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Spatial concavity of solutions to parabolic systems

KAZUHIRO ISHIGE, KAZUSHIGE NAKAGAWA AND PAOLO SALANI

Abstract. We investigate spatial log-concavity and spatial power concavity of
solutions to parabolic systems with log-concave or power concave initial data in
convex domains.
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(secondary).

1. Introduction

In a series of previous papers [18–22], two of the present authors investigated con-
cavity properties of solutions to parabolic equations with respect to space and time
variables, introducing also the notion of parabolic concavity. In a recent paper [15],
the authors of this paper treated weakly coupled parabolic systems with vanish-
ing initial data and investigated again concavity properties with respect to time and
space variables. In this paper we study spatial concavity properties of solutions to
parabolic systems with non vanishing initial data.

Concavity properties of solutions to elliptic and parabolic problems are a clas-
sical subject of research and have been largely investigated. Here we just refer the
reader to the classical monograph by Kawohl [25] and to the papers [1–8,10,12,14–
24, 26–37], some of which are closely related to this paper and the others include
recent developments in this area. However very little is known concerning concav-
ity properties of solutions to elliptic and parabolic systems and the only available
results to our knowledge are in [15], which treats power concavity properties with
respect to time and space variables for weakly coupled parabolic systems with van-
ishing initial data. Unfortunately, in order to be able to take account of the time
variable, the arguments in [15] are not applicable to the case of non vanishing ini-
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tial data. To our knowledge, this paper is the first one dealing with spatial concavity
properties of solutions to parabolic systems with non vanishing initial data.

Let � be a bounded convex domain in RN (N � 1), D := � ⇥ (0,1) and
m 2 {1, 2, . . . }. We denote by SN the space of real N ⇥ N symmetric matrices. Let

u =
�
u(1), . . . , u(m)

�
2 C2,1(D : Rm) \ C(D : Rm)

satisfy the parabolic system
8
>>><

>>>:

@t u(k) + F (k)�x, t,u,ru(k),r2u(k)� = 0 in D k = 1, . . . ,m
u(k)(x, t) > 0 in D k = 1, . . . ,m
u(x, t) = 0 on @�⇥ [0,1)

u(x, 0) = u0(x) in � ,

(1.1)

where u0 = (u(1)
0 , . . . , u(m)

0 ) 2 C(� : [0,1)m) and

u( j)
0 > 0 in � u( j)

0 = 0 on @� for j = 1, . . . ,m .

Throughout this paper we assume the following conditions on F = (F (1), . . . ,
F (m)):

(A1) F = (F (1), . . . , F (m)) 2 C(D ⇥ Rm ⇥ RN ⇥ SN : Rm);
(A2) For each k 2 {1, . . . ,m}, F (k) is a degenerate elliptic operator, that is F (k)(x,

t, u, ✓, ·) is non-increasing in SN for every fixed (x, t, u, ✓) 2 D⇥Rm ⇥RN .

Here we refine the technique developed in [15, 20] and [22] and investigate spatial
concavity properties of the solution u under conditions (A1) and (A2). Our ap-
proach is based on the construction of the spatially concave envelope of the solution
and the viscosity comparison principle, and it is different from those of [11, 13, 24]
and [28–35] treating spatial concavity properties of the solutions to parabolic equa-
tions.

We state our main theorems in Section 4. Here we state a result on the spatial
log-concavity of solutions to parabolic systems which directly descends from them.

Theorem 1.1. Let � be a bounded convex domain in RN and d1, d2 > 0. Let
(u, v) 2 C2,1(D : R2) \ C(D : R2) satisfy

8
>>>>><

>>>>>:

@t u � d11u + f (x, t, u, v,ru) = 0 in D
@tv � d21v + g(x, t, u, v,rv) = 0 in D
u, v � 0 in D
u(x, t) = v(x, t) = 0 on @�⇥ [0,1)

u(x, 0) = u0(x) v(x, 0) = v0(x) in � ,

(1.2)
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where f and g are nonnegative continuous functions in D⇥ [0,1)2⇥RN . Assume
the following conditions:

(i) The viscosity comparison principle holds for system (1.2);
(ii) The functions

ft,✓ (x, r, s) := e�r f (x, t, er , es, er✓)
and gt,✓ (x, r, s) := e�sg(x, t, er , es, es✓)

are convex in �⇥ (0,+1)2 for every fixed t > 0 and ✓ 2 RN .

Then log u(·, t) and log v(·, t) are concave in� for every fixed t 2 [0,1), provided
that log u0 and log v0 are concave in �.

For the viscosity comparison principle for parabolic systems, see Section 4. As a
corollary of Theorem 1.1, we have:

Corollary 1.2. Let � be a bounded convex domain in RN and d1, d2 > 0. Let
(u, v) 2 C2,1(D : R2) \ C(D : R2) satisfy

8
>>>>><

>>>>>:

@t u � d11u + v|ru|a + c1u = 0 in D
@tv � d21v + u|rv|b + c2v = 0 in D
u, v � 0 in D
u(x, t) = v(x, t) = 0 on @�⇥ [0,1)

u(x, 0) = u0(x) v(x, 0) = v0(x) in � ,

(1.3)

where a � 0, b � 0, c1 > 0 and c2 > 0. Then log u(·, t) and log v(·, t) are concave
in � for any fixed t 2 [0,1), provided that log u0 and log v0 are concave in �.

Next we state a result on the power concavity for porous medium systems.

Theorem 1.3. Let � be a bounded convex domain in RN and d1, d2 > 0. Let
(u, v) 2 C2,1(D : R2) \ C(D : R2) satisfy

8
>>>>><

>>>>>:

@t u � d11(u↵) + f (v) = 0 in D
@tv � d21(v�) + g(u) = 0 in D
u, v > 0 in D
u(x, t) = v(x, t) = 0 on @�⇥ [0,1)

u(x, 0) = u0(x) v(x, 0) = v0(x) in � ,

(1.4)
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where ↵, � > 1. Assume the following:

(i) The viscosity comparison principle holds for system (1.4);
(ii) The functions

f(⇠, ⌘) := ⇠
↵�3
↵�1 f

⇣
⌘

2
��1

⌘
and g(⇠, ⌘) := ⌘

��3
��1 g

⇣
⇠

2
↵�1

⌘

are convex with respect to (⇠, ⌘) 2 (0,1)2.

Let p := (↵ � 1)/2 and q := (� � 1)/2. Then u(·, t)p and v(·, t)q are concave in
� for any t > 0, provided that u p0 and v

q
0 are concave in �.

For sufficient conditions for the concavity of the functions f = f(⇠, ⌘) and g =
g(⇠, ⌘), see, e.g., [18, Lemma A.1].

The paper is organized as follows. In Section 2 we introduce some notation
and recall basic properties of concave functions. In Section 3 we recall some basic
viscosity theory for systems and prove a technical lemma. Furthermore, we give a
uniqueness result for parabolic systems (see Theorem 3.6) which is enough for the
purposes of the next section. In Section 4 we state and prove the main results of
this paper, see Theorems 4.1 and 4.3, which are general results on power concavity
and log-concavity of solutions to problem (1.1). Theorem 1.1 is a corollary of
Theorem 4.3. In Section 5 we apply Theorem 4.1 to the porous medium equation
and related systems and prove Theorem 1.3.

2. Preliminaries

Throughout the paper, let N and n be natural numbers and let SN denote the space
of N ⇥ N real symmetric matrices. If A, B 2 SN , by A � 0 we mean that A is
non-negative definite, while A � B means A � B � 0. For n 2 {2, 3, . . . }, we set

3n :=

(

� = (�1, . . . , �n) : 0  �i  1 (i = 1, . . . , n),
nX

i=1
�i = 1

)

.

For any r = (r (1), . . . , r (n)) and s = (s(1), . . . , s(n)) 2 Rn , we write

r  s if r (k)  s(k) for each k = 1, . . . , n.

For any a = (a1, . . . , an) 2 (0,1)n , � 2 3n and p 2 [�1, +1], we set

Mp(a; �) :=

8
>>><

>>>:

⇥
�1a

p
1 + �2a

p
2 + · · · + �na

p
n
⇤1/p if p 6= �1, 0, +1

max{a1, . . . , an} if p = +1

a�11 · · · a�nn if p = 0
min{a1, a2, . . . , an} if p = �1,
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which is the (�-weighted ) p -mean of a. For a = (a1, . . . , an) 2 [0,1)n , we
defineMp(a; �) as above if p � 0 andMp(a; �) = 0 if p < 0 and

Qn
i=1 ai = 0.

Notice thatMp(a; �) is a continuous function of the argument a. In the case n = 2,
for simplicity, we write

Mp(a, b;µ) :=Mp((a, b); (1� µ,µ))

for a, b 2 [0,1), µ 2 [0, 1] and p 2 [�1,1].
Due to the Jensen inequality, we have

Mp(a; �) Mq(a; �) if � 1  p  q  1, (2.1)

for any a 2 [0,1)n and � 2 3n . Moreover, it easily follows that

lim
p!+1

Mp(a; �) = max{a1, . . . , an} lim
p!�1

Mp(a; �) = min{a1, . . . , an}

and limp!0Mp(a; �) =M0(a; �).
We recall the definition of p-concavity of nonnegative functions in convex sets.

Definition 2.1. Let K be a convex set inRN , Q := K⇥(0,1) and p 2 [�1,1].
A nonnegative function v is said spatially p -concave in Q if, for every fixed t > 0,

v
�
(1� �)x1 + �x2, t

�
� Mp

�
v(x1, t), v(x2, t); �

�

for all x1, x2 2 K and � 2 (0, 1).
Roughly speaking, v is spatially p -concave in Q if

• Case p = 1: for every fixed t > 0, v(·, t) is a nonnegative constant function
in K ;

• Case p > 0: for every fixed t > 0, v(·, t)p is concave in K ;
• Case p = 0: for every fixed t > 0, log v(·, t) is concave in K ;
• Case p < 0: for every fixed t > 0, v(·, t)p is convex in K ;
• Case p = �1: for every fixed t > 0, the level sets {x 2 K : v(x, t) > d} are
convex for every d � 0.

Then the following hold (see, e.g., [28]):

(a) Let K be a convex set in RN , Q := K ⇥ (0,1) and �1  p  1. Due
to Definition 2.1 and (2.1), if v is spatially p -concave in Q, then v is spatially
q -concave in Q for any �1  q  p ;

(b) Let {v j } j2N be nonnegative functions in Q such that, for every j 2 N, v j is
spatially p j -concave in Q for some p j 2 [�1,1]. Let v be the pointwise
limit of the sequence v j in Q and lim j!1 p j = p 2 [�1,1]. If v is
continuos with respect to the time variable, then v is spatially p -concave in Q;

(c) Let p, q 2 [0,1]. If v and w are spatially p -concave and q -concave in Q,
respectively, then vw is spatially r -concave in Q, where

1
r

=
1
p

+
1
q

.



296 KAZUHIRO ISHIGE, KAZUSHIGE NAKAGAWA AND PAOLO SALANI

3. Viscosity solutions of parabolic systems

In this section we recall the definition of viscosity solutions of elliptic and parabolic
systems and some basic related notions and properties. Furthermore, we establish a
comparison principle for viscosity solutions of (1.1).

Let � be a bounded convex domain in RN (N � 1) and T > 0. For any
function w in DT := � ⇥ (0, T ), we denote the semi-jets P2,±w(x, t) of w at
(x, t) 2 DT by

P2,+w(x, t) :=
n
(a, ✓, X)2R⇥RN⇥Sn : w(y, s)w(x, t)+a(s�t)+h✓,(y�x)i

+
1
2
hX (y�x),y�xi+o(|x�y|2+|t�s|)asDT 3(y,s)!(x,t)

�
,

P2,�w(x, t) :=
n
(a,✓,X)2R⇥RN⇥Sn : w(y,s)�w(x, t)+a(s�t)+h✓, (y�x)i

+
1
2
hX (y�x),y�xi+o(|x�y|2+|t�s|)asDT 3(y,s)!(x,t)

�
.

Furthermore, we define the closures of semi-jets by

P2,±w(x, t) :=
n
(a,✓,X)2R⇥RN⇥Sn : there exists a sequence {(x j ,t j ,a j ,✓ j ,X j )}

in DT ⇥ R⇥ RN ⇥ Sn such that (a j , ✓ j , X j ) 2 P2,±w(x j , t j )

and (x j , t j , a j , ✓ j , X j ) ! (x, t, a, ✓, X) as j ! 1
o
.

Then it follows that

P2,±( + w)(x, t) = (@t (x, t),r (x, t),r2 (x, t)) + P2,±w(x, t)

for all  2 C2,1(DT ).

Definition 3.1. Let m 2 {1, 2, . . . }. Assume (A1) and (A2).

(i) Let u = (u(1), . . . , u(m)) be a vector of upper semi-continuous functions in
DT . We say that u is a viscosity subsolution of (1.1) if

a + F (k)(x, t,u(x, t), ✓, X)  0

for (x, t) 2 DT , k 2 {1, . . . ,m} and (a, ✓, X) 2 P2,+u(k)(x, t);
(ii) Let u = (u(1), . . . , u(m)) be a vector of lower semi-continuous functions in

DT . We say that u is a viscosity supersolution of (1.1) if

a + F (k)(x, t,u(x, t), ✓, X) � 0

for (x, t) 2 DT , k 2 {1, . . . ,m} and (a, ✓, X) 2 P2,�u(k)(x, t);
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(iii) We say that u is a viscosity solution of (1.1) if u is both a viscosity subsolution
and supersolution of (1.1).

The following trivial lemma and its corollary are crucial to the proof of our main
results (see Section 4).

Lemma 3.2. Let k2{1,. . . ,m} and (x,t)2DT . Assume that there exists (ā, ✓̄, X̄)2
P2,�u(k)(x, t) such that ā + F (k)(x, t,u(x, t), ✓̄, X̄)  0. Then a = ā, ✓ = ✓̄ and
X � X̄ for every (a, ✓, X) 2 P2,+u(k)(x, t).

Proof. If (a, ✓, X) 2 P2,+u(k)(x, t), then

w(x, t) + ā(s�t)+h✓̄, (y�x)i +
1
2
hX̄(y � x), y � xi + o(|x � y|2 + |t � s|)

 w(y, s)  w(x, t) + a(s � t) + h✓, (y � x)i +
1
2
hX (y � x), y � xi

+ o(|x � y|2 + |t � s|)

for all (y, s) in a neighborhood of (x, t). This implies Lemma 3.2.

Corollary 3.3. Assume (A1) and (A2). If, for every (x, t) 2 DT , there exists � =
(�(1), . . . ,�(m)) of class C2 touching u by above at (x, t) (i.e. �(x, t) = u(x, t)
while �(y, s) � u(y, s) for (y, s) in neighborhood of (x, t)), such that

@t�
(k)(x, t)+F (k)

⇣
x, t,u(x, t),r�(k)(x, t),r2�(k)(x, t)

⌘
0 for k = 1, . . . ,m ,

then u is a viscosity subsolution of (1.1).

Proof. Set

ā = @t�
(k)(x, t) ✓̄ = r�(k)(x, t) X̄ = r2�(k)(x, t),

and apply the previous lemma for every (x, t) 2 DT and k = 1, . . . ,m. Then
Corollary 3.3 follows from Definition 3.1 (i), (A1) and (A2).

Following [23],we introduce the following two conditions onF=(F1,. . . ,Fm).

(C1) There exists � > 0 such that, if v=(v(1), . . . , v(m)), w = (w(1), . . . , w(m)) 2
Rm , maxk2{1,...,m}(v

(k) � w(k)) > 0 and (x, t, ✓) 2 DT ⇥ RN , then there
exists ` 2 {1, . . . ,m} such that

v(`) � w(`) = max
k2{1,...,m}

⇣
v(k) � w(k)

⌘
> 0

and
F (`)(x, t, v, ✓, X) � F (`)(x, t,w, ✓, X) � �

⇣
v(`) � w(`)

⌘

for all X 2 Sn;
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(C2) There is a nonnegative continuous function ! on [0,1) with !(0) = 0 such
that, if X , Y 2 Sn , � > 1 and

�3�
✓
I O
O I

◆


✓
X O
O Y

◆
 3�

✓
I �I

�I I

◆
,

then

F (k)(y, s, r, � (x � y),�Y ) � F (k)(x, t, r, � (x � y), X)

 !
�
� (|x � y| + |t � s|)2 + 1/�

�

for all k 2 {1, . . . ,m}, t, s 2 [0,1) , x, y 2 � and r 2 Rm .

Remark 3.4. (C2) implies (A2). See [9, Remark 3.4].
Similarly to [23, Theorem 4.7], we can prove the following comparison principle.

Theorem 3.5. Let � be a bounded domain in RN , T > 0 and DT := �⇥ (0, T ).
Assume (A1), (C1) and (C2). Let u = (u(1), . . . , u(m)) and v = (v(1), . . . , v(m)) be
upper semi-continuous and lower semi-continuous on � ⇥ [0, T ), respectively. If
u is a viscosity subsolution of (1.1) and v is a viscosity supersolution of (1.1) such
that u  v on @�⇥ [0, T ) and �⇥ {0}, then u  v in DT .

Proof. See the proof of [15, Theorem 3.1].

However, to apply our main results, contained in the next Section 4, only the
following weak comparison principle is needed.

(WCP) If u is a viscosity subsolution of (1.1) and v is a viscosity supersolu-
tion of (1.1) such that u � v in �⇥ [0, T ), while u = v on @�⇥ [0, T ) and
�⇥ {0}, then u = v in DT .

Sufficient conditions for (WCP) to hold are given in the following theorem.

Theorem 3.6. Let � be a bounded domain in RN , T > 0 and DT := �⇥ (0, T ).
Assume (A1), (C2) and the following:

(C3) There exists � > 0 such that, if (x, t, ✓) 2 DT ⇥RN and v = (v(1), . . . , v(m)),
w = (w(1), . . . , w(m)) 2 Rm with v � w and v 6= w, then there exists
` 2 {1, . . . ,m} such that

v(`) � w(`) = max
k2{1,...,m}

⇣
v(k) � w(k)

⌘
> 0

and
F (`)(x, t, v, ✓, X) � F (`)(x, t,w, ✓, X) � �

⇣
v(`) � w(`)

⌘

for all X 2 Sn .

Then (WCP) holds.
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Proof. The proof is again the same of [15, Theorem 3.1], just using (C3) in place
of (C2).

Remark 3.7. We pick the occasion to point out that in [15, Theorem 3.1] was
wrongly stated. Indeed condition (A1) in [15] coincides with condition (C3) here,
which gives Theorem 3.6, but it is not sufficient for Theorem 3.5 (which instead
requires the stronger assumption (C1)). On the other hand, this does not affect the
results of [15], since (WCP) is enough for [15, Theorem 4.1].

4. Spatial concavity

Let � be a bounded convex smooth domain in RN , D := � ⇥ (0,1) and m 2
{1, 2, . . . }. Let u = (u(1), . . . , u(m)) 2 C2,1(D : Rm) \ C(D : Rm) satisfy

8
><

>:

@t u(k) + F (k)�x, t,u,ru(k),r2u(k)� = 0 in D k = 1, . . . ,m ,

u(k)(x, t) > 0 in D k = 1, . . . ,m ,

u(x, t) = 0 on @�⇥ [0,1).

(4.1)

Let � 2 3N+1, k 2 {1, . . . ,m} and p 2 [�1,1]. Define

U (k)
p,�(x, t)

:=sup

(

Mp

⇣
u(k)(y1,t), . . . , u(k)(yn+1,t);�

⌘
: {yi }n+1i=1 ⇢� , x=

n+1X

i=1
�i yi

)
(4.2)

for (x, t) 2 D. Then we easily see that

U (k)
p,� 2 C(D) U (k)

p,� � u(k)(x, t) > 0 in D U (k)
p,� = 0 on @�⇥ [0,1) . (4.3)

We denote by U (k)
p the spatially p-concave envelope of u(k) defined by

U (k)
p (x, t) := sup

�23n+1

U (k)
p,�(x, t),

which is the smallest spatially p-concave function greater than or equal to u(k).
Clearly, u(k) is spatially p-concave in D if and only if u(k) = U (k)

p in D; since
U (k)
p � u(k) by construction, to have equality we just need to get the opposite

inequality U (k)
p  u(k), which can be obtained via Comparison Principle if U (k)

turns to be a subsolution of the problem at hands. Thus in this section we give a
sufficient condition for

Up,� :=
⇣
U (1)
p,�, . . . ,U

(m)
p,�

⌘

to be a viscosity subsolution of (4.1) in the case of 0  p  1 and study spatial
concavity properties of the solutions of (4.1).
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4.1. Case of 0 < p  1

In this subsection we focus on the case of 0 < p  1 and prove the following
theorem.

Theorem 4.1. Let� be a bounded convex smooth domain inRN , D :=�⇥(0,1),
m 2 {1, 2, . . . } and 0 < p  1. Assume (A1), (A2) and the following condition:

(F3) Let k 2 {1, . . . ,m}. For any fixed ✓ 2 RN and t⇤ > 0,

F (k)
✓,t⇤

⇣
x, v(1), . . . , v(m), A

⌘

:=
⇣
v(k)

⌘1� 1
p F (k)

✓
x, t⇤,

⇣
v(1)

⌘ 1
p
, . . . ,

⇣
v(m)

⌘ 1
p
,
⇣
v(k)

⌘ 1
p�1

✓,
⇣
v(k)

⌘ 1
p�3

A
◆

is convex with respect to (x, v(1), . . . , v(m), A) 2 �⇥ [0,1)m ⇥ SN .

Let u = (u(1), . . . , u(m)) 2 C2,1(D : Rm) \ C(D : Rm) satisfy (4.1) and

lim
⇢!0+

⇢�1/pu(k) (x+⌫(x)⇢, t)=1 for (x,t)2@�⇥(0,1) k = 1, . . . ,m, (4.4)

where ⌫ = ⌫(x) is the inner unit normal vector to @� at x . Then Up,� is a viscosity
subsolution of (4.1).

Proof. Let (x⇤, t⇤) 2 D, � = (�1, . . . , �n+1) 2 3n+1 and k 2 {1, . . . ,m}. Since
u(k) = 0 on @�⇥(0,1) and 0 < p  1, by (4.2) and (4.4) we can find {x (k)

i }n+1i=1 ⇢
D such that

x⇤ =
n+1X

i=1
�i x (k)

i U (k)
p,�(x⇤, t⇤) = Mp

⇣
u(k)

⇣
x (k)
1 , t⇤

⌘
, . . . , u(k)

⇣
x (k)
n+1, t⇤

⌘
; �

⌘
.

Furthermore, the Lagrange multiplier theorem assures that

✓ := u(k)
⇣
x (k)
1 , t⇤

⌘p�1
ru(k)

⇣
x (k)
1 , t⇤

⌘
= · · ·

= u(k)
⇣
x (k)
n+1, t⇤

⌘p�1
ru(k)

⇣
x (k)
n+1, t⇤

⌘
.

(4.5)

Let {a(k)
i }n+1i=1 ⇢ [0,1) be such that

Pn+1
i=1 �i a

(k)
i = 1. Set

U (k)
⇤ :=U (k)

p,�(x⇤, t⇤) u(k)
i :=u(k)

⇣
x (k)
i , t⇤

⌘
y(k)
i (x) := x (k)

i +a(k)
i (x�x⇤),

U⇤ :=
⇣
U (1)

⇤ , . . . ,U (m)
⇤

⌘
ui :=

⇣
u(1)
i , . . . , u(m)

i

⌘
.

It follows that

U (k)
⇤ = Mp

⇣
u(k)
1 , . . . , u(k)

n+1; �
⌘

x =
n+1X

i=1
�i y(k)

i (x) . (4.6)
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For k = 1, . . . ,m, we define

'(k)(x, t) := Mp(u(k)
⇣
y(k)
1 (x), t), . . . , u(k)(y(k)

n+1(x), t); �
⌘

, (4.7)

which is a C2,1-function in a neighborhood of (x⇤, t⇤) 2 D and satisfies

'(k)(x⇤, t⇤) = Mp

⇣
u(k)
1 , . . . , u(k)

n+1; �
⌘

= U (k)
⇤ = U (k)

p,�(x⇤, t⇤). (4.8)

Moreover, it follows from the definition of Up,� and (4.6) that

U (k)
p,�(x, t) � '(k)(x, t)

in a neighborhood of (x⇤, t⇤).
We prove

@t'
(k)(x⇤, t⇤) + F (k)(x⇤, t⇤,U⇤,r'

(k)
⇣
x⇤, t⇤),r2'(k)(x⇤, t⇤)

⌘
 0 (4.9)

for k = 1, . . . ,m. Let r0 := (@/@x1, . . . , @/@xn, @/@t). By (4.5) and (4.7) we have

r0'(k)(x, t) = '(k)(x, t)1�p
n+1X

i=1
�i u(k)

⇣
y(k)
i (x), t

⌘p�1
r0u(k)

⇣
y(k)
i (x), t

⌘

and

r2'(k)(x, t)='(k)(x, t)1�p
n+1X

i=1
�i

⇣
a(k)
i

⌘2
u(k)

⇣
y(k)
i (x),t

⌘p�1
r2u(k)

⇣
y(k)
i (x),t

⌘

+ (1� p)'(k)(x, t)�pr'(k)(x, t)

⌦
n+1X

i=1
�i a(k)

i u(k)
⇣
y(k)
i (x), t

⌘p�1
ru(k)

⇣
y(k)
i (x), t

⌘

�(1� p)'(k)(x,t)1�p
n+1X

i=1
�i

⇣
a(k)
i

⌘2
u(k)

⇣
y(k)
i (x),t

⌘p�2
ru(k)

⇣
y(k)
i (x),t

⌘

⌦ ru(k)(y(k)
i (x), t)
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in a neighborhood of (x⇤, t⇤). Since y(k)
i (x⇤) = x (k)

i and � 2 3n+1, by (4.5) and
(4.8) we obtain

@t'
(k)(x⇤,t⇤)=

⇣
U (k)

⇤

⌘1�p n+1X

i=1
�i u(k)

⇣
x (k)
i , t

⌘p�1
@t u(k)

⇣
x (k)
i ,t

⌘
,

r'(k)(x⇤,t⇤)=
⇣
U (k)

⇤

⌘1�p n+1X

i=1
�i u(k)

⇣
x (k)
i , t

⌘p�1
ru(k)

⇣
x (k)
i ,t

⌘
=
⇣
U (k)

⇤

⌘1�p
✓

(4.10)

and

r2'(k)(x⇤, t⇤) =
⇣
U (k)

⇤

⌘1�p n+1X

i=1
�i

⇣
a(k)
i

⌘2 ⇣
u(k)
i

⌘p�1
r2u(k)

⇣
x (k)
i , t⇤

⌘

+ (1� p)
⇣
U (k)

⇤

⌘�1
r'(k)(x⇤, t⇤) ⌦ r'(k)(x⇤, t⇤)

⇥

 

1�
⇣
U (k)

⇤

⌘p n+1X

i=1
�i

⇣
a(k)
i

⌘2 ⇣
u(k)
i

⌘�p
!

.

(4.11)

Taking
a(k)
i =

⇣
u(k)
i /U (k)

⇤

⌘p
i = 1, . . . , n + 1 ,

we deduce from (4.8) that

⇣
U (k)

⇤

⌘p n+1X

i=1
�i

⇣
a(k)
i

⌘2 ⇣
u(k)
i

⌘�p

=
⇣
U (k)

⇤

⌘�p n+1X

i=1
�i

⇣
u(k)
i

⌘p
=

⇣
U (k)

⇤

⌘�p
Mp

⇣
u(k)
1 , . . . , u(k)

n+1; �
⌘p

= 1.

This together with (4.11) implies that

r2'(k)(x⇤, t⇤) =
⇣
U (k)

⇤

⌘1�p n+1X

i=1
�i

⇣
a(k)
i

⌘2 ⇣
u(k)
i

⌘p�1
r2u(k)

⇣
x (k)
i , t⇤

⌘

=
⇣
U (k)

⇤

⌘1�3p n+1X

i=1
�i

⇣
u(k)
i

⌘3p�1
r2u(k)

⇣
x (k)
i , t⇤

⌘

=
⇣
U (k)

⇤

⌘1�3p n+1X

i=1
�i Ai ,

(4.12)

where
Ai =

⇣
u(k)
i

⌘3p�1
r2u(k)(x (k)

i , t⇤) i = 1, . . . , n + 1.
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Then, by (4.10) and (4.12) we obtain

@t'
(k)(x⇤, t⇤) + F (k)

⇣
x⇤, t⇤,U⇤,r'

(k)(x⇤, t⇤),r2'(k)(x⇤, t⇤)
⌘

=
⇣
U (k)

⇤

⌘1�p n+1X

i=1
�i
@t u(k)

⇣
x (k)
i , t⇤

⌘

⇣
u(k)
i

⌘1�p

+ F (k)

 

x⇤, t⇤,U⇤,
⇣
U (k)

⇤

⌘1�p
✓,

⇣
U (k)

⇤

⌘1�3p n+1X

i=1
�i Ai

!

= �
⇣
U (k)

⇤

⌘1�p n+1X

i=1
�i

F (k)
✓
x (k)
i , t⇤,ui ,

⇣
u(k)
i

⌘1�p
✓,

⇣
u(k)
i

⌘1�3p
Ai

◆

⇣
u(k)
i

⌘1�p

+ F (k)
✓
x⇤, t⇤,U⇤,

⇣
U (k)

⇤

⌘1�p
✓,

⇣
U (k)

⇤

⌘1�3p X
�i Ai

◆
.

(4.13)

On the other hand, it follows from (F3) that

⇣
U (k)

⇤

⌘1�p n+1X

i=1
�i

F (k)
✓
x (k)
i , t⇤,ui ,

⇣
u(k)
i

⌘1�p
✓,

⇣
u(k)
i

⌘1�3p
Ai

◆

⇣
u(k)
i

⌘1�p

=
⇣
U (k)

⇤

⌘1�p n+1X

i=1
�i

⇣
v

(k)
i

⌘1� 1
p F (k)

✓
x (k)
i , t⇤, v

1
p
i ,

⇣
v

(k)
i

⌘ 1
p�1

✓,
⇣
v

(k)
i

⌘ 1
p�3

Ai
◆

=
⇣
U (k)

⇤

⌘1�p n+1X

i=1
�iF (k)

✓,t⇤

⇣
x (k)
i , v

(1)
i , . . . , v

(m)
i , Ai

⌘

�
⇣
U (k)

⇤

⌘1�p
F (k)
✓,t⇤

 
n+1X

i=1
�i x (k)

i ,
n+1X

i=1
�iv

(1)
i , . . . ,

n+1X

i=1
�iv

(m)
i ,

n+1X

i=1
�i Ai

!

,

where v
(k)
i :=

�
u(k)
i

�p and v
1/p
i :=

⇣�
v

(1)
i

�1/p
, . . . ,

�
v

(m)
i

�1/p⌘. Since

n+1X

i=1
�i x (k)

i = x⇤

n+1X

i=1
�iv

( j)
i = Mp

⇣
u(k)
1 , . . . , u(k)

n+1; �
⌘p

=
⇣
U ( j)

⇤

⌘p
,

where j = 1, . . . ,m, we deduce that
⇣
U (k)

⇤

⌘1�p
�

⇣
U (k)

⇤

⌘1�p
F (k)
✓,t⇤

 

x⇤,
⇣
U (1)

⇤

⌘p
, . . . ,

⇣
U (m)

⇤

⌘p
,
n+1X

i=1
�i Ai

!

= F (k)

 

x⇤, t⇤,U⇤,
⇣
U (k)

⇤

⌘1�p
✓,

⇣
U (k)

⇤

⌘1�3p n+1X

i=1
�i Ai

!

.
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This together with (4.13) implies (4.9). Since (x⇤, t⇤) is arbitrary, by (4.3) and
Corollary 3.3 we see thatU�,p is a viscosity subsolution of (4.1). Thus Theorem 4.1
follows.

Combing Theorem 4.1 with Theorem 3.6, we obtain the following.

Corollary 4.2. Assume the same conditions as in Theorem 4.1. Furthermore, as-
sume (C2) and (C3). Let 0 < p  1 and u = (u(1), . . . , u(m)) satisfy (4.1) and
(4.4). If the initial datum u(k)

0 is p-concave in � for k = 1, . . . ,m, then u(k) is
spatially p-concave in D for k 2 {1, . . . ,m}.

Proof. Let k 2 {1, . . . ,m}. Due to the p-concavity of u(k)
0 , we have

U (k)
p,�(x, 0) = U (k)

p (x, 0) = u(k)
0 (x) x 2 � ,

for every � 2 3n+1. Then, by Theorem 4.1 we see that Up,� is a viscosity subso-
lution of (1.1) for every � 2 3n+1. Applying Theorem 3.6, by (4.3) we see that
Up,�  u in D, which implies that Up  u in D. On the other hand, it follows from
the definition of Up that Up � u in D. Therefore we deduce that Up = u in D.
Then u(k) is spatially p-concave in D for every k 2 {1, . . . ,m}.

4.2. Case of p = 0

In the next theorem we give a sufficient condition for U0,� = (U (1)
0,�, . . . ,U

(m)
0,� ) to

be a viscosity subsolution of (4.1).

Theorem 4.3. Let� be a bounded convex smooth domain inRN , D := �⇥(0,1)
and m 2 {1, 2, . . . }. Assume (A1), (A2) and the following condition:

(F4) Let k 2 {1, . . . ,m}. For any fixed ✓ 2 RN and t⇤ > 0,

F (k)
✓,t⇤

⇣
x,v(1), . . . ,v(m),A

⌘
:=e�v(k)

F (k)
⇣
x, t⇤, ev

(1)
, . . . , ev

(m)
, ev

(k)
✓, ev

(k)
A
⌘

is convex with respect to (x, v(1), . . . , v(m), A) 2 D ⇥ Rm ⇥ SN .

Then U0,� := (U (1)
0,�, . . . ,U

(m)
0,� ) is a viscosity subsolution of (4.1).

Proof. Let (x⇤, t⇤) 2 D and � = (�1, . . . , �n+1) 2 3n+1. Thanks to the bound-
ary conditions and to the regularity of u and of the geometric mean, we can find
{x (k)
i }n+1i=1 ⇢ D such that

x⇤ =
n+1X

i=1
�i x (k)

i ,

U (k)
0,�(x⇤, t⇤) = M0

⇣
u(k)

⇣
x (k)
1 , t⇤

⌘
, . . . , u(k)

⇣
x (k)
n+1, t⇤

⌘
; �

⌘
=
n+1Y

i=1
u(k)

⇣
x (k)
i , t⇤

⌘�i
.
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Notice that the Lagrange multiplier theorem assures that

✓ :=
ru(k)�x (k)

1 , t⇤
�

u(k)
�
x (k)
1 , t⇤

� = · · · =
ru(k)�x (k)

n+1, t⇤
�

u(k)
�
x (k)
n+1, t⇤

� .

Set

U (k)
⇤ := U (k)

0,�(x⇤, t⇤) u(k)
i := u(k)

⇣
x (k)
i , t⇤

⌘
y(k)
i (x) := x (k)

i + (x � x⇤),

U⇤ :=
⇣
U (1)

⇤ , . . . ,U (m)
⇤

⌘
ui :=

⇣
u(1)
i , . . . , u(m)

i

⌘
Ai :=

r2u(k)�x (k)
i , t⇤

�

u(k)
i

.

It follows that

x =
n+1X

i=1
�i y(k)

i (x) . (4.14)

For k = 1, . . . ,m, we define

'(k)(x,t) :=M0
⇣
u(k)

⇣
y(k)
1 (x),t

⌘
, . . . , u(k)

⇣
y(k)
n+1(x),t

⌘
;�
⌘
=
n+1Y

i=1
u(k)

⇣
y(k)
i (x), t

⌘�i
,

which is a C2,1-function in a neighborhood of (x⇤, t⇤) 2 D and satisfies

'(k)(x⇤, t⇤) =
n+1Y

i=1

h
u(k)
i

i�i
= U (k)

⇤ = U (k)
0,�(x⇤, t⇤).

Moreover, it follows from the definition of U� and (4.14) that

U (k)
0,�(x, t) � '(k)(x, t)

in a neighborhood of (x⇤, t⇤).
We apply the same argument in the proof of Theorem 4.1 with p = 0, and

prove

@t'
(k)(x⇤, t⇤) + F (k)(x⇤, t⇤,U⇤,r'

(k)
⇣
x⇤, t⇤),r2'(k)(x⇤, t⇤)

⌘
 0 (4.15)

for k = 1, . . . ,m. Similarly to (4.10) and (4.12), we have

@t'
(k)(x⇤, t⇤) = '(k)(x⇤, t⇤)

n+1X

i=1
�i
@t u(k)�x (k)

i , t⇤
�

u(k)
�
x (k)
i , t⇤

� = U (k)
⇤

n+1X

i=1
�i
@t u(k)�x (k)

i , t⇤
�

u(k)
i

,

r'(k)(x⇤, t⇤) = U (k)
⇤

n+1X

i=1
�i

ru(k)�x (k)
i , t⇤

�

u(k)
�
x (k)
i , t⇤

� = '(k)(x⇤, t⇤) ✓,

r2'(k)(x⇤, t⇤) = U (k)
⇤

n+1X

i=1
�i

r2u(k)�x (k)
i , t⇤

�

u(k)
i

= U (k)
⇤

n+1X

i=1
�i Ai .
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Then we deduce that

@t'
(k)(x⇤, t⇤) + F (k)

⇣
x⇤, t⇤,U⇤,r'

(k)(x⇤, t⇤),r2'(k)(x⇤, t⇤)
⌘

= U (k)
⇤

n+1X

i=1
�i
@t u(k)�x (k)

i , t⇤
�

u(k)
i

+ F (k)

 

x⇤, t⇤,U⇤,U (k)
⇤ ✓,U (k)

⇤

n+1X

i=1
�i Ai

!

= �U (k)
⇤

n+1X

i=1
�i
F
�
x (k)
i , t⇤, ui , u(k)

i ✓, u(k)
i Ai

�

u(k)
i

+ F (k)

 

x⇤, t⇤,U⇤,U (k)
⇤ ✓,U (k)

⇤

n+1X

i=1
�i Ai

!

.

(4.16)

On the other hand, it follows from (F4) that

n+1X

i=1
�i
F (k)�x (k)

i , t⇤,ui , u(k)
i ✓, u(k)

i Ai
�

u(k)
i

=
n+1X

i=1
�i
F (k)�x (k)

i , t⇤, evi , ev
(k)
i ✓, ev

(k)
i Ai

�

ev
(k)
i

=
n+1X

i=1
�iF (k)

✓,t⇤

⇣
x (k)
i , v

(1)
i , . . . , v

(m)
i , Ai

⌘

� F (k)
✓,t⇤

 
n+1X

i=1
�i x (k)

i ,
n+1X

i=1
�iv

(1)
i , . . . ,

n+1X

i=1
�iv

(m)
i ,

n+1X

i=1
�i Ai

!

,

where v
(k)
i := log u(k)

i and evi := (ev
(1)
i , . . . , ev

(m)
i ). Since

n+1X

i=1
�i x (k)

i = x⇤

n+1X

i=1
�iv

( j)
i = log

n+1Y

i=1

⇣
u( j)
i

⌘�i
= logU ( j)

⇤ ,

we deduce that

n+1X

i=1
�i
F (k)�x (k)

i , t⇤,ui , u(k)
i ✓, u(k)

i Ai
�

u(k)
i

� F (k)
✓,t⇤

 

x⇤, logU (1)
⇤ , . . . , logU (m)

⇤ ,
n+1X

i=1
�i Ai

!

=
1

U (k)
⇤

F (k)

 

x⇤, t⇤,U (k)
⇤ ✓,U (k)

⇤

n+1X

i=1
�i Ai

!

.
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This together with (4.16) implies (4.15). Since (x⇤, t⇤) is arbitrary, by (4.3) and
Corollary 3.3 we see that U� is a viscosity subsolution of (4.1). Thus Theorem 4.3
follows.

By Theorem 4.3 we apply a similar argument as in the proof of Corollary 4.2
to obtain the following result.

Corollary 4.4. Assume the same conditions as in Theorem 4.3. Furthermore, as-
sume (C2) and (C3). Let u = (u(1), . . . , u(m)) satisfy (4.1) with initial value u0 =
(u(1)
0 , . . . , u(m)

0 ). If the initial datum u(k)
0 is log-concave in � for k = 1, . . . ,m,

then u(k) is spatially log-concave in D for k 2 {1, . . . ,m}.

Theorem 1.1 easily follows from Corollary 4.4. Corollary 1.2 follows from Theo-
rems 1.1 and 3.6. Furthermore, we have the following well known result (see [7,13]
and [31]).

Corollary 4.5. Let � be a bounded convex domain in RN . Let u 2 C2(D) \C(D)
satisfy 8

><

>:

@t u �1u = 0 in D
u(x, t) = 0 on @�⇥ [0,1)

u(x, 0) = u0(x) in �,

(4.17)

where u0 is a nonnegative continuous function on �. Then u is spatially log-
concave in D provided that u0 is log-concave in �.

Proof. Let u be a solution of (4.17) and � > 0. Then the function U := e��t u
satisfies

@tU �1U + �U = 0 in �⇥ (0,1).

Applying Corollary 4.4 to the case where m = 1 and F(x, t,U,rU,r2U) =
�1U + �U , we obtain the spatial log-concavity of U in �⇥ (0,1). Thus Corol-
lary 4.5 follows.

Similarly, we obtain Corollary 1.2.

5. Applications to porous medium equations

We apply our results in the previous section and study concavity properties of
porous medium equations and related systems. Concavity properties of solutions
to the porous medium equation have been studied in several papers, see, e.g., [11,
17,30,34,35] and references therein (see also a survey book [38] for porous medium
equations).
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5.1. Porous medium equation

Let � be a bounded smooth convex domain in RN , D := � ⇥ (0,1) and ↵ > 1.
Consider the Cauchy-Dirichlet problem for the porous medium equation

8
><

>:

@t u �1(u↵) = 0 in D
u = 0 on @�⇥ (0,1)

u(x, 0) = u0(x) in �,

(5.1)

where u0 2 X :=
�
w 2 C(�) : w > 0 in �, w = 0 on @�

 
. Problem (5.1) has a

unique classical solution in D (see, e.g., [38, Theorem 5.5 and Proposition 7.21]). In
this subsection, as an application of Theorem 4.1, we prove the following theorem,
already given in [35].

Theorem 5.1. Let � be a bounded smooth convex domain in RN and ↵ > 1. Let u
be a classical solution of (5.1) with u0 2 X . Then u is spatially (↵ � 1)/2 concave
in D provided that u0 is (↵ � 1)/2 concave in �.

Notice that our approach is completely different from that of [35] and enables us
to obtain concavity properties of solutions to general parabolic problems including
parabolic systems (see also Subsection 5.2).

For the proof of Theorem 5.1, we prepare the following lemma.

Lemma 5.2. Let ⌘ be a solution of

�1⌘ = ⌘1/↵ in � ⌘ > 0 in � ⌘ = 0 in @�.

Let 0 < �  1 be such that 2�  ↵(↵ � 1). For any concave function  2 C(�),
such that  > 0 in � and  = 0 on @�, and for every ✏ > 0, set

u✏0(x) :=
h
u0(x)

↵�1
2 + ✏ (x)�

i 2
↵�1

.

Then u✏0 is (↵ � 1)/2 concave in � and

u✏0(x) � �⌘(x)↵ in � (5.2)

for some � > 0.

Proof. Since u(↵�1)/2
0 and  are concave in � and 0 < �  1, we see that u✏0 is

(↵ � 1)/2 concave in �. So it suffices to prove (5.2).
It follows from [3, Proposition 1] that ⌘ 2 C2+1/↵(�). Then

⌘(x)  C1dist (x, @�) in � (5.3)

for some constant C1 > 0. On the other hand, since  is concave, we see that

u✏0(x) � ✏
2
↵�1 (x)

2�
↵�1 � C2✏

2
↵�1 dist (x, @�)

2�
↵�1 in � (5.4)

for some constant C2. Since 2�  ↵(↵� 1), by (5.3) and (5.4) we have (5.2). Thus
Lemma 5.2 follows.
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Proof of Theorem 5.1. For any ✏ > 0, there exists a unique classical solution u✏ of
(5.1) with the initial data u✏0 (see, e.g., [38, Theorem 5.5 and Proposition 7.21]). By
Lemma 5.2 we can find ⌧ > 0 such that

⌧� 1
↵�1 ⌘(x)↵  u✏0(x) in �. (5.5)

Set
z(x, t) := [(↵ � 1)t + ⌧ ]�

1
↵�1 ⌘(x)1/↵,

which satisfies

zt �1(z↵) = 0 in D z = 0 on @�⇥ (0,1).

By (5.5) we apply the comparison principle to obtain

u✏(x, t) � z(x, t) in D. (5.6)

On the other hand, it follows from the Hopf lemma that

lim inf
⇢!0+

⌘(x + ⇢⌫(x))
⇢

> 0

for any x 2 @�. This together with (5.6) and the definition of z implies that

lim inf
⇢!+0

⇢� 1
↵ u✏(x + ⇢⌫(x), t) > 0 (5.7)

for all (x, t) 2 @�⇥ (0,1).
Let v✏ := ↵u↵�1

✏ . Then we have
8
>><

>>:

@tv✏ � v✏1v✏ �
1

↵ � 1
|rv✏ |

2 = 0 in D

v✏ = 0 on @�⇥ (0,1)

v(x, 0) = ↵
⇥
u✏0(x)

⇤↵�1 in �.

(5.8)

Set
F(x, t, w, ✓, A) := �w tr(A) �

1
↵ � 1

|✓ |2

for (x, t, w, ✓, A) 2 D ⇥ (0,1) ⇥ Rn ⇥ Sn .
We apply Corollary 4.2 with p = 1/2 to v✏ . Then the function

F✓,t (x, w, A) := w�1F
�
x, t, w2, w✓, w�1A

�
= �tr(A) �

1
↵ � 1

w|✓ |2

is convex with respect to (x, w, A) 2 � ⇥ [0,1) ⇥ SN for any fixed ✓ 2 Rn and
t > 0. This means that F satisfies condition (F3) with p = 1/2. Furthermore, we
deduce from (5.7) that

lim
⇢!+0

⇢�2v(x + ⇢⌫(x), t) = 1
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for all (x, t) 2 @�⇥ (0,1). Therefore, by Corollary 4.2 we see that v✏ is spatially
1/2 concave in D, which means that u✏ is spatially (↵ � 1)/2 concave in D.

On the other hand, if 0 < ✏1 < ✏2, the comparison principle implies that

0 < u(x, t)  u✏1(x, t)  u✏2(x, t) in D.

Then, by [38, Proposition 3.6] we see that

lim
✏!0

u✏(x, t) = u(x, t) in D.

Therefore we deduce from the spatially (↵ � 1)/2 concavity of u✏ in D that u is
spatially (↵ � 1)/2 concave in D. Thus Theorem 5.1 follows.

5.2. Porous medium systems

We discuss spatial concavity properties of the solution of the following nonlinear
porous medium system

8
>>>>><

>>>>>:

@t u � d11(u↵) + f (x, t, u, v,ru) = 0 in D
@tv � d21(v�) + g(x, t, u, v,rv) = 0 in D
u > 0, v > 0 in D
u = v = 0 on @�⇥ (0,1)

u(x, 0) = u0(x), v(x, 0) = v0(x) in �,

(5.9)

where ↵, � > 1, d1, d2 > 0 and u0, v0 2 X . Assume the following conditions:

(F30) For any fixed ✓ 2 RN and t > 0, the functions

ft,✓ (x, u) := u
↵�3
↵�2 f

⇣
x, t, u

2
↵�1 , v

2
��1 , u

3�↵
↵�1 ✓

⌘
,

gt,✓ (x, v) := v
��3
��2 g

✓
x, t, v

2
��1 , u

2
↵�1 , v

3��
��1 ✓

◆

are convex with respect to (x, u, v) 2 �⇥ (0,1)2.

Then, setting U = ↵u↵�1 and V = �v��1, we have

8
><

>:

@tU �U1U + f̃ (x, t,U, V,rU) �
1

↵ � 1
|rU |2 = 0 in D

@t V � V1V + g̃(x, t,U, V,rV ) �
1

� � 1
|rV |2 = 0 in D,

(5.10)
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where

f̃ (x, t,U, V,rU)

:= ↵(↵ � 1)
✓
U
↵

◆ ↵�2
↵�1

f

 

x, t,
✓
U
↵

◆ 1
↵�1

,

✓
V
�

◆ 1
��1

,
1

↵(↵ � 1)

✓
U
↵

◆ 2�↵
↵�1

rU

!

,

g̃(x, t,U, V,rU)

:= �(� � 1)
✓
V
�

◆ ��2
��1

g

0

@x, t,
✓
U
↵

◆ 1
↵�1

,

✓
V
�

◆ 1
��1

,
1

�(� � 1)

✓
V
�

◆ 2��
��1

rV

1

A .

By a similar argument as in the proof of Theorem 5.1 with the aid of (F30), we
can apply Theorem 4.1 with p = 1/2 to problem (5.10). Indeed, if the viscosity
comparison principle and regularity theorems hold for problem (5.9), thenU and V
are spatially 1/2 concave in D, which means that u and v are spatially (↵ � 1)/2
concave and (� � 1)/2 concave in D, respectively. (We leave the details to the
reader.) Theorem 1.3 is a direct consequence of the consideration above.
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[38] J. L. VÁZQUEZ, “The Porous Medium Equation: Mathematical Theory”, The Clarendon
Press, Oxford University Press, Oxford, 2007.

Department of Mathematics (UG)
311, Graduate School of Mathematical Science
Bldg. 3F, Kornaba Campus
Tokyo 153-8914, Japan
ishige@ms.u-tokyo.ac.jp.ac.jp

Faculty of Symbiotic Systems Science
Fukushima University,
Kanayagawa, Fukushima 960-1269, Japan
knakagawa@sss.fukushima-u.ac.jp

Dipartimento di Matematica
e Informatica “U. Dini”
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