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A general version of the Hartogs extension
theorem for separately holomorphic mappings

between complex analytic spaces

VIÊT-ANH NGUYÊN

Abstract. Using recent development in Poletsky theory of discs, we prove the
following result: Let X, Y be two complex manifolds, let Z be a complex ana-
lytic space which possesses the Hartogs extension property, let A (resp. B) be
a non locally pluripolar subset of X (resp. Y ). We show that every separately
holomorphic mapping f : W := (A × Y ) ∪ (X × B) −→ Z extends to a holo-
morphic mapping f̂ on Ŵ := {(z, w) ∈ X × Y : ω̃(z, A, X) + ω̃(w, B, Y ) < 1}
such that f̂ = f on W ∩ Ŵ , where ω̃(·, A, X) (resp. ω̃(·, B, Y )) is the plurisub-
harmonic measure of A (resp. B) relative to X (resp. Y ). Generalizations of this
result for an N -fold cross are also given.

Mathematics Subject Classification (2000): 32D15 (primary); 32D10 (secondary).

1. Introduction

The main purpose of this article is to give a general version of the well-known
Hartogs extension theorem for separately holomorphic functions (see [8]). This
theorem has been a source of inspiration for numerous research works in Complex
Analysis for many years. It has developed into the beautiful and very active theory
of separately analytic mappings. Nowadays, one finds a close connection between
this theory and many other fields in Mathematics such as (Pluri)potential Theory,
Partial Differential Equations and Theoretical Physics, etc. The recent survey arti-
cles by Nguyên Thanh Vân [18] and Peter Pflug [25] not only retrace the historic
development, but also give some insights into the new research trends in this sub-
ject. Here we recall briefly the main steps in developing the theory of separately
holomorphic mappings.

Very longtime after the ground-breaking work of Hartogs, the subject was re-
born, around the years 50–60s, thanks to the Japanese school (see [35], [38] and the
references therein). However, an important impetus was only made by Siciak in the
works [36, 37], where he established some significant generalizations of the Hartogs
extension theorem. According to Siciak’s general formulation of this theorem, the
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problem is to determine the envelope of holomorphy for separately holomorphic
functions defined on some cross sets. The theorems obtained under this formulation
are often called cross theorems. Using the so-called relative extremal function,
Siciak completed the problem for the case where the cross set consists of a product
of domains in C.

The next deep steps were initiated by Zahariuta in 1976 (see [39]) when he
started to use the method of common bases of Hilbert spaces. This original ap-
proach permits him to obtain new cross theorems for some cases where the cross
consists of a product of Stein manifolds. As a consequence, he was able to general-
ize the result of Siciak in higher dimensions.

Later, Nguyên Thanh Vân and Zeriahi (see [22, 23, 24]) developed the method
of doubly orthogonal bases of Bergman type in order to generalize the result of Za-
hariuta. This is a significantly simpler and more constructive version of Zahariuta’s
original method. Nguyên Thanh Vân and Zeriahi have recently achieved an elegant
improvement of their method (see [19], [40]).

Using the method of Siciak, Shiffman (see [34]) was the first to generalize
some results of Siciak to separately holomorphic mappings with values in a complex
analytic space.

The most general result to date is contained in a recent work by Alehyane and
Zeriahi (see Theorem 2.2.4 in [3]). Namely, they are able to define the envelope of
holomorphy of any cross of a product of subdomains of Stein manifolds in terms of
the plurisubharmonic measure.

In this work we generalize, in some sense, the result of Alehyane–Zeriahi to
any cross of a product of arbitrary complex manifolds. The main ingredient in our
approach is Poletsky theory of discs developed in [26, 27], Rosay’s Theorem on
holomorphic discs (see [32]) and Alehyane–Zeriahi Theorem (see [3]). Another
important technique is to use level sets of the plurisubharmonic measure. This
technique was originally introduced in a recent joint-work of Pflug and the author
(see [28]). However, it appears to be very successful in solving many problems
arising from the theory of separately holomorphic and meromorphic mappings.

This paper is organized as follows.
In Section 2, after introducing some terminology and notation, we recall

Alehyane-Zeriahi Theorem and state our main result.
The tools which are needed for the proof of the main result are developed in

Sections 3.
The proof of the main result for the case of an 2-fold cross is divided into three

parts, which correspond to Sections 4, 5, and 6.
The general case is treated in Section 7. Finally, we conclude the article with

some remarks and open questions.
The theory of separately holomorphic and meromorphic mappings has received

much attention in the past few years. We only mention here some directions of the
current research. Separate analyticity in infinite dimension is growing quite rapidly
since the work of Noverraz [20]. Many results in this direction are obtained by
Nguyên Van Khuê, Nguyên Thanh Vân and their co-workers (see the discussion in
[16] and [18]). On the other hand, the recent development also focuses on cross
theorems with pluripolar singularities and boundary cross theorems. For the latest
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results as well as a comprehensive introduction to the latter two directions, the
reader may consult some works of Jarnicki and Pflug in [12, 13, 14] and recent
articles of Pflug and the author (see [28, 29]).
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Humboldt Foundation. He wishes to express his gratitude to these organizations.
He also would like to thank Professor Peter Pflug for very stimulating discussions,
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2. Preliminaries and statement of the main result

In order to recall the classical cross theorem and to state the main result, we need to
introduce some notation and terminology. In fact, we keep the main notation from
the works in [11], [33].

2.1. Local pluripolarity and plurisubharmonic measure, cross and separate
holomorphicity

In the sequel, all complex manifolds are supposed to be of finite local dimension
(i.e. the dimension of any connected component of the manifold is finite), and
all complex analytic spaces considered in this work are supposed to be reduced,
irreducible and of finite dimension.

Let M be a complex manifold and let A be a subset of M. Put

h A,M := sup {u : u ∈ PSH(M), u ≤ 1 on M, u ≤ 0 on A} ,

where PSH(M) denotes the cone of all plurisubharmonic functions on M.

A is said to be pluripolar in M if there is u ∈PSH(M) such that u is not iden-
tically −∞ on every connected component of M and A ⊂ {z ∈M : u(z)= −∞} .

A is said to be locally pluripolar in M if for any z ∈ A, there is an open neighbor-
hood V of z such that A ∩ V is pluripolar in V . A is said to be nonpluripolar (resp.
non locally pluripolar) if it is not pluripolar (resp. not locally pluripolar). Accord-
ing to a classical result of Josefson and Bedford (see [9], [4]), if M is a Riemann
domain over a Stein manifold, then A ⊂ M is locally pluripolar if and only if it is
pluripolar.

In the sequel, for a function h : M −→ R, its upper semicontinuous regular-
ization h∗ : M −→ R is defined by

h∗(z) := lim sup
w→z

h(w), z ∈ M.

Next, we say that a set A ⊂ M is locally pluriregular at a point a ∈ A if
h∗

A∩U,U (a) = 0 for all open neighborhoods U of a. Moreover, A is said to be
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locally pluriregular if it is locally pluriregular at every point a ∈ A. We denote by
A∗ = A∗

M the set of all points a ∈ A at which A is locally pluriregular. If A is non
locally pluripolar, then a classical result of Bedford and Taylor (see [4, 5]) says that
A∗ is non locally pluripolar and A\ A∗ is locally pluripolar. Moreover, A∗ is locally
of type Gδ (i.e. for every a ∈ A∗, there is an open neighborhood U of a such that
A∗ ∩ U is a countable intersection of open sets), and A∗ is locally pluriregular (i.e.
(A∗)∗ = A∗).

The plurisubharmonic measure of A relative to M is the function (1) de-
fined by

ω̃(z, A,M) := h∗
A∗,�(z), z ∈ M.

Observe that ω̃(·, A,M) ∈ PSH(M) and 0 ≤ ω̃(z, A,M) ≤ 1, z ∈ M.

We shall show in Proposition 3.6 below that if M is a subdomain of a Stein
manifold, then the above definition coincides with the one given by formula (2.1.2)
in Alehyane–Zeriahi’s article [3]. For a good background of the pluripotential the-
ory, see the books [11] or [15].

Let N ∈ N, N ≥ 2, and let ∅ 
= A j ⊂ D j , where D j is a complex manifold,
j = 1, . . . , N . We define an N-fold cross

X := X(A1, . . . , AN ; D1, . . . , DN )

:=
N⋃

j=1

A1 × · · · × A j−1 × D j × A j+1 × · · · AN .

Following a terminology of Alehyane–Zeriahi [3], we define the regular part X∗ of
X as follows

X∗ = X
∗(A1, . . . , AN ; D1, . . . , DN ) := X(A∗

1, . . . , A∗
N ; D1, . . . , DN )

=
N⋃

j=1

A∗
1 × · · · × A∗

j−1 × D j × A∗
j+1 × · · · A∗

N .

Moreover, put

ω(z) :=
N∑

j=1

ω̃(z j , A j , D j ), z = (z1, . . . , zN ) ∈ D1 × · · · × DN .

For an N -fold cross X := X(A1, . . . , AN ; D1, . . . , DN ) let

X̂ =X̂(A1, . . . , AN ; D1, . . . , DN ) :={(z1, . . . , zN )∈ D1×· · ·×DN : ω(z)<1} .

It is not difficult to see that X∗ ⊂ X̂ .

(1)The notation ω(·, A,M) is historically reserved for the relative extremal function. The latter
function is defined by

ω(z, A,M) := h∗
A,�(z), z ∈ M.

An example in [1] shows that in general, ω(·, A,M) 
= ω̃(·, A,M).
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Let Z be a complex analytic space. We say that a mapping f : X −→ Z
is separately holomorphic and write f ∈ Os(X, Z), if for any j ∈ {1, . . . , N }
and (a

′
, a

′′
) ∈ (A1 × · · · × A j−1) × (A j+1 × · · · × AN ) the restricted mapping

f (a
′
, ·, a

′′
)|D j is holomorphic on D j .

Throughout the paper, for a function f : M −→ C, let | f |M denote supM | f |.
Finally, for a complex manifold M and a complex analytic space Z , let O(M, Z)

denote the set of all holomorphic mappings from M to Z .

2.2. Hartogs extension property

We recall here the following notion introduced by Shiffman [34]. Let p ≥ 2 be an
integer. For 0 < r < 1, the Hartogs figure in dimension p, denoted by Hp(r), is
given by

Hp(r) :=
{
(z

′
, z p) ∈ E p : ‖z

′‖ < r or |z p| > 1 − r
}

,

where E is the unit disc of C and z
′ = (z1, . . . , z p−1), ‖z

′‖ := max
1≤ j≤p−1

|z j |.
Definition 2.1. A complex analytic space Z is said to possess the Hartogs extension
property in dimension p if Z has a countable bases of open subsets, and every
mapping f ∈ O(Hp(r), Z) extends to a mapping f̂ ∈ O(E p, Z). Moreover, Z is
said to possess the Hartogs extension property if it does in any dimension p ≥ 2.

It is a classical result of Ivashkovich (see [10]) that if Z possesses the Hartogs
extension property in dimension 2, then it does in all dimensions p ≥ 2. Some typi-
cal examples of complex analytic spaces possessing the Hartogs extension property
are the complex Lie groups (see [2]), the taut spaces (see [41]), the Hermitian man-
ifold with negative holomorphic sectional curvature (see [34]), the holomorphically
convex Kähler manifold without rational curves (see [10]).

Here we mention an important characterization due to Shiffman (see [34]).

Theorem 2.2. A complex analytic space Z possesses the Hartogs extension prop-
erty if and only if for every domain D of any Stein manifold M, every mapping
f ∈ O(D, Z) extends to a mapping f̂ ∈ O(D̂, Z), where D̂ is the envelope of
holomorphy of D.

2.3. Motivations for our work

We are now able to formulate what we will quote in the sequel as the classical cross
theorem.

Theorem 2.3. (Alehyane–Zeriahi [3, Theorem 2.2.4]) Let X j be a Stein manifold,
let D j ⊂ X j be a domain and A j ⊂ D j a nonpluripolar subset, j = 1, . . . , N .

Let Z be a complex analytic space possessing the Hartogs extension property. Then
for any mapping f ∈ Os(X, Z), there is a unique mapping f̂ ∈ O(X̂ , Z) such that
f̂ = f on X ∩ X̂ .



224 VIÊT-ANH NGUYÊN

The following example given by Alehyane–Zeriahi (see [3]) shows that the
hypothesis on Z is necessary. Consider the mapping f : C2 −→ P1 given by

f (z, w) :=
{

[(z + w)2 : (z − w)2], (z, w) 
= (0, 0),

[1 : 1], (z, w) = (0, 0).

Then f ∈ Os

(
X(C, C; C, C), P1

)
, but f is not continuous at (0, 0).

The question naturally arises whether Theorem 2.3 is still true if D j is not
necessarily a subdomain of a Stein manifold, j = 1, . . . , N .

2.4. Statement of the main results and outline of the proofs

We are now ready to state the main results.

Theorem A. Let D j be a complex manifold and A j ⊂ D j a non locally pluripolar
subset, j = 1, . . . , N . Let Z be a complex analytic space possessing the Hartogs
extension property. Then for any mapping f ∈ Os(X, Z), there is a unique map-
ping f̂ ∈ O(X̂ , Z) such that f̂ = f on X ∩ X̂ . If, moreover, Z = C and | f |X < ∞,

then

| f̂ (z)| ≤ | f |1−ω(z)
A | f |ω(z)

X , z ∈ X̂ .

In virtue of a theorem of Josefson and Bedford (see Subsection 2.1 above), the
classical cross theorem is an immediate consequence of Theorem A.

Theorem A has an important corollary. Before stating this, we need to intro-
duce a terminology. A complex manifold M is said to be a Liouville manifold
if PSH(M) does not contain any non-constant bounded above functions. We see
clearly that the class of Liouville manifolds contains the class of connected compact
manifolds.

Corollary B. Let D j be a complex manifold and A j ⊂ D j a non locally pluripo-
lar subset, j = 1, . . . , N . Let Z be a complex analytic space possessing the
Hartogs extension property. Suppose in addition that D j is a Liouville manifold,
j = 2, . . . , N . Then for any mapping f ∈ Os(X, Z), there is a unique mapping
f̂ ∈ O(D1 × · · · × DN , Z) such that f̂ = f on X.

Corollary B follows immediately from Theorem A since ω̃(·, A j , D j ) ≡ 0, j =
2, . . . , N .

We give below some ideas of the proof of Theorem A.

Our method consists in two steps. In the first step, we investigate the special
case where each A j is an open set, j = 1, . . . , N . In the second one, we treat the
general case.

In order to carry out the first step, we apply Poletsky theory of discs and
Rosay’s Theorem on holomorphic discs (see Theorem 3.1 below). Consequently,
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we may construct an extension mapping f̂ on X̂ . To prove that f̂ is holomorphic,
we appeal to the classical cross theorem (Theorem 2.3).

In the second step we reduce the general situation to the above special case.
The key technique is to use level sets of the plurisubharmonic measure. More
precisely, we exhaust each D j by the level sets of the plurisubharmonic measure
ω̃(·, A j , D j ), i.e. by D j,δ := {

z j ∈ D j : ω̃(z j , A j , D j ) < 1 − δ
}

(0 < δ < 1).

We replace in the same way the set A j by an open set A j,δ such that ω̃(·, A j,δ, D j,δ)

behaves, in some sense, like ω̃(·, A j , D j ) as δ → 0+.

Applying Theorem 2.3 locally and making an intensive use of Theorem 3.1,
we can propagate the separate holomorphicity of f to a mapping f̃δ defined on
the cross Xδ := X

(
A1,δ, . . . , AN ,δ; D1,δ, . . . , DN ,δ

)
. Consequently, the first step

applies and one obtains a mapping f̂δ ∈ O
(
X̂δ, Z

)
. Gluing the family

(
f̂δ

)
0<δ<1

,

we obtain the desired extension mapping f̂ .

3. Preparatory results

We recall here the auxiliary results and some background of the pluripotential the-
ory needed for the proof of Theorem A.

3.1. Poletsky theory of discs and Rosay’s Theorem on holomorphic discs

Let E denote as usual the unit disc in C. For a complex manifold M, let O(E,M)

denote the set of all holomorphic mappings φ : E −→ M which extend holomor-
phically to a neighborhood of E . Such a mapping φ is called a holomorphic disc on
M. Moreover, for a subset A of M, let

1A(z) :=
{

1, z ∈ A,

0, z ∈ M \ A.

In the work [32] Rosay proved the following remarkable result.

Theorem 3.1. Let u be an upper semicontinuous function on a complex manifold
M. Then the Poisson functional of u defined by

P[u](z) := inf

 1

2π

2π∫
0

u(φ(eiθ ))dθ : φ ∈ O(E,M), φ(0) = z

 ,

is plurisubharmonic on M.

Rosay’s Theorem may be viewed as an important development in Poletsky
theory of discs. Observe that special cases of Theorem 3.1 have been considered by
Poletsky (see [26, 27]), Lárusson–Sigurdsson (see [17]) and Edigarian (see [6]).

We also need the following result (see [32, Lemmas 1.1 and 1.2]).
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Lemma 3.2. Let M be a complex manifold and let A be a nonempty open subset
of M. Then for any ε > 0 and any z0 ∈ M, there are an open neighborhood U of
z0, an open subset T of C, and a family of holomorphic discs (φz)z∈U ⊂ O(E,M)

with the following properties:

(i) � ∈ O(U × E,M), where �(z, t) := φz(t), (z, t) ∈ U × E;
(ii) φz(0) = z, z ∈ U ;

(iii) φz(t) ∈ A, t ∈ T ∩ E, z ∈ U ;
(iv) 1

2π

2π∫
0

1∂ E\T (eiθ )dθ < P[1M\A](z0) + ε.

Proof. For any ρ > 0, let Eρ denote the disc {t ∈ C : |t | < ρ} . Fix an arbitrary
point z0 ∈ M. We apply Theorem 3.1 to the upper semicontinuous function 1M\A.

Consequently, for any ε > 0, one may find an r > 1 and a holomorphic mapping
φ ∈ O(Er ,M) such that

φ(0) = z0 and
1

2π

2π∫
0

1M\A(φ(eiθ ))dθ < P[1M\A](z0) + ε

2
. (3.1)

Consider the embedding τ : Er −→ C × M given by τ(t) := (t, φ(t)), t ∈ Er .

Then the image τ(Er ) is a Stein submanifold of C × M. Fix any r̃ such that 1 <

r̃ < r and let d be the dimension of the connected component of M containing z0.

By Lemma 1.1 in [32], there is an injective holomorphic mapping τ̃ : Ed+1
r̃ −→

C × M such that τ̃ (t, 0) = τ(t) = (t, φ(t)), |t | < r̃ . Let � be the canonical
projection from C ×M onto M. Then there are a sufficiently small neighborhood
U of z0 and a real number ρ : 1 < ρ < r̃ such that, for every z ∈ U, the mapping
φz : Eρ −→ M given by

φz(t) := � ◦ τ̃
(
(t, 0) + τ̃−1(0, z)

)
, t ∈ Eρ, (3.2)

is holomorphic.
Using the explicit formula (3.2), assertion (i) follows. Moreover, φz(0) =

�(0, z) = z for z ∈ U, which proves assertion (ii). In addition,

φz0(t) = (� ◦ τ̃ )(t, 0) = φ(t). (3.3)

In virtue of (3.2), observe that as z approaches z0 in U, φz converges uniformly to
φz0 on E . Consequently, by shrinking U if necessary, we may find an open subset
T of the open set

{
t ∈ Eρ : φz0(t) ∈ A

}
such that assertion (iii) is fulfilled and

1

2π

2π∫
0

1∂ E\T (eiθ )dθ <
1

2π

2π∫
0

1M\A(φz0(e
iθ ))dθ + ε

2
.

This, combined with the estimate in (3.1) and (3.3), implies assertion (iv). Hence,
the proof of the lemma is complete.
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3.2. The plurisubharmonic measure and its level sets

We begin this subsection with the following simple but very useful result.

Lemma 3.3. Let T be an open subset of E . Then

ω̃(0, T ∩ E, E) ≤ 1

2π

2π∫
0

1∂ E\T (eiθ )dθ.

Proof. Observe that, by definition,

ω̃(t, T ∩ E, E) ≤ ωE (t, T ∩ ∂ E), t ∈ E,

where ωE (t, T ∩ ∂ E) is the harmonic measure for E (see [31, p. 96]). Since

ωE (0, T ∩ ∂ E) = 1

2π

2π∫
0

1∂ E\T (eiθ )dθ,

the desired conclusion follows from the above estimate.

Proposition 3.4. Let M be a complex manifold and A a nonempty open subset of
M. Then ω̃(z, A,M) = P[1M\A](z), z ∈ M.

Proof. First, since A is open, it is clear that A∗ = A. In addition, applying Theorem
3.1 to 1M\A and using the explicit formula of P[1M\A], we see that P[1M\A] ∈
PSH(M), P[1M\A] ≤ 1 and P[1M\A](z) = 0, z ∈ A. Consequently,

P[1M\A](z) ≤ ω̃(z, A,M), z ∈ M.

To see the opposite inequality, let u ∈ PSH(M) such that u ≤ 1 and u(z) ≤ 0,

z ∈ A. For any point z0 ∈ M and any ε > 0, by Theorem 3.1, there is a holomor-
phic disc φ ∈ O(E,M) such that

φ(0) = z0 and
1

2π

2π∫
0

1M\A(φ(eiθ ))dθ < P[1M\A](z0) + ε. (3.4)

Consequently, by setting φ−1(A) := {
t ∈ E : φ(t) ∈ A

}
, we obtain

u(z0) = (u ◦ φ)(0) ≤ ω̃(0, φ−1(A), E) ≤ 1

2π

2π∫
0

1M\A(φ(eiθ ))dθ,

where the first estimate is trivial and the second one follows from Lemma 3.3. This,
combined with (3.4), implies that u(z0) < P[1M\A](z0) + ε. Since u, ε and z0
are arbitrarily chosen, we conclude that ω̃(z, A,M) ≤ P[1M\A](z), z ∈ M. This
completes the proof.
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Proposition 3.5. Let M be a complex manifold and A a non locally pluripolar
subset of M. For 0 < ε < 1, define the ”ε-level set of M relative to A” as follows

Mε,A := {z ∈ M : ω̃(z, A,M) < 1 − ε} .

Then:

1) For every locally pluripolar subset P of M, (A ∪ P)∗ = A∗ and ω̃(·, A ∪
P,M) = ω̃(·, A,M). (A∗)∗ = A∗. If, moreover, A is open, then A∗ = A.

2) Let N be an open subset of M and B ⊂ A∩N . Then ω̃(z, A,M)≤ ω̃(z, B,N ),

z ∈N .

3) Let N be a connected component of M, then ω̃(z, A ∩ N ,N ) = ω̃(z, A,M),

z ∈ N .

4) ω̃(z, A ∩ A∗,Mε,A) = ω̃(z,A,M)
1−ε

, z ∈ Mε,A.

5) Every connected component of Mε,A contains a non locally pluripolar subset
of A ∩ A∗. If, moreover, A is open, then every connected component of Mε,A
contains a nonempty open subset of A.

Proof. Part 1) is an immediate consequence of the following identity (see Lemma
3.5.3 in [11])

h∗
A∪P,U = h∗

A,U ,

where U is a bounded open subset of Cn, A and P are subsets of U, and P is
pluripolar.

Part 2) and Part 3) are trivial using the definition of the plurisubharmonic mea-
sure.

Now we turn to Part 4). Observe that for any a ∈ A∗,

ω̃(a, A,M) = ω̃(a, A∗,M) = 0, (3.5)

where the first equality follows from the definition of the plurisubharmonic mea-
sure, and the second one from Part 2) and the assumption that a ∈ A∗. Hence,
A∗ ⊂ Mε,A. In addition, we have clearly that ω̃(z,A,M)

1−ε
≤ 1, z ∈ Mε,A. This,

combined with (3.5), implies that

ω̃(z, A,M)

1 − ε
≤ ω̃(z, A ∩ A∗,Mε,A), z ∈ Mε,A. (3.6)

To prove the converse inequality of (3.6), let u ∈ PSH(Mε,A) be such that u ≤ 1
on Mε,A and u ≤ 0 on A∗. Consider the following function

û(z) :=
{

max {(1 − ε)u(z), ω̃(z, A,M)} , z ∈ Mε,A,

ω̃(z, A,M), z ∈ M \ Mε,A.

It can be checked that û ∈ PSH(M) and û ≤ 1. Moreover, in virtue of the
assumption on u and (3.5), we have that

û(a) ≤ max {(1 − ε)u(a), ω̃(a, A,M)} = 0, a ∈ A∗.
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Consequently, û ≤ ω̃(·, A∗,M) = ω̃(·, A,M). In particular, one gets that

u(z) ≤ ω̃(z, A,M)

1 − ε
, z ∈ M.

Since u is arbitrary, we deduce from the latter estimate that the converse inequality
of (3.6) also holds. This completes the proof of Part 4).

Part 5) follows immediately from Parts 3) and 4).
Hence, the proof of the proposition is finished.

The following result shows that our definition of the plurisubharmonic measure
recovers the one given by Alehyane–Zeriahi in [3, formula (2.1.2)].

Proposition 3.6. Let M be a Stein manifold. Let U be a subdomain of M which
admits an exhaustive sequence of open subsets

(
U j

)∞
j=1 , i.e. U j � U j+1 and

∞⋃
j=1

U j = U. Then for any subset A ⊂ U, there holds

ω̃(z, A, U ) = lim
j→∞ h∗

A∩U j ,U j
(z), z ∈ U.

Proof. First observe that the sequence
(

h∗
A∩U j ,U j

)∞
j=1

decreases, as j → ∞, to a

function h ∈ PSH(M).

Next, since U j � M and A \ A∗ is pluripolar, it follows from Lemma 2.2 in
[1] and Part 1) of Proposition 3.5 that h∗

A∩U j ,U j
= h∗

A∩A∗∩U j ,U j
= ω̃(·, A∩U j , U j )

for any j ≥ 1. Consequently, applying Part 2) of Proposition 3.5 yields that

ω̃(z,A,U )≤ lim inf
j→∞ ω̃(z, A ∩ U j , U j )= lim

j→∞ h∗
A∩U j ,U j

(z)=h(z), z ∈U. (3.7)

On the other hand, using the above definition of h, one can check that h ≤ 1 on M
and h ≤ 0 on

⋃∞
j=1(A ∩ U j )

∗. Since the latter union is equal to A∗, it follows that
h ≤ ω̃(·, A, U ). This, combined with estimate (3.7), completes the proof.

Proposition 3.7. Let M j be a complex manifold and A j a nonempty open subset
of M j , j = 1, . . . , N , N ≥ 2.

1) Then, for z = (z1, . . . , zN ) ∈ M1 × · · · × MN ,

ω̃(z, A1 × · · · × AN ,M1 × · · · × MN ) = max
j=1,... ,N

ω̃(z j , A j ,M j ).

2) Put X̂ := X̂ (A1, . . . , AN ;M1, . . . ,MN ) . Then A1 × · · · × AN ⊂ X̂ and

ω̃(z, A1 × · · · × AN , X̂) =
N∑

j=1

ω̃(z j , A j ,M j ), z = (z1, . . . , zN ) ∈ X̂ .

Proof. Part 1) follows immediately by combining Theorem 3.1 and the work of
Edigarian and Poletsky in [7].

Using Part 1), the proof of Lemma 3 in [12] still works in this context making
the obviously necessary changes.
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3.3. Three uniqueness theorems and a Two-Constant Theorem

The following uniqueness theorems will play a key role in the sequel.

Theorem 3.8. Let M be a connected complex manifold, A a non locally pluripolar
subset of M, and Z a complex analytic space. Let f, g ∈ O(M, Z) such that
f (z) = g(z), z ∈ A. Then f ≡ g.

Proof. Since A is non locally pluripolar, there is an open subset U ⊂ M biholo-
morphic to an Euclidean domain (2) such that A ∩ U is nonpluripolar in U. Conse-
quently, we deduce from the equality f (z) = g(z), z ∈ A ∩ U, that f = g on U.

Since M is connected, the desired conclusion of the theorem follows.

Theorem 3.9. Let D j be a complex manifold and A j ⊂ D j a non locally pluripo-
lar subset, j = 1, . . . , N , N ≥ 2. Let Y be a complex analytic space. Let U1 and
U2 be two open subsets of D1. For k ∈ {1, 2}, let fk ∈ O(X̂k, Y ), where

X̂k := X̂ (A1 ∩ Uk, A2, . . . , AN ; Uk, D2, . . . , DN ) .

Then:

1) If f1 = f2 on (U1 ∩ U2) × (A2 ∩ A∗
2) × · · · × (AN ∩ A∗

N ), then f1 = f2 on
X̂1 ∩ X̂2.

2) If U1 = U2 and f1 = f2 on (A1 ∩ A∗
1 ∩ U1) × (A2 ∩ A∗

2) × · · · × (AN ∩ A∗
N ),

then f1 = f2 on X̂1.

Proof. To prove Part 1), fix an arbitrary point z0 = (z0
1, . . . , z0

N ) ∈ X̂1 ∩ X̂2. We
need to show that f1(z0) = f2(z0).

For any 2 ≤ j ≤ N , let G j be the connected component which contains z0
j of

the following open set{
z j ∈ D j : ω̃(z j , A j , D j )<1 − max

k∈{1,2}
ω̃(z0

1, A∩Uk, Uk) −
j−1∑
p=2

ω̃(z0
p, Ap, Dp)

}
.

Observe that for k ∈ {1, 2} and (a3, . . . , aN ) ∈ (A3 ∩ A∗
3) × · · · × (AN ∩ A∗

N ), the
mapping z2 ∈ G2 �→ fk

(
z0

1, z2, a3, . . . , aN
)

belongs to O(G2, Y ). In addition, it
follows from the hypothesis that

f1

(
z0

1, a2, . . . , aN

)
= f2

(
z0

1, a2, . . . , aN

)
, a2 ∈ A2 ∩ A∗

2. (3.8)

On the other hand, by Part 5) of Proposition 3.5, G2 contains a non locally pluripolar
subset of A2 ∩ A∗

2. Therefore, by Theorem 3.8,

f1

(
z0

1, z2, a3, . . . , aN

)
= f2

(
z0

1, z2, a3, . . . , aN

)
,

(z2, a3, . . . , aN ) ∈ G2 × (A3 ∩ A∗
3) × · · · × (AN ∩ A∗

N ).

(2)An Euclidean domain is, by definition, a domain in C
n .
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Hence,

f1

(
z0

1, z0
2, a3, . . . , aN

)
= f2

(
z0

1, z0
2, a3, . . . , aN

)
,

(a3, . . . , aN ) ∈ (A3 ∩ A∗
3) × · · · × (AN ∩ A∗

N ). (3.9)

Repeating the argument in (3.8)–(3.9) (N − 2) times, we finally obtain f1(z0) =
f2(z0). Hence, the proof of Part 1) is finished.

In virtue of Part 1), Part 2) is reduced to proving that

f1 = f2 on U1 × (A2 ∩ A∗
2) × · · · × (AN ∩ A∗

N ).

To do this, fix an arbitrary point z0 = (z0
1, a0

2 . . . , a0
N ) ∈ U1 × (A2 ∩ A∗

2) × · · · ×
(AN ∩ A∗

N ) such that z0 ∈ X̂1. Then ω̃(z1, A1 ∩ A∗
1 ∩ U1, U1) < 1. Let G be the

connected component containing z0
1 of U1. Using Parts 1) and 3) of Proposition 3.5

and taking into account the latter estimate, we see that A1 ∩ A∗
1 ∩G is a non locally

pluripolar set.
Next, observe that for k ∈ {1, 2}, the mapping z1 ∈ G �→ fk

(
z1, a0

2, . . . , a0
N

)
belongs to O(U1, Y ). Moreover, since we know from the hypothesis and the above
paragraph that f1

(·, a0
2, . . . , a0

N

) = f2
(·, a0

2, . . . , a0
N

)
on the non locally pluripo-

lar set A1 ∩ A∗
1 ∩ G, it follows from Theorem 3.8 that

f1

(
z1, a0

2, . . . , a0
N

)
= f2

(
z1, a0

2, . . . , a0
N

)
, z1 ∈ G.

Hence, f1(z0) = f2(z0), which completes the proof of Part 2).

The next result, combined with Part 2) of Theorem 3.9, establishes the unique-
ness stated in Theorem A and in its intermediate versions (see Theorems 4.1, 5.1,
6.1 and Proposition 6.6 below).

Theorem 3.10. Let D j be a complex manifold and A j ⊂ D j a non locally pluripo-
lar subset, j = 1, . . . , N . Let Z be a complex analytic space. One defines X, X∗
and X̂ as in Subsection 2.1. Let f ∈ Os(X, Z) and f̂ ∈ O(X̂ , Z) such that f̂ = f
on X ∩ X∗. Then f̂ = f on X ∩ X̂ .

Proof. Let z0 = (z0
1, . . . , z0

N ) be an arbitrary point of X ∩ X̂ , and put f1 := f̂ ,

f2 := f. Arguing as in the proof of Theorem 3.9, we can show that f̂ (z0) = f (z0).

This completes the proof.

The following Two-Constant Theorem for plurisubharmonic functions will
play an important role in the proof of the estimate in Theorem A.

Theorem 3.11. Let M be a complex manifold and A a non locally pluripolar sub-
set of M. Let m, M ∈ R and u ∈ PSH(M) such that u(z) ≤ M for z ∈ M, and
u(z) ≤ m for z ∈ A. Then

u(z) ≤ m(1 − ω̃(z, A,M)) + M · ω̃(z, A,M), z ∈ M.

Proof. It follows immediately from the definition of ω̃(·, A,M) given in Subsec-
tion 2.1.
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4. Part 1 of the proof of Theorem A

The main purpose of the section is to prove Theorem A in the following special
case.

Theorem 4.1. Let D be a complex manifold, let G be a complex manifold which
is biholomorphic to an open set in Cq (q ∈ N), let A be an open subset of D,

and let B be a non locally pluripolar subset of G. Let Z be a complex analytic
space possessing the Hartogs extension property. Put X := X(A, B; D, G) and
X̂ := X̂(A, B; D, G). Then for any mapping f ∈ Os(X, Z), there is a unique
mapping f̂ ∈ O(X̂ , Z) such that f̂ = f on X ∩ X∗.

Remark 4.2. Under the above hypothesis, it can be checked that X ∩ X∗ = (A ×
G)∪ (D × (B ∩ B∗)). In addition, in the proof below we assume that G is a domain
in Cq . Clearly, in virtue of Part 3) of Proposition 3.5, it suffices to prove the theorem
under this assumption.

Proof. We begin the proof with the following lemma.

Lemma 4.3. We keep the hypothesis of Theorem 4.1. For j ∈ {1, 2}, let φ j ∈
O(E, D) be a holomorphic disc, and let t j ∈ E such that φ1(t1) = φ2(t2) and

1
2π

2π∫
0

1D\A(φ j (eiθ ))dθ < 1. Then:

1) For j ∈ {1, 2}, the mapping (t, w) �→ f (φ(t), w) belongs to Os(X(φ−1
j (A) ∩

E, B; E, G), Z), where φ−1
j (A) := {t ∈ E : φ j (t) ∈ A}.

2) For j ∈ {1, 2}, in virtue of Part 1), Remark 4.2 and applying Theorem 2.3,

let f̂ j be the unique mapping in O
(
X̂(φ−1

j (A) ∩ E, B; E, G), Z
)

such that

f̂ j (t, w) = f (φ j (t), w), (t, w) ∈ X

(
φ−1

j (A) ∩ E, B ∩ B∗; E, G
)

. Then

f̂1(t1, w) = f̂2(t2, w),

for all w ∈ G such that (t j , w) ∈ X̂

(
φ−1

j (A) ∩ E, B; E, G
)

, j ∈ {1, 2}.

Proof of Lemma 4.3. Part 1) follows immediately from the hypothesis. There-
fore, it remains to prove Part 2). To do this fix w0 ∈ G such that (t j , w0) ∈
X̂

(
φ−1

j (A) ∩ E, B; E, G
)

for j ∈ {1, 2}. We need to show that f̂1(t1, w0) =
f̂2(t2, w0). Observe that both mappings w ∈ G �→ f̂1(t1, w) and w ∈ G �→
f̂2(t2, w) belong to O(G, Z), where G is the connected component which contains
w0 of the following open set{

w ∈ G : ω̃(w, B, G) < 1 − max
j∈{1,2}

ω̃(t j , φ
−1
j (A) ∩ E, E)

}
.
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Moreover, for any w ∈ B ∩ B∗ we have that ω̃(w, B ∩ B∗, G) = 0. Therefore,

for any j ∈ {1, 2} one clearly gets that (t j , w) ∈ X

(
φ−1

j (A) ∩ E, B ∩ B∗; E, G
)

.

Consequently, since φ1(t1) = φ2(t2), it follows that

f̂1(t1, w) = f (φ1(t1), w) = f (φ2(t2), w) = f̂2(t2, w), w ∈ B ∩ B∗.

On the other hand, by Part 5) of Proposition 3.5, G contains a non locally pluripolar
subset of B∩B∗. Therefore, by Theorem 3.8, f̂1(t1, w) = f̂2(t2, w), w ∈ G. Hence,
f̂1(t1, w0) = f̂2(t2, w0), which completes the proof of the lemma. �

Step 1. Construction of the extension mapping f̂ on X̂ .

Proof of Step 1. We define f̂ as follows: Let X be the set of all pairs (z, w) ∈
D × G with the property that there are a holomorphic disc φ ∈ O(E, D) and t ∈ E
such that φ(t) = z and (t, w) ∈ X̂

(
φ−1(A) ∩ E, B; E, G

)
. In virtue of Theorem

2.3, let f̂φ be the unique mapping in O
(
X̂(φ−1(A) ∩ E, B; E, G), Z

)
such that

f̂φ(t, w) = f (φ(t), w), (t, w) ∈ X

(
φ−1(A) ∩ E, B ∩ B∗; E, G

)
. (4.1)

Then the desired extension mapping f̂ is given by

f̂ (z, w) := f̂φ(t, w). (4.2)

In virtue of Part 2) of Lemma 4.3, f̂ is well-defined on X . We next prove that

X = X̂ . (4.3)

Taking (4.3) for granted, then f̂ is well-defined on X̂ . Moreover, it follows from for-
mula (4.2) that for every fixed z ∈ D, the restricted mapping f̂ (z, ·) is holomorphic
on the open set

{
w ∈ G : (z, w) ∈ X̂

}
.

Now we return to (4.3). To prove the inclusion X ⊂ X̂ , let (z, w) ∈ X .

By the above definition of X , one may find a holomorphic disc φ ∈ O(E, D), a
point t ∈ E such that φ(t) = z and (t, w) ∈ X̂

(
φ−1(A) ∩ E, B; E, G

)
. Since

ω̃(φ(t), A, D) ≤ ω̃(t, φ−1(A) ∩ E, E), it follows that

ω̃(z, A, D) + ω̃(w, B, G) ≤ ω̃(t, φ−1(A) ∩ E, E) + ω̃(w, B, G) < 1,

Hence (z, w) ∈ X̂ . This proves the above mentioned inclusion.
To finish the proof of (4.3), it suffices to show that X̂ ⊂ X . To do this, let

(z, w) ∈ X̂ and fix any ε > 0 such that

ε < 1 − ω̃(z, A, D) − ω̃(w, B, G). (4.4)
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Applying Theorem 3.1 and Proposition 3.4, there is a holomorphic disc φ∈O(E,D)

such that φ(0)= z and

1

2π

2π∫
0

1D\A(φ(eiθ ))dθ < ω̃(z, A, D) + ε. (4.5)

Observe that

ω̃(0, φ−1(A) ∩ E, E) + ω̃(w, B, G) ≤ 1

2π

2π∫
0

1D\A(φ(eiθ ))dθ + ω̃(w, B, G)

< ω̃(z, A, D) + ω̃(w, B, G) + ε < 1,

where the first inequality follows from an application of Lemma 3.3, the second one
from (4.5), and the last one from (4.4). Hence, (0, w) ∈ X̂

(
φ−1(A) ∩ E, B; E, G

)
,

which implies that (z, w) ∈ X . This complete the proof of (4.3). Hence Step 1 is
finished. �

Next, we would like to show that f̂ satisfies the conclusion of the theorem.
This will be accomplished in two steps below.

Step 2. Proof of the equality f̂ = f on X ∩ X∗.
Proof of Step 2. Let (z, w) be an arbitrary point of A×G. Choose the holomorphic
disc φ ∈ O(E, D) given by φ(t) := z, t ∈ E . Then by formula (4.2),

f̂ (z, w) = f̂φ(0, w) = f (φ(0), w) = f (z, w), w ∈ G. (4.6)

Hence, f̂ = f on A × G.

Next, let (z, w) be an arbitrary point of D × (B ∩ B∗) and let ε > 0 be such
that

ε < 1 − ω̃(z, A, D). (4.7)

Applying Theorem 3.1 and Proposition 3.4, one may find a holomorphic disc φ ∈
O(E, D) such that φ(0) = z and

1

2π

2π∫
0

1D\A(φ(eiθ ))dθ < ω̃(z, A, D) + ε. (4.8)

Consequently,

ω̃(0, φ−1(A) ∩ E, E)+ω̃(w, B, G)≤ 1

2π

2π∫
0

1D\A(φ(eiθ ))dθ <ω̃(z, A, D)+ε<1,
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where the first inequality follows from an application of Lemma 3.3 and the equality
ω̃(w, B, G) = 0, the second one from (4.8), and the last one from (4.7). Hence,
(0, w) ∈ X̂

(
φ−1(A) ∩ E, B; E, G

)
. Therefore, using (4.1)–(4.2) and arguing as in

(4.6), we conclude that f̂ (z, w) = f (z, w). This proves that f̂ = f on D × (B ∩
B∗).

In summary, we have shown that f̂ = f on (A × G) ∪ (D × (B ∩ B∗)) . In
virtue of Remark 4.2, Step 2 is complete. �
Step 3. Proof of the fact that f̂ ∈ O(X̂ , Z).

Proof of Step 3. Fix an arbitrary point (z0, w0) ∈ X̂ and let ε > 0 be so small such
that

2ε < 1 − ω̃(z0, A, D) − ω̃(w0, B, G). (4.9)

Since ω̃(·, B, G) ∈ PSH(G), one may find an open neighborhood V of w0 such
that

ω̃(w, B, D) < ω̃(w0, B, G) + ε, w ∈ V . (4.10)

Let d be the dimension of D at the point z0. Applying Lemma 3.2 and Propo-
sition 3.4, we obtain an open set T in C, an open neighborhood U of z0 which
is biholomorphic to the unit ball in Cd , and and a family of holomorphic discs
(φz)z∈U ⊂ O(E, D) with the following properties:

the mapping (z, t) ∈ U × E �→ φz(t) is holomorphic; (4.11)

φz(0) = z, z ∈ U ; (4.12)

φz(t) ∈ A, t ∈ T ∩ E, z ∈ U ; (4.13)

1

2π

2π∫
0

1∂ E\T (eiθ )dθ < ω̃(z0, A, D) + ε. (4.14)

Consider the mapping g : X (T ∩ E, U, B; E, U, G) −→ Z given by

g(t, z, w) := f (φz(t), w), (t, z, w) ∈ X (T ∩ E, U, B; E, U, G) . (4.15)

We make the following observations:
Let t ∈ T ∩ E . Then, in virtue of (4.13) we have φz(t) ∈ A for z ∈ U.

Consequently, in virtue of (4.11), (4.15) and the hypothesis f ∈ Os(X, Z), we

conclude that g(t, z, ·)|G ∈ O(G, Z)
(

resp. g(t, ·, w)|U ∈ O(U, Z)
)

for any

z ∈ U (resp. w ∈ B). Analogously, for any z ∈ U, w ∈ B, we can show that
g(·, z, w)|E ∈ O(E, Z).

In summary, we have shown that g ∈ Os (X (T ∩ E, U, B; E, U, G) , Z) . Re-
call that U is biholomorphic to the unit ball in Cd . Consequently, we are able to
apply Theorem 2.3 to g in order to obtain a unique mapping

ĝ ∈ O
(
X̂ (T ∩ E, U, B; E, U, G) , Z

)
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such that

ĝ(t, z, w) = g(t, z, w), (t, z, w) ∈ X
(
T ∩ E, U, B ∩ B∗; E, U, G

)
. (4.16)

Observe that

X̂ (T ∩ E, U, B; E, U, G) = {(t, z, w) ∈ E × U × G : ω̃(t, T ∩ E, E)

+ ω̃(w, B, G) < 1} .

On the other hand, for any w ∈ V,

ω̃(0, T ∩ E, E)+ω̃(w, B, G)≤ 1

2π

2π∫
0

1∂ E\T (eiθ )dθ + ω̃(w0, B, G) + ε

< ω̃(z0, A, D) + ω̃(w0, B, G) + 2ε < 1,

(4.17)

where the first inequality follows from an application of Lemma 3.3 and (4.10), the
second one from (4.14), and the last one from (4.9). Consequently,

(0, z, w) ∈ X̂ (T ∩ E, U, B; E, U, G) , (z, w) ∈ U × V . (4.18)

It follows from (4.2), (4.12), (4.13) and (4.17) that, for z ∈ U, f̂φz is well-defined
and holomorphic on X̂(T ∩ E, B; E, G), and

f̂ (z, w) = f̂φz (0, w), w ∈ V . (4.19)

On the other hand, it follows from (4.1), (4.15) and (4.16) that

f̂φz (t, w) = ĝ(t, z, w), (t, w) ∈ X
(
T ∩ E, B ∩ B∗; E, G

)
, z ∈ U.

Since, for fixed z ∈ U, the restricted mapping (t, w) �→ ĝ(t, z, w) is holomorphic
on X̂(T ∩ E, B; E, G), we deduce from the latter equality and the uniqueness of
Theorem 2.3 that

ĝ(t, z, w) = f̂φz (t, w), (t, w) ∈ X̂
(
T ∩ E, B ∩ B∗; E, G

)
, z ∈ U.

In particular, using (4.2), (4.18) and (4.19),

ĝ(0, z, w) = f̂φz (0, w) = f̂ (z, w), (z, w) ∈ U × V .

Since we know from (4.18) that ĝ is holomorphic on a neighborhood of (0, z0, w0),

we conclude that f̂ is holomorphic on a neighborhood of (z0, w0). Since (z0, w0) ∈
X̂ is arbitrary, it follows that f̂ ∈ O(X̂ , Z). Hence Step 3 is complete. �

Combining Steps 1–3, the theorem follows.
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5. Part 2 of the proof of Theorem A

The main purpose of the section is to prove Theorem A in the following special
case.

Theorem 5.1. Let D, G be complex manifolds, and let A ⊂ D, B ⊂ G be open
subsets. Let Z be a complex analytic space possessing the Hartogs extension prop-
erty. Put X := X(A, B; D, G) and X̂ := X̂(A, B; D, G). Then for any mapping
f ∈ Os(X, Z), there is a unique mapping f̂ ∈ O(X̂ , Z) such that f̂ = f on X.

Remark 5.2. Using Part 1) of Proposition 3.5 it can be checked that, under the
above hypothesis, X∗ = X.

Proof. Let us start with the following lemma.

Lemma 5.3. We keep the hypothesis of Theorem 5.1. For j ∈ {1, 2}, let ψ j ∈
O(E, G) be a holomorphic disc and let τ j ∈ E such that ψ1(τ1) = ψ2(τ2) and

1
2π

2π∫
0

1G\B(ψ j (eiθ ))dθ < 1. Then:

1) For j ∈ {1, 2}, the mapping (z, τ ) �→ f (z, ψ j (τ )) belongs to

Os

(
X

(
A, ψ−1

j (B) ∩ E; D, E
)

, Z
)

,

where ψ−1
j (B) := {τ ∈ E : ψ j (τ ) ∈ B}.

2) For j ∈ {1, 2}, in virtue of Part 1), Remark 5.2 and applying Theorem 4.1,

let f̃ j be the unique mapping in O
(
X̂

(
A, ψ−1

j (B) ∩ E; D, E
)

, Z
)

such that

f̃ j (z, τ ) = f (z, ψ j (τ )), (z, τ ) ∈ X

(
A, ψ−1

j (B) ∩ E; D, E
)

. Then

f̃1(z, τ1) = f̃2(z, τ2),

for all z ∈ D such that (z, τ j ) ∈ X̂

(
A, ψ−1

j (B) ∩ E; D, E
)

, for j ∈ {1, 2}.

Proof of Lemma 5.3. It follows along the same lines as those of Lemma 4.3. �
Now we return to Theorem 5.1. First we define a mapping ĝ : X̂ −→ Z

as follows: Let X be the set of all pairs (z, w) ∈ D × G with the property that
there are a holomorphic disc ψ ∈ O(E, G) and τ ∈ E such that ψ(τ) = w and
(z, τ ) ∈ X̂

(
A, ψ−1(B) ∩ E; D, E

)
. In virtue of Lemma 5.3, let f̃ψ be the unique

mapping in O
(
X̂

(
A, ψ−1(B) ∩ E; D, E

)
, Z

)
such that

f̃ψ(z, τ ) = f (z, ψ(τ)), (z, τ ) ∈ X

(
A, ψ−1(B) ∩ E; D, E

)
. (5.1)
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Then we define

ĝ(z, w) := f̃ψ(z, τ ). (5.2)

In virtue of Part 2) of Lemma 5.3, ĝ is well-defined on X . Moreover, arguing as
in Step 1 in the proof of Theorem 4.1, we can show that X = X̂ . Consequently,
ĝ is well-defined on X̂ . Moreover, arguing as in Step 2 in the proof of Theorem
4.1, it follows from (5.1)–(5.2) and Remark 5.2 that for every fixed w ∈ G, the
restricted mapping ĝ(·, w) is holomorphic on the open set

{
z ∈ D : (z, w) ∈ X̂

}
and that ĝ = f on X.

We define the desired mapping f̂ on X̂ as follows: Let (z, w) ∈ X̂ , let φ ∈
O(E, D) be a holomorphic disc and t ∈ E such that φ(t) = z and (t, w) ∈ X̂(
φ−1(A) ∩ E, B; E, G

)
. In virtue of Lemma 5.3 and replacing the role of B (resp.

D) by that of A (resp. G) therein, let f̂φ be the unique mapping in

O
(
X̂

(
φ−1(A) ∩ E, B; E, G

)
, Z

)
such that

f̂φ(t, w) = f (φ(t), w), (t, w) ∈ X(φ−1(A) ∩ E, B; E, G). (5.3)

Then we put

f̂ (z, w) := f̂φ(t, w). (5.4)

Arguing as in the previous paragraph, we conclude that f̂ is well-defined on X̂ .

Moreover, it follows from (5.3)–(5.4) and Remark 5.2 that for every fixed z ∈ D, the
restricted mapping f̂ (z, ·) is holomorphic on the open set

{
w ∈ G : (z, w) ∈ X̂

}
and that f̂ = f on X.

The proof of the theorem will be complete if we can show that

f̂ = ĝ. (5.5)

Indeed, taking (5.5) for granted, then for any (z0, w0) ∈ X̂ , we may find an open
neighborhood U × V of (z0, w0) such that U × V ⊂ X̂ and U (resp. V ) is bi-
holomorphic to an Euclidean ball. Using (5.5) and the above-mentioned property
of f̂ and ĝ, we see that f̂ (= ĝ) ∈ Os(X(U, V ; U, V ), Z). Consequently, applying
Theorem 2.3 to f̂ , it follows that f̂ ∈ O(U × V, Z). Hence, f̂ ∈ O(X̂ , Z), and
the proof of the theorem is finished.

To prove (5.5), fix an arbitrary point (z0, w0) ∈ X̂ . Fix any ε > 0 such that

3ε < 1 − ω̃(z0, A, D) − ω̃(w0, B, G). (5.6)
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Applying Theorem 3.1 and Proposition 3.4, there is a holomorphic disc φ∈O(E,D)

(resp. ψ ∈ O(E, G)) such that φ(0) = z0 (resp. ψ(0) = w0) and

1

2π

2π∫
0

1D\A(φ(eiθ ))dθ < ω̃(z0, A, D) + ε,

1

2π

2π∫
0

1G\B(ψ(eiθ ))dθ < ω̃(w0, B, G) + ε.

Using this and estimate (5.6), and arguing as in Step 1 of Theorem 4.1, we see that
(0, 0) ∈ X̂

(
φ−1(A) ∩ E, ψ−1(B) ∩ E; E, E

)
. Moreover, since f ∈ Os(X, Z),

the mapping h given by

h(t, τ ) := f (φ(t), ψ(τ)), (t, τ ) ∈ X

(
φ−1(A) ∩ E, ψ−1(B) ∩ E; E, E

)
,

belongs to Os

(
X

(
φ−1(A) ∩ E, ψ−1(B) ∩ E; E, E

)
, Z

)
. Moreover, in virtue of

(5.1) and (5.3),

f̂φ(t, ψ(τ)) = f (φ(t), ψ(τ)) = f̃ψ(φ(t), τ ), (5.7)

(t, τ ) ∈ X

(
φ−1(A) ∩ E, ψ−1(B) ∩ E; E, E

)
.

By Theorem 2.3, let ĥ ∈O
(
X̂

(
φ−1(A)∩E, ψ−1(B)∩E; E, E

)
, Z

)
be the unique

mapping such that

ĥ(t, τ )=h(t, τ )= f (φ(t), ψ(τ)), (t, τ )∈X

(
φ−1(A)∩E, ψ−1(B)∩E; E, E

)
.

Then in virtue of (5.7) we clearly have that

f̂φ(t, ψ(τ))= ĥ(t, τ )= f̃ψ(φ(t), τ ), (t, τ )∈X̂

(
φ−1(A)∩E, ψ−1(B)∩E; E, E

)
.

Therefore,

f̂φ(0, w0) = ĥ(0, 0) = f̃ψ(z0, 0),

which, in turn, implies that

f̂ (z0, w0) = f̂φ(0, w0) = f̃ψ(z0, 0) = ĝ(z0, w0).

Hence, the proof of identity (5.5) is complete. This finishes the proof of the theo-
rem.
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6. Part 3 of the proof: Theorem A for the case N = 2

The main purpose of the section is to prove Theorem A for the case N = 2.

Theorem 6.1. Let D, G be complex manifolds, and let A ⊂ D, B ⊂ G be non lo-
cally pluripolar subsets. Let Z be a complex analytic space possessing the Hartogs
extension property. Put X := X(A, B; D, G) and X̂ := X̂(A, B; D, G). Then for
any mapping f ∈ Os(X, Z), there is a unique mapping f̂ ∈ O(X̂ , Z) such that
f̂ = f on X ∩ X∗.

For the proof we need to develop some preparatory results.
For any a ∈ A∗ (resp. b ∈ B∗), fix an open neighborhood Ua of a (resp. Vb of

b) such that Ua (resp. Vb) is biholomorphic to a domain in Cda (resp. in Cdb ), where
da (resp. db) is the dimension of D (resp. G) at a (resp. b). For any 0 < δ ≤ 1

2 ,

define

Ua,δ := {z ∈ Ua : ω̃(z, A ∩ Ua, Ua) < δ} , a ∈ A ∩ A∗,
Vb,δ := {w ∈ Vb : ω̃(w, B ∩ Vb, Vb) < δ} , b ∈ B ∩ B∗,

Aδ :=
⋃

a∈A∩A∗
Ua,δ, Bδ :=

⋃
b∈B∩B∗

Vb,δ,

Dδ :={z ∈ D : ω̃(z, A, D)<1−δ} , Gδ :={w∈G : ω̃(w, B, G)<1−δ} .

(6.1)

Lemma 6.2. We keep the above notation. Then

A ∩ A∗ ⊂ Aδ ⊂ D1−δ ⊂ Dδ, (6.2)

ω̃(z, A, D) − δ ≤ ω̃(z, Aδ, D) ≤ ω̃(z, A, D), z ∈ D. (6.3)

Proof of Lemma 6.2. Using (6.1) and the definition of local pluriregularity, we see
that a ∈ Ua,δ for a ∈ A ∩ A∗. Consequently, the first inclusion in (6.2) follows.
Since 0 < δ ≤ 1

2 , the third inclusion in (6.2) is clear. To prove the second inclusion
in (6.2), let z be an arbitrary point of Aδ. Then there is an a ∈ A ∩ A∗ such that
z ∈ Ua,δ. Applying Part 2) of Proposition 3.5 and taking into account the inequality
0 < δ ≤ 1

2 , we obtain

ω̃(z, A, D) ≤ ω̃(z, A ∩ Ua, Ua) < δ. (6.4)

Hence, z ∈ D1−δ, which in turn implies that Aδ ⊂ D1−δ. Hence, all assertions in
(6.2) are proved.

Next, using the first inclusion in (6.2) and applying Parts 1) and 2) of Proposi-
tion 3.5, we get

ω̃(z, Aδ, D) ≤ ω̃(z, A ∩ A∗, D) = ω̃(z, A, D), z ∈ D,

which proves the second estimate in (6.3).
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To complete the proof of (6.3), let a ∈ A ∩ A∗ and 0 < δ ≤ 1
2 . We deduce

from (6.4) that ω̃(z, A, D) − δ ≤ 0 for z ∈ Ua,δ. Hence, by (6.1),

ω̃(z, A, D) − δ ≤ 0, z ∈ Aδ.

On the other hand, ω̃(z, A, D) − δ < 1, z ∈ D. Consequently, the first estimate in
(6.3) follows. Hence, the proof of the lemma is finished. �

We also need the following

Definition 6.3. Let M be a complex manifold and Y a complex space. Let (U j ) j∈J
be a family of open subsets of M, and ( f j ) j∈J a family of mappings such that
f j ∈ O(U j , Y ). We say that the family ( f j ) j∈J is ”collective” if, for any j, k ∈ J,

f j = fk on U j ∩ Uk . The unique holomorphic mapping f :
⋃
j∈J

U j −→ Y, defined

by f := f j on U j , j ∈ J, is called the ”collected mapping” of ( f j ) j∈J .

Lemma 6.4. We keep the the hypothesis of Theorem 6.1 and the above notation.
Suppose, in addition, that for every a ∈ A ∩ A∗, there is a (unique) mapping

f̂a ∈ O
(
X̂ (A ∩ Ua, B; Ua, G) , Z

)
such that

f̂a(z, w) = f (z, w), (z, w) ∈ X
(

A ∩ A∗ ∩ Ua, B ∩ B∗; Ua, G
)
. (6.5)

Then the family
(

f̂a|Ua,δ×Gδ

)
a∈A∩A∗ is collective.

Proof of Lemma 6.4. Let a1, a2 be arbitrary elements of A ∩ A∗. By (6.5), we
have that

f̂a1(z, w) = f (z, w) = f̂a2(z, w), (z, w) ∈ (Ua1 ∩ Ua2) × (B ∩ B∗).

Consequently, in virtue of Part 1) of Theorem 3.9,

f̂a1(z, w)= f̂a2(z, w), (z, w)∈X̂
(

A∩Ua1, B; Ua1, G
)∩X̂

(
A∩Ua2, B; Ua2, G

)
.

This, combined with the definition of Ua,δ and Gδ given in (6.1), the fact that
0 < δ ≤ 1

2 , and Definition 6.3, implies the desired conclusion. �

Lemma 6.5. Let D and G be two complex manifolds. Let (Aδ)0<δ< 1
2

(resp.

(Bδ)0<δ< 1
2
) be a family of non locally pluripolar subsets of D (resp. G), and

(Dδ)0<δ< 1
2

(resp. (Gδ)0<δ< 1
2
) a family of open subsets of D (resp. G) with the

following properties:

(i) Aδ1 ⊂ Aδ2 ⊂ Dδ2 ⊂ Dδ1 and Bδ1 ⊂ Bδ2 ⊂ Gδ2 ⊂ Gδ1 for 0 < δ1 ≤ δ2 < 1
2 .
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(ii) There is a family of holomorphic mappings ( f̂δ)0<δ< 1
2

such that

f̂δ ∈ O
(
X̂ (Aδ,Bδ;Dδ,Gδ) , Z

)
,

and for 0 < δ1 < δ2 < 1
2 ,

f̂δ1(z, w) = f̂δ2(z, w), (z, w) ∈ Aδ1 × Bδ1 .

(iii) There are an open subset U (resp. V ) of D (resp. G) and a number 0 < δ0 < 1
2

such that ω̃(z,Aδ,Dδ0) + ω̃(w,Bδ,Gδ0) < 1 for all (z, w) ∈ U × V and
0 < δ < δ0.

Then f̂δ(z, w) = f̂δ0(z, w) for all (z, w) ∈ U × V and 0 < δ < δ0.

Proof of Lemma 6.5. Fix δ such that 0 < δ < δ0. By (iii), we have that

U × V ⊂ H := X̂
(
Aδ,Bδ;Dδ0,Gδ0

)
. (6.6)

On the other hand, using (i) and Part 2) of Proposition 3.5, we see that

H ⊂ X̂ (Aδ,Bδ;Dδ,Gδ) ∩ X̂
(
Aδ0,Bδ0;Dδ0,Gδ0

)
.

Using this and (ii), we are able to apply Part 2) of Theorem 3.9 to f̂δ|H and f̂δ0 |H .

Consequently, f̂δ = f̂δ0 on H. This, combined with (6.6), completes the proof of
the lemma. �

Now we are able to to prove Theorem 6.1 in the following special case.

Proposition 6.6. We keep the hypothesis of Theorem 6.1. Suppose in addition that
G is biholomorphic to a domain in Cq (q ∈ N). Then the conclusion of Theorem
6.1 holds.

Proof of Proposition 6.6. For each a ∈ A ∩ A∗, let fa := f |X(A∩Ua ,B;Ua ,G).

Since f ∈ Os(X, Z), we deduce that fa ∈ Os

(
X (A ∩ Ua, B; Ua, G) , Z

)
. Recall

that Ua (resp. G) is biholomorphic to a domain in Cda (resp. in Cq ). Conse-
quently, applying Theorem 2.3 to fa yields that there is a unique mapping f̂a ∈
O

(
X̂ (A ∩ Ua, B; Ua, G) , Z

)
such that

f̂a(z, w)= fa(z, w)= f (z, w), (z, w)∈X
(

A ∩ A∗∩Ua, B∩B∗; Ua, G
)
. (6.7)

Let 0 < δ ≤ 1
2 . In virtue of (6.7), we are able to apply Lemma 6.4 to the family(

f̂a|Ua,δ×Gδ

)
a∈A∩A∗ . Let

˜̃f δ ∈ O(Aδ × Gδ, Z) (6.8)
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denote the collected mapping of this family. In virtue of (6.7)–(6.8), we are able to
define a new mapping f̃δ on X (Aδ, B ∩ B∗; D, Gδ) as follows

f̃δ :=
{

˜̃f δ, on Aδ × Gδ,

f, on D × (B ∩ B∗).

Using this and (6.7)–(6.8), we see that f̃δ ∈ Os

(
X (Aδ, B ∩ B∗; D, Gδ) , Z

)
, and

f̃δ = f on X(A ∩ A∗, B ∩ B∗; D, Gδ). (6.9)

Since Aδ is open and Gδ is biholomorphic to an open set in Cq , we are able to apply

Theorem 4.1 to f̃δ in order to obtain a mapping f̂δ ∈O
(
X̂ (Aδ, B∩B∗; D, Gδ) , Z

)
such that

f̂δ = f̃δ on X
(

Aδ, B ∩ B∗; D, Gδ

)
. (6.10)

We are now in a position to define the desired extension mapping f̂ . Indeed, one

glues
(

f̂δ
)

0<δ≤ 1
2

together to obtain f̂ in the following way

f̂ := lim
δ→0

f̂δ on X̂ . (6.11)

One needs to check that the limit (6.11) exists and possesses all the required proper-
ties. In virtue of (6.9)–(6.11), the fact that Gδ ↗ G as δ ↘ 0 (by (6.1)) and Lemma
6.5, the proof will be complete if we can show that for every (z0, w0) ∈ X̂ , there
are an open neighborhood U × V of (z0, w0) and δ0 > 0 such that the hypothesis
of Lemma 6.5 is fulfilled with

D := D, G :=G, Aδ := Aδ, Bδ := B ∩ B∗, Dδ := D, Gδ :=Gδ, 0<δ<
1

2
.

To this end let

δ0 := 1 − ω̃(z0, A, D) − ω̃(w0, B, G)

2
, (6.12)

and let U × V be an open neighborhood of (z0, w0) such that

ω̃(z, A, D) + ω̃(w, B, G) < ω̃(z0, A, D) + ω̃(w0, B, G) + δ0. (6.13)

Then for 0 < δ < δ0 and for (z, w) ∈ U × V, using (6.12)–(6.13) and invoking
Part 4) of Proposition 3.5, we see that

ω̃(z, Aδ, D) + ω̃(w, B ∩ B∗, Gδ0) ≤ ω̃(z, A, D) + ω̃(w, B, G)

1 − δ0

≤ ω̃(z, A, D) + ω̃(w, B, G)

1 − δ0
< 1.

(6.14)
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This proves the above assertion. Hence, the proof of the proposition is finished. �
We now arrive at

Proof of Theorem 6.1. For each a ∈ A ∩ A∗, let fa := f |X(A∩Ua ,B;Ua ,G). Since

f ∈ Os(X, Z), we deduce that fa ∈ Os

(
X (A ∩ Ua, B; Ua, G) , Z

)
. Since Ua

is biholomorphic to a domain in Cda , we are able to apply Proposition 6.6 to fa .

Consequently, there is a unique mapping f̂a ∈ O
(
X̂ (A ∩ Ua, B; Ua, G) , Z

)
such

that

f̂a(z, w) = f (z, w), (z, w) ∈ X
(

A ∩ A∗ ∩ Ua, B ∩ B∗; Ua, G
)
. (6.15)

Let 0 < δ ≤ 1
2 . In virtue of (6.15), we may apply Lemma 6.4. Consequently, we

can collect the family
(

f̂a|Ua,δ×Gδ

)
a∈A∩A∗ in order to obtain the collected mapping

f̃ A
δ ∈ O(Aδ × Gδ, Z).

Similarly, for each b ∈ B ∩ B∗, one obtains a unique mapping

f̂b ∈ O
(
X̂ (A, B ∩ Vb; D, Vb) , Z

)
such that

f̂b(z, w) = f (z, w), (z, w) ∈ X
(

A ∩ A∗, B ∩ B∗ ∩ Vb; D, Vb
)
. (6.16)

Moreover, one can collect the family
(

f̂b|Dδ×Vb,δ

)
b∈B∩B∗ in order to obtain the

collected mapping f̃ B
δ ∈ O(Dδ × Bδ, Z).

Next, we prove that

f̃ A
δ = f̃ B

δ on Aδ × Bδ. (6.17)

Indeed, in virtue of (6.15)–(6.16) it suffices to show that for any a ∈ A ∩ A∗ and
b ∈ B ∩ B∗ and any 0 < δ ≤ 1

2 ,

f̂a(z, w) = f̂b(z, w), (z, w) ∈ Ua,δ × Vb,δ. (6.18)

Observe that in virtue of (6.15)–(6.16) one has that

f̂a(z, w)= f̂b(z, w)= f (z, w), (z, w)∈X
(

A∩ A∗∩Ua, B∩B∗∩Vb; Ua, Vb
)
.

Recall that Ua (resp. Vb) is biholomorphic to a domain in Cda (resp. Cdb ). Conse-
quently, applying the uniqueness of Theorem 2.3 yields that

f̂a(z, w) = f̂b(z, w), (z, w) ∈ X̂ (A ∩ Ua, B ∩ Vb; Ua, Vb) .

Hence, the proof of (6.18) and then the proof of (6.17) are finished.
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In virtue of (6.17), we are able to define a new mapping f̃δ : X (Aδ,Bδ;Dδ, Gδ) −→
Z as follows

f̃δ :=
{

f̃ A
δ , on Aδ × Gδ,

f̃ B
δ , on Dδ × Bδ.

(6.19)

Using formula (6.19) it can be readily checked that f̃δ ∈Os
(
X(Aδ, Bδ; Dδ, Gδ), Z

)
.

Since we know from (6.2) that Aδ (resp. Bδ) is an open subset of Dδ (resp. Gδ),
we are able to apply Theorem 5.1 to f̃δ for every 0 < δ ≤ 1

2 . Consequently, one

obtains a unique mapping f̂δ ∈ O
(
X̂ (Aδ, Bδ; Dδ, Gδ) , Z

)
such that

f̂δ = f̃δ on X (Aδ, Bδ; Dδ, Gδ) . (6.20)

It follows from (6.15)–(6.16) and (6.19)–(6.20) that

f̂δ = f on X
(

A ∩ A∗, B ∩ B∗; Dδ, Gδ

)
. (6.21)

In addition, for any 0 < δ ≤ δ0 ≤ 1
2 , and any (z, w) ∈ Aδ × Bδ, there is an

a ∈ A ∩ A∗ such that z ∈ Ua,δ0 . Therefore, it follows from the construction of f̃ A
δ ,

(6.19) and (6.20) that

f̂δ(z, w) = f̂a(z, w) = f̂δ0(z, w).

This proves that

f̂δ = f̂δ0 on Aδ × Bδ, 0 < δ ≤ δ0 ≤ 1

2
. (6.22)

We are now in a position to define the desired extension function f̂ .

f̂ := lim
δ→0

f̂δ on X̂.

To prove that f̂ satisfies the desired conclusion of the theorem one proceeds as in
the end of the proof of Proposition 6.6. In virtue of (6.21)–(6.22) and Lemma 6.5,
the proof will be complete if we can verify that for every (z0, w0) ∈ X̂ , there are
an open neighborhood U × V of (z0, w0) and δ0 > 0 such that the hypothesis of
Lemma 6.5 is fulfilled with

D := D, G := G, Aδ := Aδ, Bδ := Bδ, Dδ := Dδ, Gδ := Gδ, 0 < δ <
1

2
.

Since the verification follows along almost the same lines as (6.12)–(6.14), it is
therefore left to the interested reader.

Hence, the proof of the theorem is finished. �
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7. Part 4: Completion of the proof of Theorem A

In this section we prove Theorem A for every N ≥ 3. We divide the proof into two
parts.

7.1. Proof of the existence and uniqueness of f̂

We proceed by induction (I) on N ≥ 3. Suppose the theorem is true for N − 1 ≥ 2.

We have to discuss the case of an N -fold cross X :=X(A1, . . . , AN ; D1, . . . , DN ),

where D1, . . . , DN are complex manifolds and A1 ⊂ D1, . . . , AN ⊂ DN are non
locally pluripolar subsets (1 ≤ j ≤ N ). Let f ∈ Os(X, Z). Observe that the
uniqueness of f̂ follows immediately from Part 2) of Theorem 3.9.

We proceed again by induction (II) on the integer k (0 ≤ k ≤ N ) such that
there are at least k complex manifolds among {D1, . . . , DN } which are biholomor-
phic to Euclidean domains.

For k = N we are reduced to Theorem 2.3.
Suppose that Theorem A is true for the case where k = k0 (1 ≤ k0 ≤ N ). We

have to discuss the case where k = k0 − 1. Suppose without loss of generality that
D2 is not biholomorphic to an Euclidean domain.

For any 1 ≤ j ≤ N and a j ∈ A j ∩ A∗
j , one fixes an open neighborhood Ua j of

a j such that Ua j is biholomorphic to a domain in C
da j , where da j is the dimension

of D j at a j . For 1 ≤ j ≤ N and for any 0 < δ < 1, define

Ua j ,δ := {
z j ∈ Ua j : ω̃(z j , A j ∩ Ua j , Ua j ) < δ

}
, a j ∈ A j ∩ A∗

j ,

A j,δ :=
⋃

a j ∈A j ∩A∗
j

Ua j ,δ,

D j,δ := {
z j ∈ D j : ω̃(z j , A j , D j ) < 1 − δ

}
.

(7.1)

For every a1 ∈ A1 ∩ A∗
1, consider the mapping fa1 provided by

fa1 (z2, . . . , zN ) := f (a1, z2, . . . , zN ) ,

(z2, . . . , zN ) ∈ X

(
A2, . . . , AN ; D2, . . . , DN

)
.

Observe that in virtue of the above formula and the hypothesis that f ∈ Os(X, Z),

fa1 satisfies the hypothesis of Theorem A for (N−1)-cross. Consequently, applying
the hypothesis of induction (I), we obtain a unique mapping

f̂a1 ∈ O
(
X̂ (A2, . . . , AN ; D2, . . . , DN ) , Z

)
such that

f̂a1 (z2, . . . , zN ) = f (a1, z2, . . . , zN ) ,

(z2, . . . , zN ) ∈ X

(
A2 ∩ A∗

2, . . . , AN ∩ A∗
N ; D2, . . . , DN

)
. (7.2)
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For every a2 ∈ A2 ∩ A∗
2, consider the mapping fa2 provided by

fa2 (z1, z2, z3, . . . , zN ) := f (z1, z2, z3, . . . , zN ) ,

(z1, z2, z3, . . . , zN ) ∈ X

(
A1, A2 ∩ Ua2, A3, . . . , AN ; D1, Ua2, D3, . . . , DN

)
.

Recall that Ua2 is biholomorphic to an Euclidean domain, but D2 is not so. There-
fore, in virtue of the above formula and the hypothesis that f ∈ Os(X, Z), we may
apply the hypothesis of induction (II) to fa2 . Consequently, one obtains a unique
mapping

f̂a2 ∈ O
(
X̂

(
A1, A2 ∩ Ua2, A3, . . . , AN ; D1, Ua2, D3, . . . , DN

)
, Z

)
such that

f̂a2 (z1, z2, z3, . . . , zN ) = f (z1, z2, z3, . . . , zN ) , (7.3)

(z1, z2, z3, . . . , zN )

∈X

(
A1∩ A∗

1, A2∩ A∗
2∩Ua2, A3∩ A∗

3, . . . ,AN ∩ A∗
N ; D1,Ua2,D3, . . . ,DN

)
.

We need the following

Lemma 7.1. We keep the hypothesis of Theorem A and the above notation. Then
for any a1 ∈ A1 ∩ A∗

1, a2 ∈ A2 ∩ A∗
2, and any 0 < δ < 1

N ,

f̂a1 (z2, z3, . . . , zN ) = f̂a2 (a1, z2, z3, . . . , zN ) ,

(z2, z3, . . . , zN ) ∈ Ua2,δ × A3,δ × · · · × AN ,δ.

Proof of Lemma 7.1. Let a1, a2 be as in the statement of Lemma 7.1. In virtue of
(7.2)–(7.3),

f̂a2 (a1, z2, z3, . . . , zN ) = f (a1, z2, z3, . . . , zN ) = f̂a1 (z2, z3, . . . , zN ) ,

(z2, z3, . . . , zN )∈X

(
A2∩A∗

2∩Ua2, A3∩A∗
3, . . . , AN ∩A∗

N ; Ua2, D3, . . . , DN

)
.

Consequently, applying Part 2) of Theorem 3.9 to f̂a1 and f̂a2(a1, ·) yields that

f̂a1 (z2, z3, . . . , zN ) = f̂a2 (a1, z2, z3, . . . , zN ) ,

(z2, z3, . . . , zN ) ∈ X̂

(
A2 ∩ Ua2, A3, . . . , AN ; Ua2, D3, . . . , DN

)
. (7.4)

Moreover, since 0 < δ < 1
N , it follows from (7.1), (6.2), and a straightforward

computation that

Ua2,δ × A3,δ × · · · × AN ,δ ⊂ X̂

(
A2 ∩ Ua2, A3, . . . , AN ; Ua2, D3, . . . , DN

)
.

This, combined with (7.4), implies the desired conclusion of the lemma. �
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In the sequel we always suppose that 0 < δ < 1
N . In virtue of (7.3), Part 1) of

Theorem 3.9 and Definition 6.3, we are able to collect the family of mappings(
f̂a2 |D1,Nδ×Ua2,δ×A3,δ×···×AN ,δ

)
a2∈A2∩A∗

2

in order to obtain the collected mapping

˜̃f δ ∈ O
(

D1,Nδ × A2,δ × · · · × AN ,δ, Z
)
. (7.5)

Let

Xδ := X

(
A1 ∩ A∗

1, A2,δ × · · · × AN ,δ; D1,Nδ, X̂ (A2, . . . , AN ; D2, . . . , DN )
)
,

X̂δ := X̂

(
A1 ∩ A∗

1, A2,δ × · · · × AN ,δ; D1,Nδ, X̂ (A2, . . . , AN ; D2, . . . , DN )
)
.

(7.6)

In virtue of Lemma 7.1 and the construction (7.5), we are able to define a new
mapping f̃δ : Xδ −→ Z as follows

f̃δ(z) :=
{ ˜̃f δ(z), z ∈ D1,Nδ × A2,δ × · · · × AN ,δ,

f̂z1, z ∈ (A1 ∩ A∗
1) × X̂(A2, . . . , AN ; D2, . . . , DN ),

(7.7)

where z = (z1, . . . , zN ) ∈ Xδ.

Using (7.7), (7.2) and (7.5), it can be readily checked that f̃δ ∈ Os(Xδ). In
addition, using (7.6) we have that Xδ ∩ X∗

δ = Xδ. Consequently, for every 0 < δ <
1
N , one applies Theorem 6.1 to f̃δ and obtain a unique mapping f̂δ ∈ O

(
X̂δ

)
such

that
f̂δ = f̃δ on Xδ. (7.8)

Finally, gluing
(

f̂δ
)

0<δ< 1
N

, we can define the desired extension mapping f̂ by the

formula
f̂ := lim

δ→0
f̂δ on X̂ . (7.9)

Next, we argue as in the proof of Theorem 6.1. More precisely, one checks that the
hypothesis of Lemma 6.5 is fulfilled with

D := D1,

G := X̂ (A2, . . . , AN ; D2, . . . , DN ) ,

Aδ := A1 ∩ A∗
1,

Bδ := A2,δ × · · · × AN ,δ,

Dδ := D1,Nδ,

Gδ := X̂ (A2, . . . , AN ; D2, . . . , DN ) ,

for 0 < δ < 1
N .
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To do this let

� := X̂
(

A2,δ, . . . , AN ,δ; D2, . . . , DN
)
,

�Nδ :=
{

z
′ ∈ � : ω̃

(
z

′
, A2,δ × · · · × AN ,δ, �

)
< 1 − Nδ

}
.

Applying inequality (6.3), one gets

N∑
j=2

ω̃(z j , A j , D j )<

N∑
j=2

ω̃(z j , A j,δ, D j ) + Nδ < 1, z
′ =(z2, . . . , zN ) ∈ �Nδ.

Hence, �Nδ ⊂ X̂ (A2, . . . , AN ; D2, . . . , DN ) , which, in virtue of Part 2) of
Proposition 3.5, implies that

ω̃
(

z
′
, A2,δ × · · · × AN ,δ, X̂ (A2, . . . , AN ; D2, . . . , DN )

)
≤ ω̃

(
z

′
, A2,δ × · · · × AN ,δ, �Nδ

)
, z

′ ∈ �Nδ. (7.10)

On the other hand, in virtue of Part 2) of Proposition 3.7, we have that

ω̃
(

z
′
, A2,δ × · · · × AN ,δ, �

)
=

N∑
j=2

ω̃(z j , A j,δ, D j ), z
′ = (z2, . . . , zN ) ∈ �.

(7.11)

By Part 4) of Proposition 3.5,

ω̃
(

z
′
, A2,δ × · · · × AN ,δ, �Nδ

)
=

ω̃
(

z
′
, A2,δ × · · · × AN ,δ, �

)
1 − Nδ

, z
′ ∈ �Nδ.

This, combined with (7.10)–(7.11), implies that

ω̃
(

z
′
, A2,δ× · · ·× AN ,δ, X̂ (A2, . . . , AN ; D2, . . . , DN )

)
≤

N∑
j=2

ω̃
(

z j , A j,δ, D j

)
1 − Nδ

.

(7.12)

For every z0 = (z0
1, z0′

) ∈ X̂ , let δ0 :=
1−

N∑
j=1

ω̃(z0
j ,A j ,D j )

2N and fix an open neighbor-
hood U × V of z0 such that

N∑
j=1

ω̃(z j , A j , D j ) < δ0 +
N∑

j=1

ω̃(z0
j , A j , D j ), z = (z1, z

′
) ∈ U × V .
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Then, using the latter estimate and (7.12) and Part 4) of Proposition 3.5, we see that

ω̃
(
z1, A1∩ A∗

1, D1,Nδ0

)+ω̃
(

z
′
, A2,δ×· · ·×AN ,δ, X̂(A2, . . . , AN ; D2, . . . , DN )

)

≤

N∑
j=1

ω̃(z0
j , A j , D j ) + δ0

1 − Nδ0
< 1.

for z = (z1, z
′
) ∈ U × V and 0 < δ ≤ δ0. Consequently, we are able to apply

Lemma 6.5.
We complete the proof as follows. An immediate consequence of Lemma 6.5

and formula (7.9) is that f̂ ∈ O
(
X̂ , Z

)
. Moreover, by (7.2)–(7.3) and (7.6)–(7.9),

and using the fact that D1,Nδ ↗ D1 as δ ↘ 0 (see (7.1)), we conclude that f̂ = f
on the following set

(A1 ∩ A∗
1) × X

(
A2 ∩ A∗

2, . . . , AN ∩ A∗
N ; D2, . . . , DN

)⋃
D1 × (A2 ∩ A∗

2) × · · · × (AN ∩ A∗
N ).

Since this set is equal to X ∩ X∗, it follows from Theorem 3.10 that the mapping
f̂ provided by formula (7.9) possesses all the desired properties. This completes
induction (II) for k = k0 − 1. Hence, the proofs of induction (II), induction (I) and
then the first part of the theorem are finished. �

7.2. Proof of the estimate in Theorem A

Following the work in [28] we divide this part into two steps.

Step 1. Proof of the inequality | f̂ |X̂ ≤ | f |X .

Proof of Step 1. In order to reach a contradiction assume that there is a point
z0 ∈ X̂ such that | f̂ (z0)| > | f |X . Put α := f̂ (z0) and consider the function

g(z) := 1

f (z) − α
, z ∈ X. (7.13)

Using the above assumption, we clearly have that g ∈ Os(X, C). Hence by Subsec-
tion 8.1, there is exactly one function ĝ ∈ O(X̂ , C) with ĝ = g on X. Therefore,
by (7.13) we have on X : g( f − α) ≡ 1. Thus ĝ( f̂ − α) ≡ 1 on X̂ . In particular,

0 = ĝ(z0)( f̂ (z0) − α) = 1,

which is a contradiction. Hence the inequality | f̂ |X̂ ≤ | f |X is proved. Thus Step 1
is complete. �
Step 2. Proof of the inequality

| f̂ (z)| ≤ | f |1−ω(z)
A | f |ω(z)

X . (7.14)
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Proof of Step 2. We prove (7.14) by induction on N . When N = 1, then applying
Theorem 3.11 to the plurisubharmonic function z ∈ D1 �→ log | f̂ (z)|, (7.14) fol-
lows. Suppose that (7.14) is true for N − 1. We would like to prove it for N . Fix an
arbitrary point z0 = (

z0
1, . . . , z0

N

) ∈ X̂ . Let

δ :=
N∑

j=2

ω̃(z0
j , A j , D j ). (7.15)

For any a1 ∈ A1 ∩ A∗
1, we apply the hypothesis of induction to the function f̂a1 and

obtain the estimate

| f̂a1

(
z0

2, . . . , z0
N

)
| ≤ | f |1−δ

A | f |δX . (7.16)

In virtue of (7.7)–(7.9), we obtain that

f̂a1

(
z0

2, . . . , z0
N

)
= f̂

(
a1, z0

2, . . . , z0
N

)
, a1 ∈ A1 ∩ A∗

1.

This, combined with (7.16), implies that∣∣∣ f̂
(
·, z0

2, . . . , z0
N

)∣∣∣
A1∩A∗

1

≤ | f |1−δ
A | f |δX . (7.17)

On the other hand, ∣∣∣ f̂
(
·, z0

2, . . . , z0
N

)∣∣∣
D1,δ

≤ | f̂ |X̂ ≤ | f |X , (7.18)

where the latter estimate follows from Step 1.

Applying Theorem 3.11 to the function log
∣∣∣ f̂

(·, z0
2, . . . , z0

N

)∣∣∣∣∣∣
D1,δ

, and tak-

ing (7.17) and (7.18) into account, we obtain

| f̂ (z0)|≤
∣∣∣ f̂

(
·, z0

2, . . . , z0
N

)∣∣∣1−ω̃(z0
1,A1∩A∗

1,D1,δ)

A1∩A∗
1

∣∣∣ f̂
(
·, z0

2, . . . , z0
N

)∣∣∣ω̃(z0
1,A1∩A∗

1,D1,δ)

D1,δ

= | f |1−ω(z0)
A | f |ω(z0)

X ,

where the equality follows from (7.15) and the identity ω̃(z0
1, A1 ∩ A∗

1, D1,δ) =
ω̃(z0

1,A1∩A∗
1,D1)

1−δ
(by Part 4) of Proposition 3.5). Hence estimate (7.14) for the point

z0 is proved. Since z0 is an arbitrary point in X̂ , (7.14) follows, and the proof of the
estimate in Theorem A is thereby finished. �

Combining the result of Subsections 7.1 and 7.2, Theorem A follows. �
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Finally, we conclude the article by some remarks and open questions.

1. Recent development in the theory of separately analytic mappings is charac-
terized by cross theorems with pluripolar singularities and boundary cross the-
orems. The most general results are contained in some articles of Jarnicki and
Pflug (see [12, 13, 14]) and in recent works of Pflug and the author (see [28, 29]).
The question naturally arises whether one can generalize these results in the
context of mappings defined on complex manifolds with values in a complex
analytic space. We postpone this issue to an ongoing work.

2. Is Theorem A in the case where Z := C optimal? In other words, is the open
set X̂ always the envelope of holomorphy for separately holomorphic functions
defined on X?
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les fonctions séparément analytiques, In: “Analyse Complexe Multivariable, Récents
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[24] NGUYÊN THANH VÂN et A. ZERIAHI, Systèmes doublement orthogonaux de fonctions
holomorphes et applications, Banach Center Publ. 31, Inst. Math., Polish Acad. Sci.
(1995), 281–297.

[25] P. PFLUG, Extension of separately holomorphic functions–a survey 1899–2001, Ann.
Polon. Math. 80 (2003), 21–36.

[26] E. A. POLETSKY, Plurisubharmonic functions as solutions of variational problems, In:
“Several complex variables and complex geometry”, Proc. Summer Res. Inst., Santa
Cruz/CA (USA) 1989, Proc. Symp. Pure Math. 52, Part 1 (1991), 163–171.

[27] E. A. POLETSKY, Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85–144.
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