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A second order minimality condition for a free-boundary problem

IRENE FONSECA, GIOVANNI LEONI AND MARIA GIOVANNA MORA

Abstract. The goal of this paper is to derive in the two-dimensional case neces-
sary and sufficient minimality conditions in terms of the second variation for the
functional

v 7!
Z

�

⇣
|rv|2 + �{v>0}Q2

⌘
dx,

introduced in a classical paper of Alt and Caffarelli. For a special choice of Q
this includes water waves. The second variation is obtained by computing the
second derivative of the functional along suitable variations of the free boundary.
It is proved that the strict positivity of the second variation gives a sufficient con-
dition for local minimality. Also, it is shown that smooth critical points are local
minimizers in a small tubular neighborhood of the free-boundary.

Mathematics Subject Classification (2010): 35R35 (primary); 49J40 (sec-
ondary).

1. Introduction

The goal of this paper is to derive a new minimality condition in terms of the second
variation for the functional

F(v) :=
Z

�

�
|rv|2 + �{v>0}Q2

�
dx, v 2 A0, (1.1)

introduced by Alt and Caffarelli in the seminal paper [2] (see also [3–5, 14, 21]).
Here, � ⇢ RN is an open connected set with locally Lipschitz boundary, the func-
tion Q : � ! [0,+1) is continuous, and

A0 :=
n
v 2 H1loc(�) : rv 2 L2(�; RN ), v = v⇤ on S

o
,
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where S ⇢ @� is a measurable set with Hn�1(S) > 0, and the Dirichlet datum
v⇤ 2 H1loc(�) is a nonnegative function with rv⇤ 2 L2(�; RN ). The identity
v = v⇤ on S is to be understood in the sense of traces.

In this paper a critical point for (1.1) is a function v 2 A0 such that F(v) 2 R
and

dF
d"

(v + "')
�
�
�
"=0

= 0 (1.2)

for every ' 2 H1(�) with ' = 0 on S in the sense of traces. It can be shown
that when v is a smooth critical point, e.g., v 2 C2(�), and the free boundary
�\ @ {v > 0} is a manifold of class C2, then we are led to a free boundary problem
(see [25]). To be precise, the Euler-Lagrange equations of (1.1) are given by

8
><

>:

1v = 0 in � \ {v > 0}
v = 0 |rv| = Q on � \ @ {v > 0}
v = v⇤ on S,

(1.3)

(see the appendix).
Under the assumptions that Q is Hölder continuous and

0 < Qmin  Q(x)  Qmax < 1, (1.4)

Alt and Caffarelli [2] proved existence of global minimizers, full regularity of the
free boundary � \ @ {v > 0} of local minimizers for N = 2 and partial regularity
for N � 3. Using a monotonicity formula, Weiss in [36] improved the estimate of
the Hausdorff dimension of the singular set, and Caffarelli, Jerison, and Kenig [13]
showed full regularity in dimension N = 3. Note, however, that in dimension
N = 3 there exist critical points of (1.1) whose free boundary is singular (see [2]
and [13]).

In this work we prove that in dimension N = 2 and under the assumption
(1.4), smooth critical points of (1.1) are actually local minimizers with respect to
small C2,↵ perturbations (see the statement of Theorem 1.2 for the precise notion
of minimality) in a tubular neighborhood of @{u > 0} \ �. The proof is based on
the derivation of a second order variation of the functional (1.1).

This approach has been successfully applied to several contexts. In particular,
in the study of the Mumford-Shah functional the strict positivity of the second vari-
ation has been used to obtain local minimality of critical points (see [11,15,18,27]),
including triple junctions, which are at the core of the Mumford-Shah conjec-
ture. Furthermore, using the diffuse-interface Ohta-Kawasaki energy to model mi-
crophase separation in diblock copolymer melts, critical configurations with pos-
itive second variation were found to be local minimizers in [1] (see also [9, 10]).
In turn, these results are used to determine global and local minimality of certain
lamellar configurations. Finally, in [22] (see also [8]) the authors analyzed a varia-
tional model for epitaxial growth of a thin elastic film over a flat substrate when a
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lattice mismatch between the two materials is present. Again using techniques in-
volving the positivity of the second variation, they determined the critical threshold
for local and global minimality of the flat configuration.

We now present the main results of this paper. We assume � := (�1, 1) ⇥
(0,1), and we consider the functional F in (1.1) defined on the class

A :=
�
v 2 L1loc(�) : rv 2 L2(�; R2), v(x, 0) = u⇤(x) for x 2 (�1, 1),
v(�1, y) = v(1, y) for y > 0

 
,

(1.5)

where x = (x, y) 2 R2, u⇤ 2 C1([�1, 1]) is periodic, and u⇤ > 0, while the
function Q satisfies

Q 2 C0,1(�) 0  Q(x)  Qmax for every x 2 �. (1.6)

By [2, Theorem 1.3] (see also [7]), there exists a minimizer of F in A. Moreover,
in view of [2, Lemma 2.4], for any local minimizer v ofF inA, the set {v > 0}\�
is open and v is harmonic in {v > 0} \�. Let u 2 A be such that the set

�+ := {u > 0} \� (1.7)

is open, u is harmonic in �+, and

0 := @{u > 0} \� (1.8)

is a smooth curve. Then u satisfies the elliptic problem
8
><

>:

1u = 0 in �+

u = 0 on 0
u = u⇤ on {y = 0} \ @�+,

(1.9)

together with the periodicity conditions

u(�1, y) = u(1, y) for y > 0. (1.10)

We consider a one-parameter family of diffeomorphisms {8s}s2[0,1] that coincide
with the identity in a uniform neighborhood of @�. We then derive the second
derivative of F(us) with respect to s, where us is the minimizer of the Dirichlet
energy on 8s({u > 0}) with respect to the given boundary conditions. Imposing
the first derivative ofF(us) to be zero at s = 0 gives back the equilibrium condition
|ru| = Q on � \ @ {u > 0}. The second order derivative of F(us) provides a new
necessary condition for minimizers, expressed in terms of a sign condition for a
quadratic form (see Remark 2.4 below). In turn, the strict positivity of this quadratic
form gives a sufficient condition for local minimality. This is made precise by the
following theorem, which is one of the main results of this paper.

In what follows, we denote by ⌫ : 0 ! S1 a smooth normal vector to 0. The
curvature  of 0 satisfies @⌧ ⌫ = ⌧ and @⌧ ⌧ = �⌫, where ⌧ : 0 ! S1 is a smooth
tangent vector to 0.
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Theorem 1.1. Assume that Q 2 C1,1(�) and satisfies (1.6). Let u 2 C2,↵(�+[0),
↵ > 0, satisfy (1.7), (1.9), (1.10), and let the free boundary 0 given in (1.8) be the
graph of a C3 periodic function. Assume, in addition, that

(@⌫u)2 = Q2 on 0 (1.11)

and that there exists C0 > 0 such that
Z

�+

2|ru |2 dx +
Z

0

�
@⌫Q2 + 2Q2

�
 2 dH1 � C0 k k2H1/2(0)

(1.12)

for every  2 C1c (0), where u is the solution to
8
><

>:

1u = 0 in �+

u = Q on 0
u = 0 on {y = 0} \ @�+,

(1.13)

with u (�1, y) = u (1, y) for all y such that (±1, y) 2 �+. Then there exists
� > 0 such that for every open set U b � and for every diffeomorphism 8 2
C2,↵(R2; R2) with

supp(8� Id) ⇢ U (1.14)

and
k8� IdkC2,↵(R2)  �, (1.15)

we have
F(u)  F(v)

for every v 2 A with {v > 0} = 8({u > 0}).

Although the notion of C2,↵-minimality established in the previous theorem may
be perceived as weak, it has been shown to lead to a stronger minimality property
in several of the contexts mentioned above. To be precise, in the case of epitaxial
growth Fusco and Morini [22] proved that the strict positivity of the second varia-
tion implies local minimality with respect to W 2,1 perturbations and in turn, that
this leads to local minimality with respect to L1 perturbations. Similarly, for the
diffuse-interface Ohta-Kawasaki energy it is shown in [1] that the strict positivity
of the second variation yields local minimality with respect to W 2,p perturbations
and thatW 2,p-local minimizers are actually L1-local minimizers. Thus, it is natural
to expect that in our setting C2,↵-minimizers are in fact local minimizers in a much
larger class of competitors. This will be addressed in a forthcoming paper.

We also observe that a different type of second variation for the functional
(1.1) has been used by Caffarelli, Jerison, and Kenig in [13] to prove full regularity
of global minimizers when N = 3, and by Weiss and Zhang in [37] for a similar
functional related to water waves with vorticity. In contrast to our case, where we
perform variations of the free boundary 0, in [13] and [37] the variations are of the
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type u+ "v, where v is harmonic in �+ \ B with boundary datum a given function
g on @(�+ \ B) and B is a ball.

Furthermore, Theorem 1.1 is closely related to [19, Theorems 1 and 2]. In this
paper, Dambrine considered the solution u� to an elliptic equation with homoge-
neous Dirichlet boundary condition on a moving domain �, and proved stability of
critical points of the “shape functional”

u� 7!
Z

�
f (u�,ru�) dx

with coercive second variation (see also [20]). The family of diffeomorphisms con-
structed in [19] are variations in the normal direction to the boundary. In our case,
due to the additional boundary condition |rv| = Q we need to consider more gen-
eral families of diffeomorphisms {8s}s2[0,1] with zero tangential velocity on the
free boundaries. This latter property plays a crucial role in the proofs of the main
theorems, and it leads to a first order partial differential equation (see (3.41) below)
that we solve using the method of characteristics. One of the main difficulties is
that the components of the flow are given by compositions of functions that are
discontinuous. Thus, proving the regularity of the flow is extremely delicate.

In the second main theorem we prove that, if u is a smooth critical point of F
restricted toA, then u satisfies the minimality property of Theorem 1.1 in a tubular
neighborhood of 0.

Theorem 1.2. Assume that Q satisfies (1.6) and Q � Qmin>0. Let u 2 C2,↵(�+)
be as in (1.7)-(1.10), and let 0 be the graph of a C3 periodic function. Assume, in
addition, that

(@⌫u)2 = Q2 on 0.

Then there exist " > 0 and c" > 0 such that
Z

U"\{u>0}
2|ru |2 dx +

Z

0

�
@⌫Q2 + 2Q2

�
 2 dH1 � c"k k2H1/2(0)

(1.16)

for every 2 C1c (0), whereU" is the intersection of� with the "-tubular neighbor-
hood of 0, and u is the solution to (1.13). In particular, if Q 2 C1,1(�) then there
exists �" > 0 such that for every open set V" b U" and for every diffeomorphism
8 2 C2,↵(R2; R2) with

supp(8� Id) ⇢ V" and k8� IdkC2,↵(R2)  �",

we have
Z

U"

�
|ru|2 + �{u>0}Q2

�
dx 

Z

U"

�
|rv|2 + �{v>0}Q2

�
dx

for every v 2 L1loc(U") such that rv 2 L2(U"; R2), v = u on @U" \ �+,
v(�1, y) = v(1, y) for all y such that (±1, y) 2 @U", and {v > 0} = 8({u > 0}).
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The constant c" in (1.16) depends strongly on Qmin. This is not surprising, since
the hypothesis Qmin > 0 is fundamental for the regularity of local minimizers.
When Qmin = 0 one expects the free boundary to present singularities at points
where Q(x) = 0. Indeed, in dimension N = 2 and when Q(x, y) =

p
(q � 2gy)+,

where q is a physical constant related to the hydraulic head and g is the gravitational
acceleration, the free boundary problem (1.3) is related to Stokes waves of greatest
height, which are characterized by the fact that their shape is not regular but has a
sharp crest of included angle 23⇡ (see, e.g., [7,16,17,26,28–37], and the references
therein).

This paper is organized as follows. In Section 2 we give the precise defini-
tion of admissible flows and derive the second variation of the functional (1.1). In
Section 3, given a small perturbation of 0, we construct an admissible flow (see
Definition 2.1) joining 0 to the perturbed free boundary and with zero tangential
velocity on the free boundaries. The regularity will be carried out in the appendix.
In Section 4 we prove Theorem 1.1. To control the second variation along the flow
we use sharp Schauder estimates together with the zero tangential velocity of the
flow. Finally, in Section 5 we prove Theorem 1.2.

ACKNOWLEDGEMENTS. The authors would like to thank Bob Pego for his helpful
insights.

2. The second variation

In this section we derive the second variation of F on some suitable variations of
u that are constructed along a family of variations of 0 according to the following
definition.

Definition 2.1. We say that {8s}s2[0,1] is an admissible flow if it satisfies the fol-
lowing conditions:

(i) The map (s, x) 7! 8s(x) belongs to C2([0, 1] ⇥�; R2);
(ii) For every s 2 [0, 1], the map 8s is a diffeomorphism from � onto itself;
(iii) 80 = Id in �;
(iv) There exists an open set U , compactly contained in �, such that supp(8s �

Id) ⇢ U for all s 2 [0, 1].

Let {8s}s2[0,1] be an admissible flow, and let u be as in Theorem 1.1. For every
s 2 [0, 1] we consider the solution us of the problem

8
><

>:

1us = 0 in 8s(�+)

us = 0 on 8s(0)

us = u on @8s({y = 0} \ @�+),

(2.1)
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with us(�1, y) = us(1, y) for all y such that (±1, y) 2 8s(�+). Note that, in view
of property (iv) in Definition 2.1, we have that

@8s({y = 0} \ @�+) = {y = 0} \ @�+

and (±1, y) 2 8s(�+) if and only if (±1, y) 2 �+. Moreover, extending us by 0
outside 8s(�+), we obtain us 2 A.

In what follows, for every s 2 [0, 1] and x 2 � we denote by u̇s(x) the partial
derivative with respect to r of the function (r, x) 7! ur (x) evaluated at (s, x), that
is,

u̇s(x) :=
@ur
@r

(x)
�
�
�
r=s

. (2.2)

We define
Xs := 8̇s �8�1

s Zs := 8̈s �8�1
s (2.3)

for every s 2 [0, 1], where

8̇s :=
@8r

@r

�
�
�
r=s

8̈s :=
@28r

@r2
�
�
�
r=s

. (2.4)

Moreover, we set 0s := 8s(0) and denote by ⌧s and ⌫s the tangent and normal
vector to 0s given by

⌧s :=
(D8s)⌧

|(D8s)⌧ |
�8�1

s ⌫s :=
(D8s)

�T ⌫

|(D8s)�T ⌫|
�8�1

s . (2.5)

Finally, s denotes the curvature of 0s .
The proof of the following proposition follows the arguments in [15].

Proposition 2.2. Let u 2 C2(�+ [ 0) satisfy (1.7)-(1.10), let {8s}s2[0,1] be an
admissible flow, and let ûs := us �8s , where us solves (2.1). Then the map

s 7! ûs

belongs to C1([0, 1]; H1(�+)). In particular, the function u̇s in (2.2) is well-
defined and is the unique solution to the boundary value problem

8
><

>:

1u̇s = 0 in 8s(�+)

u̇s = �(Xs · ⌫s) @⌫s us on 0s
u̇s = 0 on @8s({y = 0} \ @�+),

(2.6)

with u̇s(�1, y) = u̇s(1, y) for all y such that (±1, y) 2 8s(�+).
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Proof. For simplicity, we only prove the result in a neighborhood of s = 0. The
general case can be obtained analogously. In view of (2.1) a straightforward com-
putation shows that ûs satisfies

(
div(Asrûs) = 0 in �+

ûs = u on 0 [ ({y = 0} \ @�+),
(2.7)

with ûs(�1, y) = ûs(1, y) for all (±1, y) 2 �+, where

As :=

 
D8�1

s (D8�1
s )T

det D8�1
s

!

�8s . (2.8)

Let V be the subspace of all functions v 2 H1(�+) such that v = 0 on 0 [ ({y =
0} \ @�+) and v(�1, y) = v(1, y) for all (±1, y) 2 �+. For every s 2 [0, 1] and
v 2 V letH(s, v) be the unique weak solution w 2 V of the Poisson’s equation

1w = div(Asr(v + u)) in �+.

Then
H : [0, 1] ⇥ V ! V .

Observe that A0 = I2⇥2 and u is harmonic in �+ by (1.9), hence H(0, 0) = 0.
Moreover, (1.9) implies that H(0, v) = v, thus @vH(0, 0) is the identity operator
from V into V . Since the matrix As in (2.8) is of class C1, by standard elliptic
estimates (see also the proof of Proposition 4.2 below), we have that the map H is
of class C1. Hence, we are in a position to apply the implicit function theorem (see,
e.g., [6, Theorem 2.3]) to find �0 > 0 and r0 > 0 and a unique continuous function
g : [0, �0] ! BV (0, r0) such that g(0) = 0 and

H(s, g(s)) = 0

for all s 2 [0, �0]. Moreover, g is of class C1.
On the other hand, in view of (2.7) the function ûs�u belongs to V and satisfies

H(s, ûs � u) = 0

for all s 2 [0, 1]. Since the map s 7! ûs � u is continuous (see, e.g., the proof of
(4.3) below), it follows by uniqueness that g(s) = ûs � u for all s 2 [0, �0]. In
particular, s 7! ûs � u is of class C1.

To prove (2.6), let v 2 H1loc(�) be such that rv 2 L2(�; R2), v(�1, y) =
v(1, y) for y 2 (0,1), v(x, 0) = 0 for x 2 (�1, 1), and 0 \ supp v = ;. Then
0s \ supp v = ; for all s sufficiently small. By (2.1) it follows that there exists an
open subset of� containing supp v and on which us is harmonic for all s sufficiently
small; thus, Z

�
rus · rv dx = 0
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for all s sufficiently small. Differentiating the previous identity with respect to s
(see (2.2)) we obtain Z

�
ru̇s · rv dx = 0. (2.9)

By (2.1) we have that us(8s(x)) = 0 for x 2 0; thus,

u̇s(8s(x)) = �rus(8s(x)) · 8̇s(x) for x 2 0,

which by (2.3) is equivalent to

u̇s = �rus · Xs on 0s . (2.10)

On the other hand, since rus = @⌫s us ⌫s on 0s by (2.1), we have that rus · Xs =
(Xs · ⌫s) @⌫s us on 0s . In conclusion,

u̇s = �(Xs · ⌫s) @⌫s us on 0s . (2.11)

Let now v 2 H1loc(�) be such that rv 2 L2(�; R2), v(�1, y) = v(1, y) for
y 2 (0,1), v(x, 0) = 0 for x 2 (�1, 1), and decompose v = v1 + v2, where
0 \ supp v1 = ;. Then by (2.9) and (2.11), integrating by parts we get

Z

�
ru̇s · rv dx =

Z

�
ru̇s · rv2 dx =

Z

0s

(Xs · ⌫s) @⌫s us @⌫sv2 dH1

=
Z

0s

(Xs · ⌫s) @⌫s us @⌫sv dH1

for all s sufficiently small. This proves that the function u̇s is a solution to (2.6).

In view of Proposition 2.2 we can now derive the second derivative of F(us).

Theorem 2.3. Let u 2 C2(�+ [0) satisfy (1.7)-(1.10), let Q satisfy (1.6), and let
{8s}s2[0,1] be an admissible flow. Then

d
ds
F(us) =

Z

0s

�
Q2 � |rus |2

�
(Xs · ⌫s) dH1 (2.12)

and

d2

ds2
F(us)=

Z

8s(�+)
2|ru̇s |2dx+

Z

0s

�
@⌫s Q

2+2s(@⌫s us)
2�(Xs · ⌫s)

2 dH1

+
Z

0s

�
Q2�|rus |2

��
Zs ·⌫s�2(Xs ·⌧s)@⌧s (Xs ·⌫s)+s |Xs |

2� dH1,

(2.13)

where u̇s is given in (2.6).
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Remark 2.4. If u is a minimizer ofF , then the expression in (2.12) is equal to zero
at s = 0; since this is true for any choice of the admissible flow, this implies

|ru|2 = Q2 on 0. (2.14)

In turn, the second variation at s = 0 reduces to

d2

ds2
F(us)

�
�
�
s=0

=
Z

�+

2|ruX0·⌫ |
2 dx +

Z

0

�
@⌫Q2 + 2Q2

�
(X0 · ⌫)2 dH1, (2.15)

where uX0·⌫ is the solution to
8
><

>:

1uX0·⌫ = 0 in �+

uX0·⌫ = Q(X0 · ⌫) on 0
uX0·⌫ = 0 on {y = 0} \ @�+,

(2.16)

with uX0·⌫(�1, y) = uX0·⌫(1, y) for all y such that (±1, y) 2 �+. Indeed, on 0
we have (@⌫u)2 = |ru|2 = Q2 and @⌫u < 0 by the Hopf lemma. Moreover, the
expression in (2.15) is nonnegative.

Note that every minimizer u satisfies the necessary condition
Z

�+

2|ru |2 dx +
Z

0

�
@⌫Q2 + 2Q2

�
 2 dH1 � 0 (2.17)

for every  2 C2c (0), where u solves (2.16) with  in place of X0 · ⌫. In fact, for
every  2 C2c (0) with small C2 norm it is possible to construct an admissible flow
{8s}s2[0,1] such that X0 · ⌫ =  on 0. To see this, it is enough to consider

8s(x, y) := (x, y) + �(y)s (x, w(x))⌫(x, y),

where the normal ⌫ to 0 has been extended smoothly, and � is a cut-off function
(see (3.38) below for more details). Hence, from (2.15) we deduce that (2.17) holds
for every  2 C2c (0) with small C2 norm. In turn, given an arbitrary  2 C2c (0),
using a scaling argument, it can be shown that (2.17) continues to hold.
Remark 2.5. Observe that if u is a critical point of F , that is, u satisfies (2.14) in
addition to (1.7)-(1.10), then (2.15) holds.

Proof of Theorem 2.3. In view of (2.1), we have that us > 0 in 8s(�+); thus,

F(us) =
Z

8s(�+)

�
|rus |2 + Q2(x)

�
dx

=
Z

�+

�
|rus(8s(y))|2 + Q2(8s(y))

�
det D8s(y) d y.
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Differentiating the previous identity with respect to s we obtain

d
ds
F(us)=

Z

�+

2rus(8s(y))·
�
ru̇s(8s(y))+D2us(8s(y))8̇s(y)

�
det D8s(y) d y

+
Z

�+

rQ2(8s(y)) · 8̇s(y) det D8s(y) d y

+
Z

�+

�
|rus(8s(y))|2 + Q2(8s(y))

� d
ds

(det D8s(y)) d y,

where we used (2.2) and (2.4). By [24, Chapter III, Section 10] we have

d
ds

(det D8s) =
h
div

�
8̇s �8�1

s
�
�8s

i
det D8s,

thus, recalling that Xs = 8̇s �8�1
s (see (2.3)),

d
ds
F(us) =

Z

8s(�+)
2rus · ru̇s dx +

Z

8s(�+)
2D2usrus · Xs dx

+
Z

8s(�+)
|rus |2 div Xs dx +

Z

8s(�+)

�
rQ2 · Xs + Q2 div Xs

�
dx.

Integrating by parts, from (2.6) and the fact that supp(8s � Id) ⇢ U for all s 2
[0, 1], we deduce that

d
ds
F(us) =

Z

0s

2u̇s@⌫s us dH1 +
Z

8s(�+)
div

��
|rus |2 + Q2

�
Xs
�
dx

=
Z

0s

�
� 2(Xs · ⌫s)(@⌫s us)

2 +
�
|rus |2 + Q2

�
(Xs · ⌫s)

�
dH1.

Since (@⌫s us)2 = |rus |2 on 0s , we obtain (2.12).
We now derive the second derivative of F(us) with respect to s at s = 0. First,

by the area formula we can write the first derivative as

d
ds
F(us)=

Z

0

�
Q2(8s(y))�|rus(8s(y))|2

�
8̇s(y) · ⌫s(8s(y)) J8s (y) dH1(y),

where J8s := |(D8s)
�T ⌫| det D8s is the one-dimensional Jacobian of8s . Differ-

entiating with respect to s yields

d2

ds2
F(us)

�
�
�
s=0

=
Z

0

�
rQ2 · 8̇0

�
8̇0 · ⌫ dH1

�
Z

0
2
�
ru · ru̇0 + D2uru · 8̇0

�
8̇0 · ⌫ dH1

+
Z

0

�
Q2 � |ru|2

� d
ds
⇥
8̇s · (⌫s �8s) J8s

⇤��
�
s=0

dH1.

(2.18)
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The first integral in the above expression can be written as
Z

0

⇣
rQ2 · 8̇0

⌘
8̇0 · ⌫ dH1=

Z

0

⇣
@⌧Q2

�
8̇0 · ⌧

��
8̇0 · ⌫

�
+ @⌫Q2

�
8̇0 · ⌫

�2⌘ dH1.

Since ru = @⌫u ⌫ on 0, the first term in the second line of (2.18) becomes

�
Z

0
2
�
ru · ru̇0

�
8̇0 · ⌫ dH1 = �

Z

0
2@⌫ u̇0@⌫u 8̇0 · ⌫ dH1

=
Z

0
2u̇0@⌫ u̇0 dH1,

where we used the fact that u̇0 = �(X0 · ⌫)@⌫u by (2.10) and X0 = 8̇0. We now
focus on the term

�
Z

0
2
�
D2uru · 8̇0

�
8̇0 · ⌫ dH1.

Using again the fact that ru · ⌧ = 0 on 0 and that u is harmonic, we obtain

0 = @⌧ (ru · ⌧ ) = D2u ⌧ · ⌧ + ru · @⌧ ⌧ = �D2u ⌫ · ⌫ � @⌫u on 0,

that is,
D2u ⌫ · ⌫ = �@⌫u on 0.

Thus,

�
Z

0
2
�
D2uru · 8̇0

�
8̇0 · ⌫ dH1

= �
Z

0
2
�
D2uru · ⌧

��
8̇0 · ⌧

��
8̇0 · ⌫

�
dH1 �

Z

0
2@⌫u

�
D2u ⌫ · ⌫

��
8̇0 · ⌫

�2 dH1

= �
Z

0
@⌧
�
|ru|2

��
8̇0 · ⌧

��
8̇0 · ⌫

�
dH1 +

Z

0
2(@⌫u)2

�
8̇0 · ⌫

�2 dH1.

Finally, by [15, Lemma 3.8] we have

d
ds
⇥
8̇s ·(⌫s �8s)J8s

⇤��
�
s=0

=8̈0·⌫�2
�
8̇0 ·⌧

�
@⌧
�
8̇0 ·⌫

�
+

�
8̇0 ·⌧

�2
+@⌧

⇥�
8̇0 ·⌫

�
8̇0
⇤
·⌧.

Combining the previous equalities, we deduce that

d2

ds2
F(us)

�
�
�
s=0

=
Z

0
2u̇0@⌫ u̇0 dH1+

Z

0

�
@⌫Q2 + 2(@⌫u)2

�
(8̇0 · ⌫)2 dH1

+
Z

0

�
Q2�|ru|2

��
8̈0 ·⌫�2

�
8̇0 · ⌧

�
@⌧
�
8̇0 · ⌫

�
+

�
8̇0 · ⌧

�2� dH1

+
Z

0
(Q2 � |ru|2) @⌧

⇥
(8̇0 · ⌫)8̇0

⇤
· ⌧ dH1

+
Z

0
@⌧
�
Q2 � |ru|2

�
(8̇0 · ⌧ )(8̇0 · ⌫) dH1.
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Now, using the fundamental theorem of calculus on curves, the last two integrals in
the formula above satisfy

Z

0

�
Q2�|ru|2

�
@⌧
⇥�
8̇0 ·⌫

�
8̇0
⇤
·⌧ dH1+

Z

0
@⌧
�
Q2�|ru|2

��
8̇0 ·⌧

��
8̇0 · ⌫

�
dH1

=
Z

0
@⌧
⇥�
Q2 � |ru|2

� �
8̇0 · ⌫

�
8̇0
⇤
· ⌧ dH1

=
Z

0

�
Q2 � |ru|2

� �
8̇0 · ⌫

�2 dH1.

Thus, we conclude that

d2

ds2
F(us)

�
�
�
s=0

=
Z

0
2u̇0@⌫ u̇0 dH1+

Z

0

�
@⌫Q2 + 2(@⌫u)2

�
(X0 · ⌫)2 dH1

+
Z

0
(Q2�|ru|2)

�
Z0 ·⌫�2(X0 ·⌧ )@⌧ (X0 ·⌫)+|X0|2

�
dH1,

(2.19)

where we used the fact that 8̇0 = X0 and 8̈0 = Z0.
Let us now fix r 2 (0, 1). We observe that the family of diffeomorphisms

{8̃h}h2[0,1] defined as

8̃h := 8r+h �8�1
r

is still an admissible flow (we can always reparametrize the variable h away from 0
so that 8̃h is defined for all h 2 [0, 1]), and that

˙̃80 = Xr ¨̃80 = Zr .

Applying (2.19), we deduce that

d2

ds2
F(us)

�
�
�
s=r

=
d2

dh2
F(ur+h)

�
�
�
h=0

=
Z

0r

2u̇r@⌫r u̇r dH1+
Z

0r

�
@⌫r Q

2 + 2r (@⌫r ur )
2�(Xr · ⌫r )

2 dH1

+
Z

0r

�
Q2�|rur |2

��
Zr ·⌫r�2(Xr ·⌧r ) @⌧r (Xr ·⌫r )+r |Xr |

2� dH1.

To conclude the proof of (2.13), it remains to show that

Z

0s

2u̇s@⌫s u̇s dH1 =
Z

8s(�+)
2|ru̇s |2 dx. (2.20)
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Indeed, by (2.6) and the divergence theorem
Z

0s

2u̇s@⌫s u̇s dH1 =
Z

@8s(�+)
2u̇s@⌫s u̇s dH1

=
Z

8s(�+)
2
�
u̇s1u̇s + |ru̇s |2

�
dx

=
Z

8s(�+)
2|ru̇s |2 dx.

Hence, (2.13) holds and the proof is complete.

3. Construction of the Family 8s

Let �, u, and 0 be as in Section 2, and assume that

0 = {(x, w(x)) : x 2 (�1, 1)} ,

where w is a periodic function with w 2 C3(R) and

w(x) > 0 for all x 2 [�1, 1]. (3.1)

Let
�1 < a < b < 1

and consider a polynomial ' : [a, b] ! R satisfying

'(a)='0(a)='00(a)='000(a)= 0, '(b) = '0(b) = '00(b) = '000(b) = 0, (3.2)

and such that k'kC2,↵(a,b) ⌧ 1. Extend ' to be zero outside [a, b]. In this section
we construct an admissible flow (see Definition 2.1) joining 0 to graph(w + '). To
estimate the second variation along the flow it is essential to have the condition Xs ·
⌧s = 0 on 0s for every s. This leads to a first order partial differential equation (see
(3.41) below), that we solve using the method of characteristics. One of the main
difficulties is that the components of the flow are given by compositions of functions
that are discontinuous. Thus, proving the regularity of the flow is extremely delicate
and it will be carried out in the appendix. The construction of the flow is the central
part of this paper and will require several preliminary results.

Theorem 3.1. Let ' and w be as above. Then there exists an admissible flow
{8s}s2[0,1] such that

8s(0) = {(x, w(x) + s'(x)) : x 2 (�1, 1)} (3.3)

and
Xs · ⌧s = 0 on 0s (3.4)

for every s 2 [0, 1].
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For every x 2 R, we consider the initial value problem
8
>>>><

>>>>:

d⇠
dt

= �w0(⇠)'(⇠) � (⌘ � w(⇠))'0(⇠)

d⌘
dt

= '(⇠)

⇠(0) = x, ⌘(0) = w(x).

(3.5)

Since ' 2 C3c (R), w 2 C3(R), the function

(⇠, ⌘) 2 R2 7!
�
� w0(⇠)'(⇠) � (⌘ � w(⇠))'0(⇠),'(⇠)

�

is C2, globally Lipschitz, and satisfies
�
��� w0(⇠)'(⇠) � (⌘ � w(⇠))'0(⇠),'(⇠)

���  C(1+ |⌘|)

for all (⇠, ⌘) 2 R2 and for some constant C > 0. Hence, the initial value problem
(3.5) admits a unique global solution, which depends smoothly on the initial datum,
and thus on x . We will denote by (⇠(t, x), ⌘(t, x)), t 2 R, the solution of (3.5).

Observe that if '(x) = 0, then

(⇠(t, x), ⌘(t, x)) ⌘ (x, w(x)). (3.6)

Remark 3.2. Note that if '0(x0) = w0(x0) = 0 or '(x0) = '0(x0) = 0 for some
x0 2 R, then for every y0 2 R the unique solution of the initial value problem

8
>>>><

>>>>:

d⇠
dt

= �w0(⇠)'(⇠) � (⌘ � w(⇠))'0(⇠)

d⌘
dt

= '(⇠)

⇠(0) = x0, ⌘(0) = y0,

(3.7)

is given by
⇠(t, x0) ⌘ x0, ⌘(t, x0) = y0 + t'(x0). (3.8)

Hence, if for some ↵ < � we have '(↵) = '0(↵) = 0 and '(�) = '0(�) = 0,
then for every ↵ < x < � the curve (⇠(·, x), ⌘(·, x)) cannot leave the vertical
strip (↵,�) ⇥ R, otherwise uniqueness for the initial value problem (3.7) would be
violated. In particular, in view of (3.2), if a < x < b then the curve (⇠(·, x), ⌘(·, x))
cannot leave the vertical strip (a, b) ⇥ R.

Theorem 3.3. Let ' and w be as above. Given s 2 [0, 1] and x 2 R, there exists a
first time t0 = t0(s, x) � 0 such that the solution (⇠(·, x), ⌘(·, x)) of (3.5) intersects
the graph of the function w + s' at time t0. Moreover, if s = 0 or '(x) = 0 then

t0(s, x) = 0, (3.9)
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if '(x) 6= 0 and '0(x) = w0(x) = 0 then

t0(s, x) = s, (3.10)

while in all the other cases
0  t0(s, x)  s. (3.11)

Finally, t0 is of class C2 in [0, 1] ⇥ {x 2 R : '(x) 6= 0} and if '(x) 6= 0, then

'(⇠(t, x))'(x) > 0 for all 0  t  t0(s, x). (3.12)

Proof. We begin by proving the existence of t0. If s = 0 or '(x) = 0, then
t0(s, x) = 0 by (3.5). Property (3.10) follows from (3.7) and (3.8) with x0 = x
and y0 = w(x). Thus, in what follows assume that '(x) 6= 0, s > 0, and that at
least one of '0(x) and w0(x) is different from zero. By (3.2) and Remark 3.2, the
curve (⇠(·, x), ⌘(·, x)) cannot leave the vertical strip (a, b) ⇥ R.

Step 1: Assume that '(x) > 0 and let T > 0 be the first time, if it exists, such that
'(⇠(T, x)) = 0, otherwise set T := 1. Then '(⇠(t, x)) > 0 for all 0  t < T ,
and so by (3.5), ⌘(·, x) is strictly increasing in [0, T ) and there exists

lim
t!T�

⌘(t, x) = ` 2 (w(x),1]. (3.13)

If ` = 1 (and hence T = 1), then the solution (⇠(·, x), ⌘(·, x)) of (3.5) intersects
the graph of the function w + s', and so t0 exists. Thus, in what follows it suffices
to consider the case ` < 1. Assume, by contradiction, that

⌘(t, x) < w(⇠(t, x)) + s'(⇠(t, x)) for all 0 < t  T . (3.14)

Substep 1a: We claim that the curve (⇠(·, x), ⌘(·, x)) stays above the graph of the
function w for all 0 < t  T . Consider the function

G(⇠, ⌘) :=
⌘ � w(⇠)

'(⇠)
(3.15)

defined for all '(⇠) 6= 0 and ⌘ 2 R. Then

@⇠G(⇠, ⌘) =
�w0(⇠)'(⇠) � (⌘ � w(⇠))'0(⇠)

'2(⇠)
@⌘G(⇠, ⌘) =

1
'(⇠)

,

and so by (3.5), for all 0 < t < T ,

@t⇠(t, x) = '2(⇠(t, x))@⇠G(⇠(t, x), ⌘(t, x)),

@t⌘(t, x) = '2(⇠(t, x))@⌘G(⇠(t, x), ⌘(t, x)).
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It follows that for all 0 < t < T ,

(@t⇠(t, x))2 + (@t⌘(t, x))2

'2(⇠(t, x))
= @⇠G(⇠(t, x), ⌘(t, x))@t⇠(t, x)

+ @⌘G(⇠(t, x), ⌘(t, x))@t⌘(t, x)
= @t (G(⇠(t, x), ⌘(t, x)).

Integrating between 0 and t , and using (3.5) once more, gives
Z t

0

(@t⇠(r, x))2 + (@t⌘(r, x))2

'2(⇠(r, x))
dr =

⌘(t, x) � w(⇠(t, x))
'(⇠(t, x))

. (3.16)

Since the integrand on the left-hand side is positive for all 0 < t < T , it follows
that ⌘(t, x) > w(⇠(t, x)) for all 0 < t < T . If T < 1, then also by (3.14) we have
that

w(⇠(t, x)) < ⌘(t, x) < w(⇠(t, x)) + s'(⇠(t, x)),

and letting t ! T� gives that w(⇠(T, x)) = ⌘(T, x) = w(⇠(T, x)) + s'(⇠(T, x)),
where we have used the fact that '(⇠(T, x)) = 0. This contradicts (3.14), and thus
establishes the existence of t0 in the case T < 1.

It remains to study the case T = 1. Since (@t⌘(r,x))2
'2(⇠(r,x)) = 1 by (3.5), it follows

from (3.16) that
t 

⌘(t, x) � w(⇠(t, x))
'(⇠(t, x))

(3.17)

for all t > 0. Let ↵ < x < � be such that ' > 0 in (↵,�) and '(↵) = '(�) = 0.
We claim that there exists

lim
t!1

⇠(t, x) = l 2 {↵,�}. (3.18)

To see this, note that since '(⇠(t, x)) > 0 for all t , we have that

↵  l1 := lim inf
t!1

⇠(t, x), l2 := lim sup
t!1

⇠(t, x)  �.

Assume, by contradiction, that l1 < l2. Then there exists a sequence ti ! 1 such
that ⇠(ti , x) ! c 2 (↵,�). Taking t = ti in (3.17), and using (3.13) and the fact
that ` < 1, gives

1 = lim
i!1

ti = lim
i!1

⌘(ti , x) � w(⇠(ti , x))
'(⇠(ti , x))

=
`� w(c)
'(c)

< 1,

which is a contradiction. Hence, l1 = l2. Note that the previous argument also
shows that l1 cannot belong to (↵,�). Hence, either l1 = ↵ or l2 = �.
Substep 1b: We prove the existence of t0. Without loss of generality, assume that
l = ↵ (the case l = � is similar). Then by (3.14) and Substep 1a, we have

w(⇠(t, x)) < ⌘(t, x) < w(⇠(t, x)) + s'(⇠(t, x))
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for all t > 0. Hence,
0 <

⌘(t, x) � w(⇠(t, x))
'(⇠(t, x))

< s.

Letting t ! 1 we obtain a contradiction from (3.17 ). Therefore, we have proved
that condition (3.14) fails. This asserts the existence of t0.

Substep 1c: We prove (3.12). It follows from Substeps 1a and 1b that t0(s, x)  T ,
so that

'(⇠(t, x))'(x) > 0 for all 0  t < t0(s, x).

To prove (3.12), it remains to show that '(⇠(t0(s, x), x)) > 0. Let t0 := t0(s, x).
Assume, by contradiction, that '(⇠(t0, x)) = 0. Then by the definition of t0(s, x)
we have that

⌘(t0, x) = w(⇠(t0, x)),

which contradicts the fact that the unique solution of the initial value problem
8
>>>><

>>>>:

d⇠
dt

= �w0(⇠)'(⇠) � (⌘ � w(⇠))'0(⇠)

d⌘
dt

= '(⇠)

⇠(t0) = ⇠(t0, x), ⌘(t0) = w(⇠(t0, x)),

is given by
⇠1(t) ⌘ ⇠(t0, x), ⌘1(t, x0) ⌘ w(⇠(t0, x)).

Step 2: The case '(x) < 0 is similar and we omit it.

Step 3: We prove the regularity of t0. Fix (s0, x0) 2 [0, 1] ⇥ R, with '(x0) 6= 0,
and let t0 := t0(s0, x0). Assume that '(x0) > 0 (the case '(x0) < 0 is similar), and
let ↵ < x0 < � be such that ' > 0 in (↵,�) and '(↵) = '(�) = 0. Consider the
C2 function

F(s, t, x) := ⌘(t, x) � w(⇠(t, x)) � s'(⇠(t, x))

defined in the set
V := R ⇥ R ⇥ (↵,�).

Then F(s0, t0, x0) = 0. By (3.5) and (3.12), we have

@t F(s0, t0, x0) = @t⌘(t0, x0) �
⇥
w0(⇠(t0, x0)) + s0'0(⇠(t0, x0))

⇤
@t⇠(t0, x0)

= '(⇠(t0, x0))
h
1+

�
w0(⇠(t0, x0)) + s0'0(⇠(t0, x0))

�2i
> 0.

Thus, we can apply the implicit function theorem to conclude that there exist 0 <
r < min{� � x0, x0 � ↵}, � > 0, a function t1 : B((s0, x0); r) ! [t0 � �, t0 + �] of
class C2 such that t1(s0, x0) = t0 and

F(s, t1(s, x), x) = 0 for all (s, x) 2 B((s0, x0); r).
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Note that, in view of (3.16), which continues to hold for t < 0 small, and the fact
that ' > 0, for t < 0 sufficiently small,

⌘(t, x) < w(⇠(t, x))  w(⇠(t, x)) + s'(⇠(t, x)),

and so the function t1 must be nonnegative. Hence, by the definition of t0(s, x), we
have

t0(s, x)  t1(s, x) for all (s, x) 2 B((s0, x0); r).

We claim that t1(s, x) = t0(s, x) for all (s, x) 2 B((s0, x0); r1) for some 0 < r1 <
r . Since t0 is the first time that the solution (⇠(·, x0), ⌘(·, x0)) of (3.5) intersects the
graph of the function w + s0', if t0 > 0 we have that

⌘(t, x0) < w(⇠(t, x0)) + s0'(⇠(t, x0)) for all 0  t < t0.

Fix 0 < " < � and let

c" := min
0tt0�"

(w(⇠(t, x0)) + s0'(⇠(t, x0)) � ⌘(t, x0)) > 0.

By the regularity of w and ' and the continuity of ⇠ and ⌘ with respect to initial
data, there exists 0 < r1 < r such that

|w(⇠(t, x))+s'(⇠(t, x))�⌘(t, x)�(w(⇠(t, x0))+s0'(⇠(t, x0))�⌘(t, x0))|
1
2
c"

for all (s, x) 2 B((s0, x0); r1) and for all t 2 [0, t0 � "]. Hence,

⌘(t, x) < w(⇠(t, x)) + s'(⇠(t, x)) for all 0  t < t0 � "

for all (s, x) 2 B((s0, x0); r1). This implies that

t0 � "  t0(s, x) (3.19)

for all (s, x) 2 B((s0, x0); r1). If t0 = 0, then (3.19) continues to hold since
t0(s, x) � 0. On the other hand, since t1 is continuous and t1(s0, x0) = t0, by
taking r1 smaller if necessary, we have that t0 � "  t1(s, x)  t0 + " for all
(s, x) 2 B((s0, x0); r1). Because t0(s, x)  t1(s, x), also by (3.19), we have that

t0 � "  t0(s, x)  t0 + "

for all (s, x) 2 B((s0, x0); r1). Using the fact that " < �, it follows from the unique-
ness of the implicit function that t0(s, x) = t1(s, x) for all (s, x) 2 B((s0, x0); r1).
In turn,

F(s, t0(s, x), x) = 0 for all (s, x) 2 B((s0, x0); r1),
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and so, by (3.5) and the definition of t0, we have

@x t0(s, x)= �
@x F(s, t0(s, x), x)
@t F(s, t0(s, x), x)

(3.20)

=

⇥
w0(⇠(t0(s,x),x))+s'0(⇠(t0(s,x),x))

⇤
@x⇠(t0(s,x),x)�@x⌘(t0(s,x),x)

'(⇠(t0(s, x), x))
h
1+ (w0(⇠(t0(s, x), x)) + s'0(⇠(t0(s, x), x)))2

i .

Step 4: It remains to prove (3.11). By (3.17) and the definition of t0, we have that

0  t0(s, x) 
⌘(t0(s, x), x) � w(⇠(t0(s, x), x))

'(⇠(t0(s, x), x))
= s.

This concludes the proof.

Remark 3.4. By (3.5), if x 2 R and 0  t  1, then

|⌘(t, x) � w(x)| =

�
�
�
�

Z t

0
'(⇠(r, x)) dr

�
�
�
�  k'kC([a,b])

and, in turn,

|⇠(t, x)�x |=
�
�
�
�

Z t

0

⇥
�w0(⇠(r, x))'(⇠(r, x))�(⌘(r, x)�w(⇠(r, x)))'0(⇠(r, x))

⇤
dr
�
�
�
�

 3 kwkC1([a,b]) k'kC1([a,b]) + k'kC([a,b])
�
�'0

�
�
C([a,b]) .

Since 0  t0(s, x)  s  1 by Theorem 3.3, it follows that

|⇠(t, x) � x |  3
�
kwkC1([a,b]) + k'kC([a,b])

�
k'kC1([a,b]) , (3.21)

|⌘(t, x) � w(x)|  k'kC([a,b])

for all s 2 [0, 1], x 2 R, and 0  t  t0(s, x).
Given s 2 [0, 1] and x 2 R, we define the function g : [0, 1] ⇥ R ! R by

g(s, x) := ⇠(t0(s, x), x), (3.22)

where t0(s, x) is given by Theorem 3.3. Note that by the definition of t0(s, x), if
s = 0 or '(x) = 0, then t0(s, x) = 0, and so

g(s, x) = ⇠(0, x) = x . (3.23)

Moreover, since (⇠(t0(s, x), x), ⌘(t0(s, x), x)) belongs to the graph of w + s', we
have that

⌘(t0(s, x), x) = w(⇠(t0(s, x), x)) + s'(⇠(t0(s, x), x))
= w(g(s, x)) + s'(g(s, x)).

(3.24)

We will use this property in the sequel.
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The following theorem states that the function g is of class C2. As part of the
proof we will actually show that the function t0 is discontinuous at all points (s, x0)
with '(x0) = 0 and ' 6= 0 near x0. Hence, establishing the regularity of g is far
from trivial. The proof of Theorem 3.5 is rather lengthy and will be presented in
the appendix.

Theorem 3.5. Let ' and w be as above. Then the function g : [0, 1] ⇥ R ! R
defined in (3.22) is of class C2.

Define the function h : [0, 1] ⇥ R ! R by

h(s, x) := ⌘(t0(s, x), x), (3.25)

where t0(s, x) is given by Theorem 3.3. Note that, by (3.24),

h(s, x) = w(g(s, x)) + s'(g(s, x)). (3.26)

Thus in view of Theorem 3.5, the function h is of class C2. Moreover, by (3.23), if
s = 0 or '(x) = 0, then

h(s, x) = w(x). (3.27)

Theorem 3.6. Let ' and w be as above. Then for every s 2 [0, 1],

{(g(s, x), h(s, x)) : x 2 [a, b]} = {(x, w(x) + s'(x)) : x 2 [a, b]} .

Proof. Given s0 2 [0, 1] and x0 2 [a, b], we want to find x 2 [a, b] such that

(⇠(t0(s0, x), x), ⌘(t0(s0, x), x)) = (x0, w(x0) + s0'(x0)).

If s0 = 0 or '(x0) = 0, then by (3.23) and (3.27), g(s0, x0) = x0 and h(s0, x0) =
w(x0) and so there is nothing to prove. Therefore, also by (3.2), in what follows we
assume that s0 > 0, x0 2 (a, b), and '(x0) 6= 0. Assume further that '(x0) > 0
(the case '(x0) < 0 is similar).

Consider the initial value problem
8
>>>><

>>>>:

d⇠
dt

= w0(⇠)'(⇠) + (⌘ � w(⇠))'0(⇠)

d⌘
dt

= �'(⇠)

⇠(0) = x0, ⌘(0) = w(x0) + s0'(x0).

(3.28)

Reasoning as for (3.5), we have that (3.28) admits a unique solution (⇠0, ⌘0) defined
for all t 2 R. We claim that (⇠0, ⌘0) intersects the graph of w at some time t1 > 0.

For every y 2 R the functions

⇠1(t) ⌘ a, ⌘1(t) ⌘ y
⇠2(t) ⌘ b, ⌘2(t) ⌘ y
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are solutions of the differential system in (3.28) with ⇠(0) = a, ⌘(0) = y, and
⇠(0) = b, ⌘(0) = y, respectively. Hence, by uniqueness of (3.28), we conclude that
the curve (⇠0, ⌘0) cannot leave the vertical strip (a, b) ⇥ R.

Let T > 0 be the first time, if it exists, such that '(⇠0(T )) = 0, otherwise set
T := 1. Then by (3.28) the function ⌘0 is strictly decreasing in [0, T ), and so
there exists

lim
t!T

⌘0(t) = l2 2 [�1, w(x0) + s0'(x0)).

If l2 = �1 (and hence T = 1), then there exists a time t1 > 0 such that (⇠0, ⌘0)
intersects the graph of w. Thus, assume that l2 2 R and that

w(⇠0(t)) < ⌘0(t) for all 0  t  T . (3.29)

Reasoning as in Substep 1a of the proof of Theorem 3.3, with G in (3.15) replaced
by

G(⇠, ⌘) :=
w(⇠) � ⌘

'(⇠)
,

we have that
Z t

0

(@t⇠0(r))2 + (@t⌘0(r))2

'2(⇠0(r))
dr = G(⇠0(t), ⌘0(t)) � G(x0, w(x0) + s0'(x0))

=
w(⇠0(t)) � ⌘0(t)

'(⇠0(t))
+ s0

for all 0  t < T . Since the integrand on the left-hand side is positive for t > 0,
it follows that ⌘0(t) < w(⇠0(t)) + s0'(⇠0(t)) for all 0 < t < T . As in Substep 1a
of the proof of Theorem 3.3, if T < 1 then we obtain a contradiction to (3.29).
Thus, we can assume that T = 1. As in Substep 1a of the proof of Theorem 3.3,
the inequality

t 
w(⇠0(t)) � ⌘0(t)

'(⇠0(t))
+ s0

for all t > 0 implies (3.18). The existence of t1 follows exactly as in Substep 1b of
the proof of Theorem 3.3.

This shows that (⇠0, ⌘0) intersects the graph ofw at some time t1 > 0. Assume
that t1 is the first such time. Define x := ⇠0(t1). Then the function (⇠0(t1�·), ⌘0(t1�
·)) is the solution (⇠(·, x), ⌘(·, x)) of the initial value problem (3.5), and at time
t = t1 it touches the graph of w + s0' at the point (x0, w(x0) + s0'(x0)). Hence,
t0(s0, x) = t1 and

(⇠(t0(s, x), x), ⌘(t0(s, x), x)) = (x0, w(x0) + s0'(x0)).

This completes the proof.

To estimate the norm of @x g and @xh we need the following preliminary result.
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Proposition 3.7. Let ' and w be as above with k'kC2([a,b]) < 1. Then

|@x⇠(t, x) � 1|  C k'kC2([a,b]) ,
�
�@x⌘(t, x) � w0(x)

�
�  C k'kC2([a,b])

for all x 2 R and 0  t  t0(s, x), where C > 0 depends on kwkC2([a,b]).

Proof. Differentiating (3.5) with respect to x , we have that

@t

⇣
|@x⇠ |

2 + |@x⌘|
2
⌘

= �2
⇥
w00(⇠)'(⇠) + (⌘ � w(⇠))'00(⇠)

⇤
|@x⇠ |

2 .

If '(x) = 0, then by (3.6) the right-hand side of the previous equality is identically
equal to zero. If '(x) 6= 0 then assume that '(x) > 0 (the case '(x) < 0 is similar).
Using the fact that

w(⇠(t, x))  ⌘(t, x)  w(⇠(t, x)) + s'(⇠(t, x))

for all 0  t  t0(s, x) (see Step 1 of the proof of Theorem 3.3), we obtain

|@x⇠(t, x)|2 + |@x⌘(t, x)|2  1+
�
w0(x)

�2

+2k'kC([a,b])

⇣�
�w00

�
�
C([a,b]) +

�
�'00

�
�
C([a,b])

⌘Z t

0

⇣
|@x⇠(r, x)|2 + |@x⌘(r, x)|2

⌘
dr

for all 0  t  t0(s, x). By Gronwall’s inequality and the facts that t0  1 by
Theorem 3.3 and k'kC2([a,b]) < 1, we deduce that

|@x⇠(t, x)|2 + |@x⌘(t, x)|2


⇣
1+

�
�w0

�
�2
C([a,b])

⌘
exp

⇣
2
�
�w00

�
�
C([a,b]) + 2

⌘

for 0  t  t0(s, x). In turn,
�
�@x⌘(t, x) � w0(x)

�
� 

Z t

0

�
�'0(⇠(r, x))@x⇠(r, x)

�
� dr


�
�'0

�
�
C([a,b])

⇣
1+

�
�w0

�
�
C([a,b])

⌘
exp

⇣�
�w00

�
�
C([a,b]) + 1

⌘
.

(3.30)

This implies that

|@x⇠(t, x) � 1|


Z t

0

�
�⇥w00(⇠(r, x))'(⇠(r, x)) + (⌘(r, x) � w(⇠(r, x)))'00(⇠(r, x))

⇤
@x⇠(r, x)

+ '0(⇠(r, x))@x⌘(r, x)
�
� dr

 k'kC([a,b])

⇣�
�w00

�
�
C([a,b]) +

�
�'00

�
�
C([a,b])

⌘

⇥
⇣
1+

�
�w0

�
�
C([a,b])

⌘
exp

⇣�
�w00

�
�
C([a,b]) + 1

⌘

+
�
�'0

�
�
C([a,b])

⇣
1+

�
�w0

�
�
C([a,b])

⌘
exp

⇣�
�w00

�
�
C([a,b]) + 1

⌘
.

Since k'kC2([a,b]) < 1, this concludes the proof.
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Theorem 3.8. Let ' and w be as above with k'kC2([a,b]) < 1. Then

|@x g(s, x) � 1|  C0 k'kC2([a,b]) , (3.31)
�
�@xh(s, x) � w0(x)

�
�  C0 k'kC2([a,b]) (3.32)

for all (s, x) 2 [0, 1] ⇥ R, where C0 > 0 depends on kwkC2([a,b]).

Proof. The proof is subdivided into three steps.

Step 1: By (5.9) in the appendix, for s � 0 and '(x) > 0 (the case '(x) < 0 is
similar), we have

@x g(s, x) � 1

=
@x⇠(t0(s, x), x) � 1

1+
⇥
w0(g(s, x)) + s'0(g(s, x))

⇤2

+

⇥
w0(g(s, x)) + s'0(g(s, x))

⇤ ⇥
w0(x) � w0(g(s, x)) � s'0(g(s, x))

⇤

1+
⇥
w0(g(s, x)) + s'0(g(s, x))

⇤2

+
w0(g(s, x)) + s'0(g(s, x))

1+
⇥
w0(g(s, x)) + s'0(g(s, x))

⇤2
⇥
@x⌘(t0(s, x), x) � w0(x)

⇤
.

(3.33)

By the mean value theorem, (3.5), (3.22), the facts that t0(s, x)  1 and w(⇠) 
⌘  w(⇠) + s'(⇠) (see Theorem 3.3), we obtain

�
�w0(x)�w0(g(s, x))

�
�=
�
�w00(c)(x � g(s, x))

�
�


�
�w00

�
�
C([a,b])

Z t0(s,x)

0

�
�w0(⇠(r, x))'(⇠(r, x))

+(⌘(r, x)�w(⇠(r, x)))'0(⇠(r, x))
�
� dr


�
�w00

�
�
C([a,b])

⇣�
�w0

�
�
C([a,b])+

�
�'0

�
�
C([a,b])

⌘
k'kC([a,b]).

(3.34)

Hence, from (3.33) and Proposition 3.7, we deduce that

|@x g(s, x) � 1|  |@x⇠(t0(s, x), x) � 1| +
�
�w0(x) � w0(g(s, x))| + |'0(g(s, x))

�
�

+ |@x⌘(t0(s, x), x) � w0(x)|  C k'kC2([a,b]) .
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Step 2: If s � 0 and '(x) = 0, then by (5.23) in the appendix,

|@x g(s, x) � 1|

= 1�

q
1+

⇥
w0(x)

⇤2
q
1+

⇥
w0(x) + s'0(x)

⇤2

=

⇥
w0(x) + s'0(x)

⇤2
�
⇥
w0(x)

⇤2
✓q

1+
⇥
w0(x)

⇤2
+
q
1+

⇥
w0(x) + s'0(x)

⇤2
◆q

1+
⇥
w0(x) + s'0(x)

⇤2

 2
�
�w0

�
�
C([a,b])

�
�'0

�
�
C([a,b]) +

�
�'0

�
�2
C([a,b]) ,

so that (3.31) holds even in this case.

Step 3: To conclude the proof, note that by (3.26),

@xh(s, x) =
⇥
w0(g(s, x)) + s'0(g(s, x))

⇤
@x g(s, x),

and so by (3.31) and (3.34), we deduce that

|@xh(s, x) � w0(x)|  |w0(g(s, x)) + s'0(g(s, x))||@x g(s, x) � 1|
+ |w0(g(s, x)) � w0(x)| + |'0(g(s, x))|  C k'kC2([a,b]) ,

which proves (3.32).

We are now ready to construct the family of diffeomorphisms.

Proof of Theorem 3.1. For every s 2 [0, 1], we define 9s : R2 ! R2 by

9s(x, y) := (g(s, x), h(s, x) + y � w(x)), (3.35)

where g and h are the functions given in (3.22) and (3.25), respectively. By Theo-
rem 3.5 and (3.26),9s is of class C2

�
[0, 1] ⇥ R2

�
. Moreover, by (3.23) and (3.27),

90(x, y) = (x, y),

which implies, in particular, that 90(0) = 0, while by Theorem 3.6 and the fact
that g(s, x) = x and h(s, x) = w(x) for all x 2 R \ [a, b] by (3.23) and (3.27), it
follows that

9s(0) = {9s(x, w(x)) : x 2 (�1, 1)} = {(x, w(x) + s'(x)) : x 2 (�1, 1)}

for every s 2 [0, 1].
Since min[�1,1] w > 0 by (3.1), let

0 < 2L < min
[�1,1]

w, M > max
[�1,1]

w. (3.36)
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We now modify 9s to obtain a diffeomorphism in R2 which coincides with the
identity outside the open set U := (a, b) ⇥ (L ,M + 2). Given

0 < �0 < min {1, L} , (3.37)

construct a function � 2 C1
c (R) such that 0  �  1, � (y) = 1 if L + �0  y 

M + 2� �0, � (y) = 0 if y � M + 2 or y  L , and
�
��0 (y)

�
�  2/�0 for all y 2 R.

For every s 2 [0, 1] and (x, y) 2 R2, define

8s(x, y) := �(y)9s(x, y) + (1� �(y))(x, y). (3.38)

Then

D8s(x, y) = I2⇥2 + �(y)(D9s(x, y) � I2⇥2)
+ (9s(x, y) � (x, y)) ⌦

�
0, �0(y)

�
,

(3.39)

and so

|D8s(x, y) � I2⇥2|  |D9s(x, y) � I2⇥2| +
2
�0

|9s(x, y) � (x, y)| .

By Theorem 3.8 and (3.35), we have

|D9s(x, y) � I2⇥2|  C0 k'kC2([a,b]) ,

while by (3.23), (3.27), and Theorem 3.8, for x 2 (a, b),

|9s(x, y) � (x, y)|  2 |g(s, x) � x | + 2 |h(s, x) � w(x)|

=2
�
�
�
�

Z x

a
(@x g (s, r) � 1) dr

�
�
�
�+ 2

�
�
�
�

Z x

a

�
@xh (s, r) � w0(r)

�
dr
�
�
�
�

 C0 k'kC2([a,b]) ,

while for x /2 (a, b), 9s(x, y) = (x, y) by (3.23) and (3.27), since ' = 0 outside
(a, b). Hence, for all (x, y) 2 R2, we deduce that

|D8s(x, y) � I2⇥2|  C0
✓
1+

1
�0

◆
k'kC2([a,b]) < 1, (3.40)

provided k'kC2([a,b]) < �20 and

0 < �0 <
1
2C0

.

This implies that 8s is invertible in R2. It follows by the inverse function theorem
that 8s

�
R2
�
is open and (8s)

�1 is of class C2.
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Moreover, we have already seen that 9s(x, y) = (x, y) for x /2 (a, b), and so,
again by (3.38),8s(x, y) = (x, y) for x /2 (a, b). This shows that8s is the identity
outside U . In particular, 8s (@U) = @U and 8s (U) ⇢ U .

Finally, we observe that

8s = 9s on 0s

since, by (3.36) and (3.37),

L + �0 2L� k'kC0([a,b]) w(x) + s'(x)  M + k'kC0([a,b]) M + 2� �0,

provided
k'kC0([a,b])  min{1, L � �0}.

To conclude the proof, it remains to show (3.4). By (3.38), (3.39), and the fact that
� (y) = 1 if L + �0  y  M + 2� �0, we have that

8̇s(x, w(x)) · (D8s(x, w(x))⌧ (x, w(x)))
= 9̇s(x, w(x)) · (D9s(x, w(x))⌧ (x, w(x)))

= (@sg(s, x), @sh(s, x)) ·

✓
@x g(s, x) 0

@xh(s, x) � w0(x) 1

◆ �
1, w0(x)

�

q
1+ (w0(x))2

,

provided k'kC2,↵(a,b) is sufficiently small. Hence, by (2.3), (3.4) is equivalent to

@x g(s, x)@sg(s, x) + @xh(s, x)@sh(s, x) = 0 (3.41)

for every (s, x) 2 [0, 1] ⇥ [a, b].
Differentiating (3.26) with respect to x and s, respectively, yields

@xh =
�
w0(g) + s'0(g)

�
@x g, @sh =

�
w0(g) + s'0(g)

�
@sg + '(g), (3.42)

so that

@x g@sg + @xh@sh=
h⇣
1+

�
w0(g) + s'0(g)

�2⌘
@sg +

�
w0(g)+s'0(g)

�
'(g)

i
@x g,

which is equal to 0 by (5.6), (5.11), and (5.16) in the appendix.

4. Proof of Theorem 1.1

To prove Theorem 1.1 we first establish a minimality property with respect to spe-
cial variations of the domain �+. To be precise, we will show the following result.
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Theorem 4.1. Under the assumptions of Theorem 1.1, there exists �1 > 0 such
that for all polynomials ' : [a, b] ! R satisfying (3.2), extended to be zero outside
[a, b] and with k'kC2,↵(a,b)  �1,

F(u)  F(v)

for every v 2 A such that {v > 0} = 81({u > 0}), where {8s}s2[0,1] is the
admissible flow given in Theorem 3.1.

We begin with some preliminary estimates.

Proposition 4.2. Let Q 2 C1,1(�), let ' be as in Theorem 4.1, and let us be the
solution to problem (2.1), where 8s is given by (3.38). Then

�
�Q2(x, w(x) + s'(x)) � |rus(x, w(x) + s'(x))|2

�
�  C k'kC2,↵(a,b)

and
�
�@x
�
Q2(x, w(x) + s'(x)) � |rus(x, w(x) + s'(x))|2

���  C k'kC2,↵(a,b)

for all x 2 [�1, 1], where C depends only on kwkC2,↵(�1,1) and kukC2,↵(�+).

Proof. The proof is subdivided into three steps.
Step 1: Recall that the function ûs := us �8s satisfies the boundary value problem
(2.7) with coefficients As given by (2.8). Using the matrix expansion

(I2⇥2 + B)�1 = I2⇥2 � B + o(|B|),

it follows from (3.40) that the matrix Bs := As � I2⇥2 satisfies

|Bs |  C k'kC2([a,b]) 
1
2
, (4.1)

provided k'kC2([a,b]) is sufficiently small. In turn, the matrix As is positive definite
uniformly with respect to s. Using (4.1), by (2.7) and Poincaré inequality in the
Lipschitz domain �+ we obtain

�
�ûs

�
�
H1(�+)

 C kukH1(�+) , (4.2)

where C > 0 depends on�+ but not on s. On the other hand, by (1.9) and (2.7) we
have

(
div(Asr(ûs � u)) = � div(Bsru) in �+

ûs � u = 0 on 0 [ ({y = 0} \ @�+),

with (ûs � u)(�1, y) = (ûs � u)(1, y) for all (±1, y) 2 �+. Hence, with similar
estimates, it follows from (4.1) that
�
�ûs � u

�
�
H1(�+)

 C kBskC0(�+) kukH1(�+)  C k'kC2([a,b]) kukH1(�+) . (4.3)
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Using the fact that ûs(x, y) = us(x, y) for all y < L , where L is given in (3.36),
by (4.2) and (4.3) we have

kuskH1((�1,1)⇥(0,L))  C, kus � ukH1((�1,1)⇥(0,L))  C k'kC2([a,b]) , (4.4)

where C depends on kwkC1(�1,1) and kukH1(�+). By [23, Theorem 9.13] and (4.4),

kuskH2((�1,1)⇥("0,6"0))  C, kus � ukH2((�1,1)⇥("0,6"0))  C k'kC2([a,b])

for 0 < "0 < L/6. Since us and u are periodic in the x variable, they are still
harmonic in R ⇥ ("0, 6"0) and satisfy

kuskH2((a0,b0)⇥("0,6"0))  C, kus � ukH2((a0,b0)⇥("0,6"0))  C k'kC2([a,b])

for some a0 < �1 < 1 < b0. Using [23, Theorem 2.10] in the set (a0, b0)⇥("0, 6"0)
we obtain that

kuskC3((�1,1)⇥(2"0,5"0)) C, kus � ukC3((�1,1)⇥(2"0,5"0))  C k'kC2([a,b]) , (4.5)

where we invoked the continuous immersion of H2((a0, b0) ⇥ ("0, 6"0)) into
C0((a0, b0) ⇥ ("0, 6"0)).

Step 2: Let k'kC2([a,b]) < "0. By Theorem 3.1 the function

vs(x, y) := us(x, y + s'(x)) (4.6)

is well-defined in the set

�0 := �+ \ ((�1, 1) ⇥ (3"0,1)), (4.7)

and by (2.1) it satisfies the elliptic equation

@2x vs +
⇣
1+

�
s'0�2

⌘
@2yvs � 2s'0@2xyvs � s'00@yvs = 0 in �0. (4.8)

Moreover, since ' = 0 outside [a, b] ⇢ (�1, 1), we have vs(�1, y) = us(�1, y) =
us(1,y)=vs(1,y). Hence, vs satisfies the previous equation in ((a0,b0)⇥(3"0,1))\
{u > 0}, where u has been extended periodically and a0 < �1 < 1 < b0. Moreover,
vs = 0 on 0 by (2.1) and (3.3), while vs(x, 3"0) = us(x, 3"0 + s'(x)). Since
k'kC2([a,b]) < "0, we have that (x, 3"0 + s'(x)) 2 (a0, b0) ⇥ (2"0, 4"0).

By (3.40) and (4.2) we have that

kuskH1(8s(�+))  C,

where C depends on �+ and kukH1(�+). By the lateral periodicity of us , the same
estimate holds with 8s(�+) replaced by 8s(((a0, b0) ⇥ (3"0,1)) \ {u > 0}). In
turn, by (4.6) and the chain rule

kvskH1(((a0,b0)⇥(3"0,1))\{u>0})  C.
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It follows from [23, Theorem 9.13], with T the graph of w restricted to (a0, b0), that

kvskH2(((a00,b00)⇥(4"0,1))\{u>0})  C

for a0 < a00 < �1 < 1 < b00 < b0. By the continuous immersion of H2(((a00, b00)⇥
(4"0,1)) \ {u > 0}) into C0,↵(((a00, b00) ⇥ (4"0,1)) \ {u > 0}), we have

kvskC0,↵(((a00,b00)⇥(4"0,1))\{u>0})  C.

By [23, Corollary 6.7], with T the graph of w restricted to (a00, b00), and using a
covering argument, we obtain that there exists an "1-neighborhood 01 of 0 such
that

kvskC2,↵(01\�0)  C (4.9)

for some 0 < "1 < "0. By (4.5) and the chain rule, we have that

kvskC2,↵((�1,1)⇥(3"0,4"0))  C. (4.10)

In the remaining set we can now use the interior Schauder’s estimate in [23, Corol-
lary 6.3] to conclude, also by (4.9) and (4.10), that there exists a constant C depend-
ing only on kwkC2,↵(�1,1) and kukH1(�+) such that

kvskC2,↵(�0)  C (4.11)

for all s 2 (0, 1).
By (1.9) and (4.8),

1(vs � u) = �
�
s'0�2@2yvs + 2s'0@2xyvs + s'00@yvs in �0.

Since vs � u = 0 on 0, we can argue as in Step 1, and from standard estimates,
Poincaré inequality, (4.11), and the fact that k'kC2([a,b]) < "0, we obtain

kvs � ukH1(�0)  C k'kC2([a,b]) + C kvs � ukC1((�1,1)⇥{3"0})

 C k'kC2([a,b])

where the last inequality follows from the chain rule and (4.5). By the lateral period-
icity of vs and u, the same estimate holds with�0 replaced by ((a0, b0)⇥(3"0,1))\
{u > 0}. Again by [23, Theorem 9.13], with T the graph of w restricted to (a0, b0),
we deduce that

kvs�ukH2(((a00,b00)⇥(4"0,1))\{u>0}) C kvs � ukH1(((a0,b0)⇥(3"0,1))\{u>0})

+Ck'kC2([a,b]) kvskH2(((a0,b0)⇥(3"0,1))\{u>0})

 C k'kC2([a,b])

for a0 < a00 < �1 < 1 < b00 < b0, and where we have used the previous inequality
and (4.11), which holds in ((a00, b00) ⇥ (3"0,1)) \ {u > 0} by lateral periodicity.
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By [23, Corollary 6.7], with T the graph of w restricted to (a00, b00), and a
covering argument, we have that

kvs � ukC2,↵(01\�0)  C kvs � ukC0(((a00,b00)⇥(3"0,1))\{u>0})

+ C k'kC2,↵([a,b]) kvskC2,↵(((a00,b00)⇥(3"0,1))\{u>0})

 C k'kC2([a,b]) ,

where we used the fact that the estimate (4.11) holds in ((a00, b00)⇥ (3"0,1))\
{u > 0} by lateral periodicity. We can now continue as before using (4.5) and [23,
Corollary 6.3] to conclude that

kvs � ukC2,↵(�0)  C k'kC2,↵(a,b) . (4.12)

Step 3: Since
Q2(x, w(x)) � |ru(x, w(x))|2 = 0 (4.13)

for all x 2 [�1, 1], by (1.9) and (1.11) it follows that
�
�Q2(x, w(x) + s'(x)) � |rus(x, w(x) + s'(x))|2

�
�


�
�Q2(x, w(x) + s'(x)) � Q2(x, w(x))

�
�

+
�
�|rus(x, w(x) + s'(x))|2 � |ru(x, w(x))|2

�
�


�
�
�Q2

�
�
�
C1

k'kC0 +
�
�|rus(x, w(x) + s'(x))|2 � |ru(x, w(x))|2

�
�.

By (4.6), (4.11), (4.12), and the chain rule, the last term on the right-hand side can
be estimated from above by

C(kruskC0 + krukC0)|rus(x, w(x) + s'(x)) � ru(x, w(x))|
 C(kruskC0 + krukC0)

�
|rvs(x, w(x)) � ru(x, w(x))| + krvskC0 |'0(x)|

�

 C k'kC2,↵(a,b) ,

where, as before, C depends only on kwkC2,↵(�1,1) and kukC1(�+). On the other
hand by (4.13),

@x
�
Q2(x, w(x)) � |ru(x, w(x))|2

�
= 0

for all x 2 [�1, 1], and so
�
�@x
�
Q2(x, w(x) + s'(x)) � |rus(x, w(x) + s'(x))|2

���


�
�@x
�
Q2(x, w(x) + s'(x)) � Q2(x, w(x))

���

+
�
�@x
�
|rus(x, w(x) + s'(x))|2 � |ru(x, w(x))|2

���

 C
�
�
�Q2

�
�
�
C1,1

k'kC1 +
�
�@x
�
|rus(x, w(x) + s'(x))|2 � |ru(x, w(x))|2

���,
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where C depends only on kwkC1(�1,1). The last term on the right-hand side can be
estimated from above by

C kruskC0
�
�r2us(x, w(x) + s'(x)) � r2u(x, w(x))

�
�

+ C
�
�
�r2u

�
�
�
C0

|rus(x, w(x) + s'(x)) � ru(x, w(x))| + C kuk2C2
�
�'0(x)

�
�,

where, as before, C depends only on kwkC2,↵(�1,1) and kukC2(�+). By (4.6) and
the chain rule, we have that

�
�r2us(x, w(x) + s'(x)) � r2u(x, w(x))

�
�


�
�r2vs(x, w(x)) � r2u(x, w(x))

�
�+ C kvskC2,↵ k'kC2([a,b])  C k'kC2,↵(a,b) ,

where in the last inequality we used (4.11) and (4.12). A similar estimate holds for
|rus(x, w(x) + s'(x)) � ru(x, w(x))|. This concludes the proof.

Remark 4.3. The proof of the previous proposition could be significantly simpli-
fied if we could show that the diffeomorphism 8s is of class C2,↵ rather than
just C2, and if we had uniform estimates on the C2,↵ norm of 8s in terms of
kwkC2,↵(�1,1) and k'kC2,↵(a,b). Indeed, the C2,↵ bounds on us and vs would follow
in this case from standard elliptic estimates.

Next we estimate the second integral on the right-hand side of (2.13).

Proposition 4.4. Let Q 2 C1,1(�), let ' be as in Theorem 4.1, and let us be the
solution to problem (2.1), where 8s is given by (3.38). Then there exists C > 0,
depending only on kwkC2,↵(�1,1) and kukC2(�+), such that for every s 2 [0, 1] and
every  2 C(0s),
�
�
�
�

Z

0s

s(@⌫s us)
2 2dH1�

Z

0
(@⌫u)2 2 �8s dH1

�
�
�
�Ck'kC2([a,b])

Z

0s

 2dH1 (4.14)

and
�
�
�
�

Z

0s

@⌫s Q
2  2dH1�

Z

0
@⌫Q2  2 �8s dH1

�
�
�
�  C k'kC1([a,b])

Z

0s

 2 dH1. (4.15)

Proof. Let vs and �0 be defined as in (4.6) and (4.7). Then, by (4.11) and (4.12),

kvskC2,↵(�0)  C, kvs � ukC2,↵(�0)  C k'kC2,↵(a,b) (4.16)

for some constant C > 0 depending only on kwkC2,↵(�1,1) and kukC2(�+). By the
chain rule,

@⌫s us(x, w + s') = rus(x, w + s') · ⌫s(x, w + s')

= rvs(x, w) · ⌫(x, w) � s'0@yvs(x, w)e1 · ⌫s(x, w + s')

+ rvs(x, w) · (⌫s(x, w + s') � ⌫(x, w)).
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Using (4.16),
�
�@⌫s us(x, w+s')�@⌫u(x, w)

�
� |@⌫vs(x, w)�@⌫u(x, w)|+C k'kC1([a,b]) , (4.17)

where to estimate |⌫s(x, w + s') � ⌫(x, w)| we used the fact that the function
t 7! 1p

1+t2
is 1-Lipschitz. Similarly,

|s(x, w + s') � (x, w)| =

�
�
�
�
�

w00 + s'00

�
1+ (w0 + s'0)2

�3/2 �
w00

�
1+ (w0)2

�3/2

�
�
�
�
�

 C k'kC2([a,b]) .

(4.18)

Combining (4.16), (4.17), and (4.18), and using a change of variable, we obtain
(4.14).

On the other hand,

@⌫s Q
2(x, w + s') � @⌫Q2(x, w)=rQ2(x, w + s') · (⌫s(x, w + s') � ⌫(x, w))

+
�
rQ2(x, w + s') � rQ2(x, w)

�
· ⌫(x, w),

and so �
�
�@⌫s Q

2(x, w + s') � @⌫Q2(x, w)
�
�
�  C k'kC1([a,b]) ,

which gives (4.15).

We now estimate the first integral on the right-hand side of (2.13).

Proposition 4.5. Let ' be as in Theorem 4.1, and let us be the solution to problem
(2.1), where 8s is given by (3.38). Then there exists C > 0, depending only on
kwkC2,↵(�1,1) and kukC2(�+), such that for every s 2 [0, 1] and every  2 C1(0s),

�
�
�
�

Z

8s(�+)

�
�rus 

�
�2 dx �

Z

�+

�
�ru0 �8s

�
�2 dx

�
�
�
�  C k'kC2,↵(a,b) k k2H1/2(0s) ,

where us is the unique solution to the problem
8
><

>:

1us = 0 in 8s(�+)

us = � @⌫s us on 0s
us = 0 on 8s({y = 0} \ @�+),

with us (�1, y) = us (1, y) for all y such that (±1, y) 2 8s(�+).

Proof. Reasoning as in the proof of (2.20), we have
Z

8s(�+)

�
�rus 

�
�2 dx =

Z

0s

us @⌫s u
s
 dH1.
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Define
ûs := us �8s .

Then ûs satisfies

8
><

>:

div(Asrûs ) = 0 in �+

ûs = �( @⌫s us) �8s on 0
ûs = 0 on �+ \ {y = 0},

(4.19)

with ûs (�1, y) = ûs (1, y) for all y such that (±1, y) 2 �+, where As is given by
(2.8). Multiplying the first equation in (4.19) by ûs and by the divergence theorem,
we obtain
Z

�+

�
Asrûs 

�
· rûs dx 

�
�
�
�
Asrûs 

�
· ⌫
�
�
�
H�1/2(0)

�
�� @⌫s us

�
�8s

�
�
H1/2(0)

 C
�
�
�Asrûs 

�
�
�
L2(�+)

�
�( @⌫s us) �8s

�
�
H1/2(0)

 C
�
�
�rûs 

�
�
�
L2(�+)

�
�� @⌫s us

�
�8s

�
�
H1/2(0)

,

where we used (4.1) and the continuity of the normal trace in the space H(div;�+)
(see, e.g., [12, Section 3.2]), and where the constant C depends only on �+. The
previous estimate, together with (3.40) and (4.1), implies that

�
�
�rûs 

�
�
�
L2(�+)

 C
�
�( @⌫s us) �8s

�
�
H1/2(0)

 C
�
� @⌫s us

�
�
H1/2(0s)

 C k kL2(0s)
�
�@⌫s us

�
�
C0,1(0s)

+ C | |H1/2(0s)
�
�@⌫s us

�
�
C0(0s)

 C k kH1/2(0s) ,

where in the last inequality we reasoned as in the proof of Proposition 4.4 and used
(4.16). By the Poincaré inequality, we get

�
�
�ûs 

�
�
�
H1(�+)

 C k kH1/2(0s) . (4.20)

On the other hand,

8
>><

>>:

div
⇣
Asr

�
ûs � u0 �8s

�⌘
= � div

⇣
Bsru0 �8s

⌘
in �+

ûs � u0 �8s
= �

�
 @⌫s us

�
�8s + ( �8s)@⌫u on 0

ûs � u0 �8s
= 0 on {y = 0} \ @�+,
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with (ûs �u0 �8s
)(�1, y) = (ûs �u0 �8s

)(1, y) for all y such that (±1, y) 2 �+,
where Bs = As � I2⇥2. Reasoning as before, by (4.1) and (4.20) we get

�
�
�r
�
ûs � u0 �8s

���
�
2

L2(�+)

�
�
�Bsru0 �8s

�
�
�
L2(�+)

�
�
�r
�
ûs � u0 �8s

���
�
L2(�+)

+
�
�
�
⇣
Asr

�
ûs � u0 �8s

�
+ Bsru0 �8s

⌘
· ⌫
�
�
�
H�1/2(0)

⇥
�
�( �8s)(@⌫u � @⌫s us �8s)

�
�
H1/2(0)

 C k'kC2([a,b]) k kH1/2(0s)

�
�
�r
�
ûs � u0 �8s

���
�
L2(�+)

+C
�
�
�Asr

�
ûs � u0 �8s

�
+Bsru0 �8s

�
�
�
L2(�+)

�
�( �8s)(@⌫u�@⌫s us�8s)

�
�
H1/2(0)

 C k'kC2([a,b]) k kH1/2(0s)

�
�
�r(ûs � u0 �8s

)
�
�
�
L2(�+)

+ C
�
�
�r(ûs � u0 �8s

)
�
�
�
L2(�+)

�
�( �8s)(@⌫u � @⌫s us �8s)

�
�
H1/2(0)

+ C k'kC2([a,b]) k kH1/2(0s)
�
�( �8s)(@⌫u � @⌫s us �8s)

�
�
H1/2(0)

.

Hence,
�
�
�r
⇣
ûs � u0 �8s

⌘��
�
L2(�+)

 C k'kC2([a,b]) k kH1/2(0s)

+ C
�
�( �8s)(@⌫u � @⌫s us �8s)

�
�
H1/2(0)

.

As before, using (4.16), we obtain
�
�( �8s)(@⌫u � @⌫s us �8s)

�
�
H1/2(0)

Ck kL2(0s)
�
�@⌫u � @⌫s us �8s

�
�
C0,1(0)

+C | |H1/2(0s)
�
�@⌫u � @⌫s us �8s

�
�
C0(0)

Ck'kC2,↵(a,b) k kH1/2(0s) ,

and so �
�
�rûs � ru0 �8s

�
�
�
L2(�+)

 C k'kC2,↵(a,b) k kH1/2(0s) . (4.21)

Then, also by (4.20),
�
�
�
�

Z

�+

|rûs |2 dx �
Z

�+

|ru0 �8s
|2 dx

�
�
�
�  C k'kC2,↵(a,b) k k2H1/2(0s) .

By a change of variables, we get
Z

�+

�
�rûs 

�
�2 dx =

Z

8s(�+)

�
�
�
�
D8s �8�1

s
�
rus 

�
�
�
2
det D8s d y.
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In turn, by (3.40) and (4.20), we deduce that
�
�
�
�

Z

8s(�+)

�
�rus 

�
�2 dx �

Z

�+

�
�rûs 

�
�2 dx

�
�
�
�  C k'kC2([a,b])

Z

8s(�+)

�
�rus 

�
�2 dx

 C k'kC2([a,b]) k k2H1/2(0s) ,

and this concludes the proof.

Finally, we estimate the first term in the last integral on the right-hand side of
(2.13).

Proposition 4.6. Let Q 2 C1,1(�), let ' be as in Theorem 4.1, and let us be the
solution to problem (2.1), where8s is given by (3.38). If k'kC2,↵(a,b) is sufficiently
small, then for every s 2 [0, 1] the following inequality holds:

�
�
�
�

Z

0s

�
Q2 � |rus |2

�
Zs · ⌫s dH1

�
�
�
�  C k'kC2,↵(a,b)

Z

0s

(Xs · ⌫s)
2 dH1, (4.22)

where Xs and Zs are given in (2.3) and C > 0 depends on kwkC2,↵(�1,1).

Proof. Observe that, by (3.38), (3.42), and the fact that �(y) = 1 if L + �0  y 
M + 2� �0, we have that

8̇s(x, w(x)) · (D8s(x, w(x)))�T ⌫(x, w(x))

= 9̇s(x, w(x)) · (D9s(x, w(x)))�T ⌫(x, w(x))

= �
@xh(s, x)
@x g(s, x)

@sg(s, x)p
1+ (w0(x))2

+
@sh(s, x)p
1+ (w0(x))2

=
'(g(s, x))

p
1+ (w0(x))2

(4.23)

provided k'kC2,↵(a,b) is sufficiently small. Similarly,

8̈s(x, w(x)) · (D8s(x, w(x)))�T ⌫(x, w(x))

= 9̈s(x, w(x)) · (D9s(x, w(x)))�T ⌫(x, w(x))

=
1

@x g(s, x)

⇣
@2s g(s, x), @

2
s h(s, x)

⌘

·

✓
1 �@xh(s, x) + w0(x)
0 @x g(s, x)

◆ �
�w0(x), 1

�

p
1+ (w0(x))2

= �
@xh(s, x)
@x g(s, x)

@2s g(s, x)p
1+ (w0(x))2

+
@2s h(s, x)p
1+ (w0(x))2

.

(4.24)

Differentiating (3.42)2 with respect to s gives

@2s h =
�
w00(g) + s'00(g)

�
(@sg)2 + 2'0(g)@sg +

�
w0(g) + s'0(g)

�
@2s g
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so that, by (3.42)1 and (4.24),

8̈s(x, w(x)) · (D8s(x, w(x)))�T ⌫(x, w(x))

=

�
w00(g) + s'00(g)

�
(@sg)2

p
1+ (w0(x))2

+
2'0(g)@sgp
1+ (w0(x))2

.
(4.25)

Since, by (2.5), we have

⌫s(8s(x, w(x))) =
(D8s(x, w(x)))�T ⌫(x, w(x))
�
�
�(D8s(x, w(x)))�T ⌫(x, w(x))

�
�
�

and
�
�
�(D8s(x, w(x)))�T ⌫(x, w(x))

�
�
� =

p
1+ [w0(g(x)) + s'0(g(x))]2

p
1+ (w0(x))2

,

by (2.3) we have
Z

0s

⇣
Q2 � |rus |2

⌘
Zs · ⌫s dH1

=
Z b

a

⇣
Q2(g, h) � |rus(g, h)|2

⌘ �
w00(g) + s'00(g)

�
(@sg)2@x g dx

+
Z b

a

�
Q2(g, h) � |rus(g, h)|2

�
2'0(g) @sg @x g dx =: I + I I.

By (5.6) and (5.16) in the appendix we obtain

|@sg(s, x)|  |'(g(s, x))| (4.26)

for every (s, x) 2 [0, 1] ⇥ [a, b]. Hence, by Proposition 4.2, for k'kC2,↵(a,b) suffi-
ciently small,

|I |  C k'kC2,↵(a,b)

Z b

a
'2(g(s, x)) @x g dx

 C k'kC2,↵(a,b)

Z b

a

'2(g(s, x))
p
1+ [w0(g) + s'0(g)]2

@x g dx

= C k'kC2,↵(a,b)

Z

0s

(Xs · ⌫s)
2 dH1,

where C depends only on kwkC2,↵(a,b), and where we have used (4.23).
To estimate I I , we use (5.6) to write

I I = �
Z b

a

⇣
Q2(g, h) � |rus(g, h)|2

⌘ 2'0(g)'(g)(w0(g) + s'0(g))@x g
1+ [w0(g) + s'0(g)]2

dx .
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Using the change of variables r = g(x, s) and (3.26), we have

I I = �
Z b

a

(Q2(r, w + s') � |rus(r, w + s')|2)2'0'(w0 + s'0)

1+ [w0 + s'0]2
dr.

Integrating by parts and using (3.2), we obtain

I I =
Z b

a
'2@r

 
(Q2(r, w + s') � |rus(r, w + s')|2)(w0 + s'0)

1+ [w0 + s'0]2

!

dr.

It follows from Proposition 4.2 that

|I I |  C k'kC2,↵(a,b)

Z b

a
'2 dr  C k'kC2,↵(a,b)

Z

0s

(Xs · ⌫s)
2 dH1,

where in the last inequality we have reasoned as in the estimate of I .

Next we prove Theorem 4.1.

Proof of Theorem 4.1. Let ' be as in the statement of Theorem 4.1, and let
{8s}s2[0,1] be the admissible flow given in Theorem 3.1. By Theorem 2.3 and
Propositions 4.2 and 4.6,

d2

ds2
F(us) �

Z

8s(�+)
2|ru̇s |2 dx +

Z

0s

�
@⌫s Q

2 + 2s(@⌫s us)
2�(Xs · ⌫s)

2 dH1

� C k'kC2,↵(a,b)

Z

0s

(Xs · ⌫s)
2 dH1,

where we used the fact that |s |  C . On the other hand, by (2.6) and by Proposi-
tions 4.4 and 4.5 with  = Xs · ⌫s , we have

d2

ds2
F(us) �

Z

�+

2|ru s |
2 dx +

Z

0

�
@⌫Q2 + 2(@⌫u)2

�
(Xs · ⌫s)

2 �8s dH1

� C1 k'kC2,↵(a,b) kXs · ⌫sk
2
H1/2(0s)

,

where  s := (Xs · ⌫s) �8s and u s is the unique solution to the problem
8
><

>:

1u s = 0 in �+

u s = � s@⌫u on 0
u s = 0 on {y = 0} \ @�+,

with u s (�1, y) = u s (1, y) for all y such that (±1, y) 2 �+. Now we apply
(1.11) and (1.12) to obtain

d2

ds2
F(us) �

�
C0 � C1 k'kC2,↵(a,b)

�
kXs · ⌫sk

2
H1/2(0s)

.
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By taking k'kC2,↵(a,b)  C0/(2C1) we get d2
ds2F(us) � 0 for all s 2 [0, 1]. In turn,

by (1.11),

F(u) = F(u1) �
Z 1

0
(1� s)

d2

ds2
F(us) ds

 F(u1) =
Z

81(�+)

�
|ru1|2 + Q2(x)

�
dx.

In view of (2.1), u1 is the unique minimizer ofF over all functions v2H1(81(�+))
such that v = 0 on 81(0), v = u on @81({y = 0} \ @�+) and v(�1, y) = v(1, y)
for all y such that (±1, y) 2 81(�+). In particular, for every v 2 A with {v >
0} = 81({u > 0}), we have

F(u)  F(v),

which concludes the proof.

We conclude this section with the proof of the main theorem.

Proof of Theorem 1.1. Let U b �, � > 0, and let 8 2 C2,↵(R2; R2) be a diffeo-
morphism satisfying (1.14) and (1.15).

Step 1: We begin by proving that there exist a constant C > 0 and an interval
[a, b] ⇢ (�1, 1) (independent of8) such that the set8(0) is the graph of a function
w + ', where ' 2 C2,↵(�1, 1) has compact support in [a, b] and satisfies

k'kC2,↵(�1,1)  C�. (4.27)

Consider the function

 (x) := 81(x, w(x)), x 2 [�1, 1],

where 8 = (81,82). By the chain rule,  2 C2,↵(�1, 1) with

 0(x) = @x8
1(x, w(x)) + w0(x)@y81(x, w(x))

� 1� � � �
�
�w0

�
�
C0(�1,1) �

1
2

(4.28)

for all 0 < � < 1
2+2kw0kC0(�1,1)

, where we used the facts that @x81(x, y) � 1 � �

and
�
�@y81(x, y)

�
�  � by (1.15). Moreover, by (1.14),  (�1) = �1 and  (1) =

1. Hence,  : [�1, 1] ! [�1, 1] is invertible, and by the chain rule  �1 2
C2,↵(�1, 1). It follows that

8(0) =
n⇣
x,82

�
 �1(x), w

�
 �1(x)

��⌘
: x 2 [�1, 1]

o
.

Define '(x) := 82( �1(x), w( �1(x))) � w(x). By (1.14),  (x) = x for x in a
neighborhood of �1 and of 1, 82(x, y) = y for (x, y) /2 U . Hence, ' has compact
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support in (�1, 1). A lengthy, but straightforward calculation using (1.15), shows
that (4.27) holds.
Step 2: Let now {'n}n be a sequence of polynomials satisfying (3.2) and such
that 'n ! ' in C2,↵(a, b). By Theorems 3.1 and 4.1, for � small enough we can
construct an admissible flow {8s,n}s2[0,1] (see Definition 2.1) for every n such that

81,n(0) = {(x, w(x) + 'n(x)) : x 2 (�1, 1)}

and
F(u)  F(v) (4.29)

for every v 2 A with {v > 0} = 81,n({u > 0}).
Consider now a function v 2 A with {v > 0} = 8({u > 0}), and define

vn(x, y) := v(x, y � 'n(x) + '(x)).

Then y < w(x)+'n(x) if and only if y�'n(x)+'(x) < w(x)+'(x). Let ⌧ > 0.
Since 'n ! ' in C2,↵(a, b), we have that vn ! v in H1((�1, 1) ⇥ (⌧,1)).

We now construct �⌧ 2 C1(R) such that 0  �⌧  1, �⌧ (y) = 1 if 2⌧  y,
�⌧ (y) = 0 if y  ⌧ and

�
��0
⌧ (y)

�
�  2/⌧ for all y 2 R. Define

vn,⌧ (x, y) := �⌧ (y)vn(x, y) + (1� �⌧ (y))u(x, y).

Since81,n satisfies (1.14), we have that vn,⌧ 2 A and {vn,⌧ > 0} = 81,n({u > 0}).
Hence, by (4.29), we have

F(u)  F(vn,⌧ ) =
Z

81,n(�+)

�
|rvn,⌧ |

2 + Q2(x)
�
dx

=
Z

�

�
|rvn,⌧ |

2 + �{vn,⌧>0}Q
2(x)

�
dx.

(4.30)

Since 'n ! ' in C2,↵(a, b), if (x, y) 2 � is such that y 6= w(x) + '(x) then for
all n sufficiently large y 6= w(x) + 'n(x), and so �{vn,⌧>0}(x, y) = �{v>0}(x, y). It
follows by the Lebesgue dominated convergence theorem that

lim
n!1

Z

�
�{vn,⌧>0}Q

2(x) dx =
Z

�
�{v>0}Q2(x) dx. (4.31)

On the other hand,

rvn,⌧ = �⌧rvn + (1� �⌧ )ru + (vn � u)�0
⌧ e2.

Hence, using convexity and the inequality (a + b)2  (1+ ")a2 +C"b2, we obtain
Z

�
|rvn,⌧ |

2 dx  (1+ ")

Z

�
�⌧ |rvn|

2 dx + (1+ ")

Z

�
(1� �⌧ )|ru|2 dx

+
4C"
⌧ 2

Z

(�1,1)⇥(⌧,2⌧ )
|vn � u|2 dx.
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Since vn ! v in H1((�1, 1) ⇥ (⌧,1)), letting n ! 1 we have that

lim sup
n!1

Z

�
|rvn,⌧ |

2 dx(1+ ")

Z

�
�⌧ |rv|2 dx +(1+")

Z

�
(1��⌧ )|ru|2 dx

+
4C"
⌧ 2

Z

(�1,1)⇥(⌧,2⌧ )
|v � u|2 dx.

(4.32)

By (1.5), if v is of class C1, it holds

v(x, y) � u(x, y) =
Z y

0
(@yv(x, r) � @yu(x, r)) dr,

and so by Hölder’s inequality
Z

(�1,1)⇥(⌧,2⌧ )
|v � u|2 dx

Z

(�1,1)⇥(⌧,2⌧ )

✓Z y

0
|@yv(x, r)| + |@yu(x, r)| dr

◆2
dx


Z

(�1,1)⇥(⌧,2⌧ )

Z y

0
y
⇣
(@yv(x, r))2+(@yu(x, r))2

⌘
dr dx

 4⌧ 2
Z

(�1,1)⇥(0,2⌧ )

⇣
(@yv(x, r))2+(@yu(x, r))2

⌘
dx dr.

By density, the same inequality is satisfied without any extra regularity on v.
We now combine (4.30)–(4.32) with the previous inequality. By first letting

⌧ ! 0+ and then " ! 0+, we conclude that F(u)  F(v).

5. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on some auxiliary lemmas. We start by showing
that the first term in the expression (1.12) of the second variation is coercive with
respect to the H1/2 norm of the boundary datum on 0.

Lemma 5.1. Let Q, u, and 0 be as in Theorem 1.2, let U ⇢ � be an open set
such that U \ 0 6= ;, and let A := {u > 0} \ U . Assume that A has a Lipschitz
boundary. Then there exist two constants C1,C2 > 0, depending on A, such that

C1k ̂k2H1/2(@A)
 inf

⇢Z

A
|rv|2 dx : v 2 H1(A), v =  ̂ on @A

�

 C2k ̂k2H1/2(@A)

(5.1)

for every  2 C1c (0 \U), where

 ̂ :=

(
Q  in 0 \U
0 in @U \ {u > 0}.
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Proof. Let  2 C1c (0 \ U). Since Q2 2 C0,1 and Q � Qmin > 0, we have that
 ̂ 2 H1/2(@A), and so there exists v⇤ 2 H1(A) such that v⇤ =  ̂ on @A in the
sense of traces and

kv⇤k2H1(A)
 C2k ̂k2H1/2(@A)

,

where C2 is a positive constant depending on A. Thus, the second inequality in
(5.1) holds. On the other hand, the trace operator T : H1(A) ! H1/2(@A) is
continuous, and so there exists a positive constant Ĉ1, depending on A, such that

kT (v)k2H1/2(@A)
 Ĉ1kvk2H1(A)

for every v 2 H1(A). In particular, given  2 C1c (0 \U), we have that

k ̂k2H1/2(@A)
 Ĉ1kvk2H1(A)

for every v 2 H1(A) with T (v) =  ̂ . Since  ̂ = 0 in @U \ {u > 0}, by Poincaré’s
inequality

kvk2H1(A)
 C̃1krvk2L2(A)

for every v 2 H1(A) with T (v) =  ̂ . Combining these two last inequalities, we
get the first inequality in (5.1).

Lemma 5.2. Let Q, u, and 0 be as in Theorem 1.2. For every " > 0 let U" be the
intersection of � with the "-tubular neighborhood of 0. Define

µ" := inf
⇢Z

U"\{u>0}
|ru |2 dx :  2 C1c (0), k kL2(0) = 1

�
,

where for every  2 C1c (0) the function u is the solution to
8
><

>:

1u = 0 in U" \ {u > 0}
u = Q on 0
u = 0 on @U" \ {u > 0},

with u (�1, y) = u (1, y) for all y such that (±1, y) 2 U" \ {u > 0}. Then

lim
"!0+

µ" = 1.

Proof. Assume, by contradiction, that there exist C > 0, "n ! 0+, and  n 2
C1c (0) with k nkL2(0) = 1, such that

Z

U"n\{u>0}
|run|2 dx  C for every n,
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where un := u n . We extend un by 0 to the set U1 \ {u > 0} =: V . Then
Z

V
|run|2 dx  C for every n.

By Poincaré’s inequality there exists u1 2 H1(V ) such that un * u1 weakly in
H1(V ), up to a subsequence, not relabeled. This implies that un ! u1 strongly in
L2(@V ). Since L2(U"n ) ! 0, we have that un ! 0 a.e. in V , hence u1 = 0 and
un ! 0 strongly in L2(@V ).

On the other hand,

1 = k nkL2(0)  C
�
�Q�1/2��

C0kunkL2(0).

Since the right-hand side tends to 0, we arrive at a contradiction.

We now prove Theorem 1.2.

Proof of Theorem 1.2. By Lemmas 5.1 and 5.2, for " > 0 small enough we have
Z

U"\{u>0}
2|ru |2 dx +

Z

0

⇣
@⌫Q2 + 2Q2

⌘
 2 dH1

� C"| ̂ |2H1/2(0)
+ (µ" � C3)k k2L2(0)

,

where C3 := (1+ kkC0)kQ2kC0,1 . On the other hand,

| |H1/2(0) = | ̂/Q|H1/2(0)  k ̂kL2(0)|1/Q|C0,1(0) + | ̂ |H1/2(0)k1/QkC0(0)

 k kL2(0)kQkC0(0)|1/Q|C0,1(0) + | ̂ |H1/2(0)/Qmin,

and so

| ̂ |2H1/2(0)
�
1
2
Q2min| |2H1/2(0)

� C4k k2L2(0)
.

Hence,
Z

U"\{u>0}
2|ru |2 dx +

Z

0

⇣
@⌫Q2 + 2Q2

⌘
 2 dH1

�
C"
2
Q2min| |2H1/2(0)

+ (µ" � C3 �min{C"/2, 1}C4)k k2L2(0)
.

Since µ" ! 1 by Lemma 5.2, the inequality (1.16) holds.
The second part of the statement follows from (1.16) by repeating the proof of

Theorem 1.1. We omit the details.
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Appendix

Here we sketch the proof of the derivation of the Euler-Lagrange equations (1.3) of
(1.1). Let v 2 A0 \ C2(�) be such that @�+ \� (see (1.7)) is a manifold of class
C2,F(v) 2 R and (1.2) holds. Since�+ is open, consider variations ' 2 C1

c (�+).
For " > 0 sufficiently small it can be shown that {v + "' > 0} = {v > 0}, therefore
from (1.2) we obtain

0 =
d
d"

Z

�
|r(v + "')|2 dx

�
�
�
"=0

= 2
Z

�+

rv · r' dx.

This gives (1.3)1, and the condition v = 0 on � \ @ {v > 0} follows from the
continuity of v. To prove that |rv| = Q on � \ @ {v > 0} we use Theorem 2.5
in [2] to obtain

lim
"!0+

Z

@{v>"}

⇣
|rv|2 � Q2

⌘
⌘ · ⌫ dH1 = 0 (5.2)

for every ⌘ 2 C1
c (�; R2). Note that in the original proof of (5.2), v was assumed

to be a local minimizer, but this property was used only to guarantee the validity of
(1.2). In view of the smoothness of v and @�+\�, for " sufficiently small @{v > "}
is a smooth manifold of class C2, and using a partition of unity, it can be shown that
(5.2) reduces to Z

@{v>0}

⇣
|rv|2 � Q2

⌘
⌘ · ⌫ dH1 = 0. (5.3)

Extend locally the outward unit normal ⌫ to @{v > 0} as a C1 function ⌫̄ in an open
neighborhood of @{v > 0}, and take ⌘ := '⌫̄, where ' 2 C1

c (�) is supported in
that neighborhood. Then (5.3) yields

Z

@{v>0}

⇣
|rv|2 � Q2

⌘
' dH1 = 0.

By the arbitrariness of ' we deduce that |rv| = Q on � \ @ {v > 0}.
The remaining of the appendix is dedicated to the proof of Theorem 3.5.

Proof of Theorem 3.5. Let

D := {x 2 R : '(x) 6= 0} .

Step 1: Regularity at points s � 0, x 2 D. By Theorem 3.3 the function t0
is of class C1 in [0, 1] ⇥ D. Hence, by (3.22) and the smooth dependence of ⇠
with respect to initial data, we have that g is of class C1 in [0, 1] ⇥ D. Taking
t = t0(s, x) in (3.16) gives

Z t0(s,x)

0

"�
w0(⇠(r, x))'(⇠(r, x)) + (⌘(r, x) � w(⇠(r, x)))'0(⇠(r, x))

�2

'2(⇠(r, x))
+1

#

dr=s
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for all (s, x) 2 [0, 1]⇥D. Differentiating with respect to s, and using (3.24), yields

@s t0(s, x) =
1

1+ [w0(⇠(t0(s, x), x)) + s'0(⇠(t0(s, x), x))]2
(5.4)

for all (s, x) 2 [0, 1] ⇥ D. Since t0(0, x) = 0, it follows upon integration and by
(3.22) that

t0(s, x) =
Z s

0

1
1+ [w0(g(r, x)) + r'0(g(r, x))]2

dr. (5.5)

By (3.5), (3.22), (3.24), and (5.4),

@sg(s, x)=@t⇠(t0(s, x), x)@s t0(s, x)

=
�w0(g(s, x))'(g(s, x))�(⌘(t0(s, x), x)�w(g(s, x)))'0(g(s, x))

1+ [w0(g(s, x)) + s'0(g(s, x))]2

=�
'(g(s, x))

⇥
w0(g(s, x)) + s'0(g(s, x))

⇤

1+ [w0(g(s, x)) + s'0(g(s, x))]2
.

(5.6)

Differentiating (5.6) with respect to s and x , respectively, gives

@2s g=�
'0(g)

⇥
w0(g)+s'0(g)

⇤
@sg+'(g)

⇥
w00(g)+s'00(g)

⇤
@sg+'(g)'0(g)

1+
⇥
w0(g) + s'0(g)

⇤2

+
2'(g)

�
w0(g) + s'0(g)

�2 ��
w00(g) + s'00(g)

�
@sg + '0(g)

 

⇥
1+ (w0(g) + s'0(g))2

⇤2 ,

(5.7)

and

@2x,sg = �
'0(g)

⇥
w0(g) + s'0(g)

⇤
@x g + '(g)

⇥
w00(g) + s'00(g)

⇤
@x g

1+
⇥
w0(g) + s'0(g)

⇤2

+
2'(g)

�
w0(g) + s'0(g)

�2 �
w00(g) + s'00(g)

�
@x g

⇥
1+ (w0(g) + s'0(g))2

⇤2 ,

(5.8)

while by Schwartz’s theorem @2s,x g = @2x,sg.
On the other hand, by Theorem 3.3, (3.5), (3.20), (3.22), and (3.24), for (s, x)2

[0, 1] ⇥ D,

@x g(s, x) = @t⇠(t0(s, x), x)@x t0(s, x) + @x⇠(t0(s, x), x)

=
@x⇠(t0(s, x), x)

1+ [w0(g(s, x)) + s'0(g(s, x))]2

+
w0(g(s, x)) + s'0(g(s, x))

1+ [w0(g(s, x)) + s'0(g(s, x))]2
@x⌘(t0(s, x), x).

(5.9)
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Differentiating with respect to x , we get

@2x g = �
2
�
w0(g) + s'0(g)

�
(w00(g) + s'00(g))

h
1+ (w0(g) + s'0(g))2

i2 @x g@x⇠(t0, x)

+
@2x,t⇠(t0, x)@x t0

1+ (w0(g) + s'0(g))2
+

@2x ⇠(t0, x)
1+ (w0(g) + s'0(g))2

+

h
1�

�
w0(g) + s'0(g)

�2i
(w00(g) + s'00(g))

h
1+ (w0(g) + s'0(g))2

i2 @x g@x⌘(t0, x)

+
(w0(g) + s'0(g))@2x,t⌘(t0, x)@x t0

1+ (w0(g) + s'0(g))2
+

(w0(g) + s'0(g))@2x⌘(t0, x)
1+ (w0(g) + s'0(g))2

=: I + I I + I I I + I V + V + V I.

(5.10)

It remains to study the regularity of g at points (s0, x0) with '(x0) = 0.
Step 2: Regularity at points s � 0, x /2 [a, b]. Let s0 � 0 and x0 /2 [a, b].
Since ' ⌘ 0 outside (a, b), by (3.23) we have that g(s, x) = x for all s � 0 and
x 2 R \ (a, b). It follows that for all s � 0 and x 2 R \ [a, b],

@x g(s, x) = 1, @sg(s, x) = 0,
@2s g(s, x) = @2x g(s, x) = @2x,sg(s, x) = @2s,x g(s, x) = 0.

(5.11)

Step 3: Continuity of g. Let s0 � 0 and let x0 2 [a, b] be such that '(x0) = 0. By
(3.9) and (3.23), we have that t0(·, x0) ⌘ 0 and g(·, x0) ⌘ x0, respectively. Then by
(3.5), (3.22), and (3.23), we have

g(s, x) � x0 = ⇠(t0(s, x), x) � ⇠(0, x) + x � x0

=
Z t0(s,x)

0
@t⇠(r, x) dr + x � x0

= �
Z t0(s,x)

0
[w0(⇠(r, x))'(⇠(r, x))

+ (⌘(r, x) � w(⇠(r, x)))'0(⇠(r, x)) dr + x � x0.

(5.12)

Since ⇠(·, x0) ⌘ x0 and ⌘(·, x0) ⌘ w(x0) by (3.6), it follows that

w0(⇠(t, x0))'(⇠(t, x0)) + (⌘(t, x0) � w(⇠(t, x0)))'0(⇠(t, x0)) = 0

for all t 2 [0, 1]. By continuity with respect to initial data, we deduce that the func-
tions (t, x) 7! ⇠(t, x) and (t, x) 7! ⌘(t, x) are uniformly continuous on compact
sets, and so using also the facts thatw is smooth and ' 2 C2(R), we have that given
" > 0 there exists � > 0 such that

�
�w0(⇠(t, x))'(⇠(t, x)) + (⌘(t, x) � w(⇠(t, x)))'0(⇠(t, x))

�
�  "
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for all t 2 [0, 1] and all x with |x � x0|  �. Since 0  t0  1 by (3.11), it follows
that

Z t0(s,x)

0

�
�w0(⇠(r, x))'(⇠(r, x)) + (⌘(r, x) � w(⇠(r, x)))'0(⇠(r, x))

�
� dr  "

for all (s, x) with |x � x0|  �. By (5.12) we obtain

lim
x!x0

g(s, x) = x0 (5.13)

uniformly for all s 2 [0, 1]. This shows that g is continuous at (s0, x0).
In particular, if ' 6= 0 in some interval (↵,�) and '(↵) = '(�) = 0, by the

continuity of g, it follows from (5.5) that

lim
(s,x)!(s0,↵)+

t0(s, x) = T0(s0,↵), (5.14)

where

T0(s, x) : =
Z s

0

1

1+
⇥
w0(x) + r'0(x)

⇤2 dr

=

(⇥
arctan(w0(x)+s'0(x))�arctan(w0(x))

⇤
/'0(x) if '0(x) 6=0,

s/
⇥
1+ (w0(x))2

⇤
if '0(x)=0.

(5.15)

Since t0(s,↵) = 0, this shows that the function t0 is discontinuous at (s0,↵) for all
s0 > 0. A similar result holds at the endpoint �.
Step 4: Existence and continuity of @s g and @x g. Let s0 � 0 and let x0 2 [a, b]
be such that '(x0) = 0. By (3.23), we have that g(·, x0) ⌘ x0, and so

@sg(s, x0) = 0 (5.16)

for all s � 0. On the other hand, if ' 6= 0 in some interval (x0, x0 + �) (the case
(x0 � �, x0) is similar), by the continuity of g and (5.6),

@sg(s, x) !
�'(x0)

⇥
w0(x0) + s'0(x0)

⇤

1+
⇥
w0(x0) + s'0(x0)

⇤2 = 0

as (s, x) ! (s0, x0)+. Hence, @sg is continuous at (s0, x0) for all s0 � 0.
Next, we prove the existence and continuity of @x g at (s0, x0) for all s0 � 0.

We assume, as before, that ' 6= 0 in some interval (x0, x0+�) (the case (x0��, x0)
is similar). Differentiating (3.5) with respect to x , we obtain

8
>>><

>>>:

@t (@x⇠) = �[w00(⇠)'(⇠) + (⌘ � w(⇠))'00(⇠)]@x⇠ � '0(⇠)@x⌘

@t (@x⌘) = '0(⇠)@x⇠

@x⇠(0, x) = 1
@x⌘(0, x) = w0(x).

(5.17)
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Since ⇠(·, x0) ⌘ x0 and ⌘(·, x0) ⌘ w(x0) by (3.6), we have that @x⇠(·, x0) and
@x⌘(·, x0) solve the system

8
>>><

>>>:

@t (@x⇠(·, x0)) = �'0(x0)@x⌘(·, x0)
@t (@x⌘(·, x0)) = '0(x0)@x⇠(·, x0)
@x⇠(0, x0) = 1
@x⌘(0, x0) = w0(x0),

and so

@x⇠(t, x0) = cos('0(x0)t) � w0(x0) sin('0(x0)t)
@x⌘(t, x0) = w0(x0) cos('0(x0)t) + sin('0(x0)t).

(5.18)

By the continuity of @x⇠ and @x⌘, (5.14) and (5.18),

lim
(s,x)!(s0,x0)+

@x⇠(t0(s, x), x) = @x⇠(T0(s0, x0), x0)

= cos('0(x0)T0(s, x0)) � w0(x0) sin('0(x0)T0(s, x0))

=

q
1+ [w0(x0)]2

q
1+ [w0(x0) + s0'0(x0)]2

(5.19)

and

lim
(s,x)!(s0,x0)+

@x⌘(t0(s, x), x) = @x⌘(T0(s0, x0), x0)

= w0(x0) cos('0(x0)T0(s, x0)) + sin('0(x0)T0(s, x0))

=
(w0(x0) + s0'0(x0))

q
1+ [w0(x0)]2

q
1+ [w0(x0) + s0'0(x0)]2

,

(5.20)

where we have used the formulas

cos (arctan(x + y) � arctan y) =
1+ xy + y2

p
1+ y2

p
1+ (x + y)2

,

sin (arctan(x + y) � arctan y) =
x

p
1+ y2

p
1+ (x + y)2

.

Note that
⇥
w0(x0) + s'0(x0)

⇤
@x⇠(T0(s, x0), x0) � @x⌘(T0(s, x0), x0) = 0 (5.21)

for every s 2 [0, 1].



A SECOND ORDER MINIMALITY CONDITION FOR A FREE-BOUNDARY PROBLEM 1351

By (5.9), (5.19), (5.20), we obtain

lim
(s,x)!(s0,x0)+

@x g(s, x) =

q
1+ [w0(x0)]2

q
1+ [w0(x0) + s0'0(x0)]2

. (5.22)

By the continuity of g proved in Step 3,

lim
x!x+

0

g(s0, x) � g(s0, x0)
x � x0

=
0
0
,

and so we can apply L’Hôpital’s rule to the function x 7! g(s0, x) to conclude that
there exists

lim
x!x+

0

g(s0, x) � g(s0, x0)
x � x0

= lim
x!x+

0

@x g(s0, x)
1

=

q
1+ [w0(x0)]2

q
1+ [w0(x0) + s0'0(x0)]2

.

If ' 6= 0 also in some interval (x0 � �1, x0), then we conclude in the same way that

lim
x!x�

0

g(s0, x) � g(s0, x0)
x � x0

= lim
x!x�

0

@x g(s0, x)
1

=

q
1+ [w0(x0)]2

q
1+ [w0(x0) + s0'0(x0)]2

,

and so we deduce that there exists

@x g(s0, x0) =

q
1+ [w0(x0)]2

q
1+ [w0(x0) + s0'0(x0)]2

(5.23)

and that @x g is continuous at (s0, x0). On the other hand, if ' = 0 in some interval
(x0 � �1, x0), then x0 = a, and '0(x0) = 0. It follows that the limit in (5.22) is 1,
and so by (5.11) we obtain again that there exists @x g(s0, x0) = 1 and that @x g is
continuous at (s0, x0).

Step 5: Existence and continuity of @2s g, @2x,s g, and @2s,x g. Let s0 � 0 and let
x0 2 [a, b] be such that '(x0) = 0. We assume, as before, that ' 6= 0 in some
interval (x0, x0 + �) (the case (x0 � �, x0) is similar). By (5.16), we have that
@2s g(s, x0) = 0 for all s � 0. On the other hand, by (5.7) and the continuity of g
and @sg,

lim
(s,x)!(s0,a)+

@2s g(s, x) = 0.

By (5.8) and the continuity of g, @sg, and @x g,

lim
(s,x)!(s0,x0)+

@2x,sg(s, x) = �
'0(x0)

⇥
w0(x0) + s0'0(x0)

⇤
@x g(s0, x0)

1+ [w0(x0) + s'0(x0)]2
.
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On the other hand, by Step 4,

lim
x!x+

0

@sg(s0, x) � @sg(s0, x0)
x � x0

=
0
0
,

and so we can apply L’Hôpital’s rule to the function x 7! @sg(s0, x) to conclude
that there exists

lim
x!x+

0

@sg(s0, x) � @sg(s0, x0)
x � x0

= lim
x!x+

0

@2x,sg(s0, x)
1

=�
'0(x0)

⇥
w0(x0) + s0'0(x0)

⇤
@x g(s0, x0)

1+ [w0(x0) + s'0(x0)]2
.

(5.24)

If ' 6= 0 also in some interval (x0 � �1, x0), then we deduce as in the previous step
that there exists @2x,sg(s0, x0) and that @2x,sg is continuous at (s0, x0). On the other
hand, if ' = 0 in some interval (x0 � �1, x0), then x0 = a, and '0(x0) = 0. It
follows from (5.24) and (5.11) that there exists @2x,sg(s0, x0) = 0 and that @2x,sg is
continuous at (s0, x0).

In both cases we can apply Schwartz’s theorem to conclude that there exists
@2s,x g(s0, x0) and that

@2s,x g(s0, x0) = @2x,sg(s0, x0).

Step 6: Existence and continuity of @2x g. By Step 3, (5.19), (5.20), (5.22), and
(5.10), we have

lim
(s,x)!(s0,x0)+

I = �
2
�
w0(x0) + s'0(x0)

�
(w00(x0) + s'00(x0))

h
1+ (w0(x0) + s'0(x0))2

i2 (5.25)

⇥ @x g(s0, x0)@x⇠(T0(s0, x0), x0),

lim
(s,x)!(s0,x0)+

I V =

h
1�

�
w0(x0) + s'0(x0)

�2i
(w00(x0) + s'00(x0))

h
1+ (w0(x0) + s'0(x0))2

i2 (5.26)

⇥ @x g(s0, x0)@x⌘(T0(s0, x0), x0).

On the other hand, by Step 3, the continuity of @2x ⇠ and @2x⌘, (5.10), and (5.14),

lim
(s,x)!(s0,x0)+

I I I =
@2x ⇠(T0(s0, x0), x0)

1+ (w0(x0) + s0'0(x0))2
, (5.27)

and

lim
(s,x)!(s0,x0)+

V I =
(w0(x0) + s'0(x0))@2x⌘(T0(s0, x0), x0)

1+ (w0(x0) + s'0(x0))2
. (5.28)



A SECOND ORDER MINIMALITY CONDITION FOR A FREE-BOUNDARY PROBLEM 1353

It remains to estimate I I and V in (5.10). By Taylor’s formula, we obtain

w0(z)+s'0(z)=w0(x0)+s'0(x0)+
�
w00(x0) + s'00(x0)

�
(z � x0) + o(z � x0).

Hence, also by (5.13),
⇥
w0(g(s, x)) + s'0(g(s, x))

⇤
@x⇠(t0(s, x), x) � @x⌘(t0(s, x), x)

g(s, x) � x0

=
(w0(x0) + s'0(x0))@x⇠(t0(s, x), x) � @x⌘(t0(s, x), x)

g(s, x) � x0
+
�
w00(x0) + s'00(x0) + o(1)

�
@x⇠(t0(s, x), x).

(5.29)

By repeated applications of the mean value theorem, we have that
�
w0(x0) + s'0(x0)

�
@x⇠(t0(s, x), x) � @x⌘(t0(s, x), x)

=
�
w0(x0) + s'0(x0)

�
@x⇠(t0(s, x), x0) � @x⌘(t0(s, x), x0)

+ (x � x0)
⇥�

w0(x0) + s'0(x0)
�
@2x ⇠(t0(s, x), x1) � @2x⌘(t0(s, x), x1)

⇤

= (x � x0)
⇢✓

t0(s, x) � T0(s, x0)
x � x0

◆
⇥�

w0(x0) + s'0(x0)
�
@2x,t⇠(t1, x0)

� @2x,t⌘(t1, x0)
⇤
+
⇥�

w0(x0) + s'0(x0)
�
@2x ⇠(t0(s, x), x1)

� @2x⌘(t0(s, x), x1)
⇤
�

(5.30)

for some x1 between x and x0 and for some t1(s, x) between t0(s, x) and T0(s, x0),
and where we have used (5.21).

By (3.23), (5.5), (5.15), and again the mean value theorem, we get

t0(s, x) � T0(s, x0)

=
Z s

0

(w0(x0) + r'0(x0))2 � (w0(g(r, x)) + r'0(g(r, x)))2

[1+ (w0(g(r, x)) + r'0(g(r, x)))2][1+ (w0(x0) + r'0(x0))2]
dr (5.31)

=�(x�x0)
Z s

0

2(w0(g(r, c))+r'0(g(r, c)))(w00(g(r, c))+r'00(g(r, c)))@x g(r, c)
[1+ (w0(g(r, x)) + r'0(g(r, x)))2][1+ (w0(x0) + r'0(x0))2]

dr

for some c = c(r, x, x0) between x and x0. Hence, by (3.23) and the continuity of
g and @x g,

lim
(s,x)!(s0,x0)+

t0(s, x) � T0(s, x0)
x � x0

= �
Z s0

0

2(w0(x0) + r'0(x0))(w00(x0) + r'00(x0))@x g(r, x0)
[1+ (w0(x0) + r'0(x0))2]2

dr =: `1.

(5.32)
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By (3.23), (5.22), and the mean value theorem, we deduce that

g(s, x) � x0
x � x0

=
g(s, x) � g(s, x0)

x � x0
= @x g(s, ✓) ! @x g(s0, x0) (5.33)

as (s, x) ! (s0, x0). Hence, letting (s, x) ! (s0, x0) in (5.29) and using (5.30),
(5.32), and (5.33) gives

lim
(s,x)!(s0,x0)+

⇥
w0(g(s, x))+s'0(g(s, x))

⇤
@x⇠(t0(s, x), x)�@x⌘(t0(s,x),x)

g(s, x) � x0

=

�
`1[(w0(x0) + s'0(x0))@2x,t⇠(T0(s0, x0), x0) � @2x,t⌘(T0(s0, x0), x0)]

@x g(s0, x0)

+ [(w0(x0) + s'0(x0))@2x ⇠(T0(s0, x0), x0) � @2x⌘(T0(s0, x0), x0)]
o

+
�
w00(x0) + s'00(x0)

�
@x⇠(T0(s0, x0), x0) =: `2.

(5.34)

By (3.24), (3.20), (5.17), (5.10),

I I = �
[w00(g)'(g) + s'(g)'00(g)]@x⇠(t0, x) � '0(g)@x⌘(t0, x)

1+ (w0(g) + s'0(g))2

⇥

⇥
w0(g) + s'0(g)

⇤
@x⇠(t0, x) � @x⌘(t0, x)

'(g)
h
1+ (w0(g) + s'0(g))2

i

=�[w00(g)+s'00(g)]@x⇠(t0, x)
⇥
w0(g)+s'0(g)

⇤
@x⇠(t0, x)�@x⌘(t0, x)

h
1+ (w0(g) + s'0(g))2

i2

�
'0(g)
'(g)

@x⌘(t0, x)
⇥
w0(g) + s'0(g)

⇤
@x⇠(t0, x) � @x⌘(t0, x)

h
1+ (w0(g) + s'0(g))2

i2

= I Ia + I Ib.

(5.35)

By Step 3, (5.19), (5.20), and (5.21),

lim
(s,x)!(s0,x0)+

I Ia = �[w00(x0) + s0'00(x0)]@x⇠(T0(s0, x0), x0)

⇥

⇥
w0(x0) + s0'0(x0)

⇤
@x⇠(T0(s0, x0), x0) � @x⌘(T0(s0, x0), x0)

h
1+ (w0(x0) + s0'0(x0))2

i2 = 0.
(5.36)

Since ' is a polynomial with '(x0) = 0, we may write

'(z) = p(z)(z � x0)k, (5.37)

where p is a polynomial with p(x0) 6= 0 and k � 1. In turn,

'0(z) = (z � x0)k�1
⇥
p0(z)(z � x0) + kp(z)

⇤
. (5.38)



A SECOND ORDER MINIMALITY CONDITION FOR A FREE-BOUNDARY PROBLEM 1355

By (5.37), (5.38),

I Ib = �
[p0(g)(g � x0) + kp(g)]@x⌘(t0, x)
h
1+ (w0(g) + s'0(g))2

i2
p(g)

⇥

⇥
w0(g) + s'0(g)

⇤
@x⇠(t0, x) � @x⌘(t0, x)
g � x0

,

and so by Step 3, (3.2), (5.20), and (5.34),

lim
(s,x)!(s0,x0)+

I Ib = �
k@x⌘(T0(s0, x0), x0)

h
1+ (w0(x0) + s0'0(x0))2

i2 `2. (5.39)

By (3.24), (5.37), (3.20 ), (5.17), (5.10), (5.38),

V =
(w0(g) + s'0(g))'0(g)@x⇠(t0, x)

1+ (w0(g) + s'0(g))2

⇥
w0(g) + s'0(g)

⇤
@x⇠(t0, x) � @x⌘(t0, x)

'(g)
h
1+ (w0(g) + s'0(g))2

i

=
(w0(g) + s'0(g))[p0(g)(g � x0) + kp(g)]@x⇠(t0, x)

h
1+ (w0(g) + s'0(g))2

i2
p(g)

⇥

⇥
w0(g) + s'0(g)

⇤
@x⇠(t0, x) � @x⌘(t0, x)
g � x0

,

and so by Step 3, (5.20), and (5.34),

lim
(s,x)!(s0,x0)+

V =
(w0(x0) + s'0(x0))k@x⇠(T0(s0, x0), x0)

h
1+ (w0(x0) + s0'0(x0))2

i2 `2. (5.40)

Finally, by (5.10), (5.25), (5.26), (5.35), (5.36), (5.39), (5.40), (5.27), and (5.28),
there exists

lim
(s,x)!(s0,x0)+

@2x g(s, x) = `3 2 R.

By the continuity of @x g proved in Step 4,

lim
x!x+

0

@x g(s0, x) � @x g(s0, x0)
x � x0

=
0
0
,

and so we can apply L’Hôpital’s rule to the function x 7! @x g(s0, x) to conclude
that there exists

lim
x!x+

0

@x g(s0, x) � @x g(s0, x0)
x � x0

= lim
x!x+

0

@2x g(s0, x)
1

= `3.
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If ' 6= 0 also in some interval (x0 � �1, x0), then the limit as x ! x�
0 is still `3,

and so there exists @2x g(s0, x0) = `3 and @2x g is continuous at (s0, x0). On the other
hand, if ' = 0 in some interval (x0��1, x0), then x0 = a, and '0(x0) = '00(x0) = 0.

Then by (5.19), (5.20), (5.22),

@x⇠(T0(s0, x0), x0) = 1, @x⌘(T0(s0, x0), x0) = w0(x0),
@x g(s0, x0) = 1.

(5.41)

To calculate @2x ⇠(T0(s0, x0), x0) and @2x⌘(T0(s0, x0), x0), differentiate (5.17) with
respect to x to obtain
8
>>>>>><

>>>>>>:

@t
�
@2x ⇠

�
=�

⇥
w000(⇠)'(⇠)+w00(⇠)'0(⇠)�w0(⇠)'00(⇠)+(⌘�w(⇠))'000(⇠)

⇤
(@x⇠)

2

�
⇥
w00(⇠)'(⇠)+(⌘ � w(⇠))'00(⇠)

⇤
@2x ⇠

�'0(⇠)@2x⌘ � 2'00(⇠)@x⇠@x⌘

@t
�
@2x⌘

�
= '00(⇠)(@x⇠)

2 + '0(⇠)@2x ⇠

@2x ⇠(0, x) = 0, @2x⌘(0, x) = w00(x).

Since ⇠(·, x0) ⌘ x0 and ⌘(·, x0) ⌘ w(x0) by (3.6), we have that @2x ⇠(·, x0) and
@2x⌘(·, x0) solve the system

8
><

>:

@t
�
@2x ⇠(·, x0)

�
= 0

@t
�
@2x⌘(·, x0)

�
= 0

@x⇠(0, x0) = 0, @x⌘(0, x0) = w00(x0),

and so
@2x ⇠(t, x0) ⌘ 0, @2x⌘(t, x0) ⌘ w00(x0). (5.42)

By (5.10), (5.25), (5.26), (5.35), (5.36), (5.39), (5.40), (5.27), (5.28), (5.41), and
(5.42), we have that

lim
(s,x)!(s0,x0)+

@2x g(s, x) = �
2w0(x0)w00(x0)
h
1+ (w0(x0))2

i2 �
kw0(x0)

h
1+ (w0(x0))2

i2 `2 + 0

+

h
1�

�
w0(x0)

�2i
w00(x0)

h
1+ (w0(x0))2

i2 w0(x0) +
w0(x0)k

h
1+ (w0(x0))2

i2 `2

+
w0(x0)w00(x0)
1+ (w0(x0))2

= 0,

and so we can conclude, as before, that @2x g exists and is continuous at (s0, x0).
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