yn+1. In this way, we have that

R✓ (F0) = R✓

⇣�
xn+1 < v0(x̂, xn)

 ⌘

= R✓

⇣�
xn+1 < v?(x̂) + tan ✓ xn

 ⌘

=
�
sin ✓ yn + cos ✓ yn+1 < v?(ŷ) + tan ✓

�
cos ✓ yn � sin ✓ yn+1

� 

=
�
(cos ✓ + tan ✓ sin ✓)yn+1 < v?(ŷ)

 

=
�
yn+1 < cos ✓ v?(ŷ)

 

=
�
(ŷ, yn, yn+1) with yn+1 < cos ✓ v?(ŷ) and yn 2 R

 
.

This gives the desired expression for F?. Also, since F0 is s-minimal in Rn+1,
so is R✓ (F0) = F? ⇥ R and then F? is s-minimal in Rn by dimension reduction
(see [5, Theorem 10.3] or [26, Theorem 5.33]).

3. Proof of Theorem 1.1

The idea of the proof, inspired by the work in [14] (with the very minor correction
in [15]), is based on two observations:

• The derivatives of u should satisfy a linearized equation;
• Since E is a cone, these derivatives are positively homogeneous of degree zero,
and therefore their maxima and minima along the unit sphere must be global
maxima and minima.

Then, if the linearized equation possesses a maximum, or minimum, principle, the
derivatives of u are necessarily constant, hence u must be affine and E is proved to
be a halfspace, as desired.
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In our setting, the goal is thus to write an appropriate equation for u and for
its derivatives and check that a suitable maximum principle is satisfied for such lin-
earized equation. The main idea for this is that the fractional mean curvature of E
at any boundary point must vanish (see [5, Theorem 5.1] or [26, Corollary 4.13]).
Then, by some computation one can write such fractional mean curvature directly in
term of the function u: this expression is not completely explicit, since one cannot
write “simple expressions” of all the integrals involved, nevertheless the formulas
that we provide (which can be useful in other contexts as well) are suitable to carry
out detailed analytic arguments. Indeed, outside the origin the function u is dif-
ferentiable and the fractional mean curvature equation can be linearized. A careful
inspection of the sign of the integrands reveals that this linearized equation “charges
positive masses” and so it possess a sort of maximum principle, which in turn pro-
vides the desired result.

In further details, the analytical ingredients which effectively implement this
general strategy go as follows. We write E as a subgraph, as in (1.1). First, we
establish Theorem 1.1 under the additional assumption that

u 2 C3(Rn \ {0}). (3.1)

Since E is s-minimal, at any point X = (x, u(x)) 2 Rn+1, with x 2 Rn \ {0}, we
have that the fractional mean curvature of E at X must vanish (see [5, Theorem 5.1]
or [26, Corollary 4.13]). We also consider the tangent halfspace at X , namely

LX :=
�
Y = (y, yn+1) 2 Rn ⇥ R so that yn+1 < ru(x) · (y � x) + u(x)

 
.

Of course, the fractional mean curvature of LX at X must vanish as well. For short,
we use the notation L := LX when no confusion arises. Notice in addition that

�E � �L =

8
<

:

1 in E \ Lc
�1 in L \ Ec
0 otherwise

and similarly

�Ec � �Lc =

8
<

:

1 in Ec \ L
�1 in Lc \ E
0 otherwise.

Now, we want to compare the nonlocal mean curvature of E with that of L (of
course, both are zero, hence the difference is zero; and the difference of the non-
local mean curvature produces the difference of the corresponding characteristic
functions). Namely, the above considerations imply that, for any X = (x, xn+1) =
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(x, u(x)) 2 Rn ⇥ R, with x 6= 0,

0 =
1
2

Z

RN

�
�Ec(Y ) � �Lc(Y )

�
�
�
�E (Y ) � �L(Y )

�

|X � Y |N+s dY

=
Z

Ec\L

dY
|X � Y |n+1+s

�
Z

E\Lc

dY
|X � Y |n+1+s

=
Z

Y=(y,yn+1)2Rn⇥R
u(y)6yn+1<ru(x)·(y�x)+u(x)

dY
|X � Y |n+1+s

�
Z

Y=(y,yn+1)2Rn⇥R
ru(x)·(y�x)+u(x)6yn+1<u(y)

dY
|X � Y |n+1+s

.

(3.2)

Now, fixed X = (x, xn+1) 2 Rn ⇥ R, given two functions f , g : Rn ! R,
with f (x) = g(x) = xn+1, we use the substitutions

R 3 ⌧ :=
yn+1 � xn+1

|y � x |
and Rn 3 # := y � x

to make the following calculation:
Z

Y=(y,yn+1)2Rn⇥R
f (y)6yn+1<g(y)

dY
|X � Y |n+1+s

=
Z

Y=(y,yn+1)2Rn⇥R
f (y)6yn+1<g(y)

dY

|y � x |n+1+s
⇣
1+ |yn+1�xn+1|2

|y�x |2

⌘ n+1+s
2

=
Z

(#,⌧ )2Rn⇥R
f (x+#)�xn+1

|# | 6⌧<
g(x+#)�xn+1

|# |

d# d⌧

|# |n+s
�
1+ ⌧ 2

� n+1+s
2

=
Z

Rn

F
⇣
g(x+#)�xn+1

|# |

⌘
� F

⇣
f (x+#)�xn+1

|# |

⌘

|# |n+s
d#

(3.3)

where, for any r 2 R, we used the notation3

F(r) :=
Z r

0

d⌧
�
1+ ⌧ 2

� n+1+s
2

. (3.4)

Making use of (3.3) into (3.2), with the choice f (y) := u(y) and g(y) := ru(x) ·
(y � x) + u(x), we conclude that

F [u](x) :=
Z

Rn

F
⇣
u(x+#)�u(x)

|# |

⌘
� F

⇣
ru(x)·#

|# |

⌘

|# |n+s
d# = 0, (3.5)

for any x 2 Rn \ {0}.

3 The function F was introduced in [2, formula (49)]. See also [3] for other applications of such
function in related contexts.
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To avoid integrals in the principal value sense, it is now convenient to produce
a “more symmetric” version of (3.5), by taking into account the fact that F 0(r) =

1

(1+r2)
n+1+s
2
, which is an even function, and so F is an odd function. Therefore, the

change of variable # 7! �# gives that

Z

Rn

F
⇣
u(x+#)�u(x)

|# |

⌘
�F

⇣
ru(x)·#

|# |

⌘

|# |n+s
d# =

Z

Rn

F
⇣
u(x�#)�u(x)

|# |

⌘
� F

⇣
�ru(x)·#

|# |

⌘

|# |n+s
d#

=
Z

Rn

F
⇣
u(x�#)�u(x)

|# |

⌘
+ F

⇣
ru(x)·#

|# |

⌘

|# |n+s
d#.

Summing up this to (3.5), we conclude that

2F [u](x) :=
Z

Rn

F
⇣
u(x+#)�u(x)

|# |

⌘
+ F

⇣
u(x�#)�u(x)

|# |

⌘

|# |n+s
d# = 0. (3.6)

One can check that
the integral in (3.6) is well-posed, (3.7)

see Appendix A. Then, for any j 2 {1, . . . , n} we take4 a derivative of (3.6) and we
obtain that v := @ j u satisfies the linearized equation

Lu[v](x)

:=
Z

Rn

F 0
⇣
u(x+#)�u(x)

|# |

⌘⇣
v(x+#)�v(x)

⌘
+F 0

⇣
u(x�#)�u(x)

|# |

⌘⇣
v(x�#)�v(x)

⌘

|# |n+s+1
d#

= 0. (3.8)

The fact that the derivative in (3.6) can be safely taken, thus leading to (3.8) is
checked in details in Appendix B.

Now we claim that
v is constant. (3.9)

The proof of (3.9) is based on the maximum principle, applied to the linearized
equation in (3.8). In order to achieve this aim, we take x̄ 2 Sn�1 be such that

v(x̄) = max
Sn�1

v.

4 We also observe that, in (3.8), one can also write the short-hand expression

Lu[v](x) = 2
Z

Rn

F 0
⇣
u(x+#)�u(x)

|# |

⌘ ⇣
v(x + #) � v(x)

⌘

|# |n+s+1
d#,

provided that the integral is taken in the principal value sense.
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Since E is a cone, it follows that u is positively homogeneous of degree one, and
so v is positively homogeneous of degree zero. As a result, it follows that, for
any x 2 Rn \ {0},

v(x) = v

✓
x
|x |

◆
6 max

Sn�1
v = v(x̄).

Consequently, we have that

v(x̄ ± #) � v(x̄) 6 0,

and this expression vanishes identically for # 2 Rn if and only if v is constant.
Also, by (3.4), we have that

F 0
✓
u(x ± #) � u(x)

|# |

◆
> 0.

Therefore, the map

Rn 3 #

7�!
F 0
⇣
u(x̄+#)�u(x̄)

|# |

⌘⇣
v(x̄+#)�v(x̄)

⌘
+F 0

⇣
u(x̄�#)�u(x̄)

|# |

⌘⇣
v(x̄ � #) � v(x̄)

⌘

|# |n+s+1

is non-positive, and strictly negative on a positive measure set of #’s, unless v is
constant. This observation and (3.8) imply (3.9).

In view of (3.9), we have therefore completed the proof of Theorem 1.1 under
the additional assumption in (3.1).

We now remove this additional hypothesis. To this end, we suppose that there
exists p 2 @E , p 6= 0, at which E is not of class C3. By Lemma 2.3, by a blow-up
at p, we obtain a Lipschitz subgraph F? which is an s-minimal cone in Rn that is
singular at the origin.

Suppose first that F? is C3 outside the origin. But then we could apply Theo-
rem 1.1 under the additional assumption in (3.1) and conclude that F? is a halfspace,
which is a contradiction.

Hence, there must be a boundary point q 6= 0 at which F? is not C3. But then
we can apply again Lemma 2.3 (i.e., we can blow-up F? at the point q), and find a
new s-minimal cone in dimension n�1. Hence, by repeating the blow-up argument
at most a finite number of times, we reach a contradiction, thus completing the proof
of Theorem 1.1 in its full generality.

4. Proof of Theorem 1.2

The blow-up cone E0 constructed before in [20, formula (4.3)] satisfies the assump-
tions of Theorem 1.1 and so it is a halfspace. From this and (2.2), Theorem 1.2
plainly follows.
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5. Proof of Theorem 1.3

The blow-down cone E1 constructed before in [20, formula (5.1)] satisfies the
assumptions of Theorem 1.1 and so it is a halfspace. From this, Theorem 1.3 plainly
follows.

6. Proof of Theorem 1.4

Without loss of generality, we suppose that B = B1. We look at the blow-down
limit of E . That is, up to a translation, we assume that the origin belongs to the
boundary of E and we consider the blow-down cone E1. We claim that

E1 is a Lipschitz subgraph. (6.1)

For this, we write

Er =
E
r

=
n
(y, yn+1) 2 Rn+1 so that y =

x
r
, yn+1 =

xn+1
r

and xn+1 < u(x)
o

=

⇢✓
y,

u(ry)
r

� µ

◆
, with y 2 Rn and µ > 0

�
.

We recall (1.4), which also implies that u is continuous along @B ⇢ Rn \ B, and we
take M > 0 which controls |u| along @B1 and the Lipschitz constant of u inRn \B1.
Then, for any x 2 Rn \ B1,

|u(x)| 6
�
�
�
�u
✓
x
|x |

◆��
�
�+

�
�
�
�u(x) � u

✓
x
|x |

◆��
�
� 6 M + M

�
�
�
�x �

x
|x |

�
�
�
�

=M+M
�
�
�
�
x
|x |
�
|x |�1

�
�
�
�
�=M+M

�
�|x |�1

�
�=M+M

�
|x |�1

�
= M|x |.

(6.2)

Now, we consider the function Rn 3 y 7! u(ry)
r =: ur (y) and we observe that

|ur (x)| 6 M |x | for any x 2 Rn \ B1/r , due to (6.2). Furthermore, the Lips-
chitz constant of ur in x 2 Rn \ B1/r is bounded by M , thanks to (1.4). From
this and the Arzelà-Ascoli theorem, up to a subsequence, we have that ur con-
verges locally uniformly to some function u1, with Lipschitz constant in Rn \
{0} bounded by M , and E1 is a subgraph described by the function u1. This
proves (6.1).

Now, from (6.1) and Theorem 1.1, we infer that E1 is a halfspace. This and
the blow-down theory in (2.2) imply that E is a halfspace, as desired.
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7. Proof of Theorem 1.5

Suppose that 0 2 @E and let E0 be the blow-up cone of E . Since E is a subgraph,
from [24, Lemma 16.3], we know that E0 is a quasi-subgraph, i.e., there exists u0 :
Rn ! R [ {�1} [ {+1} such that

E0 = {xn+1 < u(x1, . . . , xn)}.

We also stress that the only possible singular point for E0 is the origin, thanks to
Corollary 2.2 and our assumption on the cones in one dimension less.

Now, we distinguish two cases: either E0 is a subgraph, or not. In the first
case, since there are no singular cones in one dimension less, then E0 satisfies the
assumption of Theorem 1.1, and consequently must be a halfspace. Consequently,
by (2.1), it follows that E is C1 near the origin.

Viceversa, if E0 is not a subgraph, there exists ⌧ > 0 such that @E0 and @E0+
⌧en touch at some point, different than the origin. Hence, we can apply the strong
maximum principle at such touching point and conclude that

E0 = Ẽ ⇥ R, (7.1)

where Ẽ is an s-minimal cone in one dimension less (see, e.g., in [20, footnote 3]
for the details on the maximum principle). By assumption, Ẽ has to be a half-
space, which means that E0 is a (vertical) halfspace. Once again, by the theory
of blow-up cones in (2.1), it follows that E is a C1 near the origin (in vertical
coordinates).

Appendix A. Proof of (3.7)

We point out that, since F is odd and (3.1) holds true, then for any x 6= 0 and # 2
B%(x), with % := 1

2 min{1, |x |},
�
�
�F
⇣
u(x+#)�u(x)

|# |

⌘
+F

⇣
u(x�#)�u(x)

|# |

⌘��
�

|# |n+s
=

�
�
�F
⇣
u(x+#)�u(x)

|# |

⌘
� F

⇣
u(x)�u(x�#)

|# |

⌘��
�

|# |n+s

6
const

�
�
�
⇣
u(x+#)�u(x)

|# |

⌘
�
⇣
u(x)�u(x�#)

|# |

⌘��
�

|# |n+s
=
const

�
�u(x+#)+u(x � #) � 2u(x)

�
�

|# |n+s+1

6
const |# |2

|# |n+s+1
,

which is locally integrable near the origin as a function of # . This computation
shows (3.7).
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Appendix B. Proof of (3.8)

We observe that, for all A, B, a, b 2 R, since F 0 is even, it holds that
�
�F 0(A)B + F 0(a)b

�
� 6

�
�F 0(A)(B + b)

�
�+

�
�(F 0(A) � F 0(a))b

�
�

=
�
�F 0(A)(B + b)

�
�+

�
�(F 0(A) � F 0(�a))b

�
�

6 const
⇣
|B + b| + |A + a| |b|

⌘
.

(B.1)

We take

A :=
u(x + #) � u(x)

|# |
, B := v(x + #) � v(x),

a :=
u(x � #) � u(x)

|# |
, b := v(x � #) � v(x).

Then, by (3.1), if % := 1
2 min{1, |x |} and # 2 B%(x),

|b| 6 const |# |,

|A + a| =
|u(x + #) + u(x � #) � 2u(x)|

|# |
6 const |# |

and |B + b| = |v(x + #) + v(x � #) � 2v(x)| 6 const |# |2.

As a result, for any # 2 B% ⇢ Rn ,

F 0
⇣
u(x+#)�u(x)

|# |

⌘⇣
v(x + #) � v(x)

⌘
+ F 0

⇣
u(x�#)�u(x)

|# |

⌘⇣
v(x � #) � v(x)

⌘

|# |n+s+1

6
const |# |2

|# |n+s+1
,

which, as a function of # , belongs to L1(B%). These considerations give that the
integral in (3.8) is well-defined.

Furthermore, for all h 2 R with |h| small, if # 2 B%,

u
�
x + he j ± #

�
� u

�
x + he j

�
= u(x ± #) � u(x) + h

Z 1

0
v
�
x + the j ± #

�

� v
�
x + the j

�
dt
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and therefore

F
✓
u(x + he j ± #) � u(x + he j )

|# |

◆

= F

 
u(x ± #) � u(x)

|# |
+

h
|# |

Z 1

0
v(x + the j ± #) � v(x + the j ) dt

!

= F
✓
u(x ± #) � u(x)

|# |

◆

+
Z 1

0
F 0

 
u(x ± #) � u(x)

|# |
+

⌧h
|# |

Z 1

0
v(x + the j ± #) � v(x + the j ) dt

!

d⌧

·
h

|# |

Z 1

0
v(x + the j ± #) � v(x + the j ) dt.

Hence, we exploit (B.1) with

A :=
u(x + #) � u(x)

|# |
+

⌧h
|# |

Z 1

0
v(x + the j + #) � v(x + the j ) dt

B :=
1

|# |

Z 1

0
v(x + the j + #) � v(x + the j ) dt

a :=
u(x � #) � u(x)

|# |
+

⌧h
|# |

Z 1

0
v(x + the j � #) � v(x + the j ) dt

and b :=
1

|# |

Z 1

0
v(x + the j � #) � v(x + the j ) dt.

We remark that, in this case,

|A + a|

6
|u(x + #) + u(x � #) � 2u(x)|

|# |

+
|h|
|# |

Z 1

0

�
�v(x + the j + #) + v(x + the j � #) � 2v(x + the j )

�
� dt

6 const min{1, |# |}.
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Also,
|b| 6 const

and

|B + b| 6
1

|# |

Z 1

0

�
�v(x + the j + #) + v(x + the j � #) � 2v(x + the j )

�
� dt

6 const min{1, |# |}.

In this way, using (B.1), we find that if

J(x,#) :=
F
⇣
u(x+#)�u(x)

|# |

⌘
+ F

⇣
u(x�#)�u(x)

|# |

⌘

|# |n+s
,

then
�
�
�
�
J(x + he j ,#) � J(x,#)

h

�
�
�
�

=
1

|h||# |n+s

�
�
�
�

Z 1

0
F 0
✓
u(x + #) � u(x)

|# |
+

⌧h
|# |

Z 1

0
v(x + the j + #)

�v(x + the j ) dt
◆
d⌧

·
h

|# |

Z 1

0
v(x + the j + #) � v(x + the j ) dt

+F 0
✓
u(x � #) � u(x)

|# |
+

⌧h
|# |

Z 1

0
v(x + the j

�#) � v(x + the j ) dt
◆
d⌧

·
h

|# |

Z 1

0
v(x + the j � #) � v(x + the j ) dt

�
�
�
�
�

=
1

|# |n+s

�
�
�
�
�

Z 1

0
F 0(A)B � F 0(a)b d⌧

�
�
�
�
�

6
Z 1

0

const
⇣
|B + b| + |A + a| |b|

⌘

|# |n+s
d⌧ 6

const min{1, |# |}

|# |n+s
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and the latter function belongs to L1(Rn). This says that we can make use of the
dominated convergence theorem and conclude that

lim
h!0

F [u](x + he j ) � F [u](x + h)
h

= lim
h!0

1
h

2

4
Z

Rn

F
⇣
u(x+he j+#)�u(x)

|# |

⌘
+ F

⇣
u(x+he j�#)�u(x)

|# |

⌘

|# |n+s

�
F
⇣
u(x+#)�u(x)

|# |

⌘
+ F

⇣
u(x�#)�u(x)

|# |

⌘

|# |n+s
d#

3

5

= lim
h!0

Z

Rn

J(x + he j ,#) � J(x,#)

h
d#

=
Z

Rn
lim
h!0

J(x + he j ,#) � J(x,#)

h
d#

=
Z

Rn
@x jJ(x,#) d#

=
Z

Rn

F 0
⇣
u(x+#)�u(x)

|# |

⌘⇣
v(x+#)�v(x)

⌘
+F 0

⇣
u(x�#)�u(x)

|# |

⌘⇣
v(x�#)�v(x)

⌘

|# |n+s+1
d#.

This establishes (3.8), as desired.
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