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Isogenies of Abelian Anderson A-modules and A-motives

URS HARTL

Abstract. As a generalization of Drinfeld modules, Greg Anderson introduced
Abelian -modules and #-motives over a perfect base field. In this article we study
relative versions of these defined over base rings. We investigate isogenies among
them. Our main results state that every isogeny possesses a dual isogeny in the op-
posite direction, and that a morphism between Abelian 7-modules is an isogeny if
and only if the corresponding morphism between their associated 7-motives is an
isogeny. We also study torsion submodules of Abelian #-modules which in gen-
eral are non-reduced group schemes. They can be obtained from the associated
t-motive via the finite shtuka correspondence of Drinfeld and Abrashkin. The in-
ductive limits of torsion submodules are the function field analogs of p-divisible
groups. These limits correspond to the local shtukas attached to the z-motives
associated with the Abelian 7-modules. In this sense the theory of Abelian ¢-
modules is captured by the theory of #-motives.

Mathematics Subject Classification (2010): 11G09 (primary); 14K02, 13A35,
14L.05 (secondary).

1. Introduction

In 1974 Drinfeld [12] defined “elliptic modules™ as function field analogs of el-
liptic curves. These are today called Drinfeld modules. As higher dimensional
generalizations of Drinfeld modules and function field analogs of Abelian vari-
eties, Greg Anderson [2] introduced Abelian t-modules and t-motives over a per-
fect base field. In this article we study families, that is, relative versions of these
defined over base rings, and we generalize them to Abelian Anderson A-modules
and A-motives. The upshot of our results is that the entire theory of Abelian An-
derson A-modules is contained in the theory of A-motives. More precisely, let [,
be a finite field with g elements, let C be a smooth projective geometrically ir-
reducible curve over [, and let Q = F,(C) be its function field. Let oo € C
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be a closed point and let A = I'(C ~\ {oo}, O¢) be the ring of functions which
are regular outside co. Let (R, y) be an A-ring, that is a commutative unitary
ring together with a ring homomorphism y: A — R. We consider the ideal
J:=@®l-1®y(a): a € A) =ker(y®idg: Ag > R) C Ag := A®p, R and
the endomorphism o :=idy ® Froby g: a®b — a®@b? of Ag. For an Ag-module
Mweseto™M := M @4, o AR = M ®R, Frob, & R, and for an element m € M we
write oyym :=m ® 1 € 0*M. Also we let Ny be the set of non-negative integers.

Definition 1.1. An effective A-motive of rank r over an A-ring R is a pair M =
(M, t)r) consisting of a locally free Ag-module M of rank r and an Ag-homo-
morphism ty: 0*M — M whose cokernel is annihilated by 7" for some positive
integer n. We say that M has dimension d if coker t); is a locally free R-module of
rank d and annihilated by 7 4 We write tk M = r and dim M = d for the rank and
the dimension of M.

A morphism f: (M, ty) — (N, ty) between effective A-motives is an Ag-
homomorphism f: M — N which satisfies f oty =ty oo™ f.

Note that t)s is always injective and coker(tys) is always a finite locally free R-
module by Proposition 2.3 below. We give some explanations for this definition in
Section 2 and also define non-effective A-motives. If R is a perfect field,q = pisa
prime, A = IF,[¢] and in addition, M is finitely generated over the non-commutative
polynomial ring R{tr} := {Z?:o bit':n € No, b; € R} with b = bPt, which
actsonm € M viat: m > ty(oym),then (M, Ty) is a t-motive in the sense of
Anderson [2, Section 1.2].

Next let us define Abelian Anderson A-modules by first agreeing that all group
schemes in this article are assumed to be commutative. In Section 3 we give some
explanations on the terminology in the following

Definition 1.2. Let d and r be positive integers. An Abelian Anderson A-module
of rank r and dimension d over R is a pair E = (E, ¢) consisting of a smooth affine
group scheme E over Spec R of relative dimension d, and a ring homomorphism
@: A — Endg_groups(E), a — ¢, such that

(a) There is a faithfully flat ring homomorphism R — R’ for which E x g Spec R’ =

GZ’ R as [F;,-module schemes, where [F;, acts on E via ¢ and [F; C A;

(b) (Liew, —y(@)? =0onLieE foralla € A;

(c) The set M:=M(E):=M,(E):= HomR_groupS,Fq_hn(E,Ga,R) of [F,-equivariant
homomorphisms of R-group schemes is a locally free Ag-module of rank r
under the action given on m € M by

Asda: M— M, m+— mog,
Rab: M— M, m— bom.
A morphism f: (E,¢9) — (E’,¢') between Abelian Anderson A-modules is a

homomorphism of group schemes f: E — E’ over R which satisfies ¢/ o f =
fog,foralla € A.
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Remark 1.3. In particular, if R = k is a perfect field, ¢ = p is a prime and
A = [p[t], then an Abelian Anderson A-module is nothing else than an Abelian
t-module in the sense of Anderson [2, Section 1.1]. Indeed, Anderson requires that
E is isomorphic to GZ’ « over k. This is implied by our condition (a) by [28, Chap-
ter VII, Proposition 11] and [29, XVII, Lemme 2.3 bis]. Our definition is the natural
generalization to arbitrary A-rings R. Likewise our condition (c) that M (E) is a lo-
cally free Ag-module generalizes Anderson’s condition that M (E) is a finite free
module over the principal ideal domain Ay = k[t] when R = k is a perfect field;
see [2, Section 1.1 and Lemma 1.4.5]. This is a severe restriction on E, but was
intended already by Anderson. Namely, we will see that for general A and R, the
Abelian Anderson A-modules of dimension 1 over R are precisely the Drinfeld A-
modules over R; see Definition 3.7 and Theorem 3.9. It was Anderson’s motivation
to define and study higher dimensional generalizations of Drinfeld A-modules in
the same spirit as Abelian varieties are higher dimensional generalizations of ellip-
tic curves, the number field analogs of Drinfeld A-modules. Condition (c) is crucial
for the intended analogy between Abelian Anderson A-modules and Abelian vari-
eties, because it determines the structure of endomorphism rings and torsion points;
see [2, Corollary 1.7.3 and Proposition 1.8.3] and our generalizations Corollary 3.6
and Theorem 6.4.

When ¢ is not a prime and R is not a field, we do not know the answer to the
following

Question 1.4. If we weaken Definition 1.2(a) and only require that there is an iso-
morphism of group schemes E Xgspec g Spec R = GZ z» do we get an equivalent
definition?

Anderson’s anti-equivalence [2, Theorem 1] between Abelian t-modules and -
motives directly generalizes to the following:

Theorem 3.5. Let R be a fixed A-ring. If E = (E, @) is an Abelian Ander-
son A-module over R, then M(E) = (M, ty) with tyy: o*M — M, oym
Froby G, zom is an effective A-motive over R of the same rank and dimension as
E. The contravariant functor E +— M (E) between Abelian Anderson A-modules
over R and A-motives over R is fully faithful. Its essential image consists of all ef-
fective A-motives M = (M, tpr) over R for which there exists a faithfully flat ring
homomorphism R — R’ such that M g R’ is a finite free left R'{t}-module under
themapt: M — M, m — ty(oy,m).

The main purpose of this article is to study isogenies and their (co-)kernels over
arbitrary A-rings R. Here a morphism f: E — E’ between Abelian Anderson
A-modules over R is an isogeny if it is finite and surjective. On the other hand,
a morphism f € Homg(M, N) between A-motives over R is an isogeny if f is
injective and coker f is finite and locally free as R-module. We give equivalent
characterizations in Propositions 5.2, 54 and 5.8. The following are our two main
results.
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Theorem 5.9. Let f € Homg(E, E') be a morphism between Abelian Anderson A-
modules over an A-ring R, and let M(f) € Homg(M', M) be the associated mor-
phism between the associated effective A-motives M = M(E) and M' = M(E’)
over R. Then

(a) f isanisogeny if and only if M(f) is an isogeny;
(b) If f is an isogeny, then ker f and coker M ( f) correspond to each other under
the finite shtuka equivalence which we review in Section 4.

Corollary 5.15. If f € Homgr(M, N) is an isogeny between A-motives over an
A-ring R, then there is an element 0 # a € A and an isogeny g € Homg (N, M)
with fog=a-idy and g o f = a -idy. The same is true for Abelian Anderson
A-modules.

This leads to the following result about torsion points in Section 6. Let (0) #a C A
be an ideal and let £ = (E, ¢) be an Abelian Anderson A-module over R. The a-
torsion submodule E[a] of E is the closed subscheme of E defined by E[a](S) =
{PeE(S): ¢,(P)=0foralla € a}onany R-algebra S.

Theorem 6.4. E[a] is a finite locally free group scheme over R. It is étale over R
ifand only if a + J = Ag. If M = M(E) is the associated A-motive then E[a]
and M /aM correspond to each other under the finite shtuka equivalence reviewed
in Section 4.

Ifa+ J = Agr and 5§ = Spec Q2 is a geometric base point of Spec R, then we also
prove in Theorem 6.6 that E[a](€2) is a free A/a-module of rank r which carries a
continuous action of the étale fundamental group n]ét(Spec R,s).

In the final Section 7 we turn towards the case where p C A is a maximal
ideal and where all elements of y(p) C R are nilpotent. In this case, we can
associate with an A-motive M over R a local shtuka M p(M); see Example 7.2
and with an Abelian Anderson A-module E a divisible local Anderson module
E[p™] = ll_II)lE [p"] in the sense of [19]; see Definition 7.3 and Theorem 7.6.

If M = M(E) then A_;I p(ll_/[) and E[p>] correspond to each other under the local
shtuka equivalence from [19]; see Theorems 7.4 and 7.6.

Notation

Throughout this article we denote by

N. ¢ and Ny the positive, respectively the non-negative integers,

Iy, a finite field with ¢ elements and characteristic p,

C a smooth projective geometrically irreducible curve
over I,

0 :=F,(0) the function field of C,

00 a fixed closed point of C,
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Foo the residue field of the point co € C,

A :=T(C ~ {00}, O¢) the ring of regular functions on C outside oo,

(R,y: A— R) an A-ring, that is a ring R with a ring homomorphism
y:A— R,

A= A®s, R,

o :=ids ® Froby the endomorphism of Ag witha ® b — a ® b?

fora € Aand b € R,
o*M =M ®R,Frob, g R =M Qag, 0 AR the Frobenius pullback for
an Ar-module M,
o*V :=V @R, Frob o R R the Frobenius pullback more generally for
an R-module V,
opv:=v®1€o*V  foranelementv €V,
o*f:=f®id: 0*M — o*N for a morphism f: M — N of Ag-modules,
J =ker(y ®idr: AR > R)=(@®1—-1Q®y(a):ac A) C Ag.
Note that y makes R into an [F;-algebra. Further note that 7 is a locally free Ag-

module of rank 1. Indeed, J = I®4, Ag fortheideal I := (a®1—1Qa: a € A) C
Ax = AQ®r, A. The latter is a locally free A4-module of rank 1 by Nakayama’s
lemma, because I ®4, Aa/l = 1/1* = QL/F{{ is a locally free module of rank 1
over Ay/l = A.

We will sometimes reduce from the ring A to the polynomial ring IF,[¢] by
applying the following

Lemma 1.5. Let a € A\ F, and let T [t] be the polynomial ring in the vari-
able t. Then the homomorphism Fy[t] — A, t + a makes A into a finite free
I, [t]-module of rank equal to —[F : ] orde (@), where ordy is the normalized
valuation of the discrete valuation ring O¢ .

Proof. If ordy(a) = 0 then a would have no pole on the curve C, hence would
be constant. Since C is geometrically irreducible this would imply a € F, which
was excluded. Therefore a is non-constant and defines a finite surjective morphism
of curves f: C — P]%q with Spec A — SpecF,[t] = IP’]IFq \ {o0'}, where 00’ €

P]i-q is the pole of ¢. By [17, Proposition 15.31] its degree can be computed in
the fiber f~!(c0’) = {oo} as deg f = [Fuo : Fool-ef(00) where Foy = Ty
and ef(00) = orde f*(%) = —ordy(a) is the ramification index of f at oco.

Since Spec A = f~!(Spec IF,[¢]) we conclude that A is a finite (locally) free I, [¢]-
module of rank —[Fo : Fy]ordeo(a). O

2. A-Motives

We keep the notation introduced in the introduction and generalize Definition 1.1
to not necessarily effective A-motives.
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Definition 2.1. An A-motive of rank r over an A-ring R is a pair M = (M, ty)
consisting of a locally free Agr-module M of rank r and an isomorphism out-
side the zero locus V(J) of J between the induced finite locally free sheaves

i 0 Mlspec Ag~V(T) —> MSpec Ag~V(T)-

A morphism f: (M, ty) — (N, Ty) between A-motives is an A g-homomor-
phism f: M — N which satisfies f oty = ty oo™ f. We write Homg (M, N) for
the A-module of morphisms between M and N. The elements of QHomgz (M, N):=
Homg(M,N) ®4 Q are called quasi-morphisms.We also define the endomorphism

ring Endr (M):=Hompg (M, M) and QEndg (M):=QHomg (M, M)=Endr(M)R4 Q.

To explain the relation between Definitions 1.1 and 2.1 we begin with a

Lemma 2.2. Let f: M — N be a homomorphism between finite locally free Ag-
modules M and N of the same rank, and assume that coker f is a finitely generated
R-module, then f is injective and coker f is a finite locally free R-module.

Proof. To make the proof more transparent, we choose an element t € A \ .
Then A is a finite free IF,;[¢]-module by Lemma 1.5, and M and N are finite locally
free modules over R[¢]. Also ¢ acts as an endomorphism of the finite R-module
coker f. By the Cayley-Hamilton Theorem [15, Theorem 4.3] there is a monic
polynomial g € R[¢] which annihilates coker f. This implies on the one hand that

M/gM — N/gN — coker f — 0

is exact, and therefore coker f is an R-module of finite presentation, because
R[t]/(g) is a finite free R-module of rank deg, g. On the other hand it implies
that M [é] —» N [é] is an epimorphism, whence an isomorphism by [17, Corol-
lary 8.12], because M and N are finite locally free over R[t] of the same rank.
Since g is a non-zero divisor on R[t] and thus also on M, the localization map
M — M[é] is injective, and hence also f is injective.

We obtain the exact sequence 0 —- M — N — coker f — 0, which yields
for every maximal ideal m C R with residue field &k = R/m the exact sequence

0— Torf(k, coker f) — M Qrk — N ®rk —> (coker f) ®pk —> 0.

Again the k[¢]-modules M ®p k and N ®p k are locally free of the same rank and
(coker f) ®pg k is a torsion k[¢]-module, annihilated by g. Since k[?] is a PID, this
implies that M @ g k — N ®p k is injective and so Tor{e (k, coker f) = (0). Since
coker f is finitely presented, it is locally free of finite rank by Nakayama’s Lemma;
e.g.,[15, Exercise 6.2]. O

For the next proposition note that 7 is an invertible sheaf on Spec Ar as we
remarked before Lemma 1.5.
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Proposition 2.3.

(a) Let (M, ty) be an A-motive. Then there exist integers e, e’ € 7. such that
J€ - ty(c*M) C M and T . T;[l(M) C o*M. For any such e, e the
induced Ag-homomorphism ty;: J€-0*M — M is injective, and the quotient
M/t (J€¢-0*M) is alocally free R-module of finite rank, which is annihilated
by je—&—e’;

(b) An A-motive (M, tyy) is an effective A-motive, if and only if Ty(c*M) C M;

(¢) Let (M, ty) be an effective A-motive over R. Then (M, Tayr|spec Ap~V(J)) IS
an A-motive. Moreover, ty: 0*M — M is injective and coker Ty is a finite
locally free R-module;

(d) Let M = (M, tp1) be an effective A-motive over a field k. Then M has dimen-
sion dimy, coker T;.

Proof. (a) Working locally on affine subsets of Spec Ag we may assume that J
is generated by a non-zero divisor & € J. By [14, I, Théoreme 1.4.1(d1)] we
obtain for every generator m of the Ag-module c*M an integer n such that lo-
cally A" - Tyy(m) € M. Taking e as the maximum of the n when m runs through
a finite generating system of o*M, yields J¢ - tyy(6*M) C M. The inclusion
VAR IATII(M) C 0*M is proved analogously.

Let e and ¢’ be any integers with 73/(J¢ - 0*M) C M and rA;I(Je/ -M) C
o*M , whence ‘7“‘6/ M C ty(J€-0*M). Then M/t (J€ - 0* M) is annihilated
by J e+el, and hence a finite module over Agr/J et+e’ and over R. Therefore the
map Ty : J¢-0*M — M is injective, and the quotient M/t (J€¢-0* M) is a finite
locally free R-module by Lemma 2.2.

(c) Since J" - cokeryy = (0), the map Tps|spec Ax~v(7) 1 an epimorphism
between locally free sheaves of the same rank, and hence an isomorphism by [17,
Corollary 8.12]. Thus M is an A-motive and the remaining assertions follow from
(a). Also (b) follows directly.

(d) Set d := dimg coker tjs. Since every h € J which generates J locally
on Spec Ay is nilpotent on the k-vector space coker 7y, it satisfies ¢ = 0 by the
Cayley-Hamilton theorem from linear algebra. We conclude that J¢ - coker tjy =
(0) and M has dimension d. ]

Proposition 2.4.

(a) If Sisan R-algebra,then M = (M, tpy) —> M Qr S := (M ®r S, Ty ®idy)
defines a functor from (effective) A-motives of rank r (and dimension d) over
R to (effective) A-motives of rank r (and dimension d) over S;

(b) Every A-motive over R and every morphism f € Hom(M, N) between A-
motives over R can be defined over a subring R’ of R, which via y: A —
R’ C R is a finitely generated A-algebra, hence noetherian.



1436 URS HARTL

Proof. (a) This is obvious.

(b) Every A-motive M = (M, t)7) has a presentation given by a short exact

A%nl Y, A%no 2. M — 0. Since M is locally free over Ag, there

A®n0
R

sequence
is a section s of the epimorphism p. It corresponds to an endomorphism S of

with SU = 0 such that there is a map W : A%no — A%nl with § —Id = UW. The
isomorphism 7 gives rise to a diagram

o*U ® o*p
Nspec Ag~v(T) — (6* AR )Ispec Ag~v(7) — 7 Mlspec Ax~v(T) —>0

Ty l To l ™

) P
AR ISpec Ag~ V() — ARn0|Spec Ag~ V() — Mlspec Ag~v(7) —0
2.1)

* 4PN
(o AR

for suitable morphisms 7y and 7. Likewise t Ajll lifts to a similar diagram with ver-
tical morphism 7 and 7. The equations tMorA}l = idand rA}l oty = id imply the
existence of matrices V and V' in the space of n| x ng-matrices A'IZ‘ o |Spec AR~ V()
with To o Ty —Id =U o Vand Tjo Tp —Id = 0*U o V'. Let R" C R be the A-
algebra generated by the finitely many elements of R which occur in the entries of
the matrices U, S, W, Ty, T1, Ty, T{, V and V'. Define M’ as the Ag-module
which is the cokernel of U € Anoxnl

M’ |SPCCAR\V(~7) and TM" M’ |SpecAR\V(J) — o*M’ |SpecAR\V(J) as the Ag/-
homomorphisms given by diagram (2.1) and its analog for 'cM . Then M’ is via

S a direct summand of A?," 0

rﬁj[,l are inverse to each other. It follows from diagram (2.1) that M’ Qg R = M
and 7y ® idgr = ).

Finally, the assertion for the morphism f € Hompg(M, N) follows from a
diagram similar to (2.1) for f instead of 7j. L

, and define Ty 0*M'[spec A V() —

hence a finite locally free Ag/-module, and 7y, and

We end this section with the following observation in which we denote the
residue field of a point s € Spec R by « (s).

Proposition 2.5. Let M and N be A-motives over R and let f € Homg(M, N)
be a morphism. Then the set X of points s € Spec R such that f ® ide) = 0
in HomK(S) (M Qg k(s), N Qp /c(s)) is open and closed, but posszbly empty. Let

Spec R C Spec R be this set, then f ® idg = 0 in Homg(M ®r R,N ®& R)
In particular if Spec R is connected and S # (0) is an R-algebra, then the map
Homgzp(M, N) - Homs(M ®r S, N ®r S), f — f & idg is injective.

Proof. We fix an element t € A \\. F,. Then A is a finite free I, [f]-module. By
Proposition 2.3 we can find integers e, ¢’ with J7¢ - ty(c*N) C N and J ¢
tﬂjll (M) C o*M, such that d := e + ¢’ is a power of g. We obtain morphisms
@t —vy@)ty:0*N — N and (¢t — y(t))e/r];[l: M — o*M. So the equation
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foty =tnoo*fimplies ¢ —y (1)) f = (1 —y () Ty oo™ fot—y ()1,
We view M and N as modules over R[] and replace Ag by R[t]. Since M and
N are finite projective R[t]-modules there are split epimorphisms R[1®" — M

and R[t]®" — N. Then R[t]®" — M N N < R[t]®" is given by a matrix
F € R[1]"" whose entries are polynomials in 7. Let I C R be the ideal generated
by the coefficients of all these polynomials and set R := R/I. A prime ideal p C R
belongs to the set X if and only if / C p. In particular X = V(I) := Spec R C
Spec R is closed.

On the other hand, we consider the map

=y )N
—_—

R[1]®" — ¢*N N < R[:]®"

as a matrix T € R[¢]"*" and the map

' -y )y )
R[11®" - M ——— Y 6*M < R[+]®"

asamatrix V € R[t]”/X”/. The formula
=y ODf =@ -y noo* folt—yE) Ty

implies 4 — y(t)d)F = T o(F)V, and it follows that the entries of the matrix
(4 — y(F are polynomials in ¢ whose coefficients lie in 9. If Zf:o bit' is
an entry of F then (t9 — y (1)) Y i_g bit' = YT (bi_a — y (1)?b;)t' is the cor-
responding entry of (1 — y(t)?)F and all b;_g — y(t)%b; € I9. By descending
inductiononi = £ +d,...,0 we see that all b; € 9. It follows that the finitely
generated ideal / C R satisfies I = /9. By Nakayama’s lemma [15, Corollary 4.7]
there is an element b € 1 4 I such that -/ = (0). Now let p C R be a prime ideal
which lies in X, that is / C p. Then p lies in the open subset Spec R[%] C Spec R

on which F = 0 and hence f = 0. In particular X C Spec R[%] C X. Therefore
X is open and closed and f =0 on X.

Now let Spec R be connected and S # (0) be an R-algebra. Let f e Homg(M,
N) be such that f ®ids = 0in Homg(M ®r S, N ®g S). Let s € Spec S be a point
and let 5" € Spec R be its image. Then f ® id,(s) = 0 and the set X from above
is non-empty. Since it is open and closed and Spec R is connected, it follows that
X = Spec R and f = 0. This proves the injectivity. O

Corollary 2.6. Let M and N be A-motives over R with Spec R connected. Then
Hompg (M, N) is a finite projective A-module of rank less or equal to (tk M)-(tk N).

Proof. If R = k is a field and M and N are effective, the result is due to Anderson
[2, Corollary 1.7.2]. For general R we apply Proposition 2.5 with § = R/m for
m C R amaximal ideal, and use that over the Dedekind ring A every submodule of
a finite projective module is itself finite projective. O
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3. Abelian Anderson A-modules

We recall Definition 1.2 of Abelian Anderson A-modules from the introduction. Let
us give some explanations. All group schemes in this article are assumed to be
commutative.

Definition 3.1. Let O be a commutative unitary ring. An O-module scheme over
R is a commutative group scheme E over R together with a ring homomorphism
O — Endg(E).

For a group scheme E over Spec R we let E" := E x g ... X g E be the n-fold fiber
product over R. We denote by e: Spec R — E its zero section and by Lie £ :=
Homp (e*Q}E /R R) the tangent space of E along e. If E is smooth over Spec R,
then Lie E is a locally free R-module of rank equal to the relative dimension of
E over R. In particular Lie E" = (Lie E)®". For a homomorphism f: E — E’
of group schemes over Spec R we denote by Lie f: Lie E — Lie E’ the induced
morphism of R-modules. Also we define the kernel of f as the R-group scheme

ker f ;= E x Spec R where ¢/: Spec R — E’ is the zero section. There is a
‘f’ E/’e/
canonical isomorphism

E x E = Exkerf 3.1)
fELf R
given by (P, Q) — (P, Q — P) on T-valued points P, Q € E(T) for any
R-scheme T . If P € E(k) for a field k and P’ = f(P) € E’(k), pulling back
(3.1) under P: Speck — E yields an isomorphism of the fiber Speck  x ; E of
P’ E,

f over P’ with Speck x g ker f.

On G4 g = Spec R[x] the elements b € R, and in particular y (a) € R for
a € Fy,actviab*: R[x] — R[x], x — bx. This makes G, into an [F,-module
scheme. In addition let 7 := Frob, g, , be the relative g-Frobenius endomorphism
of G, r = Spec R[x] given by x +— x9. It satisfies Liet =O0andtob = b? o 7.
We let

n .
R{t} = {Zbir’:neNo,b,- GR} with tb = bit (3.2)
i=0
be the non-commutative polynomial ring in 7 over R. For an element f =) ", b; Tl e
Rt} weset f(x) =), bixd' .
Lemma 3.2. There is an isomorphism of R-modules
R{T}d xd >~ HomR—groups,IFq—lin (GZ,R’ GZ,R)a
which sends the matrix F=(fi}); j to the F;-equivariant morphism f: GZ’ R GZI R
of group schemes over R with f*(y;) =Zj fij(xj) where GZ’R:SpeC Rlxy, ..., xq4]

and GZ:R = Spec R[y1, ..., Yar]. Under this isomorphism the map f +— Lie f is
given by the map R{t}¢ >4 — RI'*d F = Yo, Fat' = Fp.
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Proof. This is straight forward to prove using Lucas’s theorem [23] on congru-
ences of binomial coefficients which states that ( 5,':;2) = () (1) mod p for all
n,m,t,s € Ny, and implies that (7) = 0 mod p forall 0 < i < n if and only if
n = p¢forane € Ny. O

Remark 3.3. The affine group scheme E and its multiplicationmap A: EXgE —
E are described by its coordinate ring Bg := I'(E, OF) together with the comulti-
plication A*: B — B ®r Bg. If we write G, g = Spec R[£] the map

M(E)~> {xeBp: A'x =x®1+1Q®xand gjx = y(a)x foralla € F, }
m — m*(€)

is an isomorphism of Ag-modules. Choosing an element A € [, with F, = IF,(})
we obtain an exact sequence of R-modules

0— M(E) Bg B ®r BE @ Bg
mr——m*(&), x|—>(A*x—x®1—1®x, (p;kx—y(k)x).

(3.3)

This shows that for every flat R-algebra R’ we have a canonical isomorphism
M(E) ®r R’ = M(E xg Spec R'), because I'(E xg R, Opxr’) = B Qg R'.
In particular, if R satisfies condition (a) of Definition 1.2 then M(E) Qg R’ =
R'{r}"*? by Lemma 3.2.

From this we see that for any R-algebra § the tensor product of the sequence
(3.3) with S stays exact and M(E) ®r S = M(E Xspec g Spec S). Namely, we
choose a faithfully flat morphism R — R’ as in Definition 1.2(a) and tensor (3.3)
with S® g R’. This tensor product stays exact by Lemma 3.2 because M(E)Qzr R =
R'{t}'*? Since S — S ® R’ is faithfully flat, already the tensor product of (3.3)
with § was exact.

Definition 3.4. If E is an Abelian Anderson A-module we consider in addition on
M(E) the map t: m +—> Frob, g, ,om. Since t(bm) = b7t(m) the map t is
o-semilinear and induces an Ag-linear map ty: 6*M — M. We set M(E) =
(M (E), tyr) and call it the (effective) A-motive associated with E.

This definition is justified by the following relative version of Anderson’s theo-
rem [2, Theorem 1].

Theorem 3.5. Let R be a fixed A-ring. If E = (E, @) is an Abelian Anderson A-
module of rank r and dimension d over R, then M(E) = (M, ty) is an effective
A-motive of rank r and dimension d over R. There is a canonical isomorphism of
R-modules

cokertyy = Hompg(Lie E, R), m mod ty(c*M) — Liem. (3.4)

The contravariant functor E +— M (E) between Abelian Anderson A-modules over
R and A-motives over R is fully faithful. Its essential image consists of all effective
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A-motives M = (M, tyy) over R of some dimension d, for which there exists a
faithfully flat ring homomorphism R — R’ such that M Qg R’ is a finite free left
R'{t}-module under the map t: M — M, m — ty(oj,m).

Proof. We first establish the isomorphism (3.4). If m = 7y (}_; m; ®b;) =), bio
Frob, G, xom; with m; € M and b; € R, then Lie m =0 because Lie Frob, g,  =0.
So the map (3.4) is well defined. To prove that it is an isomorphism one can apply
a faithfully flat base change R — R’, see [14, Section 01.6.6], such that E Qg R’ =
GZ’R, andLie E Qg R’ = (R)®?. Then M ®g R’ = R'{r}'*? by Remark 3.3, and
the inverse map is given by the natural inclusion (R")'*¢ ¢ R'{t}'*? Fy — Fyt°.

As a consequence, cokertys is a locally free R-module of rank equal to
d = dim E and annihilated by J 4 pecause of condition (b) in Definition 1.2.
This implies coker Tas|spec Ag~v(7) = (0), and therefore the morphism 7y :
0*M|spec Ag~V(T) —> Mlspec Ag~v(7) is surjective. By [17, Corollary 8.12] it
is an isomorphism, because M and o* M are finite locally free over Ay of the same
rank. Thus M(E) is an A-motive and even an effective A-motive of dimension d
by Proposition 2.3.

Let E = (E, @) and E' = (E’', ¢’) be two Abelian Anderson A-modules over
R and let M(E) and M(E’) be the associated effective A-motives. To prove that
the map

Homg (E, E') —> Homg(M(E"), M(E)), f+—> m' =>m'of) (3.5

is bijective, we again apply a faithfully flat base change R — R’, over which there
are isomorphisms £ @ R’ = GZ g and E'®Qr R = (GZ/R/. Then

Hompg (E ®g R, E' ®r R) = |F € R1{t)**4: ¢, o F = Fog, Va € A}

by Lemma 3.2. Also M(E)®g R’ = R'{t}"*¢ and M(E')®@g R’ = R'{r}'*¢ . The
condition hoTy = Tyyoo*honanelement h € HomR/(A_/I(E/)(X)RR’, A_/I(E)(X)RR’)
implies that #: R'{t}'*4" — R’{r}'*< is a homomorphism of left R’{}-modules,
hence given by multiplication on the right by a matrix H € R’ {r}9'*d_ Then
mog,oH = h(@®1)-m) = (@®1)-h(m') = m' o H o ¢, implies
¢, oH = Ho g, for all a € A. It follows that the map (3.5) is bijective
over R’. So every element & € Hompg (]l_/l (E", M(E )) gives rise to a morphism
f' € Homp (E Qg R', E' @g R’) which carries a descent datum because 7 was
defined over R. Since by [7, Section 6.1, Theorem 6(a)] the descent of morphisms
relative to the faithfully flat morphism R — R’ is effective, f’ descends to the de-
sired f € Homg(E, E'). This shows that the functor E — M (E) is fully faithful.

Let M = (M, t)7) be an effective A-motive of dimension d over R for which
there exists a faithfully flat ring homomorphism R — R’ such that M ®g R’ =
R'{t}'*¢. Observe that coker(ty ® idg:) = (R'{t}/R'{t}t)"*¢ = (R")'*?. For
alla € Awehave 1 - (@ ® I)m = oc(@a® 1) - t(m) = (a ® 1)tm. There-
fore the map m +— (a ® 1)m is a homomorphism of left R'{z}-modules, and
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hence given by (@ ® 1)m = m - ¢/, for a matrix ¢/, € R'{t}**¢. Then E' :=

(E' = G;’ @A~ R'{t}¥*4 a > @) satisfies M(E') = M ®g R’. Again

(a® 1-1 ®y(a))d = 0 on coker ;7 implies (Lie @, —y(a))d =0onLie E’.SoE’
is an Abelian Anderson A-module over R’ with M(E') = M ®g R’. Consider the
ring R” := R’ ®x R’ and the two maps pi, p»: R' — R” givenby p;(0) =b'® 1
and py(b") = 1 ® b'. The canonical isomorphism pf(M ®g R') = p5(M ®g R)
induces an isomorphism pfE’ = pjE’ which is a descend datum on E’ relative
to R — R’. Since faithfully flat descend on affine schemes is effective by [7, Sec-
tion 6.1, Theorem 6(b)] there exists a group scheme E over R with a ring homomor-
phism ¢: A — Endg_groups (E) such that (E, ) @g R’ = E’. By [14,1V>, Proposi-
tion 2.7.1 and IV4, Corollaire 17.7.3] the group scheme E is affine and smooth over
R and hence (E, ¢) is an Abelian Anderson A-module with M (E, ¢) = M. ]

The theorem implies the following:

Corollary 3.6. The assertions of Proposition 2.5 and Corollary 2.6 also hold for
Abelian Anderson A-modules. In particular, for Abelian Anderson A-modules E
and E' over R, the A-module Homg (E, E’) is finite projective of rank less or equal
to 0k E) - Ik E'). O

An important class of examples are Drinfeld modules. We recall their definition
from [12, Section 5] and [27, Section 1].

Definition 3.7. A Drinfeld A-module of rankr € N~ over R is a pair E = (E, ¢)
consisting of a smooth affine group scheme E over Spec R of relative dimension 1
and a ring homomorphism ¢: A — Endg_groups(E), a > ¢, satisfying the follow-
ing conditions:

(a) Zariski-locally on Spec R there is an isomorphism a: E = Gg g of Fy-
module schemes such that

(b) the coefficients of the 7-polynomial &, :=« o ¢, o ol = Y i=0bi (a)tl e
EndR-groups, F,-lin (Ga,r) = R{t} satisfy bo(a) = y(a), br)(a) € R* and
bi(a) is nilpotent for all i > r(a) := —r [Foo : Fy]ordeo(a).

If bi(a) =0 forall i > r(a) we say that E is in standard form.

It is well known that every Drinfeld A-module over R can be put in standard form;
see [12, Section 5] or [24, Section4.2]. This is a consequence of the following
lemma of Drinfeld [12, Propositions 5.1 and 5.2] which we will need again below.
For the convenience of the reader we recall the proof.

Lemma 3.8.

(@) Letb = Y1 bit' € R{t} and let r be a positive integer such that b, € R*
and b; is nilpotent for all i > r. Then there is a unique unit ¢ = Zizo ¢itl €
R{z}* with co = 1 and ¢; nilpotent for i > 0, such that c~'bc = 3 I_, bl’.ri
with b, € R*;
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(b) Let Spec R be connected and let b = 1" byt and ¢ = Y !_ycit' € R{t}
withm,n > 0 and by, cy, € R*. Let d € R{t} \ {0} satisfy db = cd. Then
m=nandd =Y ;_q,d;t" withd, € R*.

Proof. (a) was also reproved in [22, Lemma 1.1.2] and [24, Proposition 1.4].

(b) We write d = Zl d;t! with d, # 0. The equation db = cd implies
Z (d;— ]b - c]dl.q_j) = 0 for all i, where the sum runs over j = max{0,i —
r},. mm{z max{m, n}}. We now distinguish three cases.

Ifm > ntheni = m + r yields d,b,Zr = 0, whence d, = 0 which is a
contradiction.

Ifm < ntheni = n+r yields cnd 7" =0,whenced, € p for every prime ideal
p C R.Forn+r > i >nweobtainc,d;”, = . ;_,(di- ,b N c‘/di‘ijj) and by
descending induction on i it follows that d,_n € p for every prime ideal p C R for
alli —n=r,...,0. Sotheideal ] := (d;: 0 <i <r) C Ris contained in every

prime ideal p C R. Now i = m + r yields dbd = me dnf +rj» Whence
d- € I9. Form +r > i > m we obtain d,‘_mb,zlim = Zo<j<mdl jbql g

>0 <j<n cjdi(ijj and by descending induction on i it follows that d;_,, € I for all
i—m=r,...,0. Therefore the finitely generated ideal [ satisfies / = /9 and by
Nakayama’s lemma [15, Corollary 4.7] there is an element f € 1 + I such that
f-1 =(0). Since I C p for all prime ideals p C R, the element 1 — f is a unit in
R and I = 0. Therefore d; = 0 for all i which is a contradiction.

If m = n then c,,d! "= d, bZ; and we consider the ideal I = (d,) C R.
Again I = 19" and by [15, Corollary 4.7] there is an element f € 1 + I such that
f-d- = 0. Now assume that d, € p for some prime ideal p C R. Then f ¢ P
whence p € Spec R [ ] C Spec R and d, = 0 on the open neighborhood Spec R [
of p. Since the set of prime ideals p C R with d, € p is closed in Spec R and the
latter is connected, it follows that d, = 0 on all of Spec R. This is a contradiction
and so our assumption was false. In particular d, is not contained in any prime ideal
and so d, € R* as desired. O

Theorem 3.9. The Abelian Anderson A-modules of dimension 1 and rankr over R
are precisely the Drinfeld A-modules of rank r over R.

Proof. Let E be a Drinfeld A-module of rank r over R. Choose a Zariski cov-
ering as in Definition 3.7(a) such that E is in standard form. Since Spec R is
quasi-compact this Zariski covering can be refined to a covering by finitely many
affines. Their disjoint union is of the form Spec R’ and the ring homomorphism
R — R’ is faithfully flat. So E satisfies conditions (a) and (b) of Definition 1.2.
Choose an element + € A N\ F,. Then A is a finite free IF,[¢]-module of rank

equal to —[[Foo : Fy]ordeo(f) by Lemma 1.5. Writing &, = Z:g()) b (1)t! with
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r(t) = —r[Foo : Fglordeo(t) and by (¢) € (R)*, we make the following

rt)—1
Claim. Asan R'[t]-module M(E) ®g R’ = @ R'[t]-7¢. (3.6)
=0

By Remark 3.3 and Lemma 3.2 we have M (E) ®g R = M(E Xspec g Spec R') =
R’{r}. We prove by induction on n that for every ¢ = > | ctl e Rt} = M(E)

there are uniquely determined elements f;(¢t) € R'[t] with ¢ = r(t) ! fe()-t*
If n < r(¢) then we take fy(t) = c¢. If n > r(t) dividing ¢ by d>t on the rlght
produces uniquely determined g = Y] "0 giti and h = r(t) Yhett € Rz}

with ¢ = g®; + h. Namely, starting w1th gi =0fori > n — r(t) we can and

s 7 J
must take g; = br(?) (¢i+r(,) — lez(fr)l ,blq+r(t) J) fori =n—r(),...,0and

hg =cp— Zl; —0&j b?jj for¢ =r(t)—1,..., 1. The induction hypothesis implies

g =200 fe) -7t Now fo(r) i= fe(t)-1 + hy satisties ¢ = 307" fo(1)-7C.
This proves the claim.

By faithfully flat descent [14, IV, Proposition 2.5.2] with respect to R[t] —
R'[t] and by the claim, M (E) is finite, locally free over R[¢] and in particular flat
over R. We next show that it is finitely presented over Ag. Namely, let (m;);c; be
a finite generating system of M (E) over R[¢]. Using it as a generating system over
Ag we obtain an epimorphism p: AL — M(E), where AL = @, Ag. Since
Apg is a finite free R[t]-module, also Aé is a finite free R[¢]-module and so the
kernel of p is a finitely generated R[t]-module, whence a finitely generated Ag-
module. This shows that M (E) is a finitely presented Ag-module. From [14, V3,
Théoreme 11.3.10] it follows that M (E) is finite locally free over Ag, because for
every point s € Spec R the finite A,()-module M(E) Qg «(s) is a free x(s)[t]-
module and hence a torsion free and flat A, (s)-module. Its rank is r as can be
computed by comparing the ranks of Az and M(E) Qg R’ over R’[t]. This proves
that £ is an Abelian Anderson A-module of dimension 1 and rank r over R.

Conversely let E = (E, ¢) be an Abelian Anderson A-module of dimension
1 and rank r over R. Let R — R’ be a faithfully flat ring homomorphism and
let o: E xg Spec R" == G, g’ be an isomorphism of F,-module schemes as in
Definition 1.2(a). For a € A write

n(a)
Zb (a)'f = Olo(paoail € EndR’—groups,IFq—lin(Ga,R’) = R/{T}a
=0

where n(a) € Ny and b;(a) € R'. Fora € F, we obtain &, = y(a)-t°. For
t == a e AT, we consider A as a finite free IF,;[¢]-module of rank —[F, :
Fy]ordes(a) by Lemma 1.5. Then M(E) is a finite locally free R[¢]-module of
rank r(a) := —r [Foo : Fg] orde (@) by condition (c) of Definition 1.2. Letp C R’
be a prime ideal, set k Frac(R’/p), and consider the Abelian Anderson A-module
E x rSpec k over k and the free k[¢]-module M(E)Qrk = M (E x gSpec k) of rank
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r(a). By an argument similarly to our claim (3.6) we see that deg, (Cba Qg1 k) =
r(a),thatis by ) (a)®1x € k* and b; (a) ® 1 = 0 foralli > r(a). This implies that
br)(a) € (R')* and b;(a) is nilpotent for all i > r(a) by [15, Corollary 2.12]. By
Lemma 3.8(a) we may change the isomorphism « such that &, = eria) bi(a)t!
with b,(4)(a) € (R')* for one a € A, and by Lemma 3.8(b) this then holds for all
a € A,because ®,P, = &,y = O, P,. By condition (b) of Definition 1.2 we have
bo(a) = y(a). Thus E xg Spec R’ is a Drinfeld A-module of rank r over R in
standard form.

It remains to show that we can replace the faithfully flat covering Spec R —
Spec R by a Zariski covering. For this purpose consider R” := R’ g R’ and
the two projections pr;: Spec R” — Spec R’ onto the i-th factor for i = 1, 2.
Then h := ), ghit' 1= prijao prikoz_1 € R"{t}* satisfies hg € (R")* and
h; is nilpotent for all i > 0; see [24, Proposition 1.4]. By Lemma 3.8(b) the
equation pry®, o h = h o pr{®, implies that h; = 0 for alli > 0 and h =
ho € (R")* C R"{z}*. The cocycle h := (Spec R" — Spec R, h) defines
an element in the Cech cohomology group I-Vlf;, g .(Spec R, G,,). By Hilbert 90,
see [25, Proposition I11.4.9] we have Hj, (Spec R, Gu) = Hp,, (Spec R, Gm).
This means that there is a Zariski covering Spec R — Spec R, where Spec R =
L1; Spec R; is a disjoint union of open affine subschemes Spec R; C Spec R, and
aunit b = (hij)ij € (R®r R)* = [[; j(Ri ®& R;)*, such that (SpecR —
Spec R, h) = h. Let E be the smooth affine group and [F,-module scheme over
Spec R with S;: E|Spec§,~ = Ga,ﬁ,- and B; = ﬁ,'j o B; on Specﬁi RRr I?j.
Then over Spec R’ ®& R = L1; Spec R’ ®r R; we have an isomorphism & :=
(/61'_] oa)i: E > E. Let pi: Spec(R' Qg E) Qr (R Qr 1?) — Spec R’ @ R be
the projection onto the i-th factor fori = 1, 2. Then pi"&op]"&_l = (l;i_jlh)i,j =1.
This shows that & descends to an isomorphism & : E — E over Spec R by [7, Sec-
tion 6.1, Theorem 6(a)]. On Spec R;,now B; oa: E — Ga,Ei is an isomorphism
gf [F;-module schemes. MoreoverNEDa = ﬂL& opgoa ! B le 15,-{1} satisfies
P ® g =P ® 1y in (R’ ®r Ri){t} D R;{r} and by what we proved for @,
above, this implies that E is a Drinfeld A-module of rank r over R which by R and
(Bi o &); is put in standard form. O

4. Review of the finite shtuka equivalence

In preparation for our main results in Sections 5 and 6 we need to recall Drinfeld’s
functor [13, Section 2] and the equivalence it defines between finite I, -shtukas and
finite locally free strict IF,-module schemes; see also [1], [31, Section 1], [22, Sec-
tion B.3] and [19, Sections 3-5].

Definition 4.1. A finite ¥ -shtuka over R is a pair V = (V, Fy) consisting of a
finite locally free R-module V and an R-module homomorphism Fy: c*V — V.
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A morphism f: (V, Fy) — (V', Fy) of finite [F,-shtukas is an R-module homo-
morphism f: V — V/satisfying f o Fy = Fy:oc*f.

We say that Fy is nilpotent if there is an integer n such that the composition
Fy:=Fyoo*Fyo...o o "=D*Fy, = 0. A finite [F,-shtuka over R is called étale
if Fy is an isomorphism. If V = (V, Fy) is étale, we define for any R-algebra R’
the t-invariants of V over R’ as the [F;,-vector space

VIR :={veV®rR:v=Fylopv)}. (4.1)

Recall that an R-group scheme G = Spec B is finite locally free if B is a fi-
nite locally free R-module. By [14, Ipew, Proposition 6.2.10] this is equivalent
to G being finite, flat and of finite presentation over Spec R. Every finite lo-
cally free R-group scheme G = Spec B is a relative complete intersection by
[29, II1.4.15]. This means that locally on Spec R we can choose a presentation
B = R[X1, ..., X,]/1 where the ideal [ is generated by a regular sequence; com-
pare [14, IV4, Proposition 19.3.7]. The zero section e: Spec R — G defines
an augmentation eg := ¢*: B — R of the R-algebra B. Set Igp := keregp.
For the polynomial ring R[X] = R[X1, ..., X,] set Ig;x] = (X1,..., X,) and
errx): R[X] — R, X, — 0. Faltings [16] and Abrashkin [1] consider the de-
formation B” := R[X]1/(I-1 Rrx]) and the canonical epimorphism B — B. They
remark that there is a unique morphism

A’ B"— (B®g B):=R[X®1,1®0X]|/(I®1+1&1)(Irix) ® 1+1 ® Ig(x])

lifting the comultiplication A: B — B ®p B and satisfying (idg» ®e%) o A’ =
idp = (e% ® idgv) o AP, where e%: B® — R is the augmentation map; see [1,
Section 1.2] or [19, remark after Definition 3.5]. It satisfies A°(x) —x® 1 —1Qx €
Ig» @ Iy forall x € Ip. Set G = (G, G’ = (Spec B, Spec B"). The co-Lie
complex of G over SpecR (that is, the fiber at the zero section of G of the cotangent
complex; see [20, Section VII.3.1]) is the complex of finite locally free R-modules
of rank n

] d
C/specr: O —> /1) ®p.ey R —> Qhix /g ORIXLexy R — 0 (42)

concentrated in degrees —1 and O with d being the differential map. Note that
(I/1%) ®p,cp R =ker(B” — B) and Qk | ¢ ®R(x]. eq) R = ker(ep)/ ker(e)?
can be computed from (B, B”). Up to homotopy equivalence it only depends on G
and not on the presentation B = R[X]/I. The co-Lie module of G over R is defined
as wg = H° (Zé / Spec r) 1= cokerd. We can now recall the definition of strict [ -
module schemes from Faltings [16] and Abrashkin [1]; see also [19, Section 4].

Definition 4.2. Let (G, [.]) be a pair, where G = Spec B is an affine flat com-
mutative group scheme over R which is a relative complete intersection and where
[.1: Fy — Endg.groups(G), a +> [a] is a ring homomorphism. Then (G, [.]) is
called a strict IF;-module scheme if there exists a presentation B = R[X]/] and a
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lift[.1°: Fy — EndR_algebraS(Bb), a — [a]® of the [F4-action on G, such that the
induced action on Zé / Spec R is equal to the scalar multiplication via y: F, — R,

and such that [1]” = idg and [0] = e, as well as [a@]’ = [a]’ o [a]” and
[a +adl” = mo ([al’ ® [a]’) o A", where m: (B ®g B)” — B’ is induced by
the multiplication map B” ®z B° — B’ in the ring B” and the homomorphism
[a]” ® [a]”: B° ®& B* — B” ®g B’ induces a homomorphism (B @z B)” —
(B ®r B)" denoted again by [a]” ® [@]’. If G is finite locally free, such a lift
a > [a]’ then exists for every presentation and is uniquely determined by [19,
Lemmas 4.4 and 4.7].

Example 4.3. The group scheme Gz g 1s a strict [F;-module scheme for any d,
because we can choose B = R[X1,...,X4] and so I = (0) and B® = B, and
a € Fy acts as [a]*X; = a - X;. Moreover, every I,-linear group homomorphism
GZ’ R th  1s strict in the sense of [16, Definition 1], meaning that the homo-
morphism lifts to a homomorphism between the B” which is equivariant for the
[F,-action via [ . 1.

Lemma44. Let G be a finite locally free group scheme over R, let F, —
Endg_groups (G) be a ring homomorphism, and let R — R’ be a faithfully flat ring
homomorphism. Then G is a strict F,-module scheme if and only if G xg R’ is.

Proof. Let pr:Spec R’ — Spec R be the induced morphism and let pr; : Spec R'®pg
R’ — Spec R’ be the projection onto the i-th factor. Let G = Spec B, let R'[X] —
B ®@r R’ be a presentation, and let F, — EndR_algebras((B QR R/)b), a v [a]’
be a lift of the [F;-action on G as in Definition 4.2, which makes G x g R’ into
a strict [F;-module scheme over R’. Moreover, let f: R[Y] — B be an arbitrary
presentation and let 5 (Spec B, Spec R[Y]/(Y) -ker(f )) be the corresponding
deformation. By [19 Lemmas 4.4 and 4.7] there exists a unique lift a — [a]b
on the deformation G xg R’ = pr*g By the uniqueness the two lifts prj *(a]’
and pr3 [a]" on the deformation prj pr*g pry pr*g coincide. By faithfully flat
descent [7, Section 6.1, Theorem 6] this lift descends to a lift on the deformation Q,
which makes G into a strict F;-module scheme over R. O

To explain the equivalence between finite I, -shtukas and finite locally free
strict IF,-module schemes over R we recall Drinfeld’s functor.

Definition 4.5. Let V = (V, Fy) be a pair consisting of a (not necessarily finite lo-
cally free) R-module V and a morphism Fy : 6*V — V of R-modules. Following
Drinfeld [13, Section 2] we define

Dr, (V) := Spec (@ Sym’, V) /1

n>0

where the ideal I is generated by the elements v®4 — Fy (oyv) forallv € V. (Here
v®9 lives in Sym? V and Fy (opv) in Sym1 V.) Then Dr,(V) is a group scheme
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over R via the comultiplication A: v > v ® 1 + 1 ® v and an [F;-module scheme
via [a]: v+ av fora € [F,. It has a canonical deformation

Dr, (V)" := Spec ( @ Sym's V> /- Io),

n>0

where Ip = @,,.; Sym’, V is the ideal generated by the v € V. This deformation
is equipped with the comultiplication A”: v + v ® 1 + 1 ® v and the [F,-action
[a]’: v > av. We set Dry(V) := (Dry(V), Dry (\_/)b). On its co-Lie complex [a]
acts by scalar multiplication with a because (av)®? — Fy (o} (av)) = a?(v®? —
Fy (o{ﬁv)). Therefore Dr, (V) is a finite locally free strict F;-module scheme if
V is a finite locally free R-module. Every morphism (V, Fy) — (W, Fy), that is,
every R-homomorphism f: V — W with foFy = Fyoo™ f,induces a morphism
Dr,(f): Dry(W, Fy) — Dry(V, Fy). So Dr, is a contravariant functor. If f is
surjective then Dr, (f) is a closed immersion.

Conversely, with a (not necessarily finite locally free) F;-module scheme G over R
we associate the pair M, (G) := (My(G), Fu,(G)) consisting of the R-module

Mq (G) = HomR-groups,qu-lin(Gs Ga,R)

and the R-homomorphism F M, (G) 0*My4(G) — M,(G) which is induced from
My(G) - My(G), m +— Froby g, om. Every morphism of [F,-module schemes
f: G — G’ induces an R-homomorphism M, (G — M, (G), m — m o f.
Note that by an argument as in Remark 3.3 we have M q G)RrS=M q (G Xspec R
Spec S) for every R-algebra S.

There is a natural morphism V — M q (Dry(V)), v = fy,where f,: Dry(V)—
Gq,r =Spec R[£] is given by f(§) = v. There is also a natural morphism of group
schemes G — Dr, (M, (G)) given by D0 Symy My (G)/I — TI'(G,0¢g), m —
m* (&), which is well defined because Fiy, (G)(0*m)*(§) = (Froby g, zom)*(§) =
m*(§9) = (m*(§))7.

Example 4.6. For example if £ = (E, ¢) is an Abelian Anderson A-module of di-
mension d, then ]\_/[q (B) = (My(E), FMq(E)) was denoted M (E) = (M(E), tm(E))

in Definition 1.2. There is a canonical isomorphism E — Dr, (M q (E)) which is
constructed as follows. We set G, g = Spec R[£] and consider for each m €
My (E) = Homg-groups.F,-lin(E, Gq,R) the element m*(§) € T'(E, Og). We claim
that

<HQZ90 Sym’, M, @)/(m@q — Fay(&) (05, gym)im € My (E)) ws
=5 T(E,Op),  m— m*&)

is an isomorphism of R-algebras. To prove that it is an isomorphism we may apply
a faithfully flat base change R — R’ over which we have an F,-linear isomor-

phism «: E Qg R = GZR, = Spec R'[x1,...,x4]. Let m; := prioa €
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M,(E) @r R’ where pr;: GZ’R/ — G, g is the projection onto the i-th fac-

tor. Then M,(E) ®r R’ = @flzo R’{t}-m; by Remark 3.3 and the inverse of
(4.3) sends a*(x;) to m;. This is indeed the inverse, because (4.3) sends each

of the generators t/m; = Frob,j G, zoMmi of the R’-module M,(E) ®g R’ to
(Froby;. Go g OMi )* (&) = m*(éqj) = a*(x,)q and this inverse sends it back to
ml@qj = Frobq,’Ga ROMmi = /m;.

The following theorem goes back to Abrashkin [1, Theorem 2]. Statements (b)-(d)
were proved in [19, Theorem 5.2].

Theorem 4.7.

(@) The contravariant functors Dr, and M , are mutually quasi-inverse anti-equiva-
lences between the category of ﬁnlte%F -shtukas over R and the category of
finite locally free strict IFy-module schemes over R. Both functors are F,-
linear and exact.

Let V = (V, Fy) be a finite ¥ ;-shtuka over R and let G = Dry (V). Then

(b) The F,-module scheme Dry (V) is étale over R if and only if V is étale;

(¢c) The natural morphisms V. — Mq (Dry(V)), v+~ fyand G — Dry (]\_/Iq(G))
are isomorphisms;

(d) The co-Lie complex Zqu(y) /s is canonically isomorphic to the complex of

R-modules 0 — o*V ﬂ) vV - 0.

5. Isogenies

Definition 5.1. A morphism f € Homg(E, E’) between two Abelian Anderson
A-modules E and E’ over R is an isogeny if f: E — E’ is finite and surjective.
If there exists an isogeny between E and E’ then they are called isogenous. (Being
isogenous is an equivalence relation; see Corollary 5.16 below.)

Anisogeny f: E — E’is separable if f is étale, or equivalently if the group
scheme ker f is étale over R. Indeed, since f is flat by Proposition 5.2(b) it suffices
to see that all fibers of f over E’ are étale by [7, Section 2.4, Proposition 8]. Now
all fibers are isomorphic to ker f by the remarks after (3.1).

We recall the following well known criterion for being an isogeny. For the conve-
nience of the reader we include a proof.

Proposition 5.2. Let f: E — E’ be a morphism between two affine, smooth R-
group schemes E of relative dimension d and E' of relative dimension d’, such that
the fibers of E' over all points of Spec R are connected. Then the following are
equivalent:

(a) f is finite and faithfully flat, that is flat and surjective; see [14,01.6.7.8];
(b) ker f is finite and f is flat;
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(c) ker f is finite and f is surjective;
(d) ker f is finiteand d = d’;
(e) ker f is finite and f is an epimorphism of sheaves for the fpqc-topology.

If R = k is a field, then these conditions are equivalent to

(f) f is surjectiveandd = d’'.

Proof. We show that (a) implies all other conditions. This is obvious for (b), (c)
and (e). To prove that d = d’ let m C R be a maximal ideal and consider the base
change to k = R/m. Then f x id;: E xg k — E’ xpg k is a finite surjective
morphism, and hence d = dimE xg k = dimE’ xg k = d’; see [15, Corol-
lary 9.3].

Conversely, clearly (e)==(c). We now show (f)==(c) and (b)=—=(c)=—
(d)==(b)==(a). Generally note that by the remarks after (3.1) all non-empty fibers
of f are isomorphic to ker f.

First assume (f) and note that when R = k is a field, the ring T'(E’, Og/)
is an integral domain by our assumptions on E’. The surjectivity of f implies
that f*: T'(E’, Op)) — T(E, OF) is injective of relative transcendence degree
d —d" = 0. Since all fibers of f are isomorphic to ker f, [15, Corollary 14.6]
implies that ker f is finite over Spec k and (c) holds.

We next show for general R that (b) implies (¢). Namely, f is of finite pre-
sentation by [14, IV, Proposition 1.6.2(v)], because E and E’ are of finite pre-
sentation over R. Therefore (b) implies that f is universally open by [14, IV,,
Théoreme 2.4.6]. In particular (f x idg)(E xg k) C E’ x gk is open for every
point Spec k — Spec R of Spec R. Since E’ x g k was assumed to be connected,
it possesses no proper open subgroup, and hence f x idy is surjective. This estab-
lishes (¢).

To prove that (c) implies (d) again consider the morphism f X idx: E xgk —
E’ x g k over a point Spec k — Spec R of Spec R. Since the map f x idg is surjec-
tive, f* ® idg: T(E’, Op) ®r k — T'(E, Og) ®r k is injective, because other-
wise its kernel would define a proper closed subscheme of E’ x g k through which
f xidy factors. Since all fibers of f are isomorphic to ker f, and hence finite, [15,
Corollary 13.5] shows that d’ = dimT'(E’, Og/) Qg k=dimT'(E, Of) Qg k=d.

We prove the implication (d)==(b). Consider the fiber f x id;: E xgr k —
E' x gk over a point Spec k — Spec R of Spec R and the inclusion (I'(E’, Og) ®
k)/ker(f* ® idy) < T(E,Of) Qg k. Since all fibers of f are finite, [15,
Corollary 13.5] impliesdim T'(E’, Op)®rk = d' = d = dimT(E, Op)Qrk =
dim(F (E', Op) Qg k)/ ker(f* ®idy). It follows that ker( f*®idg) = (0) and f*®
idi: T(E', Op) @r k — T(E,Op) Qg k is injective. Let m C I'(E, Ofr) Qr k
be a maximal ideal. Then (f* ® idp)~'(m) c T'(E’, Op/) ®r k is a maximal ideal
by [15, Theorem 4.19]. Since the fiber of f over m s finite, [15, Theorem 18.16(b)]
implies that f ® idy is flat at m. Since E and E’ are smooth over R it follows
from [14,1V3, Théoreme 11.3.10] that f is flat.
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Finally we show that (b) and (c) together imply (a). By (b) and (c) the mor-
phism f: E — E’ is faithfully flat. Whether f is finite can by [14, IV, Propo-
sition 2.7.1] be tested after the faithfully flat base change E — E’. By (3.1) the
finiteness of the projection E x g E — E onto the first factor follows from the
finiteness of ker f over Spec R. This proves (a). O

Corollary 53. Let f € Homg(E, E’) be an isogeny between Abelian Anderson
A-modules over R. Then

(a) The kernel ker f of f is a finite locally free group scheme and a strict Fy-
module scheme over R;
(b) f induces an isomorphism between E’ and the quotient E / ker f.

Proof. (a) Since f is flat of finite presentation by [14, IV, Proposition 1.6.2(v)],
ker f is flat of finite presentation over R. Since it is also finite, it is finite locally
free. Over a faithfully flat R-algebra R’ both E and E’ become isomorphic to pow-
ers of G, g’ and hence are strict IF,-module schemes by Example 4.3. Therefore
(ker f)®g R’ is a strict [F;-module scheme over R’ by [16, Proposition 2] and ker f
is a strict [F;-module scheme over R by Lemma 4 4.

(b) This follows from [29, Théoreme V.4.1]. O

Note that two isogenous Abelian Anderson A-modules have the same dimen-
sion by Proposition 5.2. We will see in Corollary 5.10 below that they also have the
same rank. For Drinfeld modules there is a further characterization of isogenies as
follows.

Proposition 54.

(a) If E and E’ are Drinfeld A-modules over R with Spec R connected and f €
Homy (E, E'), then f is an isogeny if and only if f # 0;
(b) If this is the case then f is separable if and only if Lie f € R*.

Proof. (a) Let f: E — E’ be an isogeny, then f # 0 because the zero morphism
is not surjective. Conversely let f # 0. By Proposition 5.2(d) we must show
that ker f is finite. This question is local on Spec R, so we may assume that £ =
E' = Gg g and that E = (E, ¢) and E' = (E’, ¢) are in standard form. Let
t € AN TFy, and hence deg, ¢; > 0 and deg, ¥, > 0. By Lemma 3.8(b) applied
to f o = Yo f wehave f = Z;’:Oﬁri € R{r} with f, € R*. It follows that
ker f = Spec R[x]/(3_"_, fix9") which is finite over R.
(b) By the Jacobi criterion [7, Section 2.2, Proposition 7],

ker f = Spec R[x]/ (i fixqi>

i=0

is étale if and only if Lie f = fo = £& € R*. O
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Next we turn to A-motives.

Definition 5.5. A morphism f € Homgr(M, N) between A-motives over R is an
isogeny if f is injective and coker f is finite and locally free as R-module. If
there exists an isogeny between M and N then they are called isogenous. (Being
isogenous is an equivalence relation; see Corollary 5.16 below.) A quasi-morphism
f € QHomp(M, N) which is of the form g ® c for an isogeny g € Homg (M, N)
and a ¢ € Q is called a quasi-isogeny.

If f is an isogeny and M and N are effective, then the snake lemma yields the
following commutative diagram with exact rows and columns

0 0 ker(Tcoker f )
o*f
0 o*M o*N — o*(coker f) —0
™ N Tcoker f (51)
0 M f N coker f ——=0

0 = ker(zcoker ) — coker Ty = coker ty = coker(Teoker f) = 0.

Namely, by local freeness of coker f the upper row is again exact and identifies
o *(coker f) with coker(o™* f).

Anisogeny f: M — N between effective A-motives is separable if Teoker 1
o*(coker f) — coker f is an isomorphism.

Remark 5.6. If f € Homg(M, N) is an isogeny and S is an R-algebra, then the
base change f ®ids € Homg(M ®r S, N ®g S) of f to S is again an isogeny. This

follows from the exact sequence 0 — M —f> N — coker f —> 0 because

coker f is a flat R-module.

Example 5.7. For 0 # a € A the morphism a: M — M is an isogeny with
cokera = M/aM. Let M be effective.Then a is separable if and only if ker(tcokerqa) =
coker(teokera) = (0). That is, if and only if multiplication with a is an automor-
phism of cokerty,. Since @ — y(a) is nilpotent on coker 7y, this is the case if
and only if y(a) € R*. For the corresponding result about Abelian Anderson A-
modules see Corollary 5.11.

Proposition 5.8. Let M and N be A-motives over R. If M and N are isogenous
then tk M = rk N, and if, moreover, M and N are effective, then tkg coker ty; =
rkg coker tiy. Conversely assume tk M = tk N and let f € Homg(M, N) be a
morphism such that coker f is a finitely generated R-module. Then f is an isogeny.

Proof. Let f: M — N be an isogeny. Since M, respectively coker tjs, are finite
locally free over Ag, respectively over R, we can compute their ranks by choosing
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a maximal ideal m C R and applying the base change from R to k = R/m. Then
f ® idg is still an isogeny by Remark 5.6. Since coker(f & idy) is a torsion Ag-
module it follows that

kM = I'kARM = I'kAk(M Qrk) = I‘kAk(N Qrk) = I‘kARN =1k N.

If M and N are effective, we consider diagram (5.1) for the isogeny f ® idg. Since
coker(f ® idy) and o* coker(f ® idg) are finite dimensional k-vector spaces of
the same dimension, the right vertical column and the bottom row of diagram (5.1)
imply that

rkg coker T)y = dimy, coker(ty ® idx) = dimy coker(ty & id;) = rkp coker Ty .
The converse follows from Lemma 2.2. O

After these preparations we are now able to formulate and prove our main
theorem.

Theorem 5.9. Let f € Homg(E, E') be a morphism between Abelian Anderson
A-modules over R, and let M(f) € Homg(M', M) be the associated morphism
between the associated effective A-motives M = M(E) and M’ = M(E’) over R.
Then

(a) f isanisogeny if and only if M(f) is an isogeny;

(b) f is a separable isogeny if and only if M(f) is a separable isogeny;

(c) If f is an isogeny there are canonical A-equivariant isomorphisms of finite
¥y -shtukas

(cokerl\_/[(f), TcokerM(f)) - Mq (ker f)
and of finite locally free R-group schemes

Dr, (coker M(f)) = ker f .

Proof. In the beginning we do neither assume that f nor that M (f) is an isogeny.
We denote by ¢ the inclusion ker f < E.Consider the A g-homomorphism M (E) —
M, (ker f), m > m o, which is compatible with the Frobenius maps tj(g) and

Fu, (ker 1) Since m = M(f)(m") =m’ o f implies m’ o f ot =0, it factors over
coker M(f) — Mq(kerf), mmod imM(f)r>mou. 52
On the other hand we claim that there are A-equivariant morphisms
Dr, (Mq(ker f)) —> Dr,(coker M(f)) — ker f — E, 5.3)

where the last two morphisms are closed immersions. The first morphism is ob-
tained from (5.2). Moreover, the epimorphism M(E) — coker M(f) induces by Ex-
ample 4.6 an A-equivariant closed immersion o : Dr, (coker M(f))< Dr,(M(E)=E.
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We compose it with f: E — E’ and show that the composition factors through the
zero section ¢’: Spec R — E’. This will imply that « factors through ker f. We
can study this composmon after a faithfully flat base change R — R’ over which we

have an [ -linear isomorphism 8: E' ®g R’ = Gd,R, = Spec R'[y1, ..., yar]. Let

= prioB € M(E')®pg R’ where pr;: G N B Ga. g’ = Spec R'[£] is the pro-
Jectlon onto the i-th factor. Then pr’(§) = y; and ™ f*B*(y;) = o™ f*m;*(§) =
a* o M(f)(m))*(&§) = 0 because M(f)(m}) = 0 in coker M(f).

(a) Now assume that f is an isogeny. Then ker f is a finite locally free group
scheme over R, and a strict IF;-module scheme by Corollary 5.3(a). So M q (ker f)
isafinitelocally free R-module by Theorem 4.7 and the morphism Dr, (M q(ker f)—
ker f in (5.3) is an isomorphism. This shows that Dr, (coker M (f)) —> ker f. We
next show that the map (5.2) is an isomorphism. Its cokernel is a finite R-module
because M, (ker f) is. We apply again a faithfully flat base change R — R’ such
that E ®g R’ = GZI rand E' ®g R = GZ,R,. Then f is given by a matrix F €
R'{r}d'*d by Lemma 3.2. By faithfully flat descent and by Nakayama’s lemma [15,
Corollaries 2.9 and 4.8] the map (5.2) will be surjective if for all maximal ideals
m’ C R’ its tensor product with k := R’/m/ is surjective. By Remark 3.3 and its
analog for M q (ker f) the tensor product of (5.2) with k equals coker M (f x idy) —
]l_4q (ker(f x idy)), where f x idy: E x gk — E' x g k is given by the matrix F :=
F ® 1. In particular ker( f x idy) = Speck[xi,...,xq]/(f*(ye): 1 < £ < d).
Since ker f is finite, k[x1, ..., x4]/(f*(y¢): 1 < £ < d) is a finite dimensional

2
k-vector space. For fixed i this implies that {x;, x xq , ...} is linearly dependent

1 n
and there is a positive integer N and b; ,, € k such that xl. R Zflvzo bin -xlf] in
klx1, ..., xq]/(f*(ye): 1 < € < d). We introduce the new variables z; , := x?n
for]l <i <dand0 <n < N.Then f*(ye) is a k-linear relation between the z; .

Furthermore

klxi, ..., xql/(ffe): 1 <€ <d)Zklzin: 1 <i<d, <n<N]/I with

N
= (f*(yi), ZzN — Zobi,n'zi,n’ Z?,n —Zin+1: 1 <i<d,0<n < N) .
n=|

Let Z1, ..., % be a k-basis of (@, PN_ok-zin)/(f*(ye): 1 < £ < d). Then
there are elements ¢;; € k for 1 < i, j <r such that

k[xl,...,xd]/(f*(yg):lfﬁfd)%k[Z],...,ZJ/( ZC,]ZJ <i 5) =:B.

Moreover, the group law on ker f is given by the comultiplication A*: B — B ®
B, A*(Zi) =7; ® 1 + 1 ®7; and the F-action is given by ¢ : B — B, ¢} (z;) =
Yy ()7
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We are now ready to compute M, (ker(fxidy)) from (3.3). If Gq,x =Speck[§]
then every element i € M (ker(f xidx)) satisfies m*(§) = 3y ci0.q—1y 1.t
2.z with dy, g, € k. Since the 7\ - ...z form a k-basis of B, the
conditions A*m*(§) = m*(§) ® 1 +1®@m*(§) in B®y B and pim*(§) = m*(y (A)-
£) = y(A)-m*(&) in B for » € F, imply as in Lemma 3.2 that m*(§) = d0..0-21 +
...+do..0,1-Zr. Since Z; is a k-linear combination of the z; , = x?” the morphism
m: Exgk — Gg i withm*(§) =di0..021+...+do.0,1Z belongs to M(E x gk)
and maps to 7 under the map coker M (f x id) — M, (ker(f x idy)). This proves
that (5.2) is surjective.

In order to show that (5.2) is injective let m € M(E) be an element with
m ot = 0. By [29, Théoreme V.4.1] the morphism m: E — G, g factors through
E/Xker f = E’ (use Corollary 5.3(b)) in the formm = m’o f foranm’ € M(E’).
This shows that m mod im M (f) = 0 in coker M (f). All together we have proved
that coker M (f) — M, (ker f) is a finite locally free R-module. Moreover, M (f)
is injective, because if m’ € M (E’) satisfiesm’o f = M (f)(m’) = 0 the surjectivity
of f implies m’ = 0. More precisely, f is an epimorphism of sheaves for the fpgc-
topology by Proposition 5.2(e). Now the injectivity of M (f) follows from the left
exactness of the functor Homg_groups, F. ,-lin(e, Gyq,r). This proves that M(f) is an
isogeny, and it also proves (c).

Conversely assume that M ( f) is an isogeny. Then d := dim E = dim E’ by
Theorem 3.5 and Proposition 5.8. We prove that ker f is finite. For this purpose
we apply a faithfully flat base change R — R’ such that E Qg R’ = GZ’ R
Spec R'[x1,...,xq] and E' @ R’ = GZ’R, = Spec R'[y1, ..., yql. Also when we
write G4 g = Spec R'[£] then M (E xg R') = @, R'{t}m; and M(E' xg R') =
@?:1 R’{t}-m where m}(§) = x; and m;*(§) = y;. Consider the epimorphism of
R’-modules

d
D DR -t"m; = M(E xg R') — coker M(f @ idg)) .
i=10<n

Since coker M (f ® idg) is finite locally free over R’, and hence projective, this
epimorphism has a section s whose image lies in @, @N_, R’ - t"m; for some
N. It follows that ¥ !m; — s(8(zV*+'m;)) maps to zero in coker M(f ® idg/).
That is, there are elements b; j, € R and m; € M(E' xg R') with TV 1m; —
Z?:l Zﬁ/:o bi jn-t"m; = M(f)(m}). Applying this equation to & yields

N
N+1 n ~ ~
TN byt = R E € R yal 2 TE, Op) @ R

Thus f x idg: E xg R' — E’ xg R’ is finite. By faithfully flat descent [14, IV,
Proposition 2.7.1] also f is finite. By Proposition 5.2(d) this proves that f is an
isogeny and establishes (a).
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Finally (b) follows from (c) and Theorem 4.7(b). L

Corollary 5.10. If E and E’ are isogenous Abelian Anderson A-modules over R,
thentk E =1k E’.

Proof. This follows directly from Theorems 3.5, 5.9 and Proposition 5.8. O

Corollary 5.11. Let E be an Abelian Anderson A-module over R and let a € A.
Then ¢, : E — E is an isogeny. It is separable if and only if y (a) € R*.

Proof. The assertion follows from Theorem 5.9 and Example 5.7. The criterion for
separability can also be proved without reference to A-motives; see our proof of
Theorem 6.4(b) below. O

‘We next come to our second main result.

Theorem 5.12. Let M and N be two A-motives over R and let f € Homg(M, N)
be a morphism. Then the following are equivalent:

(a) f isanisogeny;
(b) There is an element 0 # a € A such that f induces an isomorphism of A R[%]—

modules M[%] = N[%].

In particular, a quasi-morphism f € QHomg (M, N) is a quasi-isogeny if and only
if it induces an isomorphism f : M[%] = N[é]for an element a € A \ {0}.

Proof. (b)=—>(a) Clearly tk M = rk N. Since coker f is a finitely generated Ag-
module, (coker f) ® 4 A[é] = (0) implies that a” - coker f = (0) for some posi-
tive integer n. Therefore, coker f is a finitely generated module over Ag/(a”) =
A/(a") ®r, R, whence over R. So (a) follows from Proposition 5.8.

(a)==(b) If R is a field this was proved in [6, Corollary 5.4] and also follows
from [26, Proposition 3.4.5] and [30, Proposition 3.1.2]. We generalize the proof to
the relative situation.

1. If f is an isogeny, then coker f is a finite locally free R-module, which we may
assume to be free after passing to an open affine covering of Spec R. Lett € AN,
and consider the finite flat homomorphism A= Fylt] < A from Lemma 1.5,
under which we view M and N as A-motives by restriction of scalars. That is, we
view M and N as locally free R[¢]-modules of rank 7 = rk M -rk 7 A and 7 and tn

as R[t][%]—isomorphisms. By multiplying both t); and Ty with (¢ — y (7))¢ for

e > 0 we may assume that M and N are effective A-motives. Then the equation
f oty = v oo*f is multiplied by (r — y(¢))¢, and so the map f continues
to be an isogeny f: M — N between the (now effective) A-motives M and N.
Let a = anng[s(coker ) = ker(R[t] — Endg(coker f )) be the annihilator of
coker f. By the Cayley-Hamilton theorem [15, Theorem 4.3] (applied with / = R),
the monic characteristic polynomial x; of the endomorphism ¢ of coker f lies in a.
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This shows that R[¢]/a is a quotient of the finite R-module R[#]/(x;). In particular
the closed subscheme V := Spec R[t]/a of AL, = Spec R[¢] is finite over Spec R.
On its open complement f: M — N is an isomorphism.

We now consider the exterior powers A" M and A" N of the R[¢]-modules M
and N and set £ := (AN M) @ A'N N. These are invertible R[¢]-modules. The
isogeny f induces a global section A" f of the invertible sheaf £ on A}e which

provides an isomorphism (’)Au =5 L,1+— A'fon Al . V. Likewise we ob-
tain global sections A"o* £, respectively A Tyr, respectively A" Ty of the invertible
sheaves o* L, respectively (A" * M) @ A" M , respectively (A" *N)”®A™ N by the

effectivity assumption on M and N. Diagram (5.1) implies that there is an equality
of global sections

NNty = Nty @ Ao* f (5.4)
of (No*M)'@N'N = LN *M)'@N M) = ((No*N)' QAN N)®@c*L.
Since V is proper over Spec R and the projective line ]P’}e is separated, the map
V — A}e — P}e is a closed immersion which does not meet {co} xF, Spec R,
where {oo} = IPIqu ~ AI]Fq. Thus we may glue £ with the trivial sheaf OP}Q ~y on
P, . V along the isomorphism Ole =5 L, 1~ A f over AL V. In this
way we obtain an invertible sheaf £ on the projective line Pl By replacing £
with £ ® (’)]le (m - 00) for a suitable integer m we may achieve that £ has degree
zero (see [7, Section 9.1, Propos1t10n 2]) and induces an R-valued point of the
relative Picard functor PIC]PI JE,} ; cf. [7, Section 8.1]. Since P1c]P>l /E, is trivial, [7,
Section 8.1, Proposition 4] shows that L =K Qg OP}Q for an invertible sheaf C
on Spec R. Replacing Spec R by an open affine covering which trivializes C we
may assume that there is an isomorphism «: £ = R[t] of R[t]-modules. Let
h:=a(A f) € R[t].

2. Letd := rkg coker tps. We claim that locally on Spec R there is a positive integer
no and for every integer n > ng an isomorphism of R[¢]-modules

(N o* M)’ @rig A M)®! = RIr] with (A 1)®7 — (1= )" (5.5)

and similarly for N. To prove the claim we apply Proposition 2.3(c) to the A-motive
AT M and derive that A" 1y : AT 0*M — AT M is injective coker Aty is a finite
locally free R-module, annihilated by a power of t — y(¢). Consider the exact
sequence

ATy ®id(/\; MY

0— /\fO'*M QR[] (/\f]W)v —— > R[1] (5.6)
— coker/\FIM QR[1] (/\FM)v — 0.

Choose an open affine covering of Spec R[¢] which trivializes the locally free R[¢]-
module A" M. Pulling back this covering under the section Spec R = Spec R[t]/
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(t — y(¢)) < Spec R[t] gives an open affine covering of Spec R on which we
may find an isomorphism coker ATy QR[] (AN"M)Y => coker A"ty We re-
place Spec R by this open affine covering and even shrink it further in such a way
that coker A" 7); becomes a free R-module. By [15, Proposition 4.1(b)] the se-
quence (5.6) is then isomorphic to the sequence

8

0 R[1] R[1] coker A7y —0, (5.7)

where g € R[] is a monic polynomial of degree equal to rkg(coker A 7). We
now tensor sequence (5.7) over R with k := Frac(R/p) where p C R is a prime
ideal. It remains exact because coker A" Ty is free. Since k[¢] is a principal ideal
domain the elementary divisor theorem applied to

id,
0 U*M®ka>M®Rk—>cokerfM®Rk4>o

allows to write 7j; ® idy as a diagonal matrix. This shows that coker ANty Qr k
is a k-vector space of dimension equal to rkr(cokerty;) =: d. Since t — y(¢) is
nilpotent on this vector space, the Cayley-Hamilton theorem from linear algebra
implies g modp = (¢t — y(r))?. In particular the coefficients of the difference
g =g — (t — y(1))? lie in every prime ideal of R, and hence are nilpotent by [15,
Corollary 2.12]. Therefore there is a positive integer ng with (g’ )‘In0 = 0, whence
g?" = (t — y(1))?"? for every n > ng. The ¢"-th tensor power of the isomorphism
between (the left entries in) the sequences (5.6) and (5.7) provides the isomorphism
in (5.5). This proves the claim.

3. Since d = rkgcokerty; = tkg coker ry by Proposition 5.8, equations (5.4)

and (5.5) imply that for n >> 0 there is an isomorphism f: G*E®q" =5 L£®" of
R[r]-modules sending (1 —y (N (0* A £)®4" to (1 —y (1)) (AT £)®4" and hence
(o* AT £)®" to (A £)®4" because t — y (¢) is a non-zero divisor. In particular the
isomorphism

a®" 5B o (o*oz®qn) : R[t] = o*L£®1" = 84" >~ R[1],

which is given by multiplication with a unit u € R[f]*, sends o(h?") =
o*a®1" (ANTo* £)®" to h1" = a®1" (AT £)®4" . We thus obtain the equation 77" =
u-o(h?")in R[1]. .

By Lemma 5.13 below, u = Zizo u;t' with ugp € R* and u; € R nilpotent for
alli > 1. Let R = R[vo]/(vg_luo — 1) be the finite étale R-algebra obtained by
adjoining a (¢ — 1)-th root vy of ual. Then there is aunitv = ) ;. vit! € R'[t]*
with v = u - 0 (v). Indeed the latter amounts to the equations -

i
q
q v; v v
=Y upl, and ¢=(Ug)+z ()
j=0
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which have the solutions 2 = 37, (3 ;- 32 (%5=4)¢ )qn because the u j are nilpo-
tent. Therefore the element v='h4" € R'[¢] satisfies o (v~ 'h9") = v~ 'h?". Work-
ing on each connected component of Spec R’ separately, Lemma 5.14 below shows
thata := v~ 'h?" € Fylt] C A.

In the ring R’ [t][é] the element & becomes a unit. Therefore the homomor-
phism aloh: R/[t][é] — E[é], 1+ /\Ff is an isomorphism. This implies that
/\ff: AT M[%] — /\fN[é] is an isomorphism, and hence also f: M[é] — N[%]
by Cramer’s rule (e.g., [8, II1.8.6, Formulas (21) and (22)]). Thus we have estab-
lished (b) étale locally on Spec R. Replacing a by the product of all the finitely
many elements a obtained locally, establishes (b) globally on Spec R.

4. To prove the statement about quasi-morphisms f € QHompg(M, N) assume
first, that f induces an isomorphism f: M[é] = N[%] for some a € A ~ {0}.
Then g := a" - f € Homg(M, N) for n > 0, because M is finitely generated. In
particular g is an isogeny and f = g ® a~" is a quasi-isogeny.

Conversely, if f is a quasi-isogeny, that is f = g ® ¢ for an isogeny g €
Hompgz(M, N)andac € Q,thereis anelementa € A\ {0} such that g: M[%] =

N[%]. If d is the denominator of c it follows that f: M[ﬁ] = N[ﬁ]. O

To finish the proof of Theorem 5.12 we must demonstrate the following two
lemmas.

Lemma 5.13. An element u = Ziz() u;t' € R[t] is a unit in R[t] if and only if
uo € R* and u; is nilpotent for all i > 1.

Proof. If the u; satisfy the assertion then there is a positive integer n such that
u?" =0 forall i > 1. Therefore u?" = u(q)n is a unit in R[#] and so the same holds
for u.

Conversely if u is a unit then #o must be a unit in R. By [15, Corollary 2.12]
the kernel of the map R — ]_[pC r R/p where p runs over all prime ideals of R,
equals the nil-radical of R. Under this map « is sent to a unit in each factor R /p[¢].
Since R/p is an integral domain, the u; for i > 1 must be sent to zero in each factor

R/p. This shows that u; is nilpotent for i > 1. O

Lemma 5.14. Assume that R contains no idempotents besides 0 and 1, that is
Spec R is connected. Then R° := {x € R: x? =x} =1TF,.

Proof. Let m C R be a maximal ideal and let x € R/m be the image of x. Then
x4 = x implies that X is equal to an element o € F, C R/m. Now e := (x — a)?!
satisfies e? = (x — a)?2(x? — a?) = (x — )9~ = ¢, that is e is an idempotent.
Since e € m we cannot have e = 1 and must have ¢ = 0. Therefore x — o =
x—a)=(x—-a)-e=0in R, thatisx =« € F,. O

Corollary 5.15. If f € Homgr(M, N) is an isogeny between A-motives over R
then there is an element 0 # a € A and an isogeny g € Homg(N, M) with
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fog=a-idyand go f = a-idy. The same is true for Abelian Anderson
A-modules.

Proof. Let a € A be the element from Theorem 5.12(b). As in the proof of
(b)=(a) of this theorem there is a positive integer n such a” - coker f = (0).
Therefore there isamap g: N — M with go f = a"-idys and f o g = a"-idy.
This implies that g is injective, because a” is a non-zero divisor on N. From

fogoty = a"ty = tyoo*dtidy = tyoo*foo*g = foryog

and the injectivity of f we conclude that g o Ty = Ty o 0*g and that g €
Hompg (N, M). By construction g induces an isomorphism N [%] = M [é] af-
ter inverting a. So g is an isogeny by Theorem 5.12. The statement about Abelian
Anderson A-modules follows from Theorems 3.5 and 5.9. O

Corollary 5.16. The relation of being isogenous is an equivalence relation for A-
motives and for Abelian Anderson A-modules over R.

Proof. This follows from Theorem 5.12 and Corollary 5.15. O

Corollary 5.17. Let f € Homg (M, N) be an isogeny between effective A-motives
M and N over R and suppose that y (A ~\ {0}) C R*. Then f is separable. The
same is true for isogenies between Abelian Anderson A-modules over R.

Proof. Consider diagram (5.1) and set K := coker(zcoker f). As in the proof of
Theorem 5.12 there is an element 0 # a € A and a positive integer n with a” -
coker f = (0), and hence a” - K = (0). Let e be an integer with g¢ > rk coker ty
andg®>n. Then(@®1-1® y(a))’f - coker Ty = (0). Therefore

0=@®1-19y@)! - K=(@ ®1-18y@!) -K=-y@' -K.

Since y(a) € R* we have K = (0), and since coker f and o*(coker f) are finite
locally free R modules of the same rank, [17, Corollary 8.12] shows that tcoker f
is an isomorphism, that is f is separable. The statement about Abelian Anderson
A-modules follows from Theorem5.9(b). O

Corollary 5.18. If f € Homg(M, N) and g € Homg(N, M) are isogenies be-
tween A-motives over R with f og =a-idy and go f = a -idy forana € A,
then there is an isomorphism of Q-algebras QEndg (M) = QEndx(N) given by
h®b|—>fohog®gforheEndR(]\_/I). O

Example 5.19. Let R be an A-ring of finite characteristic p, thatis y: A — R
factors through Iy, := A/p for a maximal ideal p C A. Let £ € N.( be divisible

by [y : F4]. Then o*"J) = @®1-1Q y(a)qz: a € A) = J C Ag,
because the elements y(a) € [F satisfy J/(a)‘/f = y(a). Let M = (M, tpy) be
an A-motive over R. Then O’Z*M = (6" M, o%1y) is also an A-motive over R,
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because o1y is an isomorphism outside V(o™ J) = V(J). If M is effective,
then the A g-homomorphism

Froe y = '51{/1 = tyoottyo...ooc Wy oM — M (5.8)

tx14r. Moreover, it is injective and its cokernel

satisfies Ty OO'*FI‘qz’ u =Frge yoo
is a successive extension of the o'* coker tjs fori =0, ..., £ — 1, whence a finitely

presented R-module. Therefore Fr e p, € Hompg (ae* M, M) is an isogeny, called
the g¢-Frobenius isogeny of M. It is always inseparable, because the ¢-th power of
Ty, which equals Fr ¢ j, annihilates the cokernel of Fr,¢ ;.

If M is not effectlve let n € N.g be such that p = (a) is principal. Then
(@a®1)c Jand (a®1) C o*J forall i. This shows that

1 1
Frpe y = tf,, =1yoo*tyo...oc ™V oM |:-j| =M |:—:| (5.9)
H a a

is a quasi-isogeny in QHomp (0[* M, M) by Theorem 5.12, called the g¢-Frobenius
quasi-isogeny of M.

Finally if R = k is a field contained in F ¢ then oM = M and Froe y €
QEndy (M), respectively Fr,e p, € Endi (M) 1f M is effective. In this case, A[r]
lies in the center of Endg (M) and Q[r] lies in the center of QEnd; (M), because
every f € Endi(M) satisfies f oty = tyyoo*fand o™ f = f. If k = Fe,
the center equals A[r], respectively Q[r], and the isogeny classes of A—motives
are largely controlled by their Frobenius endomorphism; see [5, Theorems 8.1 and
9.1].

6. Torsion points

Definition 6.1. Let (0) # a = (ay,...,a,) C Abeanideal andlet E = (E, ¢) be
an Abelian Anderson A-module over R. Then

Ela] := ker(¢a,,... = Pays -+ ¢a,): E— E")
is called the a-torsion submodule of E .
This definition is independent of the generators (ay, ..., a,) of a by the following
Lemma 6.2.

@ If(ay,...,ay) C(b1,...,by) C Aareideals thenker(gp, .. p,) = ker(eq,,...a,)
is a closed immersion;

®) If @1, ... oan) = (b1, ..., by) then ker(gp,....b,) = ker(@ay....a,);

(¢) For any R-algebra S we have E[a](S) = { P € E(S): ¢o(P) =0foralla €
al;

(d) E[a]is an A/a-module via A/a — Endg(E[a]), b — ¢p;

(e) Ela]is a finite R-group scheme of finite presentation.
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Proof. (a) By assumption there are elements ¢;; € A witha; = ) j cijb;. There-
fore g5, = Y  9eijPb; and the composition of ¢p, . p,: E — E™ followed by
(Pcij)ij: E™ — E" equals @q4,.. .4,: E — E". This proves (a) and clearly (a)
implies (b).

To prove (c) let P: SpecS — E be an S-valued point in E(S) with 0 =
@a(P) == @40 Pforalla € a. If a = (ay, ..., a,) then in particular ¢,, o P =0

.....

fori =1, ..., n. Therefore P factors through ker ¢,,,.. 4, = Ela].
Conversely let P: Spec S — E[a] be an S-valued point in E[a](S) and leta €
a. By (b) we may write a = (ay, ..., a,) with a; = a to have E[a] = ker¢,,, .. 4,

Therefore ¢, (P) := ¢, o P = 0. This proves (c).

(d) The relation ab = ba in A implies ¢, o ¢p = @p o ¢,. Using that the
closed subscheme E[a] is uniquely determined by (c) it follows that the ring homo-
morphism A — Endg(E[a]), b — ¢plg[q is well defined. If b € a then clearly
@p|E[a] = 0 and so this ring homomorphism factors through A/a.

(e) If a = (a1,...,a,) then E[a] = kergy, .. 4, is of finite presentation,
because ¢q, ... 4, 1S @ morphism of finite presentation between the schemes E and
E" of finite presentation over R by [14, IV, Proposition 1.6.2]. The finiteness of
Ela] follows for a = (a) from Corollaries 5.11 and 5.3, and for general a from (a)
by considering some (a) C a. O

The following lemma is a version of the Chinese remainder theorem in our
context.

Lemma 6.3. Let (0) # a, b C A be two ideals with a + b = A.

(a) For an Abelian Anderson A-module E there is a canonical isomorphism
Ela] xg E[b] — E[ab];

(b) For an effective A-motive M there is a canonical isomorphism M /abM ——
M/aM & M/bM of finite I, -shtukas.

Proof. By the Chinese remainder theorem there is an isomorphism A/ab —
A/a x A/b whose inverse is given by (x4, xp) — bxgq + axp for certain ele-
ments a € a and b € b which satisfy a = 1 mod b and » = 1 mod a, and hence
a+b=1mod ab.

(b) follows directly from this, because M/aM = M ®4 A/a.

(a) By Lemma 6.2(a) the addition A on E[ab] defines a canonical morphism

Ela] xg E[b] — E[ab] xg E[ab] N E[ab]. Its inverse is described as follows.
The elements a, b € A from above satisfy ab C ab and ba C ab. By Lemma 6.2(c)
the endomorphism ¢, of E[ab] factors through E[b] and ¢ factors through E[a].
So the inverse is the morphism (¢p, ¢;): E[ab] — E[a] xg E[b]. Indeed, for
x € Elab], we compute ¢p(x) + @, (x) = @arp(x) = @1(x) = x, because a +
b = 1 mod ab. On the other hand, for x € E[a] and y € E[b], we compute
op(x +¥) = @p(x) = x and @, (x + y) = @,(y) = y, because b = 1 mod a and
a=1mod b. O
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Theorem 6.4. Let E be an Abelian Anderson A-module over R and let (0) # a C
A be an ideal.

(a) Then Ela] is a finite locally free group scheme over Spec R and a strict F-
module scheme;

(b) Ela] is étale over R if and only if R - y(a) = R, that is ifand only if a + J =
AR;

() If M = M(E) is the associated effective A-motive then there are canonical
A-equivariant isomorphisms

M/aM — M (Ela]) of finite ¥, -shtukas and
Dry(M/aM) — E[a] of finite locally free R-group schemes.

Proof. Since A is a Dedekind domain, a = pi‘ -...-py for prime ideals p; € A and
positive integers e¢;. By Lemma 6.3 and the exactness of the functors Dr, and M ¢
see Theorem 4.7(a), it suffices to treat the case a = p®. Let Ap be the localization
of A atp. Since A/p® = Ap/p®Ay there is an element z € A which is congruent
modulo a to a uniformizer of Ap. Moreover, since E[p¢] is an Ap/p®Ap-module,
every ¢y with s € A \ p is an automorphism of E[p¢]. Let0 < n < e. We
denote the inclusion E[p"] — E[p¢] of Lemma 6.2(a) by i, .. By Lemma 6.2(c)
the endomorphism ¢ ™" of E[p°] has kernel E[p®~"] and factors through the closed
subscheme E[p"] via a morphism je ,: E[p¢] — E[p"] with ¢¢™" = iy ¢ 0 jen.
We claim that j, , is an epimorphism in the category of sheaves on the big fpgc-site
over Spec R, and we therefore have an exact sequence
_ iefn,e je,n

0 ——E[p " — E[p] —— E[p"] —0. (6.1
To prove the claim let S be an R-algebra and let P: Spec S — E[p"] be an S-
valued point in E[p"](S). Since ¢,e—n: E — E is an isogeny by Corollary 5.11,
hence an epimorphism of fpgc-sheaves by Proposition 5.2(e), there exists a faith-
fully flat S-algebra S’ and a point P’ € E(S’) with ¢,e-»(P’) = P. We have to
show that P’ € E[p°](S"). For this purpose let a € p¢. Then § = £($) in A, for
ce A, s € AN p. We compute

9a(P)) = ¢, opeopmopen(P) =g op.opn(P) =0,

because 7z € p". This proves our claim and establishes the exactness of (6.1).

We now use that A is a Dedekind domain with finite ideal class group. This
means that for the prime ideal p C A there are (arbitrarily large) integers e such that
p¢ = (a) is principal. Then E[p°] = ker ¢, is a finite locally free R-group scheme
by Corollaries 5.11 and 5.3. If 0 < n < e then we show that E[p"] is flat over R.
Namely, using the epimorphism j, ,: E[p°] — E[p"] from (6.1) and the flatness of
E[p€] over R, the flatness of E[p"] will follow from [14, IV3, Théoreme 11.3.10]
once we show that j, , is flat in each fiber over a point of Spec R. This follows
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from [11, Section III.3, Corollaire 7.4] and so E[p"] is flat over R for all n. By
Lemma 6.2(e) this proves that E[p”] is a finite locally free group scheme over
Spec R. Moreover, it is a strict [F,-module scheme by [16, Proposition 2], because
for p" = (a1, ..., a,) the morphism @q, .. 4, is strict [, -linear by Example 4.3. So
(a) is established.

If a = p® = (a) we know from Theorem 5.9(c) applied to the isogeny ¢, and
coker M (¢,) = M /aM that (c) holds. If 0 < n < e we use the exact sequence
(6.1) and the fact that the functors Dr, and M, are exact by Theorem 4.7. Namely,
multiplication with z¢~" on M /aM has cokernel M /p®~" M and image isomorphic
to M /p" M. We obtain an exact sequence of finite [, -shtukas

.....

ﬂn,e

0 MM " Mjam T M 0 (62)

with B, ¢ o ey = 27" on M/aM. Applying Dr, to (6.2), using the exactness of
Dry, and that Dry (M /aM) = E[p¢] and Dry (z¢7") =@ ™", proves Dry (M /p" M) =
E[p"]. Conversely applying M, to (6.1), using the exactness of M, and that
M/aM = M(E[p¢]) and " = M, (p¢™"), proves M /p" M = M (E[p"]). This
establishes (c) in general.

(b) Suppose that R - y(a) = R, that is there are elements ay, ..., a, € a and
bi,...,b,€R with 2?21 b;iy (a;)=1. Then the open subschemes Spec R[ﬁ] C

Spec R cover Spec R and it suffices to check that E[a] is étale over Spec R [ﬁ]
for each i. But there E[a] is a closed subscheme of E[a;] which is étale by Corol-
lary 5.11. This shows that E[a] is unramified over R. Since it is flat by (a), it is
étale as desired.

Conversely assume that R - y(a) C m for a maximal ideal m C R and
set k = R/m. Over a field extension k' of k we have E xg k = G¢

a,k’ =
Speck'[x1, ..., xq]. We will show that E[a] x g k" is not étale over k' by apply-
ing the Jacobi criterion [7, Section 2.2, Proposition 7]. Let a = (ay, ..., a,). Then
E[a] = Speck'[xy, .. .,xd]/(go;f1 X1, eeen X)) j=1,..., n). The Jacobi matrix
is
* Lie ¢,
aﬁpaj _ : : c (k/)ndxd_
o Lie ¢4,
Since y(a;) = 0 in k' each Lieg,, is a nilpotent d x d matrix. Since ¢, o

®aj = $aia; = @a; © Pa; We have Lie g, (kerLieg,;) C kerLieg,;. Therefore
all ker Lie ¢4, have a non-trivial intersection. This shows that the rank of the Jacobi
matrix is less than d and E[a] x g k' is not étale over k’. O

Proposition 6.5. Let M = (M, t)1) be an A-motive over R of rank r and let (0) #~
a C Abeanideal with R - y(a) = R, thatis a+ J = Ag. Let 5 = Spec Q2 be a
geometric base point of Spec R. Then M /aM is an étale finite I 4-shtuka whose t-
invariants (M JaM)* (R2), see (4.1), form a free A/a-module of rank r which carries
a continuous action of the étale fundamental group nf't(Spec R,s).
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Proof. This result and its proof are due to Anderson [2, Lemma 1.8.2] for R a field.
Let G := Res 4/qF, GLy, 4/q be the Weil restriction with G(R") = GL, (A/a®p, R")
for all IF,-algebras R’. Then G is a smooth connected affine group scheme over I,
by [10, Proposition A.5.9]. Thus by Lang’s theorem [21, Corollary on page 557]
the Langmap L: G — G, g — g - o*g~ ! is finite étale and surjective (although
not a group homomorphism if » > 1 and a # A).

Since a+J = Ag the isomorphism Ty : 0% M |spec A~ V() —> MlSpec Ar~V(7)
of M induces an isomorphism 7y qp: 0*M/aM — M/aM and makes M /aM
into a finite [ -shtuka, which is étale. After passing to a covering of Spec R by open
affine subschemes, we may assume that there is an isomorphism «: (A/a)" QF,

R = M/aM and then alo TM/am © 0¥ is an element b € G(R) and cor-

responds to a morphism b: Spec R — G. The fiber product SpecR x G is
b,G,L

finite étale over Spec R and of the form Spec R’. The projection onto the sec-
ond factor G corresponds to an element ¢ € G(R’) with ¢ - o*c™! = b, that is
¢ =b-o*c. This implies o o ¢ = Ty /am 0 0 (¢ 0 ¢), and thus « o ¢ is an isomor-
phism (A/a)" = (M/aM)"(R') = {m Q@ M/aM ®g R': m = ty(oym)}.
The proposition follows from this. O

Theorem 6.6. Let E be an Abelian Anderson A-module over R of rank r and let
M = M(E) be its associated effective A-motive. Let (0) #= a C A be an ideal with
R-y(a) = R, thatis a+ J = Ag. Then for every R-algebra R’ such that Spec R’
is connected, there is an isomorphism of A/a-modules

E[a](R") = Homo((M/aM)*(R'), Homg, (A/a,Fy)),
Pr— [n_1|—> [Zzn—>mogaa(P)]].
In particular, if s = Spec Q is a geometric base point of Spec R, then E[a](R2) is

a free A/a-module of rank r which carries a continuous action of the étale funda-
mental group 7§ (Spec R, 5).

Proof. This result and its proof are due to Anderson [2, Proposition 1.8.3] for R a
field. For general R the proof was carried out in [4, Lemma 2.4 and Theorem 8.6].
The last statement follows from Proposition 6.5. O

7. Divisible local Anderson modules

In this section we consider the situation where p C A is a maximal ideal and the

elements of y (p) C R are nilpotent. Let ¢ be the cardinality of the residue field

Fp=A/pand f =[IF, : ], thatis g = g’/ . We fix a uniformizing parameter z €

Frac(A) at p. It defines an isomorphism Fy[[z]] = Ap := lim A/p". We consider
<«

the p-adic completion Zp, r = lim Ag/p" = (Fy ®r, R)[[z]l. By continuity the
<~
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map y extends to a ring homomorphism y : A\p — R. We consider the ideals
—(@®1-1®y@:aecFy) CAyr for i€Z/fZ.  (1.1)

By the Chinese remainder theorem Xp, R decomposes

Zp,R = (Fy ®r, R)[z] = 1_[ Ap R/Gi,
ieZ/fT

and A\p,R/ai is the subset of ;l\p,R onwhicha® 1 actsas 1 ® )/(a)ql foralla € Fy.
Each factor is canonically isomorphic to R[[z]]. The factors are cyclically permuted
by o because o (a;) = a;41. In particular 6 := o/ stabilizes each factor and acts
onitviaé(z) = zand 6 (b) = b9 forb € R. Theideal J := (a®1—1Qy(a): a €
A) C Ag decomposes as follows j-A\p,R/ao = (z—y () and j-Xp,R/ai = (1)
fori # 0. In particular, Zp, R/ 0o equals the J-adic completion of Ag, as y(z) is
nilpotent in R; compare also [3, Lemma 5.3]. We also set R(z)) := R[[z]][%].

Definition 7.1. A local 6 -shtuka (or local shtuka) of rank r over R is a pair M =
(M, T;) consisting of a locally free R[[z]]-module M of rank r, and an isomorphism
Ty! 8*1&[[%] Lf M[Zr%]. If rM(6*M) C M then A_;I is called effective,
and if T, (6*M) = M then M is called étale.

A morphism of local shtukas f: (M, Ty) —> (M’, Tjp) over R is a morphism
of R[[z]l-modules f: M — M’ which satisfies Ty © c*f=fo Ty
Example 7.2. Let M = (M, t)) be an_A-motive over R. We consider the p-adic
completion M @, Apr == (M Qap Apr, TM ® 1) = lim M /p" M. We recall

DA

the definition of ag from (7.1) and define the local & -shtuka at p associated with
M as A_/IP(M) = (M ®ar Apr/%0, (Ty ® l)f),where rﬁf,; =ty oo*Tyyo...0
o (F=D¥gy, . It equals the J-adic completion of M and therefore is effective if and
only if M is effective, because of Proposition 2.3. Of course if F, = I, and hence
g=qgand6 =o0, WehaveApR = R[[z]] andM p(M) =M ®ap ApR

Also for f > 1 the local shtuka M (M ) allows to recover M ® 4, Ap g via the
isomorphism

f=1 f-1
Py @ 1)) mod a; (EBU”‘(M ®ax Apr/00), (ty ® DY @ @m)
i=0 . i=0 i#0
— M ®ap ApR »

because for i # 0 the equality 7 - ;\\p’ r/a; = (1) implies that 7)y ® 1 is an isomor-
phism modulo a;; see [18, Example 2.2] or [6, Propositions 8.8 and 8.5] for more
details.
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Let M = (M, T);) be an effective local shtuka over R. Set 1\_2,, = (M,,, ‘L’Mn) =
(M/z”M, 7y, mod ") and G, := Dry (A_;In). Then G, is a finite locally free strict
Fp-module scheme over R and M, = M (Gp,) by Theorem 4.7. Moreover, G,
inherits from M an action of Fy[z]/(z"). The canonical epimorphisms M M nl
M induce closed immersions i,: G, <> Gy41. The inductive limit Dry (M ) =
hm G, in the category of sheaves on the big fppf-site of Spec R is a sheaf of Fpllz]-

r;())dules that is a p-divisible local Anderson module in the sense of the following

Definition 7.3. A p-divisible local Anderson module over R is a sheaf of Fy[[z]]-
modules G on the big fppf-site of Spec R such that

(a) G is p-torsion,thatis G = h_r)n G[Z"], where G[7"] ;== ker(z": G — G);
(b) G is p-divisible, thatis z: G — G is an epimorphism;
(c) For every n the Fy-module G[z"] is representable by a finite locally free strict
Fp-module scheme over R (Definition 4.2);
(d) There exists an integer d € Zx, such that (z — y(z))d = 0 on wg where
wg = limwgpzn and wgpr) = e*QIG[Zn]/ Spec R is the pullback under the zero
<«

section e: Spec R — G[z"].

Note that the terminology p-torsion and p-divisible in relation to z reflects that
Fpllzll = Apand p - Ap =z - Fpllz]).

A morphism of p-divisible local Anderson modules over R is a morphism of
fppf-sheaves of [Fy[[z]]-modules. The category of divisible local Anderson modules
is Fy[[z]l-linear. It is shown in [19, Lemma 8.2] that wg is a finite locally free R-
module and we define the dimension of G as tk wg . A p-divisible local Anderson
module is called étale if wg = 0. Since wg surjects onto each wgjn], this is the
case if and only if all G[z"] are étale, see [19, Lemma 3.7].

Conversely with a p-divisible local Anderson module G over R one associates the
local shtuka M g (G) :=1limM g (G[z"]). Multiplication with z on G gives M;(G)
the structure of an R[[z]]-module. In [19, Theorem 8.3] we proved the following:
Theorem 7 .4.

(a) The two contravariant functors Drg and M ; are mutually quasi-inverse anti-
equivalences between the category of effective local shtukas over R and the
category of p-divisible local Anderson modules over R;

(b) Both functors are Fp|[z]l-linear and map short exact sequences to short exact
sequences. They preserve étale objects.

Let ]\_;[ = (M , Typ) be an effective local shtuka over S and let G = Dry (A_;I ) be its
associated p-divisible local Anderson module. Then
(¢) G is a formal Lie group if and only if T, is topologically nilpotent, that is
im(r}’éj) C szor an integer n;

(d) The R[z]l-modules Dpy. (31) and coker Ty,

y are canonically isomorphic.



ISOGENIES OF ABELIAN ANDERSON A-MODULES AND A-MOTIVES 1467

We now want to show that for an Abelian Anderson A-module £ over R the local
shtuka M, (A_4 (E )) corresponds to the p-power torsion of E as in the following

Definition 7.5. Let £ be an Abelian Anderson A-module over R and assume that
the elements of y (p) C R are nilpotent. We define E[p°] := lim E[p"] and call it

the p-divisible local Anderson module associated with E.
This definition is justified by the following

Theorem 7.6. Let E = (E, ¢) be an Abelian Anderson A-module over R and
assume that the elements of y (p) C R are nilpotent. Then

(a) All E[p"] are finite locally free strict Fy-module schemes;

(b) E[p°°] is a p-divisible local Anderson module over R;

(c) If M = M(E) is the associated effective A-motive of E and M = A_;Ip(]l_/[) =
M®a, Xp’ R/ 00 is the local & -shtuka at p associated with M from Example 7.2,
then there are canonical isomorphisms

My (E[p™]) = M, (M) and  E[p™] = Dry(M,(M))
M (Ep®]) = M ®aq Apr  and  E[p™] = Dry(M ®a, Apr).
M (E[p"]) = M/p"M and  E[p"] = Dry(M/p"M).

Proof. (a) By Lemma 4.4 we may test strictness after applying a faithfully flat base
change to R and assume that £ = GiR = Spec R[x1,...,xq4] = Spec R[X]
and M(E) = R{t}'*¢. We set B := I'(E[p"], Offp) and I = ker(R[X] —
B) and Iy = (x1,...,x4), and consider the deformation B® = R[X]/I-Iy. The
endomorphisms ¢, of E for a € A satisty ¢}(I) C I and ¢}(lp) C Iy. This
defines a lift A — EndR-algebms(Bb), a > [a]’ = @} compatible with addition
and multiplication as in Definition 4.2.

Let N > dim E be a positive integer which is a power of ¢ such that y (@) = 0
for every a € p". Choose A € [F, with F, = F (1) and let g be the mini-
mal polynomial of A over F,. Choose an element # € A with # mod p" = A in
A/p" = Fyllzll/(z"). Then g(¢t) € p", and hence y(g(t))N = 0. On Lie E the
equation g(r"V) = g(r)" implies Lie @oNy = Lie (pé\;t) — vV = (Lie Ve(r) —

N
)/(g(t))) = 0. So PeeNy € EndR—groups,Fq—lin(GgyR) = R{T}dXd as a poly-
nomial in T has no constant term. This means that (p;': P N)(xi) € Ig . Moreover,
since g(t) € p" we have g,y = 0 on E[p"] and hence gog(t)(x,-) € I. There-
fore (p;(tQN)(IO) = §0;(;) Ofp;(téN—N—l) o 40;@1\/)(10) - gl);(t)(lg) - (p;(t)(10)2 C
I-1Iy. In other words [g(th)]b = [0]” on B”. This shows that the map [, =

F,[17V1/(g(t9N)) — Endg-algebras(B®) lifts the action of Fy, C Fyllz]l/(z") on
E[p"] and is compatible with addition and multiplication.
We compute the induced action on the co-Lie complex Zé /Spec R of G =

(Spec B, Spec B”). In degree 0 we have Eg/SpecR = Q}?[X]/R ®R[X], exx) R =
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?:1 R-x; = 10/102. From t — A € p" we obtain y(t‘QN) —y@A) =y —)»)‘?N =0
in R. On Lie E this implies Lie ¢,4v — ¥ (A) = (Lie ¢, — y(t))‘iN = 0 and therefore
Yan —y(A) € EndR_groups,Fq_lin(Gg,R) = R{7}?*¢ as a polynomial in T has no
constant term. This implies that ((pt*é N = y(A))(Io) C Ig C 102. We conclude that
19N acts as the scalar y(A)on Iy/ 102.

To compute the action of 19N on Eg_ /ISpec g We use that by Theorem 4.7(d),

K(; /Spec R is homotopically equivalent to the complex 0 — o*M/p"c*M BN
M/p"M — 0 where M, (E[p"]) = M/p"M and M = M(E) = (M, ty); see
Theorem 6.4(c). Since 17V —y (1) = ¢t ® 1 — 1 ® y(1))?N = 0 on cokerzy
there is an Ag-homomorphism 2: M — o*M with hty = (th — y(k)) Adg*pr
and Ty h = (tqw - y(k)) -idps. This means that 19V is homotopic to the scalar

multiplication with y () on 0 — ¢*M /p"o*M MM /p*M — 0, and therefore
alio on Eé/specR. Let i': Io/{g — Zg_/]SpecR =: £~! be this homotopy, thatAis
N —y(\)|,-1 = h'd and (t9N — y(}»))|10/1§ = dh’'. But we must show that t4V
and y (1) are not only homotopic on Zé / Spec R? bpt equal.

Since 0 = g(t4V) = Hiez/fz(th — y(k)ql) on Eé/ Spec R* we can decompose
€7 = [Tiezypz(€ i where (€71); = ker(4 — y ()9 : €71 — €71). Since
the differential d of £ é /Spec R is an R-homomorphism and equivariant for the action
of 14V it maps (¢ ~1); into ker(t4N — y (M7 : Io/1} — Ip/I?) which is trivial for
i # 0. This shows that 0 = h'd = 14V — y (%) = y(29 — 1) on (¢ ~1);, whence
(¢~1); = (0) fori # 0, because y (A4 — 1) € R*. We conclude that £ ~! = (¢ 1)
and 19V acts as the scalar y (1) on £ —1. This proves that E[p”] is a finite locally
free strict Fp-module scheme over R.

(b) By construction ker(z": E[p>*°] — E[p*°]) = E[p"] and E[p*] is p-
torsion. Using the epimorphism j, 11 5 : E[p"1] — E[p"] from (6.1) with In.n+10
Jn+1.n = @, we see that E[p>°] is p-divisible. In (a) we saw that E[p"] is repre-
sentable by a finite locally free strict Fy-module scheme over R. It remains to verify
condition (d) of Definition 7.3. Since E[p"] < E is a closed immersion, wg(pn] is a
quotient of wg = Homg (Lie E, R). Since A/p" = [Fy[[z]]/(z"), there is an element
a € Awithz—a € p", whence ¢, = ¢, on E[p"]. Therefore (Lie ¢, — y@)? =0
on Lie E implies (¢, — YN = (ga — y@)N +y@—-2" =0on WE[p]-
It follows that (¢, — ¥ (2))Y = 0 on wE[p~] = limwg(p, and that E[p>] is a

E Mg
p-divisible local Anderson module over R.

(c) We have A_/Iq (E[p"D = HomR-groups,]Fq-lin(E[pn]a Ga,R) = M/p"M and

E[p"] = Dry(M/p" M) by Theorem 6.4(c). This implies

M, (Ep™1) = lim M, (E[p"]) = lim M/p" M = M ®4, Ap.r

and E[p*] = lim Dr, (M/p" M) = Dr,(lim M/p" M) = Dry(M ®4, Ap,r)-
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On E[p"] every A € [Fy acts as ¢, and on G, g as y (A). Therefore

M (Elp"]) = Homg groups Fy-tin (E[p"], Ga.r)
= M, (Elp"1)/aoM ,(E[p"])
= M/p"M @ . Apr/a
=M/p"M,

where the second equality is due to the fact that Zp, Rr/0p is the summand of Zp, R
on which A ® 1 acts as 1 ® y (1) for all A € [F,. This implies

A

M (E[p™))=lim M/p"M ®3 , Ap,r/00=M @y Ap.r/00=M,(M)=M .

On the other hand, since E[p”] is a finite locally free strict F,-module by (a),
E[p"] = Dry(M;(E[p"])) = Drz(M/p" M) by Theorem 4.7(e), and so E[p>°] =
lim Dr (M /p" M) = Drg (M ,(M)). O
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