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A second order minimality condition for a free-boundary problem

IRENE FONSECA, GIOVANNI LEONI AND MARIA GIOVANNA MORA

Abstract. The goal of this paper is to derive in the two-dimensional case neces-
sary and sufficient minimality conditions in terms of the second variation for the
functional

V> /;2 (|Vv|2 + X{v>O}Q2> dx,

introduced in a classical paper of Alt and Caffarelli. For a special choice of Q
this includes water waves. The second variation is obtained by computing the
second derivative of the functional along suitable variations of the free boundary.
It is proved that the strict positivity of the second variation gives a sufficient con-
dition for local minimality. Also, it is shown that smooth critical points are local
minimizers in a small tubular neighborhood of the free-boundary.

Mathematics Subject Classification (2010): 35R35 (primary); 49J40 (sec-
ondary).

1. Introduction

The goal of this paper is to derive a new minimality condition in terms of the second
variation for the functional

F(v) :=/ (IVo? + xp=0)0%) dx, v € Ao, (1.1)
Q

introduced by Alt and Caffarelli in the seminal paper [2] (see also [3-5,14,21]).
Here, Q C R" is an open connected set with locally Lipschitz boundary, the func-
tion Q : 2 — [0, 400) is continuous, and

Ay = {v € Hl.(2): Vve LX@RY), v=1v"on s},
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where S C 92 is a measurable set with H"*~'(S) > 0, and the Dirichlet datum
v¥ € HILC(Q) is a nonnegative function with Vv* € L?(Q; RY). The identity
v = v* on S is to be understood in the sense of traces.
In this paper a critical point for (1.1) is a function v € Ag such that F(v) € R

and

dF

Te (v+ep) o= 0 (1.2)
for every ¢ € H'(Q) with ¢ = 0 on S in the sense of traces. It can be shown
that when v is a smooth critical point, e.g., v € C*(Q), and the free boundary
QN3 {v > 0} is a manifold of class C2, then we are led to a free boundary problem
(see [25]). To be precise, the Euler-Lagrange equations of (1.1) are given by

Av =0 in 2N {v > 0}
v=0 |Vvy=0Q onQNaJf{v >0} (1.3)
v=1v* on S,

(see the appendix).
Under the assumptions that Q is Holder continuous and

0 < Omin < Q(X) < Omax < 00, (1.4)

Alt and Caffarelli [2] proved existence of global minimizers, full regularity of the
free boundary 2 N d {v > 0} of local minimizers for N = 2 and partial regularity
for N > 3. Using a monotonicity formula, Weiss in [36] improved the estimate of
the Hausdorff dimension of the singular set, and Caffarelli, Jerison, and Kenig [13]
showed full regularity in dimension N = 3. Note, however, that in dimension
N = 3 there exist critical points of (1.1) whose free boundary is singular (see [2]
and [13]).

In this work we prove that in dimension N = 2 and under the assumption
(1.4), smooth critical points of (1.1) are actually local minimizers with respect to
small C>* perturbations (see the statement of Theorem 1.2 for the precise notion
of minimality) in a tubular neighborhood of o{u > 0} N Q. The proof is based on
the derivation of a second order variation of the functional (1.1).

This approach has been successfully applied to several contexts. In particular,
in the study of the Mumford-Shah functional the strict positivity of the second vari-
ation has been used to obtain local minimality of critical points (see [11,15,18,27]),
including triple junctions, which are at the core of the Mumford-Shah conjec-
ture. Furthermore, using the diffuse-interface Ohta-Kawasaki energy to model mi-
crophase separation in diblock copolymer melts, critical configurations with pos-
itive second variation were found to be local minimizers in [1] (see also [9, 10]).
In turn, these results are used to determine global and local minimality of certain
lamellar configurations. Finally, in [22] (see also [8]) the authors analyzed a varia-
tional model for epitaxial growth of a thin elastic film over a flat substrate when a



A SECOND ORDER MINIMALITY CONDITION FOR A FREE-BOUNDARY PROBLEM 1305

lattice mismatch between the two materials is present. Again using techniques in-
volving the positivity of the second variation, they determined the critical threshold
for local and global minimality of the flat configuration.

We now present the main results of this paper. We assume Q2 := (—1,1) x
(0, 00), and we consider the functional F in (1.1) defined on the class

A:={veL (: Vve L2 (& RY), v(x,0) =u*(x)forx € (—1, 1),

(1.5)
v(—1,y) =v(l,y) for y > 0},

where x = (x,y) € R?, u* € C!([—1, 1)) is periodic, and u* > 0, while the
function Q satisfies

0eC®(Q) 0<Q(x) < Oma foreveryx € Q. (1.6)

By [2, Theorem 1.3] (see also [7]), there exists a minimizer of F in A. Moreover,
in view of [2, Lemma 2 4], for any local minimizer v of F in A, the set {v > 0} N Q2
is open and v is harmonic in {v > 0} N Q. Let u € A be such that the set

Qr:={u>0NgQ 1.7
is open, u is harmonic in 2, and

':=0d{u>0NQ (1.8)
is a smooth curve. Then u satisfies the elliptic problem

Au=0 inQy
u=20 onI’ (1.9)
u=u* onf{y=0}N0oR,,

together with the periodicity conditions
u(—1,y) =u(l,y) fory > 0. (1.10)

We consider a one-parameter family of diffeomorphisms {®;}s¢[0,17 that coincide
with the identity in a uniform neighborhood of d€2. We then derive the second
derivative of F(ug) with respect to s, where ug is the minimizer of the Dirichlet
energy on @ ({u > 0}) with respect to the given boundary conditions. Imposing
the first derivative of F (u;) to be zero at s = 0 gives back the equilibrium condition
[Vu| = Q on 2N d{u > 0}. The second order derivative of F (1) provides a new
necessary condition for minimizers, expressed in terms of a sign condition for a
quadratic form (see Remark 2.4 below). In turn, the strict positivity of this quadratic
form gives a sufficient condition for local minimality. This is made precise by the
following theorem, which is one of the main results of this paper.

In what follows, we denote by v : I' — S! a smooth normal vector to I'. The
curvature k of I' satisfies ;v = k7 and ;7 = —k v, where 7 : ' — S is a smooth
tangent vector to I".
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Theorem 1.1. Assume that Q € C'1(Q) and satisfies (1.6). Letu € C*>*(Q,UI"),
o > 0, satisfy (1.7), (1.9), (1.10), and let the free boundary T given in (1.8) be the
graph of a C3 periodic function. Assume, in addition, that

@u)> = 0> onT (1.11)

and that there exists Co > 0 such that
/Q 2|Vuy > dx + /F (0, 0% + 2 Q)2 dH' = CollYlFng,  (1112)
)

for every ¢y € C Cl (I"), where uy, is the solution to

Auy =0  inQy
uy = 0% onl (1.13)
uy =0 on{y =0}No2y,

with uy (—1,y) = uy(1,y) for all y such that (£1, y) € Q.. Then there exists
8 > 0 such that for every open set U € Q and for every diffeomorphism ® €
C2%(R?; R?) with

supp(® —1d) C U (1.14)
and
|® — Idllcz,a(Rz) <3, (1.15)
we have
Fu) < F(v)

for every v € Awith {v >0} = ®({u > 0}).

Although the notion of C%%-minimality established in the previous theorem may
be perceived as weak, it has been shown to lead to a stronger minimality property
in several of the contexts mentioned above. To be precise, in the case of epitaxial
growth Fusco and Morini [22] proved that the strict positivity of the second varia-
tion implies local minimality with respect to W2 > perturbations and in turn, that
this leads to local minimality with respect to L°° perturbations. Similarly, for the
diffuse-interface Ohta-Kawasaki energy it is shown in [1] that the strict positivity
of the second variation yields local minimality with respect to W27 perturbations
and that W2 ?-local minimizers are actually L '-local minimizers. Thus, it is natural
to expect that in our setting C%%-minimizers are in fact local minimizers in a much
larger class of competitors. This will be addressed in a forthcoming paper.

We also observe that a different type of second variation for the functional
(1.1) has been used by Caffarelli, Jerison, and Kenig in [13] to prove full regularity
of global minimizers when N = 3, and by Weiss and Zhang in [37] for a similar
functional related to water waves with vorticity. In contrast to our case, where we
perform variations of the free boundary I', in [13] and [37] the variations are of the
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type u + gv, where v is harmonic in 4 N B with boundary datum a given function
gon d(2+ N B) and B is a ball.

Furthermore, Theorem 1.1 is closely related to [19, Theorems 1 and 2]. In this
paper, Dambrine considered the solution ug to an elliptic equation with homoge-
neous Dirichlet boundary condition on a moving domain €2, and proved stability of
critical points of the “shape functional”

ug / flug, Vug)dx
Q

with coercive second variation (see also [20]). The family of diffeomorphisms con-
structed in [19] are variations in the normal direction to the boundary. In our case,
due to the additional boundary condition |Vv| = Q we need to consider more gen-
eral families of diffeomorphisms {®}sc[0,1] With zero tangential velocity on the
free boundaries. This latter property plays a crucial role in the proofs of the main
theorems, and it leads to a first order partial differential equation (see (3.41) below)
that we solve using the method of characteristics. One of the main difficulties is
that the components of the flow are given by compositions of functions that are
discontinuous. Thus, proving the regularity of the flow is extremely delicate.

In the second main theorem we prove that, if u is a smooth critical point of F
restricted to A, then u satisfies the minimality property of Theorem 1.1 in a tubular
neighborhood of I'.

Theorem 1.2. Assume that Q satisfies (1.6) and Q > Qmin>0. Letu € C2’°‘(52+)
be as in (1.7)-(1.10), and let T be the graph of a C3 periodic function. Assume, in
addition, that

(E)vu)2 = Q2 onT.

Then there exist ¢ > 0 and c, > 0 such that
/ 2|Vu¢|2dx+/ (0,0° + 2 Q*) Y dH' = eV g, (1.16)
U:N{u>0} r

foreveryy € C Ll (I'), where U is the intersection of Q2 with the e-tubular neighbor-
hood of T', and u.;, is the solution to (1.13). In particular, if Q € CL1(Q) then there

exists 8¢ > O such that for every open set V. € U, and for every diffeomorphism
® € C?*(R?; R?) with

supp(® —1d) C Ve and ||® — ld|c2ere) < 6,

we have

f (IVul® + Xu=0,0%) dx < / (IVol* + x>0, Q%) dx

Ue Ue

for every v € L} (U,) such that Vv € L*(Ug;R?), v = u on dUs N 4,

loc

v(—1,y) =v(,y) forall y such that (1, y) € 0U;, and {v > 0} = ®({u > 0}).
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The constant ¢, in (1.16) depends strongly on Qmin. This is not surprising, since
the hypothesis Qmin > 0 is fundamental for the regularity of local minimizers.
When Omin = 0 one expects the free boundary to present singularities at points
where Q(x) = 0. Indeed, in dimension N = 2 and when Q(x, y) = /(¢ —2gy)+,
where ¢ is a physical constant related to the hydraulic head and g is the gravitational
acceleration, the free boundary problem (1.3) is related to Stokes waves of greatest
height, which are characterized by the fact that their shape is not regular but has a
sharp crest of included angle %n (see, e.g.,[7,16,17,26,28-37], and the references
therein).

This paper is organized as follows. In Section 2 we give the precise defini-
tion of admissible flows and derive the second variation of the functional (1.1). In
Section 3, given a small perturbation of I, we construct an admissible flow (see
Definition 2.1) joining I" to the perturbed free boundary and with zero tangential
velocity on the free boundaries. The regularity will be carried out in the appendix.
In Section 4 we prove Theorem 1.1. To control the second variation along the flow
we use sharp Schauder estimates together with the zero tangential velocity of the
flow. Finally, in Section 5 we prove Theorem 1.2.

ACKNOWLEDGEMENTS. The authors would like to thank Bob Pego for his helpful
insights.

2. The second variation

In this section we derive the second variation of F on some suitable variations of
u that are constructed along a family of variations of I' according to the following
definition.

Definition 2.1. We say that {®},c[0,1] is an admissible flow if it satisfies the fol-
lowing conditions:

(i) The map (s, x) — @ (x) belongs to C2([0, 1] x Q; R?);
(ii) Forevery s € [0, 1], the map ®y is a diffeomorphism from  onto itself;
(iii) ®o =1Id in Q;
(iv) There exists an open set U, compactly contained in €2, such that supp(®P; —
Id) C U forall s € [0, 1].

Let {®,}sc[0,1] be an admissible flow, and let u be as in Theorem 1.1. For every
s € [0, 1] we consider the solution u; of the problem

Aug =0 in Oy (Q4)
us =0 on &,(I") 2.1
Us = U on d®;({y =0} Nay),
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with ug(—1, y) = ug(1, y) forall y such that (1, y) € ®,(2). Note that, in view
of property (iv) in Definition 2.1, we have that

IPs({y =0}N0Q2y) = {y =0} Ny

and (£1, y) € ®4(Q) if and only if (£1, y) € Q. Moreover, extending u; by 0
outside ®;(24), we obtain u; € A.

In what follows, for every s € [0, 1] and x € Q we denote by i, (x) the partial
derivative with respect to r of the function (7, x) — u,(x) evaluated at (s, x), that
is,

. ou
i (x) = — “x)| . (2.2)
r r=s
We define
Xy i=d0®; 1 Z; =P 00! (2.3)
for every s € [0, 1], where
b, = 2% b, = s (2.4)
s or lr=s S 8r2 r:s. )
Moreover, we set I'y := ®4(I') and denote by 7, and vy the tangent and normal
vector to I’y given by
D® Do)~ T
z, = ( $)T o-! . ( s) v -1 (2.5)

TiDoyr T T ey T 0

Finally, k¢ denotes the curvature of ['y.
The proof of the following proposition follows the arguments in [15].

Proposition 2.2. Let u € C2(SZ+ U I') satisfy (1.7)-(1.10), let {®}seq0.17 be an
admissible flow, and let iy := ug o @y, where ug solves (2.1). Then the map

s > I

belongs to cl(o,17; H1(§2+)). In particular, the function ug in (2.2) is well-
defined and is the unique solution to the boundary value problem

Ang =0 in ®3(R4)
iy = —(Xg5 - vg) dy,us onTy (2.6)
g =0 on 9P ({y =0} Na2y),

with iig(—1, y) = ug(1, y) for all y such that (£1, y) € ®4(Qy).
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Proof. For simplicity, we only prove the result in a neighborhood of s = 0. The
general case can be obtained analogously. In view of (2.1) a straightforward com-
putation shows that i, satisfies

div(A, Vi) =0 in Q4 0
iy =u on"U({y =0}NaQ,), '
with i1, (=1, y) = i,(1, y) for all (£1, y) € Q4 , where
DO (DO HT
A, = ;‘1) o ®,. 2.8)
det DO,

Let V be the subspace of all functions v € H'(Q) suchthatv =0on "' U ({y =
0} Noy) and v(—1, y) = v(1, y) for all (£1, y) € Q.. For every s € [0, 1] and
v € V let H(s, v) be the unique weak solution w € V of the Poisson’s equation

Aw = div(A,V(v +u)) in Q4.

Then
H:[0,1]xV —> V.

Observe that Ay = Irx» and u is harmonic in Q4 by (1.9), hence H(0,0) = 0.
Moreover, (1.9) implies that H(0, v) = v, thus 3,H(0, 0) is the identity operator
from V into V. Since the matrix A, in (2.8) is of class C!, by standard elliptic
estimates (see also the proof of Proposition 4.2 below), we have that the map H is
of class C'. Hence, we are in a position to apply the implicit function theorem (see,
e.g.,[6, Theorem 2.3]) to find 69 > 0 and ro > O and a unique continuous function
g .10, 60] = By (0, rg) such that g(0) =0 and

H(s, g(s)) =0

for all s € [0, §p]. Moreover, g is of class cl.
On the other hand, in view of (2.7) the function iy —u belongs to V and satisfies

H(s, iy —u) =0

for all s € [0, 1]. Since the map s + @Iy — u is continuous (see, e.g., the proof of
(4.3) below), it follows by uniqueness that g(s) = ity — u for all s € [0, §o]. In
particular, s — #i; — u is of class C!.

To prove (2.6), let v € H,. () be such that Vv € L*(Q;R?), v(—1,y) =
v(1, y) for y € (0,00), v(x,0) = 0 for x € (—1,1),and T Nsuppv = @. Then
T’y N supp v = @ for all s sufficiently small. By (2.1) it follows that there exists an
open subset of €2 containing supp v and on which u; is harmonic for all s sufficiently
small; thus,

/VuS-Vvdsz
Q
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for all s sufficiently small. Differentiating the previous identity with respect to s
(see (2.2)) we obtain

/QVL'tS -Vvdx =0. (2.9)
By (2.1) we have that u;(®Ps(x)) = 0 for x € I'; thus,
s (Pg (X)) = —Vug(Py(x)) - dg(x) forx eT,
which by (2.3) is equivalent to
iy = —Vug - X5y onTly. (2.10)

On the other hand, since Vuy = 0,,u; vs on I'y by (2.1), we have that Vu, - X, =
(X5 - vy) 0y, s on I's. In conclusion,

ity = —(Xy - vg) dy,us  onTy. (2.11)
Let now v € H (Q) be such that Vv € L*(Q;R?), v(—1,y) = v(l,y) for

y € (0,00), v(x,0) = 0 for x € (—1, 1), and decompose v = v| + vz, where
I Nsupp vy = @. Then by (2.9) and (2.11), integrating by parts we get

/ VMS -Vvdx = / Vus . VUZ dx = / (Xs . Us) avsus 81151)2 dHl
Q Q T,
= / (X5 - vg) Oy, avs.vdHl
Ty

for all s sufficiently small. This proves that the function i, is a solution to (2.6). [

In view of Proposition 2.2 we can now derive the second derivative of F (uy).

Theorem 2.3. Letu € C2(§2+ UT) satisfy (1.7)-(1.10), let Q satisfy (1.6), and let
{®s}scq0.1) be an admissible flow. Then

4 Fuy) = / (0% = IVug|?) (X, - vy) dH! (2.12)
dS Ty
and
d2
— F(ug)= 2|Vas|2dx+/ (3, O% +2x5 By, us)?) (X - v)* dH!
ds Dy(24) ry 2.13)

+ f (0= Vus 1) (Zy-vs —2(Xy - 7) e, (X -v) s | X |2) dH,
Iy

where tig is given in (2.6).
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Remark 2.4. If u is a minimizer of F, then the expression in (2.12) is equal to zero
at s = 0; since this is true for any choice of the admissible flow, this implies

IVul> = 0> onT. (2.14)

In turn, the second variation at s = 0 reduces to

d2
E}—(Ms)

:/ 2|VuXO.V|2dx+/ (8, 0% +2€ Q%) (X0 - v)* dH', (2.15)
Q. r

=

where uy,., is the solution to

Auxyn =0 in Q4
ux,v = QXo-v) onl (2.16)
ux,v =0 on{y =0}NoQ,,

with ux,.,(—1,y) = ux,.»(1,y) for all y such that (£1, y) € Q_Jr Indeed, on I
we have (9,u)? = |Vu|?> = Q% and d,u < O by the Hopf lemma. Moreover, the
expression in (2.15) is nonnegative.

Note that every minimizer u satisfies the necessary condition

/ 2|Vuw|2dx+/ (3,07 + 2 Q%) Y2 dH' > 0 (2.17)
Q4 r

for every ¥ € CZ(F), where uy, solves (2.16) with ¢ in place of Xy - v. In fact, for
every ¥ € C2(I") with small C? norm it is possible to construct an admissible flow
{®s}seq0,17 such that Xo - v = ¥ on I'. To see this, it is enough to consider

Py (x, y) == (x, y) + AW)sY (x, wx)v(x, y),

where the normal v to I has been extended smoothly, and X is a cut-off function
(see (3.38) below for more details). Hence, from (2.15) we deduce that (2.17) holds
for every ¢ € CZ,(F) with small C2 norm. In turn, given an arbitrary € C E(F),
using a scaling argument, it can be shown that (2.17) continues to hold.

Remark 2.5. Observe that if u is a critical point of JF, that is, u satisfies (2.14) in
addition to (1.7)-(1.10), then (2.15) holds.

Proof of Theorem 2.3. In view of (2.1), we have that u; > 0 in ®;(€24); thus,
Flus) = / (IVus* + 0*(x)) dx
q:'s(Q-%—)

=/ (IVus (@5 ()1 + Q*(Ds())) det DD (y) d .

Qp
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Differentiating the previous identity with respect to s we obtain

d .
af(us) =/, 2Vus (D () (Vits (5 () + D?uy (D (1) g () det DD (y) dy

+ / VOX(®, () - dy(y) det D (y)dy
Q4
d
4 / (192 (@4 (P + Q3D () (et DO, (y) dy,
Q4
where we used (2.2) and (2.4). By [24, Chapter III, Section 10] we have
d .
T-(det D®y) = [div (&, 0 ©7") 0 @, | det D,
thus, recalling that X = &, o CIDS_1 (see (2.3)),
d
— F(ug) = / 2Vuy - Viigdx + / 2D%ugVuy - Xy dx
ds s (24) g (24)
+/ |Vug|? div Xy dx +/ (VO? - X, + Q*div X;) dx.
Dy (24) Dy (24)

Integrating by parts, from (2.6) and the fact that supp(®s —Id) C U for all s €
[0, 1], we deduce that

L F(uy) =/ 2ty dy, s dH +/ div ((IVus* + 0%)X,) dx
ds r ®,(24)
= / (= 2(Xs - v) @uus)? + (IVus|* + Q) (X - vy)) dH'.

Since (3y,u5)*> = |Vuy|? on 'y, we obtain (2.12).
We now derive the second derivative of F (us) with respect to s at s = 0. First,
by the area formula we can write the first derivative as

d .
af(us):/F(Qz(q)s(.)’))_|Vus(q>s(y))|2) D (y) - vs(Ps () Joo, (y) dHl(.V)»

where Jo, := [(DP s)"Tv|det D®; is the one-dimensional Jacobian of ®,. Differ-
entiating with respect to s yields

d2
W}—(us) —

:/ (VQ? - &g) dg - vdH!
2(Vu - Vig + D*uVu - dg) do - vdH! (2.18)

\V4 d D) J
= 1Vu?) <[ @5 (v 0 @) Jo,]

_|_

—J\ﬁ\

dH'.
s=0
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The first integral in the above expression can be written as
/F(VQQ o) b0 - vdH! =/F<8,Q2 (b0 ) (b0 - v) + 8,07 (bo - v)*) aH".
Since Vu = d,u v on I', the first term in the second line of (2.18) becomes
- /F 2(Vu . Vb'to) by -vdH! = — /F 20,1100,u Do - vdH!
= /r 2itgdytio dH',

where we used the fact that 19 = —(Xp - v)d,u by (2.10) and Xg = dy. We now
focus on the term

—/ 2(D2uVu . Cibo) by - vdH!.

r

Using again the fact that Vu - 7 = 0 on I and that u is harmonic, we obtain
0=0;(Vu-1) =Dzur-t+Vu~8Tr=—Dzuv~v—ic8,,u onT,

that is,
D*uv-v = —koyu onT.

Thus,
—/Fz(Dzuvu-cbo) do - vdH!
. /F 2(DPuVu - 7) (o - 7) (o - v) dH! — /F 205u(Du v - v) (o - v) dH!
=—/Fa,(|Vu|2)(<i>o-r)(cbo-u)dH1 +/F2K(avu)2(d>0-v)2d71‘.
Finally, by [15, Lemma 3.8] we have
by 0@0) 00, _=0-v—2(b-1)ie (h0-v) +(b0-7) e (o )b

Combining the previous equalities, we deduce that

d2
W}—(M)

O:/ 2igdyito dH' +/(av 0% + 2k (3yu)?) (dg - v)? dH!
§= r r
+/ (02— [VulP) ($0-v—2(®0 - 7)r (b0 - v) -+ (b0 - 7)) dH!
r
+ [ @ = 19uP)an[(bo - o] - vt
r

+/ 3: (0% — [Vul?)(®g - T) (Do - v) dH'.
r



A SECOND ORDER MINIMALITY CONDITION FOR A FREE-BOUNDARY PROBLEM 1315

Now, using the fundamental theorem of calculus on curves, the last two integrals in
the formula above satisfy

/F(Qz—|Vu|2)8r[(<i>o.v)<i>o]-rdHl+/F8T(Q2—|Vu|2)(<i>0‘f)(<i>o v)dH!
:/Fa,[(g2 — IVul) (o - v)do] - 7 aH!
:/FK(QZ—WMF) (o - v)*dH".

Thus, we conclude that

d2
W}—(MS)

=/2uoavao d’H1+/(8,, 0% + 2k (3yu)*) (Xo - v)? dH!
=0Jr r (2.19)

+ /(Qz—IVMIZ)(ZO'V—2(X0'T)3T(X0'v)+K|Xo|2)dH1,
r

where we used the fact that Cbo = Xp and C'I'Do = 7.
_ Let us now fix r € (0,1). We observe that the family of diffeomorphisms
{Cbh }he[O,l] defined as

&)h =®d,4p0 CI)r_l

is still an admissible flow (we can always reparametrize the variable & away from 0
so that @y, is defined for all 4 € [0, 1]), and that

oo = X, oy = Z,.

Applying (2.19), we deduce that

d2 2
27 )= e

ds
= / 24ty 0y, 1ty dH' + / (8y, 0% + 24, 3y, ur)?) (X, - v,)? dH!

r

Furw)|

+/(Q2—|Vur|2)(zr‘vr—Z(Xr'fr)81,(Xr'vr)+Kr|Xr|2) dH'.

r

To conclude the proof of (2.13), it remains to show that

/ 2iigdy ks dH' = / 2|Viis|* dx. (2.20)
s ®y(24)
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Indeed, by (2.6) and the divergence theorem

f 2uits By, 1ty dH' = / g8y, 1t dH!
s 0Ds(Q24)

= / 2 (it Ais + | Viig|*) dx
q)s'(Q+)

= / 2|Viig|* dx.
D(Q4)

Hence, (2.13) holds and the proof is complete. O

3. Construction of the Family ®;

Let 2, u,and I' be as in Section 2, and assume that

={x,wkx)): xe (-1, 1},
where w is a periodic function with w € C 3(R) and

w(x) >0 forallxe[-1,1]. (3.1)
Let

—l<a<b<l1

and consider a polynomial ¢ : [a, b] — R satisfying
p@)=¢(@=¢"(@)=¢"(@=0, ¢b)=¢'®)=¢"b)=¢"(b) =0, (32)

and such that [|¢||c2.(, ) < 1. Extend ¢ to be zero outside [a, b]. In this section
we construct an admissible flow (see Definition 2.1) joining I" to graph(w + ¢). To
estimate the second variation along the flow it is essential to have the condition Xj -
7, = 0 on [ for every s. This leads to a first order partial differential equation (see
(3.41) below), that we solve using the method of characteristics. One of the main
difficulties is that the components of the flow are given by compositions of functions
that are discontinuous. Thus, proving the regularity of the flow is extremely delicate
and it will be carried out in the appendix. The construction of the flow is the central
part of this paper and will require several preliminary results.

Theorem 3.1. Let ¢ and w be as above. Then there exists an admissible flow
{®@s}sef0.1] such that

Py () = {(x, w(x) +s5¢x)) : x € (=1, 1)} (3.3)

and
Xs-5=0 onTy 34

for every s € [0, 1].
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For every x € R, we consider the initial value problem

dé / /

== W EeE) — (- wE)Y'E)

d_’? B (3.5)
i ®(&)

£(0) = x, n(0) = w(x).
Since ¢ € C3(R), w € C3(R), the function

EmeR > (—w @@ — 0 —w@)e' &), p&))

is C2, globally Lipschitz, and satisfies
(= w'©¢E) — 01— wEN'E), 9&)| < CA +Inl)

for all (£, ) € R? and for some constant C > 0. Hence, the initial value problem

(3.5) admits a unique global solution, which depends smoothly on the initial datum,

and thus on x. We will denote by (£(¢, x), (¢, x)), t € R, the solution of (3.5).
Observe that if ¢(x) = 0, then

&, x),nt, %) = (x, w(x)). (3.6)

Remark 3.2. Note that if ¢'(xg) = w'(x9) = 0 or ¢(x9) = ¢'(x¢9) = 0 for some
xo € R, then for every yp € R the unique solution of the initial value problem

dg / !

T =~ ©0E) — (1~ wE)Y'©)

d_’? B 3.7
i p(§)

£(0) = xo0, n(0) = yo,

is given by
£(1, x0) = xo, (1, x0) = yo + 1¢(x0). (3.8)

Hence, if for some o < B we have ¢(a) = ¢'(a) = 0 and ¢(B) = ¢'(B) = 0,
then for every @« < x < B the curve (£(-, x), n(-, x)) cannot leave the vertical
strip (¢, B) x R, otherwise uniqueness for the initial value problem (3.7) would be
violated. In particular, in view of (3.2),ifa < x < b then the curve (£(-, x), (-, x))
cannot leave the vertical strip (a, b) x R.

Theorem 3.3. Let ¢ and w be as above. Given's € [0, 1] and x € R, there exists a
first time ty = to(s, x) > 0 such that the solution (£ (-, x), n(-, x)) of (3.5) intersects
the graph of the function w + s at time to. Moreover, if s = 0 or ¢(x) = 0 then

to(s,x) =0, 3.9
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ifo(x) #0and ¢'(x) = w'(x) = 0 then
f0(s, X) = s, (3.10)

while in all the other cases
0 <1(s,x) <s. 3.11)

Finally, to is of class C* in [0, 1] x {x € R : ¢(x) # 0} and if p(x) # 0, then
&, x)px) >0 forall0 <t <t(s,x). (3.12)

Proof. We begin by proving the existence of #p. If s = 0 or p(x) = 0, then
to(s,x) = 0 by (3.5). Property (3.10) follows from (3.7) and (3.8) with xo = x
and yop = w(x). Thus, in what follows assume that ¢(x) # 0, s > 0, and that at
least one of ¢’(x) and w’(x) is different from zero. By (3.2) and Remark 3.2, the
curve (£(-, x), n(-, x)) cannot leave the vertical strip (a, b) x R.

Step 1: Assume that ¢(x) > 0 and let T > 0 be the first time, if it exists, such that
@(E(T, x)) = 0, otherwise set T := oo. Then p(&(¢,x)) > Oforall0 <t < T,
and so by (3.5), n(:, x) is strictly increasing in [0, T') and there exists

lir;l n(t,x) =L e (w(x), ool. (3.13)
=T~

If £ = oo (and hence T = 00), then the solution (£(-, x), n(-, x)) of (3.5) intersects
the graph of the function w + s¢, and so # exists. Thus, in what follows it suffices
to consider the case £ < co. Assume, by contradiction, that

n(t,x) <wé&, x))+spE(,x)) forall0 <t <T. 3.14)

Substep 1a: We claim that the curve (£(-, x), (-, x)) stays above the graph of the
function w for all 0 < ¢ < T. Consider the function

n—w()

GEm =0

(3.15)

defined for all ¢(§) # 0 and n € R. Then

—w'E)e¢) — (- wE)e'¢)

1
9,G(E.n) = —
¢?(§) 6w

@)’

G, n) =
and soby (3.5),forall0 <t < T,

dE(t, x) = p*(E(t, x)) ¥ G (E(t, x), n(t, X)),
dn(t, x) = P> (E(t, X)), G(E(t, x), n(t, x)).
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It follows that forall0 <t < T,

(&, x))* + (B0 (t, x))?
@2 (E(1, x))

= 0G5, x), n(t, x))9,(t, x)
+9,G(E(, x), n(t, x))n(t, x)
= 8[(G(S(t, x)v n(t7 x))
Integrating between 0 and ¢, and using (3.5) once more, gives
F@EE )T+ @) 0 x) — wEEx)
0 P2(E(r, x)) p(&(1, x))

Since the integrand on the left-hand side is positive for all 0 < ¢ < T, it follows
that (¢, x) > w((¢t, x)) forall0 <t < T.If T < oo, then also by (3.14) we have
that

(3.16)

w(E(, x)) <n(t,x) <w@E@, x)) + s, x)),
and letting t — T~ gives that w(&(T, x)) = n(T, x) = w(&(T, x)) + sp&(T, x)),
where we have used the fact that ¢ (§(T, x)) = 0. This contradicts (3.14), and thus
establishes the existence of #y in the case T < ooc.
2
It remains to study the case T = oo. Since % = 1 by (3.5), it follows
from (3.16) that
77(1‘, x) - w(g(ta X))
t <
(. x))
forallt > 0. Let@ < x < B be such that ¢ > 0 in («, 8) and ¢ () = ¢(B) = 0.
We claim that there exists

3.17)

lim &£(t,x) =1 € {«, B}. (3.18)
—>00
To see this, note that since ¢(&(¢, x)) > O for all #, we have that

a<l:= litmglf“;‘(t,x), [ :=limsup&(t, x) < B.
- t—>00

Assume, by contradiction, that /1 < /. Then there exists a sequence t; — oo such
that £(#;, x) — ¢ € («, B). Taking t+ = #; in (3.17), and using (3.13) and the fact
that £ < oo, gives

) —wE@ ) € —w(o)
o0 = lim ; = lim = <
i—00 i—00 & (i, x)) @(c)

which is a contradiction. Hence, /; = />. Note that the previous argument also
shows that /; cannot belong to (¢, 8). Hence, either [y = o or [, = B.

Substep 1b: We prove the existence of fy. Without loss of generality, assume that
[ = « (the case [ = B is similar). Then by (3.14) and Substep 1a, we have

w(E(r, x)) < n(t, x) <w(&(,x)) +spEE, x))
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for all ¢+ > 0. Hence,

0 n(t, x) —w((, x))
< <s
(&, x))
Letting + — oo we obtain a contradiction from (3.17 ). Therefore, we have proved
that condition (3.14) fails. This asserts the existence of #g.

Substep 1c: We prove (3.12). It follows from Substeps 1a and 1b that fo(s, x) < T,
so that
&, x)p(x) >0 forall0 <r < 1y(s, x).

To prove (3.12), it remains to show that ¢ (§(#y(s, x), x)) > 0. Let 79 := 19(s, x).
Assume, by contradiction, that ¢(£(#p, x)) = 0. Then by the definition of #y(s, x)
we have that

n(to, x) = w(§(to, x)),

which contradicts the fact that the unique solution of the initial value problem

dé ’ !
E =—w(&)p&) —m—w&)Ne'&)
dn _

7 = ¢(§)

£(10) = &(10, x), n(to) = w(&(10, x)),
is given by
§1(1) = &0, x),  ni(t, x0) = w(&(1o, x)).
Step 2: The case ¢(x) < 0 is similar and we omit it.

Step 3: We prove the regularity of 7. Fix (so, xo) € [0, 1] x R, with ¢(xg) # O,
and let 7y := 19 (sg, x0). Assume that ¢(xg) > 0 (the case ¢(xg) < O is similar), and
let @ < xg < B be such that ¢ > 0 in («, 8) and (o) = ¢(B) = 0. Consider the
C? function

F(Sv t’ x) = n(tv x) - w(%‘(t’ X)) - s‘/’(&(h x))

defined in the set
V=R xR x («, B).

Then F (so, to, x0) = 0. By (3.5) and (3.12), we have
3 F (s0. t0, x0) = 9;n(to, x0) — [w' (& (t0, x0)) + s0¢’ (& (10, x0))] 0:& (10, x0)
= (& (10, %0)) [ 1+ (/€ (10, x0)) + 509§ 10, %0)))’] > 0.

Thus, we can apply the implicit function theorem to conclude that there exist 0 <
r < min{8 — xg, xo — a},§ > 0, a function #; : B((sg, x0); r) — [to — &, to + &] of
class C2 such that #; (s, xo) = 7o and

F(s,t1(s,x),x) =0 forall (s, x) € B((sg, x0); 7).
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Note that, in view of (3.16), which continues to hold for ¢t < 0 small, and the fact
that ¢ > 0, for t < O sufficiently small,

n(t, x) <wE@, x)) <wE@, x) + s, x)),

and so the function #; must be nonnegative. Hence, by the definition of 7y (s, x), we
have

to(s, x) < ti(s,x) forall (s, x) € B((s9,x0);7).

We claim that #; (s, x) = (s, x) for all (s, x) € B((so, x0); r1) for some 0 < r| <
r. Since fg is the first time that the solution (£(-, xg), (-, xo)) of (3.5) intersects the
graph of the function w + so¢, if fp > 0 we have that

n(t, xo) < w(&(t, xo)) + sopé(, x0)) forall0 <1 < 1.

Fix 0 < ¢ < § and let

ce := min (w(&(t, x0)) + sop(&(t, x0)) — n(t, x9)) > 0.

0<r<to—e

By the regularity of w and ¢ and the continuity of £ and n with respect to initial
data, there exists 0 < r; < r such that

1
|w(§(t7 x))—i_S(p(S(t? x))_n(tv x)_(w(‘g(tv xO))+SO§0(§(f’ xO))_n(t7 XO))| 5 ECE
for all (s, x) € B((sg, x0); 1) and for all r € [0, #typ — €]. Hence,
n(t,x) <wé&, x)+spE(E,x)) forall0<rt<if—e¢
for all (s, x) € B((so, x0); r1). This implies that
to — & < to(s, x) (3.19)
for all (s,x) € B((sg,xp);r1). If tp = 0, then (3.19) continues to hold since
to(s,x) > 0. On the other hand, since # is continuous and #(sg, Xo) = fy, by
taking r; smaller if necessary, we have that tp — ¢ < #1(s,x) < 7o + € for all
(s, x) € B((so, x0); r1). Because #o(s, x) < t1(s, x), also by (3.19), we have that
fo—e& <to(s,x) <fo+e
for all (s, x) € B((so, x0); r1). Using the fact that ¢ < §, it follows from the unique-

ness of the implicit function that 7 (s, x) = #1(s, x) for all (s, x) € B((so, x0); 71).
In turn,

F(s, to(s,x),x) =0 forall (s, x) € B((s0, x0); r1),
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and so, by (3.5) and the definition of 7y, we have

L F(s,10(s, %), x)
Oxfo(s, x)= 3, FGs. 10(5. %) %) (3.20)

(106 105.%).0) 56 10 (5,). )]s 10 (5.) X) = D 5.).)
P(E10(s, ), ) [1 4+ (W' (Eto(s, ), ) + 59/ (E 1o (s. ), 1))

Step 4: It remains to prove (3.11). By (3.17) and the definition of 7y, we have that

nio(s, x), x) = wEliols, ), X)) _
@(&(10(s, x), x))

This concludes the proof. O

0=<1(s,x) =<

Remark 34. By (3.5),if x e Rand 0 <t < 1, then

< llellca,pn

t
In(t, x) —w)| = ’/0 @(&(r,x))dr

and, in turn,

t
IS(I,X)—XIZVO [—w' X))@, x)) = ((r, x) —w(E(r, X))@' (E(r, x))] dr

< 3lwlctasy 12lleraen + 19lcqasn 19 cqas -
Since 0 < (s, x) < s < 1 by Theorem 3.3, it follows that
1§, x) —x[ <3 (”w”cl([a,b]) + ||(P||c([a,bj)) lellcrga.m » (3.21)
n(, x) —w)| =< lelcqan
foralls € [0,1],x e R,and 0 <t < 1p(s, x).
Given s € [0, 1] and x € R, we define the function g : [0, 1] x R — R by
g(s, x) := &t (s, x), x), (322)

where fo(s, x) is given by Theorem 3.3. Note that by the definition of #(s, x), if
s =0or ¢(x) =0,then #y(s, x) = 0, and so

g(s,x) =£(0,x) = x. (3.23)

Moreover, since (& (fo(s, x), x), n(to(s, x), x)) belongs to the graph of w + s, we
have that

n(to(s, x), x) = w(&(to(s, x), x)) + s¢(E (s, x), X))

(3.24)
= w(g(s, x)) +59(g(s, x)).

We will use this property in the sequel.
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The following theorem states that the function g is of class C2. As part of the
proof we will actually show that the function #g is discontinuous at all points (s, xg)
with ¢(xp) = 0 and ¢ # 0 near xg. Hence, establishing the regularity of g is far
from trivial. The proof of Theorem 3.5 is rather lengthy and will be presented in
the appendix.

Theorem 3.5. Let ¢ and w be as above. Then the function g : [0,1] x R — R
defined in (3.22) is of class C2.

Define the function 4 : [0, 1] x R — R by
h(s, x) :=n(to(s, x), x), (3.25)
where 7y (s, x) is given by Theorem 3.3. Note that, by (3.24),

h(s,x) = w(g(s, x)) + s¢(g(s, x)). (3.26)

Thus in view of Theorem 3.5, the function # is of class CZ. Moreover, by (3.23), if
s =0or ¢(x) =0, then
h(s, x) = w(x). (3.27)

Theorem 3.6. Let ¢ and w be as above. Then for every s € [0, 1],
{(g(s,x), h(s,x)) : x € [a, D]} = {(x, w(x) + sp(x)) : x € [a,b]}.

Proof. Given sg € [0, 1] and x¢ € [a, b], we want to find x € [a, b] such that

(& (0 (s0, x), x), n(to(s0, X), x)) = (x0, w(xo) + so@(x0)).

If so = 0 or ¢(xg) = 0, then by (3.23) and (3.27), g(so0, x0) = xo and h(so, x9) =
w(xg) and so there is nothing to prove. Therefore, also by (3.2), in what follows we
assume that sg > 0, xg € (a, b), and ¢(xg) # 0. Assume further that ¢(xg) > 0
(the case ¢(xg) < 0 is similar).

Consider the initial value problem

d

d_f = W ©)p(E) + (1 — wE)P' &)

dy (3.28)
i @)

£(0) = x0, n(0) = w(xo) + s0¢(xo).

Reasoning as for (3.5), we have that (3.28) admits a unique solution (&p, 179) defined
for all 7 € R. We claim that (&g, ngo) intersects the graph of w at some time #; > 0.
For every y € R the functions

&l =a, MmO =y
M) =b, m@) =y
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are solutions of the differential system in (3.28) with £(0) = a, n(0) = y, and
£(0) = b, n(0) = y, respectively. Hence, by uniqueness of (3.28), we conclude that
the curve (&, no) cannot leave the vertical strip (a, b) x R.

Let T > 0 be the first time, if it exists, such that ¢(£y(T)) = 0, otherwise set
T := oco. Then by (3.28) the function 15yq is strictly decreasing in [0, T'), and so
there exists

,131} no(t) =l € [—00, w(xp) + so¢(x0)).

If I, = —oo (and hence T = o0), then there exists a time #; > 0 such that (&g, no)
intersects the graph of w. Thus, assume that /; € R and that

w(éo()) <no(®) forall0 <t <T. (3.29)

Reasoning as in Substep 1a of the proof of Theorem 3.3, with G in (3.15) replaced
by
w(é) —n
GE.ni=—_—-—,
@(&)
we have that

/t (3&0(r))? + (3o (r))? J
-
0 @2 (&0(r))

= G (&), no () — G(x0, w(xp) + sop(xo))

_ wo(@) —no@®)
@& (1)

forall 0 < ¢ < T. Since the integrand on the left-hand side is positive for ¢ > 0,
it follows that no(t) < w(&o(?)) + so@(&o(?)) forall0 < t < T. As in Substep la
of the proof of Theorem 3.3, if T < oo then we obtain a contradiction to (3.29).
Thus, we can assume that T = co. As in Substep 1a of the proof of Theorem 3.3,
the inequality
;< w(&o(1)) — no(1)
- @(80(1))

for all + > 0 implies (3.18). The existence of #; follows exactly as in Substep 1b of
the proof of Theorem 3.3.

This shows that (§g, ng) intersects the graph of w at some time #; > 0. Assume
that #1 is the first such time. Define x := &y (#1). Then the function (&y(t1 —-), no(t; —
-)) is the solution (&(-, x), (-, x)) of the initial value problem (3.5), and at time
t = 11 it touches the graph of w + sp@ at the point (xg, w(xg) + so@(x0)). Hence,
to(so, x) = t; and

+ 50

(§(to(s, x), x), n(to(s, x), x)) = (x0, w(x0) + 09 (x0)).
This completes the proof. O

To estimate the norm of d, g and d,/# we need the following preliminary result.
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Proposition 3.7. Let ¢ and w be as above with ||¢llc2(1q.p7) < 1. Then

[0x& (2, x) — 1] < Cllellc2qq.p) » |8xn(t,x) - w/(x)| < Cllellc2a,p
forallx e Rand0 <t < 1y(s, x), where C > 0 depends on ||w||c2([a,b])-
Proof. Differentiating (3.5) with respect to x, we have that

o (10617 + 10:n1?) = =2 [0 @9 (®) + (1 = w(ENY"©)] 10,61

If ¢(x) = 0, then by (3.6) the right-hand side of the previous equality is identically
equal to zero. If ¢ (x) # O then assume that ¢ (x) > O (the case ¢(x) < O is similar).
Using the fact that

w(E, x) = n(t, x) <w(E@, x)) +seE, x))

forall 0 <t < 1y(s, x) (see Step 1 of the proof of Theorem 3.3), we obtain

10.£(, )% + 19,0, 01 < 1+ (' ()

t
+2lollcan) (Hw”HC([a,b]) + ||(p”HC([a,b])>/0 (|axs(r,x)|2 + |8"n(r’x)|2> dr

forall 0 < ¢ < (s, x). By Gronwall’s inequality and the facts that 15 < 1 by
Theorem 3.3 and [l¢[l¢2(14,57) < 1, we deduce that

102, )1> 4 |8, (2, x)|?
= (14 100 ) 50 (210" e an +2)

for 0 <t < t9(s, x). In turn,

t
|, x) — w'(0)] 5/ |/ (E(r. )3, x| dr
0 (3.30)

<|¢’ ”C([a,b]) (1 +[w’ ||C([a,b])) eXp (” w” “C([a,b]) + 1) :

This implies that
|0x& (7, x) — 1]

< /0 € )& ) + (1) — wiEE N Er, D]k )
+ ¢/ )3, x)| dr

< llelleapy <ku ”C([a,b]) + ||<0//HC([a,b1))
% (1 + ”w/”C([a,b])> exp <Hw” leasn + 1)

19 eqany (1 10 Degasn) &0 (197 legasn +1)

Since |l¢ll¢2(jq,p7) < 1, this concludes the proof. O
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Theorem 3.8. Let ¢ and w be as above with ||¢llc2(jq.p7) < 1. Then

[0xg(s, x) — 1] < Co ||‘p”C2([a,b]) ) (3.31)
|8ch(s, ) — w' ()| < Co 9l qan (332)
for all (s, x) € [0, 1] x R, where Cy > 0 depends on ||w||C2([a,b])‘
Proof. The proof is subdivided into three steps.

Step 1: By (5.9) in the appendix, for s > 0 and ¢(x) > 0 (the case ¢(x) < O is
similar), we have

dxg(s, x) — 1

Be&(to (s, x), x) — 1
1+ [w'(g(s, X)) + s¢'(g(s, )]

N [w/(g(s, X)) + 59/ (g(s, %)) ] [w'(x) — w'(g(s, x)) — s¢'(g(s, x))] (3:33)
1+ [w'(g(s, %)) + 59/ (g(s, )]
w'(g(s, x)) + s¢'(g(s, x))
1+ [w'(g(s, ) + 59/ (g (s, x))]

S [3:n (05, ). 1) — w'(@)].

By the mean value theorem, (3.5), (3.22), the facts that #(s, x) < 1 and w(§) <
n < w(€) + se() (see Theorem 3.3), we obtain

|w'(x) —w' (g5, )| = [w” (@) (x — g(s, %)

to(s,x)
<[wll ¢ qann /0 |w' (@, ))p(Er, X)) s

+ (0, x)—w(Er, X)) ¢’ (€, x)) | dr
<[w” HC([a,b])(”w/”C([a,b])—i_Hw/ HC([a,b])) lellea.sp-

Hence, from (3.33) and Proposition 3.7, we deduce that

|9x8(s, %) = 1] < [8:£(10(s, x), %) — 1] + |w'(x) — w'(g(s, X)) + ¢/ (g (s, )|
+ 19xn(to(s, x), %) = w' ()| = C @l c2(1q,p) -
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Step 2: If s > 0 and ¢(x) = 0, then by (5.23) in the appendix,

[0xg (s, x) — 1|
_, 1+ [w™)]
\/1 + [w'@) +s¢' 0]

[w'0) +s¢'0)]° = [w' )]’
(\/1 + [+ 1+ [w e + sgo/(x)]z) 1+ [0 + 59/ (0]

2
<2 w/”C([a,b]) l¢’ HC([a,b]) + ¢’ HC([a,b]) ’

so that (3.31) holds even in this case.

Step 3: To conclude the proof, note that by (3.26),
dch(s, x) = [w'(g(s, x)) +5¢'(g(s, x))] g (s, x),
and so by (3.31) and (3.34), we deduce that
|9k (s, x) — w' ()] < [w'(g(s, %)) + 59" (g(s, X)) g(s, x) — 1|
+ 1w (g(s, 1)) — w' ()] + 19 (s, )| < C 9l c2gasy »
which proves (3.32). O

We are now ready to construct the family of diffeomorphisms.

Proof of Theorem 3.1. For every s € [0, 1], we define ¥, : R — R? by
\IIS(x9 y) = (g(sv x)’h(s’x)+y_w(x))’ (335)

where g and & are the functions given in (3.22) and (3.25), respectively. By Theo-
rem 3.5 and (3.26), W is of class C? ([O, 1] x ]Rz). Moreover, by (3.23) and (3.27),

"IIO(xs y) = ()C, )’),

which implies, in particular, that Wo(I") = I', while by Theorem 3.6 and the fact
that g(s, x) = x and h(s, x) = w(x) for all x € R\ [a, b] by (3.23) and (3.27), it
follows that

V(M) = {Ws(x, wx)) : x € (=1, D} = {(x, wx) +s¢(x)) : x € (=1, 1)}

for every s € [0, 1].
Since minj_;, 1w > 0 by (3.1), let

0<?2L < min w, M > max w. (3.36)
[-1,1] [-1.1]
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We now modify W, to obtain a diffeomorphism in R? which coincides with the
identity outside the open set U := (a, b) x (L, M + 2). Given

0 <8y <minfl, L}, (3.37)

construct a function A € C° (R) suchthat0 <A <1,A(y) =1if L+8) <y <
M+2—38,A(y)=0ify>M+2o0ry < L,and |\ (y)| <2/8 forall y € R.
For every s € [0, 1] and (x, y) € R?, define

Dy (x, y) =AW (x, y) + (1 =2 (x, y). (3.38)
Then
D®s(x,y) = Ihxo + A()(DYs(x,y) — Ihx2)
, (3.39)
+ (Ws(x, y) — (x, ) ® (0, (),
and so

2
|ID®g(x,y) — Ihxo| < [DW¥s(x,y) — hxo| + % W (x, y) — (x, ¥)].

By Theorem 3.8 and (3.35), we have
|IDWs(x, y) — Iax2l < Collollc2qa,py -
while by (3.23), (3.27), and Theorem 3.8, for x € (a, b),
W (x, y) — (x, )| = 218(s, x) — x|+ 2]h(s, x) — w(x)]
/x(axg (s,r)—1) dr /x(axh (s,r)—u/(r)) dr
a a

=2 +2

< Co lellc2q,p) »
while for x ¢ (a, b), Vs(x,y) = (x,y) by (3.23) and (3.27), since ¢ = 0 outside
(a, b). Hence, for all (x, y) € R?, we deduce that

1
DD (x, y) — Iax2| < Co (1 + %) ||(ﬂ||c2([a,b]) <1, (3.40)

provided [|@|lc2 (4,57 < 83 and

1
0<dp<—.
2Co

This implies that ®; is invertible in R2. It follows by the inverse function theorem
that &g (]Rz) is open and (®s) ! is of class C2.
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Moreover, we have already seen that W(x, y) = (x, y) for x ¢ (a, b), and so,
again by (3.38), @, (x, y) = (x, y) forx ¢ (a, b). This shows that ®; is the identity
outside U . In particular, ®; (0U) = dU and &5 (U) C U.

Finally, we observe that

since, by (3.36) and (3.37),
L+380<2L— llgllcoqa,ppy Swx) +s¢(x) <M+ ll@llcoqapy =M + 2 — do,

provided
lellcoqa,ppy < min{l, L — do}.

To conclude the proof, it remains to show (3.4). By (3.38), (3.39), and the fact that
A(y)=1ifL+8 <y <M +2— 3§y, we have that

D (x, w(x)) - (DDs(x, wx))T(x, W(X)))
= U (x, w(x)) - (DY (x, w(x))T(x, w(x)))

= (354(s, x), O5h(s, x)) - ( dxg(s, x) O) (1, w'(x))

Och(s,x) —w'(x) 1 . (u)’(x))Z,

provided ||@[lc2. (4 p 18 sufficiently small. Hence, by (2.3), (3.4) is equivalent to
0.8(5, )0, 8(s, x) + (s, )dsh(s, x) =0 (3.41)

for every (s, x) € [0, 1] x [a, b].
Differentiating (3.26) with respect to x and s, respectively, yields

dch = (w'(g) +5¢'(8))dcg, dsh = (w'(g) +s¢'(8))dsg +9(g), (342
so that
xgdsg + dchish=(14 (w'() +5¢'(®)*) g + (w'(e)+5¢'(©)e(s)] drg.

which is equal to 0 by (5.6), (5.11), and (5.16) in the appendix. O

4. Proof of Theorem 1.1

To prove Theorem 1.1 we first establish a minimality property with respect to spe-
cial variations of the domain €2 . To be precise, we will show the following result.
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Theorem 4.1. Under the assumptions of Theorem 1.1, there exists 81 > 0 such
that for all polynomials ¢ : [a, b] — R satisfying (3.2), extended to be zero outside
la, b] and with ||¢|lc2.e (4 p) < 31,

Fw) = F)

for every v € A such that {v > 0} = ®1({u > 0}), where {®g}seqo.1] is the
admissible flow given in Theorem 3.1.

We begin with some preliminary estimates.

Proposition 4.2. Ler Q € CL1(Q), let ¢ be as in Theorem 4.1, and let ug be the
solution to problem (2.1), where Oy is given by (3.38). Then

|Q%(x, w(x) + 5¢(x)) — [Vius (x, w(x) + 50 *| < C ll@ll 2 a)
and
10, (Q*(x, w(x) + 59(x)) — [Vus(x, w(x) + s9())*)| < C llllc2agp
forall x € [—1, 1], where C depends only on lwllc2e—y, 1) and ||u||c2,a(Q+).

Proof. The proof is subdivided into three steps.

Step 1: Recall that the function iy := u; o ®; satisfies the boundary value problem
(2.7) with coefficients A; given by (2.8). Using the matrix expansion

(xa + B) ™' = Ihxa — B+ 0(|B)),

it follows from (3.40) that the matrix By := Ay — Ihx) satisfies

1
|Bs| < Cll@llc2(a,py < o (4.1)

provided ||¢]| 2 ([a.b) is sufficiently small. In turn, the matrix Ay is positive definite
uniformly with respect to s. Using (4.1), by (2.7) and Poincaré inequality in the
Lipschitz domain €2 we obtain

s HHl(m) < Cllullgg,) (4.2)

where C > 0 depends on €2 but not on 5. On the other hand, by (1.9) and (2.7) we
have

div(A;V (i — u)) = — div(B,Vu) in Q.
gy —u=0 onTU({y=0}Nn0dQy),

with (fi; — u)(—1, y) = (i — u)(1, y) for all (£1, y) € Q.. Hence, with similar
estimates, it follows from (4.1) that

Hﬁs - u||H1(S2+) = ClBslicoey lullgra,y = Cllellcqap 1l grq,y - (4-3)



A SECOND ORDER MINIMALITY CONDITION FOR A FREE-BOUNDARY PROBLEM 1331

Using the fact that it5(x, y) = us(x, y) forall y < L, where L is given in (3.36),
by (4.2) and (4.3) we have

””S”Hl((fl,l)x(o,L)) <C, |lus— M”Hl((fl,l)x((),L)) <C ”‘P”CZ([a,b]) . (44
where C depends on [|w||¢1(_; 1) and ||u||H1(Q+). By [23, Theorem 9.13] and (4.4),

s 21,1y 60,6600 = € Ntts = ull 21,1 x (80,650 = € 19l c2(1ap1)

for 0 < g9 < L/6. Since ug; and u are periodic in the x variable, they are still
harmonic in R x (g9, 6&p) and satisfy

sl 2@ by e0.660) = €5 s = wll g2 by xeg.660)) = € 12Nl 210,

forsomea’ < —1 < 1 < b’. Using [23, Theorem 2.10] in the set (a’, b’) x (g9, 65¢)
we obtain that

||Ms||C3((_1,1)x(230,530)) <C, |lus— ”||C3((—1,1)><(250,530)) =C ||(P||c2([a,b]) , (45)

where we invoked the continuous immersion of H2((d’, b') x (g9, 6&9)) into
C%((a', b') x (g0, 6¢0)).

Step 2: Let ||§0||C2([a,b]) < &o. By Theorem 3.1 the function
Us(x,y) i=ug(x, y + s@(x)) (4.6)
is well-defined in the set
Qo := Q4+ N((—1, 1) x (3g9, 00)), 4.7

and by (2.1) it satisfies the elliptic equation
3%vs + (1 + (s<p’)2> 8§vs - 2s¢’8§yvs —s¢"9yv; =0 in Q. 4.8

Moreover, since ¢ = 0 outside [a, b] C (—1, 1), we have vg(—1, y) = us(—1, y) =
us(1,y)=v;(1,y). Hence, vy satisfies the previous equation in ((a’,b’) x (3g9,00))N
{u > 0}, where u has been extended periodically and a’ < —1 < 1 < b’. Moreover,
vy = 0 on I'" by (2.1) and (3.3), while vs(x, 3e9) = us(x,3e9 + s@(x)). Since
lellc2(a.p) < €0, We have that (x, 3eo + s@(x)) € (@', b') x (2&0, 4&0).

By (3.40) and (4.2) we have that

sl g1 (@, 24 < C-

where C depends on €2 and [|u|| 1, - By the lateral periodicity of uy, the same

estimate holds with ®,(£2) replaced by ®,(((a’, ") x (3g9, 00)) N {u > 0}). In
turn, by (4.6) and the chain rule

sl g a7y Geo.oopniu=op = C-
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It follows from [23, Theorem 9.13], with T the graph of w restricted to (a’, b’), that

Vs 72 a6y x (420, 00nntu=0y = €

fora’ <a”’ < —1 <1 < b" < b'. By the continuous immersion of H2(((a”, b") x
(4eg, 00)) N {u > 0}) into CO¥(((a”, b") x (4gg, 00)) N {u > 0}), we have

Vsl o a7y x (4eq.connu=0p = C-

By [23, Corollary 6.7], with T the graph of w restricted to (a”, b”), and using a
covering argument, we obtain that there exists an &1-neighborhood I'; of I" such
that

lvsllc2erngy < € 4.9)

for some 0 < ] < &p. By (4.5) and the chain rule, we have that

Vs le2.e((=1,1)x (3sg,480)) = C- (4.10)

In the remaining set we can now use the interior Schauder’s estimate in [23, Corol-
lary 6.3] to conclude, also by (4.9) and (4.10), that there exists a constant C depend-
ing only on [[wllc2.e(_; 1y and ||u||H|(Q+) such that

||Us||c2,a(QO) <C “4.11)

forall s € (0, 1).
By (1.9) and (4.8),

Ay —u) = —(s¢/)28§vs + 2s<p/8fyvs + 59" dyvg  in Q.

Since vy —u = 0 on I', we can argue as in Step 1, and from standard estimates,
Poincaré inequality, (4.11), and the fact that [[¢|| 24,5}y < €0, We obtain

los = ull g1 (@q) = Cllellc2qapn + € lIvs = uller—11x 360
= Clellc2ap
where the last inequality follows from the chain rule and (4.5). By the lateral period-
icity of vy and u, the same estimate holds with g replaced by ((a’, ") x (3&g, 00))N

{u > 0}. Again by [23, Theorem 9.13], with T the graph of w restricted to (a’, '),
we deduce that

||Us—”||HZ(((a”,b")x(4ao,oo))m{u>0}) =<Cllvs — u”Hl(((a’,b’)x(3ao,oo))ﬂ{u>0})
+Clellc2(ia,on) 105l 2@ by x Geg 00N (>0
< Cllelic2a,

fora’ <a” < —1 <1 <b” < b, and where we have used the previous inequality
and (4.11), which holds in ((a”, b"") x (3eg, 00)) N {u > 0} by lateral periodicity.
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By [23, Corollary 6.7], with T the graph of w restricted to (a”, "), and a
covering argument, we have that
los = ullcze(ringg) = € lvs = ullcoqa”.bm) x Beg.00nnfu=>0}
+ Cllollc2aa,py s llc2e @67 x 3eg, 00N =01
<C ||<P||c2([a,b]) )

where we used the fact that the estimate (4.11) holds in ((a”, ") x (3gg, 00)) N
{u > 0} by lateral periodicity. We can now continue as before using (4.5) and [23,
Corollary 6.3] to conclude that

lvs — ullcre(qy < C ll@llczeqp) - (4.12)

Step 3: Since
0% (x, wx)) — |[Vu(x, wx)|>=0 (4.13)

forall x € [—1, 1], by (1.9) and (1.11) it follows that

|02 (x, w(x) + 59(x) — | Vus (x, w(x) + s(x)) |
< |Q*(x, w(x) + sp(x)) — Q*(x, w(x))|
+ |IVus (x, w(x) + sp)|? — [Vu(x, w(x))[?|

=[e?

o1 I@lleo + [IVas(x, w(x) + 59 () = [Varlx, wo)I].

By (4.6), (4.11), (4.12), and the chain rule, the last term on the right-hand side can
be estimated from above by
C([[Vusllco + IVullco) [Vus (x, w(x) + s¢(x)) — Vu(x, w(x))|
< C(IIVuslico + IVull o) (IV s (x, w(x)) — Vu(x, wx)| + [ Voslico 19" (X))
S C ||¢||C2’a(a’b) )

where, as before, C depends only on ”wncla(_]’]) and ||u||C1(Q+). On the other
hand by (4.13),

3 (Q*(x, w(x)) — [Vu(x, w(x))[*) =0

for all x € [—1, 1], and so

|02 (0 (x, w(x) + 59(x)) — | Vg (x, w(x) + s9(x))]?)]
< [0 (Q*(x, w(x) + 59(x)) — Q*(x, w(x)))|
+ [0x (Vs (r, w(x) + 59())[F — | Vu(x, w(x))[?)|
=c|Q?| . Ieller + [ (1905, we) + 59 P = [Vutx, w)P)],

C!
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where C depends only on [|wl|¢1(_; 1. The last term on the right-hand side can be
estimated from above by

C | Vusllco [VZug(x, w(x) + so(x)) — Viulx, w(x))|
+C [ V2u , 1Vus e, @) + s9(0) = Vute, we)| + €l [¢'(o)

El

where, as before, C depends only on [[wl|c2.e(_; 1) and ||u||cz(9+). By (4.6) and
the chain rule, we have that

|V2us (x, w(x) + 5¢(x) — Viu(x, w(x))|
< [V, w(x) — Vux, wx)| + C [vsllcze 10l c2qasy < C lellczap) -

where in the last inequality we used (4.11) and (4.12). A similar estimate holds for
|Vug(x, w(x) + se(x)) — Vu(x, w(x))|. This concludes the proof. O

Remark 4.3. The proof of the previous proposition could be significantly simpli-
fied if we could show that the diffeomorphism ®; is of class C>* rather than
just C2, and if we had uniform estimates on the C%% norm of ®; in terms of
lwllc2e—1.1y and |@llc2.e(q p) - Indeed, the C2® bounds on u, and vy would follow
in this case from standard elliptic estimates.

Next we estimate the second integral on the right-hand side of (2.13).
Proposition 44. Ler Q € CL1(Q), let ¢ be as in Theorem 4.1, and let ug be the
solution to problem (2.1), where @ is given by (3.38). Then there exists C > 0,

depending only on ||w|c2e(_ 1) and ””‘HC2(§2+)’ such that for every s € [0, 1] and
every ¥ € C(T),

/Ks(avsus)Zlﬁzd'Hl —/K(avu)%pz o ®ydH!
I r

<Clellcgapy fr yrdH' (4.14)

and

/ 3y, 0% Y2dH! —/ 3,02 Y2 o dydH!
Iy r

scllwllcl([a,b])/r vrdH'. (4.15)

Proof. Let vg and Qq be defined as in (4.6) and (4.7). Then, by (4.11) and (4.12),

lvsllcre@y =€, llvs — ullcre(qy = C l@llc2aq,p (4.16)

for some constant C > 0 depending only on ||w||C2,a(_1’1) and ||u||C2(Q+). By the
chain rule,

o Us(x, w 4+ 5¢) = Vug(x, w +5¢) - vg(x, w + 5¢)
= Vug(x, w) - v(x, w) — s¢'9, vy (x, w)eq - vs(x, w + 59)
+ Ve (x, w) - (vs(x, w +5s¢) —v(x, w)).
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Using (4.16),
|8V.\vus(x7 w+S(p)_aUM(xa U))| =< |8vvs(x, U))—avl/t(x, U))|+C ”(/)”Cl([a,b]) . (417)

where to estimate |vg(x, w + s¢) — v(x, w)| we used the fact that the function
t— \/11_2 is 1-Lipschitz. Similarly,
+t

w// + s(p// w//

(1+ @ +5¢92)"% (14 @)?)¥?| @18)
<C ”(p”CQ([a,b]) .

lies (X, w + s9) — k(x, w)| =

Combining (4.16), (4.17), and (4.18), and using a change of variable, we obtain
4.14).
On the other hand,

By, 02 (x, w + 59) — 3, 0%(x, W)=V QO (x, w + 59) - (Vs(x, w + 59) — v(x, w))
+(VO*(x, w + s9) — VO (x, w)) - v(x, w),

and so
9, Qz(x, w + s¢@) — a,,Qz(x, w)‘ <C ||€0||c1([a,b]) ’

which gives (4.15). ]
We now estimate the first integral on the right-hand side of (2.13).

Proposition 4.5. Let ¢ be as in Theorem 4.1, and let ug be the solution to problem
(2.1), where Oy is given by (3.38). Then there exists C > 0, depending only on
||U)||C2.ot(_1,1) and ||u||cz(9+), such that for every s € [0, 1] and every ¢ € cl(ry),

2 2
meum dx_/9+|wgo¢s| dx

where uf/, is the unique solution to the problem

< Cllellc2e(q,p W”%{'/Z(Fx) ’

Aufp =0 in CDS(Q+)
uf/, = —Yo,us only
uf// =0 on &;({y =0} NoQ2y),

with wy, (=1, y) = u, (1, ) for all y such that (£1, y) € D, (Q4).

Proof. Reasoning as in the proof of (2.20), we have

2 1
Vu dx=/ uy dyuy, dH .
[, o s Pax= [y,
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Define
ﬁfp = ufp o &;.

Then ﬁfﬂ satisfies

div(A,Vit},) =0 in Q.
ﬁf// = —(Yoyus) odg onTl (4.19)
ﬁfhzo on Q4 N{y =0},

with ﬁfp(—l, y) = ﬁ;b(l, y) for all y such that (1, y) € Q,, where Ay is given by
(2.8). Multiplying the first equation in (4.19) by ﬁf// and by the divergence theorem,
we obtain

/Q (A,Vi,) - Vil dx < H (A, Vi) - UH | (W) 0 @] oy
N

< c|avi,

H—I/Z(F)

L2(9+) “ (wavsus) o qDS ||H1/2(F)

<C HVﬁf,,

L2©y) ” (wavs“S) o @ HH1/2(I‘) ’

where we used (4.1) and the continuity of the normal trace in the space H (div; ©24)
(see, e.g., [12, Section 3.2]), and where the constant C depends only on €24. The
previous estimate, together with (3.40) and (4.1), implies that

S C ||(Wavsus) o q)s “HI/Z(I‘) S C Hwavsus HH1/2(FS)

< Cl¥il2r, H Oy, Us ”CO*‘(FS) + C 1Y lgar,
<C ||1ﬁ||1-11/2(rs) )

V’\S‘
H “Wiaa,

|3, us | co(Ty)
where in the last inequality we reasoned as in the proof of Proposition 4.4 and used
(4.16). By the Poincaré inequality, we get

ns

Uy

H(@) <Cl¥lgirmr,)- (4.20)

On the other hand,
div (AV (@, = u500,)) = —div (B Vil o, ) in 24

i)~ 0, =~ (Y1) 0 @y + (¥ 0 @)t onT
iy, —ul) p =0 on{y =0} N3,
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with (&}, — u?//oq)s)(—l, y) = (@, — u?/joq)x)(l, y) for all y such that (£1, y) € Q,
where By = Ay — I2x2. Reasoning as before, by (4.1) and (4.20) we get

2

< B, Vi o,

Hv(ﬁ;}, ~ joo,) 2@ Hv(ﬁfp ~ eo,)
+|(AV @~ 1o0,) + B Vi a,) )

X ”(W o @) (dyu — 0y us o By

L2(Q4) L2(Q4)

H-12(T)
)] PV

< Cllelic2a,pp 1¥ g2,

~ 0
‘V(ufp o u‘//o(bs) L2(Q+)

+C H AN (3, — 1o, )+ Bs Vit o, [ (lﬁoCDS)(B,,u—avsusoCIDS)”Hl/z(F)

L2(Qy)

< Clgllcagasy 1V, |V =10, Lo

+C HV(ﬁfﬁ — Y00

129y || (Y o @) (dyu — dy us o q)s)”Hl/z(F)

+C ||§0||C2([a,b]) ||1/f||1-11/2(rs)

|(1/f o ®;)(dyu — dyus 0 q)s)HHl/z(p) .

Hence,

v (i}~ )ea,)

< Clellc2qa.py W12,
+ c ||(1p o (DS)(avu - avsus o CDS)”HI/Z(F) .

L2(Q24)

As before, using (4.16), we obtain

| 0 @)@ = Buyus © )| 12y <CIV Il 2
+C |W|H1/2(rs) ” dyu — Ay us o D; ”CO(F) §C||(ﬂ||c2.a(a,b) ||W||Hl/2(rs) )

Oyt — Oy, s 0 Dy ”CO»I(F)

and so

H Vi, — Vi), < Cllgllczap I I, - @21)

L2(Q4) —

Then, also by (4.20),

< Cllollczeq.p ||1/’”%11/2(Fs) :

Vil |2a’x—/ V', o |>dx
/m v o, | e

By a change of variables, we get

s |2
v, |"dx =/
‘/;2+ | w’ ¢S(Q+)

2
det DD dy.

(D® o @;‘)Vuf,,
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In turn, by (3.40) and (4.20), we deduce that

vu' |2 d —/ vi' |2 d
[ps(m)' uy[ dx sz+| iy [ dx

<C ||(P||C2([a,b])L @

NACLE

2
)|V”fb| dx
2
= Clellc2app ”l//”H‘/Z(FS) )

and this concludes the proof. O

Finally, we estimate the first term in the last integral on the right-hand side of
(2.13).

Proposition 4.6. Ler Q € C11(Q), let ¢ be as in Theorem 4.1, and let ug be the
solution to problem (2.1), where ®y is given by (3.38). Ifllollc2o(q py is sufficiently
small, then for every s € [0, 1] the following inequality holds:

V (0% = IVus 1) Zs - vy dH'| < C ll@ll 2 qpy / Xy -v)*dH', (422
Ty Ls

where X5 and Zg are given in (2.3) and C > 0 depends on ||w||c2,a(_1’])-

Proof. Observe that, by (3.38), (3.42), and the fact that A(y) = 1if L+ 6 <y <
M + 2 — &y, we have that

B (x, wx)) - (D (x, w(x)) Tv(x, wx))
= Wy (x, w(x)) - (DY (x, wx)) ™ vlx, wx))
k(s x)  Bg(s, x) IWh(s,x)  ¢(g(s, x))
T 8,85, %) JT+ @ @)2  JT+@@)? 1+ W x)?

(4.23)

provided ||¢[l 2.4 p 1s sufficiently small. Similarly,

& (x, w(x)) - (D5 (x, wx))) T vx, w(x))

= Uy (x, w(x)) - (DY, (x, wx)) T v(x, w(x))
_ 1 2 2
=50 <8Sg(s, x), Bsh(s,x)>
.<1 —Bxh(s,x)—l-w’(x)) (—w'(x), 1)
0 Bxg(s, x) 1+ (w/(x))Z

_ k(%) 37g(s, %) 32h(s, x)
886D T )2 VT @)

(4.24)

Differentiating (3.42), with respect to s gives

h = (w"(9) +5¢"(8))(3:8)* +2¢'(9)dsg + (w'(9) + 5¢'(9)) ;g



A SECOND ORDER MINIMALITY CONDITION FOR A FREE-BOUNDARY PROBLEM 1339

so that, by (3.42); and (4.24),

Py (x, w(x)) - (DD (x, w(x)) T v(x, w(x))
(w"(9) + 5¢"(2))(3:8)* N 20/ (2)dsg (4.25)

VIt W @)>2 V1T+ @ (x))?

Since, by (2.5), we have

(DO (x, w(x)) "v(x, wx))

(g x, () =
(DD, w(x)) T, w)|

and
= _ VI E0) +5¢/(3()P
(D& G, ) v, | = NN
by (2.3) we have
/ (0% = 1Vus?) g - vy aH!
Iy
b
= [ (@1 = Vsl WP) (0" (9) 59" (©) @ugP0g dn

b
+ f (Q2(g. h) — [Vus(g. h)[2)20/(g) dyg deg dx = T + 11,
a

By (5.6) and (5.16) in the appendix we obtain

1058 (s, X)| < [e(g(s, x))| (4.26)

for every (s, x) € [0, 1] x [a, b]. Hence, by Proposition 4.2, for [|¢||c2.(, p) suffi-
ciently small,

b
1] < C gl crep / 0% (g(s, %)) dyg dx
a

b 9% (g(s, x))

X
a 1T+[w(g) +s¢ (9
=C ||‘/’||C2~“(a,h)/ (X - Vs)2 dHl»
Iy

<C ”(p”Cl“(a,b)

where C depends only on ||w ||Cz,a(a’ by» and where we have used (4.23).
To estimate 11, we use (5.6) to write

2¢/(8)p(®)(w'(g) + 5¢'(8))dxg

dx.
1+ [w(g) + 59 QP !

b
1=- [ (b - Vi P)
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Using the change of variables r = g(x, s) and (3.26), we have

L /b (Q*(r.w +59) = |Vuy(r, w + 59) 20" p(w' +5¢)
a L+ [w' +s¢')? '

Integrating by parts and using (3.2), we obtain

s /”wzar ((Qz(r, W+ 59) — |Vus(r, w + 59) ) (W' +s¢f>> "

1+ [w' + s¢']?

It follows from Proposition 4.2 that
b

11| < Cllgllczag.p / ¢*dr < Cl¢llcreqan) / (Xs - v) 2 dH!,
a I's
where in the last inequality we have reasoned as in the estimate of /. O

Next we prove Theorem 4.1.

Proof of Theorem 4.1. Let ¢ be as in the statement of Theorem 4.1, and let
{®s}sef0,1] be the admissible flow given in Theorem 3.1. By Theorem 2.3 and
Propositions 4.2 and 4.6,

d? .
ﬁ}"(us)z / 2|Vis|*dx + / (8y, 0 + 25 (3, u5)?) (X - v)* dH!
S q>s(Q+)

Iy

-C ||(P||C2.a(a7b) f (X - Vs)2 dHla
Ty

where we used the fact that || < C. On the other hand, by (2.6) and by Proposi-
tions 4.4 and 4.5 with ¥ = X - vy, we have

d2
T F(us) z/ 2|Vu¢s|2dx+/ (8, 0% + 2k (Byu)?) (X - v5)? 0 Dy d'H!
Q. r

— Cillellcra,py I1Xs - VS”i{l/z(Fs) )

where ¥, 1= (X - vy) o @, and uy, is the unique solution to the problem

Auy, =0 in Q4
Uy, = —Ysoyu onl
uy, =0 onf{y=0}NoQ,

with uy, (—1,y) = uy,(1,y) for all y such that (£1,y) € Q1. Now we apply
(1.11) and (1.12) to obtain

d? 2
Wf(us) > (CO - Cl ||(p”C2ﬂ(a,b)) ”XA : VS”HI/Z(FS) .
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By taking [l¢|l 24 p) < Co/(2C1) we get %f(us) > (O foralls € [0, 1]. In turn,
by (1.11),

1 d2
F(u) = F(ur) —/ (1 —5)——F(us) ds
0 ds

sfmozf (Vi + 02(x)) dx.
1(2)

In view of (2.1), u1 is the unique minimizer of F over all functions v € H L(®, Q1)
suchthat v =00on & (I"), v =uon d®;({y =0} NaRy) and v(—1,y) = v(l, y)
for all y such that (£1,y) € ®;(Q,). In particular, for every v € A with {v >
0} = &1 ({u > 0}), we have

F(u) < F(v),

which concludes the proof. O
We conclude this section with the proof of the main theorem.

Proof of Theorem 1.1. Let U € 2,8 > 0, and let ® € C>%(R?; R?) be a diffeo-
morphism satisfying (1.14) and (1.15).

Step 1: We begin by proving that there exist a constant C > 0 and an interval
[a, b] C (—1, 1) (independent of @) such that the set ®(T") is the graph of a function
w + ¢, where ¢ € C>%(—1, 1) has compact support in [a, b] and satisfies

lollc2e—i1y = C86. (4.27)
Consider the function
Y) =0 w), xe[-11],
where ® = (&!, ®?). By the chain rule, € C>%(—1, 1) with

Y (x) = 3, D1 (x, w(x)) + w' (x)d, D' (x, w(x))
1 (4.28)

>1-8-8|wco_yy = 2

forall0 < § < WM, where we used the facts that 3, ®(x,y) > 1—3§

and |3y @ (x, y)| < 8 by (1.15). Moreover, by (1.14), ¥(—1) = —1 and ¥/(1) =
1. Hence, ¢ : [—1,1] — [—1, 1] is invertible, and by the chain rule w_l €
C%*(—1, 1). It follows that

o) = {(x. @ (W~ 0, w(y ' W))) s x e =111}

Define ¢(x) := ®>(¥ ' (x), w(r~'(x))) — w(x). By (1.14), ¥ (x) = x for x in a
neighborhood of —1 and of 1, ®?(x, y) = y for (x, y) ¢ U. Hence, ¢ has compact
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support in (—1, 1). A lengthy, but straightforward calculation using (1.15), shows
that (4.27) holds.

Step 2: Let now {¢,}, be a sequence of polynomials satisfying (3.2) and such
that ¢, — ¢ in C>%(a, b). By Theorems 3.1 and 4.1, for § small enough we can
construct an admissible flow {®; , }sc[0,1] (see Definition 2.1) for every n such that

Q1 (1) ={(x, wx) + ¢, (x)) : x € (=1, 1)}

and
Fu) < F(v) (4.29)

for every v € A with {v > 0} = ®; ,({u > 0}).
Consider now a function v € A with {v > 0} = ®({u > 0}), and define

Up (X, y) = v(x, y — ¢p(x) + @(x)).

Then y < w(x) 4+ ¢, (x) ifand only if y — ¢, (x) +¢(x) < w(x)+¢(x). Let T > 0.
Since ¢, — ¢ in C>%(a, b), we have that v, — vin H'((—1, 1) x (1, 00)).
We now construct A; € C®°(R) suchthat 0 < A; < 1, A (y) = 1if 21 < y,
Ar(y)=0if y <t and |A’T(y)| <2/t forall y € R. Define
Un,r (X, y) := A (M) vp(x, y) + (1 — Az (y))u(x, y).

Since @ , satisfies (1.14), we have that v, ; € A and {v, ; > 0} = ®; ,({u > 0}).
Hence, by (4.29), we have

F) < Fop) = f (IVon | + 0*(x)) dx
D, (R24) (4.30)

= / IV * + X{un.=0) 0% (x)) dx.
Q

Since ¢, — ¢ in C%%(a, b), if (x, y) € Qis such that y # w(x) 4+ ¢(x) then for
all n sufficiently large y # w(x) + ¢n(x), and so x{y, >0y (X, ¥) = x{w>0y(x, y). It
follows by the Lebesgue dominated convergence theorem that

im [ xu,,200%(0) dx = / Xioo0y O2(x) dx. @31)
Q Q

n—oo

On the other hand,
Vg = A Vo + (1 = A)Vu + (v, — u))\/rez.

Hence, using convexity and the inequality (a + b)? < (1 4 &)a® + C.b?, we obtain

/ |V, >dx < (1+e)/ )»f|vvn|2dx+(l+8)/(1—)»7)|Vu|2dx
Q Q Q

4C
+ ;/ lvn — ul*dx.
T (—1,1)x(1,27)
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Since v, — vin H'((—1, 1) x (1, 00)), letting n — oo we have that

limsup| |Vv,.|>dx<(l +g)/ A Vo> dx +(1+8)/(1—k,)|Vu|2dx
n—o00 JQ Q Q

ac, (4.32)

+ —2/ v — u|2dx.
T (—1,1)x(t,27)

By (1.5), if v is of class C!, it holds

vx,y) —u(x,y) = /y(ayv(x, r) — oyu(x,r))dr,
0

and so by Holder’s inequality

y 2
/ |v—u|2dx§/ (/ |8yv(x,r)|+|8yu(x,r)|dr) dx
(—1,1)x(r,27) (—1,1)x(z,27) 0

y
5/ / y ((8yv(x, )2+ @yulx, r))2> dr dx
(—1,1)x(r,27) JO
< 412/ ((Byv(x, )2+ Byulx, r))z) dx dr.
(=1,1)x(0,27)

By density, the same inequality is satisfied without any extra regularity on v.
We now combine (4.30)—(4.32) with the previous inequality. By first letting
T — 0" and then ¢ — 0T, we conclude that F(u) < F(v). O

5. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on some auxiliary lemmas. We start by showing
that the first term in the expression (1.12) of the second variation is coercive with
respect to the H'/2 norm of the boundary datum on I.

Lemma 5.1. Let Q, u, and T be as in Theorem 1.2, let U C 2 be an open set
such that U NT # B, and let A := {u > 0} N U. Assume that A has a Lipschitz
boundary. Then there exist two constants C1, Cy > 0, depending on A, such that

Culld 131204, sinf{/AWdex: ve H'(A), v= &onaA} 5

< CallV 124
for every ¥ € CCI(F NU), where

&::{Qw inTNU

0 indU N{u > 0}.
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Proof. Let ¢ € CC1 (T NU). Since 0% € C%! and QO > Qmin > 0, we have that

lﬂ e H'2(3A), and so there exists v* € H!(A) such that v* = I/AI on dA in the
sense of traces and

2 T2
”v*”Hl(A) = C2||1/f||H1/2(3A),

where C; is a positive constant depending on A. Thus, the second inequality in
(5.1) holds. On the other hand, the trace operator T : H'(A) — H'/?(3A) is
continuous, and so there exists a positive constant C1, depending on A, such that

IT @) 3124 < Crllvl s
foreveryv e H 1(4). In particular, given ¢ € C, Cl (' " U), we have that
1 131290y < Crllvlggi )

forevery v € H'(A) with T (v) = I/Af Since 1} =01in dU N {u > 0}, by Poincaré’s
inequality
I1 4 < CHIVOIT 4

for every v € H L(A) with T (v) = g@ Combining these two last inequalities, we
get the first inequality in (5.1). O

Lemma 5.2. Let Q, u, and I be as in Theorem 1.2. For every ¢ > 0 let U, be the
intersection of Q2 with the e-tubular neighborhood of I". Define

e 1= inf{/ Vuy Pdx sy € CHO), Il = 1},
U:N{u>0}

where for every ¥ € C 61 (I") the function uy, is the solution to

Auy =0  inU; N {u > 0}

uy = Q¢ onl
uy =0 on dU, N {u > 0},

with uy (=1, y) = uy (1, y) for all y such that (1, y) € Us N {u > 0}. Then

lim p, = oo.
e—>01

Proof. Assume, by contradiction, that there exist C > 0, &, — 0T, and v, €
CH(T") with ||y, |12y = 1, such that

/ [Vup|>dx < C for every n,
Ue,, M{u>0}
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where u,, := uy, . We extend u, by O to the set U1 N {u > 0} =: V. Then

/ |Vup|>dx < C for every n.
1%

By Poincaré’s inequality there exists uso € H 1(V) such that u,, — ueo weakly in
H'(V), up to a subsequence, not relabeled. This implies that u,, — o strongly in
L2(3V). Since £2(U€n) — 0, we have that u,, — 0 a.e.in V, hence uy,, = 0 and
u, — 0 strongly in L?@V).

On the other hand,

1= ||1//l’l”L2(F) = C”Q_l/z”(jO”un”LZ(F)'

Since the right-hand side tends to 0, we arrive at a contradiction. O
We now prove Theorem 1.2.

Proof of Theorem 1.2. By Lemmas 5.1 and 5.2, for ¢ > 0 small enough we have

/ 2|Vuw|2dx+/ (anZ +2KQ2> W2 dH!
U N{u>0} r

> CelVr gy + (e = COIV 2
where C3 := (1 4+ ||k ||co)l Q2||Co,| . On the other hand,

W miaay = 1/ Qlgaw < 1l 2ay 1/ Qleory + W g1a@m 11/ Qllcor
= ||W||L2([‘)||Q||c0(r)|1/Q|C0J([‘) + |1&|H1/2(F)/Qmin,

and so
A 1
¥y = 5 Qainl¥ iy = Calvlary-
Hence,
/ 2|Vuw|2dx+/ (an2+2/<Q2) W2 dH!
U:N{u>0} r

C .
> = Orinl ¥ 12y + (e — C3 = min{Ce/2, NCHIY 2 -

Since u, — 0o by Lemma 5.2, the inequality (1.16) holds.
The second part of the statement follows from (1.16) by repeating the proof of
Theorem 1.1. We omit the details. O



1346 IRENE FONSECA, GIOVANNI LEONI AND MARIA GIOVANNA MORA

Appendix

Here we sketch the proof of the derivation of the Euler-Lagrange equations (1.3) of
(1.1). Let v € Ay N C%(2) be such that a2+ N 2 (see (1.7)) is a manifold of class
C?, F(v) € Rand (1.2) holds. Since Q. is open, consider variations ¢ € CX(Q24).
For ¢ > 0 sufficiently small it can be shown that {v+¢e¢ > 0} = {v > 0}, therefore
from (1.2) we obtain

d
0= —/ |V(v—|—8(p)|2dx| - 2/ Vv Vodx.
de Jo =0 Q.
This gives (1.3);, and the condition v = 0 on 2 N d {v > 0} follows from the
continuity of v. To prove that |[Vv| = Q on Q N d {v > 0} we use Theorem 2.5
in [2] to obtain
lim (|W|2 - Q2> n-vdH' =0 (5.2)
e=>0% Ja{v>¢}
for every n € C2°(R; R?). Note that in the original proof of (5.2), v was assumed
to be a local minimizer, but this property was used only to guarantee the validity of
(1.2). In view of the smoothness of v and 92 N €2, for € sufficiently small 9{v > &}

is a smooth manifold of class CZ, and using a partition of unity, it can be shown that
(5.2) reduces to

f (|W|2—Q2)n-vdH1 —0. (5.3)
d{v>0}

Extend locally the outward unit normal v to 8{v > 0} as a C' function  in an open
neighborhood of 9{v > 0}, and take 1 := ¢, where ¢ € CZ°(2) is supported in
that neighborhood. Then (5.3) yields

/a{v>0} <|Vv|2 - Q2> odH' =0.

By the arbitrariness of ¢ we deduce that |[Vv| = Q on 2N 3d {v > 0}.
The remaining of the appendix is dedicated to the proof of Theorem 3.5.

Proof of Theorem 3.5. Let
D :={xeR: pkx) #0}.

Step 1: Regularity at points s > 0, x € D. By Theorem 3.3 the function #
is of class C* in [0, 1] x D. Hence, by (3.22) and the smooth dependence of &
with respect to initial data, we have that g is of class C* in [0, 1] x D. Taking
t = 1y(s, x) in (3.16) gives

/“’(”) (w'E(r, )@(E(r, X)) + ((r, x) — w(E(r, X)) ¢ (5 (T, x)))2 i1la
0 @2 (E(r, X))
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for all (s, x) € [0, 1] x D. Differentiating with respect to s, and using (3.24), yields
1
14 [w/(E(to(s, ), x)) + 59/ (E(to (s, x), x))]

for all (s, x) € [0, 1] x D. Since 79(0, x) = 0, it follows upon integration and by
(3.22) that

ot (s, x) =

5.4)

$ 1
to(s, = dr. 55
(s, %) fo L+ [/ (g ) + 1 (gD )

By (3.5),(3.22),(3.24), and (5 4),

358 (s, %) = 8,& (10 (s, x), X) 310 (s, x)
——w/(g(s, X)e(g (s, 1) — (nto(s, x), x) —w(g(s, X)) ¢ (g(s, X))

B 1+ [w'(g(s, X)) + 5¢'(g(s, )] (5.6)

gl ) [w'(g s, 1)) + 59/ (g5, 1))]

T wgls, X)) + 5@ (g, NP

Differentiating (5.6) with respect to s and x, respectively, gives

P @[w (@ +s¢'(9)] dsg+e@)[w" () +5¢" (9)] 38 +9(8)¢' ()
L+ [w'(g) +s¢' ()]

82g=

N

N 20(2) (w'(2) +5¢'()” { (" (&) + 5¢"(2)) dsg + ¢ ()} 7
[1+ ' (g) +s¢' ()] ’
and
92 g (@ [w (@) +5¢'(9)] dxg +(9) [w"(g) +5¢"(8)] drg
1+ [w'(9) +5¢'(9) ]
(5.8)

N 20(2) (w' () +5¢'(2)” (w"(2) + 59" (g)) drg
[1+ w'(g) +s¢' ()] ’

while by Schwartz’s theorem 83’ 8= 8)%’ <8
On the other hand, by Theorem 3.3, (3.5), (3.20), (3.22), and (3.24), for (s, x) €
[0,1] x D,

0.8 (s, X) = & (g (s, X), X)duto s, x) + & (to (s, X), %)
_ 0. (1o(s, ), )
T+ [w/(g(s, ) + 59/ (805, ) (5.9)
w'(g(s, X)) + 59/ (g (s, X))
1+ [w'(g(s, x)) + s¢'(g(s, )]

23x77(t0(5, x)a x)'
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Differentiating with respect to x, we get

P2 = C2(w'(®) +5¢'(9) (" (g) +s;p (g))axgaxs(to’ )

[1 + (w'(g) + sw’(g))z]
97 ;& (to, x)0xto 97& (1o, x)
1+ W' (g) +s¢'(g)* 1+ W (g) +s¢(g)?

[1 — (w'(9) + sgo/(g))2] (w"(g) +5¢"(2)) (5.10)
0xg0xn (to, x)

+

[1+ @@ + 5o 0]

(w'(g) + s¢'())05 M0, X)dxto  (w'(g) + s¢'(8))82n (10, X)

1+ (w'(g) + s¢/'(8))? 1+ (w'(g) + s¢'())*
= I1+I11+1II+1IV+V+VI

It remains to study the regularity of g at points (sg, xo) with ¢(xg) = 0.

Step 2: Regularity at points s > 0, x ¢ [a,b]. Let s > 0 and xo ¢ [a, b].
Since ¢ = 0 outside (a, b), by (3.23) we have that g(s, x) = x for all s > 0 and
x € R\ (a, b). It follows that for all s > 0 and x € R\ [a, b],

Oxg(s,x) =1, 05g8(s,x) =0, 5.11)
397g(s, x) = 978(s, x) = 97 ,&(s, x) = d; g (s, x) = 0. ‘

Step 3: Continuity of g. Let so > 0 and let xg € [a, b] be such that ¢(xg) = 0. By
(3.9) and (3.23), we have that 7 (-, xo) = 0 and g(-, xp) = xo, respectively. Then by
(3.5),(3.22), and (3.23), we have

405, %) — x0 = E(to(s, X), x) — £, x) + x — x0
to(s,x)
:/0 0/E(r,x)dr +x — xo
0 (5.12)
to(s,x)
—_ /0 (W' G ) (Er, X))

+ ((r, x) — w(E(r, x))) ¢'(¢(r, x)) dr + x — xo.
Since &(-, x9) = xg and (-, xg) = w(xg) by (3.6), it follows that

w'(§(, x0))e(& (1, x0)) + (1(, x0) — w(E(t, x0))) ¢'(§(t, X0)) =0

for all t € [0, 1]. By continuity with respect to initial data, we deduce that the func-
tions (¢, x) — &(¢,x) and (¢, x) +— n(¢, x) are uniformly continuous on compact
sets, and so using also the facts that w is smooth and ¢ € C?(RR), we have that given
& > 0 there exists § > 0 such that

|w/(é(ta x))(p(%_(t, -x)) + (ﬂ(t, -x) - w(é‘_(t7 x))) (P/(S(t7 x))| <¢
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forall ¢ € [0, 1] and all x with |[x — xp| < 4. Since 0 < #p < 1 by (3.11), it follows
that

fo(s,x)
/0 |w'(E(r, x)pE(r, x) + (n(r, x) — wEFr, ) ¢’ €@, )| dr <&

for all (s, x) with |x — xp| < §. By (5.12) we obtain

lim g(s, x) = xg (5.13)

X—>X0

uniformly for all s € [0, 1]. This shows that g is continuous at (sg, xg).
In particular, if ¢ 7 0 in some interval (¢, 8) and ¢(@) = ¢(8) = 0, by the
continuity of g, it follows from (5.5) that

lim to(s, x) = To(so, @), (5.14)

(s,x)—(s0,0) "
where
s 1
To(s, x): :/ 2dr
01+ [w@) +r¢'(v)]

(5.15)
| [ arctan(w’ (x)+s¢ (x)) —arctan(w’ (x)) ] /¢’ (x) if ¢/ (x) #0,

_{s/[l + (w'(x))?] if ¢’ (x)=0.
Since #y(s, ) = 0, this shows that the function #y is discontinuous at (sq, ) for all

so > 0. A similar result holds at the endpoint .

Step 4: Existence and continuity of d;g and 9, g. Let so > 0 and let xg € [a, b]
be such that ¢(xp) = 0. By (3.23), we have that g(-, xo) = x¢, and so

058 (s, x0) =0 (5.16)

for all s > 0. On the other hand, if ¢ # 0 in some interval (xg, xo + §) (the case
(xo — 8, xp) is similar), by the continuity of g and (5.6),
—@(x0) [w'(x0) + 59’ (x0)]

> =0
1+ [w/(x0) + s¢' (x0) ]

asg(sv x) -

as (s, x) — (s, xo0) ™. Hence, d;g is continuous at (sq, xo) for all so > 0.

Next, we prove the existence and continuity of d, g at (sg, xo) for all s > 0.
We assume, as before, that ¢ # 0 in some interval (xg, xg + 8) (the case (xg — 8, xg)
is similar). Differentiating (3.5) with respect to x, we obtain

3 (0:8) = —[w"E)pE) + (n — w(§)) 9" (§)]9:& — ¢’ (§)0xn
0 (0xm) = ¢'(§)0:&

0:E@0,x) =1

9,1n(0, x) = w' (x).

(5.17)
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Since £(-, x9) = xo and n(-, xg) = w(xp) by (3.6), we have that 9,&(-, xo) and
dxn (-, xp) solve the system

9 (0x& (-, x0)) = —¢'(x0)dxn (-, x0)
3 (3xn (-, x0)) = @' (x0)dxE (-, X0)
0x5(0,x0) =1

3x1(0, x0) = w'(xp),

and so

& (t, x0) = cos(¢(x0)1) — w'(xo) sin(g’ (x0)1)

, , ) , (5.18)
0xn(, x0) = w (x0) cos(¢ (x0)1) + sin(p’ (x0)1).

By the continuity of d,.& and 9,7, (5.14) and (5.18),
lim  8x§(10(s, x), x) = 9x&(To(s0, X0), X0)

(s,x)— (s0,%0) "

= cos(¢' (x0)To(s, x0)) — w’ (xo) sin(¢’ (x0) To (s, x0))

(5.19)
V14w (xo)l?

\/ 1+ [w'(x0) + s0¢’ (x0)]*

and

lim  0yn(to(s, x), x) = 0xn(To(so, X0), Xo)
(s,X)—>(50,x0) "

= w'(x0) cos(¢’ (x0) To(s, x0)) + sin(¢’ (x0) To(s, x0))

(5.20)
 (w'(0) + 509 (10)/ 1 + [w' (x0) )

\/ 14 [w'(x0) + so¢’ (x0)]*

where we have used the formulas

1—|—xy+y2

VI+ 21T+ 6+ 32
X

VI+ 21T+ @+ 0?2

cos (arctan(x + y) — arctan y) =

sin (arctan(x + y) — arctany) =

Note that
[w'(x0) + s¢'(x0)] 3x&(To(s, x0), x0) — dxn(To(s, x0), x0) =0 (5.21)

for every s € [0, 1].
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By (5.9), (5.19), (5.20), we obtain

, V 1+ W (xo)?
lim 0xg(s,x) =

(60> ooyt 1+ 1w (o) + s0g(xo) P

(5.22)

By the continuity of g proved in Step 3,

. 8(s0,x) —g(s0,x0) O
lim = —,
x—x X — X0 0

and so we can apply L’Hopital’s rule to the function x — g(sp, x) to conclude that
8(s0, x) — g(s0, x0)

there exists
. - B:8(s0, ) V1w (o)l
lim = lim =

o X0 o V1 /o) + 500 (eo) P

If ¢ # 0 also in some interval (xg — 1, xp), then we conclude in the same way that
8(s0, x) — g(s0, x0)

lim i 800, %) _ 1+ [w(xo)]

) X —Xo X=X ! \/1 + [w/(x0) + s0¢’ (x0)1?

and so we deduce that there exists

V14w (x0)]?

V1 [0/ 0) + s0g/ (o) P

dxg(s0, X0) = (5.23)

and that 9, g is continuous at (sg, xg). On the other hand, if ¢ = 0 in some interval
(xo — 81, x0), then x9 = a, and ¢’ (xg) = 0. It follows that the limit in (5.22) is 1,
and so by (5.11) we obtain again that there exists d,g(so, xo) = 1 and that d, g is
continuous at (sq, Xo).

Step 5: Existence and continuity of 32g, 333, <&, and 3s2, & Letsp > 0 and let
Xo € [a, b] be such that ¢(xg) = 0. We assume, as before, that ¢ 7# 0 in some
interval (xg, xo + 8) (the case (xo — §, xp) is similar). By (5.16), we have that
Bszg(s, x0) = 0 for all s > 0. On the other hand, by (5.7) and the continuity of g
and o, g,

lim  82g(s, x) =0.

(s,%)—>(s0.a@)*

By (5.8) and the continuity of g, ds¢, and 9, g,

m 8 g(s.x) = ¢’ (x0) [w' (x0) + 509’ (x0) ] 8x g (s0. X0)
0= Goot T I+ [w'(x0) + ¢/ (x0) I '
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On the other hand, by Step 4,

I 058 (s0, x) — 058(s0, x0) _ 0
im = -,
x%xg' X — X0 0

and so we can apply L’Hopital’s rule to the function x +— 9;g(so, x) to conclude
that there exists

35050, ) — dsg(s0.%0) . 5850, %)
lim = lim ———
x%x(')" X — X0 )C*))Cg— 1

(5.24)
_ ¢/ () [w'(xo) + 509’ (x0)] B8 (50, X0)

B 1+ [w/(x0) 4 s¢' (x0)]?

If ¢ # 0 also in some interval (xo — 81, xp), then we deduce as in the previous step
that there exists 83, +8(50, x0) and that 8)%’ <& 1s continuous at (sp, xp). On the other
hand, if ¢ = 0 in some interval (xo — 81, x0), then x9 = a, and ¢'(xg) = 0. It
follows from (5.24) and (5.11) that there exists 8)%’ s8(50, xp) = 0 and that 8)%’ s8 1s
continuous at (sg, Xg).

In both cases we can apply Schwartz’s theorem to conclude that there exists
Bs%xg(so, Xo) and that

97 8 (50, x0) = 7. g (50, X0)-

Step 6: Existence and continuity of 3,% g. By Step 3, (5.19), (5.20), (5.22), and
(5.10), we have

- 2 (w'(x0) + s¢/(x0)) (W (x0) + S;O (x0)) (5.25)
(80 o0 [1+ /G0 + 59/ (0))?
X 0x8 (50, X0)9x& (To (50, X0), X0),

[1 — (w'(x0) + Sfpl(xo))z] (w" (x0) + s¢” (x0))

lim . 1V = 3
(0 o0 [1+ @/Gx0) + 590/ (x0))?

x 3y g (50, x0)0x 1 (To(s0, X0), X0).

(5.26)

On the other hand, by Step 3, the continuity of 8%5 and 8)%77, (5.10), and (5.14),

32E(To(s0, x0), X0)

lim = 5 (5.27)
(s,%)—>(s0,%0) ™ 1 4+ (w'(xg) + so¢’(x0))
and )
/ / 8 T , ,
lim Ve (w'(x0) + s¢"(x0)) 0y n(To(s0, X0) xo). (5.28)

(5.3)—> (s0.0)* 1+ (w'(x0) + s¢/(x0))*
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It remains to estimate // and V in (5.10). By Taylor’s formula, we obtain
w'(2)+5¢'(2) =w' (x0) +5¢’(x0) + (w” (x0) + 59" (x0)) (z — x0) + 0(z — x0).
Hence, also by (5.13),

[w'(g(s, X)) 4 5¢(g(s, x)] £ (10 (s, x), X) — 8x7 (10 (s, X), X)

g(s,x) — X0
_ (w'(x0) + 5¢'(x0))dx& (to(s, X), X) — dxn(to(s, X), X) (5:29)
g(s, x) — xo

+ (" (x0) + 59" (x0) + 0(1)) 3§ (0 (s, X), x).

By repeated applications of the mean value theorem, we have that

(w'(x0) + 59/ (x0))3x& (0 (s, X), x) — dxn(to(s, x), x)
= (w'(x0) + 59 (x0)) £ (10 (s, x), X0) — Bx77(t0 (s, X), X0)
+ (x — x0)[ (W' (x0) + 5/ (x0))32E (10 (5, x), x1) — d2n(to(s, x), x1)]

— (- xo>{<t0(s’ x) — Tols, ’“”)[(w’(xo) s ()92 £ x)  (5.30)

X — X0

— 32 (11, x0) ] + [(w'(x0) + s¢' (x0)) 2 (t0 (s, x), x1)

— 32n(to (s, x), m]}

for some x| between x and x¢ and for some #; (s, x) between #y(s, x) and Ty (s, xp),
and where we have used (5.21).
By (3.23), (5.5), (5.15), and again the mean value theorem, we get

to(s, x) — To(s, xo)
. /S (W' (x0) +re’(x0)* — (W' (g(r, X)) + r¢'(g(r, x)))*
~Jo [T+ W' (g(r,x)) +7¢ (g(r, )21 4 (W' (x0) + ¢/ (x0))?]
- _xo)/s 2(w'(g(r, ) +re'(g(r, N (w”(g(r, ) +re”(g(r, c))oxg(r, )
o [+ W' (g(r,x)) +re'(g(r, x))2I[1 + (w'(x0) + r¢’ (x0))?]

dr (5.31)

for some ¢ = c(r, x, xg) between x and xg. Hence, by (3.23) and the continuity of
g and o, g,

y to(s, x) — To(s, xo)

m

(5,2)= (s0,x0) " X — X0

- _ /s” 2(w'(x0) + ¢’ (xo)) (w” (x0) + r¢” (x0))dx g (r, x0)
0 [1+ (w'(x0) + r¢’(x0))1?

(5.32)
dr =: Zl.
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By (3.23), (5.22), and the mean value theorem, we deduce that

(S,X) _XO (S’-x) - (S,XO)
g =8 g = 0,g(5,0) — 3,8(s0, X0)
X — Xo X — Xp

(5.33)
as (s, x) — (so,xp). Hence, letting (s, x) — (so, xp) in (5.29) and using (5.30),
(5.32), and (5.33) gives

i [/EG )50/ (85, ] to (5, %), ) —Ben(ao s, 0).,%)
(5,)—> (s0.x0) g(s, x) — xo
el (xo) + 59’ (x0)37 £ (To(s0, X0), X0) — 37 ,1(To (0, X0), X0)]
- 3.8 (50, %0) (5.34)
+ L/ (x0) + 5¢/ (x0))IZE (To 50, %0). x0) = 320(To(s0. x0), x0)1}
+ (w” (x0) + 59" (x0)) & (To(s0, X0), X0) = £2.
By (3.24), (3.20), (5.17), (5.10),

11— W©e) +50(8)¢"(8)19:8 (10, x) — ¢'(8)dx1(fo, x)

1+ W' (g) +5¢'(9))*
y [w'(g) + s¢/(8)] 0:&(t0, X) — Dxn(fo, X)

0(9) |1+ (w'(g) +5¢'(9)]

(&) +s¢' ()]0 (o, x)—dcn(to,
=—[w"(g)—i-sw"(g)]axé(to,x) [w (&)+s¢ (g)] (10, x) n(to, x)

[1+ @i + 590

(5.35)

9'(g) [w'(g) + s¢/(8)] 0:& (10, X) — dxn(to, X)
(2) dxn(to, x) 5
v [1+ () +5¢'(2)?]
=11, +11I.

By Step 3,(5.19), (5.20), and (5.21),

lim 11, = —[w"(x0) + s0¢” (x0)10x& (To (50, X0), X0)
(s,%)— (s0,x0) "

8 [w'(x0) + 509 (x0) ] 3x& (To (50, X0), X0) — dx1(To(s0, X0), X0) _

(5.36)
[+ o) + 500/ e0))?]
Since ¢ is a polynomial with ¢(x9) = 0, we may write
0(2) = p(2)(z — x0)*, (5.37)

where p is a polynomial with p(xg) # 0 and k > 1. In turn,

¢'(2) = (z —x0) " [p/(2)(z — x0) + kp(2)]. (5.38)
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By (5.37), (5.38),
_[P'(9)(g —x0) + kp()19:n (10, x)

2 2
[1+ @) +5¢' 0] @
 [0©) +5¢'@] & t0, ) — dumtio, )
8 — X0
and so by Step 3, (3.2), (5.20), and (5.34),
lm 11— - kdxn(To(so, X0), Xo0) .
(0= o0 [1+ /() + 509/ (x0))°

I, =

El

L. (5.39)

By (3.24),(5.37),(3.20 ), (5.17), (5.10), (5.38),
_ /) +5¢/(@)¢ (@05, ¥) [w'(8) + 59/ ()] 84 (t0. %) — (. )
L+ (w'(g) +5¢'(9))* 0(@) |1+ (@) +5¢'(9)]
_ () +5¢/(e)1P (8)(g = X0) + kp(g)lié (0. %)
[1+ wie) +s0' @] pea)

" [w'(g) + 59/ (g)] 9:£ (10, x) — dxn(to, x)
8 — X0

and so by Step 3, (5.20), and (5.34),

Vv

’

i (W' (x0) + ¢’ (x0))kdE(To(s0, X0), X0)
im . V = 3
(8,) = (50,X0) [1 + (w'(x0) +S0</J/(X0))2]

L. (5.40)

Finally, by (5.10), (5.25), (5.26), (5.35), (5.36), (5.39), (5.40), (5.27), and (5.28),
there exists
lim aig(s, x)=1{3 € R.

(8,%)—(s0,x0) ™

By the continuity of d, g proved in Step 4,

. 0xg(s0, x) — dxg(so,x0) O
im =,
x—xg X — X0 0

and so we can apply L’Hopital’s rule to the function x — 9, g(sg, x) to conclude
that there exists
. 0cg(s0, X) — 0:8(s0, %0) . 02g(s0, %)
lim = lim ———=1¢
x%xa' X — X0 xaxg' 1
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If ¢ # 0 also in some interval (xo — &1, xo), then the limit as x — x," is still £3,

and so there exists 8)%g(so, xg) = £3 and Bfg is continuous at (sg, xg). On the other
hand, if ¢ = 0 in some interval (xo—3§1, xo), then xg = a,and ¢’ (xg) = ¢”(x9) = 0.
Then by (5.19), (5.20), (5.22),

& (To(s0, x0), x0) = 1, xn(To(s0, X0), X0) = w'(x0),

541
0xg(s0, X0) = 1. G40

To calculate 32£(Ty(so, Xo0), x0) and 321 (To(so, X0), Xo), differentiate (5.17) with
respect to x to obtain

3 (928) =—[w" E)pE) +w" (E)¢' &) —w' E)p" (E)+(n—w(&)) ¢ ()] (3:€)?
—[w"®eE)+ 0 — w®)) ¢ (§)]02&
—¢' ()02 — 29" (§)d:Edn

3 (92n) = ¢"(E)(3:6)> + ¢/ (£)02¢

32£(0,x) =0, 3210, x) = w”(x).

Since £(-, x0) = x¢ and n(-, x0) = w(xg) by (3.6), we have that 8%5(-, Xxp) and
8377(-, Xp) solve the system

3 (9%6(-, x0)) =0

3 (02n (-, x0)) =0

9x£(0, x0) =0, 3,n(0, xp) = w”(x0),
and so

32E(t, x0) =0,  3%n(t, x0) = w (x0). (5.42)
By (5.10), (5.25), (5.26), (5.35), (5.36), (5.39), (5.40), (5.27), (5.28), (5.41), and
(5.42), we have that

2w’ (xp)w” (x0) kw'(x0)

lim  37g(s,x) = — 2~ 7240
(s,x)— (50,X0) [1 + (w’(xo))2:| [1 + (w/(XO))Z]
[1 - (w’(xo))z] w” (x0) w' (x0)k
+ 5 w'(x0) + 02
[1+ @0)?] [1+ @'x0)?]

14+ w'(x0)?

and so we can conclude, as before, that 8)% g exists and is continuous at (sg, xo). [J
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