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Vitali properties of Banach analytic manifolds
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Abstract. We discuss possible generalizations of Vitali convergence theorem
when the source and the target are Banach analytic manifolds. These results are
then applied to study the behavior of holomorphic mappings between Banach
analytic manifolds. Explicit examples of manifolds having Vitali properties are
also provided.
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1. Introduction

The classical Vitali theorem states that a sequence { fk} of holomorphic functions
defined on a domain D in C is uniformly convergent on compact sets if it is locally
uniformly bounded and if it converges pointwise only on some set having an accu-
mulation point in D. There are two ingredients in the proof. Firstly, by Montel’s
theorem, the sequence { fk} is relatively compact in the compact open topology and
secondly, using the uniqueness property of holomorphic functions, we conclude that
two accumulation points of the sequence { fk}must coincide on D. Observe that it is
rather straightforward to generalize Vitali’s theorem to (scalar valued) holomorphic
functions of several variable. For vector-valued holomorphic functions, Montel’s
theorem is not valid, therefore it does not seem easy to find an analogue of Vitali
theorem in this more general setting. Nevertheless, by making use of the notion
of weak holomorphicity together with some elementary but quite ingenious argu-
ments, Arendt and Nikolski provide in [1] a correct generalization of Vitali theorem
for holomorphic functions defined on domains in C with values in complex Banach
spaces. The aim of this paper is to explore possible versions of Vitali theorems in
a general setting where the source and the target spaces are assumed to be Banach
analytic manifolds.
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Now, we will shortly review basic notions that are pertaining to our work. By
a Banach analytic manifold we mean a connected topological space in which each
point has a neighborhood homeomorphic to an open set in a Banach space such that
the transition maps are holomorphic between open sets of Banach spaces. Thus,
Banach analytic manifolds encompass two objects of different character: (finite di-
mensional) complex manifolds and (infinite dimensional) complex Banach spaces.

Roughly speaking, we say that a Banach analytic manifold X has the Vitali
property if for every (connected) Banach analytic manifold A and every sequence
{ fk} of holomorphic mappings from A into X that converges only pointwise on
a “sufficiently large” subset of A then { fk} must converge uniformly on compact
sets of A. For clarity of the exposition, we introduce Banach analytic manifolds
with weak Vitali property (WVP) and strong Vitali property (SVP) depending on
the nature of the set where pointwise convergence of { fk} occurs. Even though,
we do not know if the two properties are really different, there are certainly some
advantages in studying them. We now briefly outline the content of the paper. The
first part concentrates on manifolds having Vitali properties and on applications to
the study behavior of holomorphic mappings between Banach analytic manifolds.
Our first main results is Theorem 3.1 which says that every Banach analytic man-
ifold having WVP must be (Kobayashi) hyperbolic. This result brings in naturally
hyperbolic Banach analytic manifolds into our study. In the opposite direction,
we show in Theorem 3.3 that every complete hyperbolic Banach analytic manifold
has SVP. The proof relies strongly on a vector valued version of Vitali’s theorem
which is inspired from the work of Arendt and Nikolski in [1] mentioned above. We
also relate our Vitali properties with some sorts of taut property of Banach analytic
manifolds. Recall that the classical taut property (see [7, page 239]) is defined for
(finite dimensional) complex manifolds and it describes the behavior of sequences
of holomorphic mappings from the unit disk 1 ⇢ C into the complex manifold
under consideration.

Our Vitali properties serve as convenient tools to check tautness of complex
manifolds and Banach analytic manifolds. This fact is reflected in Theorem 3.10
which says that every sequence of holomorphic maps from a connected separable
Banach analytic manifold A into a Banach analytic manifold X having WVP must
contain a subsequence which is either convergent or compactly divergent on an open
dense subset of A. Under the stronger assumption that the target manifold X has
SVP and the source manifold is just the unit disk 1, we show in Theorem 3.11 that
the compactly divergence phenomenon may only occur outside a discrete subset of
1. We should mention that, in the literature, there are some attempts to generalize
the classical taut property for Banach analytic manifolds (see [4–6]). It should be,
however, noted that our proofs, unlike those in [4–6], are quite constructive, in the
sense that we avoid to use Zorn’s lemma.

The second part of the work focuses on finding explicit classes of manifolds
X having WVP and SVP. The key idea is to impose the existence of certain (non-
constant) negative plurisubharmonic function ' on X , and under certain additional
assumptions we get Vitali property of the whole space X if each sublevel set de-
termined by ' has this property. This principle is carried out in Theorem 4.1 (for
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WVP of Banach analytic manifolds) and Theorem 4.4 (for SVP of open subsets
of Banach spaces). Furthermore, we also give, in the last two results, somewhat
complete characterizations for Vitali properties of Hartogs domains (over Banach
analytic manifolds) and balanced domains in Banach spaces. The paper ends up by
giving a list of open questions that are connected to our work. Finally, we should
say that in the recent work [3], the authors also study SVP and WVP in terms of
locality of these properties. Moreover, the invariance of SVP and WVP under holo-
morphic mappings is discussed as well.

ACKNOWLEDGEMENTS. We are grateful to an anonymous referee for his/her com-
ments that significantly improve the exposition of this paper.

2. Basic notions and notation

We introduce below certain notion that are needed for formulating Vitali properties.
Notation. (a) Let A be a Banach analytic manifold and S be a subset of A. We let

Su := {z 2 A \ S : 8 U connected neighborhood of z
and every holomorphic function f : U �! C, f |U\S = 0 ) f |U = 0}.

(b) Given Banach analytic manifolds A and X , by Hol(A, X) we mean the set of
holomorphic mappings from A into X . We then equip Hol(A, X)with the compact-
open topology. According to a result of Palais in [8], a Banach analytic manifold
is metrizable if and only if it is paracompact. So, in the case where A and X are
both paracompact, the compact-open topology on Hol(A, X) is equivalent to the
topology of locally uniformly convergence.

(c) Let A,X be Banach analytic manifolds and { fk} be a sequence in Hol(A,X).
We denote by Z{ fk} the set of points � 2 A such that { fk(�)} is convergent to an
element in X .

It is easy to check that Su is a closed subset of S̄. Moreover, S \ Su is locally
contained in an analytic hypersurface, i.e., for every a 2 S \ Su , there exists a
connected neigborhood U of a and a holomorphic function g on U such that gt ⌘
0, g|S\U ⌘ 0.
Now we come the central notions of this paper.
Definition 2.1. Let X be a Banach analytic manifold. We say that:

(a) X has the strong Vitali property (SVP for short ) if for every (connected) Ba-
nach analytic manifold A and every sequence { fk}k�1 ⇢ Hol(A, X) such that
Zu{ fk} 6= ; we have { fk}k�1 is convergent in Hol(A, X);

(b) X has the weak Vitali property (WVP for short) if for every (connected) Ba-
nach analytic manifold A and every sequence { fk}k�1 ⇢ Hol(A, X) such that
Z{ fk} \ Zu{ fk} 6= ; we have { fk}k�1 is convergent in Hol(A, X);
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(c) In the particular case where the above properties are true for A = 1, we say
that X has 1-WVP and 1-SVP respectively.

Remarks 2.2. (a) In the special case where A = 1, Zu{ fk} is exactly the set of
accumulation points of Z{ fk}.

(b) We construct a sequence of polynomials {pk} on C such that Zupk 6= ; but
Z{pk} \ Zu{pk} = ;. For k � 1, we let Uk and Vk be disks in C with disjoint closures
such that 0 2 Uk and [1/k, 1] ⇢ Vk . By Runge’s approximation theorem we can
find a polynomial pk on C such that

|pk(z)| > 1/2, 8z 2 Uk; kpkVk < 1/k.

It is then clear that 0 2 Zu{pk} but 0t 2 Zu{pk}.
(c) In spite of the above example, we will show in Corollary 3.13 and The-

orem 3.14 that in the categories of complex manifolds (respectively bounded do-
mains in Banach spaces), the two notions 1-WVP and 1-SVP (respectively WVP
and SVP) are equivalent. Unfortunately, we do not even know if there exists a
(unbounded) domain in a (infinite dimensional) Banach space having the 1-WVP,
which does not have 1-SVP.
The main technical tool in our paper is the Kobayashi pseudo-distance defined on a
Banach analytic manifold X . Analogously as in the case where X is a finite dimen-
sional complex manifold (see [7, page 50]) or a Banach space (see [3, page 81]),
the pseudo-distance X (p, q) is defined to be the infimum of the length of all holo-
morphic chains joining p, q 2 X. More precisely, by a holomorphic chain from
p to q we mean a chain of points p = p0, p1, · · · , pk = q of X, pairs of points
a1, b1, · · · , ak, bk of 1 and holomorphic maps f1, · · · , fk 2 Hol(1, X) such that

fi (ai ) = pi�1, fi (bi ) = pi , 1  i  k.

Denote this chain by ↵, then the length of ↵ is defined to be

l(↵) := ⇢1(a1, b1) + · · · ⇢1(ak, bk),

where ⇢1 is the Poincare distance on 1.
Definition 2.3. The Kobayashi pseudo-distance between p and q is defined by

X (p, q) := inf
↵
l(↵),

where the infimum is taken over all holomorphic chains ↵ connecting p and q.
By the same proof as in the case of complex manifolds (see [7, Proposition

3.1.7]), we can show that X is decreasing under holomorphic maps i.e., if f :
X ! Y is a holomorphic mapping between Banach analytic manifolds X,Y then

Y ( f (p), q(q))  X (p, q), 8p, q 2 X.

Moreover, X is the largest pseudo-distance on X having this property.
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Then, as it is customary, we say that X is hyperbolic if X is a distance and
defines the topology of X . Notice that, in contrast to the case where X is finite
dimensional, X may be a distance without defining the topology of X even in the
case where X is a domain in a Banach space (see [3, page 93]). Furthermore, X is
said to be complete hyperbolic if every X� Cauchy sequence in X is convergent.
By [2, Proposition 6.9] (see also [6, Proposition 3.6]) we know that every bounded
convex domain� in a Banach space is complete hyperbolic. Hence, all open subsets
of � are hyperbolic. In particular, each bounded open subset of a Banach space is
hyperbolic.

We recall the notion of normality of holomorphic mappings between Banach ana-
lytic manifolds when the target space is of finite dimension. This property will be
relevant to our Vitali properties in the category of complex manifolds (see Theo-
rem 3.14 in the next section).

Definition 2.4. Let A be a connected Banach analytic manifolds and X be a com-
plex manifolds. We say that Hol(A, X) is normal if for every sequence { fk}k�1 ⇢
Hol(A, X) there is a subsequence { fk j } having one of the following properties:

(a) fk j is convergent in Hol(A, X);
(b) fk j is compactly divergent, i.e., for every compact subsets K ⇢ A and L ⇢ X ,

there exists j0 such that fk j (K ) \ L = ; for all j � j0.

We will see that the notion of normality does not generalize in the expected fashion
when X is a general (infinite dimensional) Banach analytic manifold (see the remark
following Theorem 3.10).

The final ingredient needed in our work is the concept of plurisubharmonic
function on Banach analytic manifold. More precisely, we say that ' : A !
[�1,1) (where A is a Banach analytic manifold) is plurisubharmonic if for every
a 2 A, there exists a neigborhood U of a such that U is isomorphic to a ball B in a
Banach space E and that ', regarded as a function on B, is plurisubharmonic in the
classical sense (see [3, page 62]), i.e., ' is upper semicontinuous and the restriction
of ' on the intersection of B with each complex line in E is subharmonic. Notice
that we allow the function ' ⌘ �1 to be plurisubharmonic. We will frequently
refer to the following maximum principle: Let A be a connected Banach analytic
manifold and ' be a plurisubharmonic function on A. Suppose that there exists
x0 2 A such that '(x0) = maxA '. Then '|A ⌘ '(x0).

Throughout this paper, for r > 0, we will write 1(0, r) for the disk in C with
center 0 and radius r .

3. Main results

Our first result states, in spirit, that hyperbolicity of the target manifold is the right
substitute for the uniform boundedness assumption given in the classical Vitali the-
orem.
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Theorem 3.1. Every Banach analytic manifold X having the 1-WVP is hyperbolic.

The proof relies heavily on the following lemma which is a slight modification of a
result of Kiernan (see [7, Lemma 5.1.4]).

Lemma 3.2. Let Y be a Banach analytic manifold and x 2 Y. LetU, V,W be open
subsets of Y such that x 2 V ⇢ V ⇢ U,U \ W = ; and U is hyperbolic. Assume
that there exists � 2 (0, 1) such that for every f 2 Hol(1,Y ) with f (0) 2 V we
have f (1(0, �)) ⇢ U. Then Y (x,W ) > 0.

Proof. Choose a constant c(�) > 0 such that

⇢1(0, b) � c(�)⇢1(0,�)(0, b), 8b 2 1(0, �/2).

Fix an arbitrary point y 2 W with Y (x, y) < �/2. Consider a holomorphic chain

↵ := {x = x0, x1, · · · , xl = y; a1, b1, · · · , al , bl 2 1; f1, · · · , fl 2 Hol(1,Y )}

that joins x and y such that

l(↵) = ⇢1(a1, b1) + · · · + ⇢1(al , bl) < �/2.

It follows that ⇢1(a j , b j ) < �/2 for every 1  j  l. By composing with Möebius
transformations of 1, we may arrange so that a1 = · · · = al = 0, and hence
b1, · · · , bl 2 1(0, �/2). Let k be the integer such that x1, · · · , xk�1 2 V but xkt 2
V . By taking a refinement of ↵ (see [7, page 51]), we may assume further that
xk 2 U. Since f1(0) = x0, · · · , fk(0) = xk�1 are all in V , by the assumption
f1(1(0, �)), · · · , fk(1(0, �)) are all included in U . Hence, the length l(↵) of ↵
may be estimated from below as follows:

l(↵) �
kX

i=1
⇢1(0, bi ) � c(�)

kX

i=1
⇢1(0,�)(0, bi )

� c(�)
kX

i=1
U (xi�1, xi ) � c(�)U (x, xk) � c(�)U (x,U \ V ).

Here, the third inequality follows by applying the distance decreasing property to
the map fi : 1(0, �) ! U. This implies that

Y (x, y) � c0(�) := c(�)U (x,U \ V ) > 0.

The latter estimate follows from the fact that U defines the topology of U . It
follows that

Y (x,W ) � min{�/2, c0(�)} > 0.

Hence, we are done.
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Proof of Theorem 3.1. First, let {xn} be a sequence in X such that xn ! x in the
initial topology of X . Let U be a neigborhood of x which is isomorphic to some
ball in a Banach space. In particular, U is hyperbolic. Then for n large enough, we
have

X (xn, x)  U (xn, x) ! 0, as n ! 1.

Here the last statement follows from the hyperbolicity of U. Conversely, we fix
x 2 X and a sequence {xn} 2 X such that X (xn, x) ! 0 as n ! 1. We must
show that xn ! x in the original topology of X. Assume this is false, then by
passing to a subsequence, we can find an open neigborhood U of x and an open
neigborhood W of {xn} such that U \ W = ;. Furthermore, we can take U to be
hyperbolic. Then we have X (x,W ) = 0. We also let {Vn} ⇢ X be a sequence of
open neigborhoods of x such that Vn # x . Next, we choose a sequence {�n}n�0 # 0
such that �0 = 1/2, �1 = 1/3 and

�n+1 < min

(
1
n
, rn := �n

n�1Y

j=0

� j � �n

1� � j�n

)

, 8n � 1.

It follows that rn+1 < �n+1 < rn. In particular, rn # 0. Using Lemma 3.2, we
obtain a sequence { fn} ⇢ Hol(1, X) and points an 2 1(0, rn) such that

fn(0) 2 Vn, fn(an)t ⇢ U, 8n � 1.

We also set for each n � 1 the following finite Blaschke product

✓n(�) :=
an
rn
�
n�1Y

j=0

� j � �

1� � j�
, 8� 2 1.

Then ✓n 2 Hol(1,1). Moreover, we have

✓n(0) = ✓n(� j ) = 0, 80  j  n � 1; ✓n(�n) = an.

Finally, we define for each n � 1

gn := fn � ✓n 2 Hol(1, X).

Then by the reasoning used above we have

gn(� j ) = gn(0) = fn(0), 8n � 1,80  j  n � 1.

This implies that

lim
n!1

gn(0) = lim
n!1

gn(� j ) = lim
n!1

fn(0) = x 8 j � 0.

Since X has the 1-WVP and since �n # 0, we infer that {gn}n�1 converges in
Hol(1, X). In particular, there exists a small disk1(0, r0) such that gn(1(0, r0)) ⇢
U for n large enough. This is impossible, since gn(�n) = fn(an) stays away from
U for every n � 1. The proof is thereby completed.
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Remarks. (a) There exists a bounded Reinhardt domain X in C2 that does not
have 1-WVP. Indeed, let X is the punctured unit polydisc in C2, i.e., X := 12 \
{(0, 0)}. Let {ak} 2 1 be a sequence of distinct points such that ak ! a 2 1 \
{0, 1/2, 1/3, · · · , 1/j, · · · }. Let fk : 1 ! X, k � 1 be defined by

fk(�) :=

✓
ak � �

1� �āk
,
ak+1 � �

1� �āk+1

◆
, � 2 1.

Then fk 2 Hol(1, X). It is also easy to check that fk(�) converges uniformly on
compact sets of 1 to

f (�) :=

✓
a � �

1� �ā
,
a � �

1� �ā

◆
.

In particular fk(1/j) ! f (1/j) 2 X, fk(0) ! f (0) 2 X as k ! 1. Notice,
however, that fk(a) ! f (a) = (0, 0)t 2 X. Thus X does not have 1-WVP.

(b) The above domain is not pseudoconvex. In fact, we will show that every
domain having WVP in Cn must be pseudoconvex. See the remark after Theo-
rem 3.14. On the other hand, there exists a bounded pseudoconvex domain in C2
which does not have WVP (see the remark following Proposition 4.5).

Our next main result provides, on the positive side, a partial converse to Theo-
rem 3.1.

Theorem 3.3. Let X be a complete hyperbolic Banach analytic manifold. Then X
has SVP. In particular, every compact hyperbolic manifold has SVP.

For the proof of Theorem 3.3 we need some lemmas. The first one is essentially
taken from [6].

Lemma 3.4. Let A, X be Banach analytic manifolds and { fk} ⇢ Hol(A, X). As-
sume that X is hyperbolic. Then the sequence { fk(�)} is a X -Cauchy sequence in
X for every � 2 Z{ fk}.

Proof. Choose a sequence {� j } ⇢ Z{ fk} such that lim j!1 � j = �. By the decreas-
ing property of Kobayashi distance, for every k, j,m � 1 we obtain

X
�
fk(�), fm(�)

�
X

�
fk(�), fk(� j )

�
+X

�
fk(� j ), fm(� j )

�
+X

�
fm(� j ), fm(�)

�

2A(� j , �) + A
�
fk(� j ), fm(� j )

�
.

Hence, { fk(�)} is a X -Cauchy sequence in X .

The next lemma, a variant of Vitali’s theorem for holomorphic vector-valued
functions, is essentially contained in [1, Theorem 2.1]. We include it here for the
sake of completeness.
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Lemma 3.5. Let E, F be Banach spaces and � be an open subset of E . Let { fk}
be a sequence in Hol(�, F) that satisfies the following conditions:

(i) { fk} is locally uniformly bounded on �;
(ii) Z{ fk} is a set of uniqueness for Hol(�, C), i.e., every holomorphic function

g : � ! C that vanishes on Z{ fk} must be identically 0.

Then { fk} converges in Hol(�, F).

Proof. Let l1(F) be the space of bounded sequences in F equipped with the sup
norm and c(F) be the closed subspace of convergent sequences in F . Define the
map

f : � ! l1(F), f (z) = ( f1(z), · · · , fk(z), · · · ).

We split the proof into some steps.

Step 1. We show that f is holomorphic on �. First, we treat the case where n = 1.
Fix z0 2 1. Since { fk} is locally uniformly bounded, by Cauchy’s inequalities we
infer that ↵ := ( f 0

1(z0), · · · , f 0
k(z0), · · · ) 2 l1(F). Now we claim that f 0(z0) = ↵.

Using Cauchy integral formula we obtain, for h small enough

1
h
( fk(z0 + h) � fk(z0)) � f 0

k(z0) =
h
2⇡ i

Z

|z|=r

fk(z)
(z � z0)2(z � z0 � h)

dz,

where r 2 (0, 1) is chosen such that |z0| < r, |z0| + |h| < r. Since fk is locally
uniformly bounded, we have

M := sup
k�1,|z|=r

k fk(z)k < 1.

It follows that
�
�
�
�
1
h
( fk(z0 + h) � fk(z0)) � f 0

k(z0)
�
�
�
� 

|h|M
(r � |z0|)2(r � |z0| � |h|)

, 8k � 1.

So
lim
h!0

sup
k�1

�
�
�
�
1
h
( fk(z0 + h) � fk(z0)) � f 0

k(z0)
�
�
�
� = 0.

This implies f 0(z0) = ↵ as claimed. Thus f is holomorphic on �. For the general
case, by the above argument, f is Gâteaux holomorphic on �. Since f is locally
bounded, we infer that f is indeed holomorphic on �, see [2, Corollary II.5.5].

Step 2. Let ✓ : l1(F) ! l1(F)/c(F) be the canonical projection map. We will
show that the map f ⇤ := ✓ � f from � to the Banach space F̃ := l1(F)/c(F) is
identically 0. Indeed, obviously f ⇤ is holomorphic. Moreover, by the assumption
we easily get f ⇤ = 0 on Z{ fk}. It follows µ � f ⇤ = 0 on Z{ fk} for every µ 2 F̃ 0,

the dual space of F̃ . Since µ � f ⇤ is a scalar holomorphic function on � and since
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Z{ fk} is a set of uniqueness for Hol(�, C), we conclude that µ � f ⇤ ⌘ 0 on �. By
the Hahn-Banach theorem, f ⇤ = 0 on �.

Step 3. fk is convergent in Hol(�, F). By Step 2, the sequence { fk} is pointwise
convergence on �. Since { fk} is locally uniformly bounded on �, we infer that
the sequence { fk} is equicontinuous on every compact subset of �. Therefore, { fk}
converges to f in Hol(�, F).

The next lemma is quite standard, it says roughly that a family of holomorphic
mappings into a hyperbolic Banach analytic manifold is equicontinuous.

Lemma 3.6. Let A, X be Banach analytic manifolds and { fk} be a sequence in
Hol(A, X). Assume X is hyperbolic and there exists a sequence {�k} ! �0 2 A
such that fk(�k) ! x0 2 X. Then the following assertions hold:

(i) For every neigborhood V of x0 2 X , there exists an open neigborhoodU of �0
in A and k0 � 1 such that

fk(U) ⇢ V,8k � k0;

(ii) fk(�0) ! x0 as k ! 1.

Proof. (i) Assume the conclusion is false. Then we may choose a sequence {� j } !
�0 and k j " 1 such that

fk j (� j )t 2 V 8 j � 1.

By the decreasing property of Kobayashi distance we get

X ( fk j (� j ), fk j (� j ))  A(� j , � j ) ! 0 as j ! 1.

Using the triangle inequality, it follows that

X ( fk j (� j ), x0)  X ( fk j (� j ), fk j (� j )) + X ( fk j (� j ), x0) ! 0 as j ! 1.

This contradicts the hyperbolicity of X .
(ii) Applying again the triangle inequality we obtain for k � 1 the following

estimates

X ( fk(�0), x0)  X ( fk(�k), x0) + X ( fk(�0), fk(�k))
 X ( fk(�k), x0) + A(�0, �k).

This implies that X ( fk(�0), x0) ! 0 as k ! 1. The desired conclusion now
follows from the hyperbolicity of X.

Using a standard compactness argument and Lemma 3.6 (ii) we obtain easily
the following result that will be needed later on.
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Lemma 3.7. Let A, X be Banach analytic manifolds, and suppose X is hyperbolic.
Let { fk} be a sequence in Hol(A, X) which is not compactly divergent. Then there
exists �0 2 A and a subsequence { fk j } such that fk j (�0) ! x0 2 X as j ! 1.

The following useful fact about propagation of domains on which a sequence of
holomorphic maps is compactly divergent will only be used at the end of this sec-
tion.

Lemma 3.8. Let A, X be Banach analytic manifolds and let {�}↵2I be a family
of open subsets of A. Let { fk} be a sequence in Hol(A, X) which is compactly
divergent on �↵,8↵ 2 I. Then { fk} is compactly divergent on � := [↵2I�↵ .

Proof. Suppose that { fk} is not compactly divergent on �. Then, there exist com-
pact sets K ⇢ �, L ⇢ X and a subsequence { fk j } such that fk j (K ) \ L 6= ;
for every j. Using compactness, we can find a sequence {� j } ! �0 2 K such
that fk j (� j ) 2 L for every j and fk j (� j ) ! x0 2 L . Choose ↵0 2 I such that
�0 2 �↵0 . We may assume that the compact set K 0 := {� j } [ {�0} ⇢ �↵0 . Hence
fk j (K 0)\L 6= ; for every j . It follows that { fk |�↵0 } is not compactly divergent.

Now we proceed to the proof of Theorem 3.3.

Proof of Theorem 3.3. Let A be a connected Banach analytic manifold and { fk} ⇢
Hol(A, X) be such that there exists some point �0 2 Zufk . By Lemma 3.4 and the
assumption that X is complete hyperbolic, we have fk(�0) ! x0 2 X as k ! 1.
Take a neigborhood V of x0 in X which is isomorphic to some ball in a Banach
space. Since X is hyperbolic, by Lemma 3.6(i), we can find an open neigborhood
U0 of �0 2 A and k0 � 1 such that

fk(U0) ⇢ V, 8k � k0.

Now we apply Lemma 3.5 to deduce that the sequence { fk |U0} is convergent in
Hol(U0, X). Put

� :=
[

{U ⇢ A : { fk |U } is convergent in Hol(U, X)} .

Clearly � is open and U0 ⇢ � by the above proof. It suffices to show that � is
closed. Assume otherwise, then we can find �1 2 @�. Using again Lemma 3.4 we
find that fk(�1) ! x1 2 X as k ! 1. Repeating the above argument, we can
find a neigborhood U1 of �1 in A such that { fk |U1} is convergent in Hol(U1, X). It
follows that �1 2 U1 ⇢ �, which is a contradiction. Thus � = A. The proof is
complete.

Our next result says that 1-WVP is in fact equivalent to WVP. We do not know
if the analogous statement is true for SVP and 1-SVP.

Theorem 3.9. Let X be a Banach analytic manifold. If X has 1-WVP then X has
WVP.
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Proof. Let A be a Banach analytic manifold and { fk} be a sequence in Hol(A, X)
such that there exists �0 2 Zu{ fk} satisfying fk(�0) ! x0 2 X. Choose a neig-
borhood V of x0 2 X such that V is isomorphic to some ball in a Banach space.
By Theorem 3.1, X is hyperbolic, so we may apply Lemma 3.6(i) to find an open
neigborhood U0 of x0 such that fk(U0) ⇢ V for k large enough. Next, by Lemma
3.5 we see that { fk |U0} is convergent in Hol(U0, X).

Now we set

� :=
[

{U ⇢ A : { fk |U } is convergent in Hol(U, X)} .

Clearly � is open and non-empty. It remains to check that � is closed. Assume
otherwise, then there exists �1 2 @�. Choose a small neigborhood B of �1 for
which we may assume to be a ball in some Banach space E . Pick r > 0 and �2 2 �
such that

�1 2 B(�2, r) ⇢ B ⇢ E .

Let l be the complex line l joining �1 and �2. We may identify 10 := l \ B(�2, r)
with 1. Consider the restriction gk := fk

�
�
10 . By the definition of � we see that

gk is pointwise convergent on the nonempty open subset 10 \ � of the disk 10.
Since X has 1�WVP we infer that gk is pointwise convergent on 10. In particular
fk(�1) = gk(�1) is convergent in X . Note that �1 2 @�, so �1 2 Zu{ fk}. Using
the same reasoning as in the beginning of the proof, we see that there exists some
small neigborhood U1 of �1 such that { fk |U1} is convergent in Hol(U1, X). Thus
�1 2 U1 ⇢ �. This contradicts the fact that �1 2 @�. Hence � = A and the proof
is thereby completed.

The next result relates weak Vitali property of a Banach analytic manifold with
the usual taut property.

Theorem 3.10. Let X be a Banach analytic manifold. Then the following state-
ments are equivalent:

(i) X hasWVP;
(ii) X is hyperbolic and every sequence { fk} ⇢ Hol(A, X) where A is a separable

Banach analytic manifold, contains a subsequence which is either convergent
in Hol(A, X) or compactly divergent on an open dense subset of A.

For the ease of the exposition, we introduce the following notation: If A, X are
Banach analytic manifolds and { fk}k�1 is a sequence in Hol(A, X) then for every
subset N = {k1 < k2 < · · · } of N we will write { fk}k2N for the subsequence
{ fki }i�1.

Proof. (i) ) (ii). Fix a separable Banach analytic manifold A and a sequence
{ fk}k�1 ⇢ Hol(A, X). Suppose that { fk} contains no convergent subsequence.
Since A is separable, we can choose a topological base {Uj } j�1 for A. With no
loss of generality, we can assume that each Uj is a ball in some Banach space.
Fix j � 1, we claim that there exists an open non empty subset Vj of Uj and a
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subsequence { fk}k2N j which is a compactly divergent subsequence on Vj . Indeed,
assume this is false. Then we let {x j,l} be a countable dense subset of Uj . For each
l � 1, we choose a small ball B j,l := B(x j,l , rl) ⇢ Uj with rl ! 0 as l ! 1.
Then, since X is hyperbolic, we may apply Lemma 3.7 to find, on each ball B j,l a
point y j,l and a subsequence { fk}k2N j,l such that fk(y j,l) is convergent as k ! 1
and (k 2 N j,l). Moreover, we can choose these sequences in such a way that
N j,l+1 ⇢ N j,l ,8l � 1, i.e., { fk}k2N j,l is used to construct the further subsequence
{ fk}k2N j,l+1 . Hence, after a diagonal process, we can build a subsequence { fk}k2N j
which is pointwise convergent on the countable set A j = {y j,l} which is also dense
in Uj . By applying WVP of X to { fk |Uj }k2N j we see that the sequence { fk}k2N j
is convergent in Hol(Uj , X). Thus, this sequence must converge also in Hol(A, X)
since X has WVP. This is contradictory. Therefore, for each j � 1, we can find an
open subset Vj ofUj and a subsequence { fk}k2Mj which is compactly divergent on
Vj . As before, we may also arrange so that Mj+1 ⇢ Mj for every j � 1. Then,
using one more diagonal process, we can construct a subsequence { fk}k2J which is
compactly divergent on each Vj . Now we let � := [ j�1Vj . Then obviously � is
open. Moreover, �̄ = A, since otherwise we would find j0 � 1 such that

Vj0 ⇢ Uj0 ⇢ A \ �̄,

which is impossible. Finally, by Lemma 3.8, we conclude that { fk}k2J is compactly
divergent on �.

(ii) ) (i). In view of Theorem 3.9, it suffices to prove that X has 1-WVP.
For this, let {gk} 2 Hol(1, X) be a sequence such that Z{gk} \ Zu{gk} 6= ;. We
have to show that {gk} is convergent in Hol(1, X). First, we claim that {gk} has a
convergent subsequence in Hol(1, X). Suppose otherwise, then there exist a dense
open subset � of A and a subsequence {gk j } which is compactly divergent on �.
Fix �0 2 Z{gk} \ Zu{gk}. Then gk j (�0) ! x0 2 X. Since X is hyperbolic, by
Lemma 3.6 (i), we can choose a complete hyperbolic neigborhood V of x0 in X
and a neigborhood U of �0 in A such that gk j (U) ⇢ V for j large enough. By
Theorem 3.3, V has SVP. Hence {gk j } is convergent in Hol(U, V ). This yields a
contradiction to compactly divergence of {gk j } on the open setU \� which is non-
empty since � is dense in A. The claim now follows. Finally, it remains to check
that two (arbitrary) accumulation points g and g0 of {gk} must coincide. For this,
it suffices to note that g = g0 on Z{gk}. Hence, the desired conclusion now follows
from the assumption that Z{gk} \ Zu{gk} 6= ;. The proof is complete.

Remark. The structure of the “exceptional” set S := A \ � may depend on the
sequence { fk} even in the case in which A and X are nice manifolds. Indeed, let
A := 1 be the unit disk in C and X be the unit ball of a infinite dimensional
Banach space. Let S be a discrete subset of 1 such that

P
a2S(1 � |a|) < 1.

We will construct a sequence { fk} 2 Hol(A, X) which is compactly divergent on
V := A \ S. For this, we pick sequence {xk} in X such that {xk} has no convergent
subsequence. We also let f be an infinite Blaschke product associated to S. Then
f 2 Hol(1,1) and f vanishes exactly on S. Then fk(�) := f (�)xk is the desired
sequence.
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The statement (ii) in the above theorem can be considerably strengthened in the
special case A = 1 and X has 1-SVP.

Theorem 3.11. Let X be Banach analytic manifolds. Then the following assertions
are equivalent:

(i) X has 1-SVP;
(ii) Every sequence { fk} 2 Hol(1, X) contains a subsequence which is either

convergent inHol(1, X) or compactly divergent outside a discrete subset of1.

Proof. (i) ) (ii). Assume that there exists no subsequence of { fk} which is con-
vergent in Hol(1, X). The following statement is the key to our proof:

For every relatively compact open subset G of1 there exist a finite (possibly
empty) set S ofG and N ⇢ N such that the subsequence { fk}k2N is pointwise
convergent on S and compactly divergent on G \ S.

Indeed, if the entire sequence { fk} is compactly divergent on G then we can take
S := ; and N := N. Otherwise, by Theorem 3.1 X is hyperbolic, so we use
Lemma 3.7 to find N1 ⇢ N, a1 2 G and a subsequence { fk}k2N1 such that fk(a1)
is convergent as k ! 1, for k 2 N1. Now, if the above subsequence is compactly
divergent on G \ {a1} then we can choose S1 := {a1} and N := N1. Otherwise,
we may apply again Lemma 3.7 to get a2 2 G \ {a1} and a further subsequence
{ fk}k2N2 , where N2 ⇢ N1 is such that fk(a2) is convergent as k ! 1, for k 2 N2.
We claim that this process cannot be infinite. Assume it is infinite, then we would
get a sequence {al} ⇢ G of distinct points, a collection of subsequences { fk}k2Nl ,
where Nl+1 ⇢ Nl is such that fk(al) is convergent as k ! 1, for k 2 Nl for every
l � 1. Thus, using a diagonal process, we could obtain a subsequence { fk}k2M
such that fk(al) is convergent for each l � 1 as k ! 1, k 2 M. After, passing to
a subsequence we may assume that al ! a 2 Ḡ ⇢ 1. Thus, using 1-SVP of X we
could infer that the sequence { fk}k2M is convergent in Hol(1, X), a contradiction.
Hence, the procedure described above must be finite. Thus, we have proved the
desired statement.

Next, we let {r j } j�1 be a sequence of positive numbers with r j " 1, such that
r j > 1/j. Set 1 j := 1(0, r j ). We will prove by induction on j the following
claim: There exist a finite (possibly empty) set S j ⇢ 1 j , an open disk10

j such that
1(0, r j � 1/j) b 10

j b 1 j and a subsequence { fk}k2N j of { fk} such that:

(a) { fk}k2N j is compactly divergent on 1 j \ S j ;
(b) N j+1 ⇢ N j ;
(c) S j ⇢ S j+1, S j+1 \ S j ⇢ 1 j+1 \ 1̄0

j .

For j = 1, we may apply the fact proved at the beginning of the proof to obtain a
finite (possibly empty) set S1 ⇢ 11 and N1 ⇢ N such that { fk}k2N1 is compactly
divergent on 11 \ S1. Next, suppose that there exist finite subsets S1, · · · , S j of
1 and subsequences { fk}k2N1, · · · , { fk}k2N j that satisfy the conditions (a), (b) and
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(c). Then we choose a disk 10
j b 1 j centered at 0 with radius > r j � 1/j such

that S j ⇢ 10
j . Then by applying the preceding argument, this time, to { fk}k2N j

instead of the original one { fk} and G is replaced by the annulus 1 j+1 \ 1̄0
j , we

obtain a subsequence { fk}k2N j+1, N j+1 ⇢ N j and a finite set S0
j ⇢ 1 j+1 \ 1̄0

j
such that { fk}k2N j+1 is compactly divergent on 1 j+1 \ (1̄0

j [ S0
j ). Then we set

S j+1 := S j [ S0
j . Since

1 j+1 \ S j+1 =
�
1 j+1 \

�
1̄0
j [ S0

j
��

[
�
1 j \ S j

�
,

by Lemma 3.8, we infer that { fk}k2N j+1 is compactly divergent on 1 j+1 \ S j+1.
This completes the proof of our claim. Hence, in view of (a) and (b) we may

apply a diagonal process to obtain a subsequence { fk}k2I which is compactly di-
vergent on each domain 1 j \ S j , j � 1. Finally, we set S :=

S
j�1 S j . At this

point, using (c) we can check that S is a discrete (possibly empty) subset of 1.
Moreover, since1 \ S = [ j�1(1 j \ S j ), using Lemma 3.8, we deduce that { fk}k2I
is compactly divergent on 1 \ S. The desired conclusion now follows.

(ii) ) (i). Let { fk} be a sequence in Hol(1, X) such that Zu{ fk} 6= ;. Suppose
that { fk} contains no subsequence which is convergent in Hol(1, X). Then, there
exists a subsequence { fk j } which is compactly divergence outside a discrete subset
S of1. It follows that Z{ fk} ⇢ Z{ fk j } ⇢ S.Hence Z{ fk} = ;, a contradiction. Thus,
{ fk} contains a convergent subsequence in Hol(1, X). It remains to show that any
two accumulations points g and g0 of this sequence must be identical. For this, it
suffices to note that g = g0 on Z{ fk} and that Zu{ fk} 6= ;.
Remarks. (a) In [6], a Banach analytic manifold with the property described in (ii)
is termed weakly taut. Thus, Theorem 3.11 essentially generalizes (with a simpler
proof) in [6, Theorem 4.1], since the latter result is proved in the case where X is a
finite dimensional complex space.

(b) It was proved in [6, Theorem 3.4] that every complete hyperbolic Banach
analytic manifold is weakly taut. This statement also follows from our Theorem 3.3
and Theorem 3.11. Notice that our proofs do not use Zorn’s lemma as in [6].
Our next two results contain simple observations about inheritance of Vitali prop-
erties under inclusion.
Proposition 3.12. Let X be an open subset of a Banach analytic manifold Y . As-
sume that X hasWVP and Y has SVP. Then X has SVP.
Proof. Let A be a Banach analytic manifold and { fk} ⇢ Hol(A, X) be such that
Zu{ fk} 6= ;. Since Y has SVP we deduce that { fk} is convergent to f 2 Hol(A,Y ).

Put � := f �1(X). Then � is open and non-empty since Z{ fk} ⇢ �. Notice that
� ⇢ Z{ fk} \ Zu{ fk}. Since X has WVP, { fk} is convergent in Hol(A, X). Thus, X
actually has SVP.

Corollary 3.13. Let X be an open subset of a complete hyperbolic Banach analytic
manifold Y . Then X has WVP if and only if X has SVP. In particular, WVP and
SVP are equivalent in the classes of bounded open subsets in Banach spaces.
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Proof. Observe that Y has SVP by Theorem 3.3. So the first assertion follows from
Proposition 3.12. Finally, since every ball in a Banach space is complete hyperbolic,
we get the last statement of the corollary.

This section ends up with the following result which says roughly that 1-WVP
is not much weaker than SVP in the class of (finite dimensional) complex manifolds.

Theorem 3.14. Let X be a complex manifold. Then the following statements are
equivalent:

(i) X has 1-WVP (and hence X hasWVP by Theorem 3.6);
(ii) Hol(A, X) is normal for every connected, locally separable Banach analytic

manifold A;
(iii) X has SVP for source spaces A having the property described in (ii).

Proof. (i) ) (ii). Assume that X has 1-WVP. Fix a connected, locally separable
Banach analytic manifold A. Let { fk} be a sequence in Hol(A, X). Suppose that
{ fk} is not compactly divergent. Then, by Lemma 3.7, we can find a sequence
� j ! �0 2 A and a subsequence fk j such that fk j (� j ) ! x0 2 X as j ! 1.
Let V be a neigborhood of x0 which is isomorphic to some ball in an Euclidean
space CN . By Theorem 3.1, X is hyperbolic, so using Lemma 3.6 (i), we can find a
neigborhood U of �0 and j0 � 1 such that

fk j (U) ⇢ V, 8 j � j0.

Since A is locally separable, after shrinkingU if necessary, we can find a countable
dense subset Z�0 of U. By a diagonal process, we can find a further subsequence
{ fk jl } which is pointwise convergence on Z�0 . It follows that �0 2 Z{ fk jl }

\ Zu{ fk jl }
.

Hence, { fk jl } is convergent in Hol(A, X).

(ii) ) (iii). Let A be a connected, locally separable Banach analytic manifold.
Fix a sequence { fk} in Hol(A, X) such that Zu{ fk} 6= ;. In particular, { fk} is point-
wise convergence at some point of A. Since Hol(A, X) is normal, we infer that { fk}
is relatively compact in Hol(A, X). Notice that any two accumulation points of the
sequence { fk} must be identical on A in view of the assumption that Zu{ fk} 6= ;.

Therefore { fk} is convergent in Hol(A, X) as desired.
(iii) ) (i) follows by taking A = 1.

Remarks. (a) In view of the implication (i) ) (ii), we infer that every complex
manifold X having WVP is necessarily taut. In particular, X must be pseudoconvex
at least in the case where it is a domain in Cn (see [7, Theorem 5.2.1]).

(b) The assumption on local separability of A cannot be omitted in the impli-
cation (i) ) (ii). To see this, we consider the case where A is the unit ball of l1
and X = 1. Then, we consider the sequence of (linear) projections

fk : A ! X, fk(�) := �k, � = (�1, · · · , �k, · · · ), k � 1.

Since { fk} contains no subsequence which is pointwise convergence on A and since
{ fk} is convergent at the origin, we infer that Hol(A, X) is not normal.
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4. Some classes of spaces having WVP and SVP

In this section we will investigate sufficient conditions so that a Banach analytic
manifolds has Vitali properties. For this purpose, we introduce the following termi-
nology.
Definition 4.1. An open subset � of a Banach analytic manifold X is said to have
the quasi strong Vitali property (respectively quasi weak Vitali property) if for every
connected Banach analytic manifold A and every sequence { fk} ⇢ Hol(A,�) with
Zu{ fk} 6= ; (respectively with Z{ fk} \ Zu{ fk} 6= ;), the sequence { fk} is convergent in
Hol(A, X).
These properties will be abbreviated as QSVP (respectively QWVP).
Remarks. (a) Obviously, every open subset of a Banach analytic manifold with
QSVP (respectively QWVP) also has this property.

(b) By Theorem 3.3, we know that every open subset of a complete hyperbolic
open subset of a Banach analytic manifold has QSVP. In particular, since every
ball in a Banach space is complete hyperbolic, we conclude that all open bounded
subsets of a Banach space have QSVP.

(c) Each hyperbolic relatively compact open subset � of a complex manifold
X has QWVP. For this, we let { fk} be a sequence in Hol(1,�) such that Zu{ fk} 6= ;.

Notice that, { fk(z)} is relatively compact in X for every z 2 1. Furthermore, since
� is hyperbolic, the family { fk} is equicontinuous. By Arzela-Ascoli’s theorem,
{ fk} is relatively compact in Hol(1, X). By the assumption that Zu{ fk} 6= ;, we
deduce that two accumulation points of { fk} must coincide on 1. This implies that
{ fk} converges to some f 2 Hol(1, X).

The first result of this section provides a class of Banach analytic manifolds having
WVP. This is a reminiscence of the well known fact that every bounded hypercon-
vex domain in Cn is taut (see [9, Corollary 5] and [7, Proposition 5.2.2]).

Theorem 4.2. Let X be a Banach analytic manifold and ' be a negative plurisub-
harmonic function on X. Then the following assertions are equivalent:

(i) X is hyperbolic and for every c < 0, the sublevel set

Xc := {z 2 X : '(z) < c}

has QWVP;
(ii) X hasWVP.

Proof. (ii) ) (i) follows directly from Theorem 3.1.
(i) ) (ii) By Theorem 3.8, it is enough to show that X has 1-WVP. Fix a

sequence { fk} ⇢ Hol(1, X) such that Z{ fk} \ Zu{ fk} 6= ;. We must show that { fk}
is convergent in Hol(1, X). Choose �0 2 Z{ fk} \ Zu{ fk}. By an argument as in the
proof of Theorem 3.5, we can find open neigborhoods U0 ⇢ 1 of �0 and V0 ⇢ X
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of limk!1 fk(�0) and k0 � 1 such that V0 is isomorphic to a ball in some Banach
space and that

fk(U0) ⇢ V0,8k � k0.

Using Lemma 3.5, we conclude that { fk} is convergent in Hol(U0, X). Now we set

� :=
[

{U ⇢ 1 : { fk |U } is convergent in Hol(U, X)} .

Clearly � is open and U0 ⇢ � by the above proof. It suffices to show that �
is closed. Assume this is not true, then we can find �1 2 @�. Notice that { fk}
converges to f 2 Hol(�, X). Now we set

 (z) := sup
k�k0

(' � fk)(z), 8z 2 1.

By the assumption on ' we infer that the upper regularization  ⇤ is non-positive
and subharmonic on 1. Furthermore, by the choice of U0 we have

sup
U0
 ⇤  sup

V0
' < 0.

Thus the maximum principle yields  ⇤ < 0 entirely on 1. In particular  ⇤(�1) <
0. Fix c 2 ( ⇤(�1), 0). Choose an open diskU1 around �1 such that supU1  

⇤ < c.
It follows that

sup
U1
' � fk < c, 8k � k0.

Therefore fk map U1 into Xc for every k � k0. Notice that

; 6= U1 \� ⇢ U1 \ Z{ fk} \ Zu{ fk}.

Since Xc has QWVP, we deduce that the sequence { fk} is convergent in Hol(U1, X).
Thus �1 2 �. This contradicts our choice that �1 2 @�. The proof is therefore
complete.

Corollary 4.3. Let X be a hyperbolic complex manifold. Assume that there exists
a negative exhaustion function ' for X , i.e., Xc := {z 2 X : '(z) < c} is relatively
compact in X for every c < 0. Then X hasWVP.

Proof. By the remark (c) following Definition 4.1 and the assumption on hyperbol-
icity of X , we see that all sublevel sets Xc have QWVP. The desired conclusion now
follows immediately from Theorem 4.1.

The theorem below gives a sufficient condition to guarantee Vitali properties
for open subsets of Banach analytic manifolds.

Theorem 4.4. Let Y be an open subset of a Banach analytic manifold X . Assume
that X hasWVP and that there exists a negative plurisubharmonic function ' on Y
such that limz!⇠ '(z) = 0 for every ⇠ 2 @Y. Then Y hasWVP.
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Proof. According to Theorem 3.5, it suffices to show that Y has 1-WVP. Fix a
sequence { fk}k�1 ⇢ Hol(1,Y ) such that Z{ fk} \ Zu{ fk} 6= ;. Then { fk}k�1 ⇢
Hol(1, X). Thus { fk} is convergent to f 2 Hol(1, X), since X has WVP. The
proof would be finished if we could show that f (1) ⇢ Y . To prove this, we set

u(z) := lim sup
k!1

(' � fk)(z), z 2 1.

Notice that � := f �1(Y ) = Z{ fk} is an open non-empty subset of 1. Moreover,
the following statements are true:

(a) u(z)  (' � f )(z) < 0 8z 2 10. This follows from upper semicontinuity of '
and the hypothesis that ' < 0 on Y ;

(b) u satisfies the sub-mean value inequality, i.e.,

u(z0) 
1
2⇡

Z 2⇡

0
u
�
z0 + rei✓

�
d✓, 8z0 2 1, 8r > 0 small enough.

This is an easy consequence of Fatou’s lemma.
The problem is to show � = 1. Assume otherwise, then there exists x1 2

1 \ @�. Then fk(x1) ! f (x1) 2 @Y as k ! 1. This implies that

u(x1) = lim sup
k!1

(' � fk)(x1) = 0.

Here the last equality follows from the assumption that lim⇠! f (x1) '(⇠) = 0. Now
we choose r > 0 so small such that the closed disk 1̄(x1, r) is included in1. Thus

@1(x1, r) \� 6= ;.

It follows that there exist ✓0 2 (0, 2⇡) and � > 0 such that

x1 + rei✓ 2 � 8✓ 2 (✓0 � �, ✓0 + �).

By (b) we obtain

0 = u(x1) 
1
2⇡

Z 2⇡

0
u
�
x1 + rei✓

�
d✓ 

1
2⇡

Z ✓0+�

✓0��
u
�
x1 + rei✓

�
d✓ < 0.

The last inequality follows from (a). This is contradictory. Thus � = 1. Hence
f (1) ⇢ Y .

Nowwe consider conditions that imply SVP of open subsets of a Banach space.
This result will be used to characterize SVP of balanced domain in Banach spaces.

Theorem 4.5. Let � be an open subset of a Banach space X . Assume that there
exists a negative plurisubharmonic function ' on � such that

lim
z!⇠

'(z) = 0, 8⇠ 2 @�.
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Then the following assertions are equivalent:

(i) � is hyperbolic and for every c < 0 the open set �c := {z 2 � : '(z) < c}
has QSVP;

(ii) � has SVP.

Proof. (ii) ) (i) follows from Theorem 3.1.
(i) ) (ii). Fix a connected Banach analytic manifold A. Let { fk} be a sequence

in Hol(A, X) such that Zu{ fk} 6= ;. Fix �0 2 Z{ fk}. Then we have fk(�0) ! x0 2 X.

By upper-semicontinuity of ', we can choose a neigborhood V of x0 2 X such that
supV ' < 0.Using hyperbolicity of X , by Lemma 3.6(i), we can find a neigborhood
U of �0 in A and k0 � 1 such that

fk(U) ⇢ V 8k � k0.

Set
 (z) := sup

k�k0
(' � fk)(z), 8z 2 A.

Since ' is negative and plurisubharmonic on A, we infer that the upper regulariza-
tion  ⇤ is also plurisubharmonic on A and  ⇤  0 there. Moreover, by the choice
of U and V we have

 ⇤(�0)  sup
V
' < 0.

Hence the maximum principle yields  ⇤ < 0 entirely on A. Next, we choose an
arbitrary point �1 2 Zu{ fk}.We claim that fk is uniformly bounded on a small open
neigborhood of �1. To see this, choose c 2 R such that  ⇤(�1) < c < 0. Then,
there exists a open neigborhood W of �1 such that supW  ⇤ < c. It follows that
fk(W ) ⇢ �c for every k � k0. Since�c has QSVP, we can find an open subset Y of
X that contains �c such that Y has SVP. Hence, the sequence { fk

�
�
W } is convergent

in Hol(W,Y ). Thus fk must be locally uniformly bounded near �1 for k � k0. The
claim is proved. It means that we can find an open neigborhood B of �1 on which
fk is uniformly bounded for k � k0. Now, we use Lemma 3.4 to conclude that { fk}
is convergent to f in Hol(B, X). We claim that f (B) ⇢ �. Assume this is not true,
then there exists x0 2 B such that f (x0) 2 @�. Since  tends to 0 at f (x0) we
must have  (x0) = 0. This is a contradiction. Thus f (B) ⇢ � as desired. Now we
let

A0 :=
[

{U ⇢ A : { fk |U } is convergent in Hol(U,�)} .

Clearly A0 is open, and by the above reasoning A0 is also non-empty. It remains
to check that A0 is closed. Assume the contrary holds, then there exists �2 2 @A0.
Then �2 2 Zu{ fk}. Repeating the preceding argument, we see that there exists a
small ball B0 around �2 such that fk is uniformly convergent in Hol(B0,�). Hence
�2 2 A0. This is impossible. The proof is therefore complete.
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We now discuss Vitali properties for special classes of Banach analytic mani-
folds in the rest of this section. The first objects to consider are Hartogs domains
over Banach analytic manifolds.

Recall that, given a Banach analytic manifold X and an upper semicontinuous
function ' : X ! [�1,1), the Hartogs domain �'(X) is defined as

�'(X) :=
n
(z, w) 2 X ⇥ C : |w| < e�'(z)

o
.

The next result relates Vitali properties of a Hartogs domain and those of its base
and radii of fibers.

Proposition 4.6. The Hartogs domain �'(X) has SVP (respectivelyWVP) if and
only if ' is continuous plurisubharmonic on X and X has SVP (respectivelyWVP).

Remark. Thus, if X = 1 and ' is bounded subharmonic but not continuous on 1
then �'(1) is a bounded pseudoconvex domain in C2 without having WVP.

Proof. We only give the proof for the SVP case, the other case is similar and some-
what simpler.

()). Suppose that �'(X) has SVP. First we check that X has SVP. For this,
let A be a connected Banach analytic manifold and { fk} 2 Hol(A, X) be such that
Zu{ fk} 6= ;. Set f 0

k := ( fk, 0). It is then clear that { f 0
k} 2 Hol(A,�'(X)). Moreover,

Zu{ f 0
k}

6= ;. It follows, using SVP of �'(X) that { f 0
k} converges in Hol(A,�'(X)).

Thus, so does { fk}. Hence X has SVP.
Now we prove continuity of '. Assume that ' is discontinuous at x⇤ 2 X.

Then, since ' is upper semicontinuous, we can find a sequence xk ! x⇤ and s 2 R
such that

'(xk)  s < '(x⇤), 8k.

Next, we set r := e�s and define a sequence {gk} ⇢ Hol(1,�'(X)) by

gk(�) := (xk, r�), 8� 2 1.

If |�| < � := r�1e�'(x⇤) then |�|r < e�'(x⇤). Hence,

gk(�) ! g(�) := (x0, r�) 2 �'(X),

for � 2 �1. In particular, 0 2 Zu{ fk}. Since �'(X) has SVP, the sequence {gk}
must converge to g̃ 2 Hol(1,�'(X)). By the above reasoning, f coincides with f̃
on �1. By uniqueness property of holomorphic maps from 1 to X ⇥ C, we infer
that g̃ = (x0, r�) for all � 2 1. Hence (x0, r�) 2 �'(X) for all � 2 1. This
yields a contradiction to the choice of r. Thus ' is continuous on X. It remains to
prove that ' is plurisubharmonic on X . To see this, it is enough to show that '
is plurisubharmonic on every open set U which is isomorphic to an open subset
of a Banach space. Fix such an open set U and let ✓ : 1 ! U be an arbitrary
holomorphic map. It suffices to show that the continuous function u := ' � ✓ :
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1 ! R is subharmonic. Assume the contrary holds, then we can find a closed disk
10 ⇢ 1 and a holomorphic polynomial p in C such that

u  <p on @10 whereas " := sup
x210

(u(x) � <p(x)) > 0.

For k � 1, we define

hk(�) :=
⇣
✓(�), e�p(�)�"� 1

j
⌘

8� 2 10.

By the choice of " we can check that hk 2 Hol(10,�'(X)). Furthermore, we also
note

hk(�) ! h(�) :=
⇣
✓(�), e�p(�)�"

⌘
, 8� 2 10,

with h 2 Hol(10, X ⇥ C). Now we choose ↵ 2 (0, 1) such that <p(�) + " > u(�)
if ↵ 2 V↵ := 1 \1(0,↵). It follows that h(V↵) ⇢ �'(X). Since �'(X) has SVP
we deduce that hk converges to h̃ 2 Hol(10,�'(X)). Since h = h̃ on V↵ , using
again the uniqueness property of holomorphic maps from 10 to X ⇥ C we obtain
h = h̃ on10. This implies that<p(�)+" > u(�) for all � 2 10. This contradiction
to the choice of " proves plurisubharmonicity of ' on X.

((). Assume that ' is continuous plurisubharmonic on X and X has SVP. Fix
a connected Banach analytic manifold A and a sequence { fk} 2 Hol(A,�'(X))
satisfying Zu{ fk} 6= ;. We write fk = (gk, hk), where gk 2 Hol(A, X) and hk 2
Hol(A, C). Then we have

Zu{gk} 6= ;, Zu{hk} 6= ;.

Since X has SVP, we deduce that {gk} converges to g 2 Hol(A, X). Notice also
that

|hk(�)| < e�'(gk(�)), 8� 2 A, 8 j � 1.

It follows that the sequence {hk} is uniformly bounded on compact sets of A. By
Lemma 3.5, we infer that {hk} is convergent to h 2 Hol(A, C), which implies that

|h(�)|  e�'(g(�), 8� 2 A.

The above inequality can be rewritten as follows:

f (�) := log |h(�)| + '(g(�))  0, 8� 2 A.

Since g, h are holomorphic functions on A and since ' is plurisubharmonic on X
we infer that f is plurisubharmonic on A. Moreover, f < 0 on the non-empty set
Z{ fk}. It follows, using the maximum principle, that f (�) < 0 for every � 2 A.
Therefore

|h(�)| < e�'(g(�), 8� 2 A.

Thus { fk} converges to (g, h) 2 Hol(A,�'(X)). Hence �'(X) has SVP as
desired.
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The next result deals with Vitali properties of balanced domains in Banach
spaces.
Definition 4.7. A domain � in a Banach space E is said to be balanced if x 2 �
then �x in � for every � 2 1.

For a balanced domain �, since 0 2 �, we may define the gauge (or Min-
kowski) functional of � as follows

h�(x) := inf{� > 0 : x 2 �X}, x 2 E .

It is clear that h� is homogeneous, i.e., h(�x) = |�|h(x) and, since � is a domain,
h� is upper semicontinuous and

� = {x 2 E : h�(x) < 1}.

We are now able to formulate the final result of this section.

Proposition 4.8. Let � be a balanced domain in a Banach space E . Then the
following statements are equivalent:

(i) � hasWVP;
(ii) � is bounded and h� is continuous on E and plurisubharmonic on �;
(iii) � has SVP.

Proof. (i) ) (ii). If � has WVP then by Theorem 3.1, � is hyperbolic. Thus
using the same argument as in the beginning of the proof of [6, Theorem 6.1] we
conclude that � is bounded. Next, we show that log h� is plurisubharmonic on �.
For this, since h� is upper semicontinuous on �, it suffices to show that for every
choice a, b 2 E the function

� 7! u(�) := log h�(a + �b)

is subharmonic on the open set �a,b ⇢ C where it is defined. If this is not the case
then we can find a closed disk 10 ⇢ �a,b and a holomorphic polynomial p in C
such that

u  <p on @10 whereas " := sup
x210

(u(x) � <p(x)) > 0.

For j � 1, we define

fk(�) :=
a + �b

ep(�)+"0+1/j
8� 2 10.

By the choice of " we can check that fk 2 Hol(10,�). Furthermore, we also note

fk(�) ! f (�) :=
a + �b

ep(�)+"0+1/j
8� 2 10.
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By the choice of p, we see that there exists an open neigborhood V of @10 such that
f (V ) ⇢ �. Since � has WVP we deduce that fk converges to f̃ 2 Hol(10,�).

Since f = f̃ on V , using again the uniqueness property of holomorphic maps from
10 to E we obtain f = f̃ on 10. This implies that <p(�) + " > u(�) for all
� 2 10. This contradiction to the choice of " proves plurisubharmonicity of log h�
on �a,b. Thus log h� and hence h� is plurisubharmonic on �. It remains to check
the continuity of h� on E . Suppose h� is discontinuous at x⇤ 2 E . Then, since h�
is upper semicontinuous at x⇤, we can find a sequence {xk} ! x⇤ and s > 0 such
that

h�(xk) < s < h�(x⇤), 8k � 1.

For k � 1, we define

gk(�) :=
�

s
xk, 8� 2 1.

By the choice of s, we have gk 2 Hol(1, X). Moreover,

gk(�) ! g(�) :=
�

s
x⇤, as k ! 1, 8� 2 1.

Since X contains a neigborhood of 0, there exists � > 0 such that g(1(0, �)) ⇢ X.
It follows that 1(0, �) ⇢ Z{gk}. Since X has WVP, we infer that g(1) must be
included in X . Hence, h�(x⇤)  s. This contradiction proves the continuity (on X)
of h�.

(ii) ) (i). Suppose that � is bounded and h� is continuous plurisubharmonic
on �. Let ' := h� � 1. Then ' is negative plurisubharmonic on �.Moreover, fix
⇠ 2 @�, since h� is continuous at ⇠ we infer that limz!⇠ '(z) = 0. Notice also
that, being a bounded domain in a Banach space, � has QSVP. Therefore, we may
apply Theorem 4.4 to obtain that � has WVP.

(ii) ) (iii). By the above implication � has WVP. In view of Corollary 3.13,
� has SVP.

(iii) ) (i) is trivial.
The proof is thereby completed.

5. Open questions

Before concluding this paper, we wish to point out a few questions that are left open
by our methods.

1. Is there a Banach analytic manifold with WVP but without SVP? We conjecture
that such a Banach analytic manifold exists.

2. Is there any analogue of Theorem 3.11 in the case where X has SVP, i.e., the
sequence { fk} is completely divergent outside a set which is locally contained in an
analytic hypersurface?
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3. Using Proposition 4.5, we see that the Hartogs domain �'(1) is unbounded and
has SVP if ' is continuous, subharmonic and satisfies inf1 ' = �1. Is there any
substantial class of unbounded domains (in Banach spaces) having WVP and SVP?
More precisely, can we describe WVP and SVP of an unbounded domain in terms
of the existence of peak plurisubharmonic functions at finite and infinite boundary
points? In this direction, we may refer the reader to the recent work [3] where the
authors construct explicitly unbounded domains in Banach spaces having SVP.
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