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Interpolation problems: del Pezzo surfaces
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Abstract. We consider the problem of interpolating projective varieties through
points and linear spaces. We show that del Pezzo surfaces satisfy weak interpola-
tion.
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1. Introduction

The question of interpolation is one of the most classical questions in algebraic
geometry. Indeed, it dates all the way back to the ancients, starting with Euclid’s
postulate that through any two points there passes a unique line. The problem of
interpolating a polynomial function y = f (x) of degree  n � 1 passing through
n general points in the plane was explicitly solved by Lagrange in the late 1700’s.
These examples should be considered the first two instances of an interpolation
problem in the sense of this paper.

In simple terms, an interpolation problem involves two pieces of data:

(1) A classH of varieties in projective space (e.g., “rational normal curves”) often
specified by a component of a Hilbert scheme;

(2) A collection of (usually linear) incidence conditions (e.g., “passing through
five fixed points and incident to a fixed 2-plane”).

The problem is then to determine whether there exists a variety [X] 2 H meeting
a general choice of conditions of the specified type.

More precisely, suppose U is an integral subscheme of the Hilbert scheme
parameterizing varieties of dimension k in Pn . Define q and r so that dimU =
q · (n� k)+ r . We sayU satisfies interpolation if for any collection p1, . . . , pq ,3,
where pi 2 Pn are points and 3 ⇢ Pn is a plane of dimension n � k � r , there
exists some [Y ] 2 U so that Y passes through p1, . . . , pq and meets 3. We say U
satisfies weak interpolation if there exists some [Y ] 2 U meeting q general points
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pq , . . . , pq . If X is a projective variety lying on a unique irreducible component of
the Hilbert scheme, denotedH X , then we say X satisfies interpolation ifH X does.
Although this description of interpolation, given in Theorem A.7(9) is the most
classical one, there are at least twenty two equivalent descriptions of interpolation
under moderate hypotheses, as we show later in Theorem A.7.

The first nontrivial case of interpolation in higher dimensional projective space
is that rational normal curves satisfy interpolation, meaning there is one through a
general collection of n + 3 points in Pn , see Subsection 1.2.1. Interpolation of
higher genus curves in projective space is extensively studied in [2, 30], and [22].
We review interpolation for rational curves and results of interpolation for higher
genus curves in Section 1.2 below.

Surprisingly, despite being such a fundamental problem, very little is known
about interpolation of higher dimensional varieties in projective space. To our
knowledge, the work of Coble in [6], of Coskun in [7], and of Eisenbud and Popescu
in [12, Theorem 4.5] are the only places where a higher dimensional interpolation
problem is addressed. In [20, Theorem 1.1], the first author showed all varieties
of minimal degree satisfy interpolation. In this paper, we continue the study of
interpolation problems for higher dimensional varieties:

Theorem 1.1. All del Pezzo surfaces satisfy weak interpolation.

In many ways, the del Pezzo surfaces are a natural next class of varieties to look
at. First, as mentioned earlier, varieties of minimal degree were shown to satisfy
interpolation in the first author’s Theorem 1.5. Del Pezzo surfaces are surfaces of
degree d in Pd , one higher than minimal. Further, all irreducible surfaces of degree
d in Pd are either del Pezzo surfaces, projections of surfaces of minimal degree, or
cones over elliptic curves, by [8, Theorem 2.5]. So, del Pezzo constitute all linearly
normal smooth varieties of degree d in Pd . By analogy, all curves of degree d � 1
in Pd (also one more than minimal degree) have been shown to satisfy interpolation
in [2, Theorem 1.3]. Second, since del Pezzos are the only Fano surfaces, they can
be viewed as the surface analogue of rational curves, which are already known to
satisfy interpolation.

1.1. Relevance of Interpolation

Before detailing what is currently known about interpolation, we pause to describe
several ways in which interpolation arises in algebraic geometry.

First, interpolation arises naturally when studying families of varieties. As
an example, we consider the problem of producing moving curves in the moduli
space of genus g curves, M g. Suppose we know, for example, that canonical
(or multi-canonical) curves satisfy interpolation through a collection of points and
linear spaces. Then, after imposing the correct number of incidence conditions, one
obtains a moving curve in M g. Indeed, as one varies the incidence conditions,
these curves sweep out a dense open set in M g, and hence determine a moving
curve. One long-standing open problem in this area is that of determining the least



INTERPOLATION PROBLEMS: DEL PEZZO SURFACES 1391

upper bound for the slope �/� of a moving curve in M g. In low genera, moving
curves constructed via interpolation realize the least upper bounds. Establishing
interpolation is a necessary first step in the construction of such moving curves. For
a more in depth discussion of slopes, see [5, Section 3.3]. This application is also
outlined in the second and third paragraphs of [3].

We next provide an application of interpolation to the problems in Gromov-
Witten theory. Gromov-Witten theory can be used to count the number of curves
satisfying incidence or tangency conditions. Techniques in interpolation can also
be used to count this number, and we now explain how interpolation techniques can
sometimes lead to solutions where Gromov-Witten Theory fails. When the Kont-
sevich space is irreducible and of the correct dimension one can employ Gromov-
Witten theory without too much difficulty to count the number of varieties meeting
a certain number of general points. In more complicated cases, one needs a vir-
tual fundamental class, and then needs to find the contributions of this virtual fun-
damental class from nonprincipal components and subtract the contributions from
these components. However, arguments in interpolation can very often be used
to count the number of varieties containing a general set of points, as is done for
surface scrolls in [7, Results, page 2]. Coskun’s technique also allows one to effi-
ciently compute Gromov-Witten invariants for curves in G(1, n). Although there
was a prior algorithm to compute this using Gromov-Witten theory, Coskun notes
that his method is exponentially faster. The standard algorithm, when run on Har-
vard’s MECCAH cluster “took over four weeks to determine the cubic invariants of
G(1, 5). The algorithmwe prove here allows us to compute some of these invariants
by hand” [7, page 2].

Interpolation also distinguishes components of Hilbert schemes. For a typical
example of this phenomenon, consider the Hilbert scheme of twisted cubics in P3.
This connected component of the Hilbert scheme has two irreducible components.
One of these components has general member which is a smooth rational normal
curve in P3 and is 12 dimensional. The other component has general member cor-
responding to the union of a plane cubic and a point in P3, which is 15 dimensional.
While the component of rational normal curves satisfies interpolation through 6
points, the other component doesn’t even pass through 5 general points, despite
having a larger dimension than the component parameterizing smooth rational nor-
mal curves.

1.2. Interpolation: a lay of the land

1.2.1. Rational normal curves

Interpolation holds for rational normal curves. This is precisely the well known fact
that through r + 3 general points in Pr there exists a unique rational normal curve
P1 ⇢ Pr . A dimension count provides evidence for existence: the (main component
of the) Hilbert scheme of rational normal curves is r2 + 2r � 3 = (r + 3)(r � 1)
dimensional, and the requirement of passing through a point imposes r � 1 condi-
tions on rational normal curves. Therefore we expect finitely many rational normal
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curves through r + 3 general points. “Counting constants” as above only provides
a plausibility argument for existence of rational curves interpolating through the
required points – it is not a proof. To illustrate this, we give an example where
interpolation is not satisfied, even though the dimension count says otherwise.
Example 1.2. A parameter count suggests there should be a genus 4 canonical
curve through 12 general points in P3: The dimension of the Hilbert scheme of
canonical curves is dimM4 + dim Aut (P3) = 3 · 4 � 3 + 42 � 1 = 24 and each
point imposes two conditions on a curve in P3, so that we expect a 0 dimensional
family through 12 = 24/2 points. However, such a canonical curve is a complete
intersection of a quadric and a cubic. Since a quadric is determined by 9 general
points, the curve, which lies on the quadric, cannot contain 12 general points. In
other words, canonical genus 4 curves do not satisfy interpolation.
There are many proofs that there is a unique rational normal curve through r + 3
points in Pr . One proof proceeds by directly constructing a rational normal curve
using explicit equations. Another approach is via a degeneration argument, as in
Example 1.7. One can also use association (see [12]) to deduce the lemma. A
purely synthetic proof also exists, as is found in [23, Proposition 2.4.4].

1.2.2. Higher genus curves

One way to generalize interpolation for rational normal curves is to consider higher
genus curves in projective space. For many reasons it is simpler to consider curves
embedded via nonspecial linear systems. Interpolation for arbitrary rational curves,
not just rational normal curves, was proven in [27], and later independently proven
in [24]. Hence, it is natural to ask whether curves of higher genus satisfy inter-
polation. The related question of semistability for curves of genus 1 was explored
in [10], which was later used in [4, Theorem 1] to prove that elliptic normal curves
satisfy interpolation.

Around the same time, it was shown in [3, Theorem 7.1] that nonspecial curves,
apart from those of genus 2 and degree 5, in P3 satisfy interpolation. This was
generalized from P3 to projective spaces of arbitrary dimension in the following
comprehensive recent result of Atanasov-Larson-Yang:

Theorem 1.3 ([2, Theorem 1.3]). Strong interpolation holds for the main compo-
nent of the Hilbert scheme parameterizing nonspecial curves of degree d, genus g
in projective space Pr , with d � g + r unless

(d, g, r) 2 {(5, 2, 3), (6, 2, 4), (7, 2, 5)} .

It is also shown in [32, page 108] (which combines the work in [30], dealing with
the canonical curves of genus not equal to 8 and [31, Proposition, page 3715],
dealing with canonical curves of genus 8) that canonical curves of genus at least 3
fail to satisfy weak interpolation if and only if their genus is 4 or 6.

In fact, the above leads to a complete classification of whether Castelnuovo
curves satisfy weak interpolation:
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Example 1.4. Castelnuovo curves of degree d and genus g in Pr satisfy weak inter-
polation if and only if d  2r and (d, g, r) /2 {(5, 2, 3), (6, 2, 4), (7, 2, 5), (6, 4, 3),
(10, 6, 5)}. Further, a Castelnuovo curve of degree d and genus g in Pr of de-
gree not equal to 2r satisfies interpolation if and only if d < 2r and (d, g, r) /2
{(5, 2, 3), (6, 2, 4), (7, 2, 5)}.

The proof of this statement is not difficult given the above results. When,
d < 2r , the statement follows from Theorem 1.3. When d = 2r , it follows
from [32, page 108]. Finally, to see that Castelnuovo curves of degree d < 2r ,
do not satisfy weak interpolation, note that such a curve lies on a surface of mini-
mal degree. However, if weak interpolation is equivalent to the Castelnuovo curve
passing through n points, a dimension count shows that there will be such surface of
minimal degree passing through n points, and so there can be no such Castelnuovo
curve.

To summarize the above example, canonical curves approximately “form the bound-
ary” between Castelnuovo curves satisfying interpolation and Castelnuovo curves
not satisfying interpolation.

1.2.3. Higher dimensional varieties: Varieties of minimal degree

Recent work of the first author [20], establishes interpolation for all varieties of
minimal degree. Recall that a variety of dimension k and degree d in Pn is of
minimal degree if it is not contained in a hyperplane and d + k = n � 1. By [11,
Theorem 1], an irreducible variety is of minimal degree if and only if it is a degree
2 hypersurface, the 2-Veronese in P5 or a rational normal scroll.

Theorem 1.5 ([20, Landesman]). Smooth varieties of minimal degree satisfy in-
terpolation.

Remark 1.6. Parts of Theorem 1.5 have been previously established. For example,
the dimension 1 case is covered in 1.2.1. The Veronese surface was shown to satisfy
interpolation in [6, Theorem 19], see Subsection 5.4 for a more detailed description
of this proof. It was already established that 2-dimensional scrolls satisfy interpo-
lation in Coskun’s thesis [7, Example, page 2], and furthermore, Coskun gives a
method for computing the number of scrolls meeting a specified collection of gen-
eral linear spaces. Finally, weak interpolation was established for scrolls of degree
d and dimension k with d � 2k � 1 in [12, Theorem 4.5].

1.3. Approaches to interpolation

There are at least three approaches to solving interpolation problems.
The first approach is to directly construct a variety [Y ] 2 H meeting the

specified constructions. This method is quite ad hoc: For one, we would need ways
of constructing varieties in projective space. Our ability to do so is very limited and
always involves special features of the variety. For examples of this approach, see
Section 2, Section 3, and Section 4.
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The second standard approach is via specialization and degeneration. In this
approach, we specialize the points to a configuration for which it is easy to see there
is an isolated point of H containing such a configuration. Often, although not al-
ways, the isolated point of H corresponds to a singular variety. Finding singular
varieties may often be easier than finding smooth ones, particularly if those singular
varieties have multiple components, because we may be able to separately interpo-
late each of the components through two complementary subsets of the points. An
instance of specialization, although in a slightly different context, can be found in
Subsection 6.5. Here is a simpler example:

Example 1.7. A simple example of specialization and degeneration can be seen in
proving that there is a twisted cubic curve through 6 general points in P3. Start by
specializing four of the five points to lie in a plane. There are no smooth twisted
cubics through such a collection of points. However, there is a singular twisted
cubic, realized as the union of a line and a plane conic through such a collection of
points.

To see there is such a singular twisted cubic, note that if we draw a line through
the two non-planar points, it will intersect the plane containing the four points at a
fifth point p. There will then be a unique conic through p and the 4 planar points.
The union of this line and conic is a degenerate twisted cubic. Omitting several
technical details, this curve ends up being isolated among curves in the irreducible
component of the Hilbert scheme of twisted cubics through this collection of points,
and hence twisted cubics satisfy interpolation.

The third approach is via association, see Section 5 for more details on what this
means. The general picture is that association determines a natural way of identi-
fying a set of t points in Pa with a collection of t points in Pb, up to the action of
PGLa+1 on the first and PGLb+1 on the second. Then, if one can find a certain vari-
ety through the t points in Pa , one may be able to use association to find the desired
variety through the t associated points in Pb. For an example of this approach, see
Subsection 5.4 and Section 6.

1.4. Main results of this paper

Recall that a del Pezzo surface, embedded in Pn , is a surface with ample anticanon-
ical bundle, embedded by the complete linear system of its anticanonical bundle.
All del Pezzo surfaces have degree d in Pd , and all linearly normal smooth surfaces
of degree d in Pd are del Pezzo surfaces by [8, Theorem 2.5]. We also know the
dimension of the component of the Hilbert scheme containing a del Pezzo surface
from [8, Lemma 2.3], as given in Table 1.1, and that all del Pezzo surfaces have
H1(X, NX/Pn ) = 0, by [8, Lemma 5.7].

Assuming the remainder of the paper, we now restate and prove our main re-
sult.

Theorem 1.1. All del Pezzo surfaces satisfy weak interpolation.
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Table 1.1. Conditions for del Pezzo surfaces to satisfy interpolation. Type 0 refers to
the component of the Hilbert scheme whose general member is a degree 8 del Pezzo sur-
face, isomorphic to F0, (this also includes, in its closure, del Pezzo surfaces abstractly
isomorphic to F2,) while type 1 refers to those isomorphic to F1. The dimension counts
are proven in [8, Lemma 2.3].
Degree Dimension Number of Points Additional linear space dimension, if any
3 19 19 None
4 26 13 None
5 35 11 1
6 46 11 2
7 59 11 1

8, type 0 74 12 4
8, type 1 74 12 4

9 91 13 None

Proof. Recall that there is a unique component of the Hilbert scheme of del Pezzo
surfaces in degrees 3, 4, 5, 6, 7, 9, and there are two in degree 8. One component
in degree 8, which we call type 0, has general member abstractly isomorphic to
F0 ⇠= P1 ⇥ P1. The other component in degree 8, which we call type 1, has general
member abstractly isomorphic to F1. The cases of degree 3 and 4 surfaces hold by
Lemma A.16. The case of degree 5 del Pezzo surfaces is Theorem 2.1. The case of
degree 6 del Pezzo surfaces is Theorem 3.4. The case of degree 8, type 0 surfaces
is Theorem 4.4. Finally, the three remaining cases of del Pezzo surfaces in degrees
7, 8, 9 are Corollary 6.21, Corollary 6.23, and Theorem 6.1, respectively.

1.5. Organization of paper

The remainder of this paper is structured as follows: We also include a proof of
the elementary fact that balanced complete intersections satisfy interpolation. In
Section 2, Section 3, and Section 4, we show del Pezzo surfaces of degree 5, 6, and
degree 8, type 0, respectively, satisfy weak interpolation. Our approach for surfaces
of degree 5, 6 and the degree 8, type 0 del Pezzo surfaces is to find surfaces through
a collection of points by first finding a curve or threefold containing the points and
then a surface containing the curve or contained in the threefold. In Section 5,
we recall the technique of association, in preparation for Section 6, where we use
association to prove weak interpolation of del Pezzo surfaces of degree 7, degree
8, type 1, and degree 9. The degree 9 del Pezzo surface case is by far the most
technically challenging case in the paper. We were led to the approach of association
after reading Coble’s remarkable paper “Associated Sets of Points” [6]. We discuss
further questions and open problems in Section 7. Finally, in Appendix A we prove
many distinct formulations of interpolation are equivalent.

1.6. Notation and conventions

We work over an algebraically closed field k of characteristic zero, unless other-
wise stated. We freely use the language of line bundles, divisor classes, and linear
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systems. When V is a vector space of dimension d, we sometimes write it as V d to
indicate its dimension.
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man, Eric Larson, Rahul Pandharipande, and Adrian Zahariuc, and several anony-
mous referees for helpful conversations and correspondence.

2. Degree 5 del Pezzos

Theorem 2.1. Quintic del Pezzo surfaces satisfy weak interpolation.

Proof. By Table 1.1 it suffices to show quintic del Pezzo surfaces pass through 11
points.

Start by choosing 11 points. Since degree 3, dimension 3 scrolls satisfy in-
terpolation, by Theorem 1.5, there is such a scroll through any 12 general points.
Equivalently, there is a two dimensional family of scrolls through 11 points, which
sweeps out all of P5. In any scroll in this two dimensional family, we will show
there is a quintic del Pezzo.

First, start with a scroll X containing the 11 points. Since X is projectively
normal and its ideal is defined by 3 quadrics, h0(X,OX (2)) = 21� 3 = 18. There-
fore, if we let P be a ruling two plane of X , since h0(P,OP(2)) = 6, there will be
an 18 � 6 = 12 dimensional space of quadrics on X vanishing on P . Therefore,
there will be a 12 � 11 = 1 dimensional space of quadrics vanishing on P and
containing the 11 points. However, the intersection of any such quadric with X is
the union of P and a quintic del Pezzo surface. Therefore, we have produced a two
dimensional family of quintic del Pezzo surfaces containing the 11 points.

Remark 2.2. Another way to prove weak interpolation of quintic del Pezzo sur-
faces uses curves instead of threefolds. Specifically, by [30, Corollary 6], every
genus 6 canonical curve passes through 11 general points. Then, since there is a
quintic del Pezzo surface containing any genus 6 canonical curve, as proved in,
among other places, [1, 5.8]. Then, because there is a canonical curve contain-
ing these points and a quintic del Pezzo containing the canonical curve, there is a
quintic del Pezzo containing these points.

3. Degree 6 del Pezzos

By Table 1.1, weak interpolation for sextic del Pezzos amounts to showing that
through 11 general points 011 ⇢ P6 there passes a sextic del Pezzo.
Lemma 3.1. Through 11 general points 011 ⇢ P6 there passes a smooth degree 9,
genus 3 curve.
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Proof. This is a special case of Theorem 1.3.

Starting from a curve C ⇢ P6 as in Lemma 3.1, we can “build” a sextic del
Pezzo surface containing C .
Lemma 3.2. Let D be a general degree 9 divisor class on a genus 3 curve C .
Then there exists a unique degree three effective divisor P + Q + R such that
D ⇠ 3KC � (P + Q + R).
Proof. In general, if X is a smooth genus g curve, the natural map

J : Symg C �! Pic gC

is a birational morphism.
In our setting, if D is a general degree 9 divisor class, 3KC � D will be a

general degree 3 divisor class, and therefore can be represented by a unique degree
three divisor class P + Q + R. Of course, by Riemann-Roch, every degree three
divisor class is effective.

Lemma 3.3. Let 011 ⇢ P6 be general, and let C be general among the degree 9,
genus 3 curves containing 011. Then there is a smooth sextic del Pezzo surface
containing C .
Proof. Since 011 are chosen generally, we have that a general C containing them
is not hyperelliptic. So, we may embed C ⇢ P2 via its canonical series |KC |. The
linear system |3KC � (P+Q+ R)| on C is cut out by plane cubics passing through
the three points P+Q+R. Under the generality conditions, we can assume P, Q, R
are not collinear in P2.

The linear system of plane cubics through three noncollinear points maps P2
birationally to a smooth sextic del Pezzo surface in P6.

Theorem 3.4. Sextic del Pezzo surfaces satisfy weak interpolation.
Proof. To show a sextic del Pezzo satisfies interpolation, by Table 1.1, it suffices to
show it passes through 11 general points. By Lemma 3.1, there is a degree 9 genus
3 curve through 11 general points in P6. By Lemma 3.3, there is a sextic del Pezzo
containing a degree 3 genus 9 curve in P6.

4. The degree 8, type 0 del Pezzos

Next we consider P1 ⇥ P1 ⇢ P8 embedded by the linear system of (2, 2)-curves.
To prove weak interpolation, by Table 1.1, we want to show there is such a surface
passing through 12 general points 012 ⇢ P8. As in the sextic del Pezzo case, we
will again “build” a surface starting from a curve.
Lemma 4.1. Through 12 general points 012 ⇢ P8 there passes a smooth genus 2
curve of degree 10.
Proof. This is a special case of Theorem 1.3.
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Lemma 4.2. A general degree 5 divisor class D on a smooth genus 2 curve may be
written uniquely as KC + A, where A is a basepoint free degree 3 divisor class. A
general degree 10 divisor class E can be expressed as 2D for 24 distinct degree 5
divisor classes D.

Proof. Similar to Lemma 3.2. We leave the details to the reader.

Lemma 4.3. The general genus 2, degree 10 curve C ⇢ P8 is contained in a P1 ⇥
P1 embedded via the linear system of (2, 2) curves.

Proof. Let H denote the degree 10 hyperplane divisor class on C ⇢ P8. Write
H = 2D for some degree five divisor class D, and write D ⇠ KC + A for a unique
degree 3 divisor class A. By generality assumptions, A is basepoint free, and we
obtain a map

f : C �! P1 ⇥ P1

given by the pair of series (|KC |, |A|). This map embeds C as a (2, 3) curve.
The linear system |(2, 2)| on this P1⇥P1 restricts to the complete linear system

2D on C , and therefore induces the original embedding C ⇢ P8. The image of
P1 ⇥ P1 under the system |(2, 2)| is therefore the surface we desire.

Theorem 4.4. P1 ⇥ P1 ⇢ P8 embedded via the linear system of (2, 2) curves sat-
isfies weak interpolation.

Proof. This follows by combining Lemma 4.1 and Lemma 4.3.

Remark 4.5. An interesting feature of this solution to our interpolation problem
is that the surfaces we’ve constructed through the 12 general points 012 are in fact
special among the two dimensional family of surfaces passing through these points.
Indeed, the set 012 is contained in a (2, 3) curve on the surfaces we’ve constructed,
but a general set of twelve points on P1 ⇥ P1 does not lie on any (2, 3) curve!

5. Interlude: association

This section is meant to provide the reader with basic familiarity with association,
also known as the Gale transform. Association will be a recurring tool in the rest of
the paper. We closely follow the exposition in [12].

5.1. Preliminaries

Throughout this section, we let 0 be a Gorenstein scheme, finite over k of length
� = r + s + 2, L an invertible sheaf on 0, and V ⇢ H0(0, L) a vector space of
dimension r + 1. In practice, 0 will be given as embedded in projective space Pr ,
L will be O0(1), and V will be the image of the restriction map

H0(Pr ,OPr (1)) �! H0(0,O0(1)).
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For brevity, we will often refer to the data of the pair (V, L) as a linear system on
0. For clarity, we will sometimes put subscripts on 0 emphasizing the number of
points.

The Gorenstein hypothesis on 0 says that the dualizing sheaf !0 is a line bun-
dle, and furthermore Serre duality holds: There is a trace map t : H0(0,!0) �! k,
and for any line bundle L the trace pairing

H0(0, L) ⌦ H0
�
0, L_ ⌦ !0

�
�! k

is nondegenerate.
Therefore if V is a r+1 dimensional subspace of H0(0, L), we obtain a natural

s + 1-dimensional subspace

V? ⇢ H0
�
0, L_ ⌦ !0

�
,

namely the orthogonal complement of V under the trace pairing.
Definition 5.1. Let 0 be a length � Gorenstein scheme over k, and let (V, L) be a
linear system on 0. Then we say (V?, L_ ⌦ !0) is the associated linear system of
(V, L).
Notice that association provides a correspondence between vector spaces V $
V?, and not between vector spaces with chosen bases. Geometrically this means
association provides a bijection between the PGLr+1(k)-orbits of Gorenstein 0 ⇢
Pr (in general linear position) and PGLs+1(k)-orbits of Gorenstein 0 ⇢ Ps (in
general linear position). Given this, in the future when we refer to “the associated
set”, we really mean the PGLs+1(k)-orbit. Moreover, it is known that association
provides an isomorphism of GIT quotients

(Pr )� //PGLr+1(k)
⇠
�! (Ps)� //PGLs+1(k),

and therefore takes general subsets to general subsets.

5.2. Inducing association from an ambient linear system

Association is a very algebraic construction. Therefore, it is interesting to find
geometric constructions which “induce” association for a set 0 ⇢ Pr . To see many
examples of the geometry underlying association, we refer to [12].

In [6, page 2], Coble asks, in less modern language, whether there exists a
linear system Ws+1 ⇢ H0(Pr ,O(d)) whose base locus is disjoint from 0, and
which restricts on 0 to the associated linear system.

A linear system Ws+1 ⇢ H0(Pr ,O(d)) yields a rational map

�W : Pr 99K Ps .

Definition 5.2. Let 0 ⇢ Pr be a Gorenstein scheme of degree � = r + s + 2. An
ambient linear system is any vector space V ⇢ H0(Pr ,O(d)). An ambient linear
systemWs+1 ⇢ H0(Pr ,O(d)) induces association for 0 if its base locus is disjoint
from 0 and if the image �W (0) ⇢ Ps is the associated set of 0.
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It is important to note, as Coble does, that an ambient system inducing association
won’t be unique in general.

When association is induced from an ambient system, we automatically get a
variety �W (Pr ) ⇢ Ps containing 0. Our task is ultimately to find an ambient linear
system W which induces association for 0, and such that the image �W (Pr ), (by
this, we mean the image of the resolution of �W ) is a prescribed type of variety,
e.g., Veronese images, del Pezzo surfaces, etc.

5.3. Goppa’s theorem

Goppa’s theorem is frequently useful when looking for ambient systems inducing
association.

Theorem 5.3 (Goppa’s theorem). Let f : B �! Pr be a map from a smooth
curve given by a nonspecial, complete linear system |H |. Let 0 ⇢ B be a scheme
of length � = r + s + 2. Then association for 0 is induced by the restriction of the
linear system |KB + 0 � H | to 0.

In practice, we will typically find a curve B ⇢ Pr passing through 0, and will try to
induce association by realizing the linear system |KB+0�H | on B via an ambient
system on Pr .

5.4. The 2-Veronese surfaces through 9 general points in P5

We conclude this section with a result going back to Coble [6, Theorem 19] and
more rigorously explored in Dolgachev [9, Theorems 5.2 and 5.6] showing there
are four Veronese surfaces in P5 containing 9 general points (in characteristic not
equal to 2).

The following result follows without too much work from [9] although it isn’t
explicitly stated there.

The key to finding 2-Veronese surfaces through 9 points is to find a genus 1
curve through the 9 points, and then find a 2-Veronese surface containing that curve.
We start off by understanding 2-Veronese surfaces containing a genus 1 curve.

Proposition 5.4. Let k be an algebraically closed field and let E ⇢ P5k be a general
genus 1 curve, embedded by a complete linear series of degree 6. If char k 6= 2,
there are four 2-Veronese surfaces containing E and if char k = 2, there are two
2-Veronese surfaces containing E .

Remark 5.5. It is shown in [9, Theorem 5.6] that there are exactly four 2-Veronese
surfaces containing a given genus 1 curve of degree 6 in P5 over a field of character-
istic 0. However, the proof given there does not make it completely clear why there
is a unique 2-Veronese surface through general E corresponding to each chosen
square root of the line bundle embedding E . Therefore, we now repeat the proof in
more detail, and generalize it to all characteristics. In fact, the proof shows there
are 4 such 2-Veronese surfaces for all E if char k 6= 2, there are 2 such 2-Veronese
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surfaces if char k = 2 and E corresponds to a non-supersingular elliptic curve after
choosing a point, and there is 1 such 2-Veronese if char k = 2 and E corresponds
to a supersingular elliptic curve after choosing a point.

Proof. Say E ! P5 is given by the invertible sheaf L. For any degree three in-
vertible sheaf M with M ⌦2 ⇠= L, we can map E ! P2 using M. Then, the
composition of E ! P2 with the 2-Veronese map P2 ! P5 will send E to P5
by L and so we have constructed a 2-Veronese surface containing E . Since there
are two such sheaves M in characteristic 2 for a general E and four in all other
characteristics (since a non supersingular elliptic curve has two 2 torsion points in
characteristic 2 and every genus 1 curve has four such points in all other charac-
teristics), it suffices to show these are the only 2-Veronese surfaces containing E .
That is, we only need show that for each square root M of L, there is a unique
2-Veronese surface X ⇠= P2 containing E so that the map E ! P2 is given by a
basis for the global sections ofM.

First, note that if an automorphism fixes E pointwise then it fixes all ofP5. This
holds because E spans P5, and so a linear automorphism fixing E pointwise would
also fix a basis for the vector space H0(OE (1)) which satisfies PH0(OE (1)) ⇠= P5.
Hence, such an automorphism would fix all of P5.

Suppose we have two 2-Veronese surfaces X and X 0 containing E so that E
we have a map �1 : E ! X and �2 : E ! X 0 so that both maps �1 and �2 are
given by the same degree 3 invertible sheaf M, together with a choice of basis for
H0(E,M ). We will show that there exists an automorphism � : P5 ! P5 fixing E
pointwise and sending X to X 0. Since any automorphism of P5 fixing E pointwise
is the identity, this would imply X = X 0, and would complete the proof.

First, we show there is an automorphism � : P5 ! P5 fixing E as a set
and taking X to X 0. We know there is an automorphism  : P5 ! P5 with
 (X) = X 0. Say  sends the curve E ⇢ X to some curve E 0 :=  (E) ⇢ X 0.
Next, by our assumption that E and E 0 are two curves on X 0 both given by global
sections associated to the same invertible sheafM, there is some automorphism of
 0 : X 0 ! X 0 with  0(E 0) = E . Thus, taking � :=  0 � , we see �(X) = X 0 and
�(E) = E 0 as sets. If we could arrange for �|E = id, we would be done, as then
� = id.

Hence, it suffices to show that �|E is an automorphism of E fixing both X
and X 0.

Let A(E,M ) denote the automorphisms ⇡ : E ! E with ⇡⇤M ⇠= M. Note
that we have an exact sequence

0 // E[3] // A(E,M ) // Z/2 // 0

where the generator of the quotientZ/2 is the hyperelliptic involution and the subset
E[3] is a torsor over the 3 torsion of E with any given choice of origin. In partic-
ular, if we choose a point p so that M ⇠= OE (3p), we have that E[3] is precisely
translation by 6-torsion.

It suffices to show that any element of A(E,M ) fixes the 2-Veronese surface
we constructed above corresponding toM.
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But, if we view E ! P2 by a complete linear system corresponding toM, the
automorphisms A(E,M ) are precisely the automorphisms of P2 fixing E ⇢ P2 as
a set. These automorphisms of P2 extend to automorphisms on P5 with P2 ! P5
embedded via the 2-Veronese map. Therefore, they also fix the 2-Veronese surface,
as desired.

Theorem 5.6. Through 9 general points in P5k there exist four 2-Veronese surfaces
P2 ! P5 if k is an algebraically closed field with char k 6= 2 and two 2-Veronese
surfaces P2 ! P5 if k is an algebraically closed field with char k = 2. In particular,
the 2-Veronese surface satisfies interpolation.
Proof. Fix 9 general points p1, . . . , p9 2 P5. First, by [9, Theorem 5.2], there is
a unique genus 1 curve embedded by a complete linear series through 9 general
points in P5. Call this curve E . Next, by Proposition 5.4, there are four 2-Veronese
surfaces containing E if char k 6= 2 and two 2-Veronese surfaces containing E if
char k = 2. To complete the proof, it suffices to show that every 2-Veronese surface
containing p1, . . . , p9 also contains E . Consider such a 2-Veronese surface X ⇢ P5k
containing p1, . . . , p9. Choosing an isomorphism � : P2k ⇠= X , we have nine points
q1, . . . , q9 on P2 so that �(qi ) = pi .

Then, since p1, . . . , p9 were general on P5k , we have that q1, . . . , q9 are general
on P2k , and so there is a degree 3 genus 1 curve C passing through q1, . . . , q9 on
P2k . The image of �(C) ⇢ X is a degree 6 genus 1 curve containing p1, . . . , p9.
Since E is the unique genus 1 degree 6 curve E containing p1, . . . , p9, we must
have �(C) ⇠= E , and therefore E ⇢ X .

Remark 5.7. Starting with a general09 ⇢ P5, we obtain an associated set A(09) ⇢
P2, a set of nine general points in the plane. It is tempting to re-embed this P2 via
the complete system of conics and hope that the image of the set A(09) is projec-
tively equivalent to 09. However, this is not the case – the system of conics in P2
does not induce association for a set of nine general points.

6. Degrees 9, 8 and 7

This section establishes weak interpolation for degree 9 Del Pezzo surfaces, which
are 3-Veronese images of P2 in P9. As we will see in Subsection 6.6, weak inter-
polation for degree 8, type 1, and degree 7 Del Pezzo surfaces immediately follow
from the proof for degree 9. We will also see in Subsection 6.6 that tricanonical
genus 3 curves satisfy interpolation.

6.1. Results

The main result of this section is:
Theorem 6.1 (Existence). Let 0 ⇢ P9 be thirteen general points. Then there exists
a 3-Veronese surface containing 0.
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Proof assuming Theorem 6.8 and Theorem 6.10. By Theorem 6.8, for a general
013 2 Hilb13 P2, there is a bijection between singular triads for 013 (defined below
in Definition 6.2) and 3-Veronese surfaces containing the associated set A(013) ⇢
P9. By Theorem 6.10, every such 013 indeed possesses a singular triad.

The essential tool used in proving Theorem 6.1 is association.
Our next result relates the number of Veronese surfaces through 13 general

points to another, more tractable enumerative problem. Before stating it, we must
make a definition.
Definition 6.2. Let 0 ⇢ P2 be a general set of thirteen points in the plane. A subset
T = {x, y, z} ⇢ P2 \ 0 of three distinct points is a singular triad for 0 if

h0
⇣
P2,OP2(5) ⌦ I 2

TI0

⌘
= 2.

Remark 6.3. In other words, T = {x, y, z} is a singular triad for 0 if there exists a
pencil of quintic curves through 0 and singular at x, y, and z. A dimension count
shows that we expect finitely many singular triads for a general set of thirteen points
0, as is done in Lemma 6.13.
Our second result is:

Theorem 6.4 (Enumeration). The number of 3-Veronese surfaces through a gen-
eral set of thirteen points in P9 is equal to the number of singular triads for a
general set of thirteen points in P2.

Theorem 6.4 points to an interesting enumerative problem on the Hilbert scheme
Hilb3(P2) of degree 3, zero dimensional subschemes of the plane. We discuss this
problem at the end of the section, in Subsection 6.7.

6.2. How singular triads arise

For the benefit of the reader, we briefly explain how singular triads arise in the
problem of enumerating 3-Veronese surfaces through a general set 013.

Suppose V3 ⇢ P9 is a 3-Veronese containing 013. If we consider V3 as isomor-
phic to P2, it is tempting, as in the case of the 2-Veroneses, to think that the linear
system |3H | on P2 would induce association for 013 ⇢ P2. However, this turns out
not to be the case.

In P2, there is a unique pencil of quartic curves Qt ⇢ P2, t 2 P1, contain-
ing 013. Assuming the configuration 013 is general, the pencil Qt will have three
remaining, noncollinear basepoints {p, q, r}. Let

↵{p,q,r} : P2 99K P2

be the Cremona transformation centered on the set {p, q, r}, and let T = {x, y, z}
be the exceptional set in the target P2. Then ↵(Qt ) is a pencil of quintic curves,
singular at T and containing ↵(013) in its base locus. In other words, T forms a
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singular triad for ↵(013). In the next section, we will show that the ambient system
of sextics having triple points at x, y, and z induces association for ↵(013). In other
words, the “naive” system of cubics on the source P2 induces association not for
013, but rather for ↵(013).

6.3. Inducing association from a singular triad

We begin with a lemma describing the base locus of a pencil through 13 points,
whose proof is straightforward.
Lemma 6.5. Assume 013 ⇢ P2 is a general set of 13 points, and suppose T =
{x, y, z} is a singular triad for 013, i.e., there exists a pencil of quintics Qt through
013, singular at x, y, z. Furthermore, assume that the general element of the pencil
has a smooth genus 3 normalization, and has ordinary nodes at x, y, z. In particu-
lar, this implies T is not contained in a line. Then, the scheme theoretic base locus
of the pencil Qt consists of 013 and three length four schemes supported on x, y
and z.

Proposition 6.6. In the setting of Lemma 6.5, the ten dimensional vector space

W := H0
⇣
P2,I 3

T (6)
⌘

⇢ H0
⇣
P2,O(6)

⌘

consisting of sextics having triple points at x, y and z induces association for 013.

Proof. We use Goppa’s theorem, Theorem 5.3. Pick a general quintic Q in the
pencil Qt , and let ⌫ : eQ �! Q denote the smooth genus 3 normalization. Let H
denote the hyperplane divisor class on P2. Note that by degree considerations and
Riemann-Roch, the divisor class H is nonspecial on eQ, and eQ is mapped via the
complete linear series |H |. We claim that the linear system |KeQ + 013 � H | from
Goppa’s theorem is induced by sextic curves triple at x, y and z.

Indeed, the canonical series |KeQ | is cut out by the adjoint series consisting of
conics passing through the nodes x, y, and z. By Lemma 6.5, the divisor 013 is cut
out by a quintic singular at x, y, z. Putting these together says that sextics having
triple points at x, y, and z cut out divisors in the linear system |KeQ + 013 � H |

on eQ.
Finally, notice that there cannot be a sextic triple at x, y and z which also

vanishes identically on Q – the residual curve would be a line containing T , but we
are assuming x, y, z are not collinear. Therefore, the system of sextics having triple
points at x, y, and z cuts out the complete linear system |KeQ + 013 � H |.

6.4. The bijection between singular triads and Veroneses

Let 013 ⇢ P9 be thirteen general points, and let A(013) ⇢ P2 denote the associated
set.

We have already seen in Section 6.2 that a 3-Veronese V3 containing 013 arises
from a singular triad T for A(013). Let us now show that distinct triads provide
distinct Veroneses.
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Proposition 6.7. Maintain the setting above. Distinct triads T and T 0 for A(013)
give rise to distinct Veronese surfaces V3 and V 0

3 containing 013.

Proof. Let W = H0(P2,OP2(2) ⌦ IT ) and W 0 = H0(P2,OP2(2) ⌦ IT 0) be the
vector spaces of conics passing through T and T 0 respectively.

Denote by ◆ : P2 99K P(W ) and ◆0 : P2 99K P(W 0) the Cremona maps associ-
ated to W and W 0.

By Proposition 6.6, the vector spaces Sym3W and Sym3W 0 both induce as-
sociation for A(013), so we identify them as the ten dimensional vector space V
giving the original embedding 013 ⇢ P9.

Let ⌫ : P(W ) ,! P9 and ⌫0 : P(W 0) ,! P9 denote the respective Veronese
maps. (Note that the target P9 for the maps ⌫ and ⌫0 are the “same” given the
previous paragraph.)

The two Veronese surfaces P(W ) and P(W 0) would be the same if and only if
there existed an isomorphism ↵ : P(W ) �! P(W 0) such that ⌫0 � ↵ � ◆ = ⌫0 � ◆0 as
rational maps from P2 to P9.

But the indeterminacy locus of a rational map is determined by the map, and
the indeterminacy locus of ⌫0 � ↵ � ◆ is T , whereas the indeterminacy locus of ⌫0 � ◆0

is T 0. This completes the proof.

Theorem 6.8. Let 013 ⇢ P9 be a general set of thirteen points. Then the 3-Verone-
se surfaces containing013 are in bijection with the singular triads for A(013) ⇢ P2.

Proof. This follows immediately from Subsection 6.2 and Proposition 6.7.

6.5. Existence of singular triads

Definition 6.9. Define 8 ⇢ Hilb3 P2 ⇥ Hilb13 P2 to be the closure of the set of
pairs ({x, y, z},013) ⇢ Hilb3 P2 ⇥ Hilb13 P2 for which {x, y, z} is disjoint from
the support of 013, and for which there exists a pencil of quintics singular at x, y, z
whose base locus is precisely {x, y, z} [ 013. Define the projections

8
⇡1

{{w

w

w

w

w

w

w

w

w

⇡2

$$

I

I

I

I

I

I

I

I

I

Hilb3 P2 Hilb13 P2.

Theorem 6.10. There exists a point ({x, y, z}, A13) 2 8 which is isolated in its
fiber under the second projection ⇡2 : 8 �! Hilb13 P2. In particular, ⇡2 is domi-
nant, and a general set 013 possesses a singular triad.

The rest of the section is devoted to the proof of Theorem 6.10. Before we proceed
with the proof in Subsection 6.5.2, we set some notation and outline the idea of the
proof in 6.5.1.
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Definition 6.11. Let x0, x1, x2 denote three fixed non-collinear points in P2 and set
li, j := xi x j forming the coordinate triangle.

Let X := Bl {x0,x1,x2}P2, and let Ei denote the exceptional divisor over xi ,
i = 1, 2, 3. Set Li, j to be the proper transforms of the lines li, j := xi , x j . We let H
denote the hyperplane class on P2 and its pullback on X . By a line in X , we mean
an element of the linear system |H | on X .

6.5.1. The idea of the Proof of Theorem 6.10

In order to prove Theorem 6.10, we will construct a particular set [013] 2 Hilb13 P2
which we will be able to see is isolated in its fiber under the map ⇡2. The construc-
tion is as follows. Start by choosing a general line M and a general point p7 not on
M . Then, choose points

p1, p2 2 `0,1
p3, p4 2 `0,2
p5, p6 2 `1,2

p8, p9, p10 2 M

all general with respect to the above conditions. We will then see that there is an
element ((x0, y0, z0) ,013) 2 8 so that p1 [ · · · [ p10 ⇢ 013, and further that the
remaining degree three scheme of 013 is supported on M . The hard part of the proof
will be seeing that this configuration lies in8. This is done in Corollary 6.19. Once
we know this configuration does lie in8, it is not difficult to see it is isolated. Since
013 intersects M with degree 6, every quintic containing 013 must contain M . We
are then looking for a pencil of quartics with base locus containing p1, . . . , p6, p7
and having three additional singular nodes. If the three singular nodes do not lie
on M , then this can only happen if the pencil of quartics contains curves in its base
locus. A case by case analysis shows that if the three nodes are not collinear, the
only possibility, up to permutation of the points, is that the base locus of this pencil
of quartics is `0,1 [ `0,2 [ `1,2 [ p7 and the moving part of this pencil is the pencil
of lines containing p7. This will be isolated in its fiber. Then, this means ⇡2 is
dominant because both varieties are irreducible and dim8 = 26 = dimHilb13 P2,
as shown in Lemma 6.13. This concludes our sketch of the idea of the proof.

The proof of the following lemma is straightforward, and we omit its proof.

Lemma 6.12. Let 010 ⇢ X be ten general points. Then there is a unique pencil
in the linear system |5H � 2E1 � 2E2 � 2E3| containing 010 in its base locus.
Furthermore, the base locus of this pencil consists of the union of 010, and three
residual points {a, b, c} ⇢ S disjoint from 010.

Lemma 6.13. 8 is 26-dimensional.

Proof. First select three general points {x, y, z} in P2, giving 6 dimensions. Using
Lemma 6.12, a general pencil of quintics singular at {x, y, z} is determined by
choosing ten general points to be in its base locus. The remaining three points of
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the base locus are determined by the initial choice of 10, by Lemma 6.12. In total,
we have that 8 is 26 = 6+ 2 · 10 dimensional.

Let 010(t) = {p1(t), p2(t), . . . , p10(t)} ⇢ X ⇥ 1 be a family of ten points,
parameterized by 1 := Spec k[[t]], general among those with the following prop-
erties:

(1) Over the generic point ⌘ 2 1, the points pi (⌘) are general in the sense of
Lemma 6.12;

(2) Over the special point t = 0, the ten points pi (0) are situated as follows:

(a) p1(0), p2(0) are general in L0,1;
(b) p3(0), p4(0) are general in L0,2;
(c) p5(0), p6(0) are general in L1,2;
(d) p7(0) is general in X ;
(e) p8(0), p9(0), p10(0) are general on a general line M ⇢ X .

By Lemma 6.12, there are three residual points {a(⌘), b(⌘), c(⌘)} defined by the
ten points {pi (⌘)}i=1,...,10. We let {a(t), b(t), c(t)} denote the closures of these
points. (Note: a base change may be required to say the three residual basepoints
{pi (⌘)}i=1,...,10 are defined over Spec k((t)). Performing such a base change does
not affect the rest of the arguments.)

Now let X be the threefold which is the blow up of X ⇥ 1 at the union of
the three curves Li, j ⇢ X ⇥ {0}, and let � : X �! X ⇥ 1 be the blow up map.
Let f : X �! 1 denote the composition of � with the projection onto the second
factor of X ⇥1. X⌘ andX0 will denote the general and special fibers of f . Note
thatX⌘ = X⌘ := X ⇥ Spec k((t)).

There are three exceptional divisors Fi, j lying over the corresponding curves
Li, j ⇢ X⇥ {0}. The map f is a flat family of surfaces, with generic fiberX⌘ = X⌘
and with special fiber X0 a simple normal crossing union of four surfaces: the
exceptional divisors Fi, j , and X . Their incidence is as follows: The surfaces Fi, j
are pairwise disjoint and Fi, j \ X = Li, j .

Each exceptional divisor Fi, j is isomorphic to the Hirzebruch surface F1. This
is because each rational curve Li, j ⇢ X0 has self-intersection (�1), and therefore
has normal bundle NLi, j/X⇥1 ⇠= O(�1) � O.

On F1, we let S denote the divisor class of a codirectrix, a section class having
self-intersection +1. We denote by R the ruling line class. We let Si, j and Ri, j
denote the corresponding divisor classes on Fi, j .

LetL be the line bundle �⇤(OX⇥1(5H�2E1�2E2�2E3)), and let p0
i (t) ⇢

X denote the lifts of pi (t) toX. In other words, {p0
i (t)}i=1,...10 are the closures of

the points {pi (⌘)} 2 X⌘ = X⌘ inX.
By thegeneralityassumptionson the1-parameter familyofpoints {pi (t)}i=1,...,10

in X ⇥ 1, we may assume the following about the central configuration of points
p0
i (0) inX0:

(1) The points p0
1(0), p

0
2(0) are general in F0,1;

(2) The points p0
3(0), p

0
4(0) are general in F0,2;
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(3) The points p0
5(0), p

0
6(0) are general in F1,2;

(4) The points mi, j := M \ Li, j are general in Fi, j with respect to the other two
points mentioned in each part above.

Fi,j X := BlLi,j×{0} (X × ∆) p′i(t)

Li,j × {0} X × ∆ pi(t)

β

Figure 6.1. A pictorial summary of relevant schemes.

Set
L 0 := L (�F0,1 � F0,2 � F1,2).

The following lemma is straightforward to prove.

Lemma 6.14. The line bundleL 0 restricts to OFi, j (Si, j + Ri, j ) on the exceptional
divisors Fi, j ⇢ X0 and restricts to OX (2H) on X ⇢ X0.

Remark 6.15. For the benefit of the reader, we give an alternate description of the
linear system |S + R| on F1 appearing in the above lemma. If we view F1 as the
blow up of P2 at a point q 2 P2, then the linear system |S + R| is the system of
conics through the point q.

In particular, if three more general points are chosen on F1, there will be a
unique pencil of curves in |S + R| containing them.

Now consider the sheafF := I{p0
i (t)}i=1,...,10 ⌦ L 0.

Lemma 6.16. The k[[t]]-module H0(X,F ) is free of rank 2. Furthermore, the
restriction map

H0(X,F ) �! H0
�
X0,F |X0

�

is surjective.

Proof. F is a torsion free sheaf, hence H0(X,F ) is a torsion free k[[t]]-module,
i.e., it is free. Lemma 6.12 tells us that the rank must be 2.

By Grauert’s theorem, it suffices to show

h0
�
X0,F |X0

�
= 2.

A section s of F |X0 is a section of L 0|X0 vanishing at the ten points p0
i (0). We

will now analyze what the zero locus of s must be on each of the four components
ofX0, beginning with X .

The restriction s|X vanishes on a conic containing p0
7(0), p

0
8(0), p

0
9(0), and

p0
10(0). Since the latter three points are collinear lying on the line M , such a conic
is degenerate, of the form M [ N , where N is any line containing p0

7(0).
The restriction s|F0,1 vanishes on a divisor of class |S0,1 + R0,1| containing

the pair of points p0
1(0), p

0
2(0). Similar descriptions hold for the remaining two

components.
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A section s of F |X0 consists of sections on each component which agree on
the intersection curves Li, j . We claim that such a global section is determined, up
to scaling, by its restriction to the component X . Indeed, by choosing a conic of
the form M [ N , we determine two points mi, j , ni, j on each line Li, j , namely the
intersections M \ Li, j , N \ Li, j .

From the generality assumptions we have imposed, we get that there is a unique
curve in the class |S0,1 + R0,1| containing the four points p0

1(0), p
0
2(0),m0,1, and

n0,1. Similarly for the other components Fi, j . It follows that any global section
of F is determined, up to scaling, by its restriction to X . But the restriction to
X is a degenerate conic of the form M [ N as described above, and therefore
h0(X0,F |X0) = 2, as we claimed.

Lemma 6.17. The common zero locus of all sections of F |X0 is M [ {p0
1(0), . . .,

p0
6(0), p

0
7(0)}.

Proof. This follows from the description of the zero loci of sections ofF |X0 found
in the proof of Lemma 6.16.

Let h f1, f2i be a k[[t]]-basis for H0(X,F ). Note that, h f1, f2i restricts to a
basis H0(X0,F |X0) by Lemma 6.16.

Lemma 6.18. Maintain the notation above, and let Y ⇢ X defined by f1 =
f2 = 0 be the common zero scheme. Then, as schemes, Y \ X0 = M [
{p0
1(0), . . . , p

0
6(0), p

0
7(0)} and Y \ X⌘ = {p1(⌘), . . . , p10(⌘), a(⌘), b(⌘), c(⌘)}.

Proof. The generality assumptions on the original family of points pi (t) and Lem-
ma 6.12 ensure the statement regarding Y \ X⌘. Then, Y \ X0 = M [
{p0
1(0), . . . , p

0
6(0), p

0
7(0)} follows from Lemma 6.17.

Now let {a0(t), b0(t), c0(t)} denote the closures of {a(⌘), b(⌘), c(⌘)} inX.

Corollary 6.19. The scheme {p0
8(t), p

0
9(t), p

0
10(t), a

0(t), b0(t), c0(t)} \ X0 is con-
tained in the line M ⇢ X ⇢ X0.

Proof. This follows from Lemma 6.18. Indeed,

�
p0
8(t), p

0
9(t), p

0
10(t), a

0(t), b0(t), c0(t)
 

\ X0

must be a subscheme of Y \ X0 = M [ {p0
1(0), . . . , p

0
6(0), p

0
7(0)}. The sections

{a0(t), b0(t), c0(t)} cannot limit to any of the seven isolated points {p0
1, . . . , p

0
7},

since these seven points occur with multiplicity one in the scheme Y \X0. There-
fore, the points {a0(0), b0(0), c0(0)} must limit to M .
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6.5.2. Proof of Theorem 6.10

Proof. A one parameter family of thirteen points

{p1(t), . . . , p10(t), a(t), b(t), c(t)}

discussed above limits, at t = 0, to a configuration which we call 013 ⇢ P2.
(Technically, 013 is a set in X , but we view it as a set in P2, since 013 avoids the
exceptional divisors in X .)

Now we argue that the pair ({x0, y0, z0},013) is isolated in its fiber under the
projection ⇡2 : 8 �! Hilb13 P2.

It suffices to show that there are only finitely many noncollinear triads T ⇢ P2
disjoint from 013 for which there is a pencil of quintics Ct all singular at T and
containing 013.

Any pencil of quintics containing 013 must contain the line M in its base locus,
since 6 of the points of 013, {p8(0), p9(0), p10(0), a(0), b(0), c(0)} lie on this line
(Corollary 6.19). Therefore, the residual quartic curves of the pencil, denoted C 0

t ,
form a pencil of curves singular at T , and containing {p1(0), . . . , p6(0), p7(0)} in
its base locus. Note that the set {p1(0), . . . , p6(0), p7(0)} is a general set of seven
points in the plane.

By degree considerations, a pencil of quartics C 0
t singular at T and having 7

remaining points in its base locus is forced to have an entire curve B in its base
locus. The curve B must have degree 1, 2, or 3.

A straightforward combinatorial check shows that if the three points of T are
not collinear, the curve B must be the union of three lines joined by three pairs of
points among the set {p1(0), . . . , p6(0), p7(0)}, and the triad T is the vertices of the
triangle B. All told, there are only finitely many possibilities for T , which in turn
implies that ({x0, y0, z0},013) is isolated in its fiber under projection ⇡2 : 8 �!
Hilb13 P2.

Remark 6.20. The method of proof for Theorem 6.10 actually shows that there are
at least 630 3-Veronese surfaces through thirteen general points in P9. The reason
for this is that we made several choices in constructing an isolated point of the
incidence correspondence. We choose one of the points p1, . . . , p6, p7 to not lie
in the triangle containing the nodal base locus, and we then chose a division of the
remaining six points into three pairs of two points. In total there are 7 · 6!

2!·2!·2! = 630
such choices, and hence at least 630 isolated points. Then it follows that there are
at least 630 3-Veronese surfaces through a general set of 13 points by [29, II.6.3,
Theorem 3].

6.6. The remaining del Pezzo surfaces and tricanonical genus 3 curves

6.6.1. Degree 8.

Weak interpolation for degree 8, type 1 del Pezzo surfaces asks whether such sur-
faces pass through 12 general points 012 ⇢ P8, by Table 1.1. In fact, weak interpo-
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lation for degree 8, type 1 del Pezzo surfaces follows almost immediately from our
knowledge of interpolation for degree 9 del Pezzos.

Corollary 6.21. Degree 8 del Pezzos isomorphic to the Hirzebruch surface F1 sat-
isfy weak interpolation.

Proof. Indeed, Let A(012) ⇢ P2 be the associated set. Now append a general
thirteenth point p 2 P2 and let B13 ⇢ P2 be the union.

As follows from Proposition 6.6, association for B13 is induced by the linear
system of sextics having triple points at a singular triad for B13. Now we take the
subsystem of such sextics with further basepoint at the chosen point p. The result-
ing subsystem induces association for A(012), and maps P2 birationally to a degree
8 del Pezzo containing 012, abstractly isomorphic to the Hirzebruch surface F1.

Remark 6.22. The parameter count suggests that there will be a two dimensional
family of del Pezzo 8’s through a general 012. The argument above also has two
dimensions of freedom in the choice of auxiliary point p.

6.6.2. Degree 7 del Pezzo surfaces

Corollary 6.23. Degree 7 del Pezzo surfaces satisfy weak interpolation.

Proof. The parameter count says that weak interpolation for such surfaces is equiv-
alent to asking them to pass through 11 general points 011 ⇢ P7. We now proceed
analogously to the previous case: We now append two general auxiliary points
p, q 2 P2 to the associated set A(011) ⇢ P2.

Remark 6.24. Paralleling the degree 8 case, the dimension of del Pezzo 7’s through
eleven general points is four dimensional, as is the dimension of the space of auxil-
iary pairs p, q 2 P2.
Remark 6.25. The reason why this method fails for degree 6 del Pezzos is that the
number of points required by weak interpolation is not 10, as the current pattern
would suggest. Rather, the required number of points is eleven, and therefore we
needed a separate argument.

6.6.3. Genus 3 tricanonical curves

As a bonus, we show that the closed locus of the Hilbert scheme of degree 12 genus
3 curves in P9 which are tricanonically embedded satisfy interpolation.
Corollary 6.26. The closed locus of the Hilbert scheme of degree 12 genus 3 curves
in P9 which are tricanonically embedded satisfy interpolation.
Proof. First, note that there is a 105 = 99+ 6 dimensional space of tricanonically
embedded curve, where 99 = dimPGL10 and 6 = dimM3. In this case, by (10), we
have to show that there is a 1 dimensional family of such curves through 13 points,
sweeping out a surface. But, since we know a 3-Veronese surface passes through
these 13 points, we have a 1 dimensional family of tricanonical genus 3 curves
sweeping out this Veronese surface passing through 13 points, as desired.
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6.7. Enumerating singular triads: observations and obstacles

We now discuss the obstacle we face in the computation of the number of singular
triads for a general set 013 ⇢ P2. Set S = Bl 013P2, and let L = OS(5H � E1 �
. . . � E13).

We should set up the problem on a compact, smooth space. A natural choice is
the Hilbert scheme Hilb3 S parameterizing length three subschemes of S.

The universal schemeZ ⇢ Hilb3 S⇥S has two obvious projections ⇡1:Z �!
Hilb3 S and ⇡2 : Z �! S. Next, we consider the sheaf

F = ⇡1⇤
⇣
⇡⇤
2L/

⇣
I 2

Z ⌦ ⇡⇤
2L

⌘⌘
.

Unfortunately, the sheaf F, which has generic rank 9, fails to be locally free pre-
cisely along the locus F ⇢ Hilb3 S parameterizing degree 3 schemes of the form
Spec k[x, y]/(x2, xy, y2), also known as the “fat points”.

There is a natural restriction map

⇢ : O �8
Hilb3 S �! F.

IfF were locally free of rank 9, we could attempt to use Porteous’ formula to find
the locus where the rank of ⇢ drops to 6. SinceF is not locally free, this approach
fails from the outset.

One fix would be to work on a blow up of Hilb3 S along the locus F , but then
it’s unclear what should replace the sheafF. What’s more, we would need to iden-
tify the Chern classes of the replacement sheaf in the Chow ring of Bl F (Hilb3 S),
which is challenging in its own right. See [13].

Another potential fix would be to work in the nested Hilbert scheme Hilb2,3 S
parameterizing, X2 ⇢ X3 ⇢ S, pairs of length 2 subschemes contained in length
3 subschemes. It is known that Hilb2,3 S is smooth, and it has a generically finite,
degree 3 map to Hilb3 S given by forgetting X2, which has one dimensional fibers
(isomorphic to P1) precisely over F ⇢ Hilb3 S. This space Hilb2,3 S might be
better suited for replacing the problematic sheaf F above. Finding a solution to
these issues is the subject of ongoing work. As further references for enumerative
geometry in the Hilbert scheme of three points, see [25,26], and [16].

7. Further questions

We conclude with some interesting open interpolation problems.
Since weak interpolation is equivalent to interpolation for del Pezzo surfaces

of degrees 3, 4, 5, and 9, it is immediate from Theorem 1.1 that del Pezzo surfaces
of degree 3, 4, 5 and 9 surfaces satisfy interpolation, while the remaining del Pezzo
surfaces satisfy weak interpolation.
Question 7.1. Do all del Pezzo surfaces satisfy strong interpolation? If so, how
many del Pezzo surfaces meet a collection of points and a linear space, as given in
Table 1.1?
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It was mentioned in the introduction that plane conics constitute all anticanonically
embedded Fano varieties of dimension 1 and del Pezzo surfaces constitute those of
dimension 2. As we have seen these both satisfy weak interpolation. Further, there
is a complete classification of Fano varieties in dimension 3 [18]. Unfortunately, it
is immediately clear that not all Fano varieties in dimension more than 3 satisfy in-
terpolation. A counterexample is provided by the complete intersection of a quadric
and cubic hypersurface in P5. This leads to the following question:
Question 7.2. Which Fano threefolds, embedded by their anticanonical sheaf, sat-
isfy weak interpolation? Which Fano threefolds, embedded by their anticanonical
sheaf, satisfy interpolation? Which Fano varieties in dimension more than 3 satisfy
interpolation?
In another direction, we may note that surfaces of minimal degree satisfy interpo-
lation, that is, surfaces of degree d � 1 in Pd satisfy interpolation by Theorem 1.5.
In this paper, we show that all smooth surfaces of one more than minimal degree,
which are not projections of surfaces of degree d from Pd+1 as described in [8, The-
orem 2.5]. satisfy interpolation. That is, surfaces of degree d in Pd satisfy interpo-
lation.
Question 7.3. Doall smooth surfaces of degreed inPd satisfy interpolation? Equiv-
alently, using [8, Theorem 2.5] Theorema 1.1, do projections of surfaces of minimal
degree from a point satisfy interpolation?
While all smooth linearly normal nondegenerate surfaces of degree d in Pd satisfy
weak interpolation, note that not all surfaces of degree d + 2 in Pd will satisfy
interpolation. This is because the complete intersection of a quadric and cubic
hypersurface in P4 does not satisfy interpolation. So, in some way, surfaces of
degree d+1 inPd are the turning point between surfaces satisfying interpolation and
surfaces not satisfying interpolation. This leads naturally to the following question.
Question 7.4. Do surfaces of degree d + 1 in Pd satisfy interpolation?
From Theorem 1.5, we know that varieties of dimension k and degree d in Pd+k�1

satisfy interpolation. In this paper we have seen that varieties of degree 2 and di-
mension 2 (which are nondegenerate and not projections of varieties of minimal
degree) in Pd+2�2 = Pd satisfy interpolation. This too offers an immediate gener-
alization.
Question 7.5. Do varieties of dimension k and degree d in Pd+k�2 satisfy interpo-
lation?
Similarly, we have seen the very beginnings of interpolation for Veronese embed-
dings. That is, by the discussion in 1.2.1, all rational normal curves which are the
Veronese embeddings of P1 satisfy interpolation. In general, interpolation of the
r-Veronese embedding of Pn which is the image of Pn ! P(n+rn )�1 is equivalent to
the question of whether the Veronese surface passes through

�n+r
r
�
+ n + 1 points.

Unlike the del Pezzo surfaces and rational normal scrolls, Veronese embeddings are
a class of varieties for which interpolation only imposes point conditions, and not
an additional linear space condition. Perhaps this coincidence may be helpful in
finding the solution to the following question.
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Question 7.6. Does the image of the r-Veronese embeddingPn ! P(n+rr )�1 satisfy
interpolation? That is, is there a Veronese embedding containing

�n+r
r
�

+ n + 1
general points in P(n+rr )�1?
If the answer to Question 7.6 is affirmative, it would be very interesting to know
how many Veronese varieties pass through the correct number of points. Using
1.2.1, we know there is precisely one r-Veronese P1 through

�r+1
1
�
+ 1+ 1 = r + 3

points in Pr . Additionally, Theorem 5.6 tells us there are 4 2-Veronese surfaces
through 9 general points in P5. In this paper, we have shown that there are at least
630 3-Veronese surfaces through 13 general points in P9. See Remark 6.20.
Question 7.7. Howmany r-Veronese varieties of dimension n pass through

�n+r
r
�
+

n + 1 general points in P(n+rr )�1?
We have also seen in Coble’s work that any two 2-Veronese surfaces through 9
general points in P5 intersect along a genus 1 curve through those 9 points. This
leads to the question:
Question 7.8. Suppose there are at least two r-Veronese varieties of dimension n
passing through

�n+r
r
�

+ n + 1 general points in P(n+rr )�1. Do they have positive
dimensional intersection?

Appendix A. Interpolation in general

In this section, we define various notions of interpolation, and prove they are all
equivalent under mild hypotheses in Theorem A.7. Many of the results are likely
well-known to experts, but we could not find precise references, so we give proofs
for completeness.

A.1. Definition and equivalent characterizations of interpolation

We now lay out the key definitions of interpolation. First, we describe a more
formal way of expressing interpolation in Definition A.3. This comes in two flavors:
interpolation, and pointed interpolation. The latter also keeps track of the points at
which the planes meet the given variety. Then, we give a cohomological definition
in Definition A.5.
Definition A.1. Let X ⇢ Pn be projective scheme with a fixed embedding into pro-
jective space which lies on a unique irreducible component of the Hilbert scheme.
Define H X to be the irreducible component of the Hilbert scheme on which [X]
lies, taken with reduced scheme structure. If H is the Hilbert scheme of closed
subschemes of Pn over Spec k and V is the universal family over H , then define
define VX to be the universal family overH X , defined as the fiber product

VX //

✏✏

V

✏✏

H X // H .
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Definition A.2. Given an integral subscheme of the Hilbert scheme U parameter-
izing subschemes of Pn of dimension k, call a sequence

� := (�1, . . . , �m)

admissible if it satisfies the following conditions:

(1) � is a weakly decreasing sequence. That is, �1 � �2 � · · · � �m ;
(2) For all 1  i  m, we have 0  �i  n � k;
(3) And

mX

i=1
�i  dimU.

Definition A.3. Let U be an integral subscheme of the Hilbert scheme parameter-
izing subschemes of Pn of dimension k and let V (U) denote the universal family
over U . Let � be admissible and let 3i be a plane of dimension n � k � �i for
1  i  m. Define

9 :=
�
V31 ⇥Pn V (U)

�
⇥U · · · ⇥U

�
V3m ⇥Pn V (U)

�
.

Then, sinceH3i
⇠= Gr(n� k��i +1, n+1), define8 to be the scheme theoretic

image of the composition

9 // U ⇥
Qm

i=1 Gr(n � k � �i + 1, n + 1) ⇥ (Pn)m

✏✏

U ⇥
Qm

i=1 Gr(n � k � �i + 1, n + 1).

We have natural projections

8

⇡1
}}{

{

{

{

{

{

{

{

{

⇡2

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

U
Qm

i=1 Gr(n � k � �i + 1, n + 1)

and
9

⌘1
}}{

{

{

{

{

{

{

{

{

⌘2

))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

U
Qm

i=1 Gr(n � k � �i + 1, n + 1).
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Define q and r so that dimU = q · (n � k) + r with 0  r < n � k. Then, U
satisfies

(1) �-interpolation if the projection map ⇡2 is surjective;
(2) Weak interpolation if U satisfies ((n � k)q)-interpolation;
(3) Interpolation if U satisfies ((n � k)q , r)-interpolation;
(4) Strong interpolation if U satisfies �-interpolation for all admissible �.

We define �-pointed interpolation, weak pointed interpolation, pointed interpola-
tion, strong pointed interpolation similarly. More precisely, we say that U satisfies

(1) �-pointed interpolation if ⌘2 is surjective;
(2) Weak pointed interpolation if U satisfies ((n � k)q)-pointed interpolation;
(3) Pointed interpolation if U satisfies ((n � k)q , r)-pointed interpolation;
(4) Strong pointed interpolation if U satisfies �-pointed interpolation for all ad-

missible �.

If X ⇢ Pn lies on a unique irreducible component of the Hilbert scheme H X ,
we say X satisfies �-interpolation (and all variants as above) if H X satisfies �-
interpolation.
Remark A.4. Note that U satisfies �-interpolation if and only if it satisfies �-
pointed interpolation: ⌘2 factors through 8, and the restriction map 9 ! 8 is
surjective, so ⌘2 is surjective if and only if ⇡2 is. Nevertheless, it is useful to refer
to these two notions separately, which is why we give them two separate names.
Definition A.5 (Interpolation of locally free sheaves, see [3, Definition 3.1]). Let
� be admissible and let E be a locally free sheaf on a scheme X with H1(X, E) = 0.
Choose points p1, . . . , pm on X and vector subspaces Vi ⇢ E |pi for 1  i  m
with codim Vi = �i . Then, define E 0 so that we have an exact sequence of coherent
sheaves on X

0 // E 0 // E // �m
i=1E |pi /Vi // 0. (A.1)

We say E satisfies �-interpolation if there exist points p1, . . . , pn as above and
subspaces Vi ⇢ E |pi as above so that

h0(E) � h0(E 0) =
mX

i=1
�i .

Write h0(E) = q · rk E + r with 0  r < rk E . We say E satisfies

(1) Weak interpolation if it satisfies ((rk E)q) interpolation;
(2) Interpolation if it satisfies ((rk E)q , r) interpolation;
(3) Strong interpolation if it satisfies �-interpolation for all admissible �.

Remark A.6. See [2, Section 4] for further useful properties of interpolation.While
some of the discussion there is specific to curves, much of it generalizes immedi-
ately to higher dimensional varieties.
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We now come to the main result of the section. Because it has so many moving
parts, after stating it, we postpone its proof until Subsection A.5, after we have
developed the tools necessary to prove it.

Perhaps the most nontrivial consequence of Theorem A.7 is that it implies the
equivalence of interpolation and strong interpolation for H X when X is a smooth
projective scheme with H1(X, NX/Pn ) = 0, over an algebraically closed field of
characteristic 0.

Theorem A.7. Assume X ⇢ Pn is an integral projective scheme lying on a unique
irreducible component of the Hilbert scheme. Write dimH X = q · codim X + r
with 0  r < codim X . The following are equivalent:

(1) H X satisfies interpolation;
(2) H X satisfies pointed interpolation;
(3) The map ⇡2 given in Definition A.3 for � = ((codim X)q , r) is dominant;
(4) The map ⇡2 given in Definition A.3 for � = ((codim X)q , r) is generically

finite;
(5) The scheme 8 defined in Definition A.3 for � = ((codim X)q , r) has a closed

point x which is isolated in its fiber ⇡�1
2 (⇡2(x));

(6) The map ⌘2 given in Definition A.3 for � = ((codim X)q , r) is dominant;
(7) The map ⌘2 given in Definition A.3 for � = ((codim X)q , r) is generically

finite;
(8) The scheme 9 defined in Definition A.3 for � = ((codim X)q , r) has a closed

point x which is isolated in its fiber ⌘�1
2 (⌘2(x));

(9) For any set of q points in Pn and an (codim X�r)-dimensional plane3 ⇢ Pn ,
there exists an element [Y ] 2 H X so that Y contains those points and meets3;

(10) For any set of q points in Pn , the subscheme of Pn swept out by varieties of
H X containing those points is dim X + r dimensional.

Secondly, the following statements are equivalent:

(i) H X satisfies strong interpolation;
(ii) H X satisfies �-interpolation for all � with

Pm
i=1 �i = dimH X ;

(iii) H X satisfies strong pointed interpolation;
(iv) H X satisfies �-pointed interpolation for all � with

Pm
i=1 �i = dimH X ;

(v) For any collection of planes 31, . . . ,3m with (dim31, . . . , dim3n) admissi-
ble, there is some [Y ] 2 H X meeting all of 31, . . . ,3m;

(vi) For any collection of planes 31, . . . ,3m with (dim31, . . . , dim3n) admis-
sible, with

Pm
i=1 �i = dimH X , there is some [Y ] 2 H X meeting all of

31, . . . ,3m .

Also, (i)-(vi) imply (1)-(10). Thirdly, further assume H1(X, NX ) = 0 and X is a
local complete intersection. Then, the following properties are equivalent:

(a) The sheaf NX/Pn satisfies interpolation;
(b) There is a subsheaf E 0 ! NX/Pn whose cokernel is supported at q+1 points if

r > 0 and q points if r = 0, so that the scheme theoretic support at q of these
points has dimension equal to rk NX/Pn and H0(X, E 0) = H1(X, E 0) = 0;
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(c) The sheaf NX/Pn satisfies strong interpolation;
(d) For every d � 1, there exist points p1, . . . , pd 2 X so that

dim H0
�
X, NX/Pn ⌦ Ip1,...,pd

�
= max

n
0, h0(X, NX/Pn ) � dn

o

(cf. [2, Definition 4.1]);
(e) For every d � 1, a general collection of points p1, . . . , pd in X satisfies either

h0
�
X, NX/Pn ⌦ Ip1,...,pd

�
= 0 or h1

�
X, NX/Pn ⌦ Ip1,...,pd

�
= 0

(cf. [2, Proposition 4.5]);
(f) A general set of q points p1, . . . , pq satisfy h1(X, NX/Pn ⌦Ip1,...,pq ) = 0 and

a general set of q+1 points q1, . . . , qq+1 satisfy h0(X, NX/Pn ⌦Ip1,...,pq ) = 0
(cf. [2, Proposition 4.6]).

Additionally, retaining the assumptions that H1(X, NX ) = 0 and X is a local com-
plete intersection, and further assuming X is generically smooth, the equivalent
conditions (a)-(f) imply the equivalent conditions (1)-(10) and the equivalent con-
ditions (a)-(f) imply the equivalent conditions (i)-(vi).

Finally, still retaining the assumptions that H1(X, NX ) = 0 and that X is a
local complete intersection, in the case that k has characteristic 0, all statements
(1)-(10), (i)-(vi), (a)-(f) are equivalent.
We develop the tools to prove Theorem A.7 in Subsections A.2, A.3, and A.4, and
then give a proof of Theorem A.7 in Subsection A.5.
Remark A.8. Note that if H1(X, NX/Pn ) = 0 and X is a local complete inter-
section, (the latter condition is satisfied for all smooth X ,) then X has no local
obstructions to deformation by [17, Corollary 9.3]. So, by [17, Corollary 6.3], [X]
is a smooth point of the Hilbert scheme.
Remark A.9. We note that the equivalence of all conditions from Theorem A.7
requires the characteristic 0 hypothesis, as it does not hold in characteristic 2.

The 2-Veronese surface over an algebraically closed field of characteristic 2
provides an example of a variety which satisfies interpolation but whose normal
bundle does not satisfy interpolation, as is shown in [21, Corollary 7.2.9].

A.2. Tools for irreducibility of incidence correspondences

A key ingredient for establishing the equivalence of conditions (1)-(10) is the irre-
ducibility of the incidence correspondences 8,9 (Definition A.3). We use this to
establish that the following properties of the map ⇡2 (Definition A.3) are equiva-
lent:
(1) It is surjective;
(2) It is dominant;
(3) It is generically finite;
(4) It has an isolated point in some fiber.
Our goal for this subsection is to prove Proposition A.11.
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We start with a general upper semicontinuity result, which we will use in
Proposition A.11 to show that if X is integral than so is H X , which we will then
use in Proposition A.11 to conclude that 8 and 9 are irreducible of the same di-
mension.

Proposition A.10. Let f : X ! Y be a flat proper map of finite type schemes over
an arbitrary field so that the fibers over the closed points of Y are geometrically
reduced. Then, the number of irreducible components of the geometric fiber of a
point in Y is upper semicontinuous on Y .

This proof is that outlined in nfdc23’s comments in [19].

Proof. To start, note that by [15, Théorème 12.2.4(v)], the set of points in Y with
geometrically reduced fiber is open, and hence all fibers of f are geometrically
reduced, as all closed fibers are. Then, by [15, Théorème 12.2.4(ix)], since the
geometric fibers of f are reduced and hence have no embedded points, we obtain
that the total multiplicity, as defined in [14, Définition 4.7.4], is upper semicontin-
uous. Since the total multiplicity of a reduced scheme over an algebraically closed
field is equal to the number of irreducible components, the number of irreducible
components of the geometric fibers is upper semicontinuous on the target.

Proposition A.11. Suppose X is an integral scheme. Then, 8,9 as defined in
Definition A.3 are irreducible and dim8 = dim9.

Proof. We start by verifying that a general member of H X is integral if X is.
The map VX ! H X has general member which is reduced by [15, Théorème
12.2.4(v)]. Therefore, applying Proposition A.10, the general point of H X has
preimage in VX which is integral.

We now complete the proof in the case that m = 1 as the general case is
completely analogous. We write � := �1,3 := 31, p := p1 for notational conve-
nience. Observe that we have a commutative diagram of natural projections

9

⇢1
{{w

w

w

w

w

w

w

w

w

⇢2

!!

D

D

D

D

D

D

D

D

D

VX
⇢3

##

F

F

F

F

F

F

F

F

8

⇢4
}}{

{

{

{

{

{

{

{

H X .

Observe that since the map ⇢2 is surjective, once we know 9 is irreducible, 8 will
be too.

Note that the map ⇢3 is flat. The assumption that the general member ofH X is
irreducible precisely says that the general fiber of ⇢3 is irreducible. If we have a flat
map to an irreducible base, so that the general fiber is irreducible, then the source is
irreducible (see, for example, [21, Lemma 3.2.1]). Hence, VX is irreducible.
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If we knew ⇢1 were a Grassmannian bundle, we would then obtain that 9 is
also irreducible. To see this, we have a fiber square

9 //

✏✏

{(3, p) ⇢ Gr(�, n + 1) ⇥ Pn : p 2 3}

✏✏

VX // Pn.

The left vertical map is a Grassmannian bundle because the right vertical map is a
Grassmannian bundle, so 9 and 8 are irreducible.

To conclude, we check that dim9 = dim8. Note that if we take the point
(Y,3) in 8 chosen so that 3 meets Y at finitely many points, the fiber of ⇢2 over
that point is necessarily 0 dimensional. By upper semicontinuity of fiber dimension
for proper maps, there is an open set of 8 on which the fiber is 0 dimensional.
Hence the map is generically finite, so dim8 = dim9.

A.3. Tools for showing equality of dimensions of the source and target

In this subsection we develop some more technical tools for proving Theorem A.7.
Our goal for this subsection is to prove Lemma A.13. Before embarking on this
task, we start with a simple tool for proving the equivalence of (3) and (5).

Lemma A.12. Let ⇡ : X ! Y be a proper morphism of locally Noetherian
schemes of the same pure dimension. If there is some point x 2 X which is iso-
lated in its fiber, then dim im ⇡ = dimY .

Proof. By Zariski’s Main Theorem in Grothendieck’s form [33, Theorem 29.6.1(a)]
there is a nonempty open subscheme X0 ⇢ X so that all closed point of X0 are iso-
lated in their fibers. Therefore, the map restricted to this open subset is generically
finite, and so its image has the same dimension as Y .

Lemma A.13. With notation as in Definition A.3, if
Pm

i=1 �i = dimH X , we have
dim8 = dim

Qm
i=1 Gr(codim X � �i + 1, n + 1). In particular, the source and

target of the map ⇡2 have the same dimension.

Proof. This is purely a dimension counting argument. With notation as in Defini-
tion A.3, 8 is a fiber product of incidence correspondences, 8i , where 8i is the
scheme theoretic image of

9i := V3i ⇥Pn V (U)

under projection map 9i ! H X ⇥Gr(codim X � �i + 1, n+ 1).We have natural
projections

8i
⇡ i1

}}z

z

z

z

z

z

z

z ⇡ i2

))

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

H X Gr(codim X � �i + 1, n + 1)
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with

8 = 81 ⇥H X 82 ⇥H X · · · ⇥H X 8m .

The dimension of any fiber of ⇡ i1 is dim X + dimGr(codim X � �i , n), and hence

dim8 = dimH X +
mX

i=1
(dim X + dimGr(codim X � �i , n))

= dimH X +
mX

i=1
(dim X + (dimGr(codim X � �i + 1, n + 1)

� n � codim X � �i ))

= dimH X �
mX

i=1
�i +

mX

i=1
dimGr(codim X � �i + 1, n + 1)

=
mX

i=1
dimGr(codim X � �i + 1, n + 1).

A.4. Deformation theory tools

In this subsection, we prove a result from deformation theory crucial to proving the
equivalence of the distinct groups of conditions in Theorem A.7.

The following proposition is important for establishing the equivalence be-
tween interpolation of a locally free sheaf and interpolation of a Hilbert scheme;
although it might be obvious for experts, we could not find a reference, so we in-
clude it for completeness.

Proposition A.14. Let 9, ⌘2 and [X] 2 U be as in Definition A.3 and let

p := (X,31, . . . ,3m, p1, . . . , pm) 2 9

be a closed point of 9, so that 3i meets X quasi-transversely and so that the pi
are distinct smooth points of X . Choose subspaces Vi ⇢ NX/Pn |pi where Vi is the
image of the composition

Npi/3i
// Npi/Pn // NX/Pn |pi .

For any closed point q of 9, let

d⌘2|q : Tq9 ! T⌘2(q)

mY

i=1
Gr(codim X � �i + 1, n + 1)

be the induced map on tangent spaces. Then, d⌘2|p is surjective if and only if the
map

H0
�
X, NX/Pn

�
⌧ // H0

�
X,�m

i=1NX/Pn |pi /Vi
�

is surjective.
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Proof. To set things up properly, we will need some definitions. Recall that V3i is
the universal family over the Hilbert scheme of dim3i planes in Pn . That is, it is
the universal family over Gr(codim X � �i + 1, n + 1). Next, take H to be the
Hilbert scheme with Hilbert polynomial equal to that of X and let V be the universal
family overH . Next, define the scheme

F :=
�
H ⇥Pn V31

�
⇥V · · · ⇥V

�
H ⇥Pn V3m

�

⇠=
�
U ⇥H · · · ⇥H U

�
⇥(Pn)m

�
V31 ⇥ · · · ⇥ V3m

�
,

where there are m copies of U in the first parenthesized expression on the second
line.

Note that here F is not necessarily the same as 9 because we need not have
H = H X : The former is the connected component of the Hilbert scheme contain-
ing X whileH X is the irreducible component of the Hilbert scheme containing X .
However, we will later explain why the tangent spaces of these two schemes are
identical, which is enough for our purposes.

Now, under our assumption that p1, . . . , pn are distinct, we have a diagram

TpF
∏m

i=1 T[pi,Λi]VΛi

∏m
i=1 T[Λi]HΛi

T[p1,...,pm,X]U ×H · · ·×H U ⊕m
i=1TpiPn ⊕m

i=1 (TpiPn/TpiΛi)

T[X]H ⊕n
i=1 (TpiPn/TpiX) ⊕m

i=1 (TpiPn/ (TpiX ⊕ TpiΛi))

f1 f2

g1 g2

(A.2)

in which every square is a fiber square.
First, let us justify why the four small squares of (A.2) are fiber squares. The

lower right hand square of (A.2) is a fiber square by elementary linear algebra and
the assumption that 3i meet X quasi-transversely. The upper right square of (A.2)
is a fiber square for each i by [28, Remark 4.5.4(ii)], as the universal family over
the Hilbert scheme is precisely the Hilbert flag scheme of points inside that Hilbert
scheme. Next, the lower left hand square of (A.2) is a fiber square because when
the points p1, . . . , pn are distinct, the tangent space to this n-fold fiber product
of universal families over the Hilbert scheme is the same as the tangent space to
the Hilbert flag scheme of degree n schemes inside schemes with the same Hilbert
polynomials as X . Then, the fiber square follows from [28, Remark 4.5.4(ii)] for
this flag Hilbert scheme. Finally, the upper left square of (A.2) is a fiber square
becauseF is defined as a fiber product of (U⇥H · · ·⇥H U ) and (V31⇥· · ·⇥V3m ),
and the fiber product of the tangent spaces is the tangent space of the fiber product.

Now, observe that the composition f2 � f1 is precisely the map on tangent
spaces d⌘2|p. To make this identification, we need to know that we can naturally
identify TpF ⇠= Tp9. However, the assumptions that H1(X, NX/Pn ) = 0 and that
X is lci imply that [X] is a smooth point of the Hilbert scheme. Because the fiber
over [X] of the projection 9 ! H X is smooth, it follows that 9 is smooth at
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p. For the same reason, it follows that F is smooth at the corresponding point p.
Therefore, both F and 9 are smooth on some open neighborhood U containing
p. Now, since both 9 and F are defined in terms of fiber products, which agree
on some open neighborhood V contained in U , it follows that on V we have an
isomorphism F |V ⇠= 9|V , and in particular their tangent spaces are isomorphic.
So, we can identify f2 � f1 with d⌘2|p.

Since all four subsquares of (A.2) are fiber squares, the full square (A.2) is
a fiber square, and hence f2 � f1 is an isomorphism if and only if g2 � g1 is an
isomorphism.

To complete the proof, we only need identify the map g2 � g1 with ⌧ . But this
follows from the identifications

T[X]H ⇠= H0
�
X, NX/Pn

�

TPiPn/Tpi X ⇠= H0
�
X, NX/Pn |pi

�

TPiPn/
�
Tpi X � Tpi Y

� ⇠= H0
�
X, NX/Pn |pi /Vi

�
.

The first isomorphism follows from [17, Theorem 1.1(b)]. The second isomorphism
holds because the normal exact sequence

0 // Tpi X // TpiPn // NX/Pn |pi // 0

is exact on global sections, as all sheaves are supported at pi . The third isomor-
phism holds because

�
TpiPn/

�
Tpi X � Tpi3i

��
can be viewed as the quotient of

TpiPn first by Tpi X and then by the image of Tpi3i in that quotient. However,
TpiPn/Tpi X ⇠= NX/Pn |pi , and then Vi is by definition the image of Tpi3i in
NX/Pn |pi .

A.5. Proof of Theorem A.7

Proof of Theorem A.7. The structure of proof is as follows:

(1) Show equivalence of conditions (1)-(10);
(2) Show equivalence of conditions (i)-(vi);
(3) Show equivalence of conditions (a)-(f);
(4) Demonstrate the implications that (a)-(f) imply (1)-(10), (a)-(f) imply (i)-(vi),

and (i)-(vi) imply (1)-(10), in all characteristics. Further, all statements are
equivalent in characteristic 0.

A.5.1. Equivalence of conditions (1)-(10)

First, (1) and (2) are equivalent as mentioned in Remark A.4, applied to the case
� = ((codim X)q , r).

Next, note that a proper map of irreducible schemes of the same dimension is
surjective if and only if it is dominant if and only if it is generically finite if and only
if there is some point isolated in its fiber. The first three equivalences are immediate,
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the last follows from Lemma A.12. Since dim
Qm

i=1 Gr(codim X��i +1, n+1) =
dim8, by Lemma A.13, we have that (1), (3), (4), (5) are equivalent.

Next, since dim8 = dim9, and 9 is irreducible, we have

dim
mY

i=1
Gr(codim X � �i + 1, n + 1) = dim9.

So, by reasoning analogous to that of the previous paragraph, we obtain that (2),
(6), (7), and (8) are equivalent.

Next, (1) is equivalent to (9) because surjectivity of a proper map of varieties
is equivalent to surjectivity on closed points of the varieties. Since the fibers of the
map ⇡2 precisely consist of those elements ofH X meeting a specified collection of
q points and a plane 3, being surjective is equivalent to there being some element
ofH X passing through these q points and meeting 3.

Finally, (9) is equivalent to (10) because the condition that the variety swept out
by the elements of H X containing q points meet a general plane 3 of dimension
codim X � r is equivalent to the variety swept out by the elements of H X being
dim X + r dimensional. This is using the fact that a variety of dimension d in Pn
meets a general plane of dimension d 0 if and only if d + d 0 � n. But, of course, the
dimension swept out by the elements ofH X containing q general points is at most
dim X + r dimensional, because there is at most an r dimensional space of varieties
in H X containing r general points. This shows the equivalence of properties (1)
through (10).

A.5.2. Equivalence of Conditions (i)-(vi)

Since ⌘2 factors through 8, and the restriction map 9 ! 8 is surjective, for all �
with

Pm
i=1 �i = dimH X , �-interpolation is equivalent to �-pointed interpolation.

This establishes the equivalence of (ii) and (iv) and the equivalence of (i) and (iii).
Next, (i) is equivalent to (v), because the map ⇡2 contains a point correspond-

ing to a collection of planes 31, . . . ,3m in its image if and only if there is some
element of the Hilbert schemes meeting those planes. Similarly, (ii) is equivalent
to (vi).

To complete these equivalences, we only need show (v) is equivalent to (vi).
Clearly (v) implies (vi). For the reverse implication, observe that if we start with
a collection of planes 31, . . . ,3s with 3i 2 Gr(codim X � �i + 1, n + 1), so
that

Ps
i=1 �i < dimH X , we can extend the sequence � to a sequence µ =

(µ1, . . . , µm) for m > s, with 0  µi  codim X , µi = �i for i  s, andPm
i=1 µi = dimH X . Then, if some element of H X meets planes 31, . . . ,3m

corresponding to the sequence µ, it certainly also meets 31, . . . ,3s . Hence, (vi)
implies (v).

A.5.3. Equivalence of conditions (a)-(f)

The equivalence of (a) and (b) is immediate from the definitions. The equivalence
of (d) and (e) is a generalization of [2, Proposition 4.5] to higher dimensional va-
rieties, and the equivalence of (e) and (f) is a generalization of [2, Proposition 4.6]
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to higher dimensional varieties. The equivalence of (a) and (c) is an immediate
generalization of [3, Theorem 8.1] to higher dimensional varieties. To complete
the proof, we only need check the equivalence of Definition (a) and (e). The for-
ward implication follows immediately from a couple standard applications of exact
sequences, so we concentrate on the reverse implication. This essentially follows
from a generalization of [2, Proposition 4.23], with one minor issue: We need to
check that if we start with a sequence of sheaves

0 // F // E // A // 0

where A has zero dimensional support, then for a general collection of points
p1, . . . , pd the twisted sequence

0 // F ⌦ Ip1,...,pd // E ⌦ Ip1,...,pd // A ⌦ Ip1,...,pd // 0

remains exact. This held automatically in the case of [2, Proposition 4.23], because
they were only dealing with the case that the points were divisors, and hence the
ideal sheaves were locally free. However, here, the resulting sequence is still exact,
since Tor1(Ip1,...,pd , A) = 0, so long as the points p1, . . . , pd are chosen to be
disjoint from the support of A. We apply this generalization of [2, Proposition 4.23],
and, in that statement, take B := Gr(r, rk NX/Pn ), E := NX/Pn , F := NX/Pn ⌦
Ip,Gb := NX/Pn |p/Vb, where Vb is the subspace for the corresponding element
of b 2 B. We then see that all twists of G by the ideal sheaf of a general set of
points either have vanishing 0 or 1st cohomology, implying that NX/Pn satisfies
interpolation, as in (a).

A.5.4. Implications among all conditions

By definition (i) implies (1).
To complete the proof, we only need to show (a) implies (iii) and (2) (in all

characteristics) and that the reverse implications hold true in characteristic 0.
For this, choose �with

Pm
i=1 �i = dimH X . We will show that �-interpolation

of NX/Pn implies �-pointed interpolation in all characteristics, and the reverse im-
plication holds in characteristic 0. It suffices to prove this, as this will yield the
desired implications. For example, this implies the relation between (2) and (a), by
taking � = ((codim X)q , r).

To see this statement about �-pointed interpolation and �-interpolation of
NX/Pn , let p := (Y,31, . . . ,3m, p1, . . . , pm), Vi , ⌧ be as in Proposition A.14.

By Proposition A.14, we have that the map d⌘2|p is surjective if and only if the
corresponding map ⌧ is surjective. But this latter map is precisely that from (A.1)
in the definition of interpolation for vector bundles, taking E := NX/Pn .

So, to complete the proof, it suffices to show that if d⌘2|p is surjective, then ⌘2
is surjective, and the converse holds in characteristic 0.

But now we have reduced this to a general statement about varieties. Note that
⌘2 is a map between two varieties of the same dimension, by Lemma A.13 and that
p is a smooth point of 9 by assumption. So, it suffices to show that a map between
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two proper varieties of the same dimension is surjective if it is surjective on tangent
spaces, and that the converse holds in characteristic 0. For the forward implication,
if the map is surjective on tangent spaces, the map is smooth of relative dimension
0 at p. But, this means that p is isolated in its fiber, and so by Lemma A.12, we
obtain that ⌘2 is surjective.

To complete the proof, we only need to show that if ⌘2 is surjective and k has
characteristic 0, then there is a point at which d⌘2|p is surjective. That is, we only
need to show there is a point at which ⌘2 is smooth. But, this follows by generic
smoothness, which crucially uses the characteristic 0 hypothesis!

A.6. Complete intersections

Definition A.15. DefineH ci
k,d,n to be the closure in the Hilbert scheme of the locus

of complete intersections of k polynomials of degree d in Pn .

Lemma A.16. Let k, d, n be positive integers. Then,H ci
k,d,n satisfies interpolation.

In particular, any Hilbert scheme of hypersurfaces H ci
1,d,n satisfies interpolation.

Furthermore, interpolation is equivalent to meeting
�d+n
d
�
� k general points in Pn .

Proof. First, observe that dimH ci
k,d,n = k(

�d+n
d
�

� k) because a point of H ci
k,d,n

corresponds to the variety cut out by the intersection of all degree d polynomials in
a k dimensional subspace of H0(Pn,OPn (d)). In other words, there is a birational
map between the locus of complete intersections and G(k, H0(Pn,OPn (d))), which
is k(

�d+n
d
�
� k) dimensional. So, to show H ci

k,d,n satisfies interpolation, it suffices
to show there exists such a complete intersection through

�d+n
d
�
� k general points.

First, since points impose independent conditions on degree d hypersurfaces in Pn ,
there will indeed be a k dimensional subspace of H0(Pn,OPn (d)) passing through
the any collection of

�d+n
d
�
� k points.

It remains to verify that if the points are chosen generally, then the intersec-
tion of degree d hypersurfaces in the subspace passing through the points is a
complete intersection. To see this, note that the map ⇡2 from Definition A.3 is
a generically finite map between varieties of the same dimension. In particular,
the element of G(k, H0(Pn,OPn (d))) through a general collection of

�d+n
d
�

� k
points will be general in G(k, H0(Pn,OPn (d))). Then, since a general element of
G(k, H0(Pn,OPn (d))) corresponds to a complete intersection, there will indeed be
a complete intersection passing through a general collection of

�d+n
d
�
�k points.

References

[1] E. ARBARELLO and J. HARRIS, Canonical curves and quadrics of rank 4, Compositio
Math. 43 (1981), 145–179.

[2] A. ATANASOV, E. LARSON and D. YANG, “Interpolation for Normal Bundles of General
Curves”, Mem. Amer. Math. Soc., Vol. 257, 2019.



INTERPOLATION PROBLEMS: DEL PEZZO SURFACES 1427

[3] A. ATANASOV, Interpolation and vector bundles on curves, arXiv: 1404.4892v2, 2014.
[4] E BALLICO, An interpolation problem for the normal bundle of curves of genus g � 2 and

high degree in Pr , Comm. Algebra 45 (2017), 822–827.
[5] D. CHEN, G. FARKAS and I. MORRISON, Effective divisors on moduli spaces of curves and

abelian varieties, In: “A Celebration of Algebraic Geometry”, Clay Math. Proc., Vol. 18,
Amer. Math. Soc., Providence, RI, 2013, 131–169.

[6] A. B. COBLE, Associated sets of points, Trans. Amer. Math. Soc. 24 (1922), 1–20.
[7] I. COSKUN, Degenerations of surface scrolls and the Gromov-Witten invariants of Grass-

mannians, J. Algebraic Geom. 15 (2006), 223–284.
[8] I. COSKUN, The enumerative geometry of Del Pezzo surfaces via degenerations, Amer. J.

Math. 128 (2006), 751–786.
[9] I. V. DOLGACHEV, On certain families of elliptic curves in projective space, Ann. Mat.

Pura Appl. (4) 183 (2004), 317–331.
[10] L. EIN and R. LAZARSFELD, Stability and restrictions of Picard bundles, with an applica-

tion to the normal bundles of elliptic curves, In: “Complex Projective Geometry” (Trieste,
1989/Bergen, 1989), Vol. 179, London Math. Soc. Lecture Note Ser., Cambridge Univ.
Press, Cambridge, 1992, 149–156.

[11] D. EISENBUD and J. HARRIS, On varieties of minimal degree (a centennial account), In:
“Algebraic Geometry”, Bowdoin, 1985 (Brunswick, Maine, 1985), Vol. 46, Proc. Sympos.
Pure Math., Amer. Math. Soc., Providence, RI, 1987, 3–13.

[12] D. EISENBUD and S. POPESCU, The projective geometry of the Gale transform, J. Algebra
230 (2000), 127–173.

[13] G. ELENCWAJG and P. LE BARZ, L’anneau de Chow des triangles du plan, Compositio
Math. 71 (1989), 85–119.
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