Isogenies of Abelian Anderson A-modules and A-motives

URS HARTL

Abstract. As a generalization of Drinfeld modules, Greg Anderson introduced Abelian *t*-modules and *t*-motives over a perfect base field. In this article we study relative versions of these defined over base rings. We investigate isogenies among them. Our main results state that every isogeny possesses a dual isogeny in the opposite direction, and that a morphism between Abelian *t*-modules is an isogeny if and only if the corresponding morphism between their associated *t*-motives is an isogeny. We also study torsion submodules of Abelian *t*-modules which in general are non-reduced group schemes. They can be obtained from the associated *t*-motive via the finite shtuka correspondence of Drinfeld and Abrashkin. The inductive limits of torsion submodules are the function field analogs of *p*-divisible groups. These limits correspond to the local shtukas attached to the *t*-motives associated with the Abelian *t*-modules. In this sense the theory of Abelian *t*-modules is captured by the theory of *t*-motives.

Mathematics Subject Classification (2010): 11G09 (primary); 14K02, 13A35, 14L05 (secondary).

1. Introduction

In 1974 Drinfeld [12] defined "elliptic modules" as function field analogs of elliptic curves. These are today called *Drinfeld modules*. As higher dimensional generalizations of Drinfeld modules and function field analogs of Abelian varieties, Greg Anderson [2] introduced *Abelian t-modules* and *t-motives* over a perfect base field. In this article we study families, that is, relative versions of these defined over base rings, and we generalize them to *Abelian Anderson A-modules* and *A-motives*. The upshot of our results is that the entire theory of Abelian Anderson *A*-modules is contained in the theory of *A*-motives. More precisely, let \mathbb{F}_q be a finite field with q elements, let C be a smooth projective geometrically irreducible curve over \mathbb{F}_q and let $Q = \mathbb{F}_q(C)$ be its function field. Let $\infty \in C$

The author acknowledges support of the DFG (German Research Foundation) in form of SFB 878 and Germany's Excellence Strategy EXC 2044–390685587 "Mathematics Münster: Dynamics–Geometry–Structure".

Received December 6, 2016; accepted in revised form March 16, 2018. Published online December 2019.

be a closed point and let $A = \Gamma(C \setminus \{\infty\}, \mathcal{O}_C)$ be the ring of functions which are regular outside ∞ . Let (R, γ) be an *A-ring*, that is a commutative unitary ring together with a ring homomorphism $\gamma : A \to R$. We consider the ideal $\mathcal{J} := (a \otimes 1 - 1 \otimes \gamma(a) : a \in A) = \ker(\gamma \otimes \operatorname{id}_R : A_R \to R) \subset A_R := A \otimes_{\mathbb{F}_q} R$ and the endomorphism $\sigma := \operatorname{id}_A \otimes \operatorname{Frob}_{q,R} : a \otimes b \mapsto a \otimes b^q$ of A_R . For an A_R -module M we set $\sigma^*M := M \otimes_{A_R, \sigma} A_R = M \otimes_{R, \operatorname{Frob}_{q,R}} R$, and for an element $m \in M$ we write $\sigma_M^*m := m \otimes 1 \in \sigma^*M$. Also we let \mathbb{N}_0 be the set of non-negative integers.

Definition 1.1. An effective A-motive of rank r over an A-ring R is a pair $\underline{M} = (M, \tau_M)$ consisting of a locally free A_R -module M of rank r and an A_R -homomorphism $\tau_M : \sigma^*M \to M$ whose cokernel is annihilated by \mathcal{J}^n for some positive integer n. We say that \underline{M} has dimension d if coker τ_M is a locally free R-module of rank d and annihilated by \mathcal{J}^d . We write rk $\underline{M} = r$ and dim $\underline{M} = d$ for the rank and the dimension of \underline{M} .

A morphism $f: (M, \tau_M) \to (N, \tau_N)$ between effective A-motives is an A_R -homomorphism $f: M \to N$ which satisfies $f \circ \tau_M = \tau_N \circ \sigma^* f$.

Note that τ_M is always injective and $\operatorname{coker}(\tau_M)$ is always a finite locally free *R*-module by Proposition 2.3 below. We give some explanations for this definition in Section 2 and also define non-effective *A*-motives. If *R* is a perfect field, q = p is a prime, $A = \mathbb{F}_p[t]$ and in addition, *M* is finitely generated over the non-commutative polynomial ring $R\{\tau\} := \left\{ \sum_{i=0}^n b_i \tau^i : n \in \mathbb{N}_0, b_i \in R \right\}$ with $\tau b = b^p \tau$, which acts on $m \in M$ via $\tau : m \mapsto \tau_M(\sigma_M^*m)$, then (M, τ_M) is a *t*-motive in the sense of Anderson [2, Section 1.2].

Next let us define Abelian Anderson *A*-modules by first agreeing that all group schemes in this article are assumed to be commutative. In Section 3 we give some explanations on the terminology in the following

Definition 1.2. Let *d* and *r* be positive integers. An *Abelian Anderson A-module* of rank *r* and dimension *d* over *R* is a pair $\underline{E} = (E, \varphi)$ consisting of a smooth affine group scheme *E* over Spec *R* of relative dimension *d*, and a ring homomorphism $\varphi: A \to \operatorname{End}_{R\operatorname{-groups}}(E), a \mapsto \varphi_a$ such that

- (a) There is a faithfully flat ring homomorphism $R \to R'$ for which $E \times_R \text{Spec } R' \cong \mathbb{G}^d_{a,R'}$ as \mathbb{F}_q -module schemes, where \mathbb{F}_q acts on E via φ and $\mathbb{F}_q \subset A$;
- (b) $(\text{Lie }\varphi_a \gamma(a))^d = 0$ on Lie *E* for all $a \in A$;
- (c) The set $M:=M(\underline{E}):=M_q(\underline{E}):=\operatorname{Hom}_{R\operatorname{-groups},\mathbb{F}_q\operatorname{-lin}}(E,\mathbb{G}_{a,R})$ of \mathbb{F}_q -equivariant homomorphisms of *R*-group schemes is a locally free A_R -module of rank *r* under the action given on $m \in M$ by

$$A \ni a: M \longrightarrow M, m \mapsto m \circ \varphi_a$$
$$R \ni b: M \longrightarrow M, m \mapsto b \circ m.$$

A morphism $f: (E, \varphi) \to (E', \varphi')$ between Abelian Anderson A-modules is a homomorphism of group schemes $f: E \to E'$ over R which satisfies $\varphi'_a \circ f = f \circ \varphi_a$ for all $a \in A$.

Remark 1.3. In particular, if R = k is a perfect field, q = p is a prime and $A = \mathbb{F}_{p}[t]$, then an Abelian Anderson A-module is nothing else than an Abelian t-module in the sense of Anderson [2, Section 1.1]. Indeed, Anderson requires that *E* is isomorphic to $\mathbb{G}_{a,k}^d$ over *k*. This is implied by our condition (a) by [28, Chapter VII, Proposition 11 and [29, XVII, Lemme 2.3 bis]. Our definition is the natural generalization to arbitrary A-rings R. Likewise our condition (c) that M(E) is a locally free A_R -module generalizes Anderson's condition that M(E) is a finite free module over the principal ideal domain $A_k = k[t]$ when R = k is a perfect field; see [2, Section 1.1 and Lemma 1.4.5]. This is a severe restriction on E, but was intended already by Anderson. Namely, we will see that for general A and R, the Abelian Anderson A-modules of dimension 1 over R are precisely the Drinfeld Amodules over R; see Definition 3.7 and Theorem 3.9. It was Anderson's motivation to define and study higher dimensional generalizations of Drinfeld A-modules in the same spirit as Abelian varieties are higher dimensional generalizations of elliptic curves, the number field analogs of Drinfeld A-modules. Condition (c) is crucial for the intended analogy between Abelian Anderson A-modules and Abelian varieties, because it determines the structure of endomorphism rings and torsion points; see [2, Corollary 1.7.3 and Proposition 1.8.3] and our generalizations Corollary 3.6 and Theorem 6.4.

When q is not a prime and R is not a field, we do not know the answer to the following

Question 1.4. If we weaken Definition 1.2(a) and only require that there is an isomorphism of *group schemes* $E \times_{\text{Spec } R} \text{Spec } R' \cong \mathbb{G}^d_{a,R'}$, do we get an equivalent definition?

Anderson's anti-equivalence [2, Theorem 1] between Abelian t-modules and t-motives directly generalizes to the following:

Theorem 3.5. Let R be a fixed A-ring. If $\underline{E} = (E, \varphi)$ is an Abelian Anderson A-module over R, then $\underline{M}(\underline{E}) = (M, \tau_M)$ with $\tau_M : \sigma^*M \to M$, $\sigma_M^*m \mapsto \operatorname{Frob}_{q,\mathbb{G}_{a,R}} \circ m$ is an effective A-motive over R of the same rank and dimension as \underline{E} . The contravariant functor $\underline{E} \mapsto \underline{M}(\underline{E})$ between Abelian Anderson A-modules over R and A-motives over R is fully faithful. Its essential image consists of all effective A-motives $\underline{M} = (M, \tau_M)$ over R for which there exists a faithfully flat ring homomorphism $R \to R'$ such that $M \otimes_R R'$ is a finite free left $R'\{\tau\}$ -module under the map $\tau : M \to M$, $m \mapsto \tau_M(\sigma_M^*m)$.

The main purpose of this article is to study isogenies and their (co-)kernels over arbitrary A-rings R. Here a morphism $f: \underline{E} \to \underline{E}'$ between Abelian Anderson A-modules over R is an *isogeny* if it is finite and surjective. On the other hand, a morphism $f \in \text{Hom}_R(\underline{M}, \underline{N})$ between A-motives over R is an *isogeny* if f is injective and coker f is finite and locally free as R-module. We give equivalent characterizations in Propositions 5.2, 5.4 and 5.8. The following are our two main results.

Theorem 5.9. Let $f \in \text{Hom}_R(\underline{E}, \underline{E}')$ be a morphism between Abelian Anderson Amodules over an A-ring R, and let $\underline{M}(f) \in \text{Hom}_R(\underline{M}', \underline{M})$ be the associated morphism between the associated effective A-motives $\underline{M} = \underline{M}(\underline{E})$ and $\underline{M}' = \underline{M}(\underline{E}')$ over R. Then

- (a) f is an isogeny if and only if $\underline{M}(f)$ is an isogeny;
- (b) If f is an isogeny, then ker f and coker $\underline{M}(f)$ correspond to each other under the finite shtuka equivalence which we review in Section 4.

Corollary 5.15. If $f \in \text{Hom}_R(\underline{M}, \underline{N})$ is an isogeny between A-motives over an A-ring R, then there is an element $0 \neq a \in A$ and an isogeny $g \in \text{Hom}_R(\underline{N}, \underline{M})$ with $f \circ g = a \cdot \text{id}_{\underline{N}}$ and $g \circ f = a \cdot \text{id}_{\underline{M}}$. The same is true for Abelian Anderson A-modules.

This leads to the following result about torsion points in Section 6. Let $(0) \neq \mathfrak{a} \subset A$ be an ideal and let $\underline{E} = (E, \varphi)$ be an Abelian Anderson *A*-module over *R*. The *a*-torsion submodule $\underline{E}[\mathfrak{a}]$ of \underline{E} is the closed subscheme of *E* defined by $\underline{E}[\mathfrak{a}](S) = \{P \in E(S): \varphi_a(P) = 0 \text{ for all } a \in \mathfrak{a} \}$ on any *R*-algebra *S*.

Theorem 6.4. $\underline{E}[\mathfrak{a}]$ is a finite locally free group scheme over R. It is étale over R if and only if $\mathfrak{a} + \mathcal{J} = A_R$. If $\underline{M} = \underline{M}(\underline{E})$ is the associated A-motive then $\underline{E}[\mathfrak{a}]$ and $\underline{M}/\mathfrak{a}\underline{M}$ correspond to each other under the finite shtuka equivalence reviewed in Section 4.

If $\mathfrak{a} + \mathcal{J} = A_R$ and $\bar{s} = \operatorname{Spec} \Omega$ is a geometric base point of Spec *R*, then we also prove in Theorem 6.6 that $\underline{E}[\mathfrak{a}](\Omega)$ is a free A/\mathfrak{a} -module of rank *r* which carries a continuous action of the étale fundamental group $\pi_1^{\text{ét}}(\operatorname{Spec} R, \bar{s})$.

In the final Section 7 we turn towards the case where $\mathfrak{p} \subset A$ is a maximal ideal and where all elements of $\gamma(\mathfrak{p}) \subset R$ are nilpotent. In this case, we can associate with an A-motive \underline{M} over R a local shtuka $\hat{\underline{M}}_{\mathfrak{p}}(\underline{M})$; see Example 7.2 and with an Abelian Anderson A-module \underline{E} a divisible local Anderson module $\underline{E}[\mathfrak{p}^{\infty}] := \lim_{K \to \infty} \underline{E}[\mathfrak{p}^n]$ in the sense of [19]; see Definition 7.3 and Theorem 7.6. If $\underline{M} = \underline{M}(\underline{E})$ then $\hat{\underline{M}}_{\mathfrak{p}}(\underline{M})$ and $\underline{E}[\mathfrak{p}^{\infty}]$ correspond to each other under the local shtuka equivalence from [19]; see Theorems 7.4 and 7.6.

Notation

Throughout this article we denote by

$\mathbb{N}_{>0}$ and \mathbb{N}_{0}	the positive, respectively the non-negative integers,
\mathbb{F}_q	a finite field with q elements and characteristic p ,
С	a smooth projective geometrically irreducible curve over \mathbb{F}_q ,
$Q := \mathbb{F}_q(C)$	the function field of C ,
∞	a fixed closed point of C ,

\mathbb{F}_{∞}	the residue field of the point $\infty \in C$,	
$A := \Gamma(C \smallsetminus \{\infty\}, \mathcal{O}_C)$	the ring of regular functions on C outside ∞ ,	
$(R,\gamma\colon A\to R)$	an <i>A</i> -ring, that is a ring <i>R</i> with a ring homomorphism $\gamma: A \rightarrow R$,	
$A_R := A \otimes_{\mathbb{F}_q} R,$		
$\sigma := \mathrm{id}_A \otimes \mathrm{Frob}_{q,R}$	the endomorphism of A_R with $a \otimes b \mapsto a \otimes b^q$ for $a \in A$ and $b \in R$,	
$\sigma^*M:=M\otimes_{R,\operatorname{Frob}_{q,R}}R$	$A = M \otimes_{A_R, \sigma} A_R$ the Frobenius pullback for an A_R -module M ,	
$\sigma^*V := V \otimes_{R, \operatorname{Frob}_{q,R}} R$	the Frobenius pullback more generally for an R -module V ,	
$\sigma_V^*v := v \otimes 1 \in \sigma^*V$	for an element $v \in V$,	
$\sigma^* f := f \otimes id : \sigma^* M \to \sigma^* N$ for a morphism $f : M \to N$ of A_R -modules,		
$\mathcal{J} := \ker(\gamma \otimes \mathrm{id}_R \colon A_R +$	$\rightarrow R) = (a \otimes 1 - 1 \otimes \gamma(a) \colon a \in A) \subset A_R.$	

Note that γ makes R into an \mathbb{F}_q -algebra. Further note that \mathcal{J} is a locally free A_R module of rank 1. Indeed, $\mathcal{J} = I \otimes_{A_A} A_R$ for the ideal $I := (a \otimes 1 - 1 \otimes a : a \in A) \subset$ $A_A = A \otimes_{\mathbb{F}_q} A$. The latter is a locally free A_A -module of rank 1 by Nakayama's
lemma, because $I \otimes_{A_A} A_A/I = I/I^2 = \Omega^1_{A/\mathbb{F}_q}$ is a locally free module of rank 1
over $A_A/I = A$.

We will sometimes reduce from the ring A to the polynomial ring $\mathbb{F}_q[t]$ by applying the following

Lemma 1.5. Let $a \in A \setminus \mathbb{F}_q$ and let $\mathbb{F}_q[t]$ be the polynomial ring in the variable t. Then the homomorphism $\mathbb{F}_q[t] \to A$, $t \mapsto a$ makes A into a finite free $\mathbb{F}_q[t]$ -module of rank equal to $-[\mathbb{F}_\infty : \mathbb{F}_q] \operatorname{ord}_\infty(a)$, where $\operatorname{ord}_\infty$ is the normalized valuation of the discrete valuation ring $\mathcal{O}_{C,\infty}$.

Proof. If $\operatorname{ord}_{\infty}(a) = 0$ then *a* would have no pole on the curve *C*, hence would be constant. Since *C* is geometrically irreducible this would imply $a \in \mathbb{F}_q$ which was excluded. Therefore *a* is non-constant and defines a finite surjective morphism of curves $f: C \to \mathbb{P}^1_{\mathbb{F}_q}$ with Spec $A \to \operatorname{Spec} \mathbb{F}_q[t] = \mathbb{P}^1_{\mathbb{F}_q} \setminus \{\infty'\}$, where $\infty' \in$ $\mathbb{P}^1_{\mathbb{F}_q}$ is the pole of *t*. By [17, Proposition 15.31] its degree can be computed in the fiber $f^{-1}(\infty') = \{\infty\}$ as deg $f = [\mathbb{F}_\infty : \mathbb{F}_{\infty'}] \cdot e_f(\infty)$ where $\mathbb{F}_{\infty'} = \mathbb{F}_q$ and $e_f(\infty) = \operatorname{ord}_{\infty} f^*(\frac{1}{t}) = -\operatorname{ord}_{\infty}(a)$ is the ramification index of *f* at ∞. Since Spec $A = f^{-1}(\operatorname{Spec} \mathbb{F}_q[t])$ we conclude that *A* is a finite (locally) free $\mathbb{F}_q[t]$ module of rank $-[\mathbb{F}_\infty : \mathbb{F}_q] \operatorname{ord}_{\infty}(a)$. □

2. A-Motives

We keep the notation introduced in the introduction and generalize Definition 1.1 to not necessarily effective *A*-motives.

Definition 2.1. An A-motive of rank r over an A-ring R is a pair $\underline{M} = (M, \tau_M)$ consisting of a locally free A_R -module M of rank r and an isomorphism outside the zero locus $V(\mathcal{J})$ of \mathcal{J} between the induced finite locally free sheaves $\tau_M : \sigma^* M|_{\text{Spec } A_R \smallsetminus V(\mathcal{J})} \xrightarrow{\sim} M|_{\text{Spec } A_R \smallsetminus V(\mathcal{J})}.$

A morphism $f: (M, \tau_M) \to (N, \tau_N)$ between A-motives is an A_R -homomorphism $f: M \to N$ which satisfies $f \circ \tau_M = \tau_N \circ \sigma^* f$. We write $\operatorname{Hom}_R(\underline{M}, \underline{N})$ for the A-module of morphisms between \underline{M} and \underline{N} . The elements of $\operatorname{QHom}_R(\underline{M}, \underline{N}) :=$ $\operatorname{Hom}_R(\underline{M}, \underline{N}) \otimes_A Q$ are called *quasi-morphisms*. We also define the endomorphism ring $\operatorname{End}_R(\underline{M}) := \operatorname{Hom}_R(\underline{M}, \underline{M})$ and $\operatorname{QEnd}_R(\underline{M}) := \operatorname{QHom}_R(\underline{M}, \underline{M}) = \operatorname{End}_R(\underline{M}) \otimes_A Q$.

To explain the relation between Definitions 1.1 and 2.1 we begin with a

Lemma 2.2. Let $f: M \to N$ be a homomorphism between finite locally free A_R -modules M and N of the same rank, and assume that coker f is a finitely generated R-module, then f is injective and coker f is a finite locally free R-module.

Proof. To make the proof more transparent, we choose an element $t \in A \setminus \mathbb{F}_q$. Then A is a finite free $\mathbb{F}_q[t]$ -module by Lemma 1.5, and M and N are finite locally free modules over R[t]. Also t acts as an endomorphism of the finite R-module coker f. By the Cayley-Hamilton Theorem [15, Theorem 4.3] there is a monic polynomial $g \in R[t]$ which annihilates coker f. This implies on the one hand that

$$M/gM \longrightarrow N/gN \longrightarrow \operatorname{coker} f \longrightarrow 0$$

is exact, and therefore coker f is an R-module of finite presentation, because R[t]/(g) is a finite free R-module of rank deg_t g. On the other hand it implies that $M[\frac{1}{g}] \rightarrow N[\frac{1}{g}]$ is an epimorphism, whence an isomorphism by [17, Corollary 8.12], because M and N are finite locally free over R[t] of the same rank. Since g is a non-zero divisor on R[t] and thus also on M, the localization map $M \rightarrow M[\frac{1}{g}]$ is injective, and hence also f is injective.

We obtain the exact sequence $0 \to M \to N \to \text{coker } f \to 0$, which yields for every maximal ideal $\mathfrak{m} \subset R$ with residue field $k = R/\mathfrak{m}$ the exact sequence

$$0 \longrightarrow \operatorname{Tor}_{1}^{R}(k, \operatorname{coker} f) \longrightarrow M \otimes_{R} k \longrightarrow N \otimes_{R} k \longrightarrow (\operatorname{coker} f) \otimes_{R} k \longrightarrow 0.$$

Again the k[t]-modules $M \otimes_R k$ and $N \otimes_R k$ are locally free of the same rank and (coker f) $\otimes_R k$ is a torsion k[t]-module, annihilated by g. Since k[t] is a PID, this implies that $M \otimes_R k \to N \otimes_R k$ is injective and so $\operatorname{Tor}_1^R(k, \operatorname{coker} f) = (0)$. Since coker f is finitely presented, it is locally free of finite rank by Nakayama's Lemma; *e.g.*, [15, Exercise 6.2].

For the next proposition note that \mathcal{J} is an invertible sheaf on Spec A_R as we remarked before Lemma 1.5.

Proposition 2.3.

- (a) Let (M, τ_M) be an A-motive. Then there exist integers $e, e' \in \mathbb{Z}$ such that $\mathcal{J}^e \cdot \tau_M(\sigma^*M) \subset M$ and $\mathcal{J}^{e'} \cdot \tau_M^{-1}(M) \subset \sigma^*M$. For any such e, e' the induced A_R -homomorphism $\tau_M : \mathcal{J}^e \cdot \sigma^*M \to M$ is injective, and the quotient $M/\tau_M(\mathcal{J}^e \cdot \sigma^*M)$ is a locally free *R*-module of finite rank, which is annihilated by $\mathcal{J}^{e+e'}$;
- (b) An A-motive (M, τ_M) is an effective A-motive, if and only if $\tau_M(\sigma^*M) \subset M$;
- (c) Let (M, τ_M) be an effective A-motive over R. Then $(M, \tau_M|_{\text{Spec }A_R \setminus V(\mathcal{J})})$ is an A-motive. Moreover, $\tau_M : \sigma^*M \to M$ is injective and coker τ_M is a finite locally free R-module;
- (d) Let $\underline{M} = (M, \tau_M)$ be an effective A-motive over a field k. Then \underline{M} has dimension dim_k coker τ_M .

Proof. (a) Working locally on affine subsets of Spec A_R we may assume that \mathcal{J} is generated by a non-zero divisor $h \in \mathcal{J}$. By [14, I, Théorème 1.4.1(d1)] we obtain for every generator m of the A_R -module σ^*M an integer n such that locally $h^n \cdot \tau_M(m) \in M$. Taking e as the maximum of the n when m runs through a finite generating system of σ^*M , yields $\mathcal{J}^e \cdot \tau_M(\sigma^*M) \subset M$. The inclusion $\mathcal{J}^{e'} \cdot \tau_M^{-1}(M) \subset \sigma^*M$ is proved analogously.

Let *e* and *e'* be any integers with $\tau_M(\mathcal{J}^e \cdot \sigma^*M) \subset M$ and $\tau_M^{-1}(\mathcal{J}^{e'} \cdot M) \subset \sigma^*M$, whence $\mathcal{J}^{e+e'} \cdot M \subset \tau_M(\mathcal{J}^e \cdot \sigma^*M)$. Then $M/\tau_M(\mathcal{J}^e \cdot \sigma^*M)$ is annihilated by $\mathcal{J}^{e+e'}$, and hence a finite module over $A_R/\mathcal{J}^{e+e'}$ and over *R*. Therefore the map $\tau_M : \mathcal{J}^e \cdot \sigma^*M \to M$ is injective, and the quotient $M/\tau_M(\mathcal{J}^e \cdot \sigma^*M)$ is a finite locally free *R*-module by Lemma 2.2.

(c) Since $\mathcal{J}^n \cdot \operatorname{coker} \tau_M = (0)$, the map $\tau_M|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})}$ is an epimorphism between locally free sheaves of the same rank, and hence an isomorphism by [17, Corollary 8.12]. Thus \underline{M} is an A-motive and the remaining assertions follow from (a). Also (b) follows directly.

(d) Set $d := \dim_k \operatorname{coker} \tau_M$. Since every $h \in \mathcal{J}$ which generates \mathcal{J} locally on Spec A_k is nilpotent on the *k*-vector space coker τ_M , it satisfies $h^d = 0$ by the Cayley-Hamilton theorem from linear algebra. We conclude that $\mathcal{J}^d \cdot \operatorname{coker} \tau_M =$ (0) and \underline{M} has dimension d.

Proposition 2.4.

- (a) If S is an R-algebra, then $\underline{M} = (M, \tau_M) \longmapsto \underline{M} \otimes_R S := (M \otimes_R S, \tau_M \otimes \mathrm{id}_S)$ defines a functor from (effective) A-motives of rank r (and dimension d) over R to (effective) A-motives of rank r (and dimension d) over S;
- (b) Every A-motive over R and every morphism f ∈ Hom(<u>M</u>, <u>N</u>) between A-motives over R can be defined over a subring R' of R, which via γ : A → R' ⊂ R is a finitely generated A-algebra, hence noetherian.

Proof. (a) This is obvious.

(b) Every A-motive $\underline{M} = (M, \tau_M)$ has a presentation given by a short exact sequence $A_R^{\oplus n_1} \xrightarrow{U} A_R^{\oplus n_0} \xrightarrow{\rho} M \longrightarrow 0$. Since *M* is locally free over A_R , there is a section *s* of the epimorphism ρ . It corresponds to an endomorphism *S* of $A_R^{\oplus n_0}$ with SU = 0 such that there is a map $W: A_R^{\oplus n_0} \to A_R^{\oplus n_1}$ with $S - \mathrm{Id} = UW$. The isomorphism τ_M gives rise to a diagram

$$\begin{aligned} (\sigma^* A_R^{\oplus n_1})|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})} & \xrightarrow{\sigma^* \mathcal{U}} (\sigma^* A_R^{\oplus n_0})|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})} \xrightarrow{\sigma^* \rho} \sigma^* M|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})} \longrightarrow 0 \\ T_1 \bigvee & T_0 \bigvee & \tau_M \bigvee \\ A_R^{\oplus n_1}|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})} & \xrightarrow{\mathcal{U}} A_R^{\oplus n_0}|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})} \xrightarrow{\rho} M|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})} \longrightarrow 0 \\ \end{aligned}$$

$$(2.1)$$

for suitable morphisms T_0 and T_1 . Likewise τ_M^{-1} lifts to a similar diagram with vertical morphism T'_0 and T'_1 . The equations $\tau_M \circ \tau_M^{-1} = \text{id}$ and $\tau_M^{-1} \circ \tau_M = \text{id}$ imply the existence of matrices V and V' in the space of $n_1 \times n_0$ -matrices $A_R^{n_1 \times n_0}|_{\text{Spec } A_R \setminus V(\mathcal{J})}$ with $T_0 \circ T'_0 - \text{Id} = U \circ V$ and $T'_0 \circ T_0 - \text{Id} = \sigma^* U \circ V'$. Let $R' \subset R$ be the A-algebra generated by the finitely many elements of R which occur in the entries of the matrices $U, S, W, T_0, T_1, T'_0, T'_1, V$ and V'. Define M' as the $A_{R'}$ -module which is the cokernel of $U \in A_{R'}^{n_0 \times n_1}$, and define $\tau_{M'} : \sigma^* M'|_{\text{Spec } A_R \setminus V(\mathcal{J})} \rightarrow M'|_{\text{Spec } A_R \setminus V(\mathcal{J})}$ and $\tau_{M'}^{-1} : M'|_{\text{Spec } A_R \setminus V(\mathcal{J})} \rightarrow \sigma^* M'|_{\text{Spec } A_R \setminus V(\mathcal{J})}$ as the $A_{R'}$ -homomorphisms given by diagram (2.1) and its analog for τ_M^{-1} . Then M' is via S a direct summand of $A_{R'}^{\oplus n_0}$, hence a finite locally free $A_{R'}$ -module, and $\tau_{M'}$ and $\tau_{M'}^{-1}$ are inverse to each other. It follows from diagram (2.1) that $M' \otimes_{R'} R = M$ and $\tau_{M'} \otimes \text{id}_R = \tau_M$.

Finally, the assertion for the morphism $f \in \text{Hom}_R(\underline{M}, \underline{N})$ follows from a diagram similar to (2.1) for f instead of τ_M .

We end this section with the following observation in which we denote the residue field of a point $s \in \text{Spec } R$ by $\kappa(s)$.

Proposition 2.5. Let \underline{M} and \underline{N} be A-motives over R and let $f \in \operatorname{Hom}_R(\underline{M}, \underline{N})$ be a morphism. Then the set X of points $s \in \operatorname{Spec} R$ such that $f \otimes \operatorname{id}_{\kappa(s)} = 0$ in $\operatorname{Hom}_{\kappa(s)}(\underline{M} \otimes_R \kappa(s), \underline{N} \otimes_R \kappa(s))$ is open and closed, but possibly empty. Let $\operatorname{Spec} \widetilde{R} \subset \operatorname{Spec} R$ be this set, then $f \otimes \operatorname{id}_{\widetilde{R}} = 0$ in $\operatorname{Hom}_{\widetilde{R}}(\underline{M} \otimes_R \widetilde{R}, \underline{N} \otimes_R \widetilde{R})$. In particular if $\operatorname{Spec} R$ is connected and $S \neq (0)$ is an R-algebra, then the map $\operatorname{Hom}_R(\underline{M}, \underline{N}) \to \operatorname{Hom}_S(\underline{M} \otimes_R S, \underline{N} \otimes_R S), f \mapsto f \otimes \operatorname{id}_S$ is injective.

Proof. We fix an element $t \in A \setminus \mathbb{F}_q$. Then A is a finite free $\mathbb{F}_q[t]$ -module. By Proposition 2.3 we can find integers e, e' with $\mathcal{J}^e \cdot \tau_N(\sigma^*N) \subset N$ and $\mathcal{J}^{e'} \cdot \tau_M^{-1}(M) \subset \sigma^*M$, such that d := e + e' is a power of q. We obtain morphisms $(t - \gamma(t))^e \tau_N : \sigma^*N \to N$ and $(t - \gamma(t))^{e'} \tau_M^{-1} : M \to \sigma^*M$. So the equation $f \circ \tau_M = \tau_N \circ \sigma^* f$ implies $(t^d - \gamma(t)^d) f = (t - \gamma(t))^e \tau_N \circ \sigma^* f \circ (t - \gamma(t))^{e'} \tau_M^{-1}$. We view M and N as modules over R[t] and replace A_R by R[t]. Since M and N are finite projective R[t]-modules there are split epimorphisms $R[t]^{\oplus n'} \twoheadrightarrow M$ and $R[t]^{\oplus n} \twoheadrightarrow N$. Then $R[t]^{\oplus n'} \twoheadrightarrow M \xrightarrow{f} N \hookrightarrow R[t]^{\oplus n}$ is given by a matrix $F \in R[t]^{n \times n'}$ whose entries are polynomials in t. Let $I \subset R$ be the ideal generated by the coefficients of all these polynomials and set $\widetilde{R} := R/I$. A prime ideal $\mathfrak{p} \subset R$ belongs to the set X if and only if $I \subset \mathfrak{p}$. In particular $X = V(I) := \operatorname{Spec} \widetilde{R} \subset$ Spec R is closed.

On the other hand, we consider the map

$$R[t]^{\oplus n} \twoheadrightarrow \sigma^* N \xrightarrow{(t-\gamma(t))^e \tau_N} N \hookrightarrow R[t]^{\oplus n}$$

as a matrix $T \in R[t]^{n \times n}$ and the map

$$R[t]^{\oplus n'} \twoheadrightarrow M \xrightarrow{(t-\gamma(t))^{e'}\tau_M^{-1}} \sigma^* M \hookrightarrow R[t]^{\oplus n'}$$

as a matrix $V \in R[t]^{n' \times n'}$. The formula

$$(t^d - \gamma(t)^d)f = (t - \gamma(t))^e \tau_N \circ \sigma^* f \circ (t - \gamma(t))^{e'} \tau_M^{-1}$$

implies $(t^d - \gamma(t)^d)F = T \sigma(F) V$, and it follows that the entries of the matrix $(t^d - \gamma(t)^d)F$ are polynomials in t whose coefficients lie in I^q . If $\sum_{i=0}^{\ell} b_i t^i$ is an entry of F then $(t^d - \gamma(t)^d) \sum_{i=0}^{\ell} b_i t^i = \sum_{i=0}^{\ell+d} (b_{i-d} - \gamma(t)^d b_i)t^i$ is the corresponding entry of $(t^d - \gamma(t)^d)F$ and all $b_{i-d} - \gamma(t)^d b_i \in I^q$. By descending induction on $i = \ell + d, \ldots, 0$ we see that all $b_i \in I^q$. It follows that the finitely generated ideal $I \subset R$ satisfies $I = I^q$. By Nakayama's lemma [15, Corollary 4.7] there is an element $b \in 1 + I$ such that $b \cdot I = (0)$. Now let $\mathfrak{p} \subset R$ be a prime ideal which lies in X, that is $I \subset \mathfrak{p}$. Then \mathfrak{p} lies in the open subset Spec $R[\frac{1}{b}] \subset$ Spec R on which F = 0 and hence f = 0. In particular $X \subset$ Spec $R[\frac{1}{b}] \subset X$. Therefore X is open and closed and f = 0 on X.

Now let Spec *R* be connected and $S \neq (0)$ be an *R*-algebra. Let $f \in \text{Hom}_R(\underline{M}, \underline{N})$ be such that $f \otimes \text{id}_S = 0$ in $\text{Hom}_S(\underline{M} \otimes_R S, \underline{N} \otimes_R S)$. Let $s \in \text{Spec } S$ be a point and let $s' \in \text{Spec } R$ be its image. Then $f \otimes \text{id}_{\kappa(s')} = 0$ and the set *X* from above is non-empty. Since it is open and closed and Spec *R* is connected, it follows that X = Spec R and f = 0. This proves the injectivity. \Box

Corollary 2.6. Let \underline{M} and \underline{N} be A-motives over R with Spec R connected. Then Hom_R($\underline{M}, \underline{N}$) is a finite projective A-module of rank less or equal to $(\operatorname{rk} \underline{M}) \cdot (\operatorname{rk} \underline{N})$.

Proof. If R = k is a field and \underline{M} and \underline{N} are effective, the result is due to Anderson [2, Corollary 1.7.2]. For general R we apply Proposition 2.5 with $S = R/\mathfrak{m}$ for $\mathfrak{m} \subset R$ a maximal ideal, and use that over the Dedekind ring A every submodule of a finite projective module is itself finite projective.

3. Abelian Anderson A-modules

We recall Definition 1.2 of *Abelian Anderson A-modules* from the introduction. Let us give some explanations. All group schemes in this article are assumed to be commutative.

Definition 3.1. Let \mathcal{O} be a commutative unitary ring. An \mathcal{O} -module scheme over R is a commutative group scheme E over R together with a ring homomorphism $\mathcal{O} \to \operatorname{End}_R(E)$.

For a group scheme *E* over Spec *R* we let $E^n := E \times_R \ldots \times_R E$ be the *n*-fold fiber product over *R*. We denote by *e*: Spec $R \to E$ its zero section and by Lie E := $\operatorname{Hom}_R(e^*\Omega^1_{E/R}, R)$ the tangent space of *E* along *e*. If *E* is smooth over Spec *R*, then Lie *E* is a locally free *R*-module of rank equal to the relative dimension of *E* over *R*. In particular Lie $E^n = (\operatorname{Lie} E)^{\oplus n}$. For a homomorphism $f: E \to E'$ of group schemes over Spec *R* we denote by Lie f: Lie $E \to$ Lie *E'* the induced morphism of *R*-modules. Also we define the *kernel of f* as the *R*-group scheme ker $f := E \times Spec R$ where e': Spec $R \to E'$ is the zero section. There is a f, E', e'

canonical isomorphism

$$E \underset{f, E', f}{\times} E \xrightarrow{\sim} E \underset{R}{\times} \ker f$$
(3.1)

given by $(P, Q) \mapsto (P, Q - P)$ on *T*-valued points $P, Q \in E(T)$ for any *R*-scheme *T*. If $P \in E(k)$ for a field *k* and $P' = f(P) \in E'(k)$, pulling back (3.1) under *P*: Spec $k \to E$ yields an isomorphism of the fiber Spec $k \underset{P', E', f}{\times} E$ of

f over P' with Spec $k \times_R \ker f$.

On $\mathbb{G}_{a,R} = \operatorname{Spec} R[x]$ the elements $b \in R$, and in particular $\gamma(a) \in R$ for $a \in \mathbb{F}_q$, act via $b^* \colon R[x] \to R[x]$, $x \mapsto bx$. This makes $\mathbb{G}_{a,R}$ into an \mathbb{F}_q -module scheme. In addition let $\tau := \operatorname{Frob}_{q,\mathbb{G}_{a,R}}$ be the relative q-Frobenius endomorphism of $\mathbb{G}_{a,R} = \operatorname{Spec} R[x]$ given by $x \mapsto x^q$. It satisfies Lie $\tau = 0$ and $\tau \circ b = b^q \circ \tau$. We let

$$R\{\tau\} := \left\{ \sum_{i=0}^{n} b_i \tau^i : n \in \mathbb{N}_0, b_i \in R \right\} \quad \text{with} \quad \tau b = b^q \tau \tag{3.2}$$

be the non-commutative polynomial ring in τ over R. For an element $f = \sum_i b_i \tau^i \in R\{\tau\}$ we set $f(x) := \sum_i b_i x^{q^i}$.

Lemma 3.2. There is an isomorphism of R-modules

$$R\{\tau\}^{d'\times d} \xrightarrow{\sim} \operatorname{Hom}_{R\operatorname{-groups}, \mathbb{F}_q\operatorname{-lin}} \left(\mathbb{G}_{a,R}^d, \mathbb{G}_{a,R}^{d'} \right),$$

which sends the matrix $F = (f_{ij})_{i,j}$ to the \mathbb{F}_q -equivariant morphism $f: \mathbb{G}_{a,R}^d \to \mathbb{G}_{a,R}^{d'}$ of group schemes over R with $f^*(y_i) = \sum_j f_{ij}(x_j)$ where $\mathbb{G}_{a,R}^d = \operatorname{Spec} R[x_1, \dots, x_d]$ and $\mathbb{G}_{a,R}^{d'} = \operatorname{Spec} R[y_1, \dots, y_{d'}]$. Under this isomorphism the map $f \mapsto \operatorname{Lie} f$ is given by the map $R\{\tau\}^{d' \times d} \to R^{d' \times d}$, $F = \sum_n F_n \tau^n \mapsto F_0$. *Proof.* This is straight forward to prove using Lucas's theorem [23] on congruences of binomial coefficients which states that $\binom{pn+t}{pm+s} \equiv \binom{n}{m} \binom{t}{s} \mod p$ for all $n, m, t, s \in \mathbb{N}_0$, and implies that $\binom{n}{i} \equiv 0 \mod p$ for all 0 < i < n if and only if $n = p^e$ for an $e \in \mathbb{N}_0$.

Remark 3.3. The affine group scheme *E* and its multiplication map $\Delta : E \times_R E \rightarrow E$ are described by its coordinate ring $B_E := \Gamma(E, \mathcal{O}_E)$ together with the comultiplication $\Delta^* : B_E \rightarrow B_E \otimes_R B_E$. If we write $\mathbb{G}_{a,R} = \text{Spec } R[\xi]$ the map

$$M(\underline{E}) \xrightarrow{\sim} \left\{ x \in B_E \colon \Delta^* x = x \otimes 1 + 1 \otimes x \text{ and } \varphi_a^* x = \gamma(a) x \text{ for all } a \in \mathbb{F}_q \right\}$$
$$m \longmapsto m^*(\xi)$$

is an isomorphism of A_R -modules. Choosing an element $\lambda \in \mathbb{F}_q$ with $\mathbb{F}_q = \mathbb{F}_p(\lambda)$ we obtain an exact sequence of *R*-modules

$$0 \longrightarrow M(\underline{E}) \longrightarrow B_E \longrightarrow B_E \otimes_R B_E \oplus B_E$$
$$m \longmapsto m^*(\xi), \quad x \longmapsto (\Delta^* x - x \otimes 1 - 1 \otimes x, \ \varphi^*_{\lambda} x - \gamma(\lambda) x).$$
(3.3)

This shows that for every flat *R*-algebra R' we have a canonical isomorphism $M(\underline{E}) \otimes_R R' = M(\underline{E} \times_R \text{Spec } R')$, because $\Gamma(E \times_R R', \mathcal{O}_{E \times R'}) = B_E \otimes_R R'$. In particular, if R' satisfies condition (a) of Definition 1.2 then $M(\underline{E}) \otimes_R R' \cong R' \{\tau\}^{1 \times d}$ by Lemma 3.2.

From this we see that for any *R*-algebra *S* the tensor product of the sequence (3.3) with *S* stays exact and $M(\underline{E}) \otimes_R S = M(\underline{E} \times_{\text{Spec } R} \text{ Spec } S)$. Namely, we choose a faithfully flat morphism $R \to R'$ as in Definition 1.2(a) and tensor (3.3) with $S \otimes_R R'$. This tensor product stays exact by Lemma 3.2 because $M(\underline{E}) \otimes_R R' \cong R' \{\tau\}^{1 \times d}$. Since $S \to S \otimes_R R'$ is faithfully flat, already the tensor product of (3.3) with *S* was exact.

Definition 3.4. If \underline{E} is an Abelian Anderson A-module we consider in addition on $M(\underline{E})$ the map $\tau: m \mapsto \operatorname{Frob}_{q, \mathbb{G}_{a,R}} \circ m$. Since $\tau(bm) = b^q \tau(m)$ the map τ is σ -semilinear and induces an A_R -linear map $\tau_M: \sigma^*M \to M$. We set $\underline{M}(\underline{E}) := (M(\underline{E}), \tau_M)$ and call it the *(effective) A-motive associated with* \underline{E} .

This definition is justified by the following relative version of Anderson's theorem [2, Theorem 1].

Theorem 3.5. Let R be a fixed A-ring. If $\underline{E} = (E, \varphi)$ is an Abelian Anderson Amodule of rank r and dimension d over R, then $\underline{M}(\underline{E}) = (M, \tau_M)$ is an effective A-motive of rank r and dimension d over R. There is a canonical isomorphism of R-modules

coker $\tau_M \xrightarrow{\sim} \operatorname{Hom}_R(\operatorname{Lie} E, R), \quad m \mod \tau_M(\sigma^*M) \longmapsto \operatorname{Lie} m.$ (3.4)

The contravariant functor $\underline{E} \mapsto \underline{M}(\underline{E})$ between Abelian Anderson A-modules over R and A-motives over R is fully faithful. Its essential image consists of all effective

A-motives $\underline{M} = (M, \tau_M)$ over R of some dimension d, for which there exists a faithfully flat ring homomorphism $R \to R'$ such that $M \otimes_R R'$ is a finite free left $R'{\tau}$ -module under the map $\tau : M \to M$, $m \mapsto \tau_M(\sigma_M^*m)$.

Proof. We first establish the isomorphism (3.4). If $m = \tau_M(\sum_i m_i \otimes b_i) = \sum_i b_i \circ \operatorname{Frob}_{q,\mathbb{G}_{a,R}} \circ m_i$ with $m_i \in M$ and $b_i \in R$, then Lie m = 0 because Lie $\operatorname{Frob}_{q,\mathbb{G}_{a,R}} = 0$. So the map (3.4) is well defined. To prove that it is an isomorphism one can apply a faithfully flat base change $R \to R'$, see [14, Section 0₁.6.6], such that $E \otimes_R R' \cong \mathbb{G}_{a,R'}^d$ and Lie $E \otimes_R R' \cong (R')^{\oplus d}$. Then $M \otimes_R R' \cong R' \{\tau\}^{1 \times d}$ by Remark 3.3, and the inverse map is given by the natural inclusion $(R')^{1 \times d} \subset R' \{\tau\}^{1 \times d}$, $F_0 \mapsto F_0 \tau^0$.

As a consequence, coker τ_M is a locally free *R*-module of rank equal to $d = \dim \underline{E}$ and annihilated by \mathcal{J}^d because of condition (b) in Definition 1.2. This implies coker $\tau_M|_{\text{Spec }A_R \smallsetminus V(\mathcal{J})} = (0)$, and therefore the morphism τ_M : $\sigma^*M|_{\text{Spec }A_R \smallsetminus V(\mathcal{J})} \to M|_{\text{Spec }A_R \smallsetminus V(\mathcal{J})}$ is surjective. By [17, Corollary 8.12] it is an isomorphism, because *M* and σ^*M are finite locally free over A_R of the same rank. Thus $\underline{M}(\underline{E})$ is an *A*-motive and even an effective *A*-motive of dimension *d* by Proposition 2.3.

Let $\underline{E} = (E, \varphi)$ and $\underline{E}' = (E', \varphi')$ be two Abelian Anderson A-modules over R and let $\underline{M}(\underline{E})$ and $\underline{M}(\underline{E}')$ be the associated effective A-motives. To prove that the map

$$\operatorname{Hom}_{R}\left(\underline{E},\underline{E}'\right) \longrightarrow \operatorname{Hom}_{R}\left(\underline{M}(\underline{E}'),\underline{M}(\underline{E})\right), \quad f \longmapsto (m' \mapsto m' \circ f) \quad (3.5)$$

is bijective, we again apply a faithfully flat base change $R \to R'$, over which there are isomorphisms $E \otimes_R R' \cong \mathbb{G}_{a R'}^d$ and $E' \otimes_R R' \cong \mathbb{G}_{a R'}^{d'}$. Then

$$\operatorname{Hom}_{R'}(\underline{E} \otimes_R R', \underline{E}' \otimes_R R') \cong \left\{ F \in R' \{\tau\}^{d' \times d} \colon \varphi_a' \circ F = F \circ \varphi_a \; \forall \, a \in A \right\}$$

by Lemma 3.2. Also $\underline{M}(\underline{E}) \otimes_R R' \cong R' \{\tau\}^{1 \times d}$ and $\underline{M}(\underline{E}') \otimes_R R' \cong R' \{\tau\}^{1 \times d'}$. The condition $h \circ \tau_{M'} = \tau_M \circ \sigma^* h$ on an element $h \in \operatorname{Hom}_{R'}(\underline{M}(\underline{E}') \otimes_R R', \underline{M}(\underline{E}) \otimes_R R')$ implies that $h: R' \{\tau\}^{1 \times d'} \to R' \{\tau\}^{1 \times d}$ is a homomorphism of left $R' \{\tau\}^{-modules}$, hence given by multiplication on the right by a matrix $H \in R' \{\tau\}^{d' \times d}$. Then $m' \circ \varphi'_a \circ H = h((a \otimes 1) \cdot m') = (a \otimes 1) \cdot h(m') = m' \circ H \circ \varphi_a$ implies $\varphi'_a \circ H = H \circ \varphi_a$ for all $a \in A$. It follows that the map (3.5) is bijective over R'. So every element $h \in \operatorname{Hom}_R(\underline{M}(\underline{E}'), \underline{M}(\underline{E}))$ gives rise to a morphism $f' \in \operatorname{Hom}_{R'}(\underline{E} \otimes_R R', \underline{E}' \otimes_R R')$ which carries a descent datum because h was defined over R. Since by [7, Section 6.1, Theorem 6(a)] the descent of morphisms relative to the faithfully flat morphism $R \to R'$ is effective, f' descends to the desired $f \in \operatorname{Hom}_R(\underline{E}, \underline{E}')$. This shows that the functor $\underline{E} \mapsto \underline{M}(\underline{E})$ is fully faithful.

Let $\underline{M} = (M, \tau_M)$ be an effective A-motive of dimension d over R for which there exists a faithfully flat ring homomorphism $R \to R'$ such that $M \otimes_R R' \cong$ $R'{\tau}^{1\times d}$. Observe that $\operatorname{coker}(\tau_M \otimes \operatorname{id}_{R'}) \cong (R'{\tau}/R'{\tau}\tau)^{1\times d} = (R')^{1\times d}$. For all $a \in A$ we have $\tau \cdot (a \otimes 1)m = \sigma(a \otimes 1) \cdot \tau(m) = (a \otimes 1)\tau m$. Therefore the map $m \mapsto (a \otimes 1)m$ is a homomorphism of left $R'{\tau}$ -modules, and hence given by $(a \otimes 1)m = m \cdot \varphi'_a$ for a matrix $\varphi'_a \in R' \{\tau\}^{d \times d}$. Then $\underline{E}' := (E' = \mathbb{G}^d_{a,R'}, \varphi': A \to R' \{\tau\}^{d \times d}, a \mapsto \varphi'_a)$ satisfies $\underline{M}(\underline{E}') = \underline{M} \otimes_R R'$. Again $(a \otimes 1 - 1 \otimes \gamma(a))^d = 0$ on coker τ_M implies $(\text{Lie } \varphi'_a - \gamma(a))^d = 0$ on Lie E'. So \underline{E}' is an Abelian Anderson A-module over R' with $\underline{M}(E') \cong \underline{M} \otimes_R R'$. Consider the ring $R'' := R' \otimes_R R'$ and the two maps $p_1, p_2: R' \to R''$ given by $p_1(b') = b' \otimes 1$ and $p_2(b') = 1 \otimes b'$. The canonical isomorphism $p_1^*(\underline{M} \otimes_R R') = p_2^*(\underline{M} \otimes_R R')$ induces an isomorphism $p_1^*\underline{E}' \cong p_2^*\underline{E}'$ which is a descend datum on \underline{E}' relative to $R \to R'$. Since faithfully flat descend on affine schemes is effective by [7, Section 6.1, Theorem 6(b)] there exists a group scheme E over R with a ring homomorphism $\varphi: A \to \text{End}_{R\text{-groups}}(E)$ such that $(E, \varphi) \otimes_R R' \cong \underline{E}'$. By [14, IV_2, Proposition 2.7.1 and IV_4, Corollaire 17.7.3] the group scheme E is affine and smooth over R and hence (E, φ) is an Abelian Anderson A-module with $\underline{M}(E, \varphi) \cong \underline{M}$.

The theorem implies the following:

Corollary 3.6. The assertions of Proposition 2.5 and Corollary 2.6 also hold for Abelian Anderson A-modules. In particular, for Abelian Anderson A-modules \underline{E} and \underline{E}' over R, the A-module Hom_R(\underline{E} , \underline{E}') is finite projective of rank less or equal to (rk \underline{E}) · (rk \underline{E}').

An important class of examples are Drinfeld modules. We recall their definition from [12, Section 5] and [27, Section 1].

Definition 3.7. A Drinfeld A-module of rank $r \in \mathbb{N}_{>0}$ over R is a pair $\underline{E} = (E, \varphi)$ consisting of a smooth affine group scheme E over Spec R of relative dimension 1 and a ring homomorphism $\varphi \colon A \to \operatorname{End}_{R\operatorname{-groups}}(E), a \mapsto \varphi_a$ satisfying the following conditions:

- (a) Zariski-locally on Spec R there is an isomorphism $\alpha \colon E \xrightarrow{\sim} \mathbb{G}_{a,R}$ of \mathbb{F}_{q} -module schemes such that
- (b) the coefficients of the τ -polynomial $\Phi_a := \alpha \circ \varphi_a \circ \alpha^{-1} = \sum_{i \ge 0} b_i(a) \tau^i \in \text{End}_{R-\text{groups}, \mathbb{F}_q-\text{lin}}(\mathbb{G}_{a,R}) = R\{\tau\} \text{ satisfy } b_0(a) = \gamma(a), b_{r(a)}(a) \in R^{\times} \text{ and} b_i(a) \text{ is nilpotent for all } i > r(a) := -r [\mathbb{F}_{\infty} : \mathbb{F}_q] \operatorname{ord}_{\infty}(a).$

If $b_i(a) = 0$ for all i > r(a) we say that <u>E</u> is *in standard form*.

It is well known that every Drinfeld A-module over R can be put in standard form; see [12, Section 5] or [24, Section 4.2]. This is a consequence of the following lemma of Drinfeld [12, Propositions 5.1 and 5.2] which we will need again below. For the convenience of the reader we recall the proof.

Lemma 3.8.

(a) Let $b = \sum_{i=0}^{n} b_i \tau^i \in R\{\tau\}$ and let r be a positive integer such that $b_r \in R^{\times}$ and b_i is nilpotent for all i > r. Then there is a unique unit $c = \sum_{i\geq 0} c_i \tau^i \in R\{\tau\}^{\times}$ with $c_0 = 1$ and c_i nilpotent for i > 0, such that $c^{-1}bc = \sum_{i=0}^{r} b'_i \tau^i$ with $b'_r \in R^{\times}$;

(b) Let Spec R be connected and let $b = \sum_{i=0}^{m} b_i \tau^i$ and $c = \sum_{i=0}^{n} c_i \tau^i \in R\{\tau\}$ with m, n > 0 and $b_m, c_n \in R^{\times}$. Let $d \in R\{\tau\} \setminus \{0\}$ satisfy db = cd. Then m = n and $d = \sum_{i=0}^{r} d_i \tau^i$ with $d_r \in R^{\times}$.

Proof. (a) was also reproved in [22, Lemma 1.1.2] and [24, Proposition 1.4].

(b) We write $d = \sum_{i=0}^{r} d_i \tau^i$ with $d_r \neq 0$. The equation db = cd implies $\sum_j (d_{i-j}b_j^{q^{i-j}} - c_j d_{i-j}^{q^j}) = 0$ for all *i*, where the sum runs over $j = \max\{0, i - r\}, \ldots, \min\{i, \max\{m, n\}\}$. We now distinguish three cases.

If m > n then i = m + r yields $d_r b_m^{q^r} = 0$, whence $d_r = 0$ which is a contradiction.

contradiction. If m < n then i = n + r yields $c_n d_r^{q^n} = 0$, whence $d_r \in \mathfrak{p}$ for every prime ideal $\mathfrak{p} \subset R$. For $n+r > i \ge n$ we obtain $c_n d_{i-n}^{q^n} = \sum_{0 \le j < n} (d_{i-j} b_j^{q^{i-j}} - c_j d_{i-j}^{q^j})$ and by descending induction on i it follows that $d_{i-n} \in \mathfrak{p}$ for every prime ideal $\mathfrak{p} \subset R$ for all $i - n = r, \ldots, 0$. So the ideal $I := (d_i : 0 \le i \le r) \subset R$ is contained in every prime ideal $\mathfrak{p} \subset R$. Now i = m + r yields $d_r b_m^{q^r} = \sum_{j=m}^{m+r} c_j d_{m+r-j}^{q^j}$, whence $d_r \in I^q$. For $m + r > i \ge m$ we obtain $d_{i-m} b_m^{q^{i-m}} = \sum_{0 \le j < m} d_{i-j} b_j^{q^{i-j}} - \sum_{0 \le j \le n} c_j d_{i-j}^{q^j}$ and by descending induction on i it follows that $d_{i-m} \in I^q$ for all $i - m = r, \ldots, 0$. Therefore the finitely generated ideal I satisfies $I = I^q$ and by Nakayama's lemma [15, Corollary 4.7] there is an element $f \in 1 + I$ such that $f \cdot I = (0)$. Since $I \subset \mathfrak{p}$ for all prime ideals $\mathfrak{p} \subset R$, the element 1 - f is a unit in R and I = 0. Therefore $d_i = 0$ for all i which is a contradiction.

If m = n then $c_m d_r^{q^m} = d_r b_m^{q^r}$ and we consider the ideal $I = (d_r) \subset R$. Again $I = I^{q^m}$ and by [15, Corollary 4.7] there is an element $f \in 1 + I$ such that $f \cdot d_r = 0$. Now assume that $d_r \in \mathfrak{p}$ for some prime ideal $\mathfrak{p} \subset R$. Then $f \notin \mathfrak{p}$, whence $\mathfrak{p} \in \operatorname{Spec} R[\frac{1}{f}] \subset \operatorname{Spec} R$ and $d_r = 0$ on the open neighborhood Spec $R[\frac{1}{f}]$ of \mathfrak{p} . Since the set of prime ideals $\mathfrak{p} \subset R$ with $d_r \in \mathfrak{p}$ is closed in Spec R and the latter is connected, it follows that $d_r = 0$ on all of Spec R. This is a contradiction and so our assumption was false. In particular d_r is not contained in any prime ideal and so $d_r \in R^{\times}$ as desired.

Theorem 3.9. *The Abelian Anderson A-modules of dimension* 1 *and rank r over R are precisely the Drinfeld A-modules of rank r over R.*

Proof. Let \underline{E} be a Drinfeld A-module of rank r over R. Choose a Zariski covering as in Definition 3.7(a) such that \underline{E} is in standard form. Since Spec R is quasi-compact this Zariski covering can be refined to a covering by finitely many affines. Their disjoint union is of the form Spec R' and the ring homomorphism $R \to R'$ is faithfully flat. So \underline{E} satisfies conditions (a) and (b) of Definition 1.2. Choose an element $t \in A \setminus \mathbb{F}_q$. Then A is a finite free $\mathbb{F}_q[t]$ -module of rank equal to $-[\mathbb{F}_{\infty} : \mathbb{F}_q] \operatorname{ord}_{\infty}(t)$ by Lemma 1.5. Writing $\Phi_t = \sum_{i=0}^{r(t)} b_i(t)\tau^i$ with

$$r(t) = -r [\mathbb{F}_{\infty} : \mathbb{F}_q] \operatorname{ord}_{\infty}(t) \text{ and } b_{r(t)}(t) \in (R')^{\times}, \text{ we make the following}$$

Claim. As an
$$R'[t]$$
-module $M(\underline{E}) \otimes_R R' = \bigoplus_{\ell=0}^{r(t)-1} R'[t] \cdot \tau^{\ell}$. (3.6)

By Remark 3.3 and Lemma 3.2 we have $M(\underline{E}) \otimes_R R' = M(\underline{E} \times_{\text{Spec } R} \text{Spec } R') = R'\{\tau\}$. We prove by induction on n that for every $c = \sum_{i=0}^{n} c_i \tau^i \in R'\{\tau\} = M(\underline{E})$ there are uniquely determined elements $f_{\ell}(t) \in R'[t]$ with $c = \sum_{\ell=0}^{r(t)-1} f_{\ell}(t) \cdot \tau^{\ell}$. If n < r(t) then we take $f_{\ell}(t) = c_{\ell}$. If $n \ge r(t)$, dividing c by Φ_t on the right produces uniquely determined $g = \sum_{i=0}^{n-r(t)} g_i \tau^i$ and $h = \sum_{\ell=0}^{r(t)-1} h_{\ell} \tau^{\ell} \in R'\{\tau\}$ with $c = g\Phi_t + h$. Namely, starting with $g_i = 0$ for i > n - r(t) we can and must take $g_i = b_{r(t)}^{-q^i}(c_{i+r(t)} - \sum_{j=i+1}^{i+r(t)} g_j b_{i+r(t)-j}^{q^i})$ for $i = n - r(t), \ldots, 0$ and $h_{\ell} = c_{\ell} - \sum_{j=0}^{\ell} g_j b_{\ell-j}^{q^j}$ for $\ell = r(t) - 1, \ldots, 1$. The induction hypothesis implies $g = \sum_{\ell=0}^{r(t)-1} \tilde{f}_{\ell}(t) \cdot \tau^{\ell}$. Now $f_{\ell}(t) := \tilde{f}_{\ell}(t) \cdot t + h_{\ell}$ satisfies $c = \sum_{\ell=0}^{r(t)-1} f_{\ell}(t) \cdot \tau^{\ell}$. This proves the claim.

By faithfully flat descent [14, IV₂, Proposition 2.5.2] with respect to $R[t] \rightarrow R'[t]$ and by the claim, $M(\underline{E})$ is finite, locally free over R[t] and in particular flat over R. We next show that it is finitely presented over A_R . Namely, let $(m_i)_{i \in I}$ be a finite generating system of $M(\underline{E})$ over R[t]. Using it as a generating system over A_R we obtain an epimorphism $\rho: A_R^I \rightarrow M(\underline{E})$, where $A_R^I = \bigoplus_{i \in I} A_R$. Since A_R is a finite free R[t]-module, also A_R^I is a finite free R[t]-module and so the kernel of ρ is a finitely generated R[t]-module, whence a finitely generated A_R module. This shows that $M(\underline{E})$ is a finitely presented A_R -module. From [14, IV₃, Théorème 11.3.10] it follows that $M(\underline{E})$ is finite locally free over A_R , because for every point $s \in$ Spec R the finite $A_{\kappa(s)}$ -module $M(\underline{E}) \otimes_R \kappa(s)$ is a free $\kappa(s)[t]$ module and hence a torsion free and flat $A_{\kappa(s)}$ -module. Its rank is r as can be computed by comparing the ranks of $A_{R'}$ and $M(\underline{E}) \otimes_R R'$ over R'[t]. This proves that \underline{E} is an Abelian Anderson A-module of dimension 1 and rank r over R.

Conversely let $\underline{E} = (E, \varphi)$ be an Abelian Anderson *A*-module of dimension 1 and rank *r* over *R*. Let $R \to R'$ be a faithfully flat ring homomorphism and let $\alpha : E \times_R$ Spec $R' \xrightarrow{\sim} \mathbb{G}_{a,R'}$ be an isomorphism of \mathbb{F}_q -module schemes as in Definition 1.2(a). For $a \in A$ write

$$\Phi_a := \sum_{i=0}^{n(a)} b_i(a) \tau^i := \alpha \circ \varphi_a \circ \alpha^{-1} \in \operatorname{End}_{R'\operatorname{groups}, \mathbb{F}_q\operatorname{-lin}}(\mathbb{G}_{a,R'}) = R'\{\tau\},$$

where $n(a) \in \mathbb{N}_0$ and $b_i(a) \in R'$. For $a \in \mathbb{F}_q$ we obtain $\Phi_a = \gamma(a) \cdot \tau^0$. For $t := a \in A \setminus \mathbb{F}_q$ we consider A as a finite free $\mathbb{F}_q[t]$ -module of rank $-[\mathbb{F}_\infty : \mathbb{F}_q] \operatorname{ord}_\infty(a)$ by Lemma 1.5. Then $M(\underline{E})$ is a finite locally free R[t]-module of rank $r(a) := -r [\mathbb{F}_\infty : \mathbb{F}_q] \operatorname{ord}_\infty(a)$ by condition (c) of Definition 1.2. Let $\mathfrak{p} \subset R'$ be a prime ideal, set $k = \operatorname{Frac}(R'/\mathfrak{p})$, and consider the Abelian Anderson A-module $\underline{E} \times_R \operatorname{Spec} k$ over k and the free k[t]-module $M(\underline{E}) \otimes_R k = M(\underline{E} \times_R \operatorname{Spec} k)$ of rank

r(a). By an argument similarly to our claim (3.6) we see that $\deg_{\tau}(\Phi_a \otimes_{R'} 1_k) = r(a)$, that is $b_{r(a)}(a) \otimes 1_k \in k^{\times}$ and $b_i(a) \otimes 1_k = 0$ for all i > r(a). This implies that $b_{r(a)}(a) \in (R')^{\times}$ and $b_i(a)$ is nilpotent for all i > r(a) by [15, Corollary 2.12]. By Lemma 3.8(a) we may change the isomorphism α such that $\Phi_a = \sum_{i=0}^{r(a)} b_i(a)\tau^i$ with $b_{r(a)}(a) \in (R')^{\times}$ for one $a \in A$, and by Lemma 3.8(b) this then holds for all $a \in A$, because $\Phi_a \Phi_b = \Phi_{ab} = \Phi_b \Phi_a$. By condition (b) of Definition 1.2 we have $b_0(a) = \gamma(a)$. Thus $\underline{E} \times_R$ Spec R' is a Drinfeld A-module of rank r over R' in standard form.

It remains to show that we can replace the faithfully flat covering Spec $R' \rightarrow$ Spec R by a Zariski covering. For this purpose consider $R'' := R' \otimes_R R'$ and the two projections pr_i : Spec $R'' \to \text{Spec } R'$ onto the *i*-th factor for i = 1, 2. Then $h := \sum_{i>0} h_i \tau^i := pr_2^* \alpha \circ pr_1^* \alpha^{-1} \in R'' \{\tau\}^{\times}$ satisfies $h_0 \in (R'')^{\times}$ and h_i is nilpotent for all i > 0; see [24, Proposition 1.4]. By Lemma 3.8(b) the equation $pr_2^*\Phi_a \circ h = h \circ pr_1^*\Phi_a$ implies that $h_i = 0$ for all i > 0 and h = $h_0 \in (R'')^{\stackrel{\times}{\times}} \subset R'' \{\tau\}^{\times}$. The cocycle $\underline{h} := (\operatorname{Spec} R' \to \operatorname{Spec} R, h)$ defines an element in the Čech cohomology group $\check{H}^1_{fpac}(\operatorname{Spec} R, \mathbb{G}_m)$. By Hilbert 90, see [25, Proposition III.4.9] we have $\check{H}^1_{fpac}(\operatorname{Spec} R, \mathbb{G}_m) = \check{H}^1_{Zar}(\operatorname{Spec} R, \mathbb{G}_m).$ This means that there is a Zariski covering Spec $\widetilde{R} \to \text{Spec } R$, where Spec $\widetilde{R} =$ $\coprod_i \operatorname{Spec} \widetilde{R}_i$ is a disjoint union of open affine subschemes $\operatorname{Spec} \widetilde{R}_i \subset \operatorname{Spec} R$, and a unit $\tilde{h} = (\tilde{h}_{ij})_{i,j} \in (\tilde{R} \otimes_R \tilde{R})^{\times} = \prod_{i,j} (\tilde{R}_i \otimes_R \tilde{R}_j)^{\times}$, such that (Spec $\tilde{R} \to \tilde{R}_j$) Spec R, \tilde{h}) = h. Let \tilde{E} be the smooth affine group and \mathbb{F}_q -module scheme over Spec *R* with $\beta_i : \widetilde{E}|_{\text{Spec } \widetilde{R}_i} \xrightarrow{\sim} \mathbb{G}_{a, \widetilde{R}_i}$ and $\beta_j = \widetilde{h}_{ij} \circ \beta_i$ on Spec $\widetilde{R}_i \otimes_R \widetilde{R}_j$. Then over Spec $R' \otimes_R \widetilde{R} = \coprod_i \text{Spec } R' \otimes_R \widetilde{R}_i$ we have an isomorphism $\widetilde{\alpha} :=$ $(\beta_i^{-1} \circ \alpha)_i : E \xrightarrow{\sim} \widetilde{E}$. Let $p_i : \operatorname{Spec}(R' \otimes_R \widetilde{R}) \otimes_R (R' \otimes_R \widetilde{R}) \to \operatorname{Spec} R' \otimes_R \widetilde{R}$ be the projection onto the *i*-th factor for i = 1, 2. Then $p_2^* \tilde{\alpha} \circ p_1^* \tilde{\alpha}^{-1} = (\tilde{h}_{ij}^{-1} h)_{i,j} = 1$. This shows that $\tilde{\alpha}$ descends to an isomorphism $\tilde{\alpha} \colon E \xrightarrow{\sim} \tilde{E}$ over Spec R by [7, Section 6.1, Theorem 6(a)]. On Spec \widetilde{R}_i , now $\beta_i \circ \widetilde{\alpha} \colon E \xrightarrow{\sim} \mathbb{G}_{a,\widetilde{R}_i}$ is an isomorphism of \mathbb{F}_q -module schemes. Moreover $\widetilde{\Phi}_a := \beta_i \widetilde{\alpha} \circ \varphi_a \circ \widetilde{\alpha}^{-1} \beta_i^{-1} \in \widetilde{R}_i \{\tau\}$ satisfies $\widetilde{\Phi}_a \otimes 1_{R'} = \Phi_a \otimes 1_{\widetilde{R}_i}$ in $(R' \otimes_R \widetilde{R}_i) \{\tau\} \supset \widetilde{R}_i \{\tau\}$ and by what we proved for Φ_a above, this implies that \underline{E} is a Drinfeld A-module of rank r over R which by \widetilde{R} and $(\beta_i \circ \tilde{\alpha})_i$ is put in standard form.

4. Review of the finite shtuka equivalence

In preparation for our main results in Sections 5 and 6 we need to recall Drinfeld's functor [13, Section 2] and the equivalence it defines between finite \mathbb{F}_q -shtukas and finite locally free strict \mathbb{F}_q -module schemes; see also [1], [31, Section 1], [22, Section B.3] and [19, Sections 3-5].

Definition 4.1. A *finite* \mathbb{F}_q -shtuka over R is a pair $\underline{V} = (V, F_V)$ consisting of a finite locally free R-module V and an R-module homomorphism $F_V : \sigma^* V \to V$.

A morphism $f: (V, F_V) \to (V', F_{V'})$ of finite \mathbb{F}_q -shtukas is an *R*-module homomorphism $f: V \to V'$ satisfying $f \circ F_V = F_{V'} \circ \sigma^* f$.

We say that F_V is *nilpotent* if there is an integer *n* such that the composition $F_V^n := F_V \circ \sigma^* F_V \circ \ldots \circ \sigma^{(n-1)*} F_V = 0$. A finite \mathbb{F}_q -shtuka over *R* is called *étale* if F_V is an isomorphism. If $\underline{V} = (V, F_V)$ is étale, we define for any *R*-algebra *R'* the τ -invariants of \underline{V} over *R'* as the \mathbb{F}_q -vector space

$$\underline{V}^{\tau}(R') := \left\{ v \in V \otimes_R R' \colon v = F_V(\sigma_V^* v) \right\}.$$

$$(4.1)$$

Recall that an *R*-group scheme G = Spec B is *finite locally free* if *B* is a finite locally free *R*-module. By [14, I_{new}, Proposition 6.2.10] this is equivalent to *G* being finite, flat and of finite presentation over Spec *R*. Every finite locally free *R*-group scheme G = Spec B is a relative complete intersection by [29, III.4.15]. This means that locally on Spec *R* we can choose a presentation $B = R[X_1, \ldots, X_n]/I$ where the ideal *I* is generated by a regular sequence; compare [14, IV₄, Proposition 19.3.7]. The zero section *e*: Spec $R \to G$ defines an augmentation $e_B := e^* \colon B \to R$ of the *R*-algebra *B*. Set $I_B := \ker e_B$. For the polynomial ring $R[\underline{X}] = R[X_1, \ldots, X_n]$ set $I_{R[\underline{X}]} = (X_1, \ldots, X_n)$ and $e_{R[\underline{X}]} \colon R[\underline{X}] \to R, X_{\nu} \mapsto 0$. Faltings [16] and Abrashkin [1] consider the deformation $B^{\flat} := R[\underline{X}]/(I \cdot I_{R[\underline{X}]})$ and the canonical epimorphism $B^{\flat} \to B$. They remark that there is a unique morphism

$$\Delta^{\flat} \colon B^{\flat} \longrightarrow (B \otimes_{R} B)^{\flat} \coloneqq R[\underline{X} \otimes 1, 1 \otimes \underline{X}] / (I \otimes 1 + 1 \otimes I) (I_{R[\underline{X}]} \otimes 1 + 1 \otimes I_{R[\underline{X}]})$$

lifting the comultiplication $\Delta: B \to B \otimes_R B$ and satisfying $(\mathrm{id}_{B^\flat} \otimes e_B^\flat) \circ \Delta^\flat = \mathrm{id}_{B^\flat} = (e_B^\flat \otimes \mathrm{id}_{B^\flat}) \circ \Delta^\flat$, where $e_B^\flat: B^\flat \to R$ is the augmentation map; see [1, Section 1.2] or [19, remark after Definition 3.5]. It satisfies $\Delta^\flat(x) - x \otimes 1 - 1 \otimes x \in I_{B^\flat} \otimes I_{B^\flat}$ for all $x \in I_{B^\flat}$. Set $\mathcal{G} = (G, G^\flat) := (\operatorname{Spec} B, \operatorname{Spec} B^\flat)$. The *co-Lie complex of* \mathcal{G} over SpecR (that is, the fiber at the zero section of G of the cotangent complex; see [20, Section VII.3.1]) is the complex of finite locally free R-modules of rank n

$$\ell^{\bullet}_{\mathcal{G}/\operatorname{Spec} R}: \quad 0 \longrightarrow (I/I^2) \otimes_{B, e_B} R \xrightarrow{d} \Omega^1_{R[\underline{X}]/R} \otimes_{R[\underline{X}], e_{R[\underline{X}]}} R \longrightarrow 0 \quad (4.2)$$

concentrated in degrees -1 and 0 with *d* being the differential map. Note that $(I/I^2) \otimes_{B, e_B} R = \ker(B^{\flat} \twoheadrightarrow B)$ and $\Omega^1_{R[\underline{X}]/R} \otimes_{R[\underline{X}], e_{R[\underline{X}]}} R = \ker(e_B^{\flat})/\ker(e_B^{\flat})^2$ can be computed from (B, B^{\flat}) . Up to homotopy equivalence it only depends on *G* and not on the presentation $B = R[\underline{X}]/I$. The *co-Lie module of G over R* is defined as $\omega_G := \operatorname{H}^0(\ell_{G/\operatorname{Spec}}^{\bullet}R) := \operatorname{coker} d$. We can now recall the definition of strict \mathbb{F}_q -module schemes from Faltings [16] and Abrashkin [1]; see also [19, Section 4].

Definition 4.2. Let (G, [.]) be a pair, where G = Spec B is an affine flat commutative group scheme over R which is a relative complete intersection and where $[.]: \mathbb{F}_q \to \text{End}_{R\text{-groups}}(G), a \mapsto [a]$ is a ring homomorphism. Then (G, [.]) is called a *strict* \mathbb{F}_q -module scheme if there exists a presentation $B = R[\underline{X}]/I$ and a

lift $[.]^{\flat}: \mathbb{F}_q \to \operatorname{End}_{R-\operatorname{algebras}}(B^{\flat}), a \mapsto [a]^{\flat}$ of the \mathbb{F}_q -action on G, such that the induced action on $\ell_{G/\operatorname{Spec} R}^{\bullet}$ is equal to the scalar multiplication via $\gamma: \mathbb{F}_q \to R$, and such that $[1]^{\flat} = \operatorname{id}_{B^{\flat}}$ and $[0]^{\flat} = e_B^{\flat}$, as well as $[a\tilde{a}]^{\flat} = [a]^{\flat} \circ [\tilde{a}]^{\flat}$ and $[a + \tilde{a}]^{\flat} = m \circ ([a]^{\flat} \otimes [\tilde{a}]^{\flat}) \circ \Delta^{\flat}$, where $m: (B \otimes_R B)^{\flat} \to B^{\flat}$ is induced by the multiplication map $B^{\flat} \otimes_R B^{\flat} \to B^{\flat}$ in the ring B^{\flat} and the homomorphism $[a]^{\flat} \otimes [\tilde{a}]^{\flat}: B^{\flat} \otimes_R B^{\flat} \to B^{\flat} \otimes_R B^{\flat}$ induces a homomorphism $(B \otimes_R B)^{\flat} \to (B \otimes_R B)^{\flat} \to (B \otimes_R B)^{\flat}$ denoted again by $[a]^{\flat} \otimes [\tilde{a}]^{\flat}$. If G is finite locally free, such a lift $a \mapsto [a]^{\flat}$ then exists for every presentation and is uniquely determined by [19, Lemmas 4.4 and 4.7].

Example 4.3. The group scheme $\mathbb{G}_{a,R}^d$ is a strict \mathbb{F}_q -module scheme for any d, because we can choose $B = R[X_1, \ldots, X_d]$ and so I = (0) and $B^{\flat} = B$, and $a \in \mathbb{F}_q$ acts as $[a]^*X_i = a \cdot X_i$. Moreover, every \mathbb{F}_q -linear group homomorphism $\mathbb{G}_{a,R}^d \to \mathbb{G}_{a,R}^{d'}$ is strict in the sense of [16, Definition 1], meaning that the homomorphism lifts to a homomorphism between the B^{\flat} which is equivariant for the \mathbb{F}_q -action via $[.]^{\flat}$.

Lemma 4.4. Let G be a finite locally free group scheme over R, let $\mathbb{F}_q \to \operatorname{End}_{R\operatorname{-groups}}(G)$ be a ring homomorphism, and let $R \to R'$ be a faithfully flat ring homomorphism. Then G is a strict \mathbb{F}_q -module scheme if and only if $G \times_R R'$ is.

Proof. Let *pr*: Spec *R'* → Spec *R* be the induced morphism and let *pr_i*: Spec *R'*⊗_{*R*} *R'* → Spec *R'* be the projection onto the *i*-th factor. Let *G* = Spec *B*, let *R'*[X] → *B*⊗_{*R*} *R'* be a presentation, and let \mathbb{F}_q → End_{*R*-algebras}($(B \otimes_R R')^{\flat}$), $a \mapsto [a]^{\flat}$ be a lift of the \mathbb{F}_q -action on *G* as in Definition 4.2, which makes $G \times_R R'$ into a strict \mathbb{F}_q -module scheme over *R'*. Moreover, let $f : R[Y] \to B$ be an arbitrary presentation and let $\tilde{\mathcal{G}} = (\text{Spec } B, \text{Spec } R[Y]/(Y) \cdot \text{ker}(f))$ be the corresponding deformation. By [19, Lemmas 4.4 and 4.7] there exists a unique lift $a \mapsto [\widetilde{a}]^{\flat}$ on the deformation $\tilde{\mathcal{G}} \times_R R' = pr^* \tilde{\mathcal{G}}$. By the uniqueness the two lifts $pr_1^*[\widetilde{a}]^{\flat}$ and $pr_2^*[\widetilde{a}]^{\flat}$ on the deformation $pr_1^* pr^* \tilde{\mathcal{G}} = pr_2^* pr^* \tilde{\mathcal{G}}$ coincide. By faithfully flat descent [7, Section 6.1, Theorem 6] this lift descends to a lift on the deformation $\tilde{\mathcal{G}}$, which makes *G* into a strict \mathbb{F}_q -module scheme over *R*.

To explain the equivalence between finite \mathbb{F}_q -shtukas and finite locally free strict \mathbb{F}_q -module schemes over R we recall Drinfeld's functor.

Definition 4.5. Let $\underline{V} = (V, F_V)$ be a pair consisting of a (not necessarily finite locally free) *R*-module *V* and a morphism $F_V : \sigma^* V \to V$ of *R*-modules. Following Drinfeld [13, Section 2] we define

$$\operatorname{Dr}_{q}(\underline{V}) := \operatorname{Spec}\left(\bigoplus_{n \ge 0} \operatorname{Sym}_{R}^{n} V\right) / I$$

where the ideal *I* is generated by the elements $v^{\otimes q} - F_V(\sigma_V^* v)$ for all $v \in V$. (Here $v^{\otimes q}$ lives in Sym^q V and $F_V(\sigma_V^* v)$ in Sym¹ V.) Then $Dr_q(\underline{V})$ is a group scheme

over *R* via the comultiplication $\Delta : v \mapsto v \otimes 1 + 1 \otimes v$ and an \mathbb{F}_q -module scheme via [*a*]: $v \mapsto av$ for $a \in \mathbb{F}_q$. It has a canonical deformation

$$\operatorname{Dr}_{q}(\underline{V})^{\flat} := \operatorname{Spec}\left(\bigoplus_{n \ge 0} \operatorname{Sym}_{R}^{n} V\right) / (I \cdot I_{0}),$$

where $I_0 = \bigoplus_{n \ge 1} \operatorname{Sym}_R^n V$ is the ideal generated by the $v \in V$. This deformation is equipped with the comultiplication $\Delta^{\flat} : v \mapsto v \otimes 1 + 1 \otimes v$ and the \mathbb{F}_q -action $[a]^{\flat} : v \mapsto av$. We set $\mathcal{D}r_q(\underline{V}) := (\operatorname{Dr}_q(\underline{V}), \operatorname{Dr}_q(\underline{V})^{\flat})$. On its co-Lie complex [a]acts by scalar multiplication with *a* because $(av)^{\otimes q} - F_V(\sigma_V^*(av)) = a^q(v^{\otimes q} - F_V(\sigma_V^*v))$. Therefore $\operatorname{Dr}_q(\underline{V})$ is a finite locally free strict \mathbb{F}_q -module scheme if *V* is a finite locally free *R*-module. Every morphism $(V, F_V) \to (W, F_W)$, that is, every *R*-homomorphism $f : V \to W$ with $f \circ F_V = F_W \circ \sigma^* f$, induces a morphism $\operatorname{Dr}_q(f) : \operatorname{Dr}_q(W, F_W) \to \operatorname{Dr}_q(V, F_V)$. So Dr_q is a contravariant functor. If *f* is surjective then $\operatorname{Dr}_q(f)$ is a closed immersion.

Conversely, with a (not necessarily finite locally free) \mathbb{F}_q -module scheme G over R we associate the pair $\underline{M}_q(G) := (M_q(G), F_{M_q(G)})$ consisting of the R-module

$$M_q(G) := \operatorname{Hom}_{R\operatorname{-groups},\mathbb{F}_a\operatorname{-lin}}(G,\mathbb{G}_{a,R})$$

and the *R*-homomorphism $F_{M_q(G)}: \sigma^*M_q(G) \to M_q(G)$ which is induced from $M_q(G) \to M_q(G), m \mapsto \operatorname{Frob}_{q,\mathbb{G}_{a,R}} \circ m$. Every morphism of \mathbb{F}_q -module schemes $f: G \to G'$ induces an *R*-homomorphism $\underline{M}_q(G') \to \underline{M}_q(G), m' \mapsto m' \circ f$. Note that by an argument as in Remark 3.3 we have $\underline{M}_q(G) \otimes_R S = \underline{M}_q(G \times_{\operatorname{Spec} R} \operatorname{Spec} S)$ for every *R*-algebra *S*.

There is a natural morphism $\underline{V} \to \underline{M}_q(\operatorname{Dr}_q(\underline{V})), v \mapsto f_v$, where $f_v \colon \operatorname{Dr}_q(\underline{V}) \to \mathbb{G}_{a,R} = \operatorname{Spec} R[\xi]$ is given by $f_v^*(\xi) = v$. There is also a natural morphism of group schemes $G \to \operatorname{Dr}_q(\underline{M}_q(G))$ given by $\bigoplus_{n\geq 0} \operatorname{Sym}_R^n M_q(G)/I \to \Gamma(G,\mathcal{O}_G), m \mapsto m^*(\xi)$, which is well defined because $F_{M_q(G)}(\sigma^*m)^*(\xi) = (\operatorname{Frob}_{q,\mathbb{G}_{a,R}} \circ m)^*(\xi) = m^*(\xi^q) = (m^*(\xi))^q$.

Example 4.6. For example if $\underline{E} = (E, \varphi)$ is an Abelian Anderson A-module of dimension d, then $\underline{M}_q(\underline{E}) = (M_q(\underline{E}), F_{M_q(\underline{E})})$ was denoted $\underline{M}(\underline{E}) = (M(\underline{E}), \tau_{M(\underline{E})})$ in Definition 1.2. There is a canonical isomorphism $\underline{E} \xrightarrow{\sim} \operatorname{Dr}_q(\underline{M}_q(\underline{E}))$ which is constructed as follows. We set $\mathbb{G}_{a,R} = \operatorname{Spec} R[\xi]$ and consider for each $m \in M_q(\underline{E}) = \operatorname{Hom}_{R\operatorname{-groups},\mathbb{F}_q\operatorname{-lin}(E, \mathbb{G}_{a,R})$ the element $m^*(\xi) \in \Gamma(E, \mathcal{O}_E)$. We claim that

$$\left(\bigoplus_{n\geq 0} \operatorname{Sym}_{R}^{n} M_{q}(\underline{E})\right) / \left(m^{\otimes q} - F_{M_{q}(\underline{E})}(\sigma_{M_{q}(\underline{E})}^{*}m) : m \in M_{q}(\underline{E})\right)$$

$$\xrightarrow{\sim} \Gamma(E, \mathcal{O}_{E}), \qquad m \mapsto m^{*}(\xi)$$

$$(4.3)$$

is an isomorphism of *R*-algebras. To prove that it is an isomorphism we may apply a faithfully flat base change $R \to R'$ over which we have an \mathbb{F}_q -linear isomorphism $\alpha : E \otimes_R R' \xrightarrow{\sim} \mathbb{G}^d_{a,R'} = \operatorname{Spec} R'[x_1, \ldots, x_d]$. Let $m_i := pr_i \circ \alpha \in$

 $M_q(\underline{E}) \otimes_R R'$ where $pr_i : \mathbb{G}_{a,R'}^d \to \mathbb{G}_{a,R'}$ is the projection onto the *i*-th factor. Then $M_q(\underline{E}) \otimes_R R' = \bigoplus_{i=0}^d R'\{\tau\} \cdot m_i$ by Remark 3.3 and the inverse of (4.3) sends $\alpha^*(x_i)$ to m_i . This is indeed the inverse, because (4.3) sends each of the generators $\tau^j m_i = \operatorname{Frob}_{q^j, \mathbb{G}_{a,R}} \circ m_i$ of the R'-module $M_q(\underline{E}) \otimes_R R'$ to $(\operatorname{Frob}_{q^j, \mathbb{G}_{a,R}} \circ m_i)^*(\xi) = m_i^*(\xi^{q^j}) = \alpha^*(x_i)^{q^j}$, and this inverse sends it back to $m_i^{\otimes q^j} = \operatorname{Frob}_{q^j, \mathbb{G}_{a,R}} \circ m_i = \tau^j m_i$.

The following theorem goes back to Abrashkin [1, Theorem 2]. Statements (b)-(d) were proved in [19, Theorem 5.2].

Theorem 4.7.

(a) The contravariant functors Dr_q and \underline{M}_q are mutually quasi-inverse anti-equivalences between the category of finite \mathbb{F}_q -shtukas over R and the category of finite locally free strict \mathbb{F}_q -module schemes over R. Both functors are \mathbb{F}_q linear and exact.

Let $\underline{V} = (V, F_V)$ be a finite \mathbb{F}_q -shtuka over R and let $G = \text{Dr}_q(\underline{V})$. Then

- (b) The \mathbb{F}_q -module scheme $\operatorname{Dr}_q(\underline{V})$ is étale over R if and only if \underline{V} is étale;
- (c) The natural morphisms $\underline{V} \to \underline{M}_q(\operatorname{Dr}_q(\underline{V})), v \mapsto f_v \text{ and } G \to \operatorname{Dr}_q(\underline{M}_q(G))$ are isomorphisms;
- (d) The co-Lie complex $\ell_{\mathcal{D}r_q(\underline{V})/S}^{\bullet}$ is canonically isomorphic to the complex of *R*-modules $0 \to \sigma^* V \xrightarrow{F_V} V \to 0$.

5. Isogenies

Definition 5.1. A morphism $f \in \text{Hom}_R(\underline{E}, \underline{E}')$ between two Abelian Anderson *A*-modules \underline{E} and \underline{E}' over *R* is an *isogeny* if $f: E \to E'$ is finite and surjective. If there exists an isogeny between \underline{E} and \underline{E}' then they are called *isogenous*. (Being isogenous is an equivalence relation; see Corollary 5.16 below.)

An isogeny $f: \underline{E} \to \underline{E}'$ is *separable* if f is étale, or equivalently if the group scheme ker f is étale over R. Indeed, since f is flat by Proposition 5.2(b) it suffices to see that all fibers of f over E' are étale by [7, Section 2.4, Proposition 8]. Now all fibers are isomorphic to ker f by the remarks after (3.1).

We recall the following well known criterion for being an isogeny. For the convenience of the reader we include a proof.

Proposition 5.2. Let $f: E \to E'$ be a morphism between two affine, smooth *R*-group schemes *E* of relative dimension *d* and *E'* of relative dimension *d'*, such that the fibers of *E'* over all points of Spec *R* are connected. Then the following are equivalent:

- (a) f is finite and faithfully flat, that is flat and surjective; see [14, 0_I.6.7.8];
- (b) ker *f* is finite and *f* is flat;

- (c) ker f is finite and f is surjective;
- (d) ker *f* is finite and d = d';
- (e) ker f is finite and f is an epimorphism of sheaves for the fpqc-topology.

If R = k is a field, then these conditions are equivalent to

(f) f is surjective and d = d'.

Proof. We show that (a) implies all other conditions. This is obvious for (b), (c) and (e). To prove that d = d' let $\mathfrak{m} \subset R$ be a maximal ideal and consider the base change to $k = R/\mathfrak{m}$. Then $f \times id_k : E \times_R k \to E' \times_R k$ is a finite surjective morphism, and hence $d = \dim E \times_R k = \dim E' \times_R k = d'$; see [15, Corollary 9.3].

Conversely, clearly (e) \Longrightarrow (c). We now show (f) \Longrightarrow (c) and (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (b) \Longrightarrow (a). Generally note that by the remarks after (3.1) all non-empty fibers of f are isomorphic to ker f.

First assume (f) and note that when R = k is a field, the ring $\Gamma(E', \mathcal{O}_{E'})$ is an integral domain by our assumptions on E'. The surjectivity of f implies that $f^* \colon \Gamma(E', \mathcal{O}_{E'}) \hookrightarrow \Gamma(E, \mathcal{O}_E)$ is injective of relative transcendence degree d - d' = 0. Since all fibers of f are isomorphic to ker f, [15, Corollary 14.6] implies that ker f is finite over Spec k and (c) holds.

We next show for general R that (b) implies (c). Namely, f is of finite presentation by [14, IV₁, Proposition 1.6.2(v)], because E and E' are of finite presentation over R. Therefore (b) implies that f is universally open by [14, IV₂, Théorème 2.4.6]. In particular $(f \times id_k)(E \times_R k) \subset E' \times_R k$ is open for every point Spec $k \rightarrow$ Spec R of Spec R. Since $E' \times_R k$ was assumed to be connected, it possesses no proper open subgroup, and hence $f \times id_k$ is surjective. This establishes (c).

To prove that (c) implies (d) again consider the morphism $f \times id_k : E \times_R k \to E' \times_R k$ over a point Spec $k \to$ Spec R of Spec R. Since the map $f \times id_k$ is surjective, $f^* \otimes id_k : \Gamma(E', \mathcal{O}_{E'}) \otimes_R k \hookrightarrow \Gamma(E, \mathcal{O}_E) \otimes_R k$ is injective, because otherwise its kernel would define a proper closed subscheme of $E' \times_R k$ through which $f \times id_k$ factors. Since all fibers of f are isomorphic to ker f, and hence finite, [15, Corollary 13.5] shows that $d' = \dim \Gamma(E', \mathcal{O}_{E'}) \otimes_R k = \dim \Gamma(E, \mathcal{O}_E) \otimes_R k = d$.

We prove the implication (d) \Longrightarrow (b). Consider the fiber $f \times id_k : E \times_R k \rightarrow E' \times_R k$ over a point Spec $k \rightarrow$ Spec R of Spec R and the inclusion $(\Gamma(E', \mathcal{O}_{E'}) \otimes_R k)/\ker(f^* \otimes id_k) \longrightarrow \Gamma(E, \mathcal{O}_E) \otimes_R k$. Since all fibers of f are finite, [15, Corollary 13.5] implies dim $\Gamma(E', \mathcal{O}_{E'}) \otimes_R k = d' = d = \dim \Gamma(E, \mathcal{O}_E) \otimes_R k = \dim (\Gamma(E', \mathcal{O}_{E'}) \otimes_R k)/\ker(f^* \otimes id_k)$. It follows that $\ker(f^* \otimes id_k) = (0)$ and $f^* \otimes id_k : \Gamma(E', \mathcal{O}_{E'}) \otimes_R k \leftrightarrow \Gamma(E, \mathcal{O}_E) \otimes_R k$ is injective. Let $\mathfrak{m} \subset \Gamma(E, \mathcal{O}_E) \otimes_R k$ be a maximal ideal. Then $(f^* \otimes id_k)^{-1}(\mathfrak{m}) \subset \Gamma(E', \mathcal{O}_{E'}) \otimes_R k$ is a maximal ideal by [15, Theorem 4.19]. Since the fiber of f over \mathfrak{m} is finite, [15, Theorem 18.16(b)] implies that $f \otimes id_k$ is flat at \mathfrak{m} . Since E and E' are smooth over R it follows from [14, IV₃, Théorème 11.3.10] that f is flat.

Finally we show that (b) and (c) together imply (a). By (b) and (c) the morphism $f: E \to E'$ is faithfully flat. Whether f is finite can by [14, IV₂, Proposition 2.7.1] be tested after the faithfully flat base change $E \rightarrow E'$. By (3.1) the finiteness of the projection $E \times_{F'} E \to E$ onto the first factor follows from the finiteness of ker f over Spec R. This proves (a).

Corollary 5.3. Let $f \in \text{Hom}_R(E, E')$ be an isogeny between Abelian Anderson A-modules over R. Then

- (a) The kernel ker f of f is a finite locally free group scheme and a strict \mathbb{F}_{q} module scheme over R;
- (b) f induces an isomorphism between E' and the quotient $E/\ker f$.

Proof. (a) Since f is flat of finite presentation by $[14, IV_1, Proposition 1.6.2(v)]$, ker f is flat of finite presentation over R. Since it is also finite, it is finite locally free. Over a faithfully flat R-algebra R' both E and E' become isomorphic to powers of $\mathbb{G}_{a,R'}$ and hence are strict \mathbb{F}_{a} -module schemes by Example 4.3. Therefore (ker f) $\otimes_R R'$ is a strict \mathbb{F}_q -module scheme over R' by [16, Proposition 2] and ker fis a strict \mathbb{F}_q -module scheme over *R* by Lemma 4.4.

(b) This follows from [29, Théorème V.4.1].

Note that two isogenous Abelian Anderson A-modules have the same dimension by Proposition 5.2. We will see in Corollary 5.10 below that they also have the same rank. For Drinfeld modules there is a further characterization of isogenies as follows.

Proposition 5.4.

- (a) If E and E' are Drinfeld A-modules over R with Spec R connected and $f \in$ $\operatorname{Hom}_k(\underline{E}, \underline{E}')$, then f is an isogeny if and only if $f \neq 0$;
- (b) If this is the case then f is separable if and only if Lie $f \in R^{\times}$.

Proof. (a) Let $f: \underline{E} \to \underline{E}'$ be an isogeny, then $f \neq 0$ because the zero morphism is not surjective. Conversely let $f \neq 0$. By Proposition 5.2(d) we must show that ker f is finite. This question is local on Spec R, so we may assume that E = $E' = \mathbb{G}_{a,R}$ and that $\underline{E} = (E, \varphi)$ and $\underline{E}' = (E', \psi)$ are in standard form. Let $t \in A \setminus \mathbb{F}_q$, and hence $\deg_\tau \varphi_t > 0$ and $\deg_\tau \psi_t > 0$. By Lemma 3.8(b) applied to $f \circ \varphi_t = \psi_t \circ f$ we have $f = \sum_{i=0}^n f_i \tau^i \in R\{\tau\}$ with $f_n \in R^{\times}$. It follows that ker $f = \text{Spec } R[x]/(\sum_{i=0}^{n} f_i x^{q^i})$ which is finite over R. (b) By the Jacobi criterion [7, Section 2.2, Proposition 7],

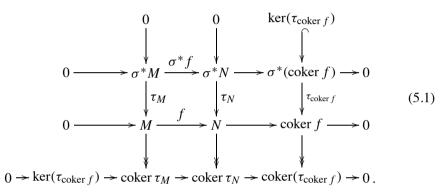
$$\ker f = \operatorname{Spec} R[x] / \left(\sum_{i=0}^{n} f_i x^{q^i} \right)$$

is étale if and only if Lie $f = f_0 = \frac{\partial f(x)}{\partial x} \in \mathbb{R}^{\times}$.

Next we turn to A-motives.

Definition 5.5. A morphism $f \in \text{Hom}_R(\underline{M}, \underline{N})$ between *A*-motives over *R* is an *isogeny* if *f* is injective and coker *f* is finite and locally free as *R*-module. If there exists an isogeny between \underline{M} and \underline{N} then they are called *isogenous*. (Being isogenous is an equivalence relation; see Corollary 5.16 below.) A quasi-morphism $f \in \text{QHom}_R(\underline{M}, \underline{N})$ which is of the form $g \otimes c$ for an isogeny $g \in \text{Hom}_R(\underline{M}, \underline{N})$ and a $c \in Q$ is called a *quasi-isogeny*.

If f is an isogeny and \underline{M} and \underline{N} are effective, then the snake lemma yields the following commutative diagram with exact rows and columns



Namely, by local freeness of coker f the upper row is again exact and identifies $\sigma^*(\text{coker } f)$ with $\text{coker}(\sigma^* f)$.

An isogeny $f: \underline{M} \to \underline{N}$ between effective A-motives is separable if $\tau_{\operatorname{coker} f}$: $\sigma^*(\operatorname{coker} f) \to \operatorname{coker} f$ is an isomorphism.

Remark 5.6. If $f \in \text{Hom}_R(\underline{M}, \underline{N})$ is an isogeny and S is an R-algebra, then the base change $f \otimes \text{id}_S \in \text{Hom}_S(\underline{M} \otimes_R S, \underline{N} \otimes_R S)$ of f to S is again an isogeny. This follows from the exact sequence $0 \longrightarrow \underline{M} \xrightarrow{f} \underline{N} \longrightarrow \text{coker } f \longrightarrow 0$ because coker f is a flat R-module.

Example 5.7. For $0 \neq a \in A$ the morphism $a: \underline{M} \to \underline{M}$ is an isogeny with coker a = M/aM. Let \underline{M} be effective. Then a is separable if and only if ker $(\tau_{coker}a) = coker(\tau_{coker}a) = (0)$. That is, if and only if multiplication with a is an automorphism of coker τ_M . Since $a - \gamma(a)$ is nilpotent on coker τ_M this is the case if and only if $\gamma(a) \in \mathbb{R}^{\times}$. For the corresponding result about Abelian Anderson *A*-modules see Corollary 5.11.

Proposition 5.8. Let \underline{M} and \underline{N} be A-motives over R. If \underline{M} and \underline{N} are isogenous then $\operatorname{rk} \underline{M} = \operatorname{rk} \underline{N}$, and if, moreover, \underline{M} and \underline{N} are effective, then $\operatorname{rk}_R \operatorname{coker} \tau_M = \operatorname{rk}_R \operatorname{coker} \tau_N$. Conversely assume $\operatorname{rk} \underline{M} = \operatorname{rk} \underline{N}$ and let $f \in \operatorname{Hom}_R(\underline{M}, \underline{N})$ be a morphism such that $\operatorname{coker} f$ is a finitely generated R-module. Then f is an isogeny.

Proof. Let $f: \underline{M} \to \underline{N}$ be an isogeny. Since M, respectively coker τ_M , are finite locally free over A_R , respectively over R, we can compute their ranks by choosing

a maximal ideal $\mathfrak{m} \subset R$ and applying the base change from R to $k = R/\mathfrak{m}$. Then $f \otimes \mathrm{id}_k$ is still an isogeny by Remark 5.6. Since $\mathrm{coker}(f \otimes \mathrm{id}_k)$ is a torsion A_k -module it follows that

$$\operatorname{rk} \underline{M} = \operatorname{rk}_{A_R} M = \operatorname{rk}_{A_k}(M \otimes_R k) = \operatorname{rk}_{A_k}(N \otimes_R k) = \operatorname{rk}_{A_R} N = \operatorname{rk} \underline{N}.$$

If \underline{M} and \underline{N} are effective, we consider diagram (5.1) for the isogeny $f \otimes id_k$. Since $coker(f \otimes id_k)$ and $\sigma^* coker(f \otimes id_k)$ are finite dimensional k-vector spaces of the same dimension, the right vertical column and the bottom row of diagram (5.1) imply that

$$\operatorname{rk}_R \operatorname{coker} \tau_M = \dim_k \operatorname{coker} (\tau_M \otimes \operatorname{id}_k) = \dim_k \operatorname{coker} (\tau_N \otimes \operatorname{id}_k) = \operatorname{rk}_R \operatorname{coker} \tau_N$$
.

The converse follows from Lemma 2.2.

After these preparations we are now able to formulate and prove our main theorem.

Theorem 5.9. Let $f \in \text{Hom}_R(\underline{E}, \underline{E}')$ be a morphism between Abelian Anderson A-modules over R, and let $\underline{M}(f) \in \text{Hom}_R(\underline{M}', \underline{M})$ be the associated morphism between the associated effective A-motives $\underline{M} = \underline{M}(\underline{E})$ and $\underline{M}' = \underline{M}(\underline{E}')$ over R. Then

- (a) f is an isogeny if and only if $\underline{M}(f)$ is an isogeny;
- (b) f is a separable isogeny if and only if $\underline{M}(f)$ is a separable isogeny;
- (c) If f is an isogeny there are canonical A-equivariant isomorphisms of finite \mathbb{F}_q -shtukas

$$(\operatorname{coker} \underline{M}(f), \tau_{\operatorname{coker} \underline{M}(f)}) \xrightarrow{\sim} \underline{M}_q(\operatorname{ker} f)$$

and of finite locally free *R*-group schemes

$$\operatorname{Dr}_q(\operatorname{coker} \underline{M}(f)) \xrightarrow{\sim} \ker f$$
.

Proof. In the beginning we do neither assume that f nor that $\underline{M}(f)$ is an isogeny. We denote by ι the inclusion ker $f \hookrightarrow E$. Consider the A_R -homomorphism $\underline{M}(\underline{E}) \to \underline{M}_q$ (ker f), $m \mapsto m \circ \iota$, which is compatible with the Frobenius maps $\tau_{M(\underline{E})}$ and $F_{M_q}(\text{ker } f)$. Since $m = \underline{M}(f)(m') = m' \circ f$ implies $m' \circ f \circ \iota = 0$, it factors over

$$\operatorname{coker} \underline{M}(f) \longrightarrow \underline{M}_q(\operatorname{ker} f), \quad m \mod \operatorname{im} \underline{M}(f) \mapsto m \circ \iota.$$
 (5.2)

On the other hand we claim that there are A-equivariant morphisms

$$\operatorname{Dr}_q(\underline{M}_q(\ker f)) \longrightarrow \operatorname{Dr}_q(\operatorname{coker} \underline{M}(f)) \hookrightarrow \ker f \hookrightarrow E,$$
 (5.3)

where the last two morphisms are closed immersions. The first morphism is obtained from (5.2). Moreover, the epimorphism $\underline{M}(\underline{E}) \rightarrow \operatorname{coker} \underline{M}(f)$ induces by Example 4.6 an *A*-equivariant closed immersion $\alpha : \operatorname{Dr}_q(\operatorname{coker} \underline{M}(f)) \hookrightarrow \operatorname{Dr}_q(\underline{M}(\underline{E})) = \underline{E}$.

We compose it with $f: E \to E'$ and show that the composition factors through the zero section e': Spec $R \to E'$. This will imply that α factors through ker f. We can study this composition after a faithfully flat base change $R \to R'$ over which we have an \mathbb{F}_q -linear isomorphism $\beta: E' \otimes_R R' \cong \mathbb{G}_{a,R'}^{d'} = \operatorname{Spec} R'[y_1, \ldots, y_{d'}]$. Let $m'_i := pr_i \circ \beta \in M(\underline{E}') \otimes_R R'$ where $pr_i: \mathbb{G}_{a,R'}^{d'} \to \mathbb{G}_{a,R'} = \operatorname{Spec} R'[\xi]$ is the projection onto the *i*-th factor. Then $pr_i^*(\xi) = y_i$ and $\alpha^* f^*\beta^*(y_i) = \alpha^* f^*m'_i^*(\xi) = \alpha^* \circ \underline{M}(f)(m'_i)^*(\xi) = 0$ because $\underline{M}(f)(m'_i) = 0$ in coker $\underline{M}(f)$.

(a) Now assume that f is an isogeny. Then ker f is a finite locally free group scheme over R, and a strict \mathbb{F}_q -module scheme by Corollary 5.3(a). So \underline{M}_q (ker f) is a finite locally free *R*-module by Theorem 4.7 and the morphism $Dr_q(\underline{M}_q(\ker f)) \rightarrow$ ker f in (5.3) is an isomorphism. This shows that $Dr_q(\operatorname{coker} \underline{M}(f)) \xrightarrow{\sim} \ker f$. We next show that the map (5.2) is an isomorphism. Its cokernel is a finite *R*-module because $\underline{M}_q(\ker f)$ is. We apply again a faithfully flat base change $R \to R'$ such that $E \otimes_R R' \cong \mathbb{G}^d_{a,R'}$ and $E' \otimes_R R' \cong \mathbb{G}^{d'}_{a,R'}$. Then f is given by a matrix $F \in$ $R'{\tau}^{d' \times d}$ by Lemma 3.2. By faithfully flat descent and by Nakayama's lemma [15, Corollaries 2.9 and 4.8] the map (5.2) will be surjective if for all maximal ideals $\mathfrak{m}' \subset R'$ its tensor product with $k := R'/\mathfrak{m}'$ is surjective. By Remark 3.3 and its analog for $\underline{M}_{a}(\ker f)$ the tensor product of (5.2) with k equals coker $\underline{M}(f \times \mathrm{id}_{k}) \rightarrow$ $\underline{M}_q(\ker(f \times \mathrm{id}_k)), \text{ where } f \times \mathrm{id}_k \colon \underline{E} \times_R k \to \underline{E}' \times_R k \text{ is given by the matrix } \overline{F} := F \otimes 1_k. \text{ In particular } \ker(f \times \mathrm{id}_k) = \operatorname{Spec} k[x_1, \ldots, x_d]/(f^*(y_\ell) \colon 1 \le \ell \le d).$ Since ker f is finite, $k[x_1, ..., x_d]/(f^*(y_\ell): 1 \le \ell \le d)$ is a finite dimensional k-vector space. For fixed i this implies that $\{x_i, x_i^q, x_i^{q^2}, ...\}$ is linearly dependent and there is a positive integer N and $b_{i,n} \in k$ such that $x_i^{q^{N+1}} = \sum_{n=0}^N b_{i,n} \cdot x_i^{q^n}$ in $k[x_1, \ldots, x_d]/(f^*(y_\ell))$: $1 \le \ell \le d$). We introduce the new variables $z_{i,n} := x_i^{q^n}$ for $1 \le i \le d$ and $0 \le n \le N$. Then $f^*(y_\ell)$ is a k-linear relation between the $z_{i,n}$. Furthermore

$$k[x_1, \dots, x_d]/(f^*(y_\ell): 1 \le \ell \le d) \cong k[z_{i,n}: 1 \le i \le d, \le n \le N]/I \quad \text{with}$$
$$I = \left(f^*(y_i), \ z_{i,N}^q - \sum_{n=0}^N b_{i,n} \cdot z_{i,n}, \ z_{i,n}^q - z_{i,n+1}: 1 \le i \le d, 0 \le n < N\right).$$

Let $\tilde{z}_1, \ldots, \tilde{z}_r$ be a k-basis of $(\bigoplus_{i=1}^d \bigoplus_{n=0}^N k \cdot z_{i,n})/(f^*(y_\ell): 1 \le \ell \le d)$. Then there are elements $c_{ij} \in k$ for $1 \le i, j \le r$ such that

$$k[x_1,...,x_d]/(f^*(y_\ell):1\le \ell\le d)\cong k[\tilde{z}_1,...,\tilde{z}_r]/\left(\tilde{z}_i^q-\sum_{j=1}^r c_{ij}\tilde{z}_j:1\le i\le r\right)=:B.$$

Moreover, the group law on ker f is given by the comultiplication $\Delta^* : B \to B \otimes_k B$, $\Delta^*(\tilde{z}_i) = \tilde{z}_i \otimes 1 + 1 \otimes \tilde{z}_i$ and the \mathbb{F}_q -action is given by $\varphi_{\lambda} : B \to B$, $\varphi_{\lambda}^*(\tilde{z}_i) = \gamma(\lambda) \cdot \tilde{z}_i$.

We are now ready to compute $\underline{M}_q(\ker(f \times \mathrm{id}_k))$ from (3.3). If $\mathbb{G}_{a,k} = \operatorname{Spec} k[\xi]$ then every element $\widetilde{m} \in \underline{M}_q(\ker(f \times \mathrm{id}_k))$ satisfies $\widetilde{m}^*(\xi) = \sum_{\ell_i \in \{0...q-1\}} d_{\ell_1,...,\ell_r} \cdot \widetilde{z}_1^{\ell_1} \cdot \ldots \cdot \widetilde{z}_r^{\ell_r}$ with $d_{\ell_1,...,\ell_r} \in k$. Since the $\widetilde{z}_1^{\ell_1} \cdot \ldots \cdot \widetilde{z}_r^{\ell_r}$ form a k-basis of B, the conditions $\Delta^* \widetilde{m}^*(\xi) = \widetilde{m}^*(\xi) \otimes 1 + 1 \otimes \widetilde{m}^*(\xi)$ in $B \otimes_k B$ and $\varphi_{\lambda}^* \widetilde{m}^*(\xi) = m^*(\gamma(\lambda) \cdot \xi) = \gamma(\lambda) \cdot \widetilde{m}^*(\xi)$ in B for $\lambda \in \mathbb{F}_q$ imply as in Lemma 3.2 that $\widetilde{m}^*(\xi) = d_{1,0...0} \cdot \widetilde{z}_1 + \ldots + d_{0...0,1} \cdot \widetilde{z}_r$. Since \widetilde{z}_i is a k-linear combination of the $z_{j,n} = x_j^{q^n}$ the morphism $m \colon E \times_R k \to \mathbb{G}_{a,k}$ with $m^*(\xi) = d_{1,0...0} \cdot \widetilde{z}_1 + \ldots + d_{0...0,1} \cdot \widetilde{z}_r$ belongs to $\underline{M}(E \times_R k)$ and maps to \widetilde{m} under the map coker $\underline{M}(f \times \mathrm{id}_k) \to \underline{M}_q(\ker(f \times \mathrm{id}_k))$. This proves that (5.2) is surjective.

In order to show that (5.2) is injective let $m \in M(\underline{E})$ be an element with $m \circ \iota = 0$. By [29, Théorème V.4.1] the morphism $m: E \to \mathbb{G}_{a,R}$ factors through $E/\ker f \xrightarrow{\sim} E'$ (use Corollary 5.3(b)) in the form $m = m' \circ f$ for an $m' \in M(\underline{E}')$. This shows that $m \mod \operatorname{im} \underline{M}(f) = 0$ in coker $\underline{M}(f)$. All together we have proved that coker $\underline{M}(f) \xrightarrow{\sim} \underline{M}_q(\ker f)$ is a finite locally free R-module. Moreover, $\underline{M}(f)$ is injective, because if $m' \in M(\underline{E}')$ satisfies $m' \circ f = \underline{M}(f)(m') = 0$ the surjectivity of f implies m' = 0. More precisely, f is an epimorphism of sheaves for the fpqc-topology by Proposition 5.2(e). Now the injectivity of $\underline{M}(f)$ follows from the left exactness of the functor $\operatorname{Hom}_{R\operatorname{-groups},\mathbb{F}_q\operatorname{-lin}(\bullet,\mathbb{G}_{a,R})$. This proves that $\underline{M}(f)$ is an isogeny, and it also proves (c).

Conversely assume that $\underline{M}(f)$ is an isogeny. Then $d := \dim \underline{E} = \dim \underline{E}'$ by Theorem 3.5 and Proposition 5.8. We prove that ker f is finite. For this purpose we apply a faithfully flat base change $R \to R'$ such that $E \otimes_R R' \cong \mathbb{G}_{a,R'}^d =$ Spec $R'[x_1, \ldots, x_d]$ and $E' \otimes_R R' \cong \mathbb{G}_{a,R'}^d =$ Spec $R'[y_1, \ldots, y_d]$. Also when we write $\mathbb{G}_{a,R'} =$ Spec $R'[\xi]$ then $\underline{M}(\underline{E} \times_R R') \cong \bigoplus_{i=1}^d R'\{\tau\} \cdot m_i$ and $\underline{M}(\underline{E}' \times_R R') \cong$ $\bigoplus_{i=1}^d R'\{\tau\} \cdot m'_i$ where $m^*_i(\xi) = x_i$ and $m'^*_i(\xi) = y_i$. Consider the epimorphism of R'-modules

$$\bigoplus_{i=1}^{d} \bigoplus_{0 \le n} R' \cdot \tau^{n} m_{i} \cong \underline{M}(\underline{E} \times_{R} R') \xrightarrow{\delta} \operatorname{coker} \underline{M}(f \otimes \operatorname{id}_{R'}).$$

Since coker $\underline{M}(f \otimes \operatorname{id}_{R'})$ is finite locally free over R', and hence projective, this epimorphism has a section *s* whose image lies in $\bigoplus_{i=1}^{d} \bigoplus_{n=0}^{N} R' \cdot \tau^{n} m_{i}$ for some *N*. It follows that $\tau^{N+1}m_{i} - s(\delta(\tau^{N+1}m_{i}))$ maps to zero in coker $\underline{M}(f \otimes \operatorname{id}_{R'})$. That is, there are elements $b_{i,j,n} \in R'$ and $\widetilde{m}'_{i} \in \underline{M}(\underline{E}' \times_{R} R')$ with $\tau^{N+1}m_{i} - \sum_{j=1}^{d} \sum_{n=0}^{N} b_{i,j,n} \cdot \tau^{n}m_{j} = \underline{M}(f)(\widetilde{m}'_{i})$. Applying this equation to ξ yields

$$x_i^{q^{N+1}} - \sum_{j=1}^d \sum_{n=0}^N b_{i,j,n} \cdot x_j^{q^n} = f^* \widetilde{m}_i'^*(\xi) \in f^* R'[y_1, \dots, y_d] \cong f^* \Gamma(E', \mathcal{O}_{E'}) \otimes_R R'.$$

Thus $f \times id_{R'}: E \times_R R' \to E' \times_R R'$ is finite. By faithfully flat descent [14, IV₂, Proposition 2.7.1] also f is finite. By Proposition 5.2(d) this proves that f is an isogeny and establishes (a).

Finally (b) follows from (c) and Theorem 4.7(b).

Corollary 5.10. If \underline{E} and \underline{E}' are isogenous Abelian Anderson A-modules over R, then $\operatorname{rk} \underline{E} = \operatorname{rk} \underline{E}'$.

Proof. This follows directly from Theorems 3.5, 5.9 and Proposition 5.8.

Corollary 5.11. Let \underline{E} be an Abelian Anderson A-module over R and let $a \in A$. Then $\varphi_a : \underline{E} \to \underline{E}$ is an isogeny. It is separable if and only if $\gamma(a) \in R^{\times}$.

Proof. The assertion follows from Theorem 5.9 and Example 5.7. The criterion for separability can also be proved without reference to A-motives; see our proof of Theorem 6.4(b) below.

We next come to our second main result.

Theorem 5.12. Let \underline{M} and \underline{N} be two A-motives over R and let $f \in \text{Hom}_R(\underline{M}, \underline{N})$ be a morphism. Then the following are equivalent:

- (a) f is an isogeny;
- (b) There is an element 0 ≠ a ∈ A such that f induces an isomorphism of A_R[¹/_a]-modules M[¹/_a] ~ N[¹/_a].

In particular, a quasi-morphism $f \in \operatorname{QHom}_R(\underline{M}, \underline{N})$ is a quasi-isogeny if and only if it induces an isomorphism $f: M[\frac{1}{a}] \xrightarrow{\sim} N[\frac{1}{a}]$ for an element $a \in A \setminus \{0\}$.

Proof. (b) \Longrightarrow (a) Clearly rk $\underline{M} = \text{rk } \underline{N}$. Since coker f is a finitely generated A_R -module, (coker f) $\otimes_A A[\frac{1}{a}] = (0)$ implies that $a^n \cdot \text{coker } f = (0)$ for some positive integer n. Therefore, coker f is a finitely generated module over $A_R/(a^n) = A/(a^n) \otimes_{\mathbb{F}_a} R$, whence over R. So (a) follows from Proposition 5.8.

(a) \implies (b) If *R* is a field this was proved in [6, Corollary 5.4] and also follows from [26, Proposition 3.4.5] and [30, Proposition 3.1.2]. We generalize the proof to the relative situation.

1. If f is an isogeny, then coker f is a finite locally free R-module, which we may assume to be free after passing to an open affine covering of Spec R. Let $t \in A \setminus \mathbb{F}_q$ and consider the finite flat homomorphism $\widetilde{A} := \mathbb{F}_q[t] \hookrightarrow A$ from Lemma 1.5, under which we view \underline{M} and \underline{N} as \widetilde{A} -motives by restriction of scalars. That is, we view M and N as locally free R[t]-modules of rank $\widetilde{r} = \operatorname{rk} \underline{M} \cdot \operatorname{rk}_{\widetilde{A}} A$ and τ_M and τ_N as $R[t][\frac{1}{t-\gamma(t)}]$ -isomorphisms. By multiplying both τ_M and τ_N with $(t-\gamma(t))^e$ for $e \gg 0$ we may assume that \underline{M} and \underline{N} are effective \widetilde{A} -motives. Then the equation $f \circ \tau_M = \tau_N \circ \sigma^* f$ is multiplied by $(t - \gamma(t))^e$, and so the map f continues to be an isogeny $f: \underline{M} \to \underline{N}$ between the (now effective) \widetilde{A} -motives \underline{M} and \underline{N} . Let $\mathfrak{a} = \operatorname{ann}_{R[t]}(\operatorname{coker} f) = \ker(R[t] \to \operatorname{End}_R(\operatorname{coker} f))$ be the annihilator of coker f. By the Cayley-Hamilton theorem [15, Theorem 4.3] (applied with I = R), the monic characteristic polynomial χ_t of the endomorphism t of coker f lies in \mathfrak{a} .

 \square

This shows that $R[t]/\mathfrak{a}$ is a quotient of the finite *R*-module $R[t]/(\chi_t)$. In particular the closed subscheme $V := \operatorname{Spec} R[t]/\mathfrak{a}$ of $\mathbb{A}^1_R = \operatorname{Spec} R[t]$ is finite over $\operatorname{Spec} R$. On its open complement $f : M \to N$ is an isomorphism.

We now consider the exterior powers $\wedge^{\tilde{r}} M$ and $\wedge^{\tilde{r}} N$ of the R[t]-modules Mand N and set $\mathcal{L} := (\wedge^{\tilde{r}} M)^{\vee} \otimes \wedge^{\tilde{r}} N$. These are invertible R[t]-modules. The isogeny f induces a global section $\wedge^{\tilde{r}} f$ of the invertible sheaf \mathcal{L} on \mathbb{A}^1_R which provides an isomorphism $\mathcal{O}_{\mathbb{A}^1_R} \xrightarrow{\sim} \mathcal{L}$, $1 \mapsto \wedge^{\tilde{r}} f$ on $\mathbb{A}^1_R \setminus V$. Likewise we obtain global sections $\wedge^{\tilde{r}} \sigma^* f$, respectively $\wedge^{\tilde{r}} \tau_M$, respectively $\wedge^{\tilde{r}} \tau_N$ of the invertible sheaves $\sigma^* \mathcal{L}$, respectively $(\wedge^{\tilde{r}} \sigma^* M)^{\vee} \otimes \wedge^{\tilde{r}} M$, respectively $(\wedge^{\tilde{r}} \sigma^* N)^{\vee} \otimes \wedge^{\tilde{r}} N$ by the effectivity assumption on \underline{M} and \underline{N} . Diagram (5.1) implies that there is an equality of global sections

$$\wedge^{\tilde{r}} f \otimes \wedge^{\tilde{r}} \tau_M = \wedge^{\tilde{r}} \tau_N \otimes \wedge^{\tilde{r}} \sigma^* f$$
(5.4)

of
$$(\wedge^{\tilde{r}}\sigma^*M)^{\vee}\otimes\wedge^{\tilde{r}}N = \mathcal{L}\otimes(\wedge^{\tilde{r}}\sigma^*M)^{\vee}\otimes\wedge^{\tilde{r}}M) = ((\wedge^{\tilde{r}}\sigma^*N)^{\vee}\otimes\wedge^{\tilde{r}}N)\otimes\sigma^*\mathcal{L}.$$

Since V is proper over Spec R and the projective line \mathbb{P}_R^1 is separated, the map $V \hookrightarrow \mathbb{A}_R^1 \hookrightarrow \mathbb{P}_R^1$ is a closed immersion which does not meet $\{\infty\} \times_{\mathbb{F}_q} \text{Spec } R$, where $\{\infty\} = \mathbb{P}_{\mathbb{F}_q}^1 \setminus \mathbb{A}_{\mathbb{F}_q}^1$. Thus we may glue \mathcal{L} with the trivial sheaf $\mathcal{O}_{\mathbb{P}_R^1 \setminus V}$ on $\mathbb{P}_R^1 \setminus V$ along the isomorphism $\mathcal{O}_{\mathbb{P}_R^1} \xrightarrow{\sim} \mathcal{L}$, $1 \mapsto \wedge^{\tilde{r}} f$ over $\mathbb{A}_R^1 \setminus V$. In this way we obtain an invertible sheaf $\overline{\mathcal{L}}$ on the projective line \mathbb{P}_R^1 . By replacing $\overline{\mathcal{L}}$ with $\overline{\mathcal{L}} \otimes \mathcal{O}_{\mathbb{P}_R^1} (m \cdot \infty)$ for a suitable integer m we may achieve that $\overline{\mathcal{L}}$ has degree zero (see [7, Section 9.1, Proposition 2]) and induces an R-valued point of the relative Picard functor $\operatorname{Pic}_{\mathbb{P}^1/\mathbb{F}_q}^0$; cf. [7, Section 8.1]. Since $\operatorname{Pic}_{\mathbb{P}^1/\mathbb{F}_q}^0$ is trivial, [7, Section 8.1, Proposition 4] shows that $\overline{\mathcal{L}} \cong \mathcal{K} \otimes_R \mathcal{O}_{\mathbb{P}_R^1}$ for an invertible sheaf \mathcal{K} on Spec R. Replacing Spec R by an open affine covering which trivializes \mathcal{K} we may assume that there is an isomorphism $\alpha : \mathcal{L} \longrightarrow R[t]$ of R[t]-modules. Let $h := \alpha(\wedge^{\tilde{r}} f) \in R[t]$.

2. Let $d := \operatorname{rk}_R \operatorname{coker} \tau_M$. We claim that locally on Spec R there is a positive integer n_0 and for every integer $n \ge n_0$ an isomorphism of R[t]-modules

$$\left((\wedge^{\tilde{r}}\sigma^*M)^{\vee}\otimes_{R[t]}\wedge^{\tilde{r}}M\right)^{\otimes q^n} \xrightarrow{\sim} R[t] \quad \text{with} \quad \left(\wedge^{\tilde{r}}\tau_M\right)^{\otimes q^n} \longmapsto \left(t-\gamma(t)\right)^{q^n d} \quad (5.5)$$

and similarly for <u>N</u>. To prove the claim we apply Proposition 2.3(c) to the A-motive $\wedge^{\tilde{r}} \underline{M}$ and derive that $\wedge^{\tilde{r}} \tau_M : \wedge^{\tilde{r}} \sigma^* M \to \wedge^{\tilde{r}} M$ is injective coker $\wedge^{\tilde{r}} \tau_M$ is a finite locally free *R*-module, annihilated by a power of $t - \gamma(t)$. Consider the exact sequence

$$0 \longrightarrow \wedge^{\tilde{r}} \sigma^* M \otimes_{R[t]} (\wedge^{\tilde{r}} M)^{\vee} \xrightarrow{\wedge^{\tilde{r}} \tau_M \otimes \operatorname{id}_{(\wedge^{\tilde{r}} M)^{\vee}}} R[t]$$

$$\longrightarrow \operatorname{coker} \wedge^{\tilde{r}} \tau_M \otimes_{R[t]} (\wedge^{\tilde{r}} M)^{\vee} \longrightarrow 0.$$
(5.6)

Choose an open affine covering of Spec R[t] which trivializes the locally free R[t]-module $\wedge^{\tilde{r}} M$. Pulling back this covering under the section Spec $R \xrightarrow{\sim} \text{Spec } R[t]/$

 $(t - \gamma(t)) \hookrightarrow \operatorname{Spec} R[t]$ gives an open affine covering of $\operatorname{Spec} R$ on which we may find an isomorphism $\operatorname{coker} \wedge^{\tilde{r}} \tau_M \otimes_{R[t]} (\wedge^{\tilde{r}} M)^{\vee} \xrightarrow{\sim} \operatorname{coker} \wedge^{\tilde{r}} \tau_M$. We replace $\operatorname{Spec} R$ by this open affine covering and even shrink it further in such a way that $\operatorname{coker} \wedge^{\tilde{r}} \tau_M$ becomes a free *R*-module. By [15, Proposition 4.1(b)] the sequence (5.6) is then isomorphic to the sequence

$$0 \longrightarrow R[t] \xrightarrow{g} R[t] \longrightarrow \operatorname{coker} \wedge^{\tilde{r}} \tau_M \longrightarrow 0, \qquad (5.7)$$

where $g \in R[t]$ is a monic polynomial of degree equal to $\operatorname{rk}_R(\operatorname{coker} \wedge^{\tilde{r}} \tau_M)$. We now tensor sequence (5.7) over R with $k := \operatorname{Frac}(R/\mathfrak{p})$ where $\mathfrak{p} \subset R$ is a prime ideal. It remains exact because $\operatorname{coker} \wedge^{\tilde{r}} \tau_M$ is free. Since k[t] is a principal ideal domain the elementary divisor theorem applied to

$$0 \longrightarrow \sigma^* M \otimes_R k \xrightarrow{\tau_M \otimes \mathrm{id}_k} M \otimes_R k \longrightarrow \operatorname{coker} \tau_M \otimes_R k \longrightarrow 0$$

allows to write $\tau_M \otimes \operatorname{id}_k$ as a diagonal matrix. This shows that $\operatorname{coker} \wedge^{\tilde{r}} \tau_M \otimes_R k$ is a *k*-vector space of dimension equal to $\operatorname{rk}_R(\operatorname{coker} \tau_M) =: d$. Since $t - \gamma(t)$ is nilpotent on this vector space, the Cayley-Hamilton theorem from linear algebra implies $g \mod \mathfrak{p} = (t - \gamma(t))^d$. In particular the coefficients of the difference $g' := g - (t - \gamma(t))^d$ lie in every prime ideal of R, and hence are nilpotent by [15, Corollary 2.12]. Therefore there is a positive integer n_0 with $(g')^{q^{n_0}} = 0$, whence $g^{q^n} = (t - \gamma(t))^{q^{n_d}}$ for every $n \ge n_0$. The q^n -th tensor power of the isomorphism between (the left entries in) the sequences (5.6) and (5.7) provides the isomorphism in (5.5). This proves the claim.

3. Since $d = \operatorname{rk}_R \operatorname{coker} \tau_M = \operatorname{rk}_R \operatorname{coker} \tau_N$ by Proposition 5.8, equations (5.4) and (5.5) imply that for $n \gg 0$ there is an isomorphism $\beta \colon \sigma^* \mathcal{L}^{\otimes q^n} \xrightarrow{\sim} \mathcal{L}^{\otimes q^n}$ of R[t]-modules sending $(t - \gamma(t))^{q^n} (\sigma^* \wedge^{\tilde{r}} f)^{\otimes q^n}$ to $(t - \gamma(t))^{q^n} (\wedge^{\tilde{r}} f)^{\otimes q^n}$ and hence $(\sigma^* \wedge^{\tilde{r}} f)^{\otimes q^n}$ to $(\wedge^{\tilde{r}} f)^{\otimes q^n}$ because $t - \gamma(t)$ is a non-zero divisor. In particular the isomorphism

$$\alpha^{\otimes q^n} \circ \beta \circ \left(\sigma^* \alpha^{\otimes q^n}\right)^{-1} \colon R[t] \xrightarrow{\sim} \sigma^* \mathcal{L}^{\otimes q^n} \xrightarrow{\sim} \mathcal{L}^{\otimes q^n} \xrightarrow{\sim} R[t],$$

which is given by multiplication with a unit $u \in R[t]^{\times}$, sends $\sigma(h^{q^n}) = \sigma^* \alpha^{\otimes q^n} (\wedge^{\tilde{r}} \sigma^* f)^{\otimes q^n}$ to $h^{q^n} = \alpha^{\otimes q^n} (\wedge^{\tilde{r}} f)^{\otimes q^n}$. We thus obtain the equation $h^{q^n} = u \cdot \sigma(h^{q^n})$ in R[t].

By Lemma 5.13 below, $u = \sum_{i\geq 0} u_i t^i$ with $u_0 \in R^{\times}$ and $u_i \in R$ nilpotent for all $i \geq 1$. Let $R' = R[v_0]/(v_0^{q-1}u_0 - 1)$ be the finite étale *R*-algebra obtained by adjoining a (q-1)-th root v_0 of u_0^{-1} . Then there is a unit $v = \sum_{i\geq 1} v_i t^i \in R'[t]^{\times}$ with $v = u \cdot \sigma(v)$. Indeed the latter amounts to the equations

$$v_i = \sum_{j=0}^i u_j v_{i-j}^q \quad \text{and} \quad \frac{v_i}{v_0} = \left(\frac{v_i}{v_0}\right)^q + \sum_{j\geq 1} \frac{u_j}{u_0} \left(\frac{v_{i-j}}{v_0}\right)^q$$

which have the solutions $\frac{v_i}{v_0} = \sum_{n\geq 0} \left(\sum_{j\geq 1} \frac{u_j}{u_0} \left(\frac{v_{i-j}}{v_0} \right)^q \right)^{q^n}$ because the u_j are nilpotent. Therefore the element $v^{-1}h^{q^n} \in R'[t]$ satisfies $\sigma(v^{-1}h^{q^n}) = v^{-1}h^{q^n}$. Working on each connected component of Spec R' separately, Lemma 5.14 below shows that $a := v^{-1}h^{q^n} \in \mathbb{F}_q[t] \subset A$.

In the ring $R'[t][\frac{1}{a}]$ the element *h* becomes a unit. Therefore the homomorphism $\alpha^{-1} \circ h: R'[t][\frac{1}{a}] \to \mathcal{L}[\frac{1}{a}], 1 \mapsto \wedge^{\tilde{r}} f$ is an isomorphism. This implies that $\wedge^{\tilde{r}} f: \wedge^{\tilde{r}} M[\frac{1}{a}] \to \wedge^{\tilde{r}} N[\frac{1}{a}]$ is an isomorphism, and hence also $f: M[\frac{1}{a}] \to N[\frac{1}{a}]$ by Cramer's rule (*e.g.*, [8, III.8.6, Formulas (21) and (22)]). Thus we have established (b) étale locally on Spec *R*. Replacing *a* by the product of all the finitely many elements *a* obtained locally, establishes (b) globally on Spec *R*.

4. To prove the statement about quasi-morphisms $f \in \operatorname{QHom}_R(\underline{M}, \underline{N})$ assume first, that f induces an isomorphism $f: M[\frac{1}{a}] \xrightarrow{\sim} N[\frac{1}{a}]$ for some $a \in A \setminus \{0\}$. Then $g := a^n \cdot f \in \operatorname{Hom}_R(\underline{M}, \underline{N})$ for $n \gg 0$, because M is finitely generated. In particular g is an isogeny and $f = g \otimes a^{-n}$ is a quasi-isogeny.

Conversely, if f is a quasi-isogeny, that is $f = g \otimes c$ for an isogeny $g \in \text{Hom}_R(\underline{M}, \underline{N})$ and a $c \in Q$, there is an element $a \in A \setminus \{0\}$ such that $g: M[\frac{1}{a}] \xrightarrow{\sim} N[\frac{1}{a}]$. If d is the denominator of c it follows that $f: M[\frac{1}{ad}] \xrightarrow{\sim} N[\frac{1}{ad}]$.

To finish the proof of Theorem 5.12 we must demonstrate the following two lemmas.

Lemma 5.13. An element $u = \sum_{i\geq 0} u_i t^i \in R[t]$ is a unit in R[t] if and only if $u_0 \in R^{\times}$ and u_i is nilpotent for all $i \geq 1$.

Proof. If the u_i satisfy the assertion then there is a positive integer n such that $u_i^{q^n} = 0$ for all $i \ge 1$. Therefore $u^{q^n} = u_0^{q^n}$ is a unit in R[t] and so the same holds for u.

Conversely if u is a unit then u_0 must be a unit in R. By [15, Corollary 2.12] the kernel of the map $R \to \prod_{\mathfrak{p} \subset R} R/\mathfrak{p}$ where \mathfrak{p} runs over all prime ideals of R, equals the nil-radical of R. Under this map u is sent to a unit in each factor $R/\mathfrak{p}[t]$. Since R/\mathfrak{p} is an integral domain, the u_i for $i \ge 1$ must be sent to zero in each factor R/\mathfrak{p} . This shows that u_i is nilpotent for $i \ge 1$.

Lemma 5.14. Assume that R contains no idempotents besides 0 and 1, that is Spec R is connected. Then $R^{\sigma} := \{x \in R : x^q = x\} = \mathbb{F}_q$.

Proof. Let $\mathfrak{m} \subset R$ be a maximal ideal and let $\bar{x} \in R/\mathfrak{m}$ be the image of x. Then $\bar{x}^q = \bar{x}$ implies that \bar{x} is equal to an element $\alpha \in \mathbb{F}_q \subset R/\mathfrak{m}$. Now $e := (x - \alpha)^{q-1}$ satisfies $e^2 = (x - \alpha)^{q-2}(x^q - \alpha^q) = (x - \alpha)^{q-1} = e$, that is e is an idempotent. Since $e \in \mathfrak{m}$ we cannot have e = 1 and must have e = 0. Therefore $x - \alpha = (x - \alpha)^q = (x - \alpha) \cdot e = 0$ in R, that is $x = \alpha \in \mathbb{F}_q$.

Corollary 5.15. If $f \in \text{Hom}_R(\underline{M}, \underline{N})$ is an isogeny between A-motives over R then there is an element $0 \neq a \in A$ and an isogeny $g \in \text{Hom}_R(\underline{N}, \underline{M})$ with

 $f \circ g = a \cdot id_{\underline{N}}$ and $g \circ f = a \cdot id_{\underline{M}}$. The same is true for Abelian Anderson *A*-modules.

Proof. Let $a \in A$ be the element from Theorem 5.12(b). As in the proof of (b) \Longrightarrow (a) of this theorem there is a positive integer n such $a^n \cdot \operatorname{coker} f = (0)$. Therefore there is a map $g: N \to M$ with $g \circ f = a^n \cdot \operatorname{id}_M$ and $f \circ g = a^n \cdot \operatorname{id}_N$. This implies that g is injective, because a^n is a non-zero divisor on N. From

 $f \circ g \circ \tau_N = a^n \cdot \tau_N = \tau_N \circ \sigma^* a^n \cdot \mathrm{id}_N = \tau_N \circ \sigma^* f \circ \sigma^* g = f \circ \tau_M \circ g$

and the injectivity of f we conclude that $g \circ \tau_N = \tau_M \circ \sigma^* g$ and that $g \in \text{Hom}_R(\underline{N}, \underline{M})$. By construction g induces an isomorphism $N[\frac{1}{a}] \xrightarrow{\sim} M[\frac{1}{a}]$ after inverting a. So g is an isogeny by Theorem 5.12. The statement about Abelian Anderson A-modules follows from Theorems 3.5 and 5.9.

Corollary 5.16. The relation of being isogenous is an equivalence relation for Amotives and for Abelian Anderson A-modules over R.

Proof. This follows from Theorem 5.12 and Corollary 5.15.

Corollary 5.17. Let $f \in \text{Hom}_R(\underline{M}, \underline{N})$ be an isogeny between effective A-motives \underline{M} and \underline{N} over R and suppose that $\gamma(A \setminus \{0\}) \subset R^{\times}$. Then f is separable. The same is true for isogenies between Abelian Anderson A-modules over R.

Proof. Consider diagram (5.1) and set $K := \operatorname{coker}(\tau_{\operatorname{coker} f})$. As in the proof of Theorem 5.12 there is an element $0 \neq a \in A$ and a positive integer n with $a^n \cdot \operatorname{coker} f = (0)$, and hence $a^n \cdot K = (0)$. Let e be an integer with $q^e \ge \operatorname{rk}_R \operatorname{coker} \tau_N$ and $q^e \ge n$. Then $(a \otimes 1 - 1 \otimes \gamma(a))^{q^e} \cdot \operatorname{coker} \tau_N = (0)$. Therefore

$$0 = (a \otimes 1 - 1 \otimes \gamma(a))^{q^e} \cdot K = \left(a^{q^e} \otimes 1 - 1 \otimes \gamma(a)^{q^e}\right) \cdot K = -\gamma(a)^{q^e} \cdot K.$$

Since $\gamma(a) \in \mathbb{R}^{\times}$ we have K = (0), and since coker f and $\sigma^*(\operatorname{coker} f)$ are finite locally free \mathbb{R} modules of the same rank, [17, Corollary 8.12] shows that $\tau_{\operatorname{coker} f}$ is an isomorphism, that is f is separable. The statement about Abelian Anderson A-modules follows from Theorem5.9(b).

Corollary 5.18. If $f \in \text{Hom}_R(\underline{M}, \underline{N})$ and $g \in \text{Hom}_R(\underline{N}, \underline{M})$ are isogenies between A-motives over R with $f \circ g = a \cdot \text{id}_{\underline{N}}$ and $g \circ f = a \cdot \text{id}_{\underline{M}}$ for an $a \in A$, then there is an isomorphism of Q-algebras $\text{QEnd}_R(\underline{M}) \xrightarrow{\sim} \text{QEnd}_R(\underline{N})$ given by $h \otimes b \mapsto f \circ h \circ g \otimes \frac{b}{a}$ for $h \in \text{End}_R(\underline{M})$.

Example 5.19. Let *R* be an *A*-ring of finite characteristic \mathfrak{p} , that is $\gamma \colon A \to R$ factors through $\mathbb{F}_{\mathfrak{p}} := A/\mathfrak{p}$ for a maximal ideal $\mathfrak{p} \subset A$. Let $\ell \in \mathbb{N}_{>0}$ be divisible by $[\mathbb{F}_{\mathfrak{p}} : \mathbb{F}_q]$. Then $\sigma^{\ell*}(\mathcal{J}) = (a \otimes 1 - 1 \otimes \gamma(a)^{q^{\ell}} : a \in A) = \mathcal{J} \subset A_R$, because the elements $\gamma(a) \in \mathbb{F}_{\mathfrak{p}}$ satisfy $\gamma(a)^{q^{\ell}} = \gamma(a)$. Let $\underline{M} = (M, \tau_M)$ be an *A*-motive over *R*. Then $\sigma^{\ell*}\underline{M} = (\sigma^{\ell*}M, \sigma^{\ell*}\tau_M)$ is also an *A*-motive over *R*,

because $\sigma^{\ell*}\tau_M$ is an isomorphism outside $V(\sigma^{\ell*}\mathcal{J}) = V(\mathcal{J})$. If <u>M</u> is effective, then the A_R -homomorphism

$$\operatorname{Fr}_{q^{\ell},\underline{M}} := \tau_{M}^{\ell} := \tau_{M} \circ \sigma^{*} \tau_{M} \circ \ldots \circ \sigma^{(\ell-1)*} \tau_{M} : \sigma^{\ell*} \underline{M} \longrightarrow \underline{M}$$
(5.8)

satisfies $\tau_M \circ \sigma^* \operatorname{Fr}_{q^{\ell}, \underline{M}} = \operatorname{Fr}_{q^{\ell}, \underline{M}} \circ \sigma^{\ell*} \tau_M$. Moreover, it is injective and its cokernel is a successive extension of the σ^{i*} coker τ_M for $i = 0, \ldots, \ell - 1$, whence a finitely presented *R*-module. Therefore $\operatorname{Fr}_{q^{\ell}, \underline{M}} \in \operatorname{Hom}_R(\sigma^{\ell*}\underline{M}, \underline{M})$ is an isogeny, called the q^{ℓ} -Frobenius isogeny of \underline{M} . It is always inseparable, because the ℓ -th power of τ_M , which equals $\operatorname{Fr}_{q^{\ell}, \underline{M}}$ annihilates the cokernel of $\operatorname{Fr}_{q^{\ell}, \underline{M}}$.

If \underline{M} is not effective, let $n \in \mathbb{N}_{>0}$ be such that $\mathfrak{p}^{n} = (a)$ is principal. Then $(a \otimes 1) \subset \mathcal{J}$ and $(a \otimes 1) \subset \sigma^{i*}\mathcal{J}$ for all *i*. This shows that

$$\operatorname{Fr}_{q^{\ell},\underline{M}} := \tau_{M}^{\ell} := \tau_{M} \circ \sigma^{*} \tau_{M} \circ \ldots \circ \sigma^{(\ell-1)*} \tau_{M} : \sigma^{\ell*} \underline{M} \begin{bmatrix} 1\\ a \end{bmatrix} \xrightarrow{\sim} \underline{M} \begin{bmatrix} 1\\ a \end{bmatrix} \quad (5.9)$$

is a quasi-isogeny in $\operatorname{QHom}_R(\sigma^{\ell*}\underline{M},\underline{M})$ by Theorem 5.12, called the q^{ℓ} -Frobenius quasi-isogeny of \underline{M} .

Finally if R = k is a field contained in $\mathbb{F}_{q^{\ell}}$ then $\sigma^{\ell*}\underline{M} = \underline{M}$ and $\operatorname{Fr}_{q^{\ell},\underline{M}} \in \operatorname{QEnd}_k(\underline{M})$, respectively $\operatorname{Fr}_{q^{\ell},\underline{M}} \in \operatorname{End}_k(\underline{M})$ if \underline{M} is effective. In this case, $A[\pi]$ lies in the center of $\operatorname{End}_k(\underline{M})$, because every $f \in \operatorname{End}_k(\underline{M})$ satisfies $f \circ \tau_M = \tau_M \circ \sigma^* f$ and $\sigma^{\ell*} f = f$. If $k = \mathbb{F}_{q^{\ell}}$, the center equals $A[\pi]$, respectively $Q[\pi]$, and the isogeny classes of A-motives are largely controlled by their Frobenius endomorphism; see [5, Theorems 8.1 and 9.1].

6. Torsion points

Definition 6.1. Let $(0) \neq \mathfrak{a} = (a_1, \dots, a_n) \subset A$ be an ideal and let $\underline{E} = (E, \varphi)$ be an Abelian Anderson *A*-module over *R*. Then

$$\underline{E}[\mathfrak{a}] := \ker \left(\varphi_{a_1, \dots, a_n} := (\varphi_{a_1}, \dots, \varphi_{a_n}) \colon E \longrightarrow E^n \right)$$

is called the \mathfrak{a} -torsion submodule of \underline{E} .

This definition is independent of the generators (a_1, \ldots, a_n) of \mathfrak{a} by the following

Lemma 6.2.

- (a) If $(a_1, \ldots, a_n) \subset (b_1, \ldots, b_m) \subset A$ are ideals then $\ker(\varphi_{b_1, \ldots, b_m}) \hookrightarrow \ker(\varphi_{a_1, \ldots, a_n})$ is a closed immersion;
- (b) If $(a_1, \ldots, a_n) = (b_1, \ldots, b_m)$ then $\ker(\varphi_{b_1, \ldots, b_m}) = \ker(\varphi_{a_1, \ldots, a_n})$;
- (c) For any *R*-algebra *S* we have $\underline{E}[\mathfrak{a}](S) = \{ P \in E(S) : \varphi_a(P) = 0 \text{ for all } a \in \mathfrak{a} \};$
- (d) $\underline{E}[\mathfrak{a}]$ is an A/\mathfrak{a} -module via $A/\mathfrak{a} \to \operatorname{End}_R(\underline{E}[\mathfrak{a}]), \ \overline{b} \mapsto \varphi_b;$
- (e) $\underline{E}[\mathfrak{a}]$ is a finite *R*-group scheme of finite presentation.

Proof. (a) By assumption there are elements $c_{ij} \in A$ with $a_i = \sum_j c_{ij}b_j$. Therefore $\varphi_{a_i} = \sum_j \varphi_{c_{ij}}\varphi_{b_j}$ and the composition of $\varphi_{b_1,\dots,b_m} \colon E \to E^m$ followed by $(\varphi_{c_{ij}})_{i,j} \colon E^m \to E^n$ equals $\varphi_{a_1,\dots,a_n} \colon E \to E^n$. This proves (a) and clearly (a) implies (b).

To prove (c) let P: Spec $S \to \underline{E}$ be an S-valued point in $\underline{E}(S)$ with $0 = \varphi_a(P) := \varphi_a \circ P$ for all $a \in \mathfrak{a}$. If $\mathfrak{a} = (a_1, \ldots, a_n)$ then in particular $\varphi_{a_i} \circ P = 0$ for $i = 1, \ldots, n$. Therefore P factors through ker $\varphi_{a_1, \ldots, a_n} = \underline{E}[\mathfrak{a}]$.

Conversely let P: Spec $S \to \underline{E}[\mathfrak{a}]$ be an S-valued point in $\underline{E}[\mathfrak{a}](S)$ and let $a \in \mathfrak{a}$. By (b) we may write $\mathfrak{a} = (a_1, \ldots, a_n)$ with $a_1 = a$ to have $\underline{E}[\mathfrak{a}] = \ker \varphi_{a_1, \ldots, a_n}$. Therefore $\varphi_a(P) := \varphi_a \circ P = 0$. This proves (c).

(d) The relation ab = ba in A implies $\varphi_a \circ \varphi_b = \varphi_b \circ \varphi_a$. Using that the closed subscheme $\underline{E}[\mathfrak{a}]$ is uniquely determined by (c) it follows that the ring homomorphism $A \to \operatorname{End}_R(\underline{E}[\mathfrak{a}]), b \mapsto \varphi_b|_{\underline{E}[\mathfrak{a}]}$ is well defined. If $b \in \mathfrak{a}$ then clearly $\varphi_b|_{\underline{E}[\mathfrak{a}]} = 0$ and so this ring homomorphism factors through A/\mathfrak{a} .

(e) If $\mathfrak{a} = (a_1, \dots, a_n)$ then $\underline{E}[\mathfrak{a}] = \ker \varphi_{a_1,\dots,a_n}$ is of finite presentation, because φ_{a_1,\dots,a_n} is a morphism of finite presentation between the schemes *E* and E^n of finite presentation over *R* by [14, IV₁, Proposition 1.6.2]. The finiteness of $\underline{E}[\mathfrak{a}]$ follows for $\mathfrak{a} = (a)$ from Corollaries 5.11 and 5.3, and for general \mathfrak{a} from (a) by considering some $(a) \subset \mathfrak{a}$.

The following lemma is a version of the Chinese remainder theorem in our context.

Lemma 6.3. Let $(0) \neq \mathfrak{a}, \mathfrak{b} \subset A$ be two ideals with $\mathfrak{a} + \mathfrak{b} = A$.

- (a) For an Abelian Anderson A-module \underline{E} there is a canonical isomorphism $\underline{E}[\mathfrak{a}] \times_R \underline{E}[\mathfrak{b}] \xrightarrow{\sim} \underline{E}[\mathfrak{a}\mathfrak{b}];$
- (b) For an effective A-motive \underline{M} there is a canonical isomorphism $\underline{M}/\mathfrak{ab}\underline{M} \xrightarrow{\sim} \underline{M}/\mathfrak{a}\underline{M} \oplus \underline{M}/\mathfrak{b}\underline{M}$ of finite \mathbb{F}_q -shtukas.

Proof. By the Chinese remainder theorem there is an isomorphism $A/\mathfrak{a}\mathfrak{b} \xrightarrow{\sim} A/\mathfrak{a} \times A/\mathfrak{b}$ whose inverse is given by $(x_{\mathfrak{a}}, x_{\mathfrak{b}}) \mapsto bx_{\mathfrak{a}} + ax_{\mathfrak{b}}$ for certain elements $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$ which satisfy $a \equiv 1 \mod \mathfrak{b}$ and $b \equiv 1 \mod \mathfrak{a}$, and hence $a + b \equiv 1 \mod \mathfrak{a}\mathfrak{b}$.

(b) follows directly from this, because $\underline{M}/\mathfrak{a}\underline{M} = \underline{M} \otimes_A A/\mathfrak{a}$.

(a) By Lemma 6.2(a) the addition Δ on $\underline{E}[\mathfrak{a}\mathfrak{b}]$ defines a canonical morphism $\underline{E}[\mathfrak{a}] \times_R \underline{E}[\mathfrak{b}] \hookrightarrow \underline{E}[\mathfrak{a}\mathfrak{b}] \times_R \underline{E}[\mathfrak{a}\mathfrak{b}] \xrightarrow{\Delta} \underline{E}[\mathfrak{a}\mathfrak{b}]$. Its inverse is described as follows. The elements $a, b \in A$ from above satisfy $a\mathfrak{b} \subset \mathfrak{a}\mathfrak{b}$ and $b\mathfrak{a} \subset \mathfrak{a}\mathfrak{b}$. By Lemma 6.2(c) the endomorphism φ_a of $\underline{E}[\mathfrak{a}\mathfrak{b}]$ factors through $\underline{E}[\mathfrak{b}]$ and φ_b factors through $\underline{E}[\mathfrak{a}]$. So the inverse is the morphism $(\varphi_b, \varphi_a) : \underline{E}[\mathfrak{a}\mathfrak{b}] \to \underline{E}[\mathfrak{a}] \times_R \underline{E}[\mathfrak{b}]$. Indeed, for $x \in \underline{E}[\mathfrak{a}\mathfrak{b}]$, we compute $\varphi_b(x) + \varphi_a(x) = \varphi_{a+b}(x) = \varphi_1(x) = x$, because $a + b = 1 \mod \mathfrak{a}b$. On the other hand, for $x \in E[\mathfrak{a}]$ and $y \in E[\mathfrak{b}]$, we compute

 $b \equiv 1 \mod \mathfrak{ab}$. On the other hand, for $x \in \underline{E}[\mathfrak{a}]$ and $y \in \underline{E}[\mathfrak{b}]$, we compute $\varphi_b(x + y) = \varphi_b(x) = x$ and $\varphi_a(x + y) = \varphi_a(y) = y$, because $b \equiv 1 \mod \mathfrak{a}$ and $a \equiv 1 \mod \mathfrak{b}$.

Theorem 6.4. Let \underline{E} be an Abelian Anderson A-module over R and let $(0) \neq \mathfrak{a} \subset A$ be an ideal.

- (a) Then $\underline{E}[\mathfrak{a}]$ is a finite locally free group scheme over Spec R and a strict \mathbb{F}_{q} -module scheme;
- (b) $\underline{E}[\mathfrak{a}]$ is étale over R if and only if $R \cdot \gamma(\mathfrak{a}) = R$, that is if and only if $\mathfrak{a} + \mathcal{J} = A_R$;
- (c) If $\underline{M} = \underline{M}(\underline{E})$ is the associated effective A-motive then there are canonical A-equivariant isomorphisms

$$\underline{M}/\mathfrak{a}\underline{M} \xrightarrow{\sim} \underline{M}_q(\underline{E}[\mathfrak{a}]) \qquad of finite \mathbb{F}_q\text{-shtukas and}$$
$$\operatorname{Dr}_q(\underline{M}/\mathfrak{a}\underline{M}) \xrightarrow{\sim} \underline{E}[\mathfrak{a}] \qquad of finite locally free R-group schemes.$$

Proof. Since *A* is a Dedekind domain, $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ for prime ideals $\mathfrak{p}_i \in A$ and positive integers e_i . By Lemma 6.3 and the exactness of the functors Dr_q and \underline{M}_q , see Theorem 4.7(a), it suffices to treat the case $\mathfrak{a} = \mathfrak{p}^e$. Let $A_{\mathfrak{p}}$ be the localization of *A* at \mathfrak{p} . Since $A/\mathfrak{p}^e = A_{\mathfrak{p}}/\mathfrak{p}^e A_{\mathfrak{p}}$ there is an element $z \in A$ which is congruent modulo \mathfrak{a} to a uniformizer of $A_{\mathfrak{p}}$. Moreover, since $\underline{E}[\mathfrak{p}^e]$ is an $A_{\mathfrak{p}}/\mathfrak{p}^e A_{\mathfrak{p}}$ -module, every φ_s with $s \in A \setminus \mathfrak{p}$ is an automorphism of $\underline{E}[\mathfrak{p}^e]$. Let $0 \leq n \leq e$. We denote the inclusion $\underline{E}[\mathfrak{p}^n] \hookrightarrow \underline{E}[\mathfrak{p}^e]$ of Lemma 6.2(a) by $i_{n,e}$. By Lemma 6.2(c) the endomorphism φ_z^{e-n} of $\underline{E}[\mathfrak{p}^e]$ has kernel $\underline{E}[\mathfrak{p}^{e-n}]$ and factors through the closed subscheme $\underline{E}[\mathfrak{p}^n]$ via a morphism $j_{e,n}: \underline{E}[\mathfrak{p}^e] \to \underline{E}[\mathfrak{p}^n]$ with $\varphi_z^{e-n} = i_{n,e} \circ j_{e,n}$. We claim that $j_{e,n}$ is an epimorphism in the category of sheaves on the big *fpqc*-site over Spec R, and we therefore have an exact sequence

$$0 \longrightarrow \underline{E}[\mathfrak{p}^{e-n}] \xrightarrow{i_{e-n,e}} \underline{E}[\mathfrak{p}^{e}] \xrightarrow{j_{e,n}} \underline{E}[\mathfrak{p}^{n}] \longrightarrow 0.$$
(6.1)

To prove the claim let *S* be an *R*-algebra and let *P*: Spec $S \to \underline{E}[\mathfrak{p}^n]$ be an *S*-valued point in $\underline{E}[\mathfrak{p}^n](S)$. Since $\varphi_{z^{e-n}}: \underline{E} \to \underline{E}$ is an isogeny by Corollary 5.11, hence an epimorphism of *fpqc*-sheaves by Proposition 5.2(e), there exists a faithfully flat *S*-algebra *S'* and a point $P' \in E(S')$ with $\varphi_{z^{e-n}}(P') = P$. We have to show that $P' \in \underline{E}[\mathfrak{p}^e](S')$. For this purpose let $a \in \mathfrak{p}^e$. Then $\frac{a}{1} = \frac{c}{s}(\frac{z}{1})^e$ in $A_{\mathfrak{p}}$ for $c \in A$, $s \in A \setminus \mathfrak{p}$. We compute

$$\varphi_a(P') = \varphi_s^{-1} \circ \varphi_c \circ \varphi_{z^n} \circ \varphi_{z^{e-n}}(P') = \varphi_s^{-1} \circ \varphi_c \circ \varphi_{z^n}(P) = 0,$$

because $z^n \in p^n$. This proves our claim and establishes the exactness of (6.1).

We now use that A is a Dedekind domain with finite ideal class group. This means that for the prime ideal $\mathfrak{p} \subset A$ there are (arbitrarily large) integers e such that $\mathfrak{p}^e = (a)$ is principal. Then $\underline{E}[\mathfrak{p}^e] = \ker \varphi_a$ is a finite locally free *R*-group scheme by Corollaries 5.11 and 5.3. If $0 \le n \le e$ then we show that $\underline{E}[\mathfrak{p}^n]$ is flat over *R*. Namely, using the epimorphism $j_{e,n} : \underline{E}[\mathfrak{p}^e] \to \underline{E}[\mathfrak{p}^n]$ from (6.1) and the flatness of $\underline{E}[\mathfrak{p}^e]$ over *R*, the flatness of $\underline{E}[\mathfrak{p}^n]$ will follow from [14, IV₃, Théorème 11.3.10] once we show that $j_{e,n}$ is flat in each fiber over a point of Spec *R*. This follows

from [11, Section III.3, Corollaire 7.4] and so $\underline{E}[\mathfrak{p}^n]$ is flat over R for all n. By Lemma 6.2(e) this proves that $\underline{E}[\mathfrak{p}^n]$ is a finite locally free group scheme over Spec R. Moreover, it is a strict \mathbb{F}_q -module scheme by [16, Proposition 2], because for $\mathfrak{p}^n = (a_1, \ldots, a_n)$ the morphism $\varphi_{a_1, \ldots, a_n}$ is strict \mathbb{F}_q -linear by Example 4.3. So (a) is established.

If $\mathfrak{a} = \mathfrak{p}^e = (a)$ we know from Theorem 5.9(c) applied to the isogeny φ_a and coker $\underline{M}(\varphi_a) = \underline{M}/a\underline{M}$ that (c) holds. If $0 \le n \le e$ we use the exact sequence (6.1) and the fact that the functors Dr_q and \underline{M}_q are exact by Theorem 4.7. Namely, multiplication with z^{e-n} on $\underline{M}/a\underline{M}$ has cokernel $\underline{M}/\mathfrak{p}^{e-n}\underline{M}$ and image isomorphic to $\underline{M}/\mathfrak{p}^n\underline{M}$. We obtain an exact sequence of finite \mathbb{F}_q -shtukas

$$0 \longrightarrow \underline{M}/\mathfrak{p}^{n}\underline{M} \xrightarrow{\beta_{n,e}} \underline{M}/a\underline{M} \xrightarrow{\alpha_{e,e-n}} \underline{M}/\mathfrak{p}^{e-n}\underline{M} \longrightarrow 0 \quad (6.2)$$

with $\beta_{n,e} \circ \alpha_{e,n} = z^{e-n}$ on $\underline{M}/a\underline{M}$. Applying Dr_q to (6.2), using the exactness of Dr_q , and that $\operatorname{Dr}_q(\underline{M}/a\underline{M}) = \underline{E}[\mathfrak{p}^e]$ and $\operatorname{Dr}_q(z^{e-n}) = \varphi_z^{e-n}$, proves $\operatorname{Dr}_q(\underline{M}/\mathfrak{p}^n\underline{M}) = \underline{E}[\mathfrak{p}^n]$. Conversely applying \underline{M}_q to (6.1), using the exactness of \underline{M}_q , and that $\underline{M}/a\underline{M} = \underline{M}(\underline{E}[\mathfrak{p}^e])$ and $z^{e-n} = \underline{M}_q(\varphi_z^{e-n})$, proves $\underline{M}/\mathfrak{p}^n\underline{M} = \underline{M}_q(\underline{E}[\mathfrak{p}^n])$. This establishes (c) in general.

(b) Suppose that $R \cdot \gamma(\mathfrak{a}) = R$, that is there are elements $a_1, \ldots, a_n \in \mathfrak{a}$ and $b_1, \ldots, b_n \in R$ with $\sum_{i=1}^n b_i \gamma(a_i) = 1$. Then the open subschemes Spec $R[\frac{1}{\gamma(a_i)}] \subset$ Spec *R* cover Spec *R* and it suffices to check that $\underline{E}[\mathfrak{a}]$ is étale over Spec $R[\frac{1}{\gamma(a_i)}]$ for each *i*. But there $\underline{E}[\mathfrak{a}]$ is a closed subscheme of $\underline{E}[a_i]$ which is étale by Corollary 5.11. This shows that $\underline{E}[\mathfrak{a}]$ is unramified over *R*. Since it is flat by (a), it is étale as desired.

Conversely assume that $R \cdot \gamma(\mathfrak{a}) \subset \mathfrak{m}$ for a maximal ideal $\mathfrak{m} \subset R$ and set $k = R/\mathfrak{m}$. Over a field extension k' of k we have $E \times_R k = \mathbb{G}_{a,k'}^d =$ Spec $k'[x_1, \ldots, x_d]$. We will show that $\underline{E}[\mathfrak{a}] \times_R k'$ is not étale over k' by applying the Jacobi criterion [7, Section 2.2, Proposition 7]. Let $\mathfrak{a} = (a_1, \ldots, a_n)$. Then $\underline{E}[\mathfrak{a}] = \operatorname{Spec} k'[x_1, \ldots, x_d]/(\varphi_{a_1}^*(x_1, \ldots, x_d)): j = 1, \ldots, n)$. The Jacobi matrix is

$$\frac{\partial \varphi_{a_j}^*}{\partial x_i} = \begin{pmatrix} \operatorname{Lie} \varphi_{a_1} \\ \vdots \\ \operatorname{Lie} \varphi_{a_n} \end{pmatrix} \in (k')^{nd \times d}.$$

Since $\gamma(a_i) = 0$ in k' each Lie φ_{a_i} is a nilpotent $d \times d$ matrix. Since $\varphi_{a_i} \circ \varphi_{a_i} = \varphi_{a_i a_j} = \varphi_{a_j} \circ \varphi_{a_i}$ we have Lie φ_{a_i} (ker Lie φ_{a_j}) \subset ker Lie φ_{a_j} . Therefore all ker Lie φ_{a_i} have a non-trivial intersection. This shows that the rank of the Jacobi matrix is less than d and $\underline{E}[\mathfrak{a}] \times_R k'$ is not étale over k'.

Proposition 6.5. Let $\underline{M} = (M, \tau_M)$ be an A-motive over R of rank r and let $(0) \neq \mathfrak{a} \subset A$ be an ideal with $R \cdot \gamma(\mathfrak{a}) = R$, that is $\mathfrak{a} + \mathcal{J} = A_R$. Let $\overline{s} = \operatorname{Spec} \Omega$ be a geometric base point of Spec R. Then $\underline{M}/\mathfrak{a}\underline{M}$ is an étale finite \mathbb{F}_q -shtuka whose τ -invariants $(\underline{M}/\mathfrak{a}\underline{M})^{\tau}(\Omega)$, see (4.1), form a free A/\mathfrak{a} -module of rank r which carries a continuous action of the étale fundamental group $\pi_1^{\text{ét}}(\operatorname{Spec} R, \overline{s})$.

Proof. This result and its proof are due to Anderson [2, Lemma 1.8.2] for R a field. Let $G := \operatorname{Res}_{A/\mathfrak{a}|\mathbb{F}_q} \operatorname{GL}_{r,A/\mathfrak{a}}$ be the Weil restriction with $G(R') = \operatorname{GL}_r(A/\mathfrak{a} \otimes_{\mathbb{F}_q} R')$ for all \mathbb{F}_q -algebras R'. Then G is a smooth connected affine group scheme over \mathbb{F}_q by [10, Proposition A.5.9]. Thus by Lang's theorem [21, Corollary on page 557] the Lang map $L: G \to G, g \mapsto g \cdot \sigma^* g^{-1}$ is finite étale and surjective (although not a group homomorphism if r > 1 and $\mathfrak{a} \neq A$).

Since $\mathfrak{a} + \mathcal{J} = A_R$ the isomorphism $\tau_M : \sigma^* M|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})} \xrightarrow{\sim} M|_{\operatorname{Spec} A_R \smallsetminus V(\mathcal{J})}$ of \underline{M} induces an isomorphism $\tau_{M/\mathfrak{a}M} : \sigma^* M/\mathfrak{a}M \xrightarrow{\sim} M/\mathfrak{a}M$ and makes $\underline{M}/\mathfrak{a}\underline{M}$ into a finite \mathbb{F}_q -shtuka, which is étale. After passing to a covering of Spec R by open affine subschemes, we may assume that there is an isomorphism $\alpha : (A/\mathfrak{a})^r \otimes_{\mathbb{F}_q} R \xrightarrow{\sim} M/\mathfrak{a}M$ and then $\alpha^{-1} \circ \tau_{M/\mathfrak{a}M} \circ \sigma^* \alpha$ is an element $b \in G(R)$ and corresponds to a morphism b: Spec $R \to G$. The fiber product Spec $R \underset{b,G,L}{\times} G$ is finite étale over Spec R and of the form Spec R'. The projection onto the second factor G corresponds to an element $c \in G(R')$ with $c \cdot \sigma^* c^{-1} = b$, that is $c = b \cdot \sigma^* c$. This implies $\alpha \circ c = \tau_{M/\mathfrak{a}M} \circ \sigma^* (\alpha \circ c)$, and thus $\alpha \circ c$ is an isomorphical spectrum.

phism $(A/\mathfrak{a})^r \xrightarrow{\sim} (\underline{M}/\mathfrak{a}\underline{M})^\tau(R') := \{m \otimes M/\mathfrak{a}M \otimes_R R' : m = \tau_M(\sigma_M^*m)\}.$ The proposition follows from this.

Theorem 6.6. Let \underline{E} be an Abelian Anderson A-module over R of rank r and let $\underline{M} = \underline{M}(\underline{E})$ be its associated effective A-motive. Let $(0) \neq \mathfrak{a} \subset A$ be an ideal with $R \cdot \gamma(\mathfrak{a}) = R$, that is $\mathfrak{a} + \mathcal{J} = A_R$. Then for every R-algebra R' such that Spec R' is connected, there is an isomorphism of A/\mathfrak{a} -modules

$$\underline{E}[\mathfrak{a}](R') \xrightarrow{\sim} \operatorname{Hom}_{A/\mathfrak{a}}((\underline{M}/\mathfrak{a}\underline{M})^{\tau}(R'), \operatorname{Hom}_{\mathbb{F}_q}(A/\mathfrak{a}, \mathbb{F}_q)),$$
$$P \longmapsto \left[\overline{m} \longmapsto [\overline{a} \mapsto m \circ \varphi_a(P)] \right].$$

In particular, if $\bar{s} = \text{Spec }\Omega$ is a geometric base point of Spec R, then $\underline{E}[\mathfrak{a}](\Omega)$ is a free A/\mathfrak{a} -module of rank r which carries a continuous action of the étale fundamental group $\pi_1^{\text{ét}}(\text{Spec }R, \bar{s})$.

Proof. This result and its proof are due to Anderson [2, Proposition 1.8.3] for R a field. For general R the proof was carried out in [4, Lemma 2.4 and Theorem 8.6]. The last statement follows from Proposition 6.5.

7. Divisible local Anderson modules

In this section we consider the situation where $\mathfrak{p} \subset A$ is a maximal ideal and the elements of $\gamma(\mathfrak{p}) \subset R$ are nilpotent. Let \hat{q} be the cardinality of the residue field $\mathbb{F}_{\mathfrak{p}} = A/\mathfrak{p}$ and $f = [\mathbb{F}_{\mathfrak{p}} : \mathbb{F}_q]$, that is $\hat{q} = q^f$. We fix a uniformizing parameter $z \in \operatorname{Frac}(A)$ at \mathfrak{p} . It defines an isomorphism $\mathbb{F}_{\mathfrak{p}}[[z]] \xrightarrow{\sim} \widehat{A}_{\mathfrak{p}} := \lim_{\leftarrow} A/\mathfrak{p}^n$. We consider the \mathfrak{p} -adic completion $\widehat{A}_{\mathfrak{p},R} := \lim_{\leftarrow} A_R/\mathfrak{p}^n = (\mathbb{F}_{\mathfrak{p}} \otimes_{\mathbb{F}_q} R)[[z]]$. By continuity the

map γ extends to a ring homomorphism $\gamma : \widehat{A}_{\mathfrak{p}} \to R$. We consider the ideals

$$\mathfrak{a}_{i} = \left(a \otimes 1 - 1 \otimes \gamma(a)^{q^{i}} : a \in \mathbb{F}_{\mathfrak{p}}\right) \subset \widehat{A}_{\mathfrak{p},R} \quad \text{for} \quad i \in \mathbb{Z}/f\mathbb{Z}.$$
(7.1)

By the Chinese remainder theorem $\widehat{A}_{\mathfrak{p},R}$ decomposes

$$\widehat{A}_{\mathfrak{p},R} = \left(\mathbb{F}_{\mathfrak{p}} \otimes_{\mathbb{F}_{q}} R\right) \llbracket z \rrbracket = \prod_{i \in \mathbb{Z}/f\mathbb{Z}} \widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_{i},$$

and $\widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_i$ is the subset of $\widehat{A}_{\mathfrak{p},R}$ on which $a \otimes 1$ acts as $1 \otimes \gamma(a)^{q^i}$ for all $a \in \mathbb{F}_{\mathfrak{p}}$. Each factor is canonically isomorphic to R[[z]]. The factors are cyclically permuted by σ because $\sigma(\mathfrak{a}_i) = \mathfrak{a}_{i+1}$. In particular $\widehat{\sigma} := \sigma^f$ stabilizes each factor and acts on it via $\widehat{\sigma}(z) = z$ and $\widehat{\sigma}(b) = b^{\widehat{q}}$ for $b \in R$. The ideal $\mathcal{J} := (a \otimes 1 - 1 \otimes \gamma(a): a \in A) \subset A_R$ decomposes as follows $\mathcal{J} \cdot \widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_0 = (z - \gamma(z))$ and $\mathcal{J} \cdot \widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_i = (1)$ for $i \neq 0$. In particular, $\widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_0$ equals the \mathcal{J} -adic completion of A_R , as $\gamma(z)$ is nilpotent in R; compare also [3, Lemma 5.3]. We also set $R([z]) := R[[z]][\frac{1}{z}]$.

Definition 7.1. A local $\hat{\sigma}$ -shtuka (or local shtuka) of rank r over R is a pair $\underline{\hat{M}} = (\hat{M}, \tau_{\hat{M}})$ consisting of a locally free R[[z]]-module \hat{M} of rank r, and an isomorphism $\tau_{\hat{M}} : \hat{\sigma}^* \hat{M}[\frac{1}{z-\gamma(z)}] \xrightarrow{\sim} \hat{M}[\frac{1}{z-\gamma(z)}]$. If $\tau_{\hat{M}}(\hat{\sigma}^* \hat{M}) \subset \hat{M}$ then $\underline{\hat{M}}$ is called *effective*, and if $\tau_{\hat{M}}(\hat{\sigma}^* \hat{M}) = \hat{M}$ then \hat{M} is called *étale*.

A morphism of local shtukas $f: (\hat{M}, \tau_{\hat{M}}) \to (\hat{M}', \tau_{\hat{M}'})$ over R is a morphism of R[[z]]-modules $f: \hat{M} \to \hat{M}'$ which satisfies $\tau_{\hat{M}'} \circ \hat{\sigma}^* f = f \circ \tau_{\hat{M}}$.

Example 7.2. Let $\underline{M} = (M, \tau_M)$ be an *A*-motive over *R*. We consider the p-adic completion $\underline{M} \otimes_{A_R} \widehat{A}_{\mathfrak{p},R} := (M \otimes_{A_R} \widehat{A}_{\mathfrak{p},R}, \tau_M \otimes 1) = \lim_{\longrightarrow} \underline{M}/\mathfrak{p}^n \underline{M}$. We recall the definition of \mathfrak{a}_0 from (7.1) and define the *local* $\hat{\sigma}$ -shtuka at \mathfrak{p} associated with \underline{M} as $\underline{\hat{M}}_{\mathfrak{p}}(\underline{M}) := (M \otimes_{A_R} \widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_0, (\tau_M \otimes 1)^f)$, where $\tau_M^f := \tau_M \circ \sigma^* \tau_M \circ \ldots \circ \sigma^{(f-1)*} \tau_M$. It equals the \mathcal{J} -adic completion of \underline{M} and therefore is effective if and only if \underline{M} is effective, because of Proposition 2.3. Of course if $\mathbb{F}_{\mathfrak{p}} = \mathbb{F}_q$, and hence $\hat{q} = q$ and $\hat{\sigma} = \sigma$, we have $\widehat{A}_{\mathfrak{p},R} = R[[z]]$ and $\underline{\hat{M}}_{\mathfrak{p}}(\underline{M}) = \underline{M} \otimes_{A_R} \widehat{A}_{\mathfrak{p},R}$.

Also for f > 1 the local shtuka $\underline{\hat{M}}_{\mathfrak{p}}(\underline{M})$ allows to recover $\underline{M} \otimes_{A_R} \widehat{A}_{\mathfrak{p},R}$ via the isomorphism

$$\bigoplus_{i=0}^{f-1} (\tau_M \otimes 1)^i \mod \mathfrak{a}_i \colon \left(\bigoplus_{i=0}^{f-1} \sigma^{i*} (M \otimes_{A_R} \widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_0), \ (\tau_M \otimes 1)^f \oplus \bigoplus_{i \neq 0} \mathrm{id} \right)$$
$$\xrightarrow{\sim} \underline{M} \otimes_{A_R} \widehat{A}_{\mathfrak{p},R},$$

because for $i \neq 0$ the equality $\mathcal{J} \cdot \widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_i = (1)$ implies that $\tau_M \otimes 1$ is an isomorphism modulo \mathfrak{a}_i ; see [18, Example 2.2] or [6, Propositions 8.8 and 8.5] for more details.

Let $\underline{\hat{M}} = (\hat{M}, \tau_{\hat{M}})$ be an effective local shtuka over R. Set $\underline{\hat{M}}_n := (\hat{M}_n, \tau_{\hat{M}_n}) := (\hat{M}/z^n \hat{M}, \tau_{\hat{M}} \mod z^n)$ and $G_n := \operatorname{Dr}_{\hat{q}}(\underline{\hat{M}}_n)$. Then G_n is a finite locally free strict \mathbb{F}_p -module scheme over R and $\underline{\hat{M}}_n = \underline{M}_{\hat{q}}(G_n)$ by Theorem 4.7. Moreover, G_n inherits from $\underline{\hat{M}}_n$ an action of $\mathbb{F}_p[z]/(z^n)$. The canonical epimorphisms $\underline{\hat{M}}_{n+1} \twoheadrightarrow \underline{\hat{M}}_n$ induce closed immersions $i_n : G_n \hookrightarrow G_{n+1}$. The inductive limit $\operatorname{Dr}_{\hat{q}}(\underline{\hat{M}}) := \lim_{n \to \infty} G_n$ in the category of sheaves on the big *fppf*-site of Spec R is a sheaf of $\mathbb{F}_p[[z]]$ -modules that is a p-divisible local Anderson module in the sense of the following

Definition 7.3. A p-divisible local Anderson module over R is a sheaf of $\mathbb{F}_{p}[[z]]$ -modules G on the big *fppf*-site of Spec R such that

- (a) G is p-torsion, that is $G = \lim G[z^n]$, where $G[z^n] := \ker(z^n \colon G \to G)$;
- (b) G is \mathfrak{p} -divisible, that is $z: G \to G$ is an epimorphism;
- (c) For every *n* the F_p-module G[zⁿ] is representable by a finite locally free strict F_p-module scheme over *R* (Definition 4.2);
- (d) There exists an integer $d \in \mathbb{Z}_{\geq 0}$, such that $(z \gamma(z))^d = 0$ on ω_G where $\omega_G := \lim_{k \to \infty} \omega_{G[z^n]}$ and $\omega_{G[z^n]} = e^* \Omega^1_{G[z^n]/\operatorname{Spec} R}$ is the pullback under the zero section e: Spec $R \to G[z^n]$.

Note that the terminology p-torsion and p-divisible in relation to z reflects that $\mathbb{F}_{p}[[z]] = \widehat{A}_{p}$ and $p \cdot \widehat{A}_{p} = z \cdot \mathbb{F}_{p}[[z]]$.

A morphism of p-divisible local Anderson modules over R is a morphism of *fppf*-sheaves of $\mathbb{F}_p[[z]]$ -modules. The category of divisible local Anderson modules is $\mathbb{F}_p[[z]]$ -linear. It is shown in [19, Lemma 8.2] that ω_G is a finite locally free R-module and we define the dimension of G as $\operatorname{rk} \omega_G$. A p-divisible local Anderson module is called étale if $\omega_G = 0$. Since ω_G surjects onto each $\omega_{G[z^n]}$, this is the case if and only if all $G[z^n]$ are étale, see [19, Lemma 3.7].

Conversely with a p-divisible local Anderson module G over R one associates the local shtuka $\underline{M}_{\hat{q}}(G) := \lim_{\leftarrow} \underline{M}_{\hat{q}}(G[z^n])$. Multiplication with z on G gives $M_{\hat{q}}(G)$ the structure of an R[[z]]-module. In [19, Theorem 8.3] we proved the following:

Theorem 7.4.

- (a) The two contravariant functors $\operatorname{Dr}_{\hat{q}}$ and $\underline{M}_{\hat{q}}$ are mutually quasi-inverse antiequivalences between the category of effective local shtukas over R and the category of \mathfrak{p} -divisible local Anderson modules over R;
- (b) Both functors are 𝔽_p[[z]]-linear and map short exact sequences to short exact sequences. They preserve étale objects.

Let $\underline{\hat{M}} = (\hat{M}, \tau_{\hat{M}})$ be an effective local shtuka over *S* and let $G = \text{Dr}_{\hat{q}}(\underline{\hat{M}})$ be its associated \mathfrak{p} -divisible local Anderson module. Then

- (c) G is a formal Lie group if and only if τ_M is topologically nilpotent, that is im(τⁿ_M) ⊂ zM̂ for an integer n;
- (d) The $\tilde{R}[[z]]$ -modules $\omega_{\text{Dr}_{\hat{n}}(\hat{M})}$ and coker $\tau_{\hat{M}}$ are canonically isomorphic.

We now want to show that for an Abelian Anderson A-module \underline{E} over R the local shtuka $\underline{\hat{M}}_{\mathfrak{p}}(\underline{M}(\underline{E}))$ corresponds to the \mathfrak{p} -power torsion of \underline{E} as in the following

Definition 7.5. Let \underline{E} be an Abelian Anderson *A*-module over *R* and assume that the elements of $\gamma(\mathfrak{p}) \subset R$ are nilpotent. We define $\underline{E}[\mathfrak{p}^{\infty}] := \varinjlim \underline{E}[\mathfrak{p}^n]$ and call it the \mathfrak{p} -divisible local Anderson module associated with \underline{E} .

This definition is justified by the following

Theorem 7.6. Let $\underline{E} = (E, \varphi)$ be an Abelian Anderson A-module over R and assume that the elements of $\gamma(\mathfrak{p}) \subset R$ are nilpotent. Then

- (a) All $\underline{E}[\mathfrak{p}^n]$ are finite locally free strict $\mathbb{F}_{\mathfrak{p}}$ -module schemes;
- (b) $\underline{E}[\mathfrak{p}^{\infty}]$ is a \mathfrak{p} -divisible local Anderson module over R;
- (c) If $\underline{M} = \underline{M}(\underline{E})$ is the associated effective A-motive of \underline{E} and $\underline{\hat{M}} := \underline{\hat{M}}_{\mathfrak{p}}(\underline{M}) = \underline{\underline{M}} \otimes_{A_R} \widehat{A}_{\mathfrak{p},R} / \mathfrak{a}_0$ is the local $\hat{\sigma}$ -shtuka at \mathfrak{p} associated with \underline{M} from Example 7.2, then there are canonical isomorphisms

$$\underline{M}_{\hat{q}}(\underline{E}[\mathfrak{p}^{\infty}]) \cong \underline{\hat{M}}_{\mathfrak{p}}(\underline{M}) \quad and \quad \underline{E}[\mathfrak{p}^{\infty}] \cong \mathrm{Dr}_{\hat{q}}(\underline{\hat{M}}_{\mathfrak{p}}(\underline{M})), \\
\underline{M}_{q}(\underline{E}[\mathfrak{p}^{\infty}]) \cong \underline{M} \otimes_{A_{R}} \widehat{A}_{\mathfrak{p},R} \quad and \quad \underline{E}[\mathfrak{p}^{\infty}] \cong \mathrm{Dr}_{q}(\underline{M} \otimes_{A_{R}} \widehat{A}_{\mathfrak{p},R}), \\
\underline{M}_{\hat{q}}(\underline{E}[\mathfrak{p}^{n}]) \cong \underline{\hat{M}}/\mathfrak{p}^{n}\underline{\hat{M}} \quad and \quad \underline{E}[\mathfrak{p}^{n}] \cong \mathrm{Dr}_{\hat{q}}(\underline{\hat{M}}/\mathfrak{p}^{n}\underline{\hat{M}}).$$

Proof. (a) By Lemma 4.4 we may test strictness after applying a faithfully flat base change to R and assume that $E = \mathbb{G}_{a,R}^d = \operatorname{Spec} R[x_1, \ldots, x_d] = \operatorname{Spec} R[\underline{X}]$ and $\underline{M}(\underline{E}) = R\{\tau\}^{1\times d}$. We set $B := \Gamma(\underline{E}[\mathfrak{p}^n], \mathcal{O}_{\underline{E}[\mathfrak{p}^n]})$ and $I = \ker(R[\underline{X}] \to B)$ and $I_0 = (x_1, \ldots, x_d)$, and consider the deformation $B^{\flat} = R[\underline{X}]/I \cdot I_0$. The endomorphisms φ_a of E for $a \in A$ satisfy $\varphi_a^*(I) \subset I$ and $\varphi_a^*(I_0) \subset I_0$. This defines a lift $A \to \operatorname{End}_{R-\operatorname{algebras}}(B^{\flat})$, $a \mapsto [a]^{\flat} := \varphi_a^*$ compatible with addition and multiplication as in Definition 4.2.

Let $N \ge \dim \underline{E}$ be a positive integer which is a power of \hat{q} such that $\gamma(a)^N = 0$ for every $a \in \mathfrak{p}^n$. Choose $\lambda \in \mathbb{F}_p$ with $\mathbb{F}_p = \mathbb{F}_q(\lambda)$ and let g be the minimal polynomial of λ over \mathbb{F}_q . Choose an element $t \in A$ with $t \mod \mathfrak{p}^n = \lambda$ in $A/\mathfrak{p}^n = \mathbb{F}_p[[z]]/(z^n)$. Then $g(t) \in \mathfrak{p}^n$, and hence $\gamma(g(t))^N = 0$. On Lie E the equation $g(t^N) = g(t)^N$ implies $\operatorname{Lie} \varphi_{g(t^N)} = \operatorname{Lie} \varphi_{g(t)}^N - \gamma(g(t))^N = (\operatorname{Lie} \varphi_{g(t)} - \gamma(g(t)))^N = 0$. So $\varphi_{g(t^N)} \in \operatorname{End}_{R\operatorname{-groups},\mathbb{F}_q\operatorname{-lin}}(\mathbb{G}_{a,R}^d) = R\{\tau\}^{d\times d}$ as a polynomial in τ has no constant term. This means that $\varphi_{g(t^N)}^*(x_i) \in I_0^q$. Moreover, since $g(t) \in \mathfrak{p}^n$ we have $\varphi_{g(t)} = 0$ on $\underline{E}[\mathfrak{p}^n]$ and hence $\varphi_{g(t)}^*(x_i) \in I$. Therefore $\varphi_{g(t^{\widehat{q}N)}}^*(I_0) = \varphi_{g(t)}^* \circ \varphi_{g(t^{\widehat{q}N-N-1)}}^* \circ \varphi_{g(t^N)}^*(I_0) \subset \varphi_{g(t)}^*(I_0^q) \subset \varphi_{g(t)}^*(I_0)^2 \subset I \cdot I_0$. In other words $[g(t^{\widehat{q}N})]^\flat = [0]^\flat$ on B^\flat . This shows that the map $\mathbb{F}_p = \mathbb{F}_q[t^{\widehat{q}N}]/(g(t^{\widehat{q}N})) \to \operatorname{End}_{R\operatorname{-algebras}}(B^\flat)$ lifts the action of $\mathbb{F}_p \subset \mathbb{F}_p[[z]]/(z^n)$ on $\underline{E}[\mathfrak{p}^n]$ and is compatible with addition and multiplication.

We compute the induced action on the co-Lie complex $\ell_{\mathcal{G}/\operatorname{Spec} R}^{\bullet}$ of $\mathcal{G} = (\operatorname{Spec} B, \operatorname{Spec} B^{\flat})$. In degree 0 we have $\ell_{\mathcal{G}/\operatorname{Spec} R}^{0} = \Omega_{R[\underline{X}]/R}^{1} \otimes_{R[\underline{X}], e_{R[\underline{X}]}} R =$

 $\bigoplus_{i=1}^{d} R \cdot x_i = I_0 / I_0^2. \text{ From } t - \lambda \in \mathfrak{p}^n \text{ we obtain } \gamma(t^{\hat{q}N}) - \gamma(\lambda) = \gamma(t-\lambda)^{\hat{q}N} = 0$ in *R*. On Lie *E* this implies Lie $\varphi_{t\hat{q}N} - \gamma(\lambda) = (\text{Lie } \varphi_t - \gamma(t))^{\hat{q}N} = 0$ and therefore $\varphi_{t\hat{q}N} - \gamma(\lambda) \in \text{End}_{R\text{-groups}, \mathbb{F}_q\text{-lin}}(\mathbb{G}_{a,R}^d) = R\{\tau\}^{d \times d}$ as a polynomial in τ has no constant term. This implies that $(\varphi_{t\hat{q}N}^* - \gamma(\lambda))(I_0) \subset I_0^q \subset I_0^2$. We conclude that $t^{\hat{q}N}$ acts as the scalar $\gamma(\lambda)$ on I_0/I_0^2 .

To compute the action of $t^{\hat{q}N}$ on $\ell_{\mathcal{G}/\text{Spec }R}^{-1}$ we use that by Theorem 4.7(d), $\ell_{\mathcal{G}/\text{Spec }R}^{\bullet}$ is homotopically equivalent to the complex $0 \rightarrow \sigma^* M/\mathfrak{p}^n \sigma^* M \xrightarrow{\tau_M} M/\mathfrak{p}^n M \rightarrow 0$ where $\underline{M}_q(\underline{E}[\mathfrak{p}^n]) = \underline{M}/\mathfrak{p}^n \underline{M}$ and $\underline{M} = \underline{M}(\underline{E}) = (M, \tau_M)$; see Theorem 6.4(c). Since $t^{\hat{q}N} - \gamma(\lambda) = (t \otimes 1 - 1 \otimes \gamma(t))^{\hat{q}N} = 0$ on coker τ_M there is an A_R -homomorphism $h: M \rightarrow \sigma^* M$ with $h \tau_M = (t^{\hat{q}N} - \gamma(\lambda)) \cdot \mathrm{id}_{\sigma^* M}$ and $\tau_M h = (t^{\hat{q}N} - \gamma(\lambda)) \cdot \mathrm{id}_M$. This means that $t^{\hat{q}N}$ is homotopic to the scalar multiplication with $\gamma(\lambda)$ on $0 \rightarrow \sigma^* M/\mathfrak{p}^n \sigma^* M \xrightarrow{\tau_M} M/\mathfrak{p}^n M \rightarrow 0$, and therefore also on $\ell_{\mathcal{G}/\text{Spec }R}^{\bullet}$. Let $h': I_0/I_0^2 \rightarrow \ell_{\mathcal{G}/\text{Spec }R}^{-1} =: \ell^{-1}$ be this homotopy, that is $(t^{\hat{q}N} - \gamma(\lambda))|_{\ell^{-1}} = h'd$ and $(t^{\hat{q}N} - \gamma(\lambda))|_{I_0/I_0^2} = dh'$. But we must show that $t^{\hat{q}N}$ and $\gamma(\lambda)$ are not only homotopic on $\ell_{\mathcal{G}/\text{Spec }R}^{\bullet}$, but equal.

Since $0 = g(t^{\hat{q}N}) = \prod_{i \in \mathbb{Z}/f\mathbb{Z}} (t^{\hat{q}N} - \gamma(\lambda)^{q^i})$ on $\ell_{\mathcal{G}/\text{Spec }R}^{\bullet}$, we can decompose $\ell^{-1} = \prod_{i \in \mathbb{Z}/f\mathbb{Z}} (\ell^{-1})_i$ where $(\ell^{-1})_i := \ker(t^{\hat{q}N} - \gamma(\lambda)^{q^i}: \ell^{-1} \to \ell^{-1})$. Since the differential d of $\ell_{\mathcal{G}/\text{Spec }R}^{\bullet}$ is an R-homomorphism and equivariant for the action of $t^{\hat{q}N}$, it maps $(\ell^{-1})_i$ into $\ker(t^{\hat{q}N} - \gamma(\lambda)^{q^i}: I_0/I_0^2 \to I_0/I_0^2)$ which is trivial for $i \neq 0$. This shows that $0 = h'd = t^{\hat{q}N} - \gamma(\lambda) = \gamma(\lambda^{q^i} - \lambda)$ on $(\ell^{-1})_i$, whence $(\ell^{-1})_i = (0)$ for $i \neq 0$, because $\gamma(\lambda^{q^i} - \lambda) \in R^{\times}$. We conclude that $\ell^{-1} = (\ell^{-1})_0$ and $t^{\hat{q}N}$ acts as the scalar $\gamma(\lambda)$ on ℓ^{-1} . This proves that $\underline{E}[\mathfrak{p}^n]$ is a finite locally free strict \mathbb{F}_p -module scheme over R.

(b) By construction ker $(z^n : \underline{E}[\mathfrak{p}^{\infty}]) \to \underline{E}[\mathfrak{p}^{\infty}]) = \underline{E}[\mathfrak{p}^n]$ and $\underline{E}[\mathfrak{p}^{\infty}]$ is \mathfrak{p} torsion. Using the epimorphism $j_{n+1,n} : \underline{E}[\mathfrak{p}^{n+1}] \to \underline{E}[\mathfrak{p}^n]$ from (6.1) with $i_{n,n+1} \circ j_{n+1,n} = \varphi_z$ we see that $\underline{E}[\mathfrak{p}^{\infty}]$ is \mathfrak{p} -divisible. In (a) we saw that $\underline{E}[\mathfrak{p}^n]$ is representable by a finite locally free strict $\mathbb{F}_{\mathfrak{p}}$ -module scheme over R. It remains to verify
condition (d) of Definition 7.3. Since $\underline{E}[\mathfrak{p}^n] \hookrightarrow \underline{E}$ is a closed immersion, $\omega_{\underline{E}[\mathfrak{p}^n]}$ is a
quotient of $\omega_{\underline{E}} = \operatorname{Hom}_R(\operatorname{Lie} \underline{E}, R)$. Since $A/\mathfrak{p}^n = \mathbb{F}_{\mathfrak{p}}[[z]]/(z^n)$, there is an element $a \in A$ with $z - a \in \mathfrak{p}^n$, whence $\varphi_a = \varphi_z$ on $\underline{E}[\mathfrak{p}^n]$. Therefore $(\operatorname{Lie} \varphi_a - \gamma(a))^d = 0$ on $\operatorname{Lie} \underline{E}$ implies $(\varphi_z - \gamma(z))^N = (\varphi_a - \gamma(a))^N + \gamma(a - z)^N = 0$ on $\omega_{\underline{E}[\mathfrak{p}^n]}$.
It follows that $(\varphi_z - \gamma(z))^N = 0$ on $\omega_{\underline{E}[\mathfrak{p}^\infty]} := \lim_{\leftarrow} \omega_{\underline{E}[\mathfrak{p}^n]}$, and that $\underline{E}[\mathfrak{p}^\infty]$ is a \mathfrak{p} -divisible local Anderson module over R.

(c) We have $\underline{M}_q(\underline{E}[\mathfrak{p}^n]) = \operatorname{Hom}_{R\operatorname{-groups},\mathbb{F}_q\operatorname{-lin}(\underline{E}[\mathfrak{p}^n], \mathbb{G}_{a,R}) = \underline{M}/\mathfrak{p}^n\underline{M}$ and $\underline{E}[\mathfrak{p}^n] = \operatorname{Dr}_q(\underline{M}/\mathfrak{p}^n\underline{M})$ by Theorem 6.4(c). This implies

$$\underline{M}_q(\underline{E}[\mathfrak{p}^{\infty}]) = \lim_{\longleftarrow} \underline{M}_q(\underline{E}[\mathfrak{p}^n]) = \lim_{\longleftarrow} \underline{M}/\mathfrak{p}^n \underline{M} = \underline{M} \otimes_{A_R} \widehat{A}_{\mathfrak{p},R}$$

and $\underline{E}[\mathfrak{p}^{\infty}] = \lim_{\longrightarrow} \operatorname{Dr}_q(\underline{M}/\mathfrak{p}^n\underline{M}) = \operatorname{Dr}_q(\lim_{\longleftarrow} \underline{M}/\mathfrak{p}^n\underline{M}) = \operatorname{Dr}_q(\underline{M}\otimes_{A_R}\widehat{A}_{\mathfrak{p},R}).$

On $\underline{E}[\mathfrak{p}^n]$ every $\lambda \in \mathbb{F}_{\mathfrak{p}}$ acts as φ_{λ} and on $\mathbb{G}_{a,R}$ as $\gamma(\lambda)$. Therefore

$$\underline{M}_{\hat{q}}(\underline{E}[\mathfrak{p}^{n}]) = \operatorname{Hom}_{R-\operatorname{groups},\mathbb{F}_{\mathfrak{p}}-\operatorname{lin}}(\underline{E}[\mathfrak{p}^{n}],\mathbb{G}_{a,R})$$
$$= \underline{M}_{q}(\underline{E}[\mathfrak{p}^{n}])/\mathfrak{a}_{0}\underline{M}_{q}(\underline{E}[\mathfrak{p}^{n}])$$
$$= \underline{M}/\mathfrak{p}^{n}\underline{M}\otimes_{\widehat{A}_{\mathfrak{p},R}}\widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_{0}$$
$$= \underline{\hat{M}}/\mathfrak{p}^{n}\underline{\hat{M}},$$

where the second equality is due to the fact that $\widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_0$ is the summand of $\widehat{A}_{\mathfrak{p},R}$ on which $\lambda \otimes 1$ acts as $1 \otimes \gamma(\lambda)$ for all $\lambda \in \mathbb{F}_{\mathfrak{p}}$. This implies

$$\underline{M}_{\hat{q}}(\underline{E}[\mathfrak{p}^{\infty}]) = \lim_{\longleftarrow} \underline{M}/\mathfrak{p}^{n} \underline{M} \otimes_{\widehat{A}_{\mathfrak{p},R}} \widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_{0} = \underline{M} \otimes_{A_{R}} \widehat{A}_{\mathfrak{p},R}/\mathfrak{a}_{0} = \underline{\hat{M}}_{\mathfrak{p}}(\underline{M}) = \underline{\hat{M}}.$$

On the other hand, since $\underline{E}[\mathfrak{p}^n]$ is a finite locally free strict $\mathbb{F}_{\mathfrak{p}}$ -module by (a), $\underline{E}[\mathfrak{p}^n] = \operatorname{Dr}_{\hat{q}}(\underline{M}_{\hat{q}}(\underline{E}[\mathfrak{p}^n])) = \operatorname{Dr}_{\hat{q}}(\underline{\hat{M}}/\mathfrak{p}^n\underline{\hat{M}})$ by Theorem 4.7(e), and so $\underline{E}[\mathfrak{p}^\infty] = \lim_{n \to \infty} \operatorname{Dr}_{\hat{q}}(\underline{\hat{M}}/\mathfrak{p}^n\underline{\hat{M}}) = \operatorname{Dr}_{\hat{q}}(\underline{\hat{M}}_{\mathfrak{p}}(\underline{M})).$

References

- V. ABRASHKIN, Galois modules arising from Faltings's strict modules, Compos. Math. 142 (2006), 867–888.
- [2] G. ANDERSON, *t-Motives*, Duke Math. J. 53 (1986), 457–502.
- [3] E. ARASTEH RAD and U. HARTL Local ℙ-shtukas and their relation to global 𝔅-shtukas, Müenster J. Math 7 (2014), 623–670.
- [4] G. BÖCKLE and U. HARTL, Uniformizable families of t-motives, Trans. Amer. Math. Soc. 359 (2007), 3933–3972.
- [5] M. BORNHOFEN and U. HARTL, Pure Anderson motives over finite fields, J. Number Theory 129 (2009), 247–283.
- [6] M. BORNHOFEN and U. HARTL, Pure Anderson motives and Abelian τ-sheaves, Math. Z. 268 (2011), 67–100.
- [7] S. BOSCH, W. LÜTKEBOHMERT and M. RAYNAUD, "Néron Models", Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Vol. 21, Springer-Verlag, Berlin, 1990.
- [8] N. BOURBAKI, "Élements de Mathématique, Algèbre", Chapitres 1 à 3, Hermann, Paris, 1970.
- [9] L. CARLITZ, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), 137–168.
- [10] B. CONRAD, O. GABBER and G. PRASAD, "Pseudo-reductive Groups", New Mathematical Monographs, Vol. 17, Cambridge University Press, Cambridge, 2010.
- [11] M. DEMAZURE and P. GABRIEL, "Groupes Algébriques", Tome I, "Géométrie Algébrique, Généralités, Groupes Commutatifs", North-Holland Publishing Co., Amsterdam, 1970.
- [12] V. G. DRINFELD, *Elliptic modules*, Mat. Sb. 23 (1974), 561–592.
- [13] V. G. DRINFELD, Moduli varieties of F-sheaves, Funct. Anal. Appl. 21 (1987), 107–122.
- [14] A. GROTHENDIECK, "Élements de Géométrie Algébrique", Publ. Math. IHES Vol. 4, 8, 11, 17, 20, 24, 28, 32, Bures-Sur-Yvette, 1960–1967; see also Grundlehren Vol. 166, Springer-Verlag, Berlin etc. 1971.

- [15] D. EISENBUD, "Commutative Algebra with a View Toward Algebraic Geometry", GTM Vol. 150, Springer-Verlag, Berlin etc., 1995.
- [16] G. FALTINGS, Group schemes with strict O-action, Mosc. Math. J. 2 (2002), 249–279.
- [17] U. GÖRTZ and T. WEDHORN, "Algebraic Geometry, Part I: schemes", Vieweg + Teubner, Wiesbaden, 2010.
- [18] U. HARTL and W. KIM, Local shtukas, Hodge-Pink structures and Galois representations, In: "Proceedings of the Conference on 't-motives: Hodge structures, transcendence and other motivic aspects", G. Böckle, D. Goss, U. Hartl, M. Papanikolas (eds.), BIRS, Banff, Canada 2009, EMS 2016.
- [19] U. HARTL and R. K. SINGH, Local Shtukas and divisible local Anderson modules", Can. J. Math. (2019), DOI: https://doi.org/10.4153/CJM-2018-016-2.
- [20] L. ILLUSIE, "Complexe Cotangent et Déformations II", Lecture Notes in Mathematics Vol. 283, Springer-Verlag, Berlin-New York, 1972.
- [21] S. LANG, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555–563.
- [22] G. LAUMON, "Cohomology of Drinfeld Modular Varieties I", Cambridge Studies in Advanced Mathematics Vol. 41, Cambridge University Press, Cambridge, 1996.
- [23] É. LUCAS, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184–196, 197–240, 289–321.
- [24] H. MATZAT, Introduction to Drinfeld modules, In: "Drinfeld Modules, Modular Schemes and Applications" (Alden-Biesen, 1996), World Sci. Publishing, River Edge, NJ, 1997, 3– 16.
- [25] J. MILNE, "Étale Cohomology", Princeton Mathematical Series 33, Princeton University Press, Princeton, N.J., 1980.
- [26] M. PAPANIKOLAS, Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math. 171 (2008), 123–174.
- [27] M. SAÏDI, Moduli schemes of Drinfeld modules, In: "Drinfeld Modules, Modular Schemes and Applications", E.-U. Gekeler et al. (eds.), World Scientific, 1997, 17–31.
- [28] J.-P. SERRE, "Algebraic Groups and Class Fields", GTM Vol. 117, Springer-Verlag, Berlin etc., 1988.
- [29] M. DEMAZURE and A. GROTHENDIECK, "SGA 3: Schémas en Groupes I, II, III", LNM Vol. 151, 152, 153, Springer-Verlag, Berlin, etc., 1970.
- [30] L. TAELMAN, Artin t-motifs, J. Number Theory 129 (2009), 142–157.
- [31] Y. TAGUCHI, A duality for finite t-modules, J. Math. Sci. Univ. Tokyo 2 (1995), 563–588.

Universität Münster Mathematisches Institut Einsteinstr. 62 D – 48149 Münster, Germany urs.hartl@uni.muenster.de