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Crystalline evolutions with rapidly oscillating forcing terms

ANDREA BRAIDES, ANNALISA MALUSA AND MATTEO NOVAGA

Abstract. We consider the evolution by crystalline curvature of a planar set in
a stratified medium, modeled by a periodic forcing term. We characterize the
limit evolution law as the period of the oscillations tends to zero. Even if the
model is very simple, the limit evolution problem is quite rich, and we discuss
some properties such as uniqueness, comparison principle and pinning/depinning
phenomena.

Mathematics Subject Classification (2010): 53C44 (primary); 35B27 (sec-
ondary).

1. Introduction

In this paper we are interested in the asymptotic behavior of motions of planar
curves according to the law

v = ' + g
⇣ x

"

⌘
, (1.1)

where v is the normal velocity, ' is the crystalline square curvature (see Defini-
tion 2.1 for precise definitions), g : R ! R is a forcing term depending only on
the horizontal variable x , and " > 0 is a small parameter modeling the rapidly os-
cillating medium where the curve evolves. For simplicity, we shall assume that g is
1-periodic and takes only two values ↵ < 0 < �, with average ↵+�

2 .
Crystalline evolutions play an important role in many models of phase tran-

sitions and Materials Science (see [28, 33] and references therein) and have been
significantly studied in recent years (see for instance [1, 6, 7, 23, 25]). The term
g
� x

"

�
models a heterogeneous layered medium, which we assume periodic exactly

in one of the direction orthogonal to the Wulff shape of the crystalline perimeter
(in our case, for simplicity, the x-direction). Our aim is understanding the effect of
the oscillations in the asymptotic limit " ! 0, which is a typical homogenization
problem.
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We will show that, at scale ", the curves may undergo a microscopic “facet
breaking” phenomenon, with small segments of length proportional to " being cre-
ated and reabsorbed. After dealing with this aspect, we show that the motion of a
limit of curves satisfying (1.1) can be characterized by different laws of motion in
the x and y-directions: the portions of the curve moving in the vertical direction
travel with a velocity equal to ' + ↵+�

2 , whereas the portions moving in the hor-
izontal direction are either pinned or travel with velocity equal to h' + gi, where
h·i denotes the harmonic mean (see Theorem 4.6). Note that such law does not
correspond to a forced crystalline evolution.

Our analysis can be set in a large class of variational evolution problems deal-
ing with limits of motions driven by functionals F" depending on a small param-
eter [10]. In some cases, the limit motion can be directly related to the 0-limit of
F" (see, e.g., [12, 14, 20, 32]), but in general this is not the case. For oscillating
functionals, the energy landscape of the energies F" can be quite different from that
of their 0-limit and the related motions can be influenced by the presence of local
minima which may give rise to “pinning” phenomena (motions may be attracted by
those local minima) or to effective homogenized velocities [13, 31]. In the case of
geometric motions, a general understanding of the effects of microstructure is still
missing. Recently, some results have been obtained for (two-dimensional) crys-
talline energies, for which a simpler description can be sometimes given in terms of
a system of ODEs. Such results include discrete approximations of crystalline ener-
gies, which can be understood as a simple way to introduce a periodic dependence,
corresponding to that of an underlying square lattice [11, 13, 15, 16]. Such discrete
energies correspond to continuum inhomogeneous perimeter energies of the form

F"(E) =
Z

@E
a
⇣ x

"
,
y
"

⌘ ⇣�
�⌫E1

�
�+

�
�⌫E2

�
�
⌘
dH1, E ⇢ R2,

converging to the square perimeter in the sense of 0-convergence [3, 9], and the
corresponding geometric motions can be studied using the minimizing-movement
approach introduced by Almgren, Taylor and Wang [2]. The suitably defined limit
motions [10] correspond to modified crystalline flows.

In our case, equation (1.1) corresponds to the L2-gradient flow for the energy
functional

F"(E) =
Z

@E

⇣�
�⌫E1

�
�+

�
�⌫E2

�
�
⌘
dH1 +

Z

E
g
⇣ x

"

⌘
dL2, E ⇢ R2,

where we identify the evolving curve with the boundary of a set E . Note that, since
the volume term converges to ↵+�

2 L2(E), the (0-)limit as " ! 0 of the functionals
F" is the functional

F(E) =
Z

@E

⇣�
�⌫E1

�
�+

�
�⌫E2

�
�
⌘
dH1 +

↵ + �

2
L2(E).

As a consequence of our analysis, it turns out that the asymptotic behavior as " ! 0
of the evolutions corresponding to (1.1) does not coincide with the gradient flow of
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F , which is v = ' + ↵+�
2 . Even in the case ↵ + � = 0 the limit motion cannot be

derived as a gradient flow of a modified (crystalline) perimeter.
A similar result for g modeling a periodic chessboard-like structure can be

found in [29]. Note that, if the crystalline curvature is replaced by the usual curva-
ture and the initial curve is a graph in the y-direction, the homogenization problem
corresponding to (1.1) has been studied in [18], where it is proved that the limit
evolution law is indeed the curvature flow with a constant forcing term. We also
mention that an analysis of the asymptotic behavior of the semilinear problem

ut = uxx + g
⇣u

"

⌘
,

can be found in [17]. That problem has some features in common with our geo-
metric evolution, since it can be seen as the linearization of the isotropic version
of (1.1).

The plan of the paper is the following: in Section 2 we introduce the notion
of crystalline curvature and the evolution problem we want to study. In Section 3
we introduce the notion of calibrable edge, that is, an edge of the curve which does
not break during the evolution, and we characterize the calibrability of an edge in
terms of its length and of the position of its endpoints. Finally, in Section 4 we
characterize the limit evolution law as " ! 0 first for rectangular sets, then for
polyrectangles, and eventually for more general sets, including bounded convex
sets.

2. Setting of the problem

2.1. Notation

Given ⇠ ⌘ 2 R2, we denote by ⇠ ·⌘ the usual scalar product between ⇠ and ⌘ and by
]]⇠, ⌘[[ (respectively, [[⇠, ⌘]]) the open (respectively, closed) segment joining ⇠ and
⌘. The canonical basis of R2 will be denoted by e1 = (1, 0), e2 = (0, 1).

The 1-dimensional Hausdorff measure and the 2-dimensional Lebesgue mea-
sure in R2 will be denoted byH1 and L2, respectively.

We say that a set E ✓ R2 is a Lipschitz set if E is open and @E can be
written, locally, as the graph of a Lipschitz function (with respect to a suitable
orthogonal coordinate system). The outward normal to @E at ⇠ , that exists H1-
almost everywhere on @E , will be denoted by ⌫E (⇠) = (⌫E1 , ⌫E2 ).

The Hausdorff distance between the two sets E, F 2 R2 will be denoted by
dH (E, F).

2.2. The crystalline square curvature

We briefly recall how to give a notion of mean curvature E which is consistent with
the requirement that a geometric evolution E(t) that reduces as fast as possible the
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energy functional

P(E) =
Z

@E

⇣�
�⌫E1

�
�+

�
�⌫E2

�
�
⌘
dH1

has normal velocity E(t) H1-almost everywhere on @E(t).
The functional P(E) is the perimeter associated to the norm '(x, y) =

max{|x |, |y|}, (x, y) 2 R2; that is, the Minkowski content derived by considering
(R2,') as a normed space. The density '�(x, y) = |x | + |y| is the polar function
of ', defined by '�(⇠�) := sup{⇠ · ⇠�, '(⇠)  1}.

The Wulff shapeW = {'(⇠)  1} and the Frank diagram F = {'�(⇠)  1}
are the square K = [�1, 1]2 and the square with corners at (±1, 0) and (0,±1),
respectively.

Given a nonempty compact set E ✓ R2, we denote by dE' the oriented '-
distance function to @E negative inside E ; that is,

dE' (⇠) = inf
⌘2E

'(⇠ � ⌘) � inf
⌘ 62E

'(⇠ � ⌘), ⇠ 2 R2.

The function dE' is Lipschitz, '�(rdE' (⇠)) = 1 at each its differentiability point ⇠ ,
and

rdE' (⇠) =
⌫E (⇠)

'�(⌫E (⇠))

at every ⇠ 2 @E where ⌫E is well defined.
SinceW' is neither smooth nor strictly convex, the intrinsic normal direction

to @E is not uniquely determined, in general, even if the set E is smooth. It is known
that the normal cone at ⇠ 2 @E is well defined whenever ⇠ is a differentiability point
for dE' and it is given by T��

�
rdE' (⇠)

�
, where

T'�(⇠�) :=
n
⇠ 2 R2, ⇠ · ⇠� = ('�(⇠))2

o
, ⇠� 2 R2 .

If '�(⇠�) = 1, a direct computation gives

T'�(⇠�)=

8
>>>><

>>>>:

(1,1) ⇠� 2 ]]e1, e2[[
(1,�1) ⇠� 2 ]]e1,�e2[[
(�1,�1) ⇠� 2 ]]e2,�e1[[
(�1,1) ⇠� 2 ]] � e2,�e1[[

8
>>>><

>>>>:

T'�(e1) =[[(1,1),(1,�1)]]
T'�(e2) =[[(�1,1),(1,1)]]
T'�(�e1)=[[(�1,1),(�1,�1)]]
T'�(�e2)=[[(�1,�1),(1,�1)]]

(2.1)

(see Figure 2.1).
The notion of intrinsic curvature in (R2,') is based on the existence of regular

selections of T��
�
rdE'

�
on @E .
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Figure 2.1. The square crystalline norm ' and the map T'� .

Definition 2.1 ('-regular set, Cahn-Hoffmann field, mean'-curvature). Wesay
that an open set E ✓ R2 is '-regular if @E is a compact Lipschitz curve and
there exists a vector field n' 2 Lip(@E; R2) such that n' 2 T'�(rdE' ) H1-almost
everywhere on @E .

Any such selection of the multivalued function T'�(rdE' ) on @E is called a
Cahn-Hoffmann vector field for @E associated to ', and ' = div n' is the related
mean '-curvature (crystalline square mean curvature) of @E . Pictures of a '-
regular and a non-'-regular set are included in Figure 2.2.

Figure 2.2. A non '-regular set (left) and a '-regular set (right).

Remark 2.2. Note that, unlike the outer (euclidean) unit normal ⌫E , a Cahn-Hoff-
mann field is defined everywhere on @E .
Remark 2.3. Any Cahn-Hoffmann vector field n' has gradient orthogonal to the
normal direction, so that div n' equals the tangential divergence of the field.

2.3. Forced crystalline curvature flow

The appropriate way of describing a geometric evolution E(t), starting from a given
'-regular set E and trying to reduce as fast as possible the energy functional

F(E(t))= P'(E(t)) + V (E(t))=
Z

@E(t)

⇣�
�⌫E1 (t)

�
�+

�
�⌫E2 (t)

�
�
⌘
dH1+

Z

E(t)
f dL2,
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is a suitable weak version of the law

v = ' + f , on @E(t)

where v is the scalar velocity of @E(t) along the normal direction.
Definition 2.4. Given T > 0, we say that a family E(t), t 2 [0, T ], is a crystalline
mean curvature flow in [0, T ) with forcing term f 2 L1(R2) if:
(i) E(t) ✓ R2 is a Lipschitz set for every t 2 [0, T );
(ii) There exists an open set A ✓ R2⇥ [0, T ) such that

S
t2[0,T ) @E(t) ⇥ {t} ✓ A,

and the function d(⇠, t) .
= dE(t)

' (⇠) is locally Lipschitz in A;
(iii) There exists a function n 2 L1(A, R2), with div n 2 L1(A), such that the

restriction of n(t, ·) to @E(t) is a Cahn-Hoffmann vector field for @E(t) for
every t 2 [0, T ];

(iv) @t d�div n 2 [ f �, f +]H1-almost everywhere in @E(t) and for all t 2 [0, T ),
where

f +(⇠) = ess lim sup
⌘!⇠

f (⌘), f �(⇠) = ess lim inf
⌘!⇠

f (⌘), ⇠ 2 R2.

In general, the same '-regular set E may admit more than one Cahn-Hoffmann
vector field n' 2 Lip(@E; R2). Most of these choices are meaningless from the
point of view of the geometric evolution. In order to overcome this ambiguity we
fix the choice by a variational selection principle which turns out to be consistent
with the curve shortening flow (see [6–8,26,27]).
Definition 2.5 (Variational forced crystalline curvature flow). A variational
forced crystalline curvature flow is a forced crystalline curvature flow E(t), t 2
[0, T ), such that for every t 2 [0, T ) n(t, ·) is the unique minimizer of the functional

N (n) =
Z

@E(t)
| f � div n|2 dH1

in the set

D =
n
n 2 L1�@E(t), R2

�
, n 2 T'�

�
rdE(t)

'

�
, div n 2 L2(@E(t))

o
.

In Section 4 we will focus our attention to forced crystalline flows starting from
coordinate polyrectangles; that is, Lipschitz polygonal domains whose boundary
is a closed curve with edges parallel to the coordinate axes. In what follows the
endpoints of an edge L of a coordinate polyrectangle will be called vertices.

We collect in the following proposition some basic properties of these planar
sets (for details see, e.g., [5–8]).
Proposition 2.6. A coordinate polyrectangle E is a '-regular set, and T'�(rdE' )
is a fixed cone TL in the interior of each edge L of @E . Moreover the following
holds:
(i) If p is a vertex of @E and L1, L2 are the edges of @E such that L1\ L2 = {p},

then TL1 \ TL2 = {Np}, and hence every Cahn-Hoffmann vector field n 2
Lip(@E; R2) takes the value n(p) = Np at p;
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(ii) The restriction n|L to an edge L of the variational selection n obtained by
minimization as in Definition 2.5 is the unique minimizer of the functional

NL(n) =
Z

L
| f � div n|2 dH1

in the set

DL =
n
n 2 L1�L , R2

�
, n 2 TL , div n 2 L2(L), n(p) = Np, n(q) = Nq

o

where p, q are the endpoints of L and Np, Nq are the values at the vertices p,
q assigned by (i).

Note that, by classical elliptic regularity for Dirichlet problems, the minimizer in
Proposition 2.6(ii) above belongs to the Sobolev space H2(L), and hence it is a
Lipschitz function on L .
Remark 2.7. If the minimizer nL in DL of the functional NL satisfies the strict
constraint nL(⇠) 2 int TL for every ⇠ 2 L , then the velocity f � div nL is constant
along the edge; that is, the flat arc remains flat under the evolution. This is always
the case when f = 0, since the unique minimizer is the interpolation of the assigned
values at the vertices of L , and the constant value of the mean '-curvature is given
by

L' = �L
2
`
on L , (2.2)

where ` is the length of the edge L and �L is a convexity factor: �L = 1,�1, 0,
depending on whether E(t) is locally convex at L , locally concave at L , or neither.
We refer to [5, 19, 24] for some existence and uniqueness results for variational
forced crystalline curvature flow, when the forcing term f is a Lipschitz function.
To the best of our knowledge, there is no general results for discontinuous forcing
terms.

The easiest example of variational forced crystalline curvature flow is the one
starting from a coordinate rectangle R (rectangle with edges parallel to the coordi-
nate axes), and with constant forcing term f (⇠) = � 2 R.

Ordering the vertices of @E clockwise starting from the left-upper corner, Pi ,
i 2 {1, . . . , 4}, we have

n'(P1) = (�1, 1), n'(P2) = (1, 1), n'(P3) = (1,�1), n'(P4) = (�1,�1),

and hence the variational Cahn-Hoffmann vector field on the sides is

n'(⇠) = n'(Pi ) +
2(�1)i+1

`i
(⇠ � Pi ), ⇠ 2 Li , i 2 {1, . . . , 4},

where Li is the edge of the rectangle starting from Pi , and `i is its length.
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Figure 2.3. Phase portraits of (2.3) for � > 0 and for � < 0.

The '-curvature associated to this field is constant on each edge Li , and

 i' =
2(�1)i+1

`i
on Li , i 2 {1, . . . , 4}.

As a consequence the evolution of R is given by rectangles R(t), and the description
of the flow reduces to the analysis of a system of ODE’s solved by the lengths `1(t)
and `2(t) of the horizontal and the vertical edges of R(t):

8
>><

>>:

`0
1 = �

4
l2

� 2�

`0
2 = �

4
l1

� 2� ,

(2.3)

(see [1] and [25]). Hence, if � > 0, `1 and `2 are decreasing functions, and we have
finite-time extinction (see the phase portrait in the left-hand side of Figure 2.3),
while if � < 0 the evolution is the one depicted in the right-hand side of Figure 2.3.
The square of side length `0 = �2/� is the unique equilibrium of the system.
Moreover, the function

U(`1, `2) = 4(log(`2) � log(`1)) + 2� (`2 � `1)

is a constant of motion for the system (2.3). The squares starting with a side length
shorter than l0 shrink to a point, while the squares starting with a side length longer
than l0 expand with asymptotic velocity �� as the side length diverges. The rect-
angles can shrink to a point, converge to the equilibrium or expand, depending on
the starting length of the edges.

In general, in presence of a spatially inhomogeneous forcing term, the selfsim-
ilarity of the evolution of coordinate rectangles may fail, due to the possibility of
edge breaking or bending phenomena (see [26,27]).
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2.4. The oscillating forcing term

In what follows we will consider a prototypical case of an oscillating layered forcing
term: given two constants ↵ < 0 < �, we set

g(x) =

8
<

:
↵ if dist(x, Z) 

1
4

� otherwise,
(2.4)

and we denote by I the set of discontinuity lines of the function g:

I :=

⇢
(x, y), x 2

1
4

+
1
2
Z, y 2 R

�
.

In order to distinguish the two families of discontinuity lines for g, depending on
the position of the phases ↵ and � with respect to the interface, we will use the
notation

I↵,� :=

⇢
(x, y), y 2 R, x 2 R such that g(s, y) = � for all s 2

✓
x, x +

1
2

◆�

I�,↵ :=

⇢
(x, y), y 2 R, x 2 R such that g(s, y) = ↵ for all s 2

✓
x, x +

1
2

◆�
.

Given " > 0 we consider the function g" defined by

g"(x, y) := g
⇣ x

"

⌘
,

(with an abuse of notation, we will often write g"(x) instead of g"(x, y)). Setting

xN :=

✓
N +

1
4

◆
", N 2 N, (2.5)

we have that

g"(x, y) =

8
><

>:

↵ x 2
⇣
xN �

"

2
, xN

⌘
y 2 R

� x 2
⇣
xN , xN +

"

2

⌘
y 2 R;

(2.6)

that is, {x = xN } ✓ "I↵,� and {x = �xN } ✓ "I�,↵ for every N 2 N (see
Figure 2.4).

Finally, we define the multifunction

G"(x, y) =

(
g"(x, y) if (x, y) 62 "I
[↵,�] if (x, y) 2 "I.

With these definitions, a variational crystalline mean curvature flow E(t) with forc-
ing term g" has to have normal velocity v(t) 2 div n(t) + G" on @E(t).
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Figure 2.4. The oscillating forcing term g".

3. Calibrable edges

In this section we keep " > 0 fixed, and we focus our attention on the effect of the
forcing term g" along the edges of a coordinate polyrectangle.
Definition 3.1. An edge L of a coordinate polyrectangle E is calibrable if there
exist a Cahn-Hoffmann vector field n for @E and a constant v 2 R such that v 2
div n + G" on L . In this case we say that v is a (normal) velocity of the edge L .
Remark 3.2. In view of Proposition 2.6, in order to show that an edge L of @E
is calibrable it is enough to show that there exists a vector field n on L , such that
n(⇠) 2 TL for every ⇠ 2 int L and agrees with assigned values (prescribed by the
geometry of @E) at the endpoints of L , .
In what follows, the length of an edge L will be denoted by `.

3.1. Vertical edges

Every vertical edge is calibrable. Namely, if x = x 2 R is the straight line con-
taining L , there exists a constant selection �"(x) of G" on L , and hence the Cahn-
Hoffman field given by the linear interpolation of the extreme values satisfies all the
requirements. The related velocity of the edge is given by

v =
2
`
�L + �"(x), (3.1)

where �L is the convexity factor defined in Remark 2.7. Hence, the velocity of the
edge is uniquely determined if L is not a subset of the jump set "I of g", while, for
x belonging to an interface we can freely choose any fixed value v such that

v 2


2
`
�L + ↵,

2
`
�L + �

�
.

In particular, a vertical edge L ✓ "I with zero '-curvature is allowed to have
velocity zero, since we can choose �" = 0 on L . Similarly, a vertical edge L ✓ "I
either with positive '-curvature and length ` � �2/↵, or with negative '-curvature
and length ` � 2/� is allowed to have velocity zero, since we can choose �" =
�2/` or �" = 2/` on L , respectively.
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3.2. Horizontal edges

Let L be a horizontal edge. A Cahn-Hoffman vector field n' on L belongs to
T'�(rdE' ) = T'�(±e2), so that its second component is fixed (see (2.1)). In what
follows we consider only its first component, by using the abuse of notation n' =
(n(x),±1) on L .

Hence, L = [p, q] ⇥ {y} turns out to be calibrable if there exists a Lipschitz
function

n : [p, q] ! [�1, 1], (3.2)

such that

n0 + g" = �L
2
`

+
1
`

Z

L
g
⇣ s
"

⌘
ds almost everywhere in [p, q], (3.3)

and with the following prescribed values at the endpoints

(BC) =

8
><

>:

n(p) = n(q) = n0 2 {±1} if �L = 0
n(p) = �1, n(q) = 1 if �L = 1
n(p) = 1, n(q) = �1 if �L = �1.

(3.4)

Denoting by `↵ , `� 2 [0, "/2] the non-negative lengths given by the conditions

`�"

�
`

"

⌫
= `↵+`� ,

Z

L
g"(s) ds =

↵ + �

2
�
` � `↵ � `�

�
+↵`↵+�`�, (3.5)

the necessary condition (3.3) prescribes the value of n0 outside the jump set of g":

n0(x) =

8
>><

>>:

1
2`
�
4�L + (� � ↵)(` � `↵ + `�)

�
if g"(x) = ↵

1
2`
�
4�L � (� � ↵)(` + `↵ � `�)

�
if g"(x) = �,

(3.6)

and the velocity of the edge L:

vL = �L
2
`

+
↵ + �

2
+

� � ↵

2`
(`� � `↵). (3.7)

In conclusion, the calibrability conditions (3.3) and (3.4) determine a candidate field
n (and the related velocity of the edge), which is continuous and affine with given
slope in each phase of g". This field n is the Cahn-Hoffman field which calibrates
L with velocity (3.7) if and only if it satisfies the constraint |n(x)|  1 for every
x 2 [p, q].
Remark 3.3. If ` > ", by (3.6) the variation of n in a period " is

1"n = n(x + ") � n(x) =
"

2`
�
4�L + (� � ↵)(`� � `↵)

�
. (3.8)
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In what follows we will assume

0 < " <
8

� � ↵
. (3.9)

In particular, (3.9) implies that 1"n has the sign of �L , and hence the constraint
|n|  1 is fulfilled in [p, q] if it is satisfied in a suitable neighborhood of the extreme
points p and q.
The calibrability of a horizontal edge L will depend on its length and on the position
of its endpoints. We start by characterizing the calibrable horizontal edges with zero
'-curvature.

Proposition 3.4 (Horizontal edges with zero '-curvature). Let L = [p, q]⇥ {y}
be a horizontal edge with zero '-curvature, let `↵ , `� be the lengths defined in
(3.5), and let n0 2 {±1} be the given value of the Cahn-Hoffmann vector field at
the endpoints of L . Then the following hold:

(i) If ` = `↵ + `� < ", L is calibrable with velocity vL =
↵`↵+�`�

`↵+`�
if and only if

(ia) n0 = 1, and either g"(p) = �, g"(q) = ↵, or with an endpoint on "I↵,�;
(ib) n0 = �1, and either g"(p) = ↵, g"(q) = �, or with an endpoint on "I�,↵;

(ii) If ` � ", L is calibrable with velocity vL = ↵+�
2 if and only if

(iia) n0 = 1, and (p, y), (q, y) 2 "I↵,�;
(iib) n0 = �1, and (p, y), (q, y) 2 "I�,↵ .

Proof. We prove the case n0 = 1, the other one being similar. By (3.6), the unique
candidate field n is strictly increasing in every ↵ phase, and strictly decreasing
in every � phase, and, in order to satisfy the constraint |n|  1 on L , the edge
needs to be the union of three consecutive segments L = L� [ Lc [ L↵ , with
L� = [p, p + `�] ⇥ {y}, Lc = [p + `�, q � `↵] ⇥ {y}, L↵ = [q � `↵, q] ⇥ {y},
with p + `� , q � `↵ 2 "I�,↵ . If Lc = ;, then the constraint |n|  1 is satisfied on
L if and only if

�`�
� � ↵

2(`↵ + `�)
(` + `↵ � `�) = �`�`↵

� � ↵

(`↵ + `�)
� �2.

Under the assumption (3.9) this is always the case, since

(� � ↵)`↵`� 
8
"
`↵`�  4min{`↵, `�}  2(`↵ + `�),

proving (i).
On the other hand, if Lc 6= ;, by (3.8) we have

n(p + ") � n(p) =
"

2`
(� � ↵)(`� � `↵) = n(q) � n(q � "),
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and hence, since n(p) = n(q) = 1, the constraint |n|  1 is not satisfied if `↵ 6= `� .
Finally, if `↵ = `� , then

n0(x) =

8
><

>:

� � ↵

2
if g"(x) = ↵,

↵ � �

2
if g"(x) = �,

and a Canh-Hoffmann vector field with this derivative exists only if `↵ = `� = "/2,
otherwise

n
⇣
p + `� +

"

2

⌘
= 1+

� � ↵

2

⇣"

2
� `�

⌘
> 1.

In conclusion, L is calibrable with velocity vL = (↵ + �)/2 if and only if (p, y),
(q, y) 2 "I↵,� .

β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α

Figure 3.1. The calibrable edges in Propositions 3.7(i), 3.7(ii), and 3.4(ia).

Remark 3.5. If L = [xN , xN + �] ⇥ {y}, with y 2 R, � 2 (0, "), and xN defined
in (2.5), is a horizontal edge with zero '-curvature (see Figure 3.1, right), then L is
calibrable by Proposition 3.4(i). More precisely, if �  "/2, then g" = � on L , and
we can take n constant on L , so that L has constant velocity vL = �. On the other
hand, if � > "/2, then the field

n(x) = n(xN ) +
"
2� +

�
� � "

2
�
↵

�
(x � xN ) �

Z x

xN
g"

⇣ s
"

⌘
ds (3.10)

calibrates the edge L with velocity

vL =
"
2� +

�
� � "

2
�
↵

�
, � 2

⇣"

2
, "
⌘

. (3.11)

Concerning the edges with non zero '-curvature, the following result shows that
the edge is always calibrable when the curvature term is dominant.

Proposition 3.6. Every horizontal edge L such that

(C+) �L = 1, and ` + `↵ � `�  4/(� � ↵)
(C�) �L = �1, and ` � `↵ + `�  4/(� � ↵)

is calibrable with velocity vL given by (3.7).
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Proof. By (3.6), in both cases the candidate field n varies monotonically between
the two extreme values: in the case (C+) it is a increasing function from �1 to 1,
while in the case (C�) it is a decreasing function from 1 to �1. This ensures that
the constraint (3.2) is satisfied.

When the forcing term dominates the curvature term, the calibrability may fail
(see Proposition 3.10 below). Nevertheless, the edges with endpoints on suitable
interfaces are always calibrable, as we show in the following result.

Proposition 3.7. Let L = [p, q] ⇥ {y} be a horizontal edge with ` � ". Then the
following hold:

(i) If �L = 1, p 2 "I�,↵ , q 2 "I↵,� , then L is calibrable with velocity

vL =
2
`

+
↵ + �

2
�

(� � ↵)"

4`
;

(ii) If �L = �1, p 2 "I↵,� , q 2 "I�,↵ , then L is calibrable with velocity

vL = �
2
`

+
↵ + �

2
+

(� � ↵)"

4`
.

Proof. Assume that �L = 1, p 2 "I�,↵ , q 2 "I↵,� , so that n(p) = �1, n(q) = 1,
`↵ = "/2, and `� = 0. Then, by (3.6), we have that the candidate Cahn-Hoffmann
field n is increasing in [p, p + "

2 ], and, by (3.8) and (3.9),

n(p + ") � n(p) =
"

4`
(8� (� � ↵)") > 0.

Similarly, we have that n satisfies the constraint also in [q � ", q], and, again by
(3.8), we conclude that |n|  1 on L so that L is calibrable with velocity vL given
by (i). The proof of (ii) is similar.

Definition 3.8 (C-edges). We say that a horizontal edge L = [p, q] ⇥ {y} is a C-
edge if it is of one of the following types:

(C+) �L = 1, (p, y) 2 "I�,↵, (q, y) 2 "I↵,� ;
(C�) �L = �1, (p, y) 2 "I↵,�, (q, y) 2 "I�,↵;
(C0) �L = 0, and either n0 = 1, and (p, y), (q, y) 2 "I↵,� , or n0 = �1, and

(p, y), (q, y) 2 "I�,↵ .

By Propositions 3.4 and 3.7, every C-edge is calibrable.
Remark 3.9 (Symmetric C-edges). When L has positive '-curvature, and L =
[�xN , xN ] ⇥ {y}, with y 2 R and xN defined in (2.5), the velocity of L is given by

vL =
1
xN

+
↵ + �

2
�

(� � ↵)"

8xN
. (3.12)
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On the other hand, if L has negative '-curvature, and L = [�xN � "
2 , xN + "

2 ]⇥{y},
setting x = xN + "

2 , the velocity of L is given by

vL = �
1
x

+
↵ + �

2
+

(� � ↵)"

8x
. (3.13)

We now state some general results concerning the long edges with positive '-
curvature.

Σ

σ̃ ε/2 σ1

σ2

Figure 3.2. The calibrability set 6 in Proposition 3.10.

Proposition 3.10. Let L = [p, q] ⇥ {y} be a horizontal edge with positive '-
curvature, and such that ` + `↵ � `� > 4/(� � ↵). Then the following hold:

(i) If either g"(p) = �, or g"(q) = �, or p 2 "I↵,� , or q 2 "I�,↵ , then L is not
calibrable;

(ii) If g"(p) = g"(q) = ↵, let �1, �2 2 (0, "/2) be such that p+ "
2+�1 2 "I�,↵ and

q� "
2��2 2 "I↵,� , and let ˜̀ be the length of the interval [p+ "

2+�1, q� "
2��2].

Setting

m = "
� � ↵

(� � ↵)( ˜̀ + "
2 ) + 4

, h =
"

2
(� � ↵)( ˜̀ + "

2 ) � 4
(� � ↵)( ˜̀ + "

2 ) + 4
,

and

6 =

⇢
(�1, �2) 2 R2 : m�2 + h  �1 

1
m

�2 �
h
m

�
,

we have m 2 (0, 1), 6 \ [0, "/2]2 6= ;, and L is calibrable with velocity

vL =
2
`

+
↵ + �

2
+

� � ↵

2`

⇣"

2
� �1 � �2

⌘

if and only if (�1, �2) 2 6;
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(iii) If g"(p) = ↵, and q 2 "I↵,� (resp. p 2 "I�,↵ , and g"(q) = ↵), let � 2 (0, "
2 )

be such that p+� + "
2 2 "I�,↵ , let `⇤ be the length of the interval [p+ "

2+�, q]
(respectively, of [p, q � "

2 � � ]), and let

� ⇤ =
"

2
(� � ↵)(`⇤ + "

2 ) � 4
(� � ↵)(`⇤ � "

2 ) + 4
.

Then L is calibrable if and only if � � � ⇤.

Proof. If ` + `↵ � `� > 4/(� � ↵), by (3.6) the candidate Cahn-Hoffmann field
n is strictly decreasing in the � phase. Hence, under the assumptions in (i), n does
not satisfy the constraint |n|  1 at least near an endpoint, and L is not calibrable.

Assume now that both the endpoints belong to the ↵ phase, and let �1, �2 2
(0, "/2) be such that p + "

2 + �1 2 "I�,↵ and q � "
2 � �2 2 "I↵,� . Then, by (3.6),

we have

n
⇣
p +

"

2
+ �1

⌘
� n(p) = �1

✓
2
`

+
� � ↵

2`
(` + `� � `↵)

◆

+
"

2

✓
2
`

�
� � ↵

2`
(` + `↵ � `�)

◆
.

In this case we have `� � `↵ = "
2 � �1 � �2, and ` = ˜̀ + " + �1 + �2, so that

n
⇣
p +

"

2
+ �1

⌘
� n(p)

= �1

✓
2
`

+
� � ↵

2`

✓
˜̀ +

3
2
"

◆◆
+

"

2

✓
2
`

�
� � ↵

2`

⇣
˜̀ +

"

2
+ 2�1 + 2�2

⌘◆

=
1
2`

h
�1
⇣
4+ (� � ↵)

⇣
˜̀ +

"

2

⌘⌘
+

"

2

⇣
4� (� � ↵)

⇣
˜̀ +

"

2
+ 2�2

⌘⌘i
.

(3.14)

Hence, if �2 � �1 � m�2 + h, we have

n
⇣
q �

"

2
� �2

⌘
� n(q) � n

⇣
p +

"

2
+ �1

⌘
� n(p) � 0,

and n satisfies the constraint both in [p, p + "
2 + �1] and in [q � "

2 � �2, q]. By
Remark 3.3, we obtain that |n|  1 on L , and hence L is calibrable. By symmetry,
we obtain the same result when �1 � �2 � m�1 + h, and the conclusion follows.

Finally, we have that m�2 + h = �1 = 1
m�2 � h

m for �1 = �2 = �̃ , where

�̃ :=
"

2
(� � ↵)( ˜̀ + "

2 ) � 4
(� � ↵)( ˜̀ � "

2 ) + 4
, (3.15)

and �̃ 2 (0, "/2) under the assumption ` + `↵ � `� > 4/(� � ↵), so that 6 \
[0, "/2]2 6= ;.

The proof of (iii) follows the same arguments.
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Proposition 3.11. Let L = [p, q] ⇥ {y} be a horizontal edge with positive '-
curvature, and such that ` + `↵ � `� > 4/(� � ↵).

Assume that g"(p) = g"(q) = ↵, and that p+ "
2+� 2 "I�,↵ , q� "

2�� 2 "I↵,�

for a given � 2 (0, "/2), and let ˜̀ be the length of the interval [p+ "
2+�, q� "

2�� ].
Then L is calibrable if and only if � � �̃ , where �̃ is the value defined in (3.15).
Moreover, if � = �̃ , and n is the Cahn-Hoffmann vector field calibrating L , then

n(p) = n
⇣
p +

"

2
+ �̃

⌘
, n(q) = n

⇣
q �

"

2
� �̃

⌘
(3.16)

and

vL =
2
`
+

↵ + �

2
+

� � ↵

2`

⇣"

2
� 2�̃

⌘
=
2
˜̀
+

↵ + �

2
�

(� � ↵)"

4 ˜̀
=

↵�̃ + � "
2

�̃ + "
2

. (3.17)

Similarly, in the case (iii) of Proposition 3.10, when � = � ⇤, the edge L is cali-
brated by a Cahn-Hoffmann vector field n such that n(p) = n(p + "

2 + � ⇤), and

vL =
2
`

+
↵ + �

2
�

(� � ↵)� ⇤

2`
=
2
`⇤

+
↵ + �

2
�

(� � ↵)"

4`⇤
=

↵� ⇤ + � "
2

� ⇤ + "
2

. (3.18)

Proof. If g"(p) = g"(q) = ↵, and p + "
2 + � 2 "I�,↵ , q � "

2 � � 2 "I↵,� for a
given � 2 (0, "/2), then we are considering the case (ii) of Proposition 3.10 with
�1 = �2 = � . The calibrability condition � � �̃ then follows from the fact that
(�, � ) 2 6 \ [0, "/2]2 if and only if � 2 [�̃ , "/2].

Moreover, the first equality in (3.16) follows from (3.14) with �1 = �2 = �̃ ,
while the second equality can be obtained with a similar argument.

Finally, (3.17) and (3.18) can be checked by a direct computation.

For the reader’s convenience, we collect here the calibrability results in the case
of symmetric edges with positive '-curvature. In order to describe them, letting
xN = (N + 1/4)", N 2 N, we define N " 2 N by

⇣
2xN +

"

2

⌘
>

4
� � ↵

, for all N � N ", (3.19)

and �(N ) 2 (0, ") by

�(N ) =
xN (� � ↵)"

2+
⇣
2xN �

"

2

⌘ (� � ↵)

2

, (3.20)

then �(N ) > "/2 if and only if N � N ".
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Proposition 3.12 (Symmetric edges with positive '-curvature). Let

L = [�`/2, `/2] ⇥ {y} ` > 0 y 2 R,

be a horizontal edge with positive '-curvature, and consider the decomposition
`/2 = xN"(`) + �(`), with 0  �(`) < ", and

N"(`) =

�
`

2"
�
1
4

⌫
. (3.21)

Then the following hold:

(i) If N"(`) < N ", then the edge L is calibrable;
(ii) If N"(`) � N " then the edge L is calibrable if and only if �(`) � �(N"(`)).

Proof. Due to the very definition of N ", if N"(`) < N " then L satisfies condition
(C+) of Proposition 3.6, and hence it is calibrable.

On the other hand, if N"(`) � N ", then ` + `↵ � `� > 4/(� � ↵), and
�(N"(`)) = �̃ + "

2 , where �̃ is the calibrability threshold defined in (3.15). Then
(ii) follows from Proposition 3.11.

We now state the analog of Proposition 3.10 for long edges with negative '-
curvature.

Proposition 3.13. Let L = [p, q] ⇥ {y} be a horizontal edge with negative '-
curvature, and such that ` + `� � `↵ > 4/(� � ↵). Then the following hold:

(i) If either g"(p) = ↵, or g"(q) = ↵, or p 2 "I�,↵ , or q 2 "I↵,� , then L is not
calibrable;

(ii) If g"(p) = g"(q) = �, let �1, �2 2 (0, "/2) be such that p+ "
2+�1 2 "I↵,� and

q� "
2��2 2 "I�,↵ , and let ˜̀ be the length of the interval [p+ "

2+�1, q� "
2��2].

Then there exist m 2 (0, 1) and h > 0 such that L is calibrable with velocity

vL = �
2
`

+
↵ + �

2
�

� � ↵

2`

⇣"

2
� �1 � �2

⌘

if and only if (�1, �2) 2
�
m�2 + h  �1  1

m�2 � h
m
 
;

(iii) If g"(p) = �, and q 2 "I�,↵ (resp. p 2 "I↵,� , and g"(q) = �), let � 2
(0, "/2) be such that p + � + "

2 2 "I↵,� , let `⇤ be the length of the interval
[p + "

2 + �, q] (respectively, of [p, q � "
2 � � ]), and let

� ⇤ =
"

2
(� � ↵)(`⇤ + "

2 ) � 4
(� � ↵)(`⇤ � "

2 ) + 4
.

Then L is calibrable if and only if � � � ⇤.
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4. Effective motion as " ! 0

4.1. Evolution of rectangles

In this section we consider evolutions starting from rectangular sets with edges
parallel to coordinate axes. In what follows we will refer to them as “coordinate
rectangles”.

Theorem 4.1 (Effective motion of coordinate rectangles). Let R0 be a coordinate
rectangle, and let `1,0, `2,0 be the length of its horizontal and vertical edges, respec-
tively. For every " > 0, let R"

0 be a coordinate rectangle such that dH (R0, R"
0) < ".

Then there exists a variational crystalline curvature flow of R"
0 with forcing term

g". Moreover, every variational crystalline curvature flow E"(t) of R"
0 converges,

in the Hausdorff topology and locally uniformly in time, as " ! 0 to the coordi-
nate rectangle R(t) whose horizontal and vertical edges have lengths `1(t), `2(t)
solving the system of ODEs

8
<

:

`0
1 = �2 Hg(`2)

`0
2 = �

4
`1

� (↵ + �)
(4.1)

with initial datum (`1(0), `2(0)) = (`1,0, `2,0). The function Hg(`) : (0,+1) !
R is a truncation of the harmonic mean defined by

Hg(`) :=

8
>>>><

>>>>:

0 if `��
2
↵⌧

2
`
+g

�
=

1
Z 1

0

1
2/`2 + g(s)

ds
=

(2+↵`2)(2+�`2)

`2

✓
2+

↵ + �

2
`2

◆ otherwise. (4.2)

Remark 4.2. If we assume that the evolution E"(t) of a coordinate rectangle R"
0 is

a coordinate rectangle for t 2 [0, T ], and we denote by (x1(t), y1(t)), (x2(t), y1(t)),
(x2(t), y2(t)), (x1(t), y2(t)), with x1(t) < x2(t), and y1(t) > y2(t), the coordinates
of the vertices of E"(t), the evolution of these points is governed by the system of
ODEs 8

>>>>>>>>>><

>>>>>>>>>>:

x 0
1 =

2
y1 � y2

+ g"(x1)

x 0
2 = �

2
y1 � y2

� g"(x2)

y0
1 = �

2
x2 � x1

�
↵ + �

2
� h"(y1, y2)

y0
2 =

2
x2 � x1

+
↵ + �

2
+ h"(y1, y2)

(4.3)

in the domain D := {(x1, x2, y2, y2) : x1 < x2, y1 > y2}. The Lipschitz function
h" : {y1 < y2} ✓ R2 ! R takes into account the small remainder varying in
[�"/2, "/2] and appearing in (3.7).
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Applying the classical results of differential equations with discontinuous
right-hand side (see [22, Chapter 2]), we obtain the following properties for the
solutions:

(i) For every P0 2 D there exists a (Filippov) solution to (4.3) starting from P0;
(ii) For every P0 2 D \ {y1 � y2  �2/↵} there exists a unique local solution to

(4.3) starting from P0, and defined as long as it satisfies y1(t)� y2(t) < �2/↵;
(iii) If P0 2 D\ {y1� y2 > �2/↵}, the uniqueness of the solution starting from P0

fails if and only if either x1 or x2 belongs to the set of “unstable discontinuities”
U = {±(xN + "

2 ), N 2 N} (see (3.21) for the definition of xN ). If this does not
occur, then the solution is unique until the first time t0 for which either x1(t0)
or x2(t0) belong to U ;

(iv) If P0 2 D \ {y1 � y2 > �2/↵}, and x1 (respectively, x2) belongs to the set
of “stable discontinuities” S = {±xN , N 2 N}, then x 0

1(t) = 0 (respectively,
x 0
2(t) = 0) as long as the solution satisfies y1(t) � y2(t) > �2/↵.

Based on results of Section 3, a coordinate rectangle may not be calibrable, so that
we cannot expect the evolution to preserve the geometry of the initial datum. In
the proof of Theorem 4.1 we combine the previous properties of the solutions to
(4.3) with a careful description of why and how the geometry changes during the
evolution.

Proof of Theorem 4.1. We first assume that R0 is centered at the origin. Using the
notation

R(`1, `2) =


�

`1
2

,
`1
2

�
⇥


�

`2
2

,
`2
2

�
,

for this type of rectangles, R0 = R(`1,0, `2,0).
We also assume that R"

0 = R(2xN" , `2,0), where N" = N"(`1,0) is defined in
(3.21). In this case, recalling that the calibrability of a coordinate rectangle depends
only on the calibrability of its horizontal edges (see Section 3.1), we have that R"

0
is calibrable (see Remark 3.9), and the evolution starts according to (4.3).
Case 1 (homogenized velocities): `1,0 < 4/(� � ↵), `2,0  �2/↵. The verti-
cal edges of R"

0 = R(2xN" , `
"
2,0) are calibrable with velocity v"

2(0) � 0, and, by
Remark 3.9, the horizontal edges are also calibrable with velocity

v"
1(0) =

1
xN"

+
↵ + �

2
+

(↵ � �)"

8xN"

> 0.

Then, by Section 3.1, Proposition 3.6, and Remark 4.2(ii), the (unique) evolution
is given by shrinking coordinate rectangles R(`"

1(t)), `
"
2(t)), and it is governed by

system (4.3), or equivalently, by
8
>><

>>:

`"
1
0 = �

4
`"
2

� 2g
✓

`"
1
2"

◆

`"
2
0 = �

4
`"
1

� (↵ + �) �
(↵ � �)"

2`"
1

.

(4.4)
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In order to pass to the limit as " ! 0+ and to find the effective evolution, notice
that `"

i 2 (`i,�, `i,↵), for i = 1 or 2, where (`1,↵, `2,↵) (`1,�, `2,�) are the solution
to (2.3) with initial datum (2xN" , `

"
2,0), and forcing term � = ↵ and � = � respec-

tively. Hence, for T > 0, `"
i are equilipschitz in [0, T ]. Let (`1(t), `2(t)) be the

uniform limit of a suitable subsequence of (`"
1(t)), `

"
2(t)) in [0,T]. Since `i (t) are

a uniform limit of non-increasing functions, they are non-increasing and hence dif-
ferentiable almost everywhere in [0, T ]. Moreover, for t 2 (0, T ) and � > 0 such
that t + � < T , by the equilipschitz property of `"

2 we have `"
2(⌧ ) = `"

2(t) + O(� )
for ⌧ 2 [t, t + � ] uniformly for " small. Note that the velocity of each vertical side
at time ⌧ is then approximately equal to

2
`"
2(t)

+ g
✓

`1(⌧ )

2"

◆

up to O(� ). If we consider a subinterval (⌧1, ⌧2) of (t, t + � ) where g
⇣

`"
1(·)
2"

⌘
is

constant, we may write

⌧2 � ⌧1 = �
Z `"1(⌧2)

2

`"1(⌧1)
2

1
2

`"
2(t)

+ g
� s
2"
�ds + (`"

1(⌧2) � `"
1(⌧1))O(� ),

and hence, subdividing (t, t+� ) into such intervals and summing the corresponding
equalities, we obtain

� = �
Z `"1(t+� )

2

`"1(t)
2

1
2

`"
2(t)

+ g
� s
2"
�ds +

�
`"
1(t + � ) � `"

1(t)
�
O(� ).

Denoting by h(2/`2(t)) + gi the harmonic mean of s 7! (2/`2(t)) + g(s) for fixed
t , letting " ! 0 we deduce that

� = �
Z `1(t+� )

2

`1(t)
2

1
h(2/`2(t)) + gi

ds + o(� ),

or, in other terms that
`1(t + � ) � `1(t)

�
= �2

⌧
2

`2(t)
+ g

�
+ o(1). (4.5)

If t is a differentiability point for `1, from (4.5) it follows that `0
1(t)=�2h(2/`2(t))+

gi.
In conclusion, the effective evolution of the rectangle R(`1,0, `2,0) is given by

rectangles R(`1(t), `2(t)) satisfying the evolution law
8
>><

>>:

`0
1 = �2

⌧
2
`2

+ g
�

`0
2 = �

4
`1

� (↵ + �).

(4.6)

In this case all the edges move inwards until a finite extinction time.
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Case 2 (mesoscopic pinning): `2,0 � �2/↵. By Section 3.1, the vertical edges of
R"
0 = R(2xN" , `2,0) are calibrable with velocity v"

2(0) = 0. Moreover, by Proposi-
tion 3.7, the horizontal edges of R"

0 = (xN" , `2,0) are also calibrable with velocity

v"
1(0) =

1
xN"

+
↵ + �

2
+

(↵ � �)"

8xN"

.

If v"
1(0)  0, then the length of the vertical edges does not decrease and the (unique)

evolution at the mesoscopic scale is given by rectangles R"(`"
1(t), `

"
2(t)), t > 0,

where 8
<

:

`"
1
0 = 0

`"
2
0 = �

2
xN"

� (↵ + �) �
(↵ � �)"

4xN"

.

Taking the limit as " ! 0 we obtain that the effective evolution is given by
R(`1(t), `2(t)), t > 0, where

8
<

:

`0
1 = 0

`0
2 = �

4
`1,0

� (↵ + �).
(4.7)

Hence, if ↵ + � < 0, the rectangles R(�4/(↵ + �), `2) with `2,0 � �2/↵ are
unstable equilibria, while, if v0 = 4/`1,0 + (↵ + �) < 0, the rectangle expands in
the vertical direction with constant velocity v0, keeping the length of the horizontal
edges fixed.

If, instead, v0 > 0, then the horizontal edges start to move inward, so that
the length of the vertical edges decreases, and (4.7) describes the evolution for
t 2 [0, t], where

t = sup{t > 0 : `2(s)) � �2/↵ for all s 2 [0, t)}.

Starting from R(`1(t),�2/↵), the evolution is the one shown in Case 1 or 3, re-
spectively.
Case 3 (mesoscopic breaking): `1,0 � 4/(� � ↵), `2,0  �2/↵. By Section 3.1,
the vertical edges of R"

0 = R(2xN" , `2,0) are calibrable with velocity v2(0) � 0,
and, by Remark 3.9, the horizontal edges are calibrable with velocity

v"
1(0) =

1
xN"

+
↵ + �

2
+

(↵ � �)"

8xN"

.

By Proposition 3.12, the evolution is a rectangle, with decreasing length of the
horizontal edges `"

1(t), until the time t� > 0 such that `"
1(t�) = 2xN" + 2�(N" � 1),

where �(N" � 1) is the calibrability threshold given in (3.20).
Notice that the evolution cannot continue as a rectangle for t > t� , since the

horizontal edges would not be calibrable after the time t� . However, by Proposi-
tion 3.11, the Cahn-Hoffman vector field calibrating the horizontal edges at time t�
equals the one calibrating both the horizontal edges with positive '-curvature

E±
c := [�xN"�1, xN"�1] ⇥ {±`"

2(t�)/2}
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with velocity

v"
c =

1
xN"�1

+
↵ + �

2
+

(↵ � �)"

8xN"�1
,

and the horizontal edges with zero '-curvature

E±
l :=


�`1(t�)
2

,�xN"�1

�
⇥

⇢
±

`"
2(t�)
2

�

E±
r :=


xN"�1,

`1(t�)
2

�
⇥

⇢
±

`"
2(t�)
2

�

with the same velocity.

β α

+
l

β α β α β α β α β α β α β α β α β α β α β α β α β α

El
+

El
+(t)

Ec
+

Ec
+(t)

Er
+

Er
+(t)

t = td

t = td+

Figure 4.1. Breaking of the horizontal edge at t = t� .

Hence, we can continue the evolution for t > t� by breaking the horizontal edges
into three parts, that we denote by E±

l (t), E±
c (t) and E±

r (t) respectively, and in-
serting four vertical edges with zero '-curvature at the breaking points. In this way,
the evolving set becomes a coordinate polyrectangle P"(t) (see Figure 4.1).

Notice that, by symmetry, the lengths and the velocities of the edges E±
l (t)

and E±
r (t) are the same, and they will be denoted by `"

h(t) and v"
h(t), respectively.

By the discussion in Section 3.1 the small vertical edges with zero '-curvature
are pinned on the interfaces x = ±xN"�1, so that, by Remark 3.9, the long horizon-
tal edges with positive '-curvature E±

c (t) have constant length `"
1 = 2xN"�1, and

move with velocity v"
1(t) = v"

c .
By Proposition 3.4(i) (see also Remark 3.5), the small horizontal edges E±

l (t)
and E±

r (t) with zero '-curvature and length `"
h(t) 2 (0, "

2 + �(N")) move with
velocity v"

h(t) > v"
c (t) given by

v"
h(t) =

8
><

>:

� if `"
h(t) 2 (0, "/2)

1
`"
h(t)

⇣"

2
� +

⇣
`"
h(t) �

"

2

⌘
↵
⌘

if `"
h(t) 2 ("/2, "),
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reducing the length `"
2(t) of the long vertical edges with positive '-curvature

`"
2(t) = `"

2(t�) �
Z t

t�
v"
h(s) ds  `"

2(t�) � v"
c (t � t�).

On the other hand, the vertical long edges with positive '-curvature move inward
with velocity

v"
2(t) =

2
`"
2(t)

+ g" �
2

`"
2(t�) � v"

c (t � t�)
+ ↵

so that, if we denote by t1 the time when the vertical long edges with positive '-
curvature reach the interfaces x = ±xN"�1, we obtain

2" �
Z t1

t�

2
`"
2(t�) � v"

c (t � t�)
dt + ↵(t1 � t�) �

✓
2

`"
2(t�)

+ ↵

◆
(t1 � t�).

Hence, at t = t1 the evolution is a rectangle R(xN"�1, `
"
2(t1)) where

`"
2(t1) = `"

2(t�) � v"
c (t1 � t�) = `"

2(t�) + O("), " ! 0+.

The evolution then iterates this “breaking and recomposing” motion in such a way
that it can be approximated, in the Hausdorff topology and locally uniformly in
time, by a family of rectangles R( ˜̀"

1(t), ˜̀"
2(t)) satisfying (4.4), so that the effective

motion is a family of rectangles R(`1(t), `2(t)) governed by the evolution law (4.6).
The general results recalled in Remark 4.2 can be used to show that the effec-

tive evolution (4.1) does not depend on the choice of the approximating sequence
R"
0 of initial data.
Namely, in Case 1, any coordinate rectangle R"

0 is calibrable and the (unique)
evolution starting from R"

0 is the family of coordinate rectangles solving (4.3). This
evolution has a distance of order " from the one starting from R(2xN" , `2,0) uni-
formly in time, so that it converges, as " ! 0+ to the same effective evolution.

Similarly, in Case 3, we have that the evolution starting from R"
0 becomes

a rectangle with vertical edges with left endpoint on "I�,↵ and right endpoint on
"I↵,� in a time span of order ", possibly breaking and recomposing the horizontal
edges in the meanwhile. Then, the effective evolution of R0 is uniquely determined
by (4.6).

On the other hand, if `2,0 > �2/↵, then, by Remark 4.2(iii) and (iv), the
position of the vertical edges during the evolution is confined in the strip {x 2
[xN"�1, xN" ]}, with N" = N"(`

"
1,0). Hence, at a macroscopic level, the verti-

cal edges are pinned, and the effective evolution of R0 is uniquely determined by
(4.7).

System (4.1) is integrable, and its phase portrait is plotted in Figure 4.2. Notice
the pinning effect for long vertical edges, and the presence of a half line of nontrivial
equilibria for ↵ + � < 0.
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Figure 4.2. Phase portraits of (4.1) for ↵ + � = 0 (left), > 0 (center), < 0 (right).

4.2. Evolution of polyrectangles

We now extend the previous results to the more general class of coordinate polyrect-
angles; that is, those Lipschitz sets whose boundary is a closed polygonal curve with
edges parallel to the coordinate axes.

Given a coordinate polyrectangle E , in what follows we will denote by H0,
H+, and H� (respectively, V 0, V+, and V�) the sets of the horizontal (respectively,
vertical) edges of @E with zero, positive and negative '-curvature. Moreover we
set H = H0 [ H+ [ H�, and V = V 0 [ V+ [ V�.

In what follows ` will denote the length of the edge L .

Remark 4.3. Given a coordinate polyrectangle E , the description of the variational
crystalline curvature flow E"(t) with forcing term g" starting from E will be ob-
tained by combining the calibrability properties of the edges proved in Section 3
and information about solutions of a coupled system of ODEs solved by the coor-
dinates of the vertices of E(t) in any interval I in which the number of vertices of
E"(t) does not change.

More precisely, let (xi (t), yi (t)), i 2 {1, . . . , N }, be the coordinates of the
vertices of the polyrectangles E"(t), t 2 I , ordered clockwise in such a way
that

(x1, y1) = (xN+1, yN+1) x2k(t) = x2k+1(t)

y2k(t) = y2k�1(t) k 2

⇢
1, . . . ,

N
2

�
t 2 I,

and the edges of E"(t) are given by

Li (t) =

(
[xi (t), xi+1(t)] ⇥ {yi } for i odd
{xi } ⇥ [yi (t), yi+1(t)] for i even.
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Then (x1(t), . . . , xN (t), y1(t), . . . , yN (t)) is a solution in I to the system of ODEs
8
>><

>>:

x 0
2k = x 0

2k+1=�
2

y2k � y2k+1
�L2k � g"(x2k)

y0
2k = y0

2k+1=�
1

x2k � x2k�1

✓
2�L2k�1+

Z x2k

x2k�1
g"(s) ds

◆ k2

⇢
1, . . .

N
2

�
. (4.8)

The velocity field in (4.8) is discontinuous on the set

D := {(x1, . . . , xN , y1, . . . , yN ) : i 2 {1, . . . , N } exists, such that xi 2 "I},

so that the discontinuities only affect the motion of the vertical edges. We collect
here the main features of the solutions to (4.8) (see [22, Chapter 2]), written in terms
of motion of the edges of @E"(t), t 2 I . Since the system (4.8) is autonomous, it is
enough to discuss the properties of local solutions starting from given datum E .
(i) Pinning effect (stable discontinuities). Let `p > 0 be the pinning threshold
defined by

`p =

8
>>>><

>>>>:

�
2
↵

, if L 2 V+

0, if L 2 V 0

2
�

, if L 2 V�.

Then every vertical edge L 2 @E with ` > `p and such that either ⌫(L) = e1
and L 2 "I�,↵ or ⌫(L) = �e1 and L 2 "I↵,� is pinned during the evolution
E"(t) for every t > 0 such that `(t) � `p;

(ii) Transversality condition. The motion of a vertical edge L 2 V� [ V+ with
` < `p is uniquely determined until `(t) < `p;

(iii) Uniqueness condition (unstable discontinuities). The uniqueness of the local
solution starting from E fails if and only if there is a vertical edge L 2 V�[V+

with ` > `p and such that either ⌫(L) = e1 and L 2 "I↵,� or ⌫(L) = �e1 and
L 2 "I�,↵ (unstable edges). If this does not occur, the solution is unique until
the first time t0 when E"(t0) has a unstable edge.

A significant class of coordinate polyrectangles with a well-posed forced evolution
is the following (see Proposition 4.7 and Theorem 4.8 below).
Definition 4.4 (C-polyrectangles). Given " > 0, we say that a coordinate polyrect-
angle E is a C-polyrectangle if every horizontal edge of E is a C-edge (see Defini-
tion 3.8).
Remark 4.5. By Proposition 3.7, Proposition 3.4, and Remark 4.3, every C-poly-
rectangle is calibrable, with velocity of an edge L given by

vL =

8
>>>><

>>>>:

↵+�

2
+�L

✓
2
`
�

(��↵)"

4`

◆
L2H

2
`
�L+�" L2V+ [ V�, ` < `p

0 L2V 0, and L2V� [ V+ with `�`p,

(4.9)
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Figure 4.3. A C-polyrectangle with velocities of its edges (case ↵ + � > 0).

(see Figure 4.3), and the variational crystalline curvature flow with forcing term g"

of E starts following the rules (4.8). In particular, every edge L 2 V 0 is pinned, as
well as any edge L 2 V� [ V+ with length ` � `p.

Theorem 4.6 (Effective motion of coordinate polyrectangles). Let E0 be a coor-
dinate polyrectangle. For " > 0, let E"

0 be a coordinate polyrectangle such that
dH (E0, E"

0) < ". Then there exists a variational crystalline curvature flow with
forcing term g" starting from E"

0 . Moreover, there exists a family of coordinate
polyrectangles E(t) such that every variational crystalline curvature flow E"(t)
with forcing term g" starting from E"

0 converges to E(t) in the Hausdorff topology
and locally uniformly in t , for " ! 0.

Denoting by `(t) the length of an edge L(t) ✓ @E(t), the normal velocity
vL(t) of L(t) is given by

vL(t) =

8
>>>>>>>>><

>>>>>>>>>:

⌧
g +

2
`(t)

�
if L(t) 2 V+, and `(t) < �2/↵

⌧
g �

2
`(t)

�
if L(t) 2 V�, and `(t) < 2/�

0 for the other vertical edges
2

`(t)
�L +

↵ + �

2
if L(t) is horizontal.

(4.10)

The dynamics (4.10) is valid until `(t) > 0. If an edge vanishes at t = t0, the
evolution proceeds reinitializing the ODEs by starting from E(t0).

Proof. The existence of a variational crystalline curvature flow with forcing term g"

starting from a coordinate polyrectangle E"
0 and the fact that the effective evolution

does not depend on the choice of the approximating data can be obtained with
arguments similar to the ones proposed in detail in Section 4.1. We roughly sketch
here the main features of such an evolution starting from a C-polyrectangle E"

0.
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By Remark 4.5, the “long” vertical edges of @E"
0 with non zero '-curvature,

and all the vertical edges with zero '-curvature are pinned. The vertical edges in
V+ with length ` < �2/↵ move inward, while the vertical edges in V� with length
` < 2/� move outward.

By Proposition 3.4, every edge L 2 H0 with pinned vertices has velocity
(↵ + �)/2, while every edge L 2 H0 with an adjacent moving vertical edge breaks
instantaneously in a small part L" with length ", and a remaining part calibrated
with velocity (↵ + �)/2. During the evolution L" shrinks and disappears in a time
of order ", while the remaining part has pinned vertices and moves vertically with
velocity (↵ + �)/2.

Similarly, every edge L 2 H+ [ H� with pinned vertices has velocity given
by (4.9), while every edge L 2 H+ [ H� with an adjacent moving vertical edge
shrinks until the calibrability conditions of Propositions 3.10 and 3.13 hold, and
possibly it breaks following the rules of Proposition 3.11.

In any case, the possible “breaking and recomposing” motion occurs in a lapse
of time of order ", so that the evolution E"(t) can be approximated by a family of
C-polyrectangles Ẽ"(t) converging as " ! 0 to a coordinate polyrectangle E(t) in
Hausdorff topology and locally uniformly in time. The effective velocities (4.10)
of the edges of E(t) are obtained taking the limit, as " ! 0 in (4.9). In particular,
the arguments for getting the velocities of the “short” vertical edges are the same of
Case 1 in Section 4.1.

The variational crystalline curvature flow with forcing term g" starting from a
C-polyrectangle is unique and satisfies a comparison principle.
Proposition 4.7 (Uniqueness). Given " > 0, the variational crystalline curvature
flow E"(t) with forcing term g" starting from a C-polyrectangle E is unique.
Proof. By Remark 4.3(iii), uniqueness may fail if and only if there exists t0 > 0
such that @E(t0) has a unstable edge. We will show that this never occurs when the
initial datum E is a C-polyrectangle.

By Remarks 4.3 and 4.5, the evolution starts with all the vertical edges pinned
on interfaces in "I that are stable equilibria of the dynamics, except for the “short”
edges with nonzero '-curvature. Moreover, the evolution may generate, for t >
0 new vertical edges, due to the breaking phenomenon of the horizontal edges.
Nevertheless, every new vertical edge L belongs to V 0 and it is pinned on a stable
discontinuity of g".

Hence, if we assume by contradiction that there exists t0 > 0 such that @E(t0)
has a unstable edge, then it is the evolution L(t0) of a “short” edge (that is, L 2
V� [ V+ with ` < `p) enlarging during the evolution. More precisely, if we
assume that L(t0) 2 V+ and ⌫(L(t0)) = e1 (the other cases being similar), the
following properties should be satisfied:

L(t0) 2 "I↵,�, `(t0) > �2/↵,

and there exists � > 0 such that

g" = ↵ on L(t) for t 2 (t0 � �, t0), `(t0 � � ) < �2/↵ .
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Since @E(t0) needs to be calibrable, the horizontal edges adjacent to L(t0) have
either zero '-curvature, length "/2 and velocity �, or positive '-curvature, and
length satisfying `+`↵ �`�  4/(� �↵) (see Proposition 3.6), and hence velocity

v=
2
`

+
↵ + �

2
+

� � ↵

2`
(`� � `↵)=

1
2`

(4� (� � ↵)(` + `↵ � `�) + 2�`) > 0.

In both cases the horizontal edges adjacent to L(t0) have strictly positive velocity,
in contradiction with the fact that L(t) enlarges for t < t0 close enough to t0.

Theorem 4.8 (Comparison for forced flows). For a given " > 0, let E and F be
two C-polyrectangles such that E ✓ F , and let E"(t), F"(t) be the variational
crystalline curvature flow of E and F , respectively, with forcing term g". Then

(i) E"(t) ✓ F"(t) for every t;
(ii) The distance d"(t) between @E"(t) and @F"(t) satisfies

d"(t) � d"(0) for all t � 0, and d"(t1) � d"(t2) � " for all t1 � t2 > 0.

Proof. Given � > 0, let E"
� (t) be the variational crystalline curvature flow of E

with forcing term g" + � . Following the proof of the First Comparison Principle
in [25], mainly based on geometric arguments, we obtain that E"

� (t) ✓ F"(t).
Moreover, by Theorem 4.6, Proposition 4.7, and in [22, Theorem 2.8.2], we

infer that for every n 2 N there exists �n > 0 such that, for every t > 0, the evo-
lutions E"

�n (t) converge, as n ! +1, in the Hausdorff topology to the variational
crystalline curvature flow E"(t) with forcing term g" starting from E . Hence, (i)
follows from a passage to the limit for the inclusions E"

�n (t) ✓ F"(t).
In order to prove (ii), we underline that for every t > 0 the minimal distance

d(t) between @E"(t) and @F"(t) is attained at points joined by a segment parallel
to a coordinate axis, so that either E(t) + d(t)e1 ✓ F(t) or E(t) + d(t)e2 ✓ F(t).
On the other hand, since E is a C-polyrectangle, we have that, for every � 2 R,
E"(t)+� e2 is the variational crystalline curvature flowwith forcing term g" starting
from E + � e2, and, for every k 2 Z, E"(t) + k"e1 is the variational crystalline
curvature flow with forcing term g" starting from E + k" e1.

Let t1 � 0 be given. If E(t1)+ d(t1)e2 ✓ F(t1), then, by (i) and the invariance
of the flow under vertical translations, we have that E(t) + d(t1)e2 ✓ F(t), and
hence d"(t1) � d"(t), for every t � t1. If, instead, E(t1) + d(t1)e1 ✓ F(t1), with
the same argument we obtain that (ii) holds and that d"(t1) � d"(t) for every t � t1
if and only if d(t1) = k".

4.3. Evolution of more general sets

The macroscopic effect of the underlying oscillating forcing term g" on the crys-
talline curvature flow starting from any smooth, connected bounded set C0 may be
captured in the following way.
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For every " > 0, let C" be the set of all C-polyrectangles. For every E"(0) 2 C",
let E"(t) be the unique variational crystalline curvature flow with forcing term g"

starting from E"(0). We define the families of sets

C+
" (t) =

\

C0✓P"(0)
P"(0)2C"

P"(t), C�
" (t) =

[

Q"(0)✓C0
Q"(0)2C"

Q"(t),

and

C+(t) = lim sup
"!0+

C+
" (t) =

\

⌘>0

 
[

0<"<⌘

C+
" (t)

!

,

C�(t) = lim inf
"!0+

C�
" (t) =

[

⌘>0

 
\

0<"<⌘

C�
" (t)

!

.

By Theorem 4.8, for every P"(0), Q"(0) 2 C" such that Q"(0) ✓ C0 ✓ P"(0), the
evolutions satisfy Q"(t) ✓ P"(t) for every t � 0. Hence, we have C�

" (t) ✓ C+
" (t),

t � 0.
Moreover, denoting by P(t), Q(t) the effective evolution starting from coordi-

nate polyrectangles P(0), Q(0), and evolving with the law (4.10), by Theorem 4.6
we obtain that

[

Q(0)✓C0

Q(t) ✓ C�(t) ✓ C+(t) ✓
\

C0✓P(0)
P(t) t � 0.

Notice that C�(0) = C+(0) = C0. When C�(t) = C+(t) =: C(t) for t > 0, this
procedure defines the limit evolution starting from C0 and driven, at a mesoscopic
scale, by crystalline curvature flow with forcing term g".

If C0 is a bounded convex subset of R2 with nonempty interior, then C�(t) =
C+(t) for all t � 0, and we can explicitly describe the motion C(t) starting from
C0.

Approximation far from the “extreme points”: constant vertical shift. Let
⇠ 2 @C0 be such that ⌫(⇠) is not a coordinate vector. In this case, we can choose
approximating sequences of C-polyrectangles with all edges with zero '-curvature
in a suitable neighborhood of ⇠ (see Figure 4.4, left). The evolution by (4.10) of
such an approximation is the following: the vertical edges are pinned, while the
horizontal edges move with velocity (↵ + �)/2. At a macroscopic level, the effect
is a vertical motion of @C0 near ⇠ with velocity (↵ + �)/2 .

Approximation near the “extreme points”: flat evolution. Let ⇠ 2 @C0 be
such that ⌫(⇠) = ±e1. In this case, we can choose approximating sequences of
C-polyrectangles with one horizontal edge with positive '-curvature in a suitable
neighborhood of ⇠ . Then the evolution C(t), t > 0, has a horizontal edge L(t) with
length l(t)moving vertically with velocity 2/`(t)+(↵+�)/2. The same arguments
show that the evolution C(t), t > 0, has flat vertical edges “generated by” the points
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ξ

α+β
2

ξ

Figure 4.4. Approximation far from (left) and near to (right) an extreme point.

⇠ 2 @C0 be such that ⌫(⇠) = ±e2 and moving horizontally with velocity Hg(`(t))
(see (4.2)).

In conclusion, the effective evolution C(t) of a convex set C0 can be depicted
as follows.

• The arcs with zero '-curvature moves vertically with velocity (↵ + �)/2. We
denote by C1(t) the set obtained with this translation;

• There is an instantaneous generation of four flat edges parallel to the coordinate
axes and with the extreme points constrained on the set C1(t). The horizontal
edges moves vertically with velocity 2/` + (↵ + �)/2, while the vertical ones
moves horizontally with velocity Hg(`(t)).

Figure 4.5. Effective evolution of a circle.

For example, the effective evolution starting from a circle is depicted in Figure 4.5.
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J. Éc. Polytech. Math. 4 (2017), 633–660.

[18] A. CESARONI, M. NOVAGA and E. VALDINOCI, Curve shortening flow in heterogeneous
media, Interfaces Free Bound. 13 (2011), 485–505.

[19] A. CHAMBOLLE and M. NOVAGA, Approximation of the anisotropic mean curvature flow,
Math. Models Methods Appl. Sci. 17 (2007), 833–844.

[20] M. COLOMBO and M. GOBBINO, Passing to the limit in maximal slope curves: from a
regularized Perona-Malik equation to the total variation flow, Math. Models Methods Appl.
Sci. 22 (2012), 1250017.

[21] H. FEDERER, “Geometric Measure Theory”, Springer, Berlin, 1969.
[22] A. F. FILIPPOV, “Differential Equations with Discontinuous Righthand Sides”, Vol. 18 of

Mathematics and Its Applications. Dordrecht, The Netherlands, Kluwer Academic Publish-
ers, 1988.

[23] Y. GIGA, “Surface Evolution Equations. A Level set Approach”, Vol. 99 of Monographs in
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