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Horosphere topology

FILIPPO BRACCI AND HERVÉ GAUSSIER

Abstract. We introduce a prime end-type theory on complete Kobayashi hy-
perbolic manifolds using horosphere sequences. This allows to introduce a new
notion of boundary – new even in the unit disc in the complex space – the horo-
sphere boundary, and a topology on the manifold together with its horosphere
boundary, the horosphere topology. We prove that a bounded strongly pseudo-
convex domain endowed with the horosphere topology is homeomorphic to its
Euclidean closure, while for the polydisc such a horosphere topology is not even
Hausdorff and is different from the Gromov topology. We use this theory to study
boundary behavior of univalent maps from bounded strongly pseudoconvex do-
mains.

Mathematics Subject Classification (2010): 32F27 (primary); 32F45, 32H40,
32Q55, 32T15, 53C23, 30E25, 30F25 (secondary).

1. Introduction

Carathéodory prime ends theory is one of the most powerful tools for studying
boundary behavior of univalent functions in the unit disc D ⇢ C. Given a sim-
ply connected domain � ⇢ C, one can define an abstract boundary @C�, the
Carathéodory boundary, whose points, called prime ends, are given as the set of
equivalent classes of null chains (see, e.g., [16, 18, 36] or Section 2). Then one can
give a natural topology, the Carathéodory topology, to the space �̂C := �[@C�. It
turns out that D̂C is homeomorphic to the Euclidean closure D and, if f : D ! �

is a biholomorphism, then f extends to a homeomorphism from D̂C to �̂C . The
link between the Carathéodory boundary and the boundary behavior of univalent
functions is provided by impressions and principal parts of prime ends. In particu-
lar, if the impression of each prime end of � is just one point, the map f extends
continuously.

Carathéodory prime ends theory is defined by using Euclidean objects (the
null chains, which are sequences of Jordan arcs ending at the frontier of �), and
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the ultimate reason why it works is because univalent mappings inD are (quasi-)
conformal. Indeed, Carathéodory’s theory can be generalized to domains in Rn

for quasi-conformal mappings (see [39] and [27]). Other generalizations of the
prime ends theory in metric spaces have been studied in [5]. The problem with
those generalizations to higher dimension, is that they cannot be applied to univalent
maps without adding some extra hypotheses (in general, a univalent map in higher
dimension is not quasi-conformal).

Different types of boundaries were introduced in other contexts. For instance,
the Gromov boundary was introduced by M. Gromov [26] in hyperbolic groups
with the purpose of a better understanding of the growth of some groups at infin-
ity. The construction is valid in hyperbolic metric spaces, namely metric spaces in
which geodesic triangles are thin. In most situations, the space is assumed geodesic,
meaning that any two points may be joined by a geodesic, and proper, meaning
that closed balls are compact. We recall that a geodesic ray, in a geodesic metric
space (X, d), is an isometry from [0,+1[ to X such that the length of the segment
� ([0, t]) is equal to d(� (0), � (t)) for every t � 0. Two geodesic rays �1 and �2 are
equivalent if there is some c > 0 such that d(�1(t), �2(t))  c for every t � 0.

The Gromov boundary of X is the quotient of the set of geodesic rays whose
origin is some fixed base point x 2 X by that equivalence relation. Moreover, it
does not depend on the chosen base point. See Section 7 for the precise definitions.

In this paper we introduce a completely new prime ends theory defined via
horospheres related to sequences. Horospheres have been used pretty much in geo-
metric function theory in one and several variables, especially for studying iteration
theory, Julia’s Lemma, Denjoy-Wolff theorems (see, e.g., [1, 3, 4, 14, 15, 21, 37]
and references therein), and they are a particular instance of a general notion of
horospheres in locally complete metric spaces, see [6, 17]. In complex geometry,
horospheres defined by using complex geodesics are sometimes called Busemann
horospheres. In strongly convex domains with smooth boundary, thanks to Lem-
pert’s theory [29], horospheres turn out to be level sets of a pluricomplex Poisson
kernel [11, 12] and in the unit ball Bn they are just ellipsoids internally tangent to
the boundary of the ball at one point.

Our point of view is different than in the previous works. To be precise, let
M be a Kobayashi complete hyperbolic manifold, let KM denote its Kobayashi
distance, and let x 2 M . Given a compactly divergent sequence {un} in M , and
R > 0, we define the horosphere relative to {un} with radius R by

Ex ({un}, R) :=

⇢
w 2 M : lim sup

n!1
[KM(w, un) � KM(x, un)] <

1
2
log R

�
.

The sequence is admissible if Ex ({un}, R) 6= ; for all R > 0. We introduce an
equivalence relation on the set of all admissible sequences by declaring equivalent
two admissible sequences if every horosphere relative to one sequence is contained
in a horosphere of the other and vice versa (see Section 3 for precise statements and
definitions). The horosphere boundary @HM is the set of equivalence classes of
admissible sequences. Let M̂ := M [ @HM . Then, using horospheres, we define
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a topology on M̂ which induces on M its natural topology. We call horosphere
topology such a topology (see Section 4). Since this topology is defined via the
Kobayashi distance KM , it turns out that if F : M ! N is a biholomorphism then
F extends naturally to a homeomorphism F̂ : M̂ ! N̂ .

The first main result of the paper, is the following generalization of Cara-
théodory’s theorem (see Theorem 5.10):

Theorem 1.1. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C3
boundary. Then D̂ endowed with the horosphere topology is homeomorphic to D
(closure in CN ) endowed with the Euclidean topology.

The somewhat unnatural technical assumption on C3 regularity of the boundary of
D is needed in order to apply some theory of complex geodesics in strongly convex
domains.

As a matter of fact, the horosphere boundary of the polydisc is not Hausdorff;
hence, we have another proof of the well known fact that strongly pseudoconvex
domains cannot be biholomorphic to polydiscs. More generally, using this result,
we can prove that there is no holomorphic isometric embeddings of a polydisc into
any strongly pseudoconvex domain.

As in Carathéodory’s prime ends theory, for domains inCN (or more generally
in CPN ), we can define horosphere impressions and horosphere principal parts. In
particular, for a bounded strongly pseudoconvex domain D ⇢ CN with C3 bound-
ary, the horosphere impressions always reduce to one point at the boundary. There-
fore, if F : D ! � is a biholomorphism, the limit of F at a point p 2 @D is
given by the impression of F̂(x p), where x p is the point of @H D corresponding to
p under the isomorphism of Theorem 1.1. In particular, F extends continuously
on D if and only if the impressions of each point of @H� is just one point in @� –
and this also gives another proof of homeomorphic extension of biholomorphisms
among strongly pseudoconvex domains. On the other hand, non-tangential limits
(in fact, a larger notion of limits which we call E-limits) can be controlled using the
principal part of horospheres, similarly to what happens in Carathéodory’s theory
for the principal parts of prime ends (see Section 8).

We apply the horosphere theory to study biholomorphisms F : D ! � from
a strongly pseudoconvex domain D to a convex domain �. If the domain � is
strongly convex with smooth boundary, then Fefferman’s theorem [19] implies that
the map F extends as a diffeomorphism from D to �. In case � has no bound-
ary regularity, some other conditions on the behavior of the Kobayashi distance
can be useful to obtain continuous extension (see [41] where A. Zimmer proves
the continuous extension of Kobayashi isometric embeddings of a bounded con-
vex domain with C1,↵ boundary into a strictly C-convex domain with C1,↵ bound-
ary, [9] and references therein). However, if nothing is assumed on �, very little
is known, even when D = Bn , the unit ball. In fact, a conjecture of Muir and
Suffridge [33, 34] states that if F : Bn ! CN is univalent and its image is con-
vex, then F extends continuously to @Bn except at at most two infinite singulari-
ties.
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Using in an essential way the theory developed in Section 6 and the theory of
Gromov hyperbolicity, not only we give an affirmative answer to the Muir and Suf-
fridge conjecture in case of bounded convex domains (with no boundary regularity
assumed), but also we prove homeomorphic extension without any additional as-
sumption. The Muir and Suffridge conjecture has been then completely settled by
the two authors in [10], using material from this paper. The result we prove here is
the following (see Corollary 8.3):

Theorem 1.2. Let D ⇢ CN be a bounded strongly convex domain with C3 bound-
ary, for instance, D = Bn . Let F : D ! � be a biholomorphism. If� is a bounded
convex domain, then F extends as a homeomorphism from D to �.

The same result holds for univalent mappings from bounded strongly pseudoconvex
domains whose image is bounded and strictly C-linearly convex, see Section 8.

Our approach relies in an essential way on the horosphere topology and on
the hyperbolicity theory; it gives an example of a deep interaction between metric
properties and topological properties of a complex manifold.

As a spin off result of our work, we prove a Denjoy-Wolff Theorem for bound-
ed convex domains D ⇢ CN biholomorphic to strongly convex domains and for
strictly C-linearly convex domains biholomorphic to bounded strongly pseudocon-
vex domains. Namely, we prove that if f is a holomorphic self-map of D without
fixed points then the sequence of its iterates converges to exactly one boundary
point (see Proposition 8.7).

We also compare the horosphere boundary we introduced with the Gromov
boundary. For strongly pseudoconvex domains, by [7, Theorem 1.4], the Gro-
mov boundary is homeomorphic to the Euclidean boundary, thus, by Theorem 1.1,
homeomorphic to the horosphere boundary. Therefore, we examine in details the
interesting case of the bidisc. It is standard that the bidisc is not Gromov hyper-
bolic. We prove that the topology of the Gromov boundary of the bidisc is not
trivial while the horosphere topology of the bidisc is trivial, thus the two bound-
aries are not homeomorphic.

The plan of the paper is the following. In Section 2, we consider the case of
simply connected domains inC, both to explain the ideas underlying the horosphere
theory in some simple case like the unit disc and to compare horosphere topology
with the Carathéodory topology. In Section 3 we introduce the notion of admissi-
ble sequences and define the horosphere boundary. In Section 4, we introduce the
horosphere topology for a general complete hyperbolic complex manifold, and the
notions of impressions and principal parts for domains inCN . In Section 5, we turn
our attention to the case of strongly pseudoconvex domains, we relate horosphere
sequences with Abate’s big and small horospheres, and we prove Theorem 1.1.
Next, in Section 6 we concentrate on convex domains. After proving some prelim-
inary results on horospheres for hyperbolic convex domains, we consider convex
domains biholomorphic to strongly pseudoconvex domains and then bounded con-
vex domains biholomorphic to strongly convex domains. In Section 7, we face the
natural question of comparing horosphere boundaries and Gromov’s different no-
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tions of boundaries. Finally, in Section 8, we prove our extension results using the
theory we developed in Section 6 and Gromov’s theory of hyperbolic metric spaces.

ACKNOWLEDGEMENTS. The authors wish to thank Andrew Zimmer for fruitful
conversations. The authors also thank the referee for several useful comments
which improved the original manuscript.

2. Carathéodory prime ends theory vs. Horosphere topology
in the unit disc

In this section we introduce the horosphere topology for simply connected domains
inC and compare this theory with the classical theory of Carathéodory. The section
does not contain any material which will be used later on, does not contain any proof
of stated facts, and can be harmlessly skipped. However, the horosphere theory we
introduce is new also in dimension one. Moreover, looking first at an easy case like
the unit disc might simplify comprehension of the several complex variables case.
Therefore, we decided to add this section.

We start by briefly recalling Carathéodory’s prime ends theory (we refer to
[16,18,36] for details). Let D ⇢ C be a simply connected domain. A cross-cut is a
Jordan arc or a Jordan curve in D such that its interior belongs to D and whose two
end points belong to @D (if the domain D is unbounded, we consider its closure in
the Riemann sphere CP1). Every cross-cut C of D divides D into two connected
components by Jordan’s theorem, and we say that C separates two sets A, B ⇢ D
if A belongs to one connected component of D \ C and B to the other. A null
chain (Cn) is a sequence of cross-cuts such that C j \ Ck = ; for j 6= k, each Cn
separates Cn+1 \ D from C0 \ D in D for all n � 1 and diam(Cn) ! 0, where
diam(Cn) denotes the diameter in the Euclidean metric or in the spherical metric if
the domain is unbounded. For n � 1 we denote by Vn the interior part of Cn , that
is, the connected component of D \ Cn which does not contain C0 \ D.

We say that two null chains (Cn) and (C 0
n) are equivalent if there exists n0 2 N

such that for every n > n0, n 2 N there exists m 2 N such that Vm ⇢ V 0
n and

V 0
m ⇢ Vn (here Vn is the interior part of Cn and V 0

n is the interior part of C 0
n).

An equivalence class of null chains is called a prime end. The set of all prime
ends is denoted by @C D and it is called the Carathéodory boundary of D. Let
D̂C := D [ @C D.

We give a topology on D̂C as follows. A sequence {zn} ⇢ D converges to a
prime end xC 2 @C D if there exists a null chain (Cn) representing xC such that
for every N 2 N the sequence {zn} is eventually contained in VN . A sequence
{xCm} ⇢ @C D converges to xC 2 @C D if there exist null chains (Cm

n ) representing
xCm and a null chain (Cn) representing xC such that for every N 2 N there exists
m0 2 N such that for each m � m0 the sequence (Cm

n ) is eventually contained in
VN . On D we keep the Euclidean topology. The topology generated by the previous



244 FILIPPO BRACCI AND HERVÉ GAUSSIER

definitions is called the Carathéodory topology. Two main results of Carathéodory
theory are the following:

• D̂C endowed with the Carathéodory topology is homeomorphic to the closed
unit disc D endowed with the Euclidean topology;

• If D1, D2 are two simply connected domains, f : D1 ! D2 a biholomorphism,
then f extends to a homeomorphism f̂C : cD1C ! cD2C .

Given a prime end xC 2 @C D, the prime end impression is defined by

ICD
�
xC
�

:=
\

n�0
Vn,

where {Vn} is the interior part of any null chain (Cn) representing x and the closure
has to be understood in CP1 in case of unbounded domains. Note that, p 2 ICD(xC)
if and only if there exists a sequence {zn} ⇢ D such that zn ! p in the Euclidean
topology and zn ! xC in the Carathéodory topology.

Let f : D ! D ⇢ C be a biholomorphism, ⇣ 2 @D. We denote by 0( f ; ⇣ )
the cluster set of f at ⇣ , namely, p 2 0( f ; ⇣ ) if there exists a sequence {zn} ⇢ D
converging to ⇣ such that f (zn) ! p. Now, the point ⇣ corresponds to a point
xC⇣ 2 @CD. A null chain representing xC⇣ is given by (Cn) with Cn := {z 2 D :
|z � ⇣ | = rn}, where {rn} is any strictly decreasing sequence of positive numbers
converging to 0. Therefore, if {zn} ⇢ D converges to ⇣ in the Euclidean topology,
then it also converges to xC⇣ in the Carathéodory topology. Now, one can choose
the sequence {rn} in such a way that ( f (Cn)) is a null chain in D which represents
f̂C(xC⇣ ). The sequence { f (zn)} belongs eventually to the interior part of each Ĉn ,
hence, it accumulates to points in the prime ends impression of f̂C(xC⇣ ). Namely,

0( f ; ⇣ ) = ICD
⇣
f̂C
�
xC⇣
�⌘

.

In particular, a biholomorphism f : D ! D extends continuously to @D if and
only if the impression of each prime end is one point.

The principal part IICD(xC) of a prime end xC 2 @C D, is defined as follows.
A point p 2 @D belongs to IICD(xC) if for every open neighborhood U of p there
exists a null chain (Cn) representing xC such that Cn ⇢ U for all n 2 N. Given
a biholomorphism f : D ! D and ⇣ 2 @D, let denote by 0NT ( f ; ⇣ ) the cluster
set of f along non-tangential sequences. Namely, p 2 @D belongs to 0NT ( f ; ⇣ )
if there exists a sequence {zn} ⇢ D, converging non-tangentially at ⇣ such that
f (zn) ! p. Then it holds

0NT ( f ; ⇣ ) = IICD
⇣
f̂C
�
xC⇣
�⌘

.

Null chains are Euclidean objects, and the fact that a biholomorphism maps null
chains almost into null chains, allowing to extend the map as a homeomorphism
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on the Carathéodory boundary, relies strongly on quasi-conformality of biholomor-
phisms. On the other hand, once this is done, and the homeomorphism between D̂C
and D is proved, the relation between impressions and unrestricted limits comes
almost for free.

Here we take a dual point of view. We define a boundary and a topology via
the intrinsic hyperbolic distance, in such a way that the homeomorphic extension
of biholomorphisms to the newly defined boundary comes for free, but on the other
hand, the price we have to pay is that horospheres impressions are less immediate
to understand than prime ends impressions in Carathéodory theory.

In order to give some lights on the construction we present in the next sections,
we describe here the horosphere topology for the unit disc and simply connected
domains in C. A horosphere of vertex ⇣ 2 @D and radius R > 0 in D is given by

E(⇣, R) :=

(

z 2 D :
|⇣ � z|2

1� |z|2
< R

)

.

It is a disc of radius R/(R + 1) contained in D and tangent to @D at ⇣ . One can
easily show that

E(⇣, R) =

⇢
z 2 D : lim

w!⇣
[KD(z, w) � KD(0, w)] <

1
2
log R

�
, (2.1)

where KD denotes the Poincaré distance in D. Equation (2.1) is however not yet
suitable for being considered in other simply connected domains, essentially be-
cause it is related to the point ⇣ in the Euclidean boundary of D, which, from an
intrinsic point of view of Poincaré distance, does not exist. Therefore, instead of
considering limits to a given boundary point, we consider sequences {zn} ⇢ D such
that lim infn!1 KD(zn, 0) = 1 (namely, we consider sequences which, from an
Euclidean point of view, go to the boundary). For R > 0 we define

ED({un}, R) :=

⇢
z 2 D : lim sup

n!1
[KD(z, un) � KD(0, un)] <

1
2
log R

�
. (2.2)

By (2.1), if the cluster set of {un} is more than one point, there exists R > 0 such
that E({un}, R) = ;, while, if {un} converges to ⇣ 2 @D, then

ED({un}, R) = E(⇣, R) (2.3)

for all R > 0. Therefore, morally, we replace ⇣ 2 @D with sequences {un} such
that ED({un}, R) = E(⇣, R) for all R > 0. To be more formal, we say that a
compactly divergent sequence {un} ⇢ D is admissible provided ED({un}, R) 6= ;
for all R > 0.

If D⇢C is a simply connected domain,we candefine admissible sequences in D
using the same token: a sequence {un}⇢D is admissible if lim infn!1KD(x, un)=
1 and

ED
x ({un}, R) :=

⇢
z 2 D : lim sup

n!1
[KD(z, un) � KD(x, un)] <

1
2
log R

�
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is not empty for all R > 0. Here KD is the Poincaré distance on D and x 2 D is a
fixed point, whose choice does not play any substantial role.

Then we define an equivalence relation on admissible sequences by declaring
{un} equivalent to {vn} if for every R > 0 there exist R0, R00 > 0 such that

ED
x ({un}, R0) ⇢ ED

x ({vn}, R) ⇢ ED
x ({un}, R00).

In case of the unit disc, two admissible sequences {un} and {vn} are then equivalent
if and only if they converge to the same boundary point.

We denote by @H D the set of all equivalence classes of admissible sequences
in D and we call it the horosphere boundary of D. Let D̂ := D [ @H D. We want
to give a topology on D̂ in such a way that on D it coincides with the Euclidean
topology and D̂ is homeomorphic to D.

We start with the last requirement. As we said, if x 2 @HD, every admissible
sequence {un} representing x converges to the same point ⇣x 2 @D. Thus, it is
natural to associate x to the point ⇣x . Moreover, by (2.3), we can also think of x as
the family of horospheres E(⇣x , R), R > 0. Now, it is easy to see that a sequence
of points {⇣ j } 2 @D converges to ⇣ 2 @D if and only if for every R > 0 there
exists nR 2 N such that for all n � nR it holds E(⇣ j , R) \ E(⇣, R) 6= ;. This is
exactly the definition we can exploit in the general case: let D ⇢ C be a simply
connected domain. A sequence {x j } ⇢ @H D converges to x 2 @H D if there exist
admissible sequences {u jn} representing x j for every j , and an admissible sequence
{un} representing x such that for every R > 0 there exists mR 2 N such that
ED
x ({u jn}, R) \ ED

x ({un}, R) 6= ; for all j � mR .
Now, we consider convergence from inside D to the horosphere boundary. It is

easy to see that a sequence {zn} ⇢ D converges to ⇣ 2 @D if there exists a sequence
of points {⇣n} ⇢ @D (not necessarily all different from each other) such that for
every R > 0 there exists mR > 0 such that E(⇣, R) \ E(⇣ j , R) 6= ; and z j 2
E(⇣ j , R) for all j � mR . Thus, we can transform this observation into the general
definition: a sequence {z j } ⇢ D converges to x 2 @H D if there exist admissible
sequences {u jn} ⇢ D and an admissible sequence {un} ⇢ D representing x such that
for every R > 0 there exists mR 2 N such that ED

x ({u jn}, R) \ ED
x ({un}, R) 6= ;

and z j 2 ED
x ({u jn}, R) for all j � mR .

With the previous definitions, we gave a meaning to the notion of convergence
in D̂. In this way we can define the horosphere topology on D̂ by declaring a subset
C ⇢ D̂ to be closed if, whenever {zn} ⇢ C converges in the sense described above
to z 2 D̂, then z 2 C .

By the above discussion, it is clear that D̂ is homeomorphic to D. Moreover,
let f : D ! D ⇢ C be a biholomorphism. Since the map f is an isometry between
KD and KD and all the constructions are made in terms of hyperbolic distance, it
follows at once that f extends to a homeomorphism f̂ : D̂ ! D̂.

Being completely intrinsic, the definition of horosphere boundary and horo-
sphere topology is suitable to be generalized to any complete hyperbolic complex
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manifold. However, for the same reason, it is harder to relate it to boundary limits,
but it can be done.

Let D ⇢ C be a simply connected domain. Given x 2 @H D, we say that
p 2 IHD (x) if there exists a sequence {zn} ⇢ D such that zn ! p in the Euclidean
topology and zn ! x in the horosphere topology. We call IHD (x) the horosphere
impression of x .

If f : D ! D is a biholomorphism, and ⇣ 2 @D, let x⇣ 2 @HD be the
point given by the homeomorphism between D and D̂. If {zn} is a sequence in
D converging to x⇣ in the horosphere topology of D̂, then the sequence { f (zn)}
converges to f̂ (x⇣ ) in the horosphere topology of D̂. Hence,

0( f ; ⇣ ) = IHD
⇣
f̂
�
x⇣

�⌘
.

This implies in particular that IHD ( f̂ (x⇣ )) = ICD( f̂C(xC⇣ )).
We can also define a horosphere principal part. Let x 2 @H D. We say that a

sequence E-converges to x if there exists an admissible sequence {un} ⇢ D repre-
senting x such that {zn} is eventually contained in ED

x ({un}, R) for every R > 0.
Clearly the definition does not depend on the admissible sequence {un} chosen.
Also, it is evident that if {zn} is E-converging to x then it is also converging to x
in the horosphere topology. For instance, all sequences in D which converge non-
tangentially to one point ⇣ 2 @D, are also E-converging to x⇣ . However, there exist
E-convergent sequences inDwhich do not converge non-tangentially to a boundary
point. Then we let the horosphere principal part IIHD (x) of a point x 2 @H D be the
set of points p 2 @D such that there exists a sequence {zn} ⇢ D converging to p
and E-converging to x . It is clear that IIHD (x) =

T
R>0 ED

x ({un}, R) where {un} is
any admissible sequence representing x .

Now, if f : D ! D is a biholomorphism, and ⇣ 2 @D, let 0E ( f ; ⇣ ) be the set
of points p 2 @D such that there exists a sequence {zn} E-convergent to x⇣ such
that f (zn) ! p. Since all the notions are defined via intrinsic distance, it follows
at once that

0E ( f ; ⇣ ) = IIHD
⇣
f̂
�
x⇣

�⌘
=
\

R>0
ED
x ({ f (un)}, R).

Note that 0NT ( f ; ⇣ ) ✓ 0E ( f ; ⇣ ), hence,

IICD
⇣
f̂C
�
xC⇣
�⌘

✓ IIHD
⇣
f̂
�
x⇣

�⌘
.

In [22], Gaier and Pommerenke constructed examples of univalent mappings f :
D ! C for which, in our notation, IICD( f̂C(xC⇣ )) 6= IIHD ( f̂ (x⇣ )). On the other hand,
Twomey [38] proved that if f : D ! C is starlike then 0E ( f ; ⇣ ) consists of one
point for every ⇣ 2 @D. Therefore, in this case, IICD( f̂C(xC⇣ )) = IIHD ( f̂ (x⇣ )).
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3. Admissible sequences, Busemann sequences and horosphere boundary

Let M be a (connected) complex manifold of complex dimension N . We denote
by KM the Kobayashi distance on M . We assume that M is (Kobayashi) complete
hyperbolic, namely that the metric space (M, KM) is complete.

Let {un} be a sequence of points in M . For R > 0 and x 2 M , we denote by
Ex ({un}, R) the (sequence) horosphere defined by

Ex ({un}, R) :=

⇢
w 2 M| lim sup

n!1
(KM(w, un) � KM(x, un)) <

1
2
log R

�
.

Lemma 3.1. Let x, y 2 M . Let {un} be a sequence in M . Then there exist ↵,� > 0
such that for all R > 0

Ey({un},↵R) ⇢ Ex ({un}, R) ⇢ Ey({un},�R).

Proof. Letw 2 Ex ({un}, R). Let 12 log� := lim supn!1[KM(x, un)�KM(y, un)].
Note that � 2 (0,1) since

�1 < �KM(x, y) 
1
2
log�  KM(x, y) < +1.

Then

lim sup
n!1

[KM(w, un) � KM(y, un)]

 lim sup
n!1

[KM(w, un) � KM(x, un)]

+ lim sup
n!1

[KM(x, un) � KM(y, un)] <
1
2
log R +

1
2
log�,

hence w 2 Ey({un},�R).
Similarly, if 12 log↵ := � lim supn!1[KM(y, un) � KM(x, un)], we obtain

Ey({un},↵R) ⇢ Ex ({un}, R).

Definition 3.2. Let M be a complete hyperbolic manifold. Let x 2 M . A sequence
{un} is admissible if

(i) lim infn!1 KM(x, un) = 1;
(ii) 8R > 0, Ex ({un}, R) 6= ;.

We denote by 3M the set of admissible sequences.
By Lemma 3.1, the definition of admissible sequence does not depend on the base
point x chosen to define horospheres.

The construction of admissible sequences is valid for any geodesic, proper,
complete metric space. The existence of admissible sequences in that general situa-
tion is given by the following proposition, communicated to the authors by Andrew
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Zimmer. In case M is a complete hyperbolic manifold for the Kobayashi metric,
the existence of a geodesic joining any two points comes from the Hopf-Rinow
Theorem in locally compact, complete length spaces. We state Proposition 3.3 for
complete Kobayashi hyperbolic manifolds, to keep the context of the paper.

Proposition 3.3. Let M be a complete hyperbolic manifold and let x 2 M . Then
every sequence {un} of points in M , such that limn!1 KM(un, x) = +1, admits
an admissible subsequence. In particular, 3M 6= ;.

Proof. Consider any sequence {un} converging to infinity for the Kobayashi dis-
tance. The function bn : M 3 z 7! KM(un, z) � KM(un, x) is 1-Lipschitz for
every n. According to the Ascoli-Arzelà Theorem, the sequence {bn} admits a
subsequence {b'(n)} that converges, uniformly on compact subsets of M , to some
function b. For every n � 0, let �'(n) : [0, Tn] ! M be a real geodesic joining x to
u'(n). Then by the definition of bn , we get for all 0  t  T'(n):

b'(n)(�'(n)(t))
= KD

�
�'(n)(T'(n)), �'(n)(t)

�
� KD

�
�'(n)(T'(n)), �'(n)(0)

�

= �KD
�
�'(n)(t), �'(n)(0)

�

= �t.

Since (M, KM) is a proper metric space, it follows from the Ascoli-Arzelà Theo-
rem that the sequence {�'(n)} admits a subsequence {�� (n)} that converges, locally
uniformly, to some � . In particular we get b(� (t)) = �t for every t � 0.

Let us fix r > 0 and consider a real number tr satisfying tr > �1
2 log(r). Then

for sufficiently large n we have:

b� (n)(� (tr )) <
1
2
log(r),

meaning that � (tr ) 2 Ex ({u� (n)}, r).

We collect here some properties of horospheres:

Proposition 3.4. Let M be a complete hyperbolic manifold and let x 2 M . Let
{un} be an admissible sequence. Then

(1) Ex ({un}, R) is open for every R > 0;
(2) If 0 < R < R0 then Ex ({un}, R) ⇢ Ex ({un}, R0);
(3)

T
R>0 Ex ({un}, R) = ;.

Proof. (1) If w 2 Ex ({un}, R), then there exists 0 < R0 < R such that

lim sup
n!1

(KM(w, un) � KM(x, un)) =
1
2
log R0.
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Hence, if z 2 BK (w, �), the Kobayashi ball of center w and radius � = 1
2 log

R
R0 , it

follows
KM(z, un) � KM(x, un) = KM(z, un) � KM(w, un) + KM(w, un) � KM(x, un)

 KM(z, w) + KM(w, un) � KM(x, un),

and then

lim sup
n!1

[KM(z, un) � KM(x, un)] <
1
2
log

R
R0

+
1
2
log R0 =

1
2
log R.

Therefore, BK (w, �) ⇢ Ex ({un}, R), and the horosphere is open.
(2) Is obvious.
(3) Since for every w 2 M ,

�KM(x, w)  KM(w, un) � KM(x, un),

it follows that ifw 2
T

R>0 Ex ({un}, R) then KM(x, w) = 1, a contradiction.

A less obvious property is the following property which states somewhat that
horospheres go “uniformly to the boundary”:
Proposition 3.5. Let M be a complete hyperbolic manifold and let x 2 M . Then
for every compact set K ⇢ M there exists R0 > 0 such that

Ex ({un}, R) \ K = ;

for all R  R0 and all admissible sequences {un} ⇢ M .
Proof. Assume by contradiction this is not the case. Then for every N 2 N there ex-
ist zN 2 K and an admissible sequence {uNn } ⇢ M such that zN 2 Ex ({uNn }, 1/N ).
Up to subsequences, we can assume that {zN } converges to z0 2 K and that for all
N 2 N it holds KD(zN , z0) < 1. Then, using the triangle inequality, for all n 2 N
we have

�KD(z0, x)  lim sup
n!1

h
KD

�
z0, uNn

�
� KD

�
x, uNn

�i

 lim sup
n!1

h
KD(zN , z0) + KD

�
zN , uNn

�
� KD

�
x, uNn

�i

 1+ lim sup
n!1

h
KD

�
zN , uNn

�
� KD

�
x, uNn

�i
< 1+

1
2
log

1
N

,

a contradiction.

Another natural class of sequences is the following:
Definition 3.6. Let M be a complete hyperbolic manifold, x 2 M . A sequence
{un} ⇢ M is called a Busemann sequence if
(i) lim infn!1 KM(x, un) = 1;
(ii) for all z 2 M the limit limn!1[KM(z, un) � KM(x, un)] exists.
We denote by BM the set of Busemann sequences.
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It is not difficult to show that the definition of Busemann sequence does not depend
on the base point x 2 M chosen.

Busemann sequences have been introduced (under the name horosphere se-
quences) in balanced bounded convex domains in [28], and later studied in bounded
convex domains in [14]. The proof of the following result is an adaptation of the
ideas contained in those papers.

Proposition 3.7. Let M be a complete hyperbolic manifold, x 2 M .

(1) If {un} ⇢ M satisfies limn!1 KM(x, un) = 1, then there exists a subse-
quence {unk } of {un} which is a Busemann sequence. Therefore, BM 6= ;;

(2) If {un} ⇢ M is an admissible sequence, then there exists a subsequence {unk } of
{un} which is a Busemann admissible sequence and Ex ({un}, R) ✓ Ex ({unk },
R) for all R > 0;

(3) If for every two points z, w 2 M , z 6= w there exists a complex geodesic (i.e.,
an analytic disc which is an isometry between KD and KD) which contains
z, w then every Busemann sequence is an admissible sequence.

Proof. (1) Let {zm}m2N be a dense set in M . Arguing as in the proof of Proposition
3.3, one can find a subsequence {un j } such that f j (z) := KD(z, un j ) � KD(x, un j )
has the property that lim j!1 f j (zm) exists for all m 2 N. If z 2 M and {zmk } is a
subsequence converging to z, by the triangle inequality it follows

�
� f j (z) � f j (zmk )

�
�  KD(z, zmk ).

From this it is easy to see that lim j!1 f j (z) exists, hence {un j } 2 BM .
(2) If {un} 2 3M , then by (1) we can extract a Busemann subsequence {unk }.

Let R > 0 and let z 2 Ex ({un}, R). Then

lim sup
k!1

⇥
KD(z, unk )�KD(x, unk )

⇤
 lim sup

n!1

⇥
KD(z, un) � KD(x, un)

⇤
<
1
2
log R,

which proves that z 2 Ex ({unk }, R).
(3) Assume that every two points of M belong to a complex geodesic and let

{un} 2 BM . Fix R > 0 and let 0 < r < min{1, R}. Let BK (x,�1
2 log r) be the

Kobayashi ball of center x and radius �1
2 log r > 0. Since KD(x, {un}) ! 1,

we can assume that un 62 BK (x,�1
2 log r) for all n 2 N. By hypothesis x and un

are contained in a complex geodesic. Hence, there exists qn in the same complex
geodesic such that KD(x, qn) = �1

2 log r and

KD(x, un) = KD(x, qn) + KD(qn, un) = �
1
2
log r + KD(qn, un).

Note that qn 2 @BK (x,�1
2 log r) and the latter is compact. Hence we can extract

a converging subsequence {qnk } converging to some q 2 @BK (x,�1
2 log r). Now,



252 FILIPPO BRACCI AND HERVÉ GAUSSIER

taking into account that {un} is a Busemann sequence, we have

lim sup
n!1

⇥
KD(q, un) � KD(x, un)

⇤
= lim
k!1

⇥
KD(q, unk ) � KD(x, unk )

⇤


1
2
log r + lim

k!1
KD(q, qnk ) =

1
2
log r,

that is q 2 Ex ({un}, R). Hence {un} is admissible.

Definition 3.8. Let M be a complete hyperbolic manifold and let x 2 M .

(i) Two sequences {un}, {vn} in 3M are equivalent and we write {un} ⇠ {vn} if
for every R > 0 there exist R0 > 0 and R00 > 0 such that

Ex
�
{un}, R0� ✓ Ex ({vn}, R), Ex

�
{vn}, R00� ⇢ Ex ({un}, R);

(ii) We denote by @HM the horosphere boundary of M defined by @HM :=3M/⇠.

It is easy to see that⇠ is an equivalence relation on3M . Moreover, by Lemma 3.1,
the definition of equivalent admissible sequences is independent of the base point x .
Remark 3.9. By Proposition 3.3, the horosphere boundary of a complete hyper-
bolic manifold is never empty.

4. Horosphere topology, impression and principal part

Let M be a complete hyperbolic complex manifold, x 2 M , and let @HM be its
horosphere boundary. Let M̂ := M [ @HM . We define a topology on M̂ , which
coincides with the topology of M on M , as follows:
Definition 4.1. A sequence {ym} ⇢ @HM converges to y 2 @HM if there exist
admissible sequences {umn }n2N with [{umn }] = ym and an admissible sequence {un}
with [{un}] = y with the property that for every R > 0 there exists mR 2 N such
that

Ex
�
{umn }, R

�
\ Ex

�
{un}, R

�
6= ; 8m � mR . (4.1)

By Lemma 3.1, the previous definition of convergence is independent of the base
point x .
Definition 4.2. A sequence {zm} ⇢ M converges to y 2 @HM if there exist {un},
{v jn } j2N ⇢ 3M with [{un}] = y and with the property that for all R > 0 there exists
mR 2 N such that zm 2 Ex ({vmn }, R), and Ex ({vmn }, R) \ Ex ({un}, R) 6= ; for all
m � mR .

It is clear from Lemma 3.1 that this definition does not depend on the base
point x .

Remark 4.3. Note that, if the {v jn } are admissible sequences as in Definition 4.2,
and y j := [{v jn }], then {y j } converges to y in the sense of Definition 4.1.



HOROSPHERE TOPOLOGY 253

A sequence {zn} ⇢ M ⇢ M̂ converges to z 2 M if limn!1 KM(zn, z) = 0. Now
we can define a topology on M̂ as follows:

Definition 4.4. A subset C ⇢ M̂ is closed if for every sequence {zn} ⇢ C converg-
ing to z 2 M̂ , it follows that z 2 C .

We call such a topology the horosphere topology of M and we denote it by TH (M̂).
Remark 4.5. By definition, a sequence {zn} ⇢ @HM can converge only to points
which belong to @HM in the horosphere topology.
Remark 4.6. A relatively compact sequence {zn} ⇢ M can not converge to a point
y 2 @HM by Proposition 3.5. Therefore the horosphere topology restricted on M
coincides with the topology of M .
If M, N are two complete hyperbolic complex manifolds and F : M ! N is
a biholomorphism, then F induces a bijective map F̂ : M̂ ! N̂ as follows. If
z 2 M then F̂(z) = F(z). If y 2 @HM , let {un} be an admissible sequence in M
which represents y. Since F is an isometry between KM and KN , it follows easily
that {F(un)} is an admissible sequence in N and therefore it represents a point
F̂(y) 2 @H N . Clearly, since F is an isometry between the Kobayashi distance of
M and that of N , such a point does not depend on the admissible sequence chosen
to represent it.

Moreover, by the same token, it follows that F̂�1 = dF�1 and F̂ and dF�1 map
closed sets onto closed sets in the horosphere topology. Therefore we have:

Theorem 4.7. Let M, N be complete hyperbolic complex manifolds. Let F : M !
N be a biholomorphism. Then F extends to a homeomorphism F̂ : M̂ ! N̂ .

In case of domains inCN one can relate convergence to the horosphere boundary in
the horosphere topology with (Euclidean) convergence to the Euclidean boundary.
This can be done in two natural ways using horosphere topology, and gives rise to
the notion of horosphere impression and horosphere principal part. These notions,
as it will be clear later on, are strictly related to extension of univalent maps from
bounded strongly pseudoconvex domains.

As a matter of notation, if D ⇢ CN is a domain, we denote by DCPN its closure
in CPN .
Definition 4.8. Let D be a complete hyperbolic domain in Cn . Let x 2 @H D. We
say that a point p 2 DCPN belongs to the horosphere impression of x , denoted by
IHD (x), if there exists a sequence {wn} ⇢ D such that {wn} converges to x in the
horosphere topology and {wn} converges to p in CPN .
Remark 4.9. By Proposition 3.5, for every x 2 @H D it holds IHD (x) \ D = ; .
In order to define the horosphere principal part, we first give a general definition
of convergence in the horosphere topology, which, somehow, replaces the notion of
non-tangential limits:
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Definition 4.10. Let M be a complete hyperbolic manifold, x 2 M . Let x 2 @HM .
We say that a sequence {zn} ⇢ M is E-converging to x , and we write

E� lim
n!1

zn = x,

if for one – and hence any – admissible sequence {un} representing x , the sequence
{zn} is eventually contained in Ex ({un}, R) for all R > 0.
Note that, according to the definition of horosphere topology, if {zn} is E-converging
to x then, in particular, it is converging to x in the horosphere topology.

We are now ready to define the horosphere principal part:
Definition 4.11. Let D be a complete hyperbolic domain in Cn . Let x 2 @H D. We
say that a point p 2 DCPN belongs to the horosphere principal part of x , denoted
by IIHD (x), if there exists a sequence {wn} ⇢ D such that {wn} E-converges to x and
{wn} converges to p in CPN .

Clearly, IIHD (x) ⇢ IHD (x) for all x 2 @H D. By the very definition we have:

Lemma 4.12. Let D be a complete hyperbolic domain inCn , x 2 D. Let x 2 @H D.
Then

IIHD (x) =
\

R>0
Ex ({un}, R)

CPN
,

where {un} ⇢ D is any admissible sequence representing x .

5. Strongly pseudoconvex domains

Abate (see [1, 3]) defined the small and big horospheres as follows:
Definition 5.1. Let D ⇢ CN be a domain and let p 2 @D. Let R > 0 and x 2 D.
The small horosphere Ex (p, R) of vertex p and radius R is defined by

Ex (p, R) :=

⇢
w 2 D : lim sup

z!p
[KD(w, z) � KD(x, z)] <

1
2
log R

�
.

The big horosphere Fx (p, R) of vertex p and radius R is defined by

Fx (p, R) :=

⇢
w 2 D : lim inf

z!p
[KD(w, z) � KD(x, z)] <

1
2
log R

�
.

The following result follows from [1, Lemma 1.1, Theorem 1.7] and [3, Theorem
2.6.47]:

Theorem 5.2. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C2
boundary. Let p 2 @D and x 2 D. Then

(1) For every R > 0, Ex (p, R) ⇢ Fx (p, R);
(2) For every R0 > R > 0, Ex (p, R) ⇢ Ex (p, R0), Fx (p, R) ⇢ Fx (p, R0);
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(3) \R>0Fx (p, R) = ;;
(4) For every R > 0, Fx (p, R) \ @D = {p}.

Moreover, if D is a strongly convex domain with C3 boundary, then for every R > 0
it holds Ex (p, R) = Fx (p, R).

In what follows, we need also the following boundary estimates for the Kobayashi
distance, see, e.g., [20], [3, Theorem 2.3.56], [3, Theorem 2.3.54] and [7, pages
530-531]. Note that, in those references, the estimates are proved for a given point
in @D. However, the compactness of @D easily allows to get uniform estimates.
As a matter of notation, if D ⇢ Cn is a domain, we denote by �(z) the distance of
z 2 D from the boundary @D.

Lemma 5.3. Let D ⇢ CN be a bounded domain with C2 boundary. Then there
exist C > 0 and "0 > 0 such that for every p 2 @D and for every z, w 2 D \
B(p, "0) it holds:

KD(w, z) 
1
2
log

✓
1+

|w � z|
�(w)

◆
+
1
2
log

✓
1+

|w � z|
�(z)

◆
+ C, (5.1)

where |w�z| denotes the Euclidean distance betweenw and z and �(z) the distance
from z to @D.

Moreover, if D is strongly pseudoconvex, there exist "1 > "0 > 0 and C 0 > 0
such that for all p 2 @D, x 62 D \ B(p, "1) and z 2 D \ B(p, "0) it holds

KD(x, z) � C 0 �
1
2
log(�(z)). (5.2)

We start with the following lemma.

Lemma 5.4. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C2
boundary. Let V ⇢ @D be a closed set and x 2 D. Then for every open neighbor-
hood U of V there exists R0 > 0 such that

[

p2V
Fx (p, R) ⇢ U \ D for all 0 < R  R0.

In particular, if V, V 0 ⇢ @D \ {p} are two closed sets such that V \ V 0 = ; then
there exists R0 > 0 such that, for all 0 < R < R0 it holds

S
p2V Fx (p, R) \S

p2V 0 Fx (p, R) = ;.

Proof. Let R > 0. First, note that

Fx (V, R) :=

⇢
z 2 D : lim inf

w!V
[KD(z, w) � KD(x, w)]<

1
2
log R

�
=
[

p2V
Fx (p, R).

Indeed, if z 2 Fx (V, R), then there exists a sequence {wm} such that

lim
m!1

[KD(z, wm) � KD(x, wm)] = lim inf
w!V

[KD(z, w) � KD(x, w)].
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Up to subsequences, we can assume that {wm} converges to p 2 V . Therefore,

lim inf
w!p

[KD(z, w) � KD(x, w)]  lim
m!1

[KD(z, wm) � KD(x, wm)] <
1
2
log R,

hence, z 2 Fx (p, R). Conversely, if z 2 Fx (p, R) then

lim inf
w!V

[KD(z, w) � KD(x, w)]  lim inf
w!p

[KD(z, w) � KD(x, w)] <
1
2
log R,

proving that z 2 Fx (V, R).
Next, we show

Fx (V, R) \ @D = V . (5.3)
The proof is similar to the proof of Theorem 5.2.(4) (see, [1,3]). Since Fx (V, R) =S

p2V Fx (p, R), it follows V ✓ Fx (V, R) by Theorem 5.2.(4). In order to show the
converse inclusion, assume by contradiction there exists q 2 (Fx (V, R) \ @D) \ V .
Hence, there exists a sequence {zn} ⇢ Fx (V, R) converging to q. By definition,
this implies that for every n 2 N there exists a sequence {wnm}m2N converging to
some point pn 2 V such that [KD(zn, wnm) � KD(x, wnm)] < 1

2 log R for every
m 2 N. Since V is compact, we can assume {pn} is converging to some p 2 V .
Hence, given � > 0, we can also assume that |zn�q| < � and |wnm � p| < � for all
n,m. We can choose � so small that B(q, 2�) \ B(p, 2�) = ;, where B(q, 2�) :=
{w 2 Cn : |w � q| < 2�}. Hence (see [3, Corollary 2.3.55] or [1, Theorem 1.6])
there exists K 2 R such that for all n,m,

KD(zn, wnm) � �
1
2
log �(zn) �

1
2
log �(wnm) + K .

Therefore, by (5.2),

1
2
log R > KD(zn, wnm) � KD(x, wnm)

� �
1
2
log �(zn) �

1
2
log �(wnm) + K � KD(x, wnm)

� �
1
2
log �(zn) �

1
2
log �(wnm) + K � C 0 +

1
2
log �(wnm)

= �
1
2
log �(zn) + K � C 0,

a contradiction, and (5.3) holds.
Now, in order to complete the proof, we argue by contradiction. Let assume

there exists an open neighborhood U of V such that, for all n 2 N there exists
zn 2 Fx (V, 1n ) \ (D \ U). Up to subsequence, we can assume that zn ! z0 2
D \U . Arguing as in the proof of Proposition 3.5, it is not hard to see that z0 62 D.
Therefore, z0 2 @D. Fix R > 0. Since Fx (V, R) ⇢ Fx (V, R0) for all 0 < R < R0,
it follows that zn 2 Fx (V, R) for all n > 1/R. In particular, z0 2 Fx (V, R)\@D =
V by (5.3). Again, a contradiction.
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We prove the following optimal localization principle for the Kobayashi dis-
tance on strongly pseudoconvex domains. An associated result was given by Z. Ba-
longh and M. Bonk in [7]. Our more precise statement relies on their approach.
After a first draft of our paper was completed, N. Nikolov informed us that one can
obtain a similar estimate using the techniques he developed in [35].

Lemma 5.5. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C2
boundary. Let p 2 @D. Let U be an open neighborhood of p. Then there exists
an open neighborhood W ⇢ U of p and a constant T � 1 such that for every
z, w 2 W \ D it holds

KU\D(w, z) � KD(w, z) 
1
2
log T . (5.4)

Proof. First of all, notice that, given any open set U of p, there exists an open
neighborhood Ũ ⇢ U of p such that Ũ \ D is a strongly pseudoconvex domain
with C2 boundary. If (5.4) holds for Ũ , then for every z, w 2 W \ D

KU\D(w, z) � KD(w, z)  KŨ\D(w, z) � KD(w, z) 
1
2
log T,

and hence (5.4) holds for U as well.
Therefore, without loss of generality, we can assume that U \ D is a strongly

pseudoconvex domain with C2 boundary.
For x, y 2 @D, let d@D

H (x, y) denote the Carnot-Carathéodory distance be-
tween x and y. The distance d@D

H (x, y) is defined as follows (see, e.g., [7]). A piece-
wise C1-smooth curve ↵ : [0, 1] ! @D is horizontal provided ↵0(t) 2 TC

↵(t)@D for
almost every t . The set of horizontal curves is denoted by H(@D). For every
x, y 2 @D there exist horizontal curves joining x and y. Let

⇢D(z) :=

(
��(z) for z 2 D
�(z) for z 2 CN \ D.

Then ⇢D is C2 on an open neighborhood of @D. Let L⇢D be the Levi form of ⇢D .
The Levi-length of a horizontal curve ↵ is defined as

`DL (↵) :=
Z 1

0

�
L⇢D (↵(t);↵0(t))

�1/2dt.

Then

d@D
H (x, y) := inf

n
`DL (↵) : ↵ 2 H(@D),↵(0) = x,↵(1) = y

o
.

Let W 0 be an open neighborhood of p 2 @D such that for every z 2 W 0 \ D there
exists a unique point ⇡D(z) 2 @D such that

�(z) = |z � ⇡D(z)|.
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For z, w 2 W 0 \ D define

gD(z, w) := 2 log

"
d@D
H (⇡D(z),⇡D(w)) +max{

p
�(z),

p
�(w)}

p
�(z)�(w)

#

.

By [7, Corollary 1.3] there exists CD � 0 such that for all z, w 2 W 0 \ D it holds

gD(z, w) � CD  KD(z, w)  gD(z, w) + CD. (5.5)

Similarly, there exists CU\D � 0 such that for all z, w 2 W 0 \ D it holds

gU\D(z, w) � CU\D  KU\D(z, w)  gU\D(z, w) + CU\D. (5.6)

By (5.5) and (5.6), for all z, w 2 W 0 \ D we have

KU\D(w, z) � KD(w, z)  gU\D(z, w) � gD(z, w) + CD + CU\D. (5.7)

Now, up to shrinking W 0 is necessary, we can assume that for all z 2 W 0 \ D it
holds

�U\D(z) = �(z),

where �U\D(z) denotes the distance from z to the boundary of U \ D. With such
an assumption, ⇡(z) := ⇡D(z) = ⇡U\D(z). We claim that there exists a open
neighborhood W ✓ W 0 such that for all z, w 2 W \ D it holds

d@D
H (⇡(z),⇡(w)) = d@(U\D)

H (⇡(z),⇡(w)). (5.8)

Once this is proved, it follows from (5.7) that for all z, w 2 W \ D

KU\D(w, z) � KD(w, z) 
1
2
log T := CD + CU\D,

and the lemma is proved.
In order to prove (5.8), we argue as follows. By the “box-ball estimate” (see [7,

equation (3.1)]) there exist A1, A2 > 0 such that

A1|x � y|  d@D
H (x, y)  A2|x � y|1/2,

for all x, y 2 @D. In particular this implies that there exists an open neighborhood
W1 ⇢ W 0 of p such that for every x, y 2 W1 \ @D and for every horizontal curve
↵ joining x and y such that ↵([0, 1]) \ (@D \ W 0) 6= ; it holds

`DL (↵) � d@D
H (x, y) + c1, (5.9)

for some c1 > 0. Similarly, that there exists an open neighborhood W2 ⇢ W 0 of p
such that for every x, y 2 W2 \ @D and for every horizontal curve ↵ joining x and
y such that ↵([0, 1]) \ (@(U \ D) \ W 0) 6= ; it holds

`U\D
L (↵) � d@(U\D)

H (x, y) + c2, (5.10)
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for some c2 > 0. Let W ⇢ W1 \ W2 be an open neighborhood of p such that
⇡(W \ D) b (W1 \ W2) \ @D. Let z, w 2 W \ D. Let 0 < ✏ < min{c1, c2}. Let
↵ be a horizontal curve joining ⇡(z) and ⇡(w) such that

`DL (↵)  d@D
H (⇡(z),⇡(w)) + ✏.

By (5.9), ↵([0, 1]) ⇢ W 0. Since ⇢D(z) = ⇢U\D(z) for all z 2 W 0 \ D, it follows
that `U\D

L (↵) = `DL (↵). Hence

d@(U\D)
H (⇡(z),⇡(w))  `U\D

L (↵) = `DL (↵)  d@D
H (⇡(z),⇡(w)) + ✏,

and by the arbitrariness of ✏, it follows that d@(U\D)
H (⇡(z),⇡(w))  d@D

H (⇡(z),
⇡(w)). A similar argument gives the opposite inequality, and the proof is com-
pleted.

Definition 5.6. Let D ⇢ CN be a domain. A cone region C(p,↵, ✏) in D of vertex
p 2 @D, aperture ↵ > 1 and size ✏ > 0 is

C(p,↵, ✏) := {z 2 D : |z � p| < min{↵�(z), ✏}}.

Proposition 5.7. Let D ⇢ CN be a bounded strongly pseudoconvex domain with
C2 boundary, x 2 D. Let ↵ > 1 and R > 0. Then there exists " > 0 such that for
every p 2 @D and for every sequence {un} converging to p it holds

C(p,↵, ") ⇢ Ex ({un}, R). (5.11)

In particular, every sequence in D converging to a boundary point is admissible.

Proof. Let {un} ⇢ D be a sequence converging to p 2 @D.
Let "1 > "0 > 0 be given by (5.1) and (5.2) and such that x 62 D \ B(p, "1).

Then for w 2 D \ B(p, "0) and n large enough, we have:

KD(w, un) � KD(x, un) 
1
2
log

✓
1+

|un � w|

�(w)

◆

+
1
2
log(�(un) + |un � w|) + C � C 0.

(5.12)

Therefore,

lim sup
n!1

[KD(w, un) � KD(x, un)]  C � C 0 +
1
2
log

✓
1+

|p � w|

�(w)

◆

+
1
2
log |p � w|.

(5.13)

Now, fix ↵ > 1. Given " 2 (0, "0], for every w 2 C(p,↵, ") it holds

lim sup
n!1

[KD(w, un) � KD(x, un)]  C � C 0 +
1
2
log (1+ ↵) +

1
2
log ".
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Hence, given R > 0, there exists " 2 (0, "0] (depending on R and ↵ but not on p
and {un}), such that (5.11) holds.

In particular, Ex ({un}, R) 6= ; for all R > 0. Since D is complete hyperbolic,
it follows that lim infn!1 KM(x, un) = 1. Hence {un} is admissible.

For strongly pseudoconvex domains we can say more about equivalent admis-
sible sequence:

Proposition 5.8. Let D ⇢ CN be a bounded strongly pseudoconvex domain with
C3 boundary. If {un}, {vn} ⇢ D are two sequences converging to p then they are
admissible and {un} ⇠ {vn}.

Proof. The two sequences are admissible by Proposition 5.7.
Fix R > 0. We want to show that there exist R0, R00 > 0 such that Ex ({un},

R0) ⇢ Ex ({vn}, R) and Ex ({vn}, R00) ⇢ Ex ({un}, R). We are going to prove the
existence of R0, a similar argument holds for R00.

We claim that for every open neighborhood W of p, there exists r0 > 0 such
that

Ex ({un}, r) ⇢ (W \ D) [ {p}, (5.14)

for all 0 < r < r0 (and similarly for {vn}). Indeed, for every r > 0, Ex ({un}, r) ⇢
Fx (p, r), where Fx (p, r) denotes Abate’s big horosphere. Hence, the claim follows
from Lemma 5.4.

Now choose U to be an open neighborhood of p such that U \ D is biholo-
morphic to a strongly convex domain with C3 boundary. Let W ⇢ U be the open
neighborhood of p given by Lemma 5.5.

Since the equivalence relation among admissible sequences is independent of
the base point, we can assume with no loss of generality that x 2 W \D. Moreover,
since both {un} and {vn} are eventually contained in W , we can also assume that
{un}, {vn} ⇢ W \ D.

For r > 0, let EU\D
x (p, r) denote the small horosphere of vertex p and radius

r in U \ D. Since clearly EU\D
x (p, r) ⇢ EU\D

x ({un}, r) ⇢ FU\D
x (p, r) and by

Theorem 5.2, EU\D
x (p, r) = FU\D

x (p, r), it follows that for every r > 0

EU\D
x (p, r) = EU\D

x ({un}, r) = EU\D
x ({vn}, r). (5.15)

Now we claim that for every r > 0 such that Ex ({vn}, r) ⇢ W there exists r 0 > 0
such that

EU\D
x

�
p, r 0� ⇢ Ex ({vn}, r). (5.16)

Conversely, for every r > 0 such that EU\D
x (p, r) ⇢ W there exists r 0 > 0 such

that
Ex
�
{un}, r 0� ⇢ EU\D

x (p, r). (5.17)

Assuming the claims, the proof ends as follows. By (5.14), there exists r > 0
such that Ex ({vn}, r) ⇢ Ex ({vn}, R) \ W . By (5.16) there exists r 0 > 0 such
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that EU\D
x (p, r 0) ⇢ Ex ({vn}, r), and by (5.17) there exists R0 > 0 such that

Ex ({un}, R0) ⇢ EU\D
x (p, r 0). Hence, Ex ({un}, R0) ⇢ Ex ({vn}, R) as needed.

In order to prove (5.16), let r > 0 be such that Ex ({un}, r) ⇢ W . Let
T � 1 be given by Lemma 5.5. Let rT 2 (0, r] be such that EU\D

x (p, T�1rT ) ⇢
W . By (5.15), EU\D

x (p, T�1rT ) = EU\D
x ({vn}, T�1rT ). Hence, for every z 2

EU\D
x (p, T�1rT ) it holds

lim sup
n!1

[KD(z, vn) � KD(x, vn)]  lim sup
n!1

[KU\D(z, vn) � KD(x, vn)]

 lim sup
n!1

[KU\D(z, vn) � KU\D(x, vn)] + lim sup
n!1

[KU\D(x, vn) � KD(x, vn)]

(5.4)


1
2
log(T�1rT ) +

1
2
log T =

1
2
log rT ,

which shows that z 2 Ex ({vn}, rT ) ✓ Ex ({vn}, r). Thus, EU\D
x (p, T�1rT ) ⇢

Ex ({vn}, r) and (5.16) is proved with r 0 = T�1rT .
In order to prove (5.17), let r > 0 be such that EU\D

x (p, r) ⇢ W . Let T � 1
be given by Lemma 5.5. Let rT 2 (0, r] be such that Ex ({un}, T�1rT ) ⇢ W . Then
for every z 2 Ex ({un}, T�1rT ) it holds

lim sup
n!1

[KU\D(z, un) � KD\U (x, un)]  lim sup
n!1

[KU\D(z, un) � KD(x, un)]

 lim sup
n!1

[KU\D(z, un) � KD(z, un)] + lim sup
n!1

[KD(z, un) � KD(x, un)]

(5.4)


1
2
log T +

1
2
log(T�1rT ) =

1
2
log rT ,

which, by (5.15), shows that z 2 EU\D
x (p, rT ) ✓ EU\D

x (p, r). Thus, Ex ({un},
T�1rT ) ⇢ EU\D

x (p, r), and (5.17) is proved with r 0 = T�1rT .

A consequence of the previous proposition is given by the following:
Proposition 5.9. Let D ⇢ CN be a bounded strongly pseudoconvex domain with
C3 boundary. Let {un} ⇢ D be an admissible sequence. Then there exists p 2 @D
such that limn!1 un = p. Moreover, every admissible sequence {vn} which is
equivalent to {un} converges to p. Finally, for p 2 @D, let Ap denote the set of all
sequences in D which converges to p. Then, for all R > 0
(1) Fx (p, R) = [{un}2Ap Ex ({un}, R);
(2) Ex (p, R) = \{un}2Ap Ex ({un}, R) 6= ;.
Proof. Since D is complete hyperbolic, Property (1) in Definition 3.2 implies that
all accumulation points of {un} are contained in @D. Let p 2 @D be one of such
points. Let {unk } be a subsequence of {un} such that unk ! p. Let z 2 Ex ({un}, R)
for some R > 0. Then
lim inf
w!p

[KD(z, w) � KD(x, w)]  lim sup
k!1

[KD(z, unk ) � KD(x, unk )]

 lim sup
n!1

[KD(z, un) � KD(x, un)] 
1
2
log R.
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Hence z 2 Fx (p, R). This implies that Ex ({un}, R) ⇢ Fx (p, R). In particular, if
q 2 @D were another accumulation point of {un} different from p, it would hold

Ex ({un}, R) ⇢ Fx (p, R) \ Fx (q, R) 8R > 0,

contradicting Lemma 5.4. Hence limn!1 un = p.
Now, let {vn} be another admissible sequence which is equivalent to {un}.

From what we just proved, there exists q 2 @D such that limn!q vn = q. If
q 6= p, let R0 > 0 be given by Lemma 5.4 such that Fx (p, R) \ Fx (q, R) = ;
for all 0 < R < R0. Fix 0 < R < R0. By the previous argument, Ex ({vn}, R) ⇢
Fx (q, R). Since {un} is equivalent to {vn} this implies that there exists R0 > 0
such that Ex ({un}, R0) ⇢ Ex ({vn}, R) ⇢ Fx (q, R). Now, if R0 � R, it fol-
lows that Ex ({un}, R) ⇢ Fx (q, R), giving a contradiction since we proved that
Ex ({un}, R) ⇢ Fx (p, R). If R0 < R, again we obtain a contradiction since
Ex ({un}, R0) ⇢ Ex ({un}, R) ⇢ Fx (p, R).

In order to prove (1), we already saw that [{un}2Ap Ex ({un}, R) ⇢ Fx (p, R).
Let z 2 Fx (p, R). By the very definition, there exists a sequence {un} ⇢ D con-
verging to p such that limn!1[KD(z, un) � KD(x, un)] = 1

2 log R
0 for some

R0 < R. By Proposition 5.8, {un} is admissible and z 2 Ex ({un}, R), hence
Fx (p, R) ⇢ [{un}2Ap Ex ({un}, R).

(2) the proof is similar and we omit it. The fact that Ex (p, R) 6= ; follows
then immediately from (5.11).

The main result of this section is the following:

Theorem 5.10. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C3
boundary. Then D̂ endowed with the horosphere topology is homeomorphic to D
(closure of D in CN ) endowed with the Euclidean topology.

Proof. We define a map 2 : D̂ ! D as follows. If z 2 D ⇢ D̂ then we just set
2(z) = z. If y 2 @H D, by Proposition 5.9 all admissible sequences representing y
converge to a same point p 2 @D. Then we set 2(y) := p. The map 2 is bijective
by Proposition 5.8.

In order to prove that2 is a homeomorphism, we show that given C ⇢ D then
C is closed in the Euclidean topology if and only if 2�1(C) ⇢ D̂ is closed in the
horosphere topology.

Assume that C is closed in the Euclidean topology. In order to show that
2�1(C) is closed in the horosphere topology, we need to show that if {⇠n} is a
sequence in2�1(C) converging to ⇠ 2 D̂, then ⇠ 2 2�1(C). There are three cases
to examine, from which the general case follows immediately:

Case 1. If {2�1(zn)} is a sequence in 2�1(C) \ D converging to 2�1(z) 2 D,
then by the very definition of 2 and since the topology induced on D ⇢ D̂ by
the horosphere topology is the Euclidean topology, it follows easily that 2�1(z) 2
2�1(C).
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Case 2. Let now {ym} be a sequence in 2�1(C) \ @H D, converging in the horo-
sphere topology to y 2 @H D (by Remark 4.5 a sequence on the horosphere bound-
ary can only converge to a point on the horosphere boundary). Let pm := 2(ym) 2
C , m 2 N and let p := 2(y). By the definition of convergence in the horo-
sphere topology, there exist horosphere sequences {umn }n2N with [umn ] = ym and
{un} with [un] = y such that for every R > 0 there exists mR 2 N such that
Ex ({umn }, R) \ Ex ({un}, R) 6= ; for m > mR . By the definition of 2, it holds
limn!1 umn = pm and limn!1 un = p. Thus, by Proposition 5.9.(1), it follows
that

Fx (p, R) \ Fx (pm, R) 6= ;

for all m > mR . If {pm} contained a subsequence not converging to p, say {pmk },
taking V := {p} and V 0 := {pmk }, we would get a contradiction with Lemma 5.4.
Therefore, limm!1 pm = p. Since C is closed, this implies that p 2 C as well,
hence 2�1(p) = y belongs to 2�1(C).

Case 3. Finally, assume {zn = 2�1(zn)} ⇢ 2�1(C) \ D converges to y 2 @H D.
Let p = 2(y) 2 @D. By Definition 4.2, and by Proposition 5.9.(1), it follows that
there exists a sequence {pn} ⇢ @D such that for all R > 0 there exists nR 2 N
such that zn 2 Fx (pn, R) and Fx (pn, R) \ Fx (p, R) 6= ; for n � nR . As before,
this implies that limn!1 pn = p. Thus, given an open set U containing p, there
exists J 2 N such that {pn}n�J ⇢ U . Let V = {pn}n�J [ {p}. The set V is closed,
and by Lemma 5.4, there exists R0 > 0 such that

S
n�J Fx (pn, R) ⇢ U \ D for all

0 < R < R0. Therefore, {zn} is eventually contained in U . By the arbitrariness of
U , it follows that limn!1 zn = p. Since C is closed, this implies that p 2 C and
hence y = 2�1(p) 2 2�1(C).

Hence, if C is closed in the Euclidean topology then 2�1(C) is closed in the
horosphere topology.

Assume that 2�1(C) is closed in the horosphere topology. We have to show
that if {⇠n} ⇢ C is a sequence converging to ⇠ 2 D then ⇠ 2 C . As before, we
distinguish three cases.

Case 1. If {⇠n}, ⇠ ⇢ D, then the statement is clearly true.

Case 2. Let {pm} be a sequence in C \ @D converging to p 2 @D. Let ym :=

2�1(pm) 2 2�1(C) \ @H D and let y := 2�1(p) 2 @H D.
We want to show that {ym} converges to y in the horosphere topology. Once

we proved this, since 2�1(C) is closed, it follows that y 2 2�1(C) and hence,
p = 2(y) 2 C .

To show this, for every m 2 N, let {vmn }n2N be a sequence converging to pm ,
and let {vn} be a sequence converging to p. By Proposition 5.9, [{vmn }] = ym and
[{vn}] = y. Fix R > 0. By (5.11), there exists " > 0 such that the cǒne region
C(q, 2, ") ⇢ Ex ({wn}, R) for all q 2 @D and all sequences {wn} converging to q.
Since @D is C1, there exists an open neighborhood V of p such that for all q 2
V \ @D it holds C(p, 2, ") \ C(q, 2, ") 6= ;. Since {pm} ⇢ V eventually, it follows
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that Ex ({vmn }, R) \ Ex ({vn}, R) 6= ; for all m sufficiently large. By definition, this
means that {ym} converges to y in the horosphere topology, as needed.

Case 3. Let {zm} be a sequence in C \ D converging to p 2 @D. Let y := 2�1(p).
As before, to conclude that p 2 C , it is enough to show that {zm = 2�1(zm)}
converges to y in the horosphere topology. To show this, fix ↵ > 1 and for N 2 N,
let "N > 0 be given by Proposition 5.7 such that for every q 2 @D and for every
sequence {wn} converging to q it holds C(q,↵, "N ) ⇢ Ex ({wn},

1
N ).

Since {zm} converges to p and @D is C2, we can assume with no loss of gener-
ality that for allm 2 N there exists a unique pm 2 @D such that |zm� pm | = �(zm).
Note that zm 2 C(pm,↵, r) for all r > �(zm).

For each m 2 N let {vmn } ⇢ D be a sequence converging to pm and let {un} ⇢
D be a sequence converging to p. By Proposition 5.9, [{un}] = y.

Fix N 2N. Since �(zm)!0, there exists m1N 2N such that zm 2C(pm,↵,"N )⇢
Ex ({vmn }, 1N ) for all m � m1N . Moreover, since {pm} converges to p, there exists
m2N 2 N such that C(pm,↵, "N ) \C(p,↵, "N ) 6= ; for all m � m2N , which implies
Ex ({vmn }, 1N ) \ Ex ({un}, 1N ) 6= ; for all m � m2N .

Now let R > 0 be given. Let N 2 N, N > 1/R and let mR := max{m1N ,m2N }.
Then for all m � mR it holds zm 2 Ex ({vmn }, 1N ) ⇢ Ex ({vmn }, R) and

; 6= Ex
✓

{vmn },
1
N

◆
\ Ex

✓
{un},

1
N

◆
⇢ Ex

�
{vmn }, R

�
\ Ex ({un}, R),

which means that {zm} converges to y in the horosphere topology, and we are done.
Hence, if 2�1(C) is closed in the horosphere topology then C is closed in the

Euclidean topology.

We end this section by proving the following result which will be useful to
study boundary behavior:

Proposition 5.11. Let D ⇢ CN be a bounded strongly pseudoconvex domain with
C3 boundary. Let x 2 @H D. Then there exists px 2 @D such that IHD (x) = {px }.
Moreover, if y 2 @H D then px = py if and only if x = y.

Proof. By Theorem 5.10, there is a homeomorphism 2 : D̂ ! D (where D is the
closure of D in CN ). Let px := 2(x). Recall also that 2(z) = z for z 2 D.

We have to show that, if {wn} ⇢ D is a sequence converging to x in the
horosphere topology, then {wn} converges to px in the Euclidean topology. This
follows at once by Theorem 5.10, because {wn} converges to x in the horosphere
topology if and only if {2(wn) = wn} converges px in the Euclidean topology.
This also shows the last statement of the proposition.
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6. Convex domains

In this section we consider convex domains inCn . Here we mean convex in the real
geometrical sense, that is, D ⇢ CN is convex if for every two points p, q 2 D the
real segment [p, q] joining p and q is contained in D.

By [13], a (possibly unbounded) convex domain in CN is complete hyperbolic
if and only if it is biholomorphic to a bounded domain ofCN , in particular, a convex
domain is hyperbolic if and only if it is complete hyperbolic.

We start with the following result:
Proposition 6.1. Let D ⇢ CN be a hyperbolic convex domain. Let x 2 D. Let {un}
be an admissible sequence in D. Then for every R > 0 the horosphere Ex ({un}, R)
is convex.
Proof. Let B(0, N ) := {z 2 CN : |z| < N }, N 2 N. Let DN := D \ B(0, N ).
Then DN is a bounded convex domain and its Kobayashi distance kDN is a convex
function (see [3, Proposition 2.3.46]). Passing to the limit, it turns out that kD is a
convex function as well.

Now, let {un} ⇢ D be an admissible sequence. Let R > 0 and let z, w 2
Ex ({un}, R). Then, for s 2 (0, 1) we have

KD(sz+(1�s)w, un) � KD(x, un)max{KD(z, un), KD(w, un)}�KD(x, un).

Taking the limsup as n ! 1, this implies that sz+ (1� s)w 2 Ex ({un}, R), which
is thus convex.

Definition 6.2. Let D ⇢ CN be a bounded convex domain, x 2 D. Let {un} be an
admissible sequence. For R > 0 let

II({un}, R) := Ex ({un}, R) \ @D.

Note that, if {un} is an admissible sequence and denoting [{un}] 2 @H D, by Lem-
ma 4.12 it holds

IIHD ([{un}]) =
\

R>0
Ex ({un}, R) =

\

R>0
II({un}, R).

Remark 6.3. Note that II({un}, R) and IIHD ([{un}]) are nonempty sets and
IIHD ([{un}]) is convex. Indeed, this follows at once from Proposition 6.1, Propo-
sition 3.4.(2) and since Ex ({un}, R) ⇢ Ex ({un}, R0) for all 0 < R < R0. Moreover,
while II({un}, R) depends in general on the base point x , the horosphere principal
part, IIHD ([{un}]), does not.

Lemma 6.4. Let D ⇢ CN be a bounded convex domain. Let {un} be an admissible
sequence. LetM denote the set of all convergent subsequences extracted from {un}.
Then

IIHD ([{un}]) =
\

{vn}2M
IIHD ([{vn}]). (6.1)

Moreover, if {un} is convergent to p 2 @D, then p 2 IIHD ([{un}]).
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Proof. Let R > 0 and let z 2 Ex ({un}, R). For every {vn} 2M,

lim sup
n!1

[KD(z, vn)�KD(x, vn)] lim sup
n!1

[KD(z, un)�KD(x, un)] <
1
2
log R,

proving that Ex ({un}, R) ✓
T

{vn}2M Ex ({vn}, R). Conversely, assume

z 2
\

{vn}2M
Ex ({vn}, R).

We can find a converging subsequence {unk } of {un} such that

lim
k!1

⇥
KD(z, unk ) � KD(x, unk )

⇤
= lim sup

n!1
[KD(z, un) � KD(x, un)].

Since {unk } ⇢ M, it follows that z 2 Ex ({unk }, R), and the previous equation
implies z 2 Ex ({un}, R). Therefore, for all R > 0,

Ex ({un}, R) =
\

{vn}2M
Ex ({vn}, R). (6.2)

In order to prove (6.1), by (6.2), it is clear that IIHD ([{un}]) ✓
T

{vn}2M IIHD ([{vn}]).
Conversely, let q 2

T
{vn}2M IIHD ([{vn}]), let R > 0 and let z 2 Ex ({un}, R).

Then z 2 Ex ({vn}, R) for all {vn} 2 M by (6.2). Since Ex ({vn}, R) is convex by
Proposition 6.1, the segment t z + (1 � t)q, 0 < t  1 belongs to Ex ({vn}, R) for
all {vn} 2M, thus it belongs to Ex ({un}, R), proving that q 2 IIHD ([{un}]).

In case {un} converges to p 2 @D, arguing similarly to [4, Lemma 2.3], one
can prove that p 2 IIHD ([{un}]). We give a sketch of the proof for the reader’s
convenience. Let t 2 (0, 1) and define f nt (w) := tw + (1 � t)un . Note that
f nt : D ! D is holomorphic, hence f nt decreases the Kobayashi distance of D.
Moreover, f nt (un) = un and limn!1 f nt (z) = t z + (1� t)p 2 D. Fix R > 0. Let
z 2 Ex ({un}, R). Then

lim sup
n!1

⇥
KD(t z + (1� t)p, un) � KD(x, un)

⇤

 lim sup
n!1

⇥
KD( f nt (z), f nt (un)) � KD(x, un)

⇤

+ lim sup
n!1

⇥
KD(t z + (1� t)p, f nt (z))

⇤
<
1
2
log R.

Therefore t z + (1 � t)p 2 Ex ({un}, R), hence p 2 II({un}, R) for all R > 0 and
thus p 2 IIHD ([{un}]).

In general, if {un} ⇢ D is an admissible sequence which does not converge
and p 2 @D is in the cluster set of {un}, it does not hold p 2 IIHD ([{un}]), as the
following example shows:
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Example 6.5. Let D = D2 be the bidisc. Consider the sequences {vn}, {wn} given
by vn = (0, 1 � 1/n) and wn = (1 � 1/n, 0), for every n 2 N, n � 1. Since
KD2((z1, z2), (w1, w2)) = max{KD(z1, w1), KD(z2, w2)}, it follows easily that for
all R > 0

E(0,0)({vn}, R) = D ⇥ ED
0 (1, R),

where ED
0 (1, R) = {⇣ 2 D : |1�⇣ |2/(1�|⇣ |2) < R}. Hence IIHD ([{vn}]) = D⇥{1}.

On the other hand,
E(0,0)({wn}, R) = ED

0 (1, R) ⇥ D,

and IIHD ([{wn}]) = {1} ⇥ D.
Let {un} be the sequence defined by u2n�1 = vn, u2n = wn , n � 1. Hence

{un} is admissible, since, for R > 0

E(0,0)({un}, R) = E(0,0)({vn}, R) \ E(0,0)({wn}, R) = ED
0 (1, R) ⇥ ED

0 (1, R).

Then IIHD ([{un}]) = {(1, 1)}, and all points in the cluster set of {un}, namely (1, 0)
and (0, 1), do not belong to IIHD ([{un}]).

The previous example shows also that II({un}, R) is not convex in general.

6.1. Convex domains biholomorphic to strongly pseudoconvex domains

We examine now the case of convex domains (with no regularity assumption on
the boundary) biholomorphic to strongly pseudoconvex domains. We start with the
following general result:

Lemma 6.6. Let M be a complex manifold biholomorphic to a bounded strongly
pseudoconvex domain with C3 boundary, x 2 M . Let {un} be an admissible se-
quence in M . Let {zn} ⇢ M be a non relatively compact sequence which is even-
tually contained in Ex ({un}, R) for some R > 0. Then {zn} is admissible and it is
equivalent to {un}.

Proof. Let F : D ! M be a biholomorphism between a bounded strongly pseudo-
convex domain with C3 boundary and M .

The sequence {F�1(un)} is admissible in D. By Proposition 5.9, there exists
p 2 @D such that {F�1(un)} converges to p. Since {zn} is eventually contained in
EM
x ({un}, R), then {F�1(zn)} is eventually contained in ED

F�1(x)({F
�1(un)}, R).

Moreover, {F�1(zn)} is not relatively compact in D, as {zn} is not in M . Therefore
every limit of {F�1(zn)} has to be contained in

ED
F�1(x)({F

�1(un)}, R) \ @D ⇢ FD
F�1(x)(p, R) \ @D = {p} (6.3)

by Theorem 5.2.(4).
Therefore {F�1(zn)} is converging to p. By Proposition 5.8, the sequence

{F�1(zn)} is admissible in D and equivalent to {F�1(un)}. Hence {zn} is admissi-
ble in M and equivalent to {un}.
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As a corollary we have the following result:

Proposition 6.7. Let D ⇢ CN be a bounded convex domain. Assume D is bi-
holomorphic to a bounded strongly pseudoconvex domain with C3 boundary. Let
x 2 @H D. Let {un} be any admissible sequence in D representing x . Then for every
R > 0 it holds

II({un}, R) = IIHD (x). (6.4)

Proof. By definition, IIHD (x) ✓ II({un}, R). Let now p 2 II({un}, R). Fix x 2 D.
Then there exists a sequence {pn} ⇢ Ex ({un}, R) such that limn!1 pn = p. By
Lemma 6.6, {pn} is an admissible sequence in D and it is equivalent to {un}. By
Lemma 6.4 it follows then that p 2 IIHD (x).

The previous result allows us to generalize Lemma 5.4 to convex domains
biholomorphic to strongly pseudoconvex domains:

Lemma 6.8. Let D ⇢ CN be a bounded convex domain. Assume D is biholomor-
phic to a bounded strongly pseudoconvex domain with C3 boundary. Let {x j } ⇢

@H D be a sequence and let V =
S

j IIHD (x j ). Then for every open neighborhoodU
of V there exists R0 > 0 such that for every 0 < R < R0 and for every admissible
sequence {u jn} representing x j for some j , it holds

Ex
⇣�
u jn
 
, R
⌘

⇢ U.

Proof. We argue by contradiction. Let A j denote the set of all admissible se-
quences in D which represent x j . If the result is not true, for every n 2 N there
exists zn 2 D such that

zn 2
[

j

[

{um}2A j

E
✓

{um},
1
n

◆
\ (D \U).

We can assume that zn ! z0 for some z0 2 D. By Proposition 3.5, z0 2 @D. In
particular, given R > 1/n, it holds zn 2

S
j
S

{um}2A j
E({um}, R) for every n 2 N.

Hence,
z0 2

[

j

[

{um}2A j

E({um}, R) \ @D = V,

by Proposition 6.7. Therefore, z0 2 V \ (@D \U) = ;, a contradiction.

As in the strongly pseudoconvex case, the previous lemma allows to relate
Euclidean topology with horosphere topology:

Corollary 6.9. Let D ⇢ CN be a bounded convex domain. Assume D is biholo-
morphic to a bounded strongly pseudoconvex domain with C3 boundary. Also,
assume that for every x 2 @H D there exists px 2 @D such that IIHD (x) = {px }.
If {x j } ⇢ @H D is a sequence converging to x 2 @H D in the horosphere topology,
then lim j!1 px j = px in the Euclidean topology.
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Proof. Assume the conclusion of the corollary is not true and, possibly up to ex-
tracting subsequences, assume that px j ! q for some q 2 @D \ {px }. Let
V = [ j {px j }. LetU0,U1 be two open sets inCN such that V ⇢ U0, {px } ⇢ U1 and
U0\U1 = ;. By Lemma 6.8, there exists R0 > 0 such that for all 0 < R < R0 and
all admissible sequences {u jn} representing x j it holds Ex ({u

j
n}, R) ⇢ U0 and more-

over, for all admissible sequences {un} representing x it holds Ex ({un}, R) ⇢ U1.
But then, (4.1) can never be satisfied for 0 < R < R0, and x j cannot converge to x
in the horosphere topology. A contradiction.

Theorem 6.10. Let D ⇢ CN be a bounded convex domain. Assume D is biholo-
morphic to a bounded strongly pseudoconvex domain with C3 boundary. Also,
assume that for every x 2 @H D there exists px 2 @D such that IIHD (x) = {px }.
Then for every x 2 @H D it holds

IHD (x) = IIHD (x) = {px }.

Proof. We argue by contradiction. Let {wn} ⇢ D be a sequence converging to x
in the horosphere topology. Assume that {wn} converges to q 2 @D in the Eu-
clidean topology, with q 6= px . By definition of convergence in the horosphere
topology, there exist admissible sequences {u jn} and {un} in D such that {un} repre-
sents x , and for every R > 0 there exists mR such that for every m � mR it holds
wm 2 Ex ({umn }, R) and Ex ({umn }, R)\Ex ({un}, R) 6= ;. Let xm := [{umn }] 2 @H D.
By Remark 4.3, the sequence {x j } converges in the horosphere topology to x .
Therefore, by Corollary 6.9, the sequence {px j } converges to px in the Euclidean
topology.

Let U0 and U1 be two open sets in CN such that q 2 U0, px 2 U1 and
U0 \ U1 = ;. Without loss of generality, we can assume that {wn} ⇢ U0 and
{px j } ⇢ U1. By Lemma 6.8, there exists R0 > 0 such that Ex ({umn }, R) ⇢ U1 for
all 0 < R < R0 and all m 2 N.

Therefore, given 0< R< R0, for m>mR , we have wm 2 U0 \ Ex ({umn }, R) ⇢
U0 \U1 = ;, a contradiction.

As shown by the previous result, it is important to see which bounded convex
domains biholomorphic to bounded strongly pseudoconvex domains have the prop-
erty that IIHD (x) is a point for every x 2 @H D. We conjecture that this is always
the case, but presently we are able to prove it for bounded strictlyC-linearly convex
domains and in case of convex domains biholomorphic to strongly convex domains.
In order to state the result, we need a definition:

Definition 6.11. Let D ⇢ CN be a bounded convex domain, p 2 @D. A complex
supporting functional at p is a C-linear map � : CN ! C such that Re � (z) <
Re � (p) for all z 2 D. A complex supporting hyperplane for D at p is an affine
complex hyperplane L of the form L = p + ker � = {z 2 CN : � (z) = � (p)}
where � is a complex supporting functional at p. Let Lp denote the set of all
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complex supporting hyperplanes at p. We set

Ch(p) =
\

L2Lp
L \ D.

Clearly, Ch(p) is a closed convex set containing p.
Definition 6.12. A bounded convex domain D ⇢ CN is strictly C-linearly convex
if for every p 2 @D it holds Ch(p) = {p}.

Proposition 6.13. Let D ⇢ CN be a bounded strictly C-linearly convex domain.
Assume D is biholomorphic to a bounded strongly pseudoconvex domain with C3
boundary. Then for every x 2 @H D there exists a unique p 2 @D such that

IHD (x) = IIHD (x) = {p}. (6.5)

Proof. If we prove that IIHD (x) = {p}, then the result follows from Theorem 6.10.
Let x 2 @H D. Suppose by contradiction that p, q 2 IIHD (x). By hypothesis,

there exist � ⇢ CN a bounded strongly pseudoconvex domain with C3 boundary
and a biholomorphism F : � ! D.

Let {un}be an admissible sequence representing x . For every R>0, II({un},R)=
IIHD (x) by (6.4). Therefore, since IIHD (x) is convex, the real segment [p, q] joining
p and q is contained in II({un}, R).

Let v = p � q and let L := C(p � q) + q. There are two possibilities: either
L \ D 6= ; or L \ D = ;.

In case L\D 6= ;, since [R>0ED
x ({un}, R) = D, there exists R > 0 such that

ED
x ({un}, R) \ L 6= ;. By convexity of ED

x ({un}, R) (see Proposition 6.1), 1 :=
L \ ED

x ({un}, R) is a convex domain in L whose boundary contains the segment
[p, q]. Hence by the uniformization theorem, there exists a biholomorphism ' :
D ! 1 and, by the Schwarz reflection principle, there exists an arc A ⇢ @D such
that ' extends analytically on A and '(A) = [p, q]. Consider the map F�1|1 :
1 ! �. Since it is not constant, there exists a linear projection ⇡ : CN ! C such
that ⇡�F�1

1 : 1 ! C is not constant. Therefore, the map g := ⇡�F�1�' : D ! C
is a holomorphic bounded map. We claim that there exists a 2 C such that

lim
r!1�

g(r⇣ ) = a 8⇣ 2 A, (6.6)

which, by Fatou’s lemma, implies that g is constant, reaching a contradiction.
In order to prove (6.6), we just note that if {wn}⇢1 is a sequence converging to

a point ⇣ 2 [p, q], since {wn}⇢ED
x ({un}, R), it follows that {F�1(wn)} is a non-rel-

atively compact sequence in� contained in the horosphere E�
F�1(x)({F

�1(un)}, R)

and thus there exists a point u 2 @� (which depends only on {F�1(un)}) such that
{F�1(wn)} converges to u (see (6.3)). From this, (6.6) follows at once.

Next, assume that L\D = ;. Then [p, q] ✓ L\D = L\@D. Let ⇠ 2 (p, q).
Let H 2 L⇠ be a complex supporting hyperplane for D at ⇠ . If � : CN ! C is
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a complex supporting functional such that H = {z 2 CN : � (z � ⇠) = 0} then
� (p � q) = 0, since t (p � q) + ⇠ 2 @D for t 2 R, |t | << 1. This proves that
L ⇢ H . But then, [p, q] 2 D \ H , and by the arbitrariness of H , it follows that
[p, q] ⇢ Ch(⇠), contradicting D being strictly C-linearly convex.

Therefore, IIHD (x) consists of one point.

The hypothesis of D being strictly C-linearly convex in the previous proposi-
tion is not necessary, as the following example shows:

Example 6.14. Let D := {(z1, z2) 2 C2 : Re z1 > 2(Re z2)2}. It is easy to see
that D is convex, and it is biholomorphic to the Siegel domain H2 := {(w1, w2) 2
C2 : Rew1 > |w2|2} via the map H2 3 (w1, w2) 7! (w1 + w22, w2) 2 D. The
Siegel domain H2 is nothing but the unbounded realization of the ball B2 via the
generalized Cayley transform B2 3 (z1, z2) 7! (1+z11�z1 ,

z2
1�z1 ) 2 H2, hence, there

exists a biholomorphism F : B2 ! D which extends as a homeomorphism on
@B2 \ {(1, 0)}. In particular, F�1 is continuous in a neighborhood of the point
(0, 0), and F�1(0, 0) = (�1, 0). The sequence {wn} := {( 1n , 0)} converges to
(0, 0), and thus {F�1(wn)} converges to (�1, 0) and it is admissible. It turns out
that {wn} is admissible and IIDH ([{un}]) = {(�1, 0)}. On the other hand, there is
only one complex supporting hyperplane for D at (0, 0), that is, H = {(z1, z2) 2
C2 : z1 = 0}. Therefore

Ch(0, 0) = @D \ H = {(0, ti) : t 2 R}.

6.2. Convex domains biholomorphic to strongly convex domains

The aim of this subsection is to prove Proposition 6.13 for convex domains bi-
holomorphic to strongly convex domains without any assumption on C-strict linear
convexity.

We first recall some notions of the Gromov hyperbolicity theory.

Definition 6.15. Let (D, d) be a metric space.

• A curve � : [a, b] ! D is a geodesic if � is an isometry for the usual distance
function on [a, b] ⇢ R, i.e., d(� (t1), � (t2)) = |t1� t2| for all t1, t2 2 [a, b]. We
call � ([a, b]) a geodesic segment;

• The metric space (D, d) is said to be a geodesic metric space if any two points
in D are connected by a geodesic;

• A geodesic triangle in D is a union of images of three geodesics �i : [ai , bi ] !
D, i = 1, 2, 3, such that �i (bi ) = �i+1(ai+1) where the indices are taken mod-
ulo 3. The image of each �i is called a side of the geodesic triangle;

• A geodesic metric space (D, d) is Gromov hyperbolic or �-hyperbolic if there
exists � > 0 such that for any geodesic triangle in D the image of every side is
contained in the �-neighborhood of union of the other two sides;
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• Let A � 1 and B > 0. We say that � : [a, b] ! D is a (A, B) quasi-geodesic
if for every t, t 0 2]a, b[ we have:

1
A
�
�t � t 0

�
�� B  d

�
� (t), � (t 0)

�
 A|t � t 0| + B.

Also, we need to prove some preliminary lemmas.

Lemma 6.16. Let D ⇢ CN be a convex domain biholomorphic to a bounded
strongly pseudoconvex domain. Let {p j } and {q j } be two sequences in D which
converge to two different boundary points. Then

lim
j!1

KD(p j , q j ) = 1. (6.7)

Proof. Assume (6.7) is not true. Then, up to subsequences, we can assume that
there exists C > 0 such that for all j

KD(p j , q j )  C. (6.8)

Since D is a complete hyperbolic convex domain, for every j there exists a complex
geodesic ' j : D ! D such that ' j (0) = p j and ' j (t j ) = q j for some t j 2 (0, 1),
see [13, Lemma 3.3]. By (6.8) it follows

KD
�
0, t j

�
= KD

�
' j (p j ),' j (q j )

�
= KD(p j , q j )  C,

hence, there exists c 2 (0, 1) such that t j < c for all j , and we can assume without
loss of generality that t j ! t0 for some t0 2 [0, 1). Being D taut, up to sub-
sequences, we can also assume that {' j } converges uniformly on compacta to a
holomorphic map ' : D ! D. Moreover,

'(t0) = lim
j!1

' j
�
t j
�

= lim
j!1

q j = q,

and similarly, '(0) = p. This implies that t0 6= 0 and ' is not constant. In particu-
lar, @D contains (non-constant) analytic discs. But D is Gromov hyperbolic (with
respect to the Kobayashi distance) since it is biholomorphic to a bounded strongly
pseudoconvex domain (see [7]) and by [40, Theorem 3.1], @D cannot contain (non-
constant) analytic discs, a contradiction.

Lemma 6.17. Let D be a hyperbolic convex domain in Cn . Let x 2 D and let
p 2 @D. There exists a bounded open neighborhood U of p and there exist A >
1, B > 0 such that for every sequence {z j } of points in D \U converging to p, the
line segment [x, z j ] is a (A, B) quasi-geodesic.

Proof. The proof of Lemma 6.17 is a modification of the proof of [23, Proposition
4.2]. For convenience of the reader we present it, adapted to our situation.
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For q 2 Cn , ⌫ 2 Cn with |⌫| = 1 and ↵ 2 (0,⇡), let C+(q, ⌫,↵) denote the
half cone of vertex q, direction R+⌫, and aperture ↵.

Let ⌫ = x�p
|x�p| . Since the real segment [x, p) is contained in D, there exists

a bounded open neighborhood V of p and there exists s0 > 0 such that for every
q 2 V \ @D the segment [q + s0⌫, q) is contained in D. Let ↵ > 0 be such that
C+(p, ⌫,↵) \ B(p, s0) is contained in D. Shrinking V and changing s0 if neces-
sary, we can assume that x 62 V and that the intersection C+(q, ⌫,↵) \ B(q, s0)
is contained in D for every q 2 @D \ V . Still shrinking V if necessary, we may
also assume that for every q 2 @D \ V the real segment [x, q) is contained in
C+(q, ⌫,↵/2) and that the set SV :=

S
q2@D\V

�
C+(q, ⌫,↵) \ @B(q, s0)

�
is rel-

atively compact in D. Let W (x, SV ) be the convex hull of x and SV . Note that
W (x, SV ) is relatively compact in D. Let

B1 := sup
w0,w12W (x,SV )

KD(w0, w1) < +1. (6.9)

Finally, let U ⇢ V be an open neighborhood of p with the property that for every
z 2 U \ D, there exists q 2 V \ @D such that z 2 C+(q, ⌫,↵/2) \ B(q, s0).

If � : [a, b] ! D is a piecewise C1 smooth curve, we denote by lKD (� ([a, b]))
its Kobayashi length, i.e., lKD (� ([a, b])) =

R b
a kD(� (t); � 0(t))dt .

Now, let {z j } ⇢ D \ U converging to p. For every j 2 N, we parametrize
the real segment [x, z j ] with respect to Kobayashi arc length, meaning that we
consider a piecewise C1 curve � j : [0, Tj ] ! D such that � j ([0, Tj ]) = [x, z j ] and
the Kobayashi length lKD (� j ([a, b])) = |b � a| for all 0  a  b  Tj , for every
j 2 N.

By construction, for every j 2 N there exists q j 2 V \ @D such that z j 2
C+(q j , ⌫,↵/2) \ B(q j , s0) and [x, q j ) ⇢ C+(q j , ⌫,↵/2). Since x 62 U by defi-
nition, for every j 2 N there exists a unique point w j 2 @B(q j , s0) \ [x, z j ). Let
R j 2 (0, Tj ) be such that � j (R j ) = w j .

Claim. There exist A > 1 and B2 > 0 such that for every q 2 V \ @D, given
any w0 2 C+(q, ⌫,↵/2) \ @B(q, s0) the real segment [w0, q) is a (A, B2) quasi-
geodesic.

Assuming the claim for the moment, the proof ends as follows. Let B := B1 + B2,
where B1 is given by (6.9).

Case 1. If 0  s  t  R j then

lKD (� j
�
[s, t])

�
 B1  AKD

�
� j (s), � j (t)

�
+ B.

Case 2. If 0  s  R j  t  Tj then by the Claim,

lKD
�
� j ([s, t])

�
= lKD

�
� j ([s, R j ])

�
+ lKD

�
� j ([R j , t])

�

 B1 + AKD
�
� (R j ), � (t)

�
+ B2.

(6.10)
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Now, � (R j ) = w j = r j� (s) + (1 � r j )� (t) for some r j 2 (0, 1). Since KD is a
convex function (see the proof of Proposition 6.1), then

KD(� (R j ), � (t)) = KD
�
r j� (s) + (1� r j )� (t), � (t)

�

 max{KD(� (s), � (t)), KD(� (t), � (t))} = KD(� (s), � (t)).

Hence, by (6.10) we have

lKD (� j
�
[s, t])

�
 AKD(� (s), � (t)) + B.

Case 3. If R j  s  t  Tj then � (s) and � (t) belong to the real segment
[w j , q j ] which, by the Claim, is a (A, B2) quasi-geodesic, and, hence, a (A, B)
quasi-geodesic.

Finally, since for every s, t 2 [0, Tj ] we have

1
A
KD

�
� j (s), � j (t)

�
� B  KD

�
� j (s), � j (t)

�
 lKD

�
� j ([s, t])

�
,

the previous arguments show that [x, z j ] are (A, B)-quasi geodesics for every j .
We are left to prove the Claim. For a point y 2 D, as usual, we denote by �(y)

the Euclidean distance from y to @D and by �(y, @D⌫,y) the Euclidean distance
from y to @D along the complex line C⌫, i.e., �(y, @D⌫,y) := dist(y, @D \ (C⌫ +
y)). We recall the standard estimates on the Kobayashi infinitesimal metric on
convex domains (see, e.g., [11]):

|v|

2�(z, @Dv,z)
 kD(z; v) 

|v|

�(z, @Dv,z)
. (6.11)

Let now q 2 V \ @D and w0 2 C+(q, ⌫,↵/2) \ @B(q, s0). Let ⌘(r) := (1 �
r)w0 + rq, r 2 [0, 1). Also, for a point z 2 C+(q, ⌫,↵/2) \ B(q, s0), we let
z̃ 2 [q+s0⌫, q] be the (real) orthogonal projection of z on the axis ofC+(q, ⌫,↵/2).
Let ⌫q := w0�q

|w0�q| . Since C
+(q, ⌫,↵)\ B(q, s0) ⇢ D, there exists a constant C > 0

(depending only on s0 and ↵ but not on q and w0 2 C+(q, ⌫,↵/2) \ @B(q, s0) )
such that, for every z 2 [w0, q) it holds

�(z̃, @D⌫,z̃)  C�(z, @D⌫q ,z).

For every r 2 [0, 1), we have g⌘(r) = Re h⌘(r) � q, ⌫i⌫ + q = (1 � r)Re hw0 �
q, ⌫i⌫ + q. Note that Re hw0 � q, ⌫i > 0. Hence, for every 0  r1  r2 < 1, we



HOROSPHERE TOPOLOGY 275

have by (6.11):

lKD (⌘[r1, r2]) =
Z r2

r1
kD(⌘(r); ⌘0(r))dr 

Z r2

r1

|q � w0|

�(⌘(r), @D⌫q ,⌘(r))
dr


1
C

|q � w0|

|Re hw0 � q, ⌫i|

Z r2

r1

|Re hw0 � q, ⌫i|

�(g⌘(r), @D⌫,g⌘(r))
dr


1
C

|q � w0|

|Re hw0 � q, ⌫i|
2
Z r2

r1
kD(g⌘(r); ]⌘0(r))dr

=
2|q � w0|

C|Re hw0 � q, ⌫i|
lKD (e⌘[r1, r2]).

Therefore,
lKD (⌘[r1, r2]) 

2|q � w0|

C|Re hw0 � q, ⌫i|
lKD (e⌘[r1, r2]).

Hence, the Claim is equivalent to the following

Claim0. There exist A > 1 and B2 > 0 such that for every q 2 V \ @D, the real
segment [q + s0⌫, q) is a (A, B2) quasi-geodesic.

Let � : R+ ! D parametrizing the real segment [q + s0⌫, q) by the Kobayashi arc
length, with � (0) = q + s0⌫.

Since D is convex, and since C+(q, ⌫,↵)\ B(q, s0) ⇢ D, there exists A0
↵ > 1

such that for every s 2 R+:

�(� (s), @D⌫,� (s)) � �(� (s)) �
1
A0

↵

|� (s) � q|.

Let Hq be a real half-space containing D and such that @Hq is a real supporting
hyperplane for D at q. Hence, we have for every 0 < t < t 0 (see below for
explanation of the various inequalities):

KD(� (t), � (t 0))  lKD ([� (t), � (t 0)]) 
Z t 0

t

|� 0(s)|
�(� (s), @D⌫,� (s))

ds

 A0
↵

Z t 0

t

|� 0(s)|
|� (s) � q|

ds

 A0
↵

Z t 0

t

|� 0(s)|
�(� (s), @(Hq)⌫,� (s))

ds

 2A0
↵ l

K
Hq
�⇥

� (t), � (t 0)
⇤�

 A↵KHq
�
� (t), � (t 0)

�
+ B↵

 A↵KD
�
� (t), � (t 0)

�
+ B↵,

for some positive constants A↵ > 1 and B↵ > 0, depending only on ↵.
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The second and the fifth inequalities follow from (6.11). The fourth inequality
uses the fact that �(� (s), @(Hq)⌫,� (s))  |� (s) � q| since q 2 @Hq \ (C⌫ + � (s))
for all s. The sixth inequality uses the fact that every real segment in Hq is a quasi-
geodesic on the half space Hq with constants depending only on the angle between
the segment and @Hq . Finally, the last inequality uses the fact that D is contained
in Hq .

This proves Claim0 and the proof is completed.

We will need the following statement (see also [24, Lemma 3.3]).
Lemma 6.18. Let D ⇢ CN be a convex domain biholomorphic to a bounded
strongly convex domain with C3 boundary. Then for every couple of points z0, w0 2
D there exists a unique real geodesic for the Kobayashi distance which joins z0 and
w0.
Proof. Since D is biholomorphic to a bounded strongly convex domain, Lempert’s
theory [29–31] (see also [3]) implies that for every z0, w0 2 D, z0 6= w0, there
exists a unique complex geodesic whose image contains z0, w0. In other words,
there exists ' : D ! D holomorphic such that KD(⇣, ⌘) = KD('(⇣ ),'(⌘)) for all
⇣, ⌘ 2 D and z0, w0 2 '(D) and, moreover, if '̃ : D ! D is any holomorphic map
such that there exist ⇣0, ⇣1 2 D with '̃(⇣0) = z0, '̃(⇣1) = w0 and KD(z0, w0) =
KD(⇣0, ⇣1), then there exists an automorphism ✓ : D ! D such that '̃ = ' � ✓ . If
' : D ! D is a complex geodesic, there exists a holomorphic retraction ⇢ : D !
D, called the Lempert projection, such that ⇢ � ⇢ = ⇢, ⇢(D) = '(D). In what
follows we will use the following fact: if z0 2 '(D) and w 2 D \ '(D) then

KD(z0, ⇢(w)) = KD(⇢(z0), ⇢(w)) < KD(z0, w). (6.12)

In order to prove inequality (6.12) we can assume that D is a bounded strongly
convex domain with C3 boundary. Let ' : D ! D be a complex geodesic and let
⇢ : D ! '(D) be the associated Lempert projection. Fix R > 0 and z0 2 '(D).
Since D is assumed to be strongly convex, the Kobayashi ball BK (z0, R) of center
z0 and radius R > 0 is strongly convex as well, and the Lempert projection ⇢ has
affine fibers (see [12, Proposition 3.3]). Taking into account that ⇢ contracts the
Kobayashi distance KD , it follows that for every ⇣ 2 D with KD('(⇣ ), z0) = R
it holds ⇢�1('(⇣ )) \ BK (z0, R) = {'(⇣ )}. From this, (6.12) follows at once by
considering ⇣ 2 D with '(⇣ ) = ⇢(w).

Now, let z0, w0 2 D. Hence, there exists a unique complex geodesic ' :
D ! D such that z0, w0 2 '(D). Since ' is an isometry between KD and KD ,
it follows that there exists a real geodesic for KD , call it � : [0, a] ! '(D),
� (0) = z0, � (a) = w0 for a = kD(z0, w0), which is contained in '(D). Moreover,
� is the only real geodesic joining z0 and w0 contained in '(D).

Let assume that �̃ : [0, a] ! D, is another real geodesic for KD such that
�̃ (0) = z0 and �̃ (a) = w0 and �̃ ([0, a]) 6= � ([0, a]). Then the image of �̃ is not
contained in '(D). Hence, there exists t 2 (0, a) such that z1 := �̃ (t) 62 '(D).
Then, since �̃ is a real geodesic for the Kobayashi distance,

KD(z0, w0) = KD(z0, z1) + KD(z1, w0).
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Now, let ⇢ : D ! '(D) be the Lempert projection associated with '. Since ⇢
contracts the Kobayashi distance, by (6.12) it follows:

KD(z0, w0)=KD(z0, z1) + KD(z1, w0)>kD(⇢(z0), ⇢(z1)) + kD(⇢(z1), ⇢(w0))

�KD(⇢(z0), ⇢(w0)) = KD(z0, w0),

a contradiction, and the result is proved.

Theorem 6.19. Let D ⇢ CN be a bounded convex domain biholomorphic to a
bounded strongly convex domain with C3 boundary. Then for every x 2 @H D there
exists a unique p 2 @D such that

IHD (x) = IIHD (x) = {p}. (6.13)

Proof. If we prove that IIHD (x) = {p}, then the result follows from Theorem 6.10.
Assume by contradiction that there exists q 2 IIHD (x) with p 6= q. Fix x 2 D.
Since IIHD (x) is convex, the real segment [p, q] ⇢ IIHD (x). Let {un} be an

admissible sequence which represents x . By (6.4), the segment [p, q] ⇢ II({un}, R)
for all R > 0. In particular, if we take R > 1 so that x 2 Ex ({un}, R), the
real segments [x, p) and [x, q) are contained in Ex ({un}, R) (by convexity, see
Proposition 6.1). Set p(t) := (1� t)p + t x and q(t) := (1� t)q + t x , t 2 [0, 1).
Then for every t 2 [0, 1), p(t), q(t) 2 Ex ({un}, R).

Let {t j } ⇢ (0, 1) be any sequence which converges to 1. By Lemma 6.6, the
sequences {p(t j )}, {q(t j )} are admissible and equivalent to {un}.

By hypothesis, there exist � ⇢ CN a bounded strongly convex domain with
C3 boundary and a biholomorphism F : � ! D.

Then the sequences {F�1(p(t j ))} and {F�1(q(t j ))} belong to the same horo-
sphere EF�1(x)({F�1(un)}, R) and are equivalent. Also, both sequences are equiv-
alent to {F�1(un)}. Hence, it follows from Proposition 5.9 that the sequences
{F�1(p(t j ))}, {F�1(q(t j ))} and {F�1(u j )} converge to the same boundary point
⇠ 2 @�. By the arbitrariness of {t j }, it follows that, in fact, limt!1 F�1(p(t)) =
limt!1 F�1(q(t)) = ⇠ .

For a fixed t 2 (0, 1), let � p
t : [0, Rt ] ! D (respectively �

q
t : [0, R0

t ] ! D)
be the real (Kobayashi) geodesic in D such that �

p
t (0) = x and �

p
t (Rt ) = p(t)

(respectively, � qt (0) = x and �
q
t (R0

t ) = q(t)).
Then, by Lemma 6.18, F�1 � �

q
t : [0, R0

t ] ! � is the unique real geodesic
joining F�1(x) and F�1(q(t)), while F�1 � �

p
t : [0, Rt ] ! � is the unique

real geodesic joining F�1(x) and F�1(p(t)). By Lempert’s theory (see, e.g., [3,
12]), since � is a C3 strongly bounded convex domain, there exists a unique real
geodesic �̃ : [0,1) ! � such that �̃ (0) = F�1(x) and limt!1 �̃ (t) = ⇠ and,
since F�1(p(t)) and F�1(q(t)) converge to ⇠ as t ! 1, the Kobayashi geodesics
F�1(�

p
t ) and F�1(�

q
t ) converge uniformly on compacta of [0,1) to �̃ .

Let � := F � �̃ . Since F is an isometry for the Kobayashi distance, this implies
that for every ✏ > 0 and for every R > 0 there exists t0 2 (0, 1) such that for all
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s 2 [0, R] and t 2 [t0, 1) it holds

KD
�
�
q
t (s), � (s)

�
< ✏, KD

�
�
p
t (s), � (s)

�
< ✏. (6.14)

Now, by Lemma 6.17, there exist A, B > 0 such that for all t 2 (0, 1), the segments
[x, p(t)] and [x, q(t)] are (A, B)-quasi-geodesics. Since (D, KD) is Gromov hy-
perbolic by [7, Theorem 1.4], by Gromov’s shadowing lemma (see [25, Théorème
11 page 86]), for every A, B > 0 fixed, there exists M > 0 such that for every
(A, B)-quasi-geodesic ⌘ there exists a (real) geodesic ⌘̂ for KD such that ⌘ belongs
to the hyperbolic neighborhood NM(⌘̂) := {w 2 D : 9z 2 ⌘̂, KD(w, z) < ✏}.
Therefore, for every t 2 (0, 1), we have

�
p
t
�⇥
0, Rt

⇤�
⇢ NM([0, p(t)]) ⇢ NM([0, p)),

�
q
t
�⇥
0, R0

t
⇤�

⇢ NM([0, q(t)]) ⇢ NM([0, q)).
(6.15)

Now, let fix s 2 [0,1). By (6.14), for every t 2 (0, 1) sufficiently close to 1,
we have KD(� (s), � p

t (s)) < M , while, by (6.15), we have �
p
t (s) 2 NM([0, p)).

Hence, by the triangle inequality, � (s) 2 N2M([0, p)). Similarly, arguing with
�
q
t (s), we see that � (s) 2 N2M([0, q)). Therefore, for all s 2 [0,1) it holds

� (s) 2 U := N2M([0, p)) \N2M([0, q)).

However, we claim that U is relatively compact in D. If this is the case, we clearly
obtain a contradiction because � ([0,1)) is not relatively compact in D.

Suppose by contradiction that U is not relatively compact in D. Hence there
exists a sequence {w j } ⇢ U converging to the boundary of D. By definition, this
means that there exist two sequences {t j }, {t 0j } ⇢ [0, 1) such that KD(w j , p(t j )) <

2M and KD(w j , q(t 0j )) < 2M for every j 2 N. Since {w j } converges to the
boundary of D and D is complete hyperbolic, it follows that t j ! 1 and t 0j ! 1
as j ! 1, that is, q(t 0j ) ! q and p(t j ) ! p as j ! 1. But, by the tri-
angle inequality, for every j 2 N it holds KD(p(t j ), q(t 0j ))  4M , contradicting
Lemma 6.16.

7. Horosphere boundary versus Gromov boundary

Different types of topological boundaries may be defined in the general context
of metric spaces. For instance the construction of the Gromov boundary, using
geodesic rays or sequences, is based on the following

Definition 7.1. Let (X, d) be a metric space and let w 2 X be a base point.

(i) Given x, y 2 X , the Gromov product of x and y with respect to w is defined
by (x, y)w := 1

2 (d(x, w) + d(y, w) � d(x, y));
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(ii) A geodesic ray � : [0,+1) ! X , with � (0) = w, is an isometry from
([0,+1), | · |) to (X, d) where | · | denotes the absolute value on R; namely if
l(� ([s, t])) denotes the length of the curve � ([s, t]), we have:

8s, t � 0, l(� ([s, t])) = d(� (s), � (t)) = |t � s|;

(iii) Two geodesic rays � and �̃ are equivalent (we write � ⇠r �̃ ) if they are at
finite Hausdorff distance from each other, i.e., if there exists 9C > 0 such that
for all t � 0, it holds d(� (t), �̃ (t))  C . The relation ⇠r is an equivalence
relation on the set of geodesic rays;

(iv) A sequence {x⌫}⌫ of points in X tends to infinity if lim⌫,µ!1(x⌫, xµ)w =
+1;

(v) Two sequences {x⌫}⌫ and {y⌫}⌫ of points in X are equivalent (we write {x⌫} ⇠s
{y⌫}) if lim⌫!1(x⌫, y⌫)w = +1.

There are different ways to define the Gromov boundaries, using geodesic rays, or
using sequences. Both are equivalent when X is a geodesic, proper, hyperbolic (in
the sense of Gromov) metric space.
Definition 7.2. Let (X, d) be a geodesic, proper, metric space.

(i) The Gromov boundary @rG X (with respect to rays) is defined by

@rG X := Er/ ⇠r

where Er denotes the set of geodesic rays;
(ii) Let p 2 @rG X and let r > 0. We consider

V (q, r) := {q 2 @rG X : 9� 2 p, 9�̃ 2 q, lim inf
s,t!1

(� (t), �̃ (s))w � r}.

Then (V (p, r))p2@rG X,r>0 is a basis of open neighborhoods for the Gromov
topology T r

G(@rG X) on @rG X .

Remark 7.3. In the previous definitions it is not necessary that the domain be (Gro-
mov) hyperbolic. However, if (X, d) is not (Gromov) hyperbolic then the Gromov
boundary @rG(X) may fail to be Hausdorff.
One may also define the Gromov boundary using equivalent sequences:
Definition 7.4. Let (X, d) be a proper, hyperbolic (in the sense of Gromov) metric
space. The Gromov boundary @sG X (with respect to sequences) is defined by

@sG X := Es/ ⇠s

where Es denotes the set of sequences converging to infinity.
Remark 7.5.

• In case (X, d) is proper, geodesic, (Gromov) hyperbolic, there exists a bijection
between @rG X and @sG X ;
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• If (X, d) is not (Gromov) hyperbolic then ⇠s may not be an equivalence re-
lation. This is the case for the bidisc endowed with its Kobayashi distance
KD2 : {(1 � 1/n, 0)} ⇠s {(0, 1 � 1/n)}, {(0, 1 � 1/n)} ⇠s {(�1 + 1/n, 0)}
but {(1� 1/n, 0)} 6⇠s {(�1+ 1/n, 0)}. In particular we can not define @sGD2.

It is natural to study the relations between the Gromov boundary @rGM and the horo-
sphere boundary @HM for a complete (Kobayashi) hyperbolic manifold (M, KM).
Indeed, since (M, KM) is a length space, it follows from the Hopf-Rinow Theorem
that any two points can be joined by a geodesic segment.

Let D2 := {(z1, z2) 2 Cn : |z1| < 1, |z2| < 1} be the bidisc in Cn . The
remaining part of this section is dedicated to prove the following

Proposition 7.6. The horosphere boundary and the Gromov boundary of the bidisc,
endowed with their respective topologies, are not homeomorphic.

We first start with a description of the horopheres of sequences converging to some
boundary point in @D2. In order to avoid burdening notations, in this section, we
simply write E({un}, R) to denote the horospheres of an admissible sequence {un}
in D2 with respect to the base point (0, 0).
Lemma 7.7. Every sequence {un=(u1n, u2n)}⇢D2 converging to a point (p1, p2) 2
@D2 is admissible. Moreover,
(i) if p = (eit , p2) 2 @D2 with t 2 R and |p2| < 1 (respectively p = (p1, eit ) 2

@D2 with |p1| < 1, t 2 R)) for every R > 0 it holds

E({un}, R) = ED(eit , R) ⇥ D

(respectively, E({un}, R) = D ⇥ ED(eit , R));
(ii) If p = (eit1, eit2) 2 @D2, t1, t2 2 R, let T1 := lim supn

⇣
1�|u1n |2

1�|u2n |2

⌘
and T2 :=

lim supn
⇣
1�|u2n |2

1�|u1n |2

⌘
. Then, for every R > 0:

(a) (T1 > 1, T2 > 1) ) E({un}, R) = ED(eit1, R) ⇥ ED(eit2, R);
(b) (T1 > 1, T2  1) ) E({un}, R) = ED(eit1, R/T2) ⇥ ED(eit2, R);
(c) (T1  1, T2 > 1) ) E({un}, R) = ED(eit1, R) ⇥ ED(eit2, R/T1);
with the convention ED(eit1,+1) = D.

Proof. (i). Let p = (eit , p2) 2 @D2 with |p2| < 1. Then for R > 0, for w =
(w1, w2) 2 D and for sufficiently large n:

KD2(un, w) � KD2(un, 0) = KD(u1n, w1) � KD(u1n, 0).

Hence ED2({un}, R) = ED({u1n}, R) ⇥ D.
(ii). By definition

KD2(un, w) � KD2(un, 0) = max
⇣
KD
�
u1n, w1

�
, KD

�
u2n, w2

�⌘

�max
⇣
KD
�
u1n, 0

�
, KD

�
u2n, 0

�⌘
.
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Following [3, pages 264-266], we obtain

lim sup
n!1

(KD2(un, w) � KD2(un, 0))

=
1
2
log

 

max

 
|w1 � eit1 |2

1� |w1|2
min(1, T2),

|w2 � eit2 |2

1� |w2|2
min(1, T1)

!!

.
(7.1)

Hence

w 2 E({un}, R) ,

8
>>><

>>>:

|w1 � eit1 |2

1� |w1|2
min(1, T2) < R

|w2 � eit2 |2

1� |w2|2
min(1, T1) < R.

The conclusion follows directly from that equivalence.

Now we show that, in fact, we can restrict ourselves to particular admissible
sequences converging to a boundary point:

Proposition 7.8. Let {un} be an admissible sequence inD2. Then {un} is equivalent
to one and only one of the following sequences:

(1) {w(1)
n (p1, p2) := (p1(1� 1

n ), p2(1� 1
n ))}n2N for some p1, p2 2 @D;

(2) {w(2)
n (p) := (p(1� 1

n , 0)}n2N for some p 2 @D;
(3) {w(3)

n (p) := (0, p(1� 1
n )}n2N for some p 2 @D.

In particular, every admissible sequence in D2 is equivalent to an admissible se-
quence in D2 which converges to a point in @D2.

Proof. First of all, it is clear by Lemma 7.7 that the horospheres of {w(1)
n (p1, p2)}

are ED(p1, R) ⇥ ED(p2, R), the horospheres of {w(2)
n (p)} are E(p, R) ⇥ D and of

{w(3)
n (p)} are D ⇥ E(p, R), for all R > 0. Hence the sequences {w(1)

n (p1, p2)},
{w(2)

n (p)} and {w(3)
n (p)} are not equivalent.

Then, as in (6.2), we have

E({un}, R) =
\

{vn}2M
E({vn}, R), (7.2)

whereM denotes the set of all subsequences of {un} converging to a boundary
point. In particular, every sequence {vn} ⇢ M is admissible (by (7.2) or by
Lemma 7.7). Note that (7.2) implies that if {vn}, {ṽn} 2M then for every R > 0 it
holds

E({vn}, R) \ E({ṽn}, R) 6= ;. (7.3)

The horospheres of converging sequences are described in Lemma 7.7. There are
different cases to be considered:
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Case 1. Assume that there exist p1, p2 2 @D, {vn}, {ṽn} 2 M, (possibly {vn} =
{ṽn}) and T 2 (0, 1] such that

E({vn}, R) \ E({ṽn}, R) = ED(p1, R) ⇥ ED(p2, R/T )

for every R > 0.
We claim that {un} is equivalent to the sequence {w(1)

n (p1, p2)}. Indeed, tak-
ing into account (7.3) and the list in Lemma 7.7, we see that if {zn} 2 M, then
either E({zn}, R) = ED(p1, R) ⇥ ED(p2, R/Q) or E({zn}, R) = ED(p1, R/Q) ⇥
ED(p2, R) for some Q 2 [0, 1] (with the usual convention that, if Q = 0 then
ED(p1, R/Q) = D). In any case, E({w(1)

n (p1, p2)}, R) ⇢ E({zn}, R). Therefore
from (7.2),

ED(p1, R) ⇥ ED(p2, R) ⇢ E({un}, R) ⇢ ED(p1, R) ⇥ ED(p2, R/T ).

In particular, it is easy to see that for every R > 0 there exists R0 > 0 such
that E({w(1)

n (p1, p2)}, R) ⇢ E({un}, R) ⇢ E({w(1)
n (p1, p2)}, R0). Hence {un}

is equivalent to {w(1)
n (p1, p2)}.

Case 2. Assume that there exist p1, p2 2 @D, {vn}, {ṽn} 2 M, (possibly {vn} =
{ṽn}) and T 2 (0, 1] such that

E({vn}, R) \ E({ṽn}, R) = ED(p1, R/T ) ⇥ ED(p2, R)

for every R > 0.
In this case the argument goes exactly as in Case 1, and {un} is equivalent to

{w(1)
n (p1, p2)}.

Case 3. There are no sequences {vn}, {ṽn} inM as in Case 1 or Case 2. Hence, by
Lemma 7.7, for all {vn} 2M there exists p{vn} 2 @D such that either E({vn}, R) =
ED(p{vn}, R) ⇥ D, or E({vn}, R) = D ⇥ ED(p{vn}, R) for all R > 0. More-
over, since we are excluding Case 1 and Case 2, if for some {vn} 2 M it holds
E({vn}, R) = ED(p{vn}, R) ⇥ D, then for all {ṽn} 2 M it holds E({ṽn}, R) =
ED(p{ṽn}, R) ⇥ D. By (7.3), there exists p 2 @D such that p{vn} = p for all
{vn} 2 M, hence E({un}, R) = E(p, R) ⇥ D, and {un} is equivalent to {un} is
equivalent to {w(2)

n (p)}.
Similarly, if E({vn}, R) = D ⇥ ED(p{vn}, R), it follows that {un} is equivalent

to {w(3)
n (p)}.

Now we are ready to prove the main result of this section:

Proposition 7.9. The horosphere topology of @HD2 induced fromcD2 is trivial.

Proof. We are going to show that the only non empty closed subset of @HD2 is
@HD2. In order to do that, we prove that the closure in @HD2 of the class of any
admissible sequence is @HD2.
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Since by Proposition 7.8 every admissible sequence is equivalent to
{w(1)

n (p1, p2)}, {w(2)
n (p)} or {w(3)

n (p)}, we only need to consider those sequences.
In fact, the following observations yield immediately the result:

A) For every p1, p2 2 @D, the closure of the point [{w(1)
n (p1, p2)}] 2 @HD2

contains the points [{w(2)
n (p1)}] and [{w(3)

n (p2)}];
B) For every p 2 @D, the closure of the point [{w(2)

n (p)}] 2 @HD2 contains the
points [{w(1)

n (p, q2)}] for all q2 2 @D;
C) For every p 2 @D, the closure of the point [{w(3)

n (p)}] 2 @HD2 contains the
points [{w(1)

n (q1, p)}] for all q1 2 @D.

Indeed, it follows fromA), B) and C) that the closure of the point [{w(1)
n (p1, p2)}] 2

@HD2 also contains the points [{w(1)
n (q1, q2)}] for all q1, q2 2 @D, the closure of

the point [{w(2)
n (p1)}] 2 @HD2 also contains the points [{w(2)

n (q1)}] for all q1 2
@D, and the closure of the point [{w(3)

n (p2)}] 2 @HD2 also contains the points
[{w(3)

n (q2)}] for all q2 2 @D.
We only show A), the proofs of B) and C) being similar. By Lemma 7.7, it

follows that for all R > 0,

E
⇣n

w(1)
n (p1, p2)

o
, R
⌘

\ E
⇣n

w(2)
n (p1)

o
, R
⌘

6= ;.

Hence, if we define the constant sequence {xm} of elements in @HD2 by xm :=

[{w(1)
n (p1, p2)}] for every m 2 N, then according to Definition 4.1 the sequence

{xm} converges to [{w(2)
n (p1)}]2@HD2 whenm tends to infinity. Hence [{w(2)

n (p1)}]
belongs to the closure of [{w(1)

n (p1, p2)}]. Similarly, [{w(3)
n (p2)}] belongs to the

closure of [{w(1)
n (p1, p2)}].

As an application of Theorem 4.7, Theorem 5.10 and Proposition 7.9 we obtain
a different proof of the well-known result due to H. Poincaré.

Proposition 7.10. There is no biholomorphism between the unit ball and the bidisc
in C2.

Proof. A biholomorphism between the unit ball and the bidisc would extends as
a homeomorphism between their horosphere boundaries. This is not possible by
Propositions 5.10 and 7.9.

In fact, one can use the previous arguments to show that the restriction of the
horosphere topology of the polidisc Dn ⇢ CN to @HDn for every n > 1 is not
Hausdorff. Hence, by Theorem 4.7 and Theorem 5.10 one can see also that there
exist no biholomorphisms between any bounded strongly pseudoconvex domain
and the polydisc in CN , n > 1.

In order to compare the Gromov boundary with the horosphere boundary of
D2, we will prove now the following
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Proposition 7.11. The topology of @rGD2 is not trivial.

Proof. We choose the base point (0, 0) 2 D2. Let a : (�1,+1) ! D be the
geodesic for the hyperbolic distance of D whose image is the segment (�1, 1) and
satisfying limt!�1 a(t) = �1, limt!+1 a(t) = 1.

Let (1, 0)G be the point of @rGD2 represented by the geodesic ray ↵(t) :=
(a(t), 0), t � 0, and let (�1, 0)G be the point of @rGD2 represented by the geodesic
ray �(s) := (a(�s), 0), s � 0.

Since KD2((z1, z2), (w1, w2)) = max j=1,2{KD(z j , w j )}, it follows that every
geodesic rays � : [0,+1) ! D2 such that � (0) = (0, 0) is of the form � (t) =
( f (t), g(t)), where either f or g (or both) is a geodesic in D. Hence, if � (t) =
( f1(t), f2(t)) is a geodesic ray in D2 equivalent to (1, 0)G , it follows that f1 = a
and f2((0,+1)) is relatively compact in D. Thus, every geodesic ray representing
(1, 0)G is of the form (a(t), f (t))where supt2[0,+1) | f (t)| < 1 and KD(0, f (t)) 
t for every t � 0. Similarly, if � is a geodesic ray equivalent to (�1, 0)G it follows
that � (s) = (a(�s), g(s)), with supt2[0,+1) |g(t)| < 1 and KD(0, g(t))  t for
every t � 0.

Now, let � +(t) := (a(t), f (t)) be a geodesic ray representing (1, 0)G and
� �(s) := (a(�s), g(s)) be a geodesic ray representing (�1, 0)G . The Gromov
product between � + and � � with respect to (0, 0) is:

2(� +(t), � �(s))(0,0) = 2((a(t), f (t)), (a(�s), g(s))(0,0)
= KD2((a(t), f (t)), (0, 0)) + KD2((a(�s), g(s)), (0, 0))

� KD2((a(t), f (t)), (a(�s), g(s)))
= t + s �max{KD(a(t), a(�s)), KD( f (t), g(s))}
= t + s �max{s + t, KD( f (t), g(s))}  0.

Hence, the Gromov product is always 0.
Therefore, for any couple of geodesic rays � + representing (1, 0)G and � �

representing (�1, 0)G it holds

lim inf
t,s!+1

(� +(t), � �(s))(0,0) = 0.

This implies that for every r > 0 the point (�1, 0)G does not belong to the open set
V ((1, 0)G, r). Hence, for every r > 0, the set @rGD2 \ V ((1, 0)G, r) is a non empty
closed set which does not contain (1, 0)G . In particular, the Gromov topology on
@rGD2 is not trivial.

Proposition 7.6 follows at once from Proposition 7.9 and Proposition 7.11.

8. Boundary behavior

In this section we apply the results developed so far to study boundary behavior
of univalent mappings defined on strongly pseudoconvex smooth domains. If F :
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D ! CN is a holomorphic map and p 2 @D, we denote by 0(F; p) the cluster set
of F at p, that is,

0(F; p) := {q 2 CN : 9{wn} ⇢ D, F(wn) ! q}.

We start by the following result:

Theorem 8.1. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C3
boundary. Let F : D ! � be a biholomorphism. Let p 2 @D. Then there exists
x 2 @H� such that

0(F; p) = IH� (x).

In particular, if there exists q 2 @� such that IH� (x) = {q}, then limz!p F(z) = q.

Proof. By Theorem 4.7, F defines a homeomorphism F̂ : D̂ ! �̂. By Theorem
5.10, there is a homeomorphism 2 : D̂ ! D such that 2(z) = z for z 2 D.
Therefore, a sequence {zn} ⇢ D converges to p if and only if {2�1(zn)} con-
verges to 2�1(p) 2 @H D. Let x := F̂(2�1(p)). Hence, the sequence {F(zn) =
F̂(2�1(zn))} converges to x if and only if {zn} converges to p. From this the result
follows.

A first application is the following well known result (see, [19]):

Corollary 8.2. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C3
boundary. Let F : D ! � be a biholomorphism. If � is a bounded strongly
pseudoconvex domain with C3 boundary then F extends to a homeomorphism from
D to �.

Proof. It is enough to apply Theorem 8.1 and Proposition 5.11 to both F and
F�1.

Another application of our theory gives a positive answer to Conjecture 3.1.(a)
in [33], in fact, proving not only continuous extension, but extension as homeomor-
phism:

Corollary 8.3. Let D ⇢ CN be a bounded strongly convex domain with C3 bound-
ary. Let F : D ! � be a biholomorphism. If � is a bounded convex domain, then
F extends as a homeomorphism from D to �.

Proof. By Theorem 6.19 and Theorem 8.1, for every p 2 @D the limit F(p) :=
limz!p F(z) exists. In order to see that the map F : D ! � is continuous,
we have only to show that if {p j } ⇢ @D is a sequence converging to p 2 @D,
then F(p j ) ! F(p). Indeed, by Proposition 5.11, there exist x j , x 2 @H D such
that IHD (x j ) = {p j }, IHD (x j ) = {p} and {x j } converges to x in the horosphere
topology of D. Hence {F̂(x j )} converges to {F̂(x)} in the horosphere topology of
�. Moreover, IIH� (F̂(x j )) = IH� (F̂(x j )) = {F(p j )} and similarly IIH� (F̂(x)) =

IH� (F̂(x)) = {F(p)}. Hence, F(p j ) ! F(p) by Corollary 6.9.
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Therefore, F : D ! � is continuous. Since D is compact, in order to prove
that F is a homeomorphism, we only need to prove that it is injective.

We argue by contradiction. Assume p0, p1 2 @D and q := F(p0) = F(p1) 2
@�. Let {un} ⇢ D be a sequence converging to p0 and {vn} ⇢ D be a se-
quence converging to p1. Then {un} and {vn} are admissible by Proposition 5.7
and not equivalent by Proposition 5.9. Let x 2 D and R > 0 be such that
V := ED

x ({un}, R)\ ED
x ({vn}, R) 6= ;. Note that V is open and relatively compact

in D because ED
x ({un}, R) \ @D = {p0} and ED

x ({vn}, R) \ @D = {p1}.
Since F is a biholomorphism it maps horospheres onto horospheres. Moreover,

F(ED
x ({un}, R)) = E�

F(x)({F(un)}, R) and F(ED
x ({vn}, R)) = E�

F(x)({F(vn)}, R)

are convex by Proposition 6.1. Hence,
F(V )=F

�
ED
x ({un},R) \ ED

x ({vn},R)
�
=E�

F(x)({F(un)}, R) \ E�
F(x)({F(vn)},R)

is open, convex and relatively compact in �.
Now, q 2 E�

F(x)({F(un)}, R) \ E�
F(x)({F(vn)}, R). Let z0 2 F(V ). Since the

two horospheres are both open, convex, and z0 is contained in both horospheres,
the real segment � := {t z0 + (1 � t)q : t 2 (0, 1]} as well is contained in both
horospheres. That is, � ⇢ F(V ). But then F(V ) is not relatively compact in �, a
contradiction.

With a similar argument, using Proposition 6.13 instead of Theorem 6.19, we
have:
Corollary 8.4. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C3
boundary. Let F : D ! � be a biholomorphism. If � is a strictly C-linearly
bounded convex domain, then F extends as a homeomorphism from D to �.

Now we consider non-tangential limits. In fact, in our theory, the right notion
to consider is that of E-limits. Let D ⇢ CN be a bounded strongly pseudoconvex
domain with C3 boundary. If p 2 @D, by Proposition 5.11, there exists x p 2 @H D
such that IHD (x j ) = {p}. Given a map f : D ! CN , we denote by 0E ( f ; p)
the cluster set of f at p along sequences E-converging to x p (see Definition 4.10),
namely,

0E ( f ; p) =
�
q 2 CN : 9{zn} ⇢ D : E � lim

n!1
zn = x p, f (zn) ! q

 
.

A slight modification of the proof of Theorem 8.1, taking into account that F maps
sequences E-converging to y to sequences E-converging to F̂(y) and Lemma 4.12,
gives the following:
Theorem 8.5. Let D ⇢ CN be a bounded strongly pseudoconvex domain with C3
boundary. Let F : D ! � be a biholomorphism, x 2 �. Let p 2 @D. Then there
exists x 2 @H� such that

0E ( f ; p) = IIH� (x) =
\

R>0
Ex ({un}, R)

CPN
,

where {un} ⇢ D is any admissible sequence representing x .
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Finally, let D ⇢ CN be a bounded strongly pseudoconvex domain with C3 bound-
ary and p 2 @D. If f : D ! CN is a map, we denote by 0NT ( f ; p) the cluster set
of f along sequences converging to p non-tangentially. By Proposition 5.7,

0NT ( f ; p) ✓ 0E ( f ; p) ✓ 0( f ; p).

In particular, by Theorem 8.5 we have:

Corollary 8.6. Let D ⇢ CN be a bounded strongly pseudoconvex domain with
C3 boundary. Let F : D ! � be a biholomorphism and assume that for every
x 2 @H� the horosphere principal part IIH� (x) consists of one point. Then for
every p 2 @D the non-tangential limit \ limz!p F(z) exists.

As a spin off result of our work, we prove the following Wolff-Denjoy theorem,
which gives a (partial) positive answer to a conjecture in [4] (see [4, Remark 3.3]).
Let D ⇢ CN be a bounded domain. Let f : D ! D be holomorphic. A point
q 2 D belongs to the target set T ( f ) of f if there exist a sequence {km} ⇢ N
converging to1 and z 2 D such that limm!1 f km (z) = q.

Proposition 8.7. Let D ⇢ CN be a bounded convex domain. Assume that either D
is biholomorphic to a strongly convex domain with C3 boundary or D is C-strictly
linearly convex and biholomorphic to a bounded strongly pseudoconvex domain
with C3 boundary. Let f : D ! D be holomorphic without fixed points in D. Then
there exists exists p 2 @D such that T ( f ) = {p}.

Proof. Since f has no fixed point in D then { f k} is compactly divergent (see [1,2]).
By [4, Lemma 3.10] there exists a Busemann admissible sequence {un} such that
for every R > 0,

f (Ex ({un}, R)) ⇢ Ex ({un}, R). (8.1)

Hence the result follows from either Theorem 6.19 or Proposition 6.13.

Remark 8.8. As we already pointed out, there exist convex domains biholomor-
phic to the unit ball which are not C-strictly linearly convex, but for which the
Denjoy-Wolff theorem holds by Proposition 8.7. We conjecture that in fact the re-
sult in Proposition 8.7 holds for every bounded convex domain D ⇢ CN whose
boundary does not contain non-constant analytic discs.
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