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Bounded holomorphic functional calculus for nonsymmetric
Ornstein-Uhlenbeck operators

ANDREA CARBONARO AND OLIVER DRAGIČEVIĆ

Abstract. We study bounded holomorphic functional calculus for nonsymmet-
ric infinite dimensional Ornstein-Uhlenbeck operators L. We prove that if �L

generates an analytic semigroup on L2(�1), then L has bounded holomorphic
functional calculus on Lr (�1), 1 < r < 1, in any sector of angle # > #⇤

r ,
where �1 is the associated invariant measure and #⇤

r the sectoriality angle of L
on Lr (�1). The angle #⇤

r is optimal. In particular our result applies to any non-
degenerate finite dimensional Ornstein-Uhlenbeck operator, with dimension-free
estimates.

Mathematics Subject Classification (2010): 47A60 (primary); 47D03, 42B25,
35R15 (secondary).

1. Introduction

For every # 2 (0,⇡) we define the open sector

S# = {z 2 C \ {0} : | arg z| < #}

and we denote by H1(S# ) the algebra of all bounded holomorphic functions on
S# . If m 2 H1(S# ) we set kmk# = sup{|m(z)| : z 2 S# }.

IfA is a linear operator on a complex Banach space X we denote, respectively,
by � (A ), D(A ), R(A ) and N(A ) the spectrum, the domain, the range and the null-
space ofA . IfA is bounded then kA k stands for its operator norm. We denote by
B(X) the class of all bounded operators on X .

Let 0 6 # < ⇡ . We say that a densely defined closed operatorA on a complex
Banach space X is sectorial of angle # if � (A ) ✓ S# and for all # 0 2 (#,⇡) we
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have
sup

z2C\S# 0

|z|
�
�(A � z I )�1

�
� < 1 .

In such a case the number

!(A ) := inf{# 2 [0,⇡) : A is sectorial of angle #}

is called the sectoriality angle of A . Operators which are sectorial of some angle
in [0,⇡) will simply be called sectorial.

Suppose that A is a one-to-one sectorial operator with dense range on a com-
plex Banach space X (by [20, Theorem 3.8], on reflexive Banach spaces every
one-to-one sectorial operator has dense range). Then, if !(A ) < # < ⇡ and
f 2 H1(S# ), we may define the closed, possibly unbounded operator f (A ) in
such a way that, for ↵ 2 C and g 2 H1(S# ),

↵ f (A ) + g(A ) = (↵ f + g)(A )|D( f (A ))\D(g(A ))

f (A )g(A ) = ( f g)(A )|D(g(A ))\D( f g(A )) .

We refer the interested reader to [20, 42, 62] for an exhaustive treatment of this
subject.

Suppose furthermore that # 2 (!(A ),⇡). We say that A has a bounded
H1(S# )-calculus ifm(A ) 2 B(X)wheneverm 2 H1(S# ) and there existsC > 0
such that

km(A )k 6 Ckmk# , 8 m 2 H1(S# ).

We say that A has a bounded H1-calculus if it has a bounded H1(S# )-calculus
for some # > !(A ). We define

!H1(A ) = inf{# 2 (0,⇡) : A has a bounded H1(S# )-calculus},

with the convention that !H1(A ) = +1 if A does not have a bounded H1-
calculus. It follows from definitions that for a sectorial operatorA we always have

0 6 !(A ) 6 !H1(A ). (1.1)

It is an interesting and widely studied problem whether a sectorial operator has
a bounded H1-calculus [20, 49, 62, 63]. A. McIntosh [62] proved that if X =
H is a complex Hilbert space and A has a bounded H1-calculus on H, then
!H1(A ) = !(A ). It was shown by N. Kalton in [48] that this is no longer true
in arbitrary Banach spaces (see also [20, page 27]), but it is still an open problem
whether !H1(A ) = !(A ) for sectorial operators with a bounded H1-calculus on
Lebesgue spaces.

Therefore in this context it becomes of interest to explicitly determine the an-
gle !H1(A ), even for special classes of operators such as generators of semigroups
with kernel bounds (see, for example, [4, 29, 31]), or such as generators of contrac-
tion semigroups on Lebesgue spaces which now we describe in more detail.
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Let (�, µ) be a � -finite measure space. We say that (T (t))t>0 is a contraction
semigroup on (�, µ) if T (t) is a contraction on Lr (µ) for every t > 0 and r 2
[1,1], and (T (t))t>0 is strongly continuous on Lr (µ) for 1 6 r < 1 and weak*
continuous on L1(µ). Denote by �A r its generator on Lr (µ), for 1 < r < 1. A
contraction semigroup is called symmetric if T (t), t > 0, are self-adjoint on L2(µ).
It is known that every contraction semigroup is subpositive [12] and [51, Theorems
4.1.2, 4.1.3], therefore it has a dilatation to a group [35, pages 737-738]. It follows
from the Coifman-Weiss transference principle [17, 18] that !H1(A r ) 6 ⇡/2, for
every r 2 (1,1); see [19, Theorem 2] for the symmetric case and [30, Theorem 2]
for the general case.

In this picture, symmetric contraction semigroups deserve a special attention.
For generators of symmetric Markovian semigroups the inequality !H1(A r ) 6
⇡/2 was originally proved by E. M. Stein [80, Corollary 3, page 121], while M.
Cowling [19, Theorem 2] combined the Coifman-Weiss transference mentioned
above with a complex interpolation argument and proved that !H1(A r )6 ⇡ |1/2�
1/r |, 1 < r < 1, for all generators of symmetric contraction semigroups. Cowl-
ing’s result has been improved by P. C. Kunstmann and Ž. Štrkalj [53] in the special
case of sub-Markovian semigroups and by C. Kriegler [52, Remark 2] in the case
of symmetric contraction semigroups.

For ⇢ 2 (�⇡/2,⇡/2) we will throughout the paper use the convention

⇢⇤ = ⇡/2� ⇢ .

Moreover, for r 2 (1,1) we set �r = arccos |1� 2/r |. Note that

�⇤
r = arctan

|r � 2|
2
p
r � 1

.

The two authors of the present paper proved in [11] the optimal bound

!H1(A r ) 6 �⇤
r , 1 < r < 1,

for all generators of symmetric contraction semigroups (see [11, Theorem 1] for a
more accurate statement of this result).

This “universal” multiplier theorem cannot be improved, because as a conse-
quence of a result by J. B. Epperson [34] and of inequality (1.1) one yields, for all
1 < r < 1,

!H1(L ou
r ) > !(L ou

r ) = �⇤
r ,

whereL ou denotes the symmetric finite dimensional Ornstein-Uhlenbeck operator
with diffusion matrix Q = I and drift matrix A = I , that will be defined in (3.2).
See also [37, Theorem 2], [45, Theorem 2.2] and [60] for a sharp multiplier result
forL ou .

Note, however, that for some generators of symmetric contraction semigroups
it may happen that a sharper bounded functional calculus is available. See, for
example, [16, 46, 66, 67].
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In this paper we study optimal bounded H1-calculus for a specific subclass of
generators of nonsymmetric contraction semigroups: the class formed by Ornstein-
Uhlenbeck operators on separable real Banach spaces which generate analytic semi-
groups with respect to associated invariant measures. They will be defined in Sec-
tion 3 in the nondegenerate finite dimensional case, and in Section 8 in the general
case.

Main result

Let �L denote the generator of an analytic Ornstein-Uhlenbeck semigroup. We
prove in Theorem 3.10 and Theorem 9.1 that, for r 2 (1,1),

!H1(Lr ) = !(Lr ) . (1.2)

The sectoriality angle of Lr was calculated by R. Chill, E. Fašangová, G. Meta-
fune and D. Pallara [13, Theorem 2 and Remark 6] in the nondegenerate finite-
dimensional case, and by J. Maas and J.M.A.M. van Neerven in the general case
[57, Theorem 3.4 and Theorem 3.5]. They proved that, for r 2 (1,1),

!(Lr ) = arctan

q
(r � 2)2 + r2(tan#⇤

2 )
2

2
p
r � 1

,

where #⇤
2 = !(L2); see Proposition 3.2, Remark 3.6 and Proposition 8.10. Since

for symmetric Ornstein-Uhlenbeck operators one has #⇤
2 = 0, we recover in this

particular case the above-mentioned Epperson’s result [34] and the sharp angle of
[11, Theorem 1].

As far as we are aware, our result is the first example of an explicit calcu-
lation of the functional calculus angle for any nonsymmetric Ornstein-Uhlenbeck
operator.

Outline of the proofs

We now briefly describe the technique we utilise for proving equality (1.2). Our
approach is based on [11], which was the first case of Bellman functions being
applied for the study of spectral multipliers.

By a general result of M. Cowling, I. Doust, A. McIntosh and A. Yagi [20,
Theorem 4.6 and Example 4.8], in order to prove (1.2) it suffices to establish cer-
tain bilinear estimates, of the type (4.3), involvingLr and the associated Ornstein-
Uhlenbeck semigroup with complex time te±i# for 0 6 # < !(Lr )

⇤. The classi-
cal approach for proving (4.3) is based on square functions; we choose a different
approach, avoiding square functions and dealing with bilinear integrals directly.

Namely, in Theorem 4.3, by using the so-called Nazarov-Treil Bellman func-
tion Q (defined in Section 4) and a heat-flow argument, we reduce the proof of the
bilinear estimates (4.3) to the verification of an integral condition (4.2) involving
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the Bellman function Q, the generator Lr and its adjoint. It turns out that the in-
tegral condition (4.2) of Theorem 4.3 is nothing but an extension of the classical
Lumer-Phillips condition for contraction semigroups in Lr spaces.

We prove that the Ornstein-Uhlenbeck operator Lr and the Bellman function
Q satisfy the above-mentioned integral condition (4.2): in Section 7 we do this in
the nonndegenerate finite dimensional case, and in Section 9 in the general case.

The principal ingredient of these proofs is a new convexity property ofQ stated
in Theorem 5.2 and proved in Section 6.

Among other results, for the proof of Theorem 5.2 we utilise in Proposi-
tion 6.1 the calculation of the analyticity angle of the Ornstein-Uhlenbeck semi-
group done by Chill, Fašangová, Metafune and Pallara in [13, Theorem 2] and
[14, Theorem 1.1].

The reason why the above-described procedure leads to the identification
!H1(Lr ) = !(Lr ) is that the Ornstein-Uhlenbeck operators enjoy the property
that the angle !(Lr )

⇤ coincides with the contractivity angle on Lr of the associated
semigroup (see Proposition 3.5, Remark 3.6 and Proposition 8.10).

Both in finite dimension (Theorem 3.10) and in infinite dimension (Theo-
rem 9.1) we utilise a representation of the Ornstein-Uhlenbeck operator L in di-
vergence form. While in finite dimension this representation follows from the def-
inition (see (3.2) and (3.3)), the analogous formula (8.9) in infinite dimension is
more delicate, and it was proved in [36] and [5] in the Hilbert space setting and
extended to the Banach space setting in [57]. Once we get the divergence-form rep-
resentation (8.9) of L, the proof of Theorem 9.1 becomes a natural generalisation
of that of Theorem 3.10.

The theory of infinite dimensional Ornstein-Uhlenbeck operators is very rich;
see, for example, [15, 22, 38–40, 56, 81] and the references therein. Therefore, with
the aim of highlighting the role played by Bellman function in our proofs, we de-
cided to keep the finite dimensional case separated from the infinite dimensional
one.

2. Notation

For each k 2 [0,1] we denote by Ck
b(Rn) the class of bounded complex functions

on Rn with bounded and continuous partial derivatives up to the order k. If f, g are
complex functions on some sets X,Y , respectively, then f ⌦ g is the function on
X ⇥ Y mapping (x, y) 7! f (x)g(y).

We set C+ = {z 2 C : Re z > 0}. If � ⇢ C we denote its closure by �.
If H is a complex Hilbert space, h·, ·iH denotes the inner product on H and

A is a linear operator onH , then we denote by W (A ) the numerical range of A ;
i.e. we set

W (A ) = {hA h, hiH : h 2 D(A ), khkH = 1}.



1502 ANDREA CARBONARO AND OLIVER DRAGIČEVIĆ

If T 2 B(H ), then we denote respectively by Ts and Ta the symmetric and the
antisymmetric part of T ; i.e.

Ts =
T + T ⇤

2
, Ta =

T � T ⇤

2
,

where T ⇤ is the adjoint of T with respect to h·, ·iH . We have a pair of simple yet
useful identities:

Re hT ⇠, ⇠i = hTs⇠, ⇠i and iIm hT ⇠, ⇠i = hTa⇠, ⇠i . (2.1)

IfH is a real Hilbert space and T 2 B(H), we denote, respectively, byHC and TC

the complexification of H and T . If there is no risk of ambiguity, we only write T
for denoting the complexification of T .

For n 2 N = {1, 2, . . . }, we denote by Cn,n the space of all complex n ⇥ n
matrices, and byRn,n its subspace consisting of real n⇥n matrices. We canonically
identify matrices in Cn,n with operators acting on the complex Hilbert space Cn

endowed with the scalar product

hz, wiCn =
nX

j=1
z jw j .

If (�, µ) is a � -finite measure space, then the associated complex and real Lebesgue
spaces are denote respectively by Lr (µ) and LrR(µ), 1 6 r 6 1.

3. Finite dimensional nondegenerate Ornstein-Uhlenbeck operators

Let Q, A 2 Rn,n be such that Q is symmetric and positive definite and � (A) ⇢ C+.
For each t > 0 set S(t) = e�t A and define the matrices

Qt =
Z t

0
S(u)QS⇤(u) du, Q1 =

Z 1

0
S(u)QS⇤(u) du.

Assumptions on Q and A ensure that Qt and Q1 are well defined, symmetric and
positive definite. A simple calculation (see for example [65, Lemma 2.1]) shows
that Q1 solves the Lyapunov equation

AQ1 + Q1A⇤ = Q. (3.1)

For each t 2 (0,1] we denote by �t the centered Gaussian measure on Rn with
covariance matrix Qt ; i.e. we set

d�t (x) =
1

(2⇡)n/2(detQt )1/2
exp

 

�
hQ�1

t x, xi
2

!

dx, t 2 (0,1].
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The Ornstein-Uhlenbeck semigroup (T (t))t>0 associated with (S(t))t>0 and Q is
defined on, say, Cb(Rn) by the Kolmogorov’s formula

T (t) f (x) =
Z

Rn
f (S(t)x + y) d�t (y), x 2 Rn .

It is well-known that the measure �1 is invariant under the action of T (t), t > 0,
and that (T (t))t>0 extends to a positivity preserving semigroup of contractions on
Lr (�1), 1 6 r 6 1, which is strongly continuous for 1 6 r < 1 and weak*
continuous for r = 1 (see, for example, [55, Chapter 9] and the references therein).

We will denote by �Lr the generator of (T (t))t>0 on Lr (�1), 1 6 r < 1.
It is known that C1

c (Rn) is a core for Lr ; see [64, 65] and [55, Lemma 9.3.13].
The action of the Ornstein-Uhlenbeck operator on C1

c (Rn) is explicitly given by
the formula

L f (x) = �
1
2
div (Qr f )(x) + hr f (x), AxiCn , x 2 Rn, f 2C1

c (Rn). (3.2)

We call Q and A, respectively, the diffusion and the drift matrix of L. The usual
symmetric finite-dimensional Ornstein-Uhlenbeck operator is obtained from this
scheme by choosing Q = A = I .

Denote by r⇤
1 the formal adjoint of r with respect to the scalar product in

L2(�1). Then for every ! 2 C1
c (Rn, Cn) we have

r⇤
1!(x) = �div!(x) +

D
!(x), Q�1

1 x
E

Cn
, x 2 Rn.

From this and the identity (3.1), one rapidly sees that

L f = r⇤
1(Q1A⇤r f ), f 2 C1

c (Rn). (3.3)

Set
B = Q1A⇤.

Identity (3.1) reads as Bs = Q/2, so that

Re hB⇠, ⇠i = hBs⇠, ⇠i =
1
2
hQ⇠, ⇠i > �|⇠ |2, ⇠ 2 Cn, (3.4)

for some � > 0. Therefore, B is a strictly accretive real matrix.

Analitcity of the Ornstein-Uhlenbeck semigroup

Consider the sesquilinear form on L2(�1) defined by

a( f, g) =
Z

Rn
hBr f,rgi d�1, D(a) = W 1,2(�1), (3.5)
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where

W 1,2(�1) =
n
f 2 L2(�1) : @i f 2 L2(�1), i = 1, . . . , n

o
.

It follows from (3.4) that the form a is densely defined, closed, continuous and
accretive. Therefore, by means of the theory of sesquilinear forms [50,74], a defines
an accretive operator on L2(�1), that we temporarily denote by (L2,D(L2)). It is
known that, in fact, L2 = L2; see [32, Theorem 1.2 in Appendix A].
Remark 3.1. It is known [55, Proposition 9.3.10] that L2 is self-adjoint if and
only if the matrix B = Q1A⇤ is symmetric. By identity (3.1), this is equivalent to
B = Q/2.
Inequality (3.4) implies that the numerical range of B is contained in some sector
of angle less than ⇡/2. Let #⇤

2 = #⇤
2 (B) 2 [0,⇡/2) be the smallest such angle, i.e.

S#⇤
2
is the smallest closed sector containing W (B). It follows from the definition of

Ornstein-Uhlenbeck operator by means of the sesquilinear form a that W (L2) ✓
W (B) ✓ S#⇤

2
. Consequently, by Lumer-Phillips theorem the semigroup (T (t))t>0

extends to an analytic contraction semigroup on L2(�1) in the sector S#2 ; see, for
example, [74, Theorem 1.54]. It was proved in [13, Remark 2 and Remark 6] that

#⇤
2 = arctan

�
�
�Q�1/2(B � B⇤)Q�1/2

�
�
�, (3.6)

and that #⇤
2 coincides with the spectral angle of Q

�1/2BQ�1/2 [13, page 705 and
708], that is, #⇤

2 is the smallest angle ' such that � (Q�1/2BQ�1/2) is contained in
S' . See also (5.6) and (8.11).

Moreover, in [13, Theorem 1 and Remark 6] the domain of analyticity of the
semigroup on L2(�1) was characterised. In particular it was proved that the angle
#2 is optimal; i.e. (T (t))t>0 does not have a bounded analytic extension to any
sector larger than S#2 . Namely we have the following result.

Proposition 3.2 ( [13]). Let #⇤
2 = #⇤

2 (B) be as above. Then:

(i) (T (t))t>0 extends to an analytic contraction semigroup on L2(�1) in the sec-
tor S#2;

(ii) If (T (t))t>0 extends to a bounded analytic semigroup on L2(�1) in the sector
S# , for some # 2 (0,⇡/2), then # 6 #2.

Remark 3.3. It follows from (3.6) and Remark 3.1 that #2 = ⇡/2 if and only if
L2 is self-adjoint; see also [13, Remark 3].

We next turn to the analyticity properties of T (t) on Lr (µ1) for 1 < r < 1,
r 6= 2.
Notation 3.4. Following [13], for 1 < r < 1 and with #⇤

2 as on page 1504, define

#⇤
r = #⇤

r (B) = arctan

q
(r � 2)2 + r2(tan#⇤

2 )
2

2
p
r � 1

. (3.7)
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An equivalent way of introducing #⇤
r 2 [0,⇡/2) is through the identity

sin#r = sin�r sin#2 , (3.8)

where #r = ⇡/2� #⇤
r and �r = arccos |1� 2/r |. It follows directly from (3.7) or

(3.8) that #⇤
r = #⇤

r/(r�1) for 1 < r < 1.

The following result, proved by Chill, Fašangová, Metafune and Pallara, extends
Proposition 3.2 to the case r 6= 2.

Proposition 3.5 ([13, Theorem 2 and Remark 6]). Suppose that 1 < r < 1.
Then:

(i) (T (t))t>0 extends to an analytic contraction semigroup on Lr (�1) in the sec-
tor S#r ;

(ii) If (T (t))t>0 extends to a bounded analytic semigroup on Lr (�1) in the sector
S# , for some # 2 (0,⇡/2], then # 6 #r .

In the special case when L2 is self-adjoint (by Remark 3.1, it corresponds to the
case when B = B⇤ = Q/2), the semigroup (T (t))t>0 is Markovian and #⇤

2 =
0. Therefore, Proposition 3.5 (i) is just a particular case of a more general result
that holds for all symmetric contraction semigroups; see [1, Théorème 3] for the
case of diffusion semigroups, [54, Corollary 3.2] for the case of sub-Markovian
semigroups, and [52, Corollary 6.2] for the general case. See also [11, Remark 34]
and [43,44].

Note also that when A = Q = I , Proposition 3.5 is a consequence of a more
precise result by Epperson [34].
Remark 3.6. Proposition 3.5 gives (see, e.g., [42, Proposition 3.4.4] or [33, Sec-
tion 4 in Chapter II] for details) that for 1 < r < 1,

!(Lr ) = #⇤
r . (3.9)

Bounded H1-calculus

To the best of our knowledge, in the case when L is nonsymmetric, the following
are the best results concerning the bounded H1-calculus of Lr , 1 < r < 1, that
can be recovered from the existing literature.

First notice thatLr is a sectorial operator that is not one-to-one, but this can be
easily fixed since N(Lr ) = {constant functions} (see, e.g., [55, Theorem 8.1.16])
and the projectionP r onto the null space is given by the formula

P r f =
Z

Rn
f d�1, f 2 Lr (�1), 1 < r < 1. (3.10)

Therefore, for every r 2 (1,1), we have that R(Lr ) = Lr0(�1) = { f 2 Lr (�1) :R
Rn f d�1 = 0}, and Lr is a sectorial one-to-one operator with dense range on
Lr0(�1). Hence the functional calculus devised in [20,62] applies to our case.
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Lemma 3.7 (Bounded functional calculus forL2). We have that

!H1(L2) = !(L2) = #⇤
2 ,

and
km(L2) f k2 6

⇣
2+ 2/

p
3
⌘

kmk#k f k2, f 2 L20(�1),

for every # 2 (#⇤
2 ,⇡) and for all m 2 H1(S# ).

Proof. By combining inequality (1.1) with (3.9) for r = 2, we obtain !H1(L2) >
!(L2) = #⇤

2 . The corollary now follows by combining Proposition 3.2 (i) with a
result of Crouzeix and Delyon [21] (see also [42, Corollary 7.1.17]).

Since (T (t))t>0 is a positivity preserving contraction semigroup on Lr (�1)
for any 1 < r < 1, one may combine Lemma 3.7 with the transference technique
of Coifman-Weiss [17, 18] and with a complex interpolation argument in order to
study bounded H1-calculus of Lr , for 1 < r < 1. This was pointed out by
Cowling [19] in the symmetric case and by Duong [30] in the nonsymmetric one.

Proposition 3.8. Suppose that 1 < r < 1, and r 6= 2. Then

!H1(Lr ) 6 #⇤
2 + #2 |1� 2/r | .

More precisely, if #⇤
2 + #2 |1� 2/r | < # < ⇡, then there exists C(r,#) > 0 such

that
km(Lr ) f kp 6 C(r,#)k f k#k f kr

for all m 2 H1(S# ) and f 2 Lr0(�1).

Proof. Let 1 < s < 1. Since (T (t))t>0 is a strongly continuous, contractive
and positivity preserving semigroup on Ls0(�1), by Coifman-Weiss transference
technique Ls has a bounded H1(S# 0)-calculus, for every # 0 > ⇡/2 [17–19, 30].
In particular, for every # 0 > ⇡/2,

�
�
�L iu

s f
�
�
�
s
6 C(s,# 0)e#

0|u|k f ks, f 2 Ls0(�1), u 2 R.

Lemma 3.7 implies that, for every # 00
> #⇤

2 ,
�
�
�L iu

2 f
�
�
�
2

6
⇣
2+ 2/

p
3
⌘
e#

00
|u|k f k2, f 2 L20(�1), u 2 R.

By interpolating the two estimates above, for every # > #⇤
2 + #2 |1� 2/r |,

�
�
�L iu

r f
�
�
�
r

6 C(r,#)e# |u|k f kp, f 2 Lr0(�1), u 2 R.

The proposition now follows from [20, Theorem 5.4].

Remark 3.9. If one is just interested in proving that !H1(Lr ) < ⇡/2, instead of
the argument above one can use [49, Corollary 5.2 and Theorem 5.3] (see also [58,
Lemma 8.4]).
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Main theorem in the finite dimensional case

One of the principal aims of this paper is to improve Proposition 3.8 by obtain-
ing the sharp angle in the bounded holomorphic functional calculus for the finite
dimensional Ornstein-Uhlenbeck operatorLr , 1 < r < 1. This is our result:

Theorem 3.10. For each r 2 (1,1) let #⇤
r be the angle defined in (3.7). Then,

!H1(Lr ) = !(Lr ) = #⇤
r .

Moreover, for every # > #⇤
r there exists C > 0 which depends only on r , # and #⇤

2 ,
such that

km(Lr ) f kr 6 Ckmk#k f kr , f 2 Lr0(�1),

for all m 2 H1(S# ).

The proof of Theorem 3.10 is postponed to Section 7. Note that a simple calculation
based on (3.7) or (3.8) shows that #⇤

r < #⇤
2 + #2 |1� 2/r | for r 2 (1,1)\{2}, i.e.,

Theorem 3.10 indeed improves Proposition 3.8.
Remark 3.11. When L2 is symmetric (i.e. when #⇤

2 = 0) Theorem 3.10 is a
particular case of a universal multiplier result previously proved by the two authors
of the present paper [11, Theorem 1]. In the special case when Q = A = I ,
Theorem 3.10 is a consequence of [37,60], apart from the fact that the estimates of
the norms in [37,60] depend on the dimension.
Remark 3.12. One could study bounded H1-calculus for degenerate Ornstein-
Uhlenbeck operators; i.e. Ornstein-Uhlenbeck operators whose diffusion part is
associated with a nonnegative and symmetric quadratic form Q with N(Q) 6= {0}.
We will show in Section 8 and Section 9 that an analogue of Theorem 3.10 holds in
the degenerate case under the assumption that the associated Ornstein-Uhlenbeck
semigroup is analytic on L2(�1) in some sector of positive angle; see Theorem 9.1
and Section 10. Note however that degenerate Ornstein-Uhlenbeck semigroups may
fail to be analytic [36, 39]; if this is the case then clearly !H1(Lr ) > !(Lr ) >
⇡/2. Note also that when N(Q1) = {0}, by a result of B. Goldys [40, Corollary
2.6] the nondegeneracy condition N(Q) = {0} is necessary for the analyticity of the
associated finite dimensional Ornstein-Uhlenbeck semigroup.

4. Bounded H1-calculus via Nazarov-Treil Bellman function

Unless specified otherwise, we assume everywhere in this section that p > 2 and
q = p/(p � 1). Fix � > 0. The Bellman function we use is the function Q =
Qp,� : R2 ⇥ R2 �! R+ defined by

Q(⇣, ⌘) = |⇣ |p + |⌘|q + �

8
><

>:

|⇣ |2|⌘|2�q ; |⇣ |p 6 |⌘|q

2
p

|⇣ |p +

✓
2
q

� 1
◆

|⌘|q ; |⇣ |p > |⌘|q .
(4.1)
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The origins of Q lie in the paper of F. Nazarov and S. Treil [70]. A modification
of their function has been later applied by A. Volberg and the second author in
[26, 28]. Here we use a simplified variant which comprises only two variables. It
was introduced in [27] and used by the present authors in [10,11].

The construction of the original Nazarov-Treil function in [70] was one of the
earliest examples of the so-called Bellman function technique, which was intro-
duced in harmonic analysis shortly beforehand by Nazarov, Treil and Volberg [68].
The name “Bellman function” stems from the stochastic optimal control, see [69]
for details. The same paper [69] explains the connection between the Nazarov-Treil-
Volberg approach and the earlier work of Burkholder on martingale inequalities,
see [7] and also [8, 9]. For an in-depth treatise on recent advances in martingale in-
equalities the reader is referred to [73]. If interested in the genesis of Bellman func-
tions and the overview of the method, the reader is also referred to [70,83,84]. The
method has seen a whole series of applications, yet until recently (see [10, 11, 61])
mostly in Euclidean harmonic analysis.

In the course of the last few years, the Nazarov-Treil function considered here
was found to possess nontrivial properties [10, 11, 28] that reach much beyond the
need for which it had been originally constructed in [70]. In the present paper we
continue the exploration of the convexity properties of Q (see Theorem 5.2 and
Remark 5.3).

It is a direct consequence of the definition above that the function Q belongs
to C1(R4), and is of order C2 everywhere except on the set

70 = {(⇣, ⌘) 2 R2 ⇥ R2 : (⌘ = 0) _ (|⇣ |p = |⌘|q)} .

For ⇣, ⌘ 2 R2 write ⇣ = (⇣1, ⇣2), ⌘ = (⌘1, ⌘2) and define

@⇣ =
1
2
�
@⇣1 � i@⇣2

�
and @⌘ =

1
2
�
@⌘1 � i@⌘2

�
.

The following estimates are also a straightforward consequence of the definition
ofQ.

Proposition 4.1. For every (⇣, ⌘) 2 R2 ⇥ R2 we have

0 6 Q(⇣, ⌘) 6 (1+ �)
�
|⇣ |p + |⌘|q

�
,

and

2|(@⇣Q)(⇣, ⌘)| 6 (p + 2�)max
�
|⇣ |p�1, |⌘|

 
,

2|(@⌘Q)(⇣, ⌘)| 6 (q + (2� q)�)|⌘|q�1.

Remark 4.2. It is sometime useful to think of Q as a function defined on C ⇥ C,
by using the canonical identification ofR2 withC. This fact will be often implicitly
used in this paper.
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We now state an abstract result, which is an extension to the nonsymmetric case of
an analogous technique used by the present authors for proving a universal multi-
plier theorem for generators of symmetric contraction semigroups [11, Section 4,
Remark 34].

Theorem 4.3. Let (�, µ) be a � -finite measure space, and let A be a closed,
densely defined and one-to-one operator on L p(µ). Let � 2 (0, 1) and let Q be
the Bellman function associated with �. Suppose that there exist # 2 [0,⇡/2) and
C0 > 0 such that

C0
�
�
�
�

Z

�
A f ·g dµ

�
�
�
�62Re

Z

�

⇣
e±i# (@⇣Q)( f,g)A f +e⌥i# (@⌘Q)( f,g)A ⇤g

⌘
dµ, (4.2)

for all f 2 D(A ) and every g 2 D(A ⇤). Then:

(i) �A is the generator of an analytic contraction semigroup on L p(µ) in the
sector S# ;

(ii) �A ⇤ is the generator of an analytic contraction semigroup on Lq(µ) in the
sector S# ;

(iii) For every # 0
>#⇤, the operatorA has bounded H1(S# 0)-calculus on L p(µ).

That is, there exists C1 = C1(p,# 0,C0) > 0 such that for all m 2 H1(S# 0),

km(A ) f kp 6 C1kmk# 0k f kp, f 2 L p(µ).

Proof. It follows from (4.1) that Q(⇣, 0) = |⇣ |p and Q(0, ⌘) = |⌘|q , up to some
positive multiplicative constants. Thus, by taking separately g = 0 and f = 0 in
(4.2), we get

Re
✓
e±i#

Z

�
f̄ | f |p�2A f dµ

◆
> 0 and Re

✓
e±i#

Z

�
ḡ|g|q�2A ⇤g dµ

◆
> 0 .

Items (i) and (ii) are now a consequence of the well-known Lumer-Phillips theorem;
see, e.g., [75, Corollary 4.4].

In order to prove (iii), we combine the complex-time-heat-flow technique, de-
veloped in [11, Section 4] by the present authors, with a result by Cowling, Doust,
McIntosh and Yagi [20] which relates functional calculus for a sectorial operator
with bilinear estimates involving the semigroup generated by the sectorial operator.

It follows from (i) that A is (one-to-one and) sectorial of angle !(A ) 6 #⇤,
see, e.g., [42, Proposition 3.4.4]. Denote by (T (t))t>0 the semigroup generated by
�A on L p(µ). Then (T ⇤(t))t>0 is the semigroup generated by �A ⇤ on Lq(µ).
Therefore, by [20, Theorem 4.6 and Example 4.8], part (iii) will follow once that
we have proved the following bilinear estimate,

Z 1

0

�
�
�
�

Z

�
A T (te±i# )(u)T ⇤(te⌥i# )(v) dµ

�
�
�
� dt 6 C2kukpkvkq , (4.3)

for all u 2 L p(µ), for every v 2 Lq(µ) and for some C2 = C2(p,C0) > 0.
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For the purpose of proving (4.3) we apply the heat-flow technique developed
in [11]. Fix u 2 L p(µ), v 2 Lq(µ) and consider the functional

E(t) =
Z

�
Q

⇣
T (te±i# )(u), T ⇤(te⌥i# )(v)

⌘
dµ, t > 0.

Estimates of Proposition 4.1 ensure that E is continuous on [0,1), differentiable
on (0,1) with a continuous derivative and

E 0(t) =
Z

�

@

@t
Q

⇣
T
⇣
te±i#

⌘
(u), T ⇤

⇣
te⌥i#

⌘
(v)

⌘
dµ.

A straightforward calculation shows that, for every t > 0,

�E 0(t)=2Re
Z

�

h
e±i#

�
@⇣Q

� ⇣
T
⇣
te±i#

⌘
(u), T ⇤

⇣
te⌥i#

⌘
(v)

⌘
· A T (te±i# )(u)

+ e⌥i#
�
@⌘Q

� ⇣
T
⇣
te±i#

⌘
(u), T ⇤

⇣
te⌥i#

⌘
(v)

⌘
·A ⇤T ⇤(te⌥i# )(v)

i
dµ.

By (i) and (ii), for every t > 0 we have T (te±i# )(u) 2 D(A ) and T ⇤(te⌥i# )(v) 2
D(A ⇤). Therefore, it follows from the assumption (4.2) that

�E 0(t) > C0
�
�
�
�

Z

�
A T (te±i# )(u)T ⇤(te⌥i# )(v) dµ

�
�
�
� , t > 0.

By integrating from 0 to 1 both sides of the inequality above, and using the first
estimate in Proposition 4.1, we obtain

C0
Z 1

0

�
�
�
�

Z

�
A T (te±i# )(u)T ⇤(te⌥i# )(v) dµ

�
�
�
� dt 6 (1+ �)

�
kukpp + kvkqq

�
.

The bilinear estimate (4.3) (hence the theorem) now follows by replacing u with
ku and v with v/k and minimising with respect to k > 0 the right-hand side of the
inequality above.

Remark 4.4. When # = 0, similar heat-flow techniques corresponding to Bellman
functions have so far been employed in the Euclidean case [25–28, 76, 82] and re-
cently also in the Riemannian case [10]. For a different perspective on heat-flow
techniques, various examples and references we refer the reader to the papers by
Bennett et al. [2, 3].

5. Convexity of the Bellman function

In this section we state the convexity result (Theorem 5.2) that will be the principal
ingredient of the proof of Theorem 3.10. The very same convexity result will be
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used again for proving the infinite dimensional analogue of Theorem 5.2 (see The-
orem 9.1). For this reason we state Theorem 5.2 in rather general form. In order to
do that we first fix more notation.

LetH be a real (possibly infinite dimensional) separable Hilbert space. Recall
that we denoted by HC its complexification. If ⇠ = (⇠1, ⇠2) 2 H ⇥H we use the
notation

⇠̃ = ⇠1 + i⇠2 2 HC.

We write ⇠1 = Re ⇠̃ and ⇠2 = Im ⇠̃ .
If D 2 B(HC), denote respectively by Re D and Im D the real and the imag-

inary part of D. Note that Re D, Im D 2 B(H); by abuse of notation we use the
same symbol for denoting their complexifications, so that we write

D = (Re D) + i(Im D).

We introduce the following bounded operator matrix acting onH⇥H = R2 ⌦H

M(D) =

"
Re D �Im D
Im D Re D

#

.

Observe thatM(D⇤) = M(D)⇤ andM(DE) = M(D)M(E), for all D, E 2
B(HC), and that

hM(D)↵,�iH⇥H = Re hD↵̃, �̃iHC, 8↵,� 2 HC. (5.1)

Notation 5.1. Let H be a real separable Hilbert space. Suppose that D, E 2
B(HC), 9 : R2 ! R and 8 : R4 ! R. For all s 2 R2 and v 2 R4, and for
every ⇠ = (⇠1, ⇠2) 2 H2 and ! = (↵1,↵2,�1,�2) 2 H4, we set

HD
9 [s; ⇠ ] = h(Hess(9; s) ⌦ IH)⇠,M(D)⇠iH2

and
H (D,E)
8 [v;!] = h(Hess(8; v) ⌦ IH)!,

⇥
M(D) �M(E)

⇤
!iH4 .

In block notation,

HD
9 [s; ⇠ ] =

*

Hess(9; s)

"
⇠1

⇠2

#

,

"
Re D �Im D
Im D Re D

#"
⇠1

⇠2

#+

H2

and

H (D,E)
8 [v;!]=

*

Hess(8; v)

2

6
6
6
6
4

↵1

↵2

�1

�2

3

7
7
7
7
5

,

2

6
6
6
6
4

Re D �Im D
Im D Re D

Re E �Im E
Im E Re E

3

7
7
7
7
5

2

6
6
6
6
4

↵1

↵2

�1

�2

3

7
7
7
7
5

+

H4

.
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Note that for every s 2 R2 and ⇠ = (⇠1, ⇠2) 2 H2, the map B(HC) ! R, defined
by D 7! HD

9 [s; ⇠ ], is R-linear. In particular, for R 2 B(H) and # 2 [0,⇡/2] we
have

He±i# R
9 [s; ⇠ ] = cos# · HR

9 [s; ⇠ ] ± sin# · HiR
9 [s; ⇠ ]. (5.2)

If R 2 B(H) one has HR
9 [s; ⇠ ] = HR⇤

9 [s; ⇠ ], so that HR
9 [s; ⇠ ] = HRs

9 [s; ⇠ ]. In
particular, if R 2 B(H) is accretive (i.e. if Rs is nonnegative) we have

HR
9 [s; ⇠ ] = H I

9

h
s;

⇣
R1/2s ⇠1, R

1/2
s ⇠2

⌘i

=

*

Hess(9; s) ·

"
R1/2s ⇠1

R1/2s ⇠2

#

,

"
R1/2s ⇠1

R1/2s ⇠2

#+

H2
.

(5.3)

Let {e j }1j=1 be an orthonormal base of H. Then for all s 2 R2 and ⇠ = (⇠1, ⇠2) 2

H2 one has

H I
9 [s; ⇠ ] =

1X

j=1

*

Hess(9; s) ·

"
⇠1, j

⇠2, j

#

,

"
⇠1, j

⇠2, j

#+

R2
, (5.4)

where ⇠i =
P1

j=1 ⇠i, j e j for i = 1, 2.

Numerical range angle

Fix a real separable Hilbert space H. Suppose the operator B 2 B(H) is strictly
accretive; i.e. suppose that hB⇠, ⇠i > �k⇠k2 for some � > 0 and all ⇠ 2 H [50].
Clearly, its complexification BC is then strictly accretive as well.

By a small abuse of notation, we will henceforth denote the complexification
BC of B just by B.

Let #⇤
2 = #⇤

2 (B) be the angle of the smallest closed sector inC+ contaning the
numerical range of B; i.e. #⇤

2 denotes the smallest angle in [0,⇡/2) for which

|Im hB⇠, ⇠iHC | 6 tan#⇤
2 · Re hB⇠, ⇠iHC, 8⇠ 2 HC. (5.5)

From (2.1) and the strict accretivity of B it follows that its symmetric part Bs is
invertible and positive definite, and

tan#⇤
2 = sup

n��
�
D
B�1/2
s BaB

�1/2
s ⇠, ⇠

E

HC

�
�
� : k⇠kHC = 1

o
.

The operator B�1/2
s BaB

�1/2
s is normal, therefore we may conclude that

tan#⇤
2 =

�
�
�B�1/2

s BaB
�1/2
s

�
�
�
B(HC)

. (5.6)

See, for example, [41, Theorem 1.4-2] or [77, Theorem 12.25].
For 1 < r < 1, define #⇤

r 2 (0,⇡/2] by means of (3.7). We are now ready to
state the convexity result for the Bellman functionQ defined in (4.1).
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Theorem 5.2. Let B 2 B(H) and #⇤
2 = #⇤

2 (B) be as above. Fix p 2 [2,1). For
every 0 6 # < #p there exist � = �(p,#2,#) 2 (0, 1) and a0 = a0(p,#2,#) > 0
such that, ifQ is the Bellman function (4.1) associated with �, and

C 2
n
ei# B, e�i# B, ei# B⇤, e�i# B⇤

o
,

then
H (C,C⇤)
Q [v;!] > a0 ·

�
�
�B1/2s ↵̃

�
�
�
HC

�
�
�B1/2s �̃

�
�
�
HC

, (5.7)

for all v 2 R4 \70 and ! = (↵,�) 2 H2 ⇥H2.

The proof of Theorem 5.2 is postponed to Section 6.

Remark 5.3.Theorem 5.2 is a generalisation of [11,Theorem 15]. Indeed, the quan-
tity R�(Q)[v;!] defined in [11, equation (18)] is nothing but Hei� IC,e�i� IC

Q [v;!].
Moreover, when B = B⇤ = IC we have that #⇤

2 = 0, so that #p = �p =
arccos |1 � 2/p|. Therefore, [11, Theorem 15] corresponds to Theorem 5.2 in the
particular case when B = B⇤ = IC. Note also that Theorem 5.2 can be considered
as an extension of [27], where A. Volberg and the second author of the present paper
proved the analogue of (5.7) for # = 0, C 2 B(Rn) and C⇤ replaced by C .

Regularisation

Denote by ⇤ convolution in R4, and let ( ")">0 be a nonnegative, smooth and
compactly supported approximation to the identity in R4. Since Q 2 C1(R4) and
its second-order partial derivatives exist onR4 \70 and are locally integrable inR4,
for all C 2 B(HC)

H (C,C⇤)
Q⇤ "

[v;!] =
Z

R4
H (C,C⇤)
Q [v � v0;!] "(v

0) dv0, (5.8)

for every r > 0, and every v 2 R4 and every ! = (!1,!2) 2 H2 ⇥H2; see [78,
Théorème V] and [32, Theorem 2.1].

Corollary 5.4. Let " > 0. Under the assumptions of Theorem 5.2,

H (C,C⇤)
Q⇤ "

[v;!] > a0(p,#2,#) ·
�
�
�B1/2s ↵̃

�
�
�
HC

�
�
�B1/2s �̃

�
�
�
HC

,

for all v 2 R4 and ! = (↵,�) 2 H2 ⇥H2.

Proof. The corollary immediately follows from (5.8) and Theorem 5.2.
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6. Proof of Theorem 5.2

Recall that H is a separable real Hilbert space, B is a bounded strictly accretive
operator onH and Bs the symmetric part of B. Recall also that by a small abuse of
notation, we denote the complexification BC of B just by B.

Take p > 2, and q = p/(p � 1) and a parameter � > 0 that will be fixed
later. It is convenient to rewrite the Bellman function defined in (4.1) as a linear
combination of tensor products of power functions. For r > 0 define the power
function Fr : R2 ! R+ by the rule

Fr (s) = |s|r .

Let 1 denote the constant function of value 1 on C; i.e. 1 = F0. Then

Q =

8
><

>:

(1+ 2�/p)Fp ⌦ 1+ [1+ �(1� 2/p)]1⌦ Fq , if |⇣ |p > |⌘|q

Fp ⌦ 1+ 1⌦ Fq + �F2 ⌦ F2�q , if |⇣ |p 6 |⌘|q .

Therefore, by Notation 5.1,

H (C,C⇤)
Q [v;!] =

8
>>>>>><

>>>>>>:

(1+ 2�/p)HC
Fp [⇣ ;↵]

+[1+ �(1� 2/p)]HC⇤

Fq [⌘;�], if |⇣ |p > |⌘|q > 0

HC
Fp [⇣ ;↵] + HC⇤

Fq [⌘;�]

+�H (C,C⇤)
F2⌦F2�q [v;!], if |⇣ |p < |⌘|q ,

(6.1)

for all ! = (↵,�) 2 H2 ⇥H2.

Convexity of power functions

Note that Hess(F2; s) = 2IR2 , for all s 2 R2. Hence, for every ⇠ = (⇠1, ⇠2) 2 H2,
one has

2Re hB⇠̃ , ⇠̃iHC = HB
F2[s; ⇠ ] and 2Im hB⇠̃ , ⇠̃iHC = �HiB

F2 [s; ⇠ ].

Therefore, by (5.5), for all s 2 R2 and every ⇠ 2 H2,
�
�
�HiB

F2 [s; ⇠ ]
�
�
� 6 cot#2 · HB

F2[s; ⇠ ]. (6.2)

Moreover, the very same estimate holds with B replaced by B⇤.
We now show that an estimate analogous to (6.2) holds when F2 is replaced

by Fr , r > 1, and #2 is replaced by #r , for r > 1. It turns out that this is just
a reformulation of [13, Theorem 2] and [57, Theorem 3.4] (see also [14, Theorem
1.1]).
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Proposition 6.1. For all ⇠ 2 H2 and every s 2 R2, if r > 2, or every s 2 R2 \ {0},
if 1 < r < 2, we have

|HiB
Fr [s; ⇠ ]| 6 cot#r · HB

Fr [s; ⇠ ].

Moreover, the very same estimate holds with B replaced by B⇤.

Proof. Fix an orthonormal base {e j }1j=1of H and for each n 2 N denote by Hn
the finite dimensional subspace of H spanned by {e1, . . . , en}. Denote by Pn the
orthogonal projection of H onto Hn and set Bn = PnB|Hn 2 B(Hn). For each
n 2 N identifyHn with Rn through the canonical map

In :
nX

j=1
u j e j 7! (u1, . . . , un).

For each k 2 N identify Ck with R2k through the map V : Ck ! R2k defined by

V(z1, . . . , zk) = (Re z1, . . . ,Re zn, Im z1, . . . , Im zk).

If f 2 C1(Rn, C), then a simple calculation gives

rRe
D
Bnr f,r

�
f | f |r�2

�E

Cn
= HBn

Fr [V( f );V(r f )], (6.3)

�rIm
D
Bnr f,r

�
f | f |r�2

�E

Cn
= HiBn

Fr [V( f );V(r f )], (6.4)

where the two identities above have to be understood to hold everywhere in Rn if
r > 2, and everywhere on { f (x) 6= 0} if 1 < r < 2.

Fix z 2 C, ⇠ 2 HC and n 2 N. Then Pn⇠ ⌘ (Pn(Re ⇠), Pn(Im ⇠)) 2 Hn⇥Hn ,
which identifies with Rn ⇥ Rn through In and furthermore with Cn through V .
Choose f 2 C1(Rn, C) in a way such that f (0) = z and r f (0) = Pn⇠ . Combine
(6.3) and (6.4) with the calculations in [14, Proof of Theorem 1.1] (see also [57,
Theorem 4.1]) and finally pass to the limit as n ! 1. The outcome is

HB
Fr [V(z);V(⇠)]=r |z|r�4 (hBsIm (z⇠), Im (z⇠)i+(r�1) hBsRe (z⇠),Re (z⇠)iH) ,

HiB
Fr [V(z);V(⇠)]=�r |z|r�4 h[(r � 2)Bs + r Ba] Im (z⇠),Re (z⇠)iH .

(The bottom line corrects an insignificant sign misprint occurred in [14].)
Recall that, by assumptions on B, the symmetric part Bs is strictly accretive.

Define
x = x(z, ⇠) = B1/2s Re (z⇠); y = y(z, ⇠) = B1/2s Im (z⇠).

Then,

HB
Fr [V(z);V(⇠)] = r |z|r�4

h
kyk2H + (r � 1)kxk2H

i
,

�HiB
Fr [V(z);V(⇠)] = r |z|r�4

Dh
(r � 2)I + r B�1/2

s BaB
�1/2
s

i
y, x

E

H
.
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Therefore, if we set

T = (r � 2)I + r B�1/2
s BaB

�1/2
s ,

we obtain
�
�
�HiB

Fr [V(z);V(⇠)]
�
�
� 6 r |z|r�4kTk · kykH · kxkH 6

kTk

2
p
r � 1

HB
Fr [V(z);V(⇠)].

It remains to estimate the norm of T as an operator acting on the Hilbert spaceHC.
Since B�1/2

s BaB
�1/2
s is antisymmetric, by using (5.6) we deduce that

kTk2 = (r � 2)2 + r2
�
�
�B�1/2

s BaB
�1/2
s

�
�
�
2

= (r � 2)2 + r2(tan#⇤
2 )
2,

so the proposition follows for B. The fact that it also holds for B⇤ follows, by
repeating the proof above, from the fact that by (5.5) we have #⇤

2 (B
⇤)=#⇤

2 (B).

For every r > 1 and # > 0 set

1(r,#) =
sin(#r � #)

sin#r
.

Recall that #q = #p, so that 1(q,#) = 1(p,#).
Until the end of this section it will be convenient to write

S = B1/2s .

Lemma 6.2. Let # 2 [0,⇡/2] and ⇠ 2 H ⇥H. Then for all s 2 R2 if r > 2, or
for all s 2 R2 \ {0} if 1 < r < 2, we have

He±i# B
Fr [s; ⇠ ] > 1(r,#)HB

Fr [s; ⇠ ],

and the same estimate holds with B replaced by B⇤.

Proof. The lemma rapidly follows by combining (5.2), applied with R = B or
R = B⇤ and 9 = Fr , with Proposition 6.1.

Lemma 6.3. Let ⇠ = (⇠1, ⇠2) 2 H ⇥H. Then for all s 2 R2 if r > 2, or for all
s 2 R2 \ {0} if 1 < r < 2, we have

HB
Fr [s; ⇠ ] > min{1, r � 1}r |s|r�2kS⇠̃k2

and the same estimate holds with B replaced by B⇤.
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Proof. By [11, Lemma 19] applied with � = 0, we have

Hess(Fr ; s) =
r2

2
|s|r�2Dr,0(s),

where Dr,0(s) is a real symmetric matrix with

detDr,0(s) =
⇣r
2

⌘2
 

1�

�
�
�
�1�

2
r

�
�
�
�

2
!

and trDr,0(s) = r.

Consequently, in the sense of quadratic forms on R2,

Hess(Fr ; s) > min{1, r � 1}r |s|r�2 IR2 . (6.5)

The lemma now follows by combining (6.5) with (5.3) and (5.4) applied with 9 =
Fr and R = B or R = B⇤.

Corollary 6.4. Suppose that 1 < r < 1, 0 6 # 6 #r and ⇠ = (⇠1, ⇠2) 2 H⇥H.
Let

C 2
n
ei# B, e�i# B, ei# B⇤, e�i# B⇤

o
.

Then, for all s 2 R2 if r > 2, or for all s 2 R2 \ {0} if 1 < r < 2, we have

HC
Fr [s; ⇠ ] > min{1, r � 1}r1(r,#)|s|r�2kS⇠̃k2.

Proof. The corollary rapidly follows by combining Lemma 6.2 with Lem-
ma 6.3.

Lemma 6.5. Suppose that 1 < r < 2 and D 2 B(HC). Then, for every s 2 R2\{0}
and ⇠ = (⇠1, ⇠2) 2 H2 ⇥H2,

HD
F2�r [s; ⇠ ] = �2(r � 1)|s|�rRe hD⇠̃ , ⇠̃iHC + |s|2�2r H D

Fr [s; ⇠ ].

Proof. An easy computation (see [11, equation (28)]) gives,

Hess(F2�r ; s) = �2(r � 1)|s|�r IR2 + |s|2�2rHess(Fr ; s).

Therefore,

HD
F2�r [s; ⇠ ] = �2(r � 1)|s|�r hM(D)⇠, ⇠iH2 + |s|2�2r H D

Fr [s; ⇠ ]

and the lemma now follows from (5.1).

Corollary 6.6. Suppose that 1 < r < 2 and 0 6 # 6 #r . Let

C 2
n
ei# B, e�i# B, ei# B⇤, e�i# B⇤

o
.

Then for every s 2 R2 \ {0} and ⇠ 2 H⇥H,

HC
F2�r [s; ⇠ ] > �2(r � 1)

�
1+ tan#⇤

2
�
|s|�rkS⇠̃k2.
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Proof. By Corollary 6.4, HC
Fr [s; ⇠ ] > 0. Therefore, by Lemma 6.5 applied with

D = C ,
HC
F2�r [s; ⇠ ] > �2(r � 1)|s|�rRe hC ⇠̃ , ⇠̃iHC .

Now (5.5) and the first identity in (2.1) imply that

Re hC ⇠̃ , ⇠̃iHC 6 |hB⇠̃ , ⇠̃iHC | 6 (1+ tan#⇤
2 )kS⇠̃k

2.

Lemma 6.7. Suppose that 1 < r < 2. Let D, E 2 B(HC). Then for every v =
(⇣, ⌘) 2 R2 ⇥ (R2 \ {0}) and for all ! = (↵,�) 2 H2 ⇥H2, we have

H (D,E)
F2⌦F2�r [v;!] = F2�r (⌘)HD

F2[⇣ ;↵] + F2(⇣ )HE
F2�r [⌘;�]

+ 2(2� r)|⌘|�r h(⌘ · �)⇣,M(D)↵iH2

+ 2(2� r)|⌘|�r h(⇣ · ↵)⌘,M(E)�iH2,

(6.6)

where

⌘ · � = ⌘1�1 + ⌘2�2 2 H and (⌘ · �)⇣ =
�
(⌘ · �)⇣1, (⌘ · �)⇣2

�
2 H2.

Proof. The lemma follows from the definition of H (D,E)
F2⌦F2�r [v;!], and the identity

@2⇣ j⌘k (F2 ⌦ F2�r )(⇣, ⌘) = 2(2� q)⇣ j⌘k |⌘|
�r , for j, k = 1, 2.

Corollary 6.8. Suppose that 1 < r < 2 and that 0 6 # 6 #r . Let

C 2
n
ei# B, e�i# B, ei# B⇤, e�i# B⇤

o
.

Then, for every v = (⇣, ⌘) 2 R2 ⇥ R2 with |⇣ |r/(r�1) < |⌘|r , and ! = (↵,�) 2
H2 ⇥H2,

H (C,C⇤)
F2⌦F2�r [v;!] > 21(2,#)|⌘|2�r kSe↵k2HC

� 2(r � 1)(1+ tan#⇤
2 )|⌘|

r�2kS�̃k2HC

� 4(2� r)(1+ tan#⇤
2 )kS↵̃kHCkS�̃kHC .

Proof. We apply Lemma 6.7 with D = C and E = C⇤. In order to estimate the
first two terms in the right-hand side of (6.6) we use Corollary 6.4 with r = 2 (note
that # 6 #r < #2) and Corollary 6.6.

We now estimate the last two terms in the right hand side of (6.6). By (5.1),

h(⌘ · �)⇣,M(C)↵iH2 = Re
D
C↵̃, ^(⌘ · �)⇣

E

HC
6

�
�
�
D
B↵̃, ^(⌘ · �)⇣

E

HC

�
�
�

h(⇣ · ↵)⌘,M(C⇤)�iH2 = Re
D
C⇤�̃, ^(⇣ · ↵)⌘

E

HC
6

�
�
�
D
B�̃, ^(⇣ · ↵)⌘

E

HC

�
�
� .



BOUNDED HOLOMORPHIC FUNCTIONAL CALCULUS 1519

By (5.5) and the generalised Cauchy-Schwarz inequality [74, Proposition 1.8] we
have

|hBz, wiHC | 6 (1+ tan#⇤
2 ) kSzk kSwk . (6.7)

for z, w 2 HC. One quickly sees that
�
�
�S ^(⌘ · �)⇣

�
�
�
HC

6 |⇣ ||⌘|kS�̃kHC

and similarly for (⇣ · ↵)⌘. The corollary now follows.

Proof of Theorem 5.2. Suppose that |⇣ |p > |⌘|q > 0. Then |⇣ |p�2 > |⌘|2�q , and
for every � > 0 the inequality (5.7) with a0 = 21(p,#) follows from (6.1) and
Corollary 6.4 applied first with r = p and then with r = q.

Suppose now that |⇣ |p < |⌘|q . Then by (6.1) and Corollary 6.4 applied with
r = p,

H (C,C⇤)
Q [v;!] > HC⇤

Fq [⌘;�] + �H (C,C⇤)
F2⌦F2�q [v;!].

We now apply Corollary 6.4 and Corollary 6.8, both with r = q. To conclude it is
now enough to take � > 0 sufficiently small (with respect to q, #2 and #) so that
the following 2⇥ 2 matrix is positive definite:

"
�1(2,#) 2�(1+ tan#⇤

2 )(q � 2)
2�(1+ tan#⇤

2 )(q � 2) {q1(q,#) � 2�(1+ tan#⇤
2 )}(q � 1)/2

#

.

With this choice of � inequality (5.7) holds with

a0 = a0(p,#2,#) =
p
2�q(q � 1)1(q,#).

7. Proof of Theorem 3.10

Set B = Q1A⇤. Inequality (1.1) together with Remark 3.6 imply that

!H1(Lr ) > !(Lr ) = #⇤
r .

Now let us prove the opposite inequality. For f 2 C1
c (Rn) set

L f = r⇤
1(Br f ) and L ⇤ f = r⇤

1(B⇤r f ). (7.1)

We stress the fact that L ⇤ is the Ornstein-Uhlenbeck operator associated with a
sesquilinear form of the type (3.5), but with B replaced by B⇤. Recall thatLs and
L ⇤
s denote the realisation on Ls(µ1) ofL andL ⇤, respectively. By means of the

theory of sesquilinear forms [50,74], (L2)
⇤ = L ⇤

2 . It follows that

(Lr )
⇤ = L ⇤

r/(1�r), 1 < r < 1.

Therefore, it is enough to prove that Theorem 3.10 holds for all r = p > 2 for both
Lp andL ⇤

p .
Fix p > 2 and 0 6 # < #p. By Theorem 4.3, it suffices to prove that there

exist � > 0 and a corresponding Bellman function Q defined by (4.1) such that
(4.2) holds for the two one-to-one operators (Lp)|L p0 (�1) and (L ⇤

p )|Lq0 (�1).
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Lemma 7.1. Let (X, µ) be a finite measure space. Let r 2 [1,1] and let r 0 =
r/(r � 1). Suppose that (Fn) and (Gn) are two sequences of measurable functions
with the following properties:

(i) Fn 2 Lr (µ) and converges to F in Lr (µ);
(ii) supn kGnkr 0 < +1;
(iii) Gn converges almost everywhere to a function G which belongs to Lr 0

(µ).

Then (FnGn)n2N converges to FG in L1(µ).

Proof. Write

FnGn�FG = (Fn�F)G+F(G�Gn)11{|Gn |6|G|+1}+(F11{|Gn |>|G|+1}).(G�Gn)

Now use Hölder inequality and Lebesgue dominated convergence theorem.

Since C1
c (Rn) is a core forLp andL ⇤

p , and the partial derivatives ofQ satisfy the
second estimate in Proposition 4.1, by Lemma 7.1 it is enough to show that (4.2)
holds for all f, g 2 C1

c (Rn) whenA = L orA = L ⇤.
Choose � 2 (0, 1) and the corresponding Q as in Theorem 5.2. Fix f, g 2

C1
c (Rn) and " > 0. A straightforward integration by parts based on (7.1) gives

2Re
Z

Rn

⇣
e±i# (@⇣Q ⇤  ")( f, g)L f + e⌥i# (@⌘Q ⇤  ")( f, g)L ⇤g

⌘
dµ1

=
Z

Rn
H

�
e±i# B,e⌥i# B⇤

�

Q⇤ "
[( f, g); (r f,rg)] d�1 .

(7.2)

It follows from Corollary 5.4, applied with H = Rn and B = Q1A⇤, that for all
" > 0,

2Re
Z

Rn

⇣
e±i# (@⇣Q ⇤  ")( f, g)L f + e⌥i# (@⌘Q ⇤  ")( f, g)L ⇤g

⌘
dµ1

> a0
Z

Rn

�
�
�B1/2s r f

�
�
�
�
�
�B1/2s rg

�
�
� d�1 .

Since Q 2 C1(R4), one has that @⇣Q ⇤  " and @⌘Q ⇤  " converge pointwise
respectively to @⇣Q and @⌘Q on R4, as " ! 0+. Therefore, by the second estimate
in Proposition 4.1 and Lebesgue dominated convergence theorem, we deduce that

2Re
Z

Rn

⇣
e±i# (@⇣Q)( f, g)L f + e⌥i# (@⌘Q)( f, g)L ⇤g

⌘
dµ1

> a0
Z

Rn

�
�
�B1/2s r f

�
�
�
�
�
�B1/2s rg

�
�
� d�1 .
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By integrating by parts and using the identity (7.1) and the inequality (6.7), we see
that

�
�
�
�

Z

Rn
L f · g d�1

�
�
�
� 6

Z

Rn
|hBr f,rgi| d�1

6 (1+ tan#⇤
2 )

Z

Rn

�
�
�B1/2s r f

�
�
�
�
�
�B1/2s rg

�
�
� d�1.

It follows that (L, Rn, �1) satisfies (4.2) for all f, g 2 C1
c (Rn)withC0 = a0/(1+

tan#⇤
2 ). By copying the same proof but with B replaced by B

⇤, we see that the same
conclusion holds also for (L ⇤, Rn, �1), which finishes the proof of Theorem 3.10.
Remark 7.2. The integration by parts (7.2) was the main reason for introducing
Notation 5.1 and studying Theorem 5.2.
Remark 7.3. Our proof of Theorem 3.10 does not use a priori the analyticity of
Ornstein-Uhlenbeck semigroup proved in [13, Theorem 2] (see Proposition 3.5).
However, it is based on Theorem 5.2, whose proof makes use of a calculation con-
tained in [13] and [14] that, in turn, is equivalent to [13, Theorem 2] (see Proposi-
tion 6.1).

8. Infinite dimensional setting

The main sources for the background material presented in this section are [39, 56,
57,81] and the books [6,47,72]. The interested reader should also consult [22–24].

We consider a real separable Banach space E . We denote by E⇤ its dual and
by hx, x⇤i, x 2 E , x⇤ 2 E⇤ the dual paring.

We say that Q 2 B(E⇤, E) is nonnegative if hQx⇤, x⇤i > 0, for all x⇤ 2 E⇤,
and symmetric if hQx⇤, y⇤i = hQy⇤, x⇤i, for all x⇤, y⇤ 2 E⇤.

Gaussian measures on E [6]

For each � > 0 the centered Gaussian measure �� of variance � 2 in R is the Borel
probability measure on R defined by �0 = �0 and

d�� (t) =
1

p
2⇡�

exp

 

�
t2

2� 2

!

, t 2 R, � > 0.

A Borel probability measure � on E is called (centred) Gaussian if for all x⇤ 2 E⇤

the push forward x⇤
] � is a centred Gaussian measure on R.

If � is a Gaussian measure on E , then the covariance operator Q 2 B(E⇤, E)
associated with � is defined by the Bochner integral

Qx⇤ =
Z

E
hx, x⇤ix d� (x), x⇤ 2 E⇤.
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By Fernique’s theorem (see [6, Corollary 2.8.6]) Gaussian measures have finite mo-
ments of every order. It follows that Q is well defined, nonnegative and symmetric.
Moreover, for each x⇤ 2 E⇤ the measure x⇤

] � is of variance hQx⇤, x⇤i.

Reproducing kernel Hilbert space [39,81]

Let Q 2 B(E⇤, E) be symmetric and nonnegative. Consider on R(Q) the bilinear
form h·, ·iHQ defined by

hQx⇤, Qy⇤iHQ = hQx⇤, y⇤i, x⇤, y⇤ 2 E⇤.

The bilinear form h·, ·iHQ is well defined and induces on R(Q) a scalar product. The
reproducing kernel Hilbert space (RKHS)HQ associated with Q is the completion
of R(Q) with respect to the norm induced by the inner product h·, ·iHQ .

The identity map I : R(Q) ! E extends to a continuous embedding iQ :
HQ ,! E . Moreover, we have the factorisation

iQi⇤Q = Q.

Hypothesis (H�1)

Consider a symmetric and nonnegative operator Q 2 B(E⇤, E), and a strongly
continuous semigroup (S(t))t>0 on E of generator �A.

By [81, Proposition 1.2] the function s 7! S(s)QS⇤(s)x⇤ is strongly measur-
able. Therefore, for each t > 0 we can define the symmetric nonnegative operator
Qt 2 B(E⇤, E) by the formula

Qt x⇤ =
Z t

0
S(s)QS⇤(s)x⇤ ds, x⇤ 2 E⇤,

where the integral exists as a Bochner integral on E .
When the semigroup (S(t))t>0 is not uniformly exponentially stable, it might

happen that the (weak) limt!1 Qt x⇤ does not exist for all x⇤ 2 E⇤.
Moreover, in contrast to the finite dimensional case, it is not always true that

every nonnegative symmetric operator in B(E⇤, E) is the covariance of a Gaussian
measure on E ; for example if E is a Hilbert space, then the class of covariance op-
erators of Gaussian measures coincides with the class of all nonnegative symmetric
operators of trace class on E . We refer the interested reader to [6,39,81] for several
examples and comments.

Following [39,81], we say that Hypotesis (H�1) holds if:

(i) For all x⇤ 2 E⇤, the weak-limt!1 Qt x⇤ exists in E ;
(ii) The symmetric nonnegative operator Q1 2 B(E⇤, E) defined by

Q1x⇤ = weak� lim
t!1

Qt x⇤, x⇤ 2 E⇤

is the covariance of a Gaussian measure �1 on E .
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It can be proved that (H�1) implies that for all t > 0 the operator Qt is the covari-
ance of a Gaussian measure on E which we denote by �t ; see, for example, [39, Sec-
tion 7].
Notation 8.1. We denote by H1 the reproducing kernel Hilbert space associated
with Q1, and we set i1 = iQ1 .
Lemma 8.2 ([81, Theorem 6.2]). If (part (i) of ) hypothesis (H�1) holds, then
the subspace i1(H1) is invariant for the action of the semigroup (S(t))t>0 and
the equation

i1 � S1(t) = S(t) � i1, t > 0,
defines a strongly continuous contraction semigroup (S1(t))t>0 onH1.

Notation 8.3. We denote by �A1 the generator of (S1(t))t>0 onH1.
In the rest of this paper we will always assume (H�1). Note however that some
of the results that we will recall still hold true under weaker assumptions. The
interested reader should consult [39, 81] and the references contained therein.

Paley-Wiener isometry

Note that i⇤1(E⇤) is dense in H1, because i1 is injective. The map � : i⇤1x⇤ 7!
h·, x⇤i extends to an isometry � : H1 ! L2R(�1) [56, Proposition 1.12]. The map
� is called Paley-Wiener isometry. We will use the notation �h = �(h), h 2 H1.

Cylindrical functions

If H0 is a linear subspace of H1 and k 2 N [ {1}, we denote by FCk
b(E; H0) the

vector space of all, �1-almost everywhere defined, functions f : E ! C of the
form

f (x) = '(�h1(x), . . . ,�hn (x)), (8.1)

where n > 1, ' 2 Ck
b(Rn), and h1, . . . , hn 2 H0. If H0 is a dense subspace of H1,

then FCk
b(E; H0), for k 2 N [ {1}, is dense in Lr (�1), whenever 1 6 r < 1;

see, for example, [56, Lemma 1.28].

Second quantisation

The Paley-Wiener isometry can be used to construct the Wiener-Itô chaos decom-
position of L2R(�1) (see [47, Chapter 2] and [72, Theorem 1.1.1]), which identi-
fies L2R(�1) with the symmetric Fock space associated with H1 [47, Chapter IV
and Appendix E]. This identification allows us to associate with each contrac-
tion T 2 B(H1) a contraction 0(T ) 2 B(L2R(�1)), where 0 denotes the real
second quantisation functor. Analogously, we can associate with each contrac-
tion U 2 B(HC

1) a contraction 0C(U) 2 B(L2(�1)), where 0C denotes the
complex second quantisation functor. For a contraction T 2 B(H1) one has
0(T )C = 0C(TC); see [47, Appendix E]. The interested reader should consult
also [15,56,71, 79, 81] and the references therein.
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Lyapunov equation

The operator Q1 is the minimal solution of the Lyapunov equation

Q1A⇤ + AQ1 = Q;

meaning that Q1x⇤ 2 D(A) and Q1A⇤x⇤ + AQ1x⇤ = Qx⇤, for all x⇤ 2 D(A⇤);
see [39, Theorem 4.4].

Ornstein-Uhlenbeck semigroup with invariant measure

The Ornstein-Uhlenbeck semigroup (T (t))t>0 associated with (S(t))t>0 and Q is
defined on Cb(E) by the Kolmogorov’s formula

T (t) f (x) =
Z

E
f (S(t)x + y) d�t (y), x 2 E, t > 0.

The measure �1 is invariant for the Ornstein-Uhlenbeck semigroup. Moreover,
for every r 2 [1,1], we have that (T (t))t>0 extends to a positivity preserving
semigroup of contractions on Lr (�1), which is strongly continuous for 1 6 r < 1
and weak*-continuous for r = 1; see [81, Section 2].

Notation 8.4. For 1 < r < 1, denote by �Lr the generator of (T (t))t>0 on
Lr (�1).

It was proved in [15, Theorem 1] (see also [81, Theorem 6.12]) that on L2(�1) the
semigroup (T (t))t>0 coincides with the complexification of the second quantisation
of (S⇤

1(t))t>0; i.e.

T (t) = 0
�
S⇤
1(t)

�C
= 0C

⇣
S⇤
1(t)C

⌘
, t > 0. (8.2)

In particular, for every cylindrical function f = '(�h1, . . . ,�hn ) 2 FCb(E;H1)
we have the Mehler’s formula:

T (t) f (x) =
Z

E
'
⇣
�S⇤

1(t)h1(x) + �pI�S1(t)S⇤
1(t)h1

(y), . . .

. . . ,�S⇤
1(t)hn (x) + �pI�S1(t)S⇤

1(t)hn (y)
⌘
d�1(y).

(8.3)

By [39, Proposition 2.4] the semigroup (S⇤
1(t))t>0 is strongly exponentially stable.

The infinite-dimensional analogue of (3.10) now follows from the continuity of
the Paley-Wiener isometry, from (8.3) and from the density of cylindrical functions
in Lr (�1): for every r 2 [1,1) the projectionP r onto N(Lr ) is given by

P r f = lim
t!1

T (t) f =
Z

E
f d�1, f 2 L p(�1). (8.4)
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Analyticity of the Ornstein-Uhlenbeck semigroup

As we already remarked in Remark 3.12, the semigroup (T (t))t>0 may fail to be
analytic in L2(�1) on some sector of positive angle of the complex plane. It follows
from (8.2) that (T (t))t>0 has a bounded analytic extension in L2(�1) on the sector
S# , for # > 0, if and only if (S⇤

1(t)C)t>0 (or equivalently (S1(t)C)t>0) extends
to a contractive analytic semigroup on S# ; if this is the case, then (T (t))t>0 is a
contraction in L2(�1) on S# [39, Theorem 8.1].

Next result characterises analytic Ornstein-Uhlenbeck semigroups.

Proposition 8.5 ( [39, Theorem 8.1]). The following assertions are equivalent:

(i) The Ornstein-Uhlenbeck semigroup (T (t))t>0 is analytic on L2(�1) in some
sector of positive angle;

(ii) There exists a unique operator BQ 2 B(HQ) such that

iQ BQi⇤Qx
⇤ = Q1A⇤x⇤, x⇤ 2 D(A⇤).

In this case we have that
BQ + B⇤

Q = I. (8.5)

Assumption. Being interested in holomorphic functional calculus, in the rest of
this paper we will always assume that (T (t))t>0 is analytic on L2(�1), meaning
that it has a contractive analytic extension on some sector of positive angle of the
complex plane.

Directional gradient

It can be shown [38, Lemma 5.2] that N(i⇤1) ✓ N(i⇤Q). Therefore, the densely
defined operator

V : i⇤1(E⇤) ✓ H1 ! HQ; V i⇤1x⇤ = i⇤Qx
⇤, x⇤ 2 E⇤ (8.6)

is well defined. Moreover, since (T (t))t>0 is analytic, V is closable [39, Proposi-
tion 8.7]. We still denote by V its closure. We have the following decomposition of
A⇤

1 [56, Theorem 2.16]:

A⇤
1 = V ⇤BQV, D(A⇤

1) = {h 2 D(V ) : BQVh 2 D(V ⇤)}; (8.7)

i.e. A⇤
1 is the operator associated with the bilinear form

b(g, h) = hBQVg, VhiHQ , D(b) = D(V ).

For each r 2 [1,1) the directional gradient in the direction of V is the densely
defined operator

DV : FC1b(E;D(V )) ✓ Lr (�1) ! Lr
⇣
�1;HC

Q

⌘
,
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defined by the rule

DV f (x) =
nX

j=1
@ j'(�h1(x), . . . ,�hn (x)) ⌦ Vh j , (8.8)

whenever f is of the form (8.1).
Notation 8.6. For every r 2 (1,1), the operator DV is closable; see [38, Theorem
3.5] and [39, Proposition 8.7]. We still denote by DV its closure. If 1 < r <
1, denote by Dr (DV ) the domain of DV as a closed operator from Lr (�1) to
Lr (�1;HC

Q), and by Dr (D⇤
V ) the domain of its adjoint.

Divergence form for the Ornstein-Uhlenbeck operator

Recall that�Lr denotes Ornstein-Uhlenbeck operator on Lr (�1), for 1 < r < 1.
We still denote by BQ the complexification of the operator in Proposition 8.5.

Proposition 8.7 ([57, Theorem 2.3, Proposition 2.4] and [58, Lemma 4.8]).
The generator L2 coincides with the operator associated with the densely defined,
closed, continuous and accretive sesquilinear form

a( f, g) :=
Z

E
hBQDV f, DV giHC

Q
d�1, D(a) = D2(DV ).

In other terms, we have

L2 := D⇤
V BQDV , D(L2) = { f 2 D2(DV ) : BQDV f 2 D2(D⇤

V )}. (8.9)

If 1 < r < 1, then FC1
b (E;D(A⇤

1)) is a core for Lr .

The theory of sesquilinear forms [50, 74] implies that (L2)
⇤ and A1 are associ-

ated, respectively, with the adjoint sequilinear form a⇤ and the adjoint bilinear form
b⇤. Moreover, (�L2)

⇤ is the generator of the semigroup (0C(S1(t)C))t>0. The
following result is now a consequence of [58, Lemma 4.8].

Proposition 8.8 ([57,58]). The generator (L2)
⇤ coincides with the operator asso-

ciated with the densely defined, closed, continuous and accretive sesquilinear form

a⇤( f, g) :=
Z

E
hB⇤

QDV f, DV giHC
Q
d�1, D(a⇤) = D2(DV ).

In other terms, we have

(L2)
⇤ :=D⇤

V B
⇤
QDV , D((L2)

⇤)=
�
f 2D2(DV ) : B⇤

QDV f 2 D2(D⇤
V )

 
. (8.10)

If 1 < r < 1, then FC1
b (E;D(A1)) is a core for (Lr )

⇤.
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Sector of analyticity of the Ornstein-Uhlenbeck semigroup

Assume (H�1) and suppose that the Ornstein-Uhlenbeck semigroup (T (t))t>0 is
analytic. Let #⇤

2 = #⇤
2 (BQ) be the angle defined in (5.5), but with B = BQ and

H = HQ .
By combining (5.6) with the Lyapunov equation (8.5), we obtain that

#⇤
2 =#⇤

2 (BQ) = arctan kBQ � B⇤
Qk, (8.11)

and � (BQ)= 1/2+� ((BQ)2), where � ((BQ)2)⇢ iR. By the spectral theorem for
normal operators, the spectral radius of (BQ)2 coincides with kBQ�B⇤

Qk/2. There-
fore, #⇤

2 coincides with the spectral angle of BQ onHC
Q ; see also [13, Remark 2].

Notation 8.9. For 1 < r < 1 define #⇤
r as in (3.7). Recall the notation #r =

⇡/2� #⇤
r .

The following result extends to the infinite dimensional setting [13, Theorem 2,
Remark 6] (see Proposition 3.5) and removes the nondegeneracy assumption on the
diffusion operator Q.

Proposition 8.10 ([57, Theorem 3.4 and Theorem 3.5]). Suppose that 1<r<1.
Then:

(i) (T (t))t>0 extends to an analytic contraction semigroup on Lr (�1) in the sec-
tor S#r ;

(ii) If (T (t))t>0 extends to a bounded analytic semigroup on Lr (�1) in the sector
S# , for some # 2 (0,⇡/2), then # 6 #r .

As a consequence of Proposition 8.10 we have !(Lr ) = #⇤
r , 1 < r < 1.

9. H1-calculus for infinite dimensional Ornstein-Uhlenbeck operators

In this section we fix a real separable Banach space E , a nonnegative symmetric
operator Q 2 B(E⇤, E) and a strongly continuous semigroup (S(t))t>0 on E . We
assume hypothesis (H�1) and we suppose that the Ornstein-Uhlenbeck semigroup
(T (t))t>0 associated with Q and (S(t))t>0 is analytic. Let BQ be the operator in
Proposition 8.5, and let #⇤

2 = #⇤
2 (BQ) be the angle defined in (8.11). For every

r 2 (1,1) let #⇤
r = #⇤

r (BQ) be defined by means of (3.7).

Theorem 9.1. Let 1 < r < 1. Then,

!H1(Lr ) = !(Lr ) = #⇤
r .

Moreover, for every # > #⇤
r there exists C > 0, which depends only on r , # and

#⇤
2 , such that

km(Lr ) f kr 6 Ckmk#k f kr , f 2 Lr0(�1),

for all m 2 H1(S# ).
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Proof. The proof of the theorem is an adaptation of that of Theorem 3.10. First
notice that by (8.4) we have R(Lr ) = Lr0(�1). Recall that, by Proposition 8.7 and
Proposition 8.8, the spaceFC1

b (E;D(A⇤
1)) is a core forLr andFC1

b (E;D(A1))
is a core forL ⇤

r .
We first prove the theorem for r = p > 2. By arguing as in the proof of The-

orem 3.10 in Section 7, we see that it suffices to prove that there exists � > 0 such
that the corresponding Bellman function Q, defined by (4.1), satisfies the integral
condition (4.2) in Theorem 4.3 with A = Lp for all f 2 FC1

b (E;D(A⇤
1)), all

g 2 FC1
b (E;D(A1)) and every # < #p.

Choose � 2 (0, 1) and the corresponding Q as in Theorem 5.2. Fix " > 0,
f 2 FC1

b (E;D(A⇤
1)) and g 2 FC1

b (E;D(A1)). Since @⇣Q ⇤  ", @⌘Q ⇤  " 2
C1(C2, C) and since by (8.7) we have that D(A⇤

1) ✓ D(V ) and D(A1) ✓ D(V ),
it follows that

@⇣Q ⇤  "( f, g) 2 FC1
b (E;D(V )) ✓ D2(DV ),

@⌘Q ⇤  "( f, g) 2 FC1
b (E;D(V )) ✓ D2(DV ).

Therefore, by Proposition 8.7 and Proposition 8.8, the right hand side of (4.2) with
Q replaced byQ ⇤  " and withA = L2 can be rewritten as

Re
Z

E

n
he±i# BQDV f, DV [@⇣Q ⇤  "( f, g)]iHC

Q

+he⌥i# B⇤
QDV g, DV [@⌘Q ⇤  "( f, g)]iHC

Q

o
d�1 .

It follows from (8.8) and from Definition 5.1 that the sum of the real part of the
inner products inside the integral above equals

H

⇣
e±i# BQ ,e⌥i# B⇤

Q

⌘

Q⇤ "
[( f, g); (DV f, DV g)] .

We now apply Corollary 5.4 with H = HQ and B = BQ , and we finish the proof
of the theorem for p > 2 exactly as in the proof of Theorem 3.10 (see Section 7).
The theorem for r = q = p/(p � 1) < 2 follows by a duality argument.

10. Comparison with the finite dimensional case of Section 3

The results of Sections 8 and 9 also apply to any degenerate Ornstein-Uhlenbeck
operator (N(Q) 6= {0}) whose diffusion Q does not have a bounded inverse on the
range, provided that (H�1) holds and the Ornstein-Uhlenbeck semigroup (T (t))t>0
has a L2(�1)-bounded analytic extension in some cone of positive angle.

When dim(E) < +1 and N(Q1) = {0}, analyticity of (T (t))t>0 implies the
nondegeneracy condition N(Q) = {0} (see [40, Corollary 2.6]), so Q has a bounded
inverse; this is no longer true when dim(E) = +1. We refer the interested reader
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to [40, Corollary 2.6], [59, Theorem 3.3] and [39, Theorem 9.2] for necessary and
sufficient conditions for the analyticity of (T (t))t>0.

When E is an infinite dimensional Banach space, formula (3.6) has no meaning
because the operator Q1/2 can be defined only when E is a Hilbert space, so the
factorisation Q = Q1/2 � Q1/2 is not available, in general. This is the principal
reason for introducing abstract RKHS and replacing Q�1/2BQ�1/2 with BQ .

Suppose now that E = H is a real Hilbert space and that Q 2 B(H) is non-
negative and self-adjoint. It is not hard to see that the abstract RKHS associated
with Q can be canonically identified with

HQ = R(Q1/2), hQ1/2x, Q1/2yiHQ = hPx, PyiH ,

where P denotes the orthogonal projection onto R(Q1/2). This identification gives
iQ = I and i⇤Q = Q, see, for example, [39]. Since H is a Hilbert space it is more
natural to work with the factorisation Q = Q1/2 � Q1/2 rather than Q = Q � I as
before. Therefore it is convenient to replaceHQ with the isometrically isomorphic
Hilbert space

eHQ =
⇣
R(Q1/2), h·, ·iH

⌘

by means of the isometry J : eHQ ! HQ defined by Ph 7! Q1/2Ph. This new
identification giveseiQ =ei⇤Q = Q1/2. Let

Q�1/2 : R(Q1/2) ✓ R(Q1/2) ! R
�
Q1/2

�
.

It follows from Proposition 8.5 (ii) that if (T (t))t>0 is analytic then Q1A⇤h 2
R(Q1/2) for all h 2 D(A⇤) and

Q�1/2Q1A⇤Q�1/2 = eBQ

extends to a bounded operator on R(Q1/2) = eHQ . Since Q is bounded, we deduce
that also Q1A⇤ extends to a bounded operator on R(Q1/2). We also have

�
�
�Q�1/2 �Q1A⇤ � (Q1A⇤)⇤

�
Q�1/2

�
�
�
R(Q1/2)

=
�
�eBQ � eB⇤

Q
�
�
eHQ

.

The formula above confirms that (8.11) is the infinite-dimensional analogue of (3.6).
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[5] V. I. BOGACHEV, M. RÖCKNER and B. SCHMULAND, Generalized Mehler semigroups
and applications, Probab. Theory Related Fields 105 (1996), 193–225.

[6] V. I. BOGACHEV, “Gaussian Measures”, Mathematical Surveys and Monographs, Vol. 62,
American Mathematical Society, Providence, RI, 1998.

[7] D. L. BURKHOLDER, Boundary value problems and sharp inequalities for martingale
transforms, Ann. Probab. 12 (1984), 647–702.
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393–423.

[70] F. L. NAZAROV and S. R. TR ˘EIL0, The hunt for a Bellman function: applications to esti-
mates for singular integral operators and to other classical problems of harmonic analysis,
Algebra i Analiz 8 (1996), 32–162.

[71] E. NELSON, The free Markoff field, J. Funct. Anal. 12 (1973), 211–227.
[72] D. NUALART, “The Malliavin Calculus and Related Topics”, Second Ed., Probability and

its Applications (New York), Springer-Verlag, Berlin, 2006.
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École Polytéchnique (2002), 14.

[84] J. WITTWER, Survey article: a user’s guide to Bellman functions, Rocky Mountain J. Math.
41 (2011), 631–661.
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