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A spectral characterization of geodesic balls
in non-compact rank one symmetric spaces

PHILIPPE CASTILLON AND BERARDO RUFFINI

Abstract. In constant curvature spaces, there are many characterizations of
geodesic balls as optimal domain for shape optimization problems. Although it
is natural to expect similar characterizations in rank one symmetric spaces, very
little is known in this setting.

In this paper we prove that, in a non-compact rank one symmetric space,
the geodesic balls uniquely maximize the first nonzero Steklov eigenvalue among
the domains of fixed volume, extending to this context a result of Brock in the
Euclidean space. Then we show that a stability version of the ensuing Brock-
Weinstock inequality holds. The idea behind the proof is to exploit a suitable
weighted isoperimetric inequality which we prove to hold true, as well as in a
stability form, on harmonic manifolds.

Eventually we show that, in general, the geodesic balls are not global maxi-
mizers on the standard sphere.

Mathematics Subject Classification (2010): 46E35 (primary); 35P30, 39B72
(secondary).

1. Introduction

Shape optimization problems

A shape optimization problem on a Riemannian manifold is simply an optimization
problem of the form

min
�2A

F(�) or max
�2A

F(�)

where the class of optimization A is a subset of the powerset of the ambient space
and F is a functional on A. The most famous instance of this kind of problems
is the isoperimetric problem where F(�) is the volume of @� and A is a class of
domains of fixed measure. Another class is constituted by the spectral optimiza-
tion problems where F depends on the spectrum of an elliptic operator. In this
class the archetype example is the minimization of �1(�), the first eigenvalue of
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the Dirichlet-Laplacian operator, under a volume constraint. Its solution (due to
Faber and Krahn) tells us that, on Rn , �1(�) is minimized by Euclidean balls. An-
other famous result is the Szëgo-Weinberger inequality, stating that among sets of
prescribed volume, the ball maximize the first non-zero eigenvalue of the Neumann-
Laplacian. See [20] for a comprehensive guide on spectral optimization problems
in flat spaces.

These optimization problems were first considered in the Euclidean space and
then extended to constant curvature spaces, giving rise to variational characteriza-
tion of geodesic balls in the real hyperbolic space RHn and in the round sphere
Sn (see for example [11, Chapter 2] and [12, Chapter 6] for the isoperimetric and
Faber-Krahn inequalities in constant curvature spaces).

Other Riemannian manifolds where this kind of problems are natural are the
rank one symmetric spaces (noted ROSS in the sequel): these spaces are two-point
homogeneous, that is, for each two couple of points (x, y) and (x 0, y0) such that
d(x, y) = d(x 0, y0) there exists an isometry that brings x to x 0 and y to y0. This
implies that their geodesic spheres are homogeneous, and in turn suggests that their
geodesic balls are good candidate for being optimal domains of isoperimetric and
spectral problems (in particular, the geodesic spheres have constant mean curva-
ture). However, beside the constant curvature case, almost nothing is known for
the isoperimetric problem or for the spectral optimization problems cited above
(cf. [3, Section 7.1.2] for a discussion on the isoperimetric problem in compact
ROSS).

The Steklov optimization problem

Let M be a Riemannian manifold of dimension m and let � ⇢ M be an connected
open bounded set with Lipschitz boundary. The Steklov eigenvalue problem con-
sists in finding the real numbers � for which the boundary value problem

(
�1u = 0 in �

@⌫u = �u on @�

has a non-trivial solution u, where 1 is the Laplace-Beltrami operator on � and
@⌫u is the normal derivative of u on @�. The Steklov eigenvalues of � form an in-
creasing sequence 0 = �0(�) < �1(�)  �2(�)  . . . diverging to +1 (see Sub-
section 2.1 for a more comprehensive introduction to the spectrum of the Steklov
operator).

Regarding shape optimization problems for the Steklov eigenvalues of Eu-
clidean domains, a first result was given in dimension 2 by Weinstock in 1954
[31], who showed that the ball maximizes �1(�) among simply connected domains
with prescribed perimeter (thanks to the isoperimetric inequality, this turns out to
imply the same result among domains with fixed volume). In 2001, Brock showed
the same result without topological nor dimensional constraints, among domains
with fixed volume [9]. Later on, in 2012, Brasco, De Philippis and the second
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author exhibited a new simple proof of the Brock-Weinstock inequality, which al-
lowed them to get a stability version of it [8].

It is worth recalling that the problem of maximizing the first Steklov eigenvalue
with perimeter constraint has been recently solved in any dimension among convex
sets [10] but it is open in dimension greater than 2 in its full generality. In dimension
2, it is known that the ball is not a global minimizer. See [20] for the state of the art
on spectral shape optimization problems in the Euclidean space.

In a non-Euclidean setting, the Steklov problem was mainly studied as an opti-
mization problem on the space of Riemannian metrics: given a differentiable mani-
fold�with boundary, find the metric maximizing �1(�) under a volume or perime-
ter constraint. See [19] for a recent survey on the Steklov eigenvalue problem in
Riemannian geometry. Weinstock-like inequalities in Riemannian manifolds were
first considered by J. F. Escobar in [15–17] and later by Binoy and G. Santhanam
in [7] where the authors prove that the geodesic balls maximize �1(�) among do-
mains of fixed volume in non-compact ROSS.

The main results

The aim of this paper is to prove the quantitative version of the Brock-Weinstock
inequality in non-compact ROSS. Moreover, we investigate the compact case and
prove that this inequality does not hold on the sphere by computing the first Steklov
eigenvalue of a spherical strip. The main theorem is the following quantitative
inequality:

Theorem 1.1. Let M be a non-compact ROSS. For any v > 0, there exists a
positive constant C = C(M, v) such that, for any domain � ⇢ M with |�| = v we
have

�1(�)
�
1+ C|� \ B|2

�
 �1(B),

where B is a geodesic ball with |B| = |�|.

As a consequence, we get the Brock-Weinstock inequality in non-compact ROSS,
provided of equality cases.

The main point in order to prove Theorem 1.1 is that, following the proof in [9],
the maximality of the ball for the first Steklov eigenvalue ensues from a weighted
isoperimetric inequality, which takes the form, in the euclidean setting,

Z

@�
|x |2 dx �

Z

@B
|x |2 dx,

whenever B is the ball centered at the origin of the same measure as �.
This kind of isoperimetric inequalities were first considered in [6], and then

used in [8] to prove the quantitative Brock-Weinstock inequality in the Euclidean
space. The proof after this idea, after suitable modifications, works as well in the
setting of ROSS. Thus the problem reduces to prove (a suitable formulation of) the
weighted isoperimetric inequality in a Riemannian setting. This is precisely the
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core of the following result which holds on harmonic manifolds (see Section 2.2 for
their definition and main properties) and thus on ROSS.

Theorem 1.2. Let M be an harmonic manifold and let o 2 M be some fixed point.
For any domain � ⇢ M , if B is the ball centered in o with radius R such that
|B| = |�|, then we have

Po(�) =
Z

@�

✓
v(r)
v0(r)

◆2
dv@� �

Z

@B

✓
v(R)

v0(R)

◆2
dv@B = Po(B),

where r = d(o, .) is the distance function to o, and v(t) = |Bt | is the volume of a
ball of radius t . Moreover, equality holds if and only if � = B.

Notice that on harmonic manifolds (and thus on ROSS) the volume of a ball does
not depend on the center (cf. Section 2.2).

Once the isoperimetric inequality, and as a consequence, the Brock-Weinstock
inequality, are settled down, a natural question is that of the uniqueness of the so-
lution. In this paper we are able to show the following quantitative version of the
weighted isoperimetric inequality which, as a consequence, gives rise to the quan-
titative Brock-Weinstock inequalities of Theorem 1.1.

Theorem 1.3. Let M be a non-compact harmonic manifold and o 2 M be some
fixed point. Let � ⇢ M be a domain and B be the ball centered in o such that
|B| = |�|. Then there exists a constant C = C(|�|,M) such that

Po(�) � Po(B) � C|� \ B|2.

Notice that the constant C depends on � only via its volume, so that the inequality
holds true with a fixed constant on the class of domains of given volume.

Eventually, we investigate the compact setting. In this case we show that the
Brock-Weinstock inequality does not hold, at least in its full generality. Precisely
we prove the following result:

Theorem 1.4. Let M = Sm . There exists R > ⇡
2 such that �1(�R) > �1(BS),

where �R is the intersection of two geodesic balls of radius R with antipodal cen-
ters, and BS is a geodesic ball such that |�R| = |BS|.

Plan of the paper

In Section 2 we settle down the notation used throughout the paper and we properly
introduce the Steklov spectrum on a manifold, as well as a variational characteri-
zation of its first eigenvalue. Thereafter we recall the main geometric features of
harmonic manifolds and ROSS.

Section 3 is devoted to the study the Steklov spectrum of geodesic balls in
ROSS. In particular, for non-compact ROSS, we determine the eigenfunctions cor-
responding to the first eigenvalue of the ball which, in the Euclidean setting, are the
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coordinate functions. The precise knowledge of these eigenfunctions is a crucial
point for our proofs to work.

Section 4 contains the proof of Theorems 1.1, 1.2, 1.3, while the proof of
Theorem 1.4 is postponed to Section 5.

2. Background and notation

2.1. The Steklov spectrum of a domain

Let M be a Riemannian manifold of dimension n and let � ⇢ M be an connected
open bounded set with Lipschitz boundary. The Steklov eigenvalue problem, in-
troduced by the Russian mathematician V. A. Steklov [24], consists in finding a
solution u of the boundary value problem

(
�1u = 0 in �

@⌫u = �u on @�,

where 1 is the Laplace-Beltrami operator on � and @⌫u is the partial derivative of
u on @�.

Equivalently, the problem reduces to study the spectrum of the operator Diri-
chlet-to-Neumann R : L2(@�) ! L2(@�) which maps f 2 L2(@�) to the nor-
mal derivative on the boundary of the harmonic extension of f inside of �. This
operator is symmetric and positive. Moreover, thanks to the compactness of the
embedding of the trace operator from H1(�) into L2(@�), the resolvent of R is
compact. Thus L2(@�) admits an Hilbert basis {uk}k2N of eigenfunctions for R,
and of positive eigenvectors 0 = �0(�) < �1(�)  �2(�)  . . . diverging to +1
such that (

�1uk = 0 in �

@⌫uk = �k(�)uk on @�.

For ease of presentation, for u 2 H1(�) we still denote by u its trace in L2(@�).
Here solutions are intended in the weak�H1(�) sense, that is

Z

�
hruk,r'i dvM = �k(�)

Z

@�
uk' dv@� for every ' 2 H1(�).

The eigenfunctions uk and the eigenvalues �k(�) are respectively the Steklov eigen-
functions and eigenvalues of �. In this paper we are mostly interested in the first
non-zero Steklov eigenvalue, �1(�) which can be characterized variationally as

�1(�) = min

(R
� |ru|2 dvMR
@� u2 dv@�

: u 2 H1(�),

Z

@�
u dv@� = 0

)

. (2.1)
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2.2. Harmonic manifolds and rank one symmetric spaces

Although our main result only concern the ROSS, some of the lemmas or interme-
diate results hold true for the larger class of harmonic manifolds.

Harmonic manifolds are those Riemannian manifolds whose harmonic func-
tions have the mean value property. Equivalently, a Riemannian manifold M is
harmonic if and only if there exists a function h : R⇤

+ ! R such that any sphere
of radius r has constant mean curvature h(r). Another equivalent property is that
there exists a function ✓ : R+ ! R such that at any point x 2 M the volume form
in normal coordinates reads dvM = ✓(r)drd⇠ where d⇠ is the canonical volume
form of the unit tangent sphere UxM at x (the function ✓ is usually called the vol-
ume density function of M). It is not difficult to show that harmonic spaces are
Einstein manifolds and that a Riemannian manifold is harmonic if and only if its
universal cover is harmonic. Therefore, in what follows we will only consider sim-
ply connected harmonic manifolds. General properties of harmonic manifolds can
be found in [5, Chapter 6], [28, Sections 1 and 2] and [21, Section 2].

The basic examples of harmonic manifolds are the Euclidean spaces and the
Rank One Symmetric Spaces (ROSS, see Subsection 2.3 for the definition and main
properties). In 1944, A. Lichnérowicz conjectured, and proved in dimension 4, that
the Euclidean spaces and ROSS are the only harmonic manifolds. The conjecture
was then proved by Z. I. Szabo for compact simply connected manifolds (cf. [28]).
However, the Lichnérowicz conjecture was proved to be false in the non-compact
case: E. Damek and F. Ricci constructed harmonic homogeneous manifolds which
are not ROSS (cf. [14]). Up to now, the Euclidean spaces, ROSS and Damek-Ricci
spaces are the only known harmonic manifolds.

The main properties of harmonic manifolds we will use in our proofs are sum-
marized in the following proposition:

Proposition 2.1. Let Mm be a non-compact harmonic manifold and note ✓(r) its
density function and h(r) the mean curvature of spheres of radius r . The following
holds:

(i) (m � 1)h(r) = ✓ 0(r)
✓(r) ;

(ii) h(r) decreases to a nonnegative constant h0;
(iii) (m � 1)h0 is the volume entropy of M;
(iv) h0 = 0 if and only if M is the euclidean space.

Proof. The first point is a classical fact of Riemannian geometry.
The second point is proved in [27]. In particular, the non-compact harmonic

manifolds have no conjugate points, so that they have well defined horospheres and
Busemann functions, and their horospheres have constant mean curvature h0.

The volume entropy of M is limr!+1
ln(v(r))

r , where v(r) is the volume of a
ball of radius r . The manifold M being harmonic, the classical derivation formula
gives v00(r) = (m � 1)h(r)v0(r) and the third point follows from limr!+1 h(r) =
h0.
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The last point is a consequence of results by Y. Nikolayevsky [25, Theorem 2]
and A. Ranjan and H. Shah [26, Theorem 4.2]

2.3. The geometry of ROSS

In this section we give some geometric properties of ROSS which will be used
later. In particular, we describe the extrinsic and intrinsic geometry of their geodesic
spheres. There are two families of simply connected ROSS, the compact ones (the
round sphere Sn and the projective spaces CPn , HPn and CaP2) and the non-
compact ones (the hyperbolic spaces RHn , CHn , HHn and CaH2). We outline
here the definition of ROSS and refer to [5, Chapter 3] for the details of the con-
struction.

In what follows, K will denote one of the following: the field R of real num-
bers, the fieldC of complex numbers, the algebraH of quaternions or or the algebra
Ca of octonions. Let d = dimR(K), and consider Kn+1 equipped with the Hermi-
tian product

hx, yi =
nX

i=0
xi ȳi

whose real part h., .iR is the standard Euclidean inner product on Kn+1 viewed as
an dn + d real vector space. If K 6= Ca, the group U(1, K) of unit elements in K
acts on the unit sphere Snd+d�1 of Kn+1 by right multiplication, and the projective
space KPn is Snd+d�1/U(1, K). Therefore it is the base space of the fibration

Sd�1 ! Snd+d�1 ! KPn

and, considering the standard metric on Snd+d�1, there is a unique metric on KPn
which makes this fibration a Riemannian submersion with totally geodesic fibers
(cf. [18, Section 2.A.5]). In case K = Ca, such a construction only works if n = 2
(cf. [5, Section 3.G]).

The non-compact ROSS are defined in a similar way, replacing the hermitian
product on Kn+1 by

hx, yi = �x0 ȳ0 +
nX

i=1
xi ȳi

whose real part h., .iR is a real bilinear form with signature (d, nd) on Kn+1,
and replacing the sphere Snd+d�1 by Hnd+d�1 = {x 2 Kn+1 | hx, xi = �1}.
We still have the U(1, K) action on Hnd+d�1 and the hyperbolic space KHn is
Hnd+d�1/U(1, K). It is the base space of the fibration

Sd�1 ! Hnd+d�1 ! KHn.

The metric induced by h., .iR on Hnd+d�1 has signature (d � 1, nd), and since it is
preserved by the action of U(1, K) whose orbits are d � 1 dimensional spheres, its
restriction to the orthogonal of the fiber is positive definite. Therefore the fibration
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induces a Riemannian metric onKHn (cf. [22, Chapter XI, Example 10.7] for such
a construction of the complex hyperbolic space).

Let Mm be a ROSS of dimension m = dn, with d = dimR(K). For a common
treatment of the compact and non-compact cases we will use the following notation:

s(t) =

(
sin(t) if M is a compact ROSS
sinh(t) if M is a non-compact ROSS

and

c(t) =

(
cos(t) if M is a compact ROSS
cosh(t) if M is a non-compact ROSS.

We will use the framework of Jacobi tensor to describe the second fundamental
form of spheres and the density function. Let � be a geodesic with initial point
x = � (0) and initial speed ⇠ = �̇ (0) 2 UxM , and note N� its normal bundle, that
is the disjoint union of the Nt� = {⌘ 2 T� (t)M | h⌘, �̇ (t)i = 0}. A (1, 1)-tensor
A along � is a differentiable section of End(N� ), whose derivative is defined by
A0X = D�̇ (AX) � AD�̇ X , for any normal vector field X along � .

In particular, the curvature tensor R of M induces a (1, 1)-tensor R(t) along �
defined by R(t)⌘ = R(�̇ (t), ⌘)�̇ (t), and a Jacobi tensor is a solution of the equation
A00(t) + R(t)A(t) = 0. In the sequel, we will note A⇠ the Jacobi tensor with initial
conditions A⇠ (0) = 0 and A0

⇠ (0) = I .
If X is a parallel vector field along gamma with X (0) = ⌘ orthogonal to ⇠ , then

Y = A⇠ X is the Jacobi field along � with Y (0) = 0 and Y 0(0) = ⌘. As a conse-
quence we have that the density function is given by ✓(⇠, t) = det(A⇠ (t)), and the
second fundamental form of the sphere St (x) at expx (t⇠) is given by A0

⇠ (t)A
�1
⇠ (t)

(cf. for example [18, Section 3.H] for the computation of the density from Jacobi
fields).

As a consequence of the definition of M , it carries d � 1 orthogonal complex
structures J1, . . . , Jd�1 (cf. [5, Chapter 3]). The curvature tensor of M is described,
using these complex structures, in the following way: for any ⇠, ⌘ 2 UxM with ⌘
orthogonal to ⇠, J1⇠, . . . , Jd�1⇠ we have

R(⇠, Ji⇠)⇠ = 4"Ji⇠ and R(⇠, ⌘)⇠ = "⌘,

where we choose " 2 {�1, 1} being 1 in the compact case and �1 in the non-
compact case. For a geodesic � with initial point x = � (0) and initial speed ⇠ =
�̇ (0) 2 UxM , consider an orthonormal parallel frame (E1, . . . , Em) such that E1 =
�̇ and, for i = 1, . . . , d � 1, Ei+1 = Ji �̇ . For each t , the eigenspaces of R(t) are
spanned by E2(t), . . . , Ed(t) with eigenvalue 4" and by Ed+1(t), . . . , Em(t) with
eigenvalue ". Therefore, integrating the Jacobi equation, we have that A⇠ (t) has the
same eigenspaces with eigenvalues

↵(t) =
1
2
s(2t) = s(t)c(t) and �(t) = s(t),
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with respective multiplicities d � 1 and m � d. From this computation of Jacobi
tensors, we have that the non-compact ROSS have no conjugate point, while the
compact ones have a first conjugate point at distance t = ⇡ if M = Sm and t = ⇡

2
otherwise. In particular, for compact ROSS, the injectivity domain of the exponen-
tial map is the ball of radius diam(M) in UxM . In the following, we assume that
t < diam(M).

As a first consequence of the above computation, the density function of M is
given by

✓(t) =
1

2d�1 s(2t)
d�1s(t)m�d = c(t)d�1s(t)m�1.

Moreover, the second fundamental form of the geodesic sphere Sx (t) has two eigen-
values, 2c(2t)s(2t) and

c(t)
s(t) , the first one being of multiplicity d � 1 with an eigenspace

spanned by J1 @
@r , . . . , Jd�1

@
@r , where

@
@r is the radial field centered at x . From these

computations we get that the mean curvature of the geodesic spheres of radius r sat-
isfies

h(t) =
c(t)
s(t)

� "
d � 1
m � 1

s(t)
c(t)

. (2.2)

Remark 2.2. If M is the sphere Sm or the real hyperbolic space RHm then only
the second eigenvalue appears and the geodesic spheres of M are totally umbilical.

For a general ROSS, two important properties will be used later: the eigenval-
ues of the second fundamental form only depend on the radius of the geodesic
sphere and there exists a parallel orthonormal frame of eigenvectors along the
geodesic � .

These two properties are not satisfied in general Damek-Ricci spaces which
are not two-point homogeneous. Moreover, their curvature tensor R(t) do not have
parallel eigenvectors nor constant eigenvalues along the geodesic � (cf. [4, Section
4.3]).
From the previous computations we can derive the induced metric of geodesic
spheres. Let o be some fixed point in M , and gc the canonical metric of the unit
sphere UoM in ToM . For each r > 0, consider the exponential map

(
UoM ! Sr (o)
⇠ 7! expo(r⇠)

and denote by gr the pullback on the unit sphereUoM of the metric of the geodesic
sphere Sr (o).

Using the complex structures J1, . . . , Jd�1 on ToM , consider the d � 1 unit
vector fields on UoM defined at ⇠ 2 UoM by J1⇠, . . . , Jd�1⇠ , and their dual 1-
forms �k . As the differential of the exponential map is given by Jacobi tensor, from
the computations above we have that the metric gr is given by

gr = s2(r)

 

gc �
d�1X

k=1
�k ⌦ �k + c2(r)

d�1X

k=1
�k ⌦ �k

!

.
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Remark 2.3. If M is the sphere Sm or the real hyperbolic space RHm then gr =
s2(r)gc and the geodesic sphere So(r) is a round sphere of curvature 1

s2(r) .
For the other ROSS, the metrics gr are known as Berger’s metric and were

widely studied, in particular for their spectral properties.

3. The Steklov spectrum of geodesic balls in ROSS

In this section we introduce the main definitions and some preliminary results which
will be exploited in Section 4.

Let M be a ROSS and o be some fixed point in M . For any x 2 M , let
r(x) = d(o, x) and (assuming that r(x) < diam(M) if M is a compact ROSS) let
w(x) 2 UoM be the unique unit vector at o such that x = expo(r(x)w(x)).

We will note1r and1c the Laplace operators of the metrics gr and gc respec-
tively.

3.1. The Laplace spectrum of geodesic spheres

Up to the factor s2(r), the metric gr is a Berger metric on the sphere for which the
spectrum of the Laplacian is known. The key point in describing the spectrum is
that the sphere UoM is the total space of a Riemannian submersion and that the
metric gr is obtained from the canonical metric gc by a rescaling of the fibers. This
setting was considered in the special case of odd dimensional spheres in [29, 30]
and in the general case of a Riemannian submersion in [2].

Theorem 3.1. The Hilbert space L2(UoM) admits a Hilbert basis which consists
of eigenfunctions of 1c and of each 1r .

Proof. Multiplying the Berger metric by s2(r) rescale the eigenvalues of the Lapla-
cian by s�2(r), but does not modify the eigenfunctions. Therefore the theorem is
just a consequence of [2, Theorem 3.6 and Corollary 5.5].

In the sequel we consider a Hilbert basis ( fk)k2N of common eigenfunctions
and we note �k(r) the eigenvalue of1r associated to fk , and �c,k the eigenvalue of
1c associated to fk . Moreover, we chose the Hilbert basis in such a way that the
sequence (�c,k)k2N is the increasing sequence of eigenvalues of the standard unit
sphere.

As the functions ( fk)k2N are eigenfunctions of 1c, they are given by spher-
ical harmonics of the tangent space ToM (i.e., they are the restrictions to the unit
sphereUoM of homogeneous harmonic polynomials of some Cartesian coordinates
in ToM). In particular, we have that f0 is a constant function, and, for k = 1, . . . ,m,
fk = h⇠k, .i where (⇠1, . . . , ⇠m) is an orthonormal basis of ToM .
Remark 3.2. The ordering of the eigenvalues may change as r varies. In particular,
if M is a compact ROSS, there exists a parameter r0 such that the eigenvalues of
1r0 associated to the first and some of the second spherical harmonics coincide,
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and such that, for r > r0, the smallest non-zero eigenvalue of 1r is given by some
second spherical harmonics (cf. [2, 29, 30]). This kind of phenomena was the main
motivation for studying the spectrum of Berger spheres.
Remark 3.3. The fact that the first spherical harmonics give rise to eigenfunctions
of1r also holds true on harmonic manifolds (cf. [21,26]). However, as explained in
the above remark, it is not true in general that they give rise to the smallest non-zero
eigenvalue of 1r .

3.2. From the Laplace spectrum of spheres to the Steklov spectrum of balls

In this section we construct a family of harmonic functions from the eigenfunctions
of1r . These functions can be seen as the “spherical harmonics” of M and will give
rise to Steklov eigenfunctions of the geodesic balls.

Proposition 3.4. For each k 2 N there exists a function ak : [0, diam(M)) ! R
such that the function Fk : M ! R defined by Fk(x) = ak(r(x)) fk(w(x)) is
harmonic. Moreover, ak admits a power series expansion of the form

ak(r) = r p +
X

i�p+1
⇠i r i ,

where p depends on k and satisfies p � 1 if k � 1.

Proof. Let a : R+ ! R be a smooth function. Using that the gradient of a(r) is
orthogonal to the gradient of fk(w) we have

1(a(r) fk(w)) = a(r)1 fk(w) + fk(w)1a(r).

Since fk(w) is constant along the geodesic lines from o we get, at any point x 2 M ,

1 fk(w) = Tr
⇣
D2 fk(w)|Tx Sr

⌘
= 1Sr fk(w) = ��k(r) fk(w).

On the other hand, because 1r = (m � 1)h(r) we have

1a(r) = (m � 1)a0(r)h(r) + a00(r).

Finally we get

1
�
a(r) fk(w)

�
=
�
a00(r) + (m � 1)h(r)a0(r) � �k(r)a(r)

�
fk(w). (3.1)

To get the result we only need to show that a solution ak of the Sturm-Liouville
ODE

a00 + (m � 1)ha0 � �ka = 0 (3.2)
exists. This is likely to be folklore, but since we could not find a precise reference,
we sketch a way to get such a solution. First we rewrite our equation as

r2a00(r) +

✓
r
✓ 0

✓
(r)
◆
ra0(r) � r2�k(r)a(r) = 0, (3.3)
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and we recall that both r ✓ 0

✓ (r) and r2�k(r) admit power series expansions converg-
ing on [0, diam(M)):

r
✓ 0

✓
(r) =

X

i�0
↵i r i and r2�k(r) =

X

i�0
�i r i .

Writing the Sturm-Liouville ODE in the form (3.3), emphasizes the singular nature
of the equation at r = 0, see [13, Chapter V].

In the neighborhood of any point, the metric of a Riemannian manifold is lo-
cally asymptotically Euclidean. Therefore, the first terms of the expansions of r✓ 0/✓
and r2�k(r) are ↵0 = m�1, ↵1 = 0, �0 = �c,k , and �1 = 0, where �c,k is the k�th
eigenvalue of the standard sphere Sm�1. In particular, there exists p 2 N such that
�0 = p(p +m � 2), with p � 1 if k � 1. We begin by searching a formal solution
of Equation (3.3), with the goal to show later that this is indeed a solution. In other
words, we write a solution as a(r) =

P
i�0 ⇠i r i . Plugging it into Equation (3.3)

gives
X

i�0
(i(i � 1)⇠i + �i � �i ) r i = 0, (3.4)

with �i =
Pi

j=0 j⇠ j↵i� j and �i =
Pi

j=0 ⇠ j�i� j . Thus all the coefficient have to
be null in (3.4). By the explicit values of ↵0, ↵1, �0, �1 we can show by induction
that, for i  p, it holds

⇠i (i(i + m � 2) � p(p + m � 2)) = 0,

that is ⇠i = 0 for i < p. Moreover this allows us to choose ⇠p = 1. For i > p,
equality (3.4) reads as

⇠i (i(i + m � 2) � p(p + m � 2)) +
i�1X

j=0

�
j↵i� j � �i� j

�
⇠ j = 0 (3.5)

and the coefficient ⇠i are recursively well defined. Moreover, Equation 3.5 brings
to

|⇠i | (i(i + m � 2) � p(p + m � 2)) 
i�1X

j=0
j |⇠ j ||↵i� j | +

i�1X

j=0
|⇠ j ||�i� j |. (3.6)

We are left to show that the sum defining a(r) converges for r 2 [0, diam(M)), that
is: the formal solution is a solution indeed.
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Fix some positive R < diam(M) and note CR =
P

i�0(|↵i | + |�i |)Ri . For
i 2 N, define Ai = max j=0,...,i |⇠ j |R j . Then by (3.6) it follows

(i(i + m � 2) � p(p + m � 2))|⇠i |Ri


i�1X

j=0
j |⇠ j |R j |↵i� j |Ri� j +

i�1X

j=0
|⇠ j |R j |�i� j |Ri� j

 Ai�1

 

i
i�1X

j=0
Ri� j (|↵i� j | + |�i� j |)

!

 Ai�1iCR .

Therefore, there exists i0 2 N such that for all i � i0, |⇠i |Ri  Ai�1. This implies
that (|⇠i |Ri )i2N is a bounded sequence and the sum defining ak(r) converges for
any r < R. Since R is arbitrary, it converges for any r 2 [0, diam(M)).

Corollary 3.5. For each r > 0, the functions ( fk(w))k2N are eigenfunctions of the
Dirichlet-to-Neumann operator on Sr . Moreover the associated Steklov eigenvalues
(�k(r))k2N are smooth functions of r , and solve the following ODE

� 0
k + � 2k + (m � 1)h�k = �k . (3.7)

Proof. Fix some R > 0. Up to the multiplicative constant ak(R), the function Fk
given by Proposition 3.4 is the harmonic filling of fk(w) in the ball BR . As the
gradient of fk(w) is tangent to the sphere SR we have that the normal derivative of
Fk along the boundary of BR is

@Fk
@r

= a0
k(R) fk(w) =

a0
k(R)

ak(R)
Fk,

so that fk(w) is a Steklov eigenfunction associated to the eigenvalue �k(R) =
a0
k(R)

ak(R) .

Differentiating a0
k(r)
ak(r) and using (3.2) we get the desired ODE.

3.3. The first eigenfunctions of a ball in a non-compact ROSS

The particular case of the first spherical harmonics is easy to handle and the asso-
ciated Steklov eigenfunctions can be computed explicitly. This can be done in the
general setting of a harmonic manifold.

Let M be a non-compact harmonic manifold with density function ✓(t), and
let h(t) = ✓ 0(t)

(m�1)✓(t) be the mean curvature of spheres of radius t . Let o be some
fixed point in M and note r = d(o, .) the distance function to o. For any ⇠ 2 ToM
consider the function f = h⇠, .i and let

a(t) =

R t
0 ✓(s) ds

✓(t)
.
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This function a has the following properties:

Proposition 3.6. If v(t) = |Bt (o)| is the volume of the ball of radius t , then a(t) =
v(t)
v0(t) and a is an increasing function on R+.

Proof. As v(t) = |Sm�1|
R t
0 ✓(s) ds we get v0(t) = |Sm�1|✓(t) = |@Bt (o)| and

a(t) = v(t)
v0(t) . A simple computation gives

a0(t) = 1� (m � 1)h(t)a(t). (3.8)

As we have 1r = (m � 1)h(r), using that the function h is decreasing (see Propo-
sition 2.1) and integrating 1r over Bt \ B" for some 0 < " < t we get

(m � 1)h(t)(v(t) � v(")) <

Z

Bt\B"

1rdvM  |@Bt | � |@B"|

where we used that rr is the outward unit normal on @Bt and the inward unit
normal on B". Letting " tend to 0 we get (m � 1)h(t)v(t) < v0(t) and

0 < 1� (m � 1)h(t)
v(t)
v0(t)

= a0(t).

As stated in Proposition 2.1, the function h(r) decreases to some constant h0
which is the mean curvature of horospheres of M . If h0 = 0 then M is the euclidean
space and a(r) = r . Otherwise, using that ✓ 0(r) = (m � 1)h(r)✓(r), we get that
limr!1 a(r) = 1

(m�1)h0 > 0.

Proposition 3.7. The function f (w) is an eigenfunction of the Laplacian of any
geodesic sphere Sr (o) associated to the eigenvalue �(m� 1)h0(r) and the function
F = a(r) f (w) is harmonic. In particular, F is a Steklov eigenfunction of the ball
Br (o) associated to the eigenvalue a0(r)

a(r) .

Proof. Cf. [21, 26].

The main question is whether the Steklov eigenvalue associated to the first
spherical harmonics is the first non-zero eigenvalue. We prove this is the case for a
non-compact ROSS. The first step is a comparison result for solutions of Equation
(3.7):

Lemma 3.8. Let µ1, µ2 : R⇤
+ ! R be two functions such that µ1  µ2 on R⇤

+,
and, for k = 1, 2, let ↵k be non-negative solutions of

↵0
k + ↵2k + (m � 1)h↵k = µk .

If there exists t0 > 0 such that ↵1  ↵2 on ]0, t0] then we have that ↵1  ↵2 on R⇤
+.
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Proof. Let � = ↵2 � ↵1. From the differential equations satisfied by ↵1 and ↵2 we
have

� 0 + b� = µ2 � µ1 � 0
where b = ↵1 + ↵2 + (m � 1)h. If � is a positive solution of � 0 + b� = 0, we get
� 0 � � 0

� � � 0. As � is positive we also have
⇣

�
�

⌘0
� 0 which implies that, for all

t � t0, we have �(t) � �(t0)
� (t0)� (t) � 0.

From this lemma, it is sufficient to prove that, for any r > 0, �1(r) is the
first non-zero eigenvalue of the geodesic sphere Sr (o) to get that �1(r) is the first
non-zero Steklov eigenvalue of the geodesic ball Br (o). Up to some rescaling, the
spectrum of the Berger metric gc �

Pd�1
k=1 �k ⌦ �k + t

Pd�1
k=1 �k ⌦ �k was computed

in [29,30]. It appears that if the parameter t is greater than 1, than the first spherical
harmonics remain associated to the first eigenvalue. For the geodesic sphere Sr (o),
the parameter is t = cosh(r) > 1, so that we have:
Proposition 3.9. Let M be a non-compact ROSS and o 2 M be some fixed point.
For an orthonormal basis (⇠1, . . . , ⇠m) of ToM , consider the functions fi = h⇠i , .i,
i = 1, . . . ,m.

For any R > 0, the functions fi (w) are eigenfunctions of the Dirichlet-to-
Neumann operator on SR(o) associated to the first Steklov eigenvalue �1(BR), and
their harmonic filling in BR(o) are Fi = a(r)

a(R) fi (w).

The above Proposition has to be compared with [7, Theorem 2.1]. Note that such
a statement does not hold on compact ROSS. In this case, the parameter t of the
Berger metric is t = cos(r) < 1 and for a geodesic sphere Sr (o) with r large
enough, the functions fi are no more associated to the first non-zero eigenvalue of
the Laplacian of Sr (o) (see the computations in [29,30] and [2, Remark 7.3]).

4. Brock-Weinstock inequalities in non-compact ROSS

In this section we prove Theorem 1.1.

4.1. A weighted isoperimetric inequality on Harmonic manifolds

Let M be a non-compact harmonic manifold of dimension m. This subsection is
devoted to the proof of a weighted isoperimetric inequality which is a key point in
the eigenvalue estimate. We first introduce the weighted perimeter involved in this
inequality.
Definition 4.1 (Weighted perimeter). Let M be a non-compact harmonic mani-
fold with volume density function ✓ , and let o 2 M be some fixed point. The
weighted perimeter of a domain � ⇢ M is

Po(�) =
Z

@�
a(r)2 dv@�

where r is the distance function to o and a(r) =
R r
0 ✓(s)ds

✓(r) = v(r)
v0(r) .
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Isoperimetric inequalities for weighted perimeters were considered in [6] in the
Euclidean space. For the perimeter Po defined above, we prove such an inequality
on harmonic manifolds using a calibration technique as in [8]. In the special case
of ROSS, the following inequality was proved in [7, Lemma 3.3].
Theorem 4.2. Let M be a non-compact harmonic manifold and o 2 M be some
fixed point. For any domain � ⇢ M we have,

Po(�) � Po(B), (4.1)

where B is the ball centered in o such that |�| = |B|. Moreover equality holds if
and only if � = B.
Proof. The proof relies on a calibration technique developed in [8] (see also [23]).
Let

G(r)=div
✓
a(r)2

@

@r

◆
=a(r)21r+2a(r)a0(r)=(m�1)a2(r)h(r)+2a(r)a0(r).

From (3.8) we get G(r) = a(r) + a(r)a0(r), and a direct computation shows then
that G 0 is given by

G 0(r) = 2a0(r)2 � (m � 1)h0(r)a(r)2.

Since r 7! h(r) is a decreasing function (cf. Proposition 2.1), we get that G is an
increasing function of the distance from o:

G 0(r) > 0. (4.2)

Let B be the ball centered at o such that |B| = |�|, and let R be its radius. We have
Z

�
G(r) dvM =

Z

�
div

✓
a(r)2

@

@r

◆
dvM =

Z

@�
a(r)2

⌧
@

@r
, ⌫�

�
dv@�  Po(�),

and
Z

B
G(r) dvM =

Z

B
div

✓
a(r)2

@

@r

◆
dvM =

Z

@B
a(R)2

⌧
@

@r
, ⌫B

�
dv@B = Po(B).

Thus

Po(�) � Po(B) �
Z

�
G(r) dvM �

Z

B
G(r) dvM

=
Z

�\B
G(r) dvM �

Z

B\�
G(r) dvM

�
Z

�\B
|G(r) � G(R)| dvM +

Z

B\�
|G(r) � G(R)| dvM

(4.3)

where in the last inequality we used the facts that G is an increasing function of
r and that |� \ B| = |B \ �| (which follows from |�| = |B|). To character-
ize the equality case, we notice that the last quantity is positive when � 6= B,
as |G(r) � G(R)| > 0 for r 6= R. Thus we can have equality in (4.1) only if
�= B.
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4.2. Quantitative stability of the weighted isoperimetric inequality

In this section we show a quantitative version of the isoperimetric inequality proved
in the previous section. In what follows we work in the framework of the previous
section: B is the ball centered in the fixed point o such that |B| = |�|, let R be its
radius, for each s � 0 we note Bs the ball of radius s centered in o, and we denote

� = |� \ B| = |B \ �|.

As before, we set for s � 0, v(s) = |Bs | the volume of the ball of radius s; as the
manifold M is harmonic, the volume of Bs does not depend on the center of the
ball, and since M is non-compact, v is an increasing function on R+. Let moreover
Rext > Rint � 0 be defined by the relations

�
�BRext

�
�� |BR| = |� \ B| = |B \ �| = |BR| �

�
�BRint

�
�.

Lemma 4.3. It holds

(i) Rext = v�1(|�| + �);
(ii) Rint = v�1(|�| � �);
(iii) R = v�1(|�|);
(iv) a(t) = v(t)

v0(t) ;
(v) a(v�1(s)) = s(v�1)0(s).

Proof. The proof of (i)-(iii) follows straightforwardly from the definitions of Rext,
R, Rint and �. The point (iv) was already observed in Proposition 3.6 as a conse-
quence of the definitions of the density function and of a and v. To prove (v) just
use (iv) to get

�
v�1�0(s) =

1
v0
�
v�1(s)

� (iv)
=

a
�
v�1(s)

�

s
.

The quantitative stability for the weighted isoperimetric inequality is obtained
in two step: we first prove it for domains which are a priori close to the ball and
then use a continuity argument to get it for arbitrary domains.

Proposition 4.4. There exists �̄ = �̄(|�|,M) > 0 and C = C(|�|,M) > 0 such
that if |� \ B| < �̄ then

Po(�) � Po(B) � C|� \ B|2.

Proof. By (4.3) we know that

Po(�) � Po(B) �
Z

�\B
G(r) dvM �

Z

B\�
G(r) dvM .
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Since G is an increasing function it is easy to show that

Po(�) � Po(B) �
Z

�\B
G(r) dvM �

Z

B\�
G(r) dvM

�
Z

BRext\B
G(r) dvM �

Z

B\BRint
G(r) dvM

=
�
�Sm�1��

Z Rext

R
G(t)✓(t) dt �

�
�Sm�1��

Z R

Rint
G(t)✓(t) dt.

(4.4)

Let us recall now that G(t) = a(t) + a(t)a0(t), from which we get

G(t)✓(t) = a(t)✓(t) + a0(t)
Z t

0
✓(s) ds =

d
dt


a(t)

Z t

0
✓(s) ds

�
.

Thus we have, for 0 < S < T ,
Z T

S
G(t)✓(t) dt = a(T )

Z T

0
✓(t) dt � a(T )

Z S

0
✓(t) dt.

By applying this equality with S = R, T = Rext and S = Rint, T = R in the last
term of (4.4) we get

Po(�) � Po(B) � a(Rext)
�
�BRext

�
�� 2a(R)|B| + a(Rint)

�
�BRint

�
�. (4.5)

Let g : R+ ! R be defined by g(s) = s2(v�1)0(s) = sa(v�1(s)) so that (4.5) can
be written as

Po(�)�Po(B) � g(|�|+�)�2g(|�|)+g(|�|��) =
�2

2
�
g00(s1)+g00(s2)

�
, (4.6)

for some s1, s2 2]|�| � �, |�| + �[. A simple computation now gives

g00(s) =
2a0(t)2 � (m � 1)a(t)2h0(t)

v0(t)
> 0,

where t = v�1(s). Choosing �̄ such that g00(s) � g00(|�|)
2 on ]|�| � �̄, |�| + �̄[, and

assuming that |� \ B| = � < �̄, we get

Po(�) � Po(B) �
g00(|�|)

2
|� \ B|2.

Remark 4.5. Following [8], it is possible to get the full stability result from Equa-
tion (4.6) in the special case where the function g00 is non-increasing. In fact, as
� = |� \ B|  |�|, Equation (4.6) gives

Po(�) � Po(B) � g00(2|�|)|� \ B|2
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without any restriction on �. A computation of the third derivative of g gives

g000(s) =
6a0(t)a00(t) + (m � 1)2a(t)2h(t)h0(t) � (m � 1)a(t)2h00(t)

v0(t)2
,

where t = v�1(s). The sign of g000 is not obvious for an arbitrary harmonic man-
ifold. However, if M is a non-compact ROSS, a direct computation proves that
a00  0 and h00 � 0 so that g00 is non-increasing and the stability result follows.
To get a full stability result in the general case, we have to show that it is not
restrictive to only consider sets which are near to the ball in L1. Namely we need
the following continuity lemma.
Lemma 4.6. Let (�k)k2N be a sequence of domains in M such that, for all k 2
N, |�k | = c and let B be the ball centered in o with |B| = c. Suppose that
Po(�k) � Po(B) ! 0 as k ! 1. Then

lim
k!1

|�k \ B| ! 0.

Proof. Let R be the radius of B. For any ⇢ > R, by repeating the proof of Theorem
4.2, until formula (4.3), we get that

Po(�k) � Po(B) �
Z

�k\B
|G(r) � G(R)| dvM

�
Z

�k\B⇢

(G(r) � G(R)) dvM

� (G(⇢) � G(R))|�k \ B⇢ |

� (G(⇢) � G(R))|�k \ B| � (G(⇢) � G(R))|B⇢ \ B|.

Therefore, we have

|�k \ B| 
Po(�k) � Po(B)

G(⇢) � G(R)
+ |B⇢ \ B|

and when k tends to1 we get, for any ⇢ > R,

lim sup
k!1

|�k \ B|  |B⇢ \ B|.

Letting ⇢ tend to R gives the result.

Theorem 4.7. Let M be a non-compact harmonic manifold and o 2 M be some
fixed point. Let � ⇢ M be a domain and B be the ball centered in o such that
|B| = |�|. Then there exists a constant C = C(|�|,M) such that

Po(�) � Po(B) � C|� \ B|2. (4.7)

Proof. Let� 2 M and let �̄ > 0 be the parameter of Proposition 4.4. If |�\ B| < �̄
we are done. Otherwise, by Lemma 4.6 there exists "̄ > 0 such that

Po(�) � Po(B) > "̄ =
"̄

|� \ B|2
|� \ B|2 �

"

|�|2
|� \ B|2.
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4.3. Choosing a base point

Let M be a harmonic manifold and � be a bounded domain of M . The proof
of the Brock-Weinstock inequality relies on a transplantation method consisting in
plugging the first Steklov eigenfunctions of a ball in the Rayleigh quotient of the
domain. In order to get an estimate of the first eigenvalue of � we need these
functions to be orthogonal to the constant. The aim of the following lemma is to
prove that we can chose the center of the ball in such a way.

For y 2 M , note ry = d(y, .) the distance function to y, and for ⇠ 2 UyM , let
Fy,⇠ be the harmonic function on M given by Proposition 3.7:

8x 2 M Fy,⇠ (x) = a(ry)h⇠, wy(x)i

where wy(x) is the unique unit vector in UyM such that x = expy(ry(x)wy(x)).

Lemma 4.8. Let M be a non-compact harmonic manifold and � ⇢ M a compact
set. There exists a point o 2 M such that

8⇠ 2 ToM
Z

@�
Fo,⇠ (x) dv@�(x) = 0. (4.8)

Proof. Consider the functions b : R+ ! R+ and B : M ! R+ defined by

b(r) =
Z r

0
a(s) ds, B(y) =

Z

@�
b(d(x, y)) dv@�(x).

For any ⇠ 2 TyM we have

hrB(y), ⇠i =
Z

@�
b0(d(x, y))hrrx (y), ⇠i dv@�(x)

= �
Z

@�
a(d(x, y))hwy(x), ⇠i dv@�(x)

= �
Z

@�
Fy,⇠ (x) dv@�(x).

Suppose now that o is a minimum of B. Since rB(o) = 0 we get that o is such that
(4.8) holds true.

To show that such a point o exists indeed, we have just to notice that
limr!1 b(r) = +1, as a is an increasing function (see Proposition 3.6). Therefore
the sublevels of B are compact sets and B has a minimum.

Remark 4.9. It is a natural question whether the minimum of B is unique. As the
function a is increasing (cf. Proposition 3.6), the function b is convex on R+. If M
is a non-compact ROSS or a Dameck-Ricci space, the curvature being non-positive,
the distance function is also convex. From these two facts we have that B is convex
and thus has a unique minimum.
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4.4. The Brock-Weinstock inequality holds true on non-compact ROSS

From now on we assume that M is a non-compact ROSS and we use the notations of
Subsection 2.3. Let o 2 M be a fixed point. We first make the connection between
the weighted perimeter and the first Steklov eigenfunctions of a ball. Following the
notation of Section 3, for any x 2 M we note r(x) = d(o, x) and w(x) 2 UoM
the unique unit vector such that x = expo(r(x)w(x)). From now on we fix an
orthonormal basis (⇠1, . . . , ⇠m) of ToM and we write, for i = 1, . . . ,m, Fi =
a(r)h⇠i , wi.

Lemma 4.10. We have

Po(�) =
mX

i=1

Z

@�
F2i dv@�.

Proof. By the definition of Fi we have

mX

i=1

Z

@�
F2i dv@� =

Z

@�
a2(r)

mX

i=1
h⇠i , w(x)i2 dv@�

=
Z

@�
a2(r) dv@�

= Po(�).

The first eigenvalue of the ball BR satisfies

�1(BR)

Z

@BR
F2i dv@BR =

Z

BR
|rFi |2dvM

and summing over i we get

Po(BR)�1(BR) =
Z

BR

mX

i=1
|rFi |2dvM .

The second observation is that the integrand of the right-hand term is a radial func-
tion.

Lemma 4.11. For any x 2 M we have

mX

i=1
|rFi (x)|2 = H(r(x))

where H : R+ ! R+ is given by H(r) = a0(r)2 � (m � 1)h0(r)a(r)2.
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Proof. For i = 1, . . . ,m, note fi = h⇠i , wi, so that Fi = a(r) fi . Let x 2 M and
note ⌘ = w(x), so that, from [21, Section 7] and the computation of Jacobi tensors
on M (cf. Subsection 2.3) we have

r fi (x) = A⇤
⌘(r)

�1(⇠i � h⇠i , ⌘i⌘)

=
mX

j=2
h⇠i , ⌘ j iA⇤

⌘(r)
�1(⌘ j )

=
dX

j=2

h⇠i , ⌘ j i

↵(r(x))
⌘ j +

mX

j=d+1

h⇠i , ⌘ j i

�(r(x))
⌘ j

where (⌘1, . . . , ⌘m) is an orthonormal basis of ToM with ⌘1 = ⌘ and ⌘ j+1 = J j⌘
for j = 1, . . . , d � 1. From these equalities we get

mX

i=1
|r fi (x)|2 =

mX

i=1

dX

j=2

h⇠i , ⌘ j i2

↵(r(x))2
+

mX

i=1

mX

j=d+1

h⇠i , ⌘ j i2

�(r(x))2

=
d � 1

↵(r(x))2
+

m � d
�(r(x))2

.

Therefore, the function
Pm

i=1 |r fi |2 is a radial function on M , and since each of
the fi are eigenfunctions of geodesic spheres with eigenvalue�(m�1)h0(r), taking
the mean over Sr (o) we get

mX

i=1
|r fi |2 =

1
|Sr (o)|

mX

i=1

Z

Sr (o)
|r fi |2dvSr (o)

=
�(m � 1)h0(r)

|Sr (o)|

mX

i=1

Z

Sr (o)
f 2i dvSr (o)

= �(m � 1)h0(r).

For i = 1, . . . ,m, we have rFi = a0(r) fi @
@r + a(r)r fi , and, since @

@r and r fi are
orthogonal we obtain

mX

i=1
|rFi |2 = a0(r)2

mX

i=1
f 2i + a(r)2

mX

i=1
|r fi |2

= a0(r)2 � (m � 1)h0(r)a(r)2.

In the sequel, we note Q(�) =
R
� H(r), so that �1(BR) = Q(BR)

Po(BR) .

Lemma 4.12. The function H is non-increasing on R+.
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Proof. We have

H 0(r) = 2a0(r)a00(r) � (m � 1)h00(r)a(r)2 � 2(m � 1)h0(r)a(r)a0(r),

and since a0(r) = 1� (m � 1)a(r)h(r) we get

H 0(r)=�2(m�1)a0(r)2h(r)�4(m � 1)a(r)a0(r)h0(r) � (m � 1)h00(r)a(r)2.

From the expression 2.2 of h(r), and using that d�1
m�1  1, we get

h(r)h00(r) � 2
✓

1
s(r)2

+
d � 1
m � 1

1
c(r)2

◆2
�

✓
1

s(r)2
�
d � 1
m � 1

1
c(r)2

◆2
= h0(r)2

so that

H 0(r) �2(m � 1)a0(r)2h(r) � 4(m � 1)a(r)a0(r)h0(r) � (m � 1)a(r)2
h0(r)2

h(r)

= �2(m � 1)h(r)
✓
a0(r) + a(r)

h0(r)
h(r)

◆2

 0.
Theorem 4.13. Let M be a non-compact ROSS, let � ⇢ M be a domain and let B
be a ball such that |�| = |B|. Then

�1(�)  �1(B),

with equality if and only if � is a ball.

Proof. Using Lemma 4.8 we choose a base point o 2 M such that the functions Fi
are orthogonal to the constant function on @�. Therefore, for each i = 1, . . . ,m
we have

�1(�) 

R
� |rFi |2 dvM
R
@� F2i dv@�

.

Taking a sum over i we get

�1(�)Po(�) = �1(�)
mX

i=1

Z

@�
F2i dv@� 

mX

i=1

Z

�
|rFi |2 dvM = Q(�).

By the definition of Q and since H is non-increasing we have

Q(�) � Q(BR) =
Z

�
H(r) dvM �

Z

BR
H(r) dvM

=
Z

�\BR
H(r) dvM �

Z

BR\�
H(r) dvM


Z

�\BR
(H(R) � H(r)) dvM  0.
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Therefore Q(�)  Q(BR) and, using Theorem 4.2 we get

�1(�)Po(BR)  �1(�)Po(�)  Q(�)  Q(BR) (4.9)

and
�1(�) 

Q(BR)

Po(BR)
= �1(BR).

Moreover, in case of equality we have Po(�) = Po(BR) which implies that
� = BR .

By combining (4.7) and (4.9) it is easy to produce the stability version of our
quantitative inequality:

Theorem 4.14. Let M be a non-compact ROSS. For any v > 0, there exists a
positive constant C = C(M, v) such that, for any domain � ⇢ M with |�| = v we
have

�1(�)
�
1+ C|� \ B|2

�
 �1(B),

where B is a geodesic ball with |B| = |�|.

Proof. Let o be the base point given by Lemma 4.8 and BR the geodesic ball cen-
tered in owhose volume is equal to |�|. Because the ROSS are harmonic manifolds,
the weighted perimeter of the ball BR does not depend on the base point, and its
radius only depends on its volume. Therefore, the quantity Po(BR) only depends
on the volume |�|.

From inequalities (4.7) and (4.9) we get

�1(�)

✓
1+

C
Po(BR)

|� \ BR|2
◆

 �1(BR)

where the constant C is given by Theorem 4.7, and thus only depends on |�|.

Remark 4.15. Note that in general we can not freely state that, for each i =
1, . . . ,m, Z

�
|rFi |2 dvM 

Z

BR
|rFi |2 dvM .

If this were the case then by an argument similar to that in the above proof, we
would get the stronger inequality

nX

i=1

1
�i (�)

�
n

�i (BR)
.

Compare with [8, Theorem 5.1].
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5. The Brock-Weinstock inequality does not hold on Sm

In this section we denote by �k(A) the k-th Steklov eigenvalue on the sphere Sm
of a domain A ⇢ Sm , and we show that there exists a symmetrical strip � ⇢ Sm
such that �1(�) > �1(B) where B is a ball (in the sphere) with the same volume
as �. In particular, the ball does not maximize the first Steklov eigenvalue on the
sphere, that is, the Brock-Weinstock inequality does not hold true. The choice of a
spherical strip is due to the fact that in this case we are able to compute explicitly its
spectrum (cf. [19, Example 4.2.5] for a similar calculation for annulus in Euclidean
spaces).

Theorem 5.1. Let M = Sm . There exists R > ⇡
2 such that �1(�R) > �1(BS),

where �R is the intersection of two geodesic balls of radius R with antipodal cen-
ters, and BS is a geodesic ball such that |�R| = |BS|.

Proof. Let o+ and o� be two antipodal points on the unit sphere. Viewing Sm as a
submanifold ofRm+1 we have To+Sm = To�Sm as subspaces ofRm+1. For x 2 Sm
we note r+(x) = d(o+, x), r�(x) = d(o�, x), and w(x) the unique unit vector of
To+Sm = To�Sm pointing to x from o+ and o�:

x = expo+

�
r+(x)w(x)

�
= expo�

�
r�(x)w(x)

�
.

Let R > ⇡
2 and�R = BR(o+)\ BR(o�), S+

R = @BR(o+), S�
R = @BR(o�) (so that

@�R = S+
R [S�

R ). Let ( fk)k2N be a basis of spherical harmonics of L2(Sm�1)where
Sm�1 is the unit sphere of To±Sm and the ordering is such that the corresponding
sequence of eigenvalues is non-decreasing. By Proposition 3.4 and Corollary 3.5
we know that, for each k 2 N, there exist radial functions ak(r+) and ak(r�) such
that

F±
k := ak

�
r±� fk(w), k 2 N

form a basis of Steklov eigenfunctions for L2(@BR(o±)). Clearly we have that the
Fk’s are harmonic in �R . Moreover, a direct computation shows that, on @�R ,

@
�
F�
k ± F+

k
�

@⌫
= C±

k (R)
�
F�
k ± F+

k
�

with

C+
k (R) =

a0
k(R) � a0

k(⇡ � R)

ak(R) + ak(⇡ � R)
, C�

k (R) =
a0
k(R) + a0

k(⇡ � R)

ak(R) � ak(⇡ � R)
.

Thus C±
k (R) are Steklov eigenvalues of �R . Moreover, they constitute the whole

Steklov spectrum. Indeed, as @�R is the disjoint union of S+
R and S

�
R we get an

Hilbert basis of L2(@�R) by taking { f +
k | k 2 N} [ { f �

k | k 2 N} where f +
k =

fk(w)|S+R
and f �

k = fk(w)|S�R
. As we have

�
F+
k
�
|@�R

= ak(R) f +
k + ak(⇡ � R) f �

k and
�
F�
k
�
|@�R

= ak(⇡ � R) f +
k + ak(R) f �

k ,
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and since 0 < ak(⇡ � R) < ak(R) we easily get that {(F+
k + F�

k )|@�R
| k 2

N} [ {(F+
k � F�

k )|@�R
| k 2 N} is an Hilbert basis of L2(@�R). Therefore, the

Steklov spectrum of �R is {C+
k (R) | k 2 N} [ {C�

k (R) | k 2 N}.
We divide the rest of the proof into three parts: the first two aimed to prove

that �1(�R) = C+
1 (R) and the last one for comparing it to the first eigenvalue of

the ball.

Claim 1: for all ⇡
2 < R < ⇡ and all k 2 N we have C+

k (R)  C�
k (R).

In fact, we will prove that, for any k 2 N, there exists p 2 N such that ak(r) =
r p +

P
i�p+1 ⇠i r i with ⇠i � 0 for all i � p + 1.

Let k 2 N and let p 2 N be such that the eigenvalue of Sm�1 associated
to fk is �c,k = p(p + m � 2). Following the proof of Proposition 3.4 we have
ak(r) =

P
i�0 ⇠i r i , with the coefficients ⇠i = 0 for i < p, ⇠p = 1 and, for i > p,

defined recursively by Formula (3.5)

(i(i + m � 2) � p(p + m � 2))⇠i +
i�1X

j=0

�
j↵i� j � �i� j

�
⇠ j = 0. (5.1)

If i > p then i(i +m � 2) � p(p+m � 2) > 0, so that the positivity of ⇠i follows
by (5.1) once we show that j↵i� j � �i� j  0 for any j = 0, . . . , i � 1. As M is
the round sphere the coefficients ↵ j and the � j are given by

r(m � 1) cot(r) =
X

j�0
↵ j r j and r2

p(p + m � 2)
sin2(r)

=
X

j�0
� j r j .

Since cot0(r) = � sin(r)�2, the above equalities give

X

j�0

j � 1
m � 1

↵ j r j�2 = �
X

j�0

� j

p(p + m � 2)
r j�2,

so that ( j�1)p(p+m�2)
m�1 ↵ j = �� j , and j↵i� j ��i� j = ↵i� j ( j + (i� j�1)p(p+m�2)

m�1 ).
We conclude that j↵i� j � �i� j  0 for j  i � 1 since the coefficients of the
power series expansion of the cotangent are all non-positive, but the first one (cf. [1,
Chapter 23]).

As a consequence of the non-negativity of the coefficients ⇠i we have that,
for any k 2 N, the functions ak and a0

k are non-negative, which easily entails that
C+
k (R)  C�

k (R).

Claim 2: for all ⇡
2 < R < ⇡ we have �1(�R) = C+

1 (R).
Following Claim 1, we just have to show that C+

1 (R)  C+
k (R) for every

k � 1. By Equation (3.3) we have that for 0 < r < ⇡

a00
k (r) + (m � 1)h(r)a0

k(r) + �c,kh0(r)ak(r) = 0, (5.2)
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where �c,k is the k�th eigenvalue of Sm�1. In particular, for k = 1 we have �c,k =
m � 1. Integrating Equation (5.2) between r0 and r and letting r0 tend to 0 gives

a0
1(r) = m � (m � 1)h(r)a1(r). (5.3)

A straightforward computation then brings to

C+
1 (R) =

a0
1(R) � a0

1(⇡ � R)

a1(R) + a1(⇡ � R)
= (m � 1)

cos(⇡ � R)

sin(⇡ � R)
. (5.4)

For 1  k  m we have ak = a1 as the function fk is a first spherical harmonic
of Sm�1, therefore we have C+

k (R) = C+
1 (R). Assume now that k � m + 1.

In particular, there exists p � 2 such that �c,k = p(p + m � 2) > m � 1 and
ak(r) ⇠0 r p. Integrating Equation (5.2) between r0 > 0 and r > r0 we get

a0
k(r) � a0

k(r0) + (m � 1)
Z r

r0
h(t)a0

k(t) dt + �c,k

Z r

r0
h0(t)ak(t) dt = 0

which becomes, after an integration by parts,
a0
k(r) � a0

k(r0) + (m � 1)
�
h(r)ak(r) � h(r0)ak(r0)

�

+
�
�c,k � (m � 1)

� Z r

r0
h0(t)ak(t) dt = 0.

Since ak(r) = r p + o(r p), for r ⇠ 0, with p � 2, we can pass to the limit as r0
tends to 0 to get

a0
k(r) = �(m � 1)h(r)ak(r) � (�c,k � (m � 1))

Z r

0
h0(t)ak(t) dt.

Plugging this expression in that of C+
k (R) and using that h(R) = �h(⇡ � R) we

get

C+
k (R) =

a0
k(R) � a0

k(⇡ � R)

ak(R) + ak(⇡ � R)

=
�(m � 1)h(R)ak(R) + (m � 1)h(⇡ � R)ak(⇡ � R)

ak(R) + ak(⇡ � R)

�
�c,k � (m � 1)

ak(R) + ak(⇡ � R)

Z R

⇡�R
h0(t)ak(t) dt

=
(m � 1)h(⇡ � R)(ak(R) + ak(⇡ � R))

ak(R) + ak(⇡ � R)

�
�c,k � (m � 1)

ak(R) + ak(⇡ � R)

Z R

⇡�R
h0(t)ak(t) dt

= C+
1 (R) +

�c,k � (m � 1)
ak(R) + ak(⇡ � R)

Z R

⇡�R

ak(t)
sin2(t)

dt

� C+
1 (R).

This concludes the proof that �1(�R) = C+
1 (R).
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Claim 3: for R close enough to ⇡ we have �1(�R) > �1(BS), where S is such that
|BS| = |�R|.

Let BS the ball of radius S with the volume |BS| = |�R|. As |Sm \ BS| =
|Sm \ �R| we have

Z ⇡�S

0
sinm�1(t) dt = 2

Z ⇡�R

0
sinm�1(t) dt. (5.5)

From Claim 2 we have �1(�R) = (m�1) cos(↵)
sin(↵) . Where ↵ = ⇡�R. Using Equation

(5.3) we have

�1(BS) =
a0
1(S)
a1(S)

=
m

a1(S)
� (m � 1)

cos(S)
sin(S)

=
m sinm�1(S)
R S
0 sin

m�1(t)dt
� (m � 1)

cos(S)
sin(S)

=
m sinm�1(�)

2
R ⇡��
0 sinm�1(t) dt

+ (m � 1)
cos(�)

sin(�)
,

where in the last equality we set � = ⇡ � S. Notice that ↵ and � tend to 0 as R
tends to ⇡ , so that we have �1(BS) ⇠ (m � 1) cos(�)

sin(�) . Moreover, as a consequence
of (5.5), we get that

d�
d↵

sin(�)m�1 = 2 sin(↵)m�1

which easily entails that � ⇠ 2
1
m ↵ (exploiting the fact that every function in role is

positive). Those information boil up, after a simple computation, into

lim
R!⇡

�1(�R)

�1(BS)
= 2

1
m > 1.

This concludes the proof of the fact that, for R < ⇡ , R close enough to ⇡ , the ball
does not maximize the first Steklov eigenvalue on the sphere.
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I. POLTEROVICH and B. SIUDEJA, The legacy of Vladimir Andreevich Steklov, Notices
Amer. Math. Soc. 61 (2014), 9–22.

[25] Y. NIKOLAYEVSKY, Two theorems on harmonic manifolds, Comment. Math. Helv. 80
(2005), 29–50.



1388 PHILIPPE CASTILLON AND BERARDO RUFFINI

[26] A. RANJAN and H. SHAH, Harmonic manifolds with minimal horospheres, J. Geom. Anal.
12 (2002), 683–694.

[27] A. RANJAN and H. SHAH, Busemann functions in a harmonic manifold, Geom. Dedicata
101 (2003), 167–183.
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