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Iterated convolutions and endless Riemann surfaces

SHINGO KAMIMOTO AND DAVID SAUZIN

Abstract. We discuss a version of Écalle’s definition of resurgence, based on the
notion of endless continuability in the Borel plane. We relate this with the notion
of �-continuability, where � is a discrete filtered set or a discrete doubly filtered
set, and show how to construct a universal Riemann surface X� whose holomor-
phic functions are in one-to-one correspondence with �-continuable functions.
We then discuss the �-continuability of convolution products and give estimates
for iterated convolutions of the form '̂1 ⇤ · · · ⇤ '̂n . This allows us to handle non-
linear operations with resurgent series, e.g. substitution into a convergent power
series.

Mathematics Subject Classification (2010): 34M30 (primary); 40G10, 30B40
(secondary).

1. Introduction

In this article we deal with the following version of Écalle’s definition of resurgence:
Definition 1.1. A convergent power series '̂ 2 C{⇣ } is said to be endlessly con-
tinuable if, for every real L > 0, there exists a finite subset FL of C such that
the holomorphic germ at 0 defined by '̂ can be analytically continued along every
Lipschitz path � : [0, 1] ! C of length smaller than L such that � (0) = 0 and
�
�
(0, 1]

�
⇢ C \ FL . We denote by R̂ ⇢ C{⇣ } the space of endlessly continuable

functions.
Definition 1.2. A formal series '̃(z) =

P1
j=0 ' j z� j 2 C[[z�1]] is said to be resur-

gent if '̂(⇣ ) =
P1

j=1 ' j
⇣ j�1

( j�1)! is an endlessly continuable function.

In other words, the space of resurgent series is

R̃ := B�1(C� � R̂ ) ⇢ C
⇥
[z�1]

⇤
,

This work has been supported by Grant-in-Aid for JSPS Fellows Grant Number 15J06019, French
National Research Agency reference ANR-12-BS01-0017 and Laboratoire Hypathie A*Midex.
Received July 21, 2017; accepted in revised form March 30, 2018.
Published online March 2020.



178 SHINGO KAMIMOTO AND DAVID SAUZIN

where B : C[[z�1]] ! C� � C[[⇣ ]] is the formal Borel transform, defined by
B'̃ := '0� + '̂(⇣ ) in the notation of Definition 1.2.

We will also treat the more general case of functions which are “endlessly
continuable with respect to bounded direction variation”: we will define a space
R̂
dv
containing R̂ and, correspondingly, a space R̃

dv
containing R̃, but for the sake

of simplicity, in this introduction, we stick to the simpler situation of Definitions 1.1
and 1.2.

Note that the radius of convergence of an element of R̃ may be 0. As for the
elements of R̂, we will usually identify a convergent power series and the holo-
morphic germ that it defines at the origin of C, as well as the holomorphic function
which is thus defined near 0. Holomorphic germs with meromorphic or algebraic
analytic continuation are examples of endlessly continuable functions, but the func-
tions in R̂ can have a multiple-valued analytic continuation with a rich set of sin-
gularities.

The convolution product is defined as the Borel image of multiplication and
denoted by the symbol ⇤: for '̂,  ̂ 2 C[[⇣ ]], '̂ ⇤  ̂ := B(B�1'̂ · B�1 ̂), and � is
the convolution unit (obtained from (C[[⇣ ]], ⇤) by adjunction of unit). As is well
known, for convergent power series, convolution admits the integral representation

'̂ ⇤  ̂(⇣ ) =
Z ⇣

0
'̂(⇠) ̂(⇣ � ⇠) d⇠ (1.1)

for ⇣ in the intersection of the discs of convergence of '̂ and  ̂ .
Our aim is to study the analytic continuation of the convolution product of an

arbitrary number of endlessly continuable functions, to check its endless continu-
ability, and also to provide bounds, so as to be able to deal with nonlinear opera-
tions on resurgent series. A typical example of nonlinear operation is the substitu-
tion of one or several series without constant term '̃1, . . . , '̃r into a power series
F(w1, . . . , wr ), defined as

F('̃1, . . . , '̃r ) :=
X

k2Nr
ck '̃k11 · · · '̃krr (1.2)

for F =
P

k2Nr ck w
k1
1 · · ·wkr

r . One of our main results is:

Theorem 1.3. Let r � 1 be an integer. Then, for any convergent power series
F(w1, . . . , wr ) 2 C{w1, . . . , wr } and for any resurgent series '̃1, . . . , '̃r without
constant term, F('̃1, . . . , '̃r ) 2 R̃.

The proof of this result requires suitable bounds for the analytic continuation
of the Borel transform of each term in the right-hand side of (1.2). Along the way,
we will study the Riemann surfaces generated by endlessly continuable functions.
We will also prove similar results for the larger spaces R̂

dv
and R̃

dv
.
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Resurgence theory was developed in the early 1980s, with [9] and [11], and
has many mathematical applications in the study of holomorphic dynamical sys-
tems, analytic differential equations, WKB analysis, etc. (see the references e.g.
in [20]). More recently, there has been a burst of activity on the use of resurgence
in Theoretical Physics, in the context of matrix models, string theory, quantum field
theory and also quantum mechanics—see e.g. [1–3,5–8,12,16]. In almost all these
applications, it is an important fact that the space of resurgent series be stable under
nonlinear operations: such stability properties are useful, and at the same time they
account for the occurrence of resurgent series in concrete problems.

These stability properties were stated in a very general framework in [11], but
without detailed proofs, and the part of [4] which tackles this issue contains obscu-
rities and at least one mistake. It is thus our aim in this article to provide a rigorous
treatment of this question, at least in the slightly narrower context of endless con-
tinuability. The definitions of resurgence that we use for R̃ and R̃

dv
are indeed

more restrictive than Écalle’s most general definition [11]. In fact, our definition
of R̃

dv
is almost identical to the one used by Pham et al. in [4], and our definition

of R̃ is essentially equivalent to the definition used in [18], but the latter preprint has
flaws which induced us to develop the results of the present paper. These versions
of the definition of resurgence are sufficient for a large class of applications, which
virtually contains all the aforementioned ones—see for instance [13] for the details
concerning the case of nonlinear systems of differential or difference equations. The
advantage of the definitions based on endless continuability is that they allow for a
description of the location of the singularities in the Borel plane by means of dis-
crete filtered sets or discrete doubly filtered sets (defined in Sections 2.1 and 2.5);
the notion of discrete (doubly) filtered set, adapted from [4] and [18], is flexible
enough to allow for a control of the singularity structure of convolution products.

A more restrictive definition is used in [20] and [17] (see also [9]):

Definition 1.4. Let6 be a closed discrete subset ofC. A convergent power series '̂
is said to be 6-continuable if it can be analytically continued along any path which
starts in its disc of convergence and stays in C \ 6. The space of 6-continuable
functions is denoted by R̂6 .

This is clearly a particular case of Definition 1.1: any 6-continuable function is
endlessly continuable (take FL = {! 2 6 | |!|  L }). It is proved in [17] that,
if 60 and 600 are closed discrete subsets of C, and if also 6 := {!0 + !00 | !0 2
60, !00 2 600} is closed and discrete, then '̂ 2 R̂60,  ̂ 2 R̂600 ) '̂ ⇤  ̂ 2 R̂6 .
This is because in formula (1.1), heuristically, singular points tend to add to create
new singularities; so, the analytic continuation of '̂ ⇤  ̂ along a path which does
not stay close to the origin is possible provided the path avoids 6. In particular, if a
closed discrete set6 is closed under addition, then R̂6 is closed under convolution;
moreover, in this case, bounds for the analytic continuation of iterated convolutions
'̂1 ⇤ · · · ⇤ '̂n are given in [20], where an analogue of Theorem 1.3 is proved for
6-continuable functions.
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The notion of 6-continuability is sufficient to cover interesting applications,
e.g. differential equations of the saddle-node singularity type or difference equa-
tions like Abel’s equation for one-dimensional tangent-to-identity diffeomorphisms,
in which cases one may take for 6 a one-dimensional lattice of C. However, re-
flecting for a moment on the origin of resurgence in differential equations, one sees
that one cannot handle situations beyond a certain level of complexity without re-
placing 6-continuability by a more general notion like endless continuability. Let
us illustrate this point on two examples.

– The equation d'dz ��' = b(z), where b(z) is given in z�1C{z�1} and � 2 C⇤, has

a unique formal solution in C[[z�1]], namely '̃(z) := ���1
⇣
Id���1 d

dz

⌘�1
b,

whose Borel transform is '̂(⇣ ) = �(� + ⇣ )�1b̂(⇣ ); here, the Borel trans-
form b̂(⇣ ) of b(z) is entire, hence '̂ is meromorphic inC, with at worse a pole at
⇣ = �� and no singularity elsewhere. Therefore, heuristically, for a nonlinear
equation

d'
dz

� �' = b0(z) + b1(z)' + b2(z)'2 + · · ·

with b(z, w) =
P
bm(z)wm 2 z�1C{z�1, w} given, we may expect a formal

solution whose Borel transform '̂ has singularities at ⇣ = �n�, n 2 Z>0 (be-
cause, as an effect of the nonlinearity, the singular points tend to add), i.e. '̂ will
be 6-continuable with 6 = {��,�2�, . . .} (see [19] for a rigorous proof of
this), but in the multidimensional case, for a system of r coupled equations with
left-hand sides of the form d' j

dz � � j' j with �1, . . . , �r 2 C⇤, we may expect
that the Borel transforms '̂ j of the components of the formal solution have sin-
gularities at the points ⇣ = �(n1�1 + · · · + nr�r ), n 2 Z r

>0; this set of possible
singular points may fail to be closed and discrete (depending on the arithmeti-
cal properties of (�1, . . . , �r )), hence, in general, we cannot expect these Borel
transforms to be6-continuable for any6. Still, this does not prevent them from
being always endlessly continuable, as proved in [13].

– Another illustration of the need to go beyond 6-continuability stems from para-
metric resurgence [10]. Suppose that we are given a holomorphic function b(t)
globally defined on C, with isolated singularities ! 2 S ⇢ C, e.g. a meromor-
phic function, and consider the differential equation

d'
dt

� z�' = b(t), (1.3)

where � 2 C⇤ is fixed and z is a large complex parameter with respect to
which we consider perturbative expansions. It is easy to see that there is
a unique solution which is formal in z and analytic in t , namely '̃(z, t) :=
�
P1

k=0 �
�k�1z�k�1b(k)(t), and its Borel transform '̂(⇣, t) = ���1b(t+��1⇣ )

is singular at all points of the form ⇣t,! := �(�t + !), ! 2 S. Now, if we add
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to the right-hand side of (1.3) a perturbation which is nonlinear in ', we can ex-
pect to get a formal solution whose Borel transform possesses a rich set of sin-
gular points generated by the ⇣t,!’s, which might easily be too rich to allow for
6-continuability with any 6; however, we can still hope endless continuability.

These are good motivations to study endless continuable functions. As already
alluded to, we will use discrete filtered sets (d.f.s. for short) to work with them. A
d.f.s. is a family of sets � = (�L)L2R�0 , where each �L is a finite set; we will
define �-continuability when � is a d.f.s., thus extending Definition 1.4, and the
space of endlessly continuable functions will appear as the totality of�-continuable
functions for all possible d.f.s. This was already the approach of [4], and it was
used in [18] to prove that the convolution product of two endlessly continuable
functions is endlessly continuable, hence R̃ is a subring of C[[z�1]]. However, to
reach the conclusions of Theorem 1.3, we will need to give precise estimates on
the convolution product of an arbitrary number of endlessly continuable functions,
so as to prove the convergence of the series of holomorphic functions

P
ck '̂⇤k1

1 ⇤

· · · ⇤ '̂⇤kr
r (Borel transform of the right-hand side of (1.2)) and to check its endless

continuability. We will proceed similarly in the case of endless continuability with
respect to bounded direction variation, using discrete doubly filtered sets.

Notice that explicit bounds for iterated convolutions can be useful in them-
selves; in the context of 6-continuability, such bounds were obtained in [20] and
they were used in [14] in a study in WKB analysis, where the authors track the
analytic dependence upon parameters in the exponential of the Voros coefficient.

As another contribution to the study of endlessly continuable functions, we
will show how to contruct, for each discrete filtered set �, a universal Riemann
surface X� whose holomorphic functions are in one-to-one correspondence with
�-continuable functions.

The plan of the paper is as follows:

— Section 2 introduces discrete filtered sets, the corresponding �-continuable
functions and their Borel pre-images, the�-resurgent series, and discusses their
relation with Definitions 1.1 and 1.2. The case of discrete doubly filtered sets
and the spaces R̂

dv
and R̃

dv
is in Section 2.5.

— Section 3 discusses the notion of �-endless Riemann surface and shows how to
construct a universal object X� (Theorem 3.2).

— In Section 4, we state and prove Theorem 4.8 which gives precise estimates for
the convolution product of an arbitrary number of endlessly continuable func-
tions. We also show the analogous statement for functions which are endlessly
continuable with respect to bounded direction variation.

— Section 5 is devoted to applications of Theorem 4.8: the proof of Theorem 1.3
and even of a more general and more precise version, Theorem 5.2, and an
implicit resurgent function theorem, Theorem 5.3.

Some of the results presented here have been announced in [15].
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2. Discrete filtered sets and �-continuability

In this section we review the notions concerning discrete filtered sets (usually de-
noted by the letter �), the corresponding �-allowed paths and �-continuable func-
tions. The relation with endless continuability is established, and sums of discrete
filtered sets are defined in order to handle convolution of enlessly continuable func-
tions.

2.1. Discrete filtered sets

We first introduce the notion of discrete filtered sets which will be used to describe
singularity structure of endlessly continuable functions (the first part of the defini-
tion is adapted from [4] and [18]):
Definition 2.1. We use the notation R�0 = {� 2 R | � � 0}.

1) A discrete filtered set, or d.f.s. for short, is a family � = (�L)L2R�0 where
i) �L is a finite subset of C for each L;
ii) �L1 ✓ �L2 for L1  L2;
iii) there exists � > 0 such that �� = ;.
2 Let � and �0 be d.f.s. We write � ⇢ �0 if �L ⇢ �0

L for every L .
3 We call upper closure of a d.f.s. � the family of sets �̃ = (�̃)L2R�0 defined by

�̃L :=
\

">0
�L+" for L 2 R�0. (2.1)

It is easy to check that �̃ is a d.f.s. and � ⇢ �̃.

Example 2.2. Given a closed discrete subset 6 of C, the formula

�(6)L := {! 2 6 | |!|  L } for L 2 R�0

defines a d.f.s. �(6) which coincides with its upper closure.
From the definition of d.f.s., we find the following

Lemma 2.3. For any d.f.s. �, there exists a real sequence (Ln)n�0 such that 0 =
L0 < L1 < L2 < · · · and, for every integer n � 0,

Ln < L < Ln+1 ) �̃Ln = �̃L = �L .
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Proof. First note that (2.1) entails

�̃L =
\

">0
�̃L+" for every L 2 R�0 (2.2)

(because �L+" ⇢ �̃L+" ⇢ �̃L+2"). Consider the weakly order-preserving integer-
valued function L 2 R�0 7! N (L) := card �̃L . For each L the sequence k 7!
N (L + 1

k ) must be eventually constant, hence there exists "L > 0 such that, for
all L 0 2 (L , L + "L ], N (L 0) = N (L + "L), whence �̃L 0 = �̃L+"L , and in fact,
by (2.2), this holds also for L 0 = L . The conclusion follows from the fact that
R�0 =

G

k2Z
N�1(k) and each non-empty N�1(k) is convex, hence an interval,

which by the above must be left-closed and right-open, hence of the form [L , L 0)
or [L ,1).

Given a d.f.s. �, we set

S� :=
�
(�,!) 2 R ⇥ C | � � 0 and ! 2 ��

 
(2.3)

and denote by S� the closure of S� in R ⇥ C. We then call

M� :=
�
R ⇥ C

�
\ S� (open subset of R ⇥ C) (2.4)

the allowed open set associated with �.

Lemma 2.4. One has S� = S�̃ andM� =M�̃.

Proof. Suppose (�,!) 2 S�̃. Then ! 2 ��+1/k for each k � 1, hence (�+ 1
k ,!) 2

S�, whence (�,!) 2 S�.
Suppose (�,!) 2 S�. Then there exists a sequence (�k,!k)k�1 in S� which

converges to (�,!). If " > 0, then �k  �+" for k large enough, hence !k 2 ��+",
whence ! 2 ��+" (because a finite set is closed); therefore (�,!) 2 S�̃.

Therefore, S�̃ = S� = S�̃ andM�̃ =M�.

2.2. �-allowed paths

When dealing with a Lipschitz path � : [a, b] ! C, we denote by L(� ) its length.
We denote by5 the set of all Lipschitz paths � : [0, t⇤] ! C such that � (0) =

0, with some real t⇤ � 0 depending on � . Given such a � 2 5 and t 2 [0, t⇤], we
denote by

�|t := � |[0,t] 2 5

the restriction of � to the interval [0, t].
Notice that t 7! L(�|t ) is Lipschitz continuous on [0, t⇤] since � 0 exists a.e.

and is essentially bounded by Rademacher’s theorem.
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Definition 2.5. Given a d.f.s. �, we call �-allowed path any � 2 5 such that

�̃ (t) :=
�
L(�|t ), � (t)

�
2M� for all t .

We denote by5� the set of all �-allowed paths.
Notice that, given t⇤ � 0,

if t 2 [0, t⇤] 7! �̃ (t) =
�
�(t), � (t)

�
2 M� is a piecewise C1 path

such that �̃ (0) = (0, 0) and �0(t) = |� 0(t)| for a.e. t , then � 2 5�.
(2.5)

In view of Lemmas 2.3 and 2.4, we have the following characterization of �-
allowed paths:

Lemma 2.6. Let � be a d.f.s. Then 5� = 5�̃ and, given � 2 5, the followings
are equivalent:

1) � 2 5�;
2) � (t) 2 C \ �̃L(�|t ) for every t;
3) for every t , there exists n such that L(�|t ) < Ln+1 and � (t) 2 C \ �̃Ln

(using the notation of Lemma 2.3).

Proof. Obvious.

Notation 2.7. For L , � > 0, we set

M�,L
� :=

�
(�, ⇣ ) 2 R ⇥ C | dist

�
(�, ⇣ ),S�

�
� � and �  L

 
, (2.6)

5�,L� :=
�
� 2 5� |

�
L(�|t ), � (t)

�
2M�,L

� for all t
 
, (2.7)

where dist(· , ·) is the Euclidean distance in R ⇥ C ' R3.
Note that

M� =
[

�,L>0
M�,L

� , 5� =
[

�,L>0
5�,L� .

2.3. �-continuable functions and �-resurgent series

Definition 2.8. Given a d.f.s. �, we call �-continuable function a holomorphic
germ '̂ 2 C{⇣ } which can be analytically continued along any path � 2 5�. We
denote by R̂� the set of all �-continuable functions and define

R̃� := B�1�C� � R̂�

�
⇢ C

⇥
[z�1]

⇤

to be the set of �-resurgent series.
Remark 2.9. Given a closed discrete subset 6 of C, the 6-continuability in the
sense of Definition 1.4 is equivalent to the �(6)-continuability in the sense of
Definition 2.8 for the d.f.s. �(6) of Example 2.2.
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Remark 2.10. Observe that � ⇢ �0 implies S� ⇢ S�0 , henceM�0 ⇢ M� and
5�0 ⇢ 5�, therefore

� ⇢ �0 ) R̂� ⇢ R̂�0 .

Remark 2.11. Notice that, for the trivial d.f.s.� = ;, R̂; = O(C), henceO(C) ⇢

R̂� for every d.f.s. �, i.e. entire functions are always �-continuable. Consequently,
convergent series are always �-resurgent: C{z�1} ⇢ R̃�. However, R̂� = O(C)
does not imply � = ; (consider for instance the d.f.s. � defined by �L = ; for
0  L < 2 and �L = {1} for L � 2). In fact, one can show

R̂� = O(C) , 8L > 0, 9L 0 > L such that �L 0 ⇢ {! 2 C | |!| < L }.

Remark 2.12. In view of Lemma 2.6, we have R̂� = R̂�̃. Therefore, when deal-
ing with �-resurgence, we can always suppose that � coincides with its upper
closure (by replacing � with �̃).

We now show the relation between resurgence in the sense of Definition 1.2
and �-resurgence in the sense of Definition 2.8.
Theorem 2.13. A formal series '̃ 2 C[[z�1]] is resurgent if and only if there exists
a d.f.s. � such that '̃ is �-resurgent. In other words,

R̂ =
[

� d.f.s.
R̂�, R̃ =

[

� d.f.s.
R̃�. (2.8)

Before proving Theorem 2.13, we state a technical result.
Lemma 2.14. Suppose that we are given a germ '̂ 2 C{⇣ } that can be analytically
continued along a path � : [0, t⇤] ! C of 5, and that F is a finite subset of C.
Then, for each " > 0, there exists a path � ⇤ : [0, t⇤] ! C of5 such that

• � ⇤
�
(0, t⇤)

�
⇢ C \ F;

• L(� ⇤) < L(� ) + ";
• � ⇤(t⇤) = � (t⇤), the germ '̂ can be analytically continued along � ⇤ and the
analytic continuations along � and � ⇤ coincide.

Proof of Lemma 2.14. Without loss of generality, we can assume that �
�
[0, t⇤]

�
is

not reduced to {0} and that t 7! L(�|t ) is strictly increasing.
The analytic continuation assumption allows us to find a finite subdivision 0 =

t0 < · · · < tm = t⇤ of [0, t⇤] together with open discs 10, . . . ,1m
For each k � 1, let us pick sk 2 (tk�1, tk) such that �

�
[sk, tk]

�
⇢ 1k�1 \1k ;

increasing the value of sk if necessary, we can assume � (sk) /2 F . Let us also set
s0 := 0 and sm+1 := t⇤, so that

0  k  m )

8
>>>>><

>>>>>:

�
�
[sk, sk+1]

�
⇢ 1k

the analytic continuation of '̂ along �|sk is holomorphic in 1k

� (sk) /2 F except maybe if k = 0

� (sk+1) /2 F except maybe if k = m.
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We now define � ⇤ by specifying its restriction � ⇤|[sk ,sk+1] for each k so that it has
the same endpoints as � |[sk ,sk+1] and,

– if the open line segment S :=
�
� (sk), � (sk+1)

�
is contained in C \ F , then we

let � ⇤|[sk ,sk+1] start at � (sk) and end at � (sk+1) following S, by setting

� ⇤(t) := � (sk) +
t � sk

sk+1 � sk

�
� (sk+1) � � (sk)

�
for t 2 [sk, sk+1],

– if not, then S \ F = {!1, . . . ,!⌫} with ⌫ � 1 (depending on k); we pick ⇢ > 0
small enough so that

⇡⇢ < min
⇢
1
2
|!i � � (sk)|,

1
2
|!i � � (sk+1)|,

1
2
|! j � !i |,

"

⌫(m + 1)
| 1  i, j, ⌫, i 6= j

�

and we let � ⇤|[sk ,sk+1] follow S except that it circumvents each !i by following
a half-circle of radius ⇢ contained in 1k .

This way, � ⇤|[sk ,sk+1] stays in 1k ; the resulting path � ⇤ : [0, t⇤] ! C is thus a
path of analytic continuation for '̂ and the analytic continuations along � and � ⇤

coincide. On the other hand, the length of � ⇤|[sk ,sk+1] is < |� (sk) � � (sk+1)| +
"

m+1 , whereas the length of � |[sk ,sk+1] is � |� (sk) � � (sk+1)|, hence L(� ⇤) <
L(� ) + ".

Proof of Theorem 2.13. Suppose first that� is a d.f.s. and '̂ 2 R̂�. Then, for every
L > 0, '̂ meets the requirement of Definition 1.1 with FL = �̃L , hence '̂ 2 R̂.
Thus R̂� ⇢ R̂, which yields one inclusion in (2.8).

Suppose now '̂ 2 R̂. In view of Definition 1.1, the radius of convergence �
of '̂ is positive and, for each positive integer n, we can choose a finite set Fn such
that

the germ '̂ can be analytically continued along any path � : [0, 1]!C
of5 such that L(� ) < (n + 1)� and �

�
(0, 1]

�
⇢ C \ Fn .

(2.9)

Let F0 := ;. The property (2.9) holds for n = 0 too. For every real L � 0, we set

�L :=
n[

k=0
Fk with n := bL/�c.

One can check that � := (�L)L2R�0 is a d.f.s. which coincides with its upper
closure. We will show that '̂ 2 R̂�.
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Pick an arbitrary � : [0, 1] ! C such that � 2 5�. It is sufficient to prove
that '̂ can be analytically continued along � . Our assumption amounts to � (t) 2
C \ �L(�|t ) for each t 2 [0, 1]. Without loss of generality, we can assume that
�
�
[0, 1]

�
is not reduced to {0} and that t 7! L(�|t ) is strictly increasing. Let

N := bL(� )/�c.

We define a subdivision 0= t0 < t1 < · · · < tN 1 by the requirement L(�|tn ) = n�
and set

In := [tn, tn+1) for 0  n < N , IN := [tN , 1].

For each integer n such that 0  n  N ,

t 2 In ) n�  L(�|t ) < (n + 1)�, (2.10)

thus �L(�|t ) =
Sn

k=0 Fk , in particular

t 2 In ) � (t) 2 C \ Fn. (2.11)

Let us check by induction on n that '̂ can be analytically continued along �|t for
any t 2 In .

If t 2 I0, then �|t has length < � and the conclusion follows from (2.9).
Suppose now that 1  n  N and that the property holds for n� 1. Let t 2 In .

By (2.10)–(2.11), we have L(�|t ) < (n + 1)� and �
�
[tn, t]

�
⇢ C \ Fn .

– If �
�
(0, tn)

�
\ Fn is empty, then the conclusion follows from (2.9).

– If not, then, since C \ Fn is open, we can pick t⇤ < tn so that �
�
[t⇤, t]

�
⇢

C \ Fn , and the induction hypothesis shows that '̂ can be analytically con-
tinued along �|t⇤ . We then apply Lemma 2.14 to �|t⇤ with F = Fn and " =
(n + 1)� � L(�|t ): we get a path � ⇤ : [0, t⇤] ! C which defines the same
analytic continuation for '̂ as �|t⇤ , avoids Fn and has length < L(�|t⇤) + ".
The concatenation of � ⇤ with � |[t⇤,t] is a path �

⇤⇤ of length < (n + 1)� which
avoids Fn , so it is a path of analytic continuation for '̂ because of (2.9), and so
is � itself.

2.4. Sums of discrete filtered sets

It is easy to see that, if � and �0 are d.f.s., then the formula

(� ⇤�0)L

:= {!1+ !2 | !12�L1,!22�
0
L2, L1+ L2=L } [�L [�0

L for L2R�0
(2.12)

defines a d.f.s. � ⇤�0. We call it the sum of � and �0.
The proof of the following lemma is left to the reader.



188 SHINGO KAMIMOTO AND DAVID SAUZIN

Lemma 2.15. The law ⇤ on the set of all d.f.s. is commutative and associative. The
formula �⇤n := � ⇤ · · · ⇤�| {z }

n times

(for n � 1) defines an inductive system, which gives

rise to a d.f.s.
�⇤1 := lim

�!
n
�⇤n.

As shown in [4] and [18], the sum of d.f.s. is useful to study the convolution product:

Theorem 2.16 ([18]). Assume that � and �0 are d.f.s. and '̂ 2 R̂�,  ̂ 2 R̂�0 .
Then the convolution product '̂ ⇤  ̂ is � ⇤�0-continuable.

Remark 2.17. Note that the notion of 6-continuability in the sense of Defini-
tion 1.4 does not give such flexibility, because there are closed discrete sets 6
and 60 such that �(6) ⇤ �(60) 6= �(600) for any closed discrete 600 (take e.g.
6 = 60 = (Z>0

p
2) [ Z<0), and in fact there are 6-continuable functions '̂ such

that '̂ ⇤ '̂ is not 600-continuable for any 600.
In view of Theorem 2.13, a direct consequence of Theorem 2.16 is that the

space of endlessly continuable functions R̂ is stable under convolution, and the
space of resurgent formal series R̃ is a subring of the ring of formal seriesC[[z�1]].

Given '̃ 2 R̃� \ z�1C[[z�1]], Theorem 2.16 guarantees the �⇤k-resurgence
of '̃k for every integer k, hence its �⇤1-resurgence. This is a first step towards the
proof of the resurgence of F('̃) for F(w) =

P
ckwk 2 C{w}, i.e. Theorem 1.3

in the case r = 1, however some analysis is needed to prove the convergence ofP
ck '̃k in some appropriate topology. What we need is a precise estimate for the

convolution product of an arbitrary number of endlessly continuable functions, and
this will be the content of Theorem 4.8. In Section 5, the substitution problem will
be discussed in a more general setting, resulting in Theorem 5.2, which is more
general and more precise than Theorem 1.3.

2.5. Discrete doubly filtered sets and a more general definition of resurgence

We now define the spaces R̂
dv
and R̃

dv
which were alluded to in the introduction.

We first require the notion of “direction variation” of a C1+Lip path.
We denote by 5 dv the set of all C1 paths � belonging to 5, such that � 0

is Lipschitz and never vanishes. By Rademacher’s theorem, � 00 exists a.e. on the
interval of definition [0, t⇤] of � and is essentially bounded. We can thus define the
direction variation V (� ) of � 2 5 dv by

V (� ) :=
Z t⇤

0

�
�
�
�Im

� 00(t)
� 0(t)

�
�
�
� dt

(notice that one can write � 0(t) = |� 0(t)| ei✓(t) with a real-valued Lipschitz func-
tion ✓ , and then Im� 00(t)

� 0(t) = ✓ 0, hence V (� ) is nothing but the length of the path ✓).
Note that the function t 7! V (�|t ) is Lipschitz.
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Now, we introduce the notion of endlessly continuable functions with respect
to bounded direction variation:

Definition 2.18. A convergent power series '̂ 2 C{⇣ } is said to be endlessly con-
tinuable with respect to bounded direction variation (and we write '̂ 2 R̂

dv
) if, for

every real L ,M > 0, there exists a finite subset FL ,M of C such that '̂ can be ana-
lytically continued along every path � : [0, 1] ! C such that � 2 5 dv, L(� ) < L ,
V (� ) < M , and �

�
(0, 1]

�
⇢ C \ FL ,M .

We also set R̃
dv

:= B�1(C� � R̂
dv

). Note that R̂ ⇢ R̂
dv

⇢ C{⇣ } and
R̃ ⇢ R̃

dv
⇢ C[[z�1]].

Definition 2.19. A discrete doubly filtered set, or d.d.f.s. for short, is a family � =
(�L ,M)L ,M2R�0 that satisfies

i) �L ,M is a finite subset of C for each L and M;
ii) �L1,M1 ✓ �L2,M2 when L1  L2 and M1  M2;
iii) there exists � > 0 such that ��,M = ; for all M � 0.

Notice that a d.f.s. � can be regarded as a d.d.f.s. � dv by setting � dv
L ,M := �L for

L ,M � 0.
For a d.d.f.s. �, we set S� :=

�
(µ, �,!) 2 R2 ⇥ C | µ � 0, � � 0 and ! 2

��,µ
 
andM� :=

�
R2 ⇥ C

�
\ S�, where S� is the closure of S� in R2 ⇥ C. We

call �-allowed path any � 2 5 dv such that

�̃ dv(t) :=
�
V (�|t ), L(�|t ), � (t)

�
2M� for all t . (2.13)

We denote by 5 dv
� the set of all �-allowed paths. Finally, the set of �-continuable

functions (respectively �-resurgent series) is defined in the same way as in Defini-
tion 2.8, and denoted by R̂

dv
� (respectively R̃

dv
� ).

Arguing as for Theorem 2.13, one obtains

R̂
dv

=
[

� d.d.f.s.
R̂
dv
� , R̃

dv
=

[

� d.d.f.s.
R̃
dv
� . (2.14)

The sum � ⇤ �0 of two d.d.f.s. � and �0 is the d.d.f.s. defined by setting, for
L ,M 2 R�0,

(� ⇤�0)L ,M

:= {!1 + !2 | !1 2 �L1,M ,!2 2 �0
L2,M , L1 + L2 = L } [�L ,M [�0

L ,M .
(2.15)
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3. The endless Riemann surface associated with a d.f.s.

We introduce the notion of �-endless Riemann surfaces for a d.f.s. � as follows:
Definition 3.1. We call �-endless Riemann surface any triple (X, p, 0) such that
X is a connected Riemann surface, p : X ! C is a local biholomorphism, 0 2
p�1(0), and any path � : [0, 1] ! C of 5� has a lift � : [0, 1] ! X such that
� (0) = 0. A morphism of �-endless Riemann surfaces is a local biholomorphism
q : (X, p, 0) ! (X 0, p0, 00) that makes the following diagram commutative:

(X, 0) (X 0, 00)

(C, 0)

//

��

<

<

<

<

<

<

<

<

<

<

��⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

⇥

q

p p0

In this section we prove the existence of an initial object (X�, p�, 0�) in the cate-
gory of �-endless Riemann surfaces:

Theorem 3.2. There exists an �-endless Riemann surface (X�, p�, 0�) such that,
for any �-endless Riemann surface (X, p, 0), there is a unique morphism

q : (X�, p�, 0�) ! (X, p, 0).

The�-endless Riemann surface (X�, p�, 0�) is unique up to isomorphism and X�
is simply connected.

3.1. Construction of X�

We first define the “skeleton” of �:
Definition 3.3. Let V� ⇢

S1
n=1(C ⇥ Z)n be the set of vertices

v := ((!1, �1), · · · , (!n, �n)) 2 (C ⇥ Z)n

that satisfy the following conditions:

1) (!1, �1) = (0, 0) and (! j , � j ) 2 C ⇥ (Z \ {0}) for j � 2;
2) ! j 6= ! j+1 for j = 1, · · · , n � 1;

3) ! j 2 �̃L j (v) with L j (v) :=
P j�1

i=1 |!i+1 � !i | for j = 2, · · · , n.

Let E� ⇢ V� ⇥ V� be the set of edges e = (v0, v) that satisfy one of the following
conditions:

i) v = ((!1, �1), · · · , (!n, �n)) and v0 = ((!1, �1), · · · , (!n, �n), (!n+1,±1));
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ii) v = ((!1, �1), · · · , (!n, �n)) and v0 = ((!1, �1), · · · , (!n, �n + 1)) with
�n � 1;

iii) v = ((!1, �1), · · · , (!n, �n)) and v0 = ((!1, �1), · · · , (!n, �n � 1)) with
�n  �1.

We denote the directed tree diagram (V�, E�) by Sk� and call it skeleton of �.
Notation 3.4. For v 2 V� \ (C ⇥ Z)n, we set !(v) := !n and L(v) := Ln(v).

From the definition of Sk�, we find the following:

Lemma 3.5. For each v 2 V� \ {(0, 0)}, there exists a unique vertex v" 2 V� such
that (v, v") 2 E�.

 )
1

 2

3)  

1

2

3

′)

′)

 ′

 ′

 ′

 ′

Figure 3.1. The set Uv .

To each v 2 V� we assign a cut plane Uv , defined as the open set

Uv := C \
⇣
Cv [

[

v0!
i
v

Cv0!v

⌘
,

where
[

v0!
i
v

is the union over all the vertices v0 2 V� that have an edge (v0, v) 2 E�

of type i),

Cv :=

(
; when v = (0, 0)

{!n � s(!n � !n�1) | s 2 R�0} when v 6= (0, 0)

Cv0!v := {!n+1 + s(!n+1 � !n) | s 2 R�0}.
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We patch the Uv’s along the cuts according to the following rules:
Suppose first that (v0, v) is an edge of type i), with v0 = (v, (!n+1, �n+1)) 2

V�. To it, we assign a line segment or a half-line `v0!v as follows: If there ex-
ists u = (v, (!0

n+1,±1)) 2 V� such that !0
n+1 2 Cv0!v \ {!n+1}, take u(0) =

(v, (!
(0)
n+1,±1)) 2 V� so that |!(0)

n+1 � !n+1| gives the minimum of |!0
n+1 � !n+1|

for such vertices and assign an open line segment `v0!v := {!n+1 + s(!(0)
n+1 �

!n+1) | s 2 (0, 1)} to (v0, v). Otherwise, we assign the open half-line `v0!v :=
Cv0!v \ {!n+1} to (v0, v). Since each�L (L � 0) is finite, we can take a connected
neighborhood Uv0!v of `v0!v so that

Uv0!v \ `v0!v = U+
v0!v [U�

v0!v and U±
v0!v ⇢ Uv \Uv0, (3.1)

where
U±

v0!v
:= {⇣ 2 Uv0!v | ±Im(⇣ · ⇣ 0) > 0 for ⇣ 0 2 `v0!v}.

Then, if �n+1 = 1, we glue Uv and Uv0 along U�
v0!v , whereas if �n+1 = �1 we

glue them along U+
v0!v .

Suppose now that (v0, v) is an edge of type ii) or iii). As in the case of i),
if there exists u = (v, (!0

n+1,±1)) 2 V� such that !0
n+1 2 Cv \ {!n}, then we

take u(0) = (v, (!
(0)
n+1,±1)) 2 V� so that |!(0)

n+1 � !n| is minimum and assign
`v0!v := {!n + s(!(0)

n+1 � !n) | s 2 (0, 1)} to (v0, v). Otherwise, we assign
`v0!v := Cv \ {!n} to (v0, v). Then, we take a connected neighborhood Uv0!v

of `v0!v satisfying (3.1), and glue Uv and Uv0 along U�
v0!v in case ii), and along

U+
v0!v in case iii).
Patching the Uv’s and the Uv0!v’s according to the above rules, we obtain a

Riemann surface X�, in which we denote by 0� the point corresponding to 0 2
U(0,0). The map p� : X� ! C is naturally defined using the affine coordinate of
Uv or Uv0!v .

Let Ue, `e (e 2 E�) and Uv (v 2 V�) respectively denote the subsets of X�
defined by Ue, `e and Uv . Notice that each ⇣ 2 X� belongs to one of the `e’s or
Uv’s (e 2 E� or v 2 V�). Therefore, we have the following decomposition of X�:

X� =
G

v2V�

Uv t
G

e2E�

`e.

  )
(0)

 

+

 

--

′
′

′

Figure 3.2. The set Uv0!v .
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Definition 3.6. We define a function L : X� ! R�0 by the following formula:

L(⇣ ) := L(v) + |p(⇣ ) � !(v)| when ⇣ 2 Uv t `v!v" .

We call L(⇣ ) the canonical distance of ⇣ from 0�.
We obtain from the construction of L the following:

Lemma 3.7. The function L : X� ! R�0 is continuous and satisfies the following
inequality for every Lipschitz path � : [0, 1] ! X� such that � (0) = 0�:

L(� (t))  L(�|t ) for t 2 [0, 1],

where � := p � � .
We now show the fundamental properties of X�.

Lemma 3.8. The Riemann surface X� constructed above is simply connected.
Proof. We first note that, since Sk� is connected, X� is path-connected. Let � :
[0, 1] ! X� be a path such that � (0) = � (1). Since the image of � is a compact set
in X�, we can take a finite number of vertices {v j }

p
j=1 ⇢ V� and edges {e j }

q
j=1 ⇢

E� so that v1 = (0, 0) and the image of � is covered by {Uv j }
p
j=1 and {Uej }

q
j=1.

Since each of {v j }
p
j=2 and {e j }

q
j=1 has a path to v1 that contains it, interpolating

finitely many of the vertices and the edges if necessary, we may assume that the
diagramfSk defined by {v j }

p
j=1 and {e j }

q
j=1 is connected in Sk�. Now, let U be the

union of {Uv j }
p
j=1 and {Uej }

q
j=1. Since all of the open sets are simply connected

and fSk is acyclic, we can inductively confirm using van Kampen’s theorem that
U is simply connected. Therefore, the path � is contracted to the point 0�. This
proves the simple connectedness of X�.

Lemma 3.9. The Riemann surface X� constructed above is �-endless.

Proof. Take an arbitrary �-allowed path � and �, L > 0 so that � 2 5�,L� . Let
V �,L� denote the set of vertices v = ((!1, �1), · · · , (!n, �n)) 2 V� that satisfy

L�(v) := Ln(v) +
nX

j=2
(|� j | � 1)�  L

and set E�,L� := {(v, v") 2 E� | v 2 V �,L� }. Notice that V �,L� and E�,L� are finite.
We set for " > 0 and v 2 V �,L�

U �,L ,"
v :=

n
⇣ 2 Uv | inf

(v0,v)2E�
|⇣ � !(v0)| � �, D"⇣ ⇢ Uv

o
\ DL�L�(v)

!(v) ,

where Dr
⇣ := {⇣̃ 2 C | |⇣̃ � ⇣ |  r} for ⇣ 2 C, r > 0. We also set for " > 0 and

(v, v") 2 E�,L�
U �,L ,"

v!v"
:=

n
⇣ 2 Uv!v" | min

j=1,2
|⇣ � !̃ j | � �, inf

⇣̃2`v!v"

|⇣ � ⇣̃ |  "
o

\ DL�L�(v")

!(v) ,
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where !̃1 := !(v) and !̃2 is the other endpoint of `v!v" if it exists and !̃2 := !(v)

otherwise. Since E�,L� is a finite set, we can take " > 0 sufficiently small so that
D"⇣ ⇢ Uv!v" for all ⇣ 2 U �,L ,"

v!v"
and (v, v") 2 E�,L� . We fix such a number " > 0.

Now, let I be the maximal interval such that the restriction of � to I has a lift
� on X�. Obviously, I 6= ; and I is open. Assume that I = [0, a) for a 2 (0, 1].
We take b 2 (0, a) so that L(�|a) � L(�|b) < ". Then, notice that, since � 2 5�,L�
and �|b has a lift on X�, � (b) is in U �,L ,"

v for v 2 V �,L� or U �,L ,"
e for e 2 E�,L� .

Since D"� (b) ⇢ Uv (respectively, D"� (b) ⇢ Ue) when � (b) 2 U �,L ,"
v (respectively,

� (b) 2 U �,L ,"
e ), we obtain a lift of � |[0,a] by concatenating � |b and � |[b,a] in the

coordinate. This contradicts the maximality of I , and hence, I = [0, 1].

3.2. Proof of Theorem 3.2

We first show the following:

Lemma 3.10. For all " > 0 and ⇣ 2 X�, there exists an �-allowed path � such
that L(� ) < L(⇣ ) + " and its lift � on X� satisfies � (0) = 0� and � (1) = ⇣ .

Proof. Let ⇣ 2 Uv for v = ((!1, �1), · · · , (!n, �n)). We consider a polygonal
curve P0⇣ obtained by connecting line segments [! j ,! j+1] ( j = 1, · · · , n), where
we set !n+1 := p�(⇣ ) for the sake of notational simplicity. Now, collect all the
points ! j,k on (! j ,! j+1) such that (L j,k,!) 2 S�, where L j,k := L j (v)+|! j,k�
! j |. Since

S� \ {� 2 R�0 | |�|  L} ⇥ C is written for each L > 0 as the union
of a finite number of line segments of the form {� 2 R�0 | L̃  � 
L} ⇥ {!} (L̃ > 0,! 2 C),

(3.2)

there are at most finitely many such points. We order ! j and ! j,k so that L j (v) and
L j,k increase along the order and denote the sequence by (!0

1,!
0
2,· · ·,!

0
n0).We set

L 0
j :=

P j�1
i=1 |!0

i+1 �!0
i |.We extend v to v0 = ((!0

1, �
0
1), · · · , (!0

n0, �
0
n0)) by setting

� 0
j = 1 (respectively, � 0

j = �1) when (!0
j , L

0
j ) = (!i,k, Li,k) for some i, k and

�i+1 � 1 (respectively, �i+1  �1). Then, in view of (3.2), we can take � > 0 so
that

{(L 0
j + |⇣ 0 � !0

j | + �, ⇣ 0) | ⇣ 0 2 (!0
j ,!

0
j+1)} \ S� = ;,

{(L 0
j + �, ⇣ 0) | 0 < |⇣ 0 � !0

j | < �} \ S� = ;

hold for j = 1, · · · , n0. Let !0
j,� (respectively, !

0
j,+) be the intersection point of

[!0
j�1,!

0
j ] (respectively, [!0

j ,!
0
j+1]) and C

"0

!0
j

:= {⇣ 0 2 C | |⇣ 0 � !0
j | = "0} for

sufficiently small "0 > 0. We replace the part [!0
j,�,!0

j ] [ [!0
j ,!

0
j,+] of ` with a

path that goes anti-clockwise (respectively, clockwise) alongC"0
!0
j
from !0

j,� to !
0
j,+
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+1

+1

+1

+1

+1

+1

+1

1wj+1

wj,2

wj,1 wj,1

wj

wj+2

wj+1

wj

(a) (b)

-

Figure 3.3.

and turns around !0
j (|�

0
j | � 1)-times when � 0

j � 1 (respectively, when � 0
j  �1).

Let P"0⇣ denote a path obtained from P0⇣ by the modification. Then, P
"0

⇣ defines an

�-allowed path and its lift P"0⇣ on X� satisfies the conditions. Further, by taking "
0

sufficiently small so that 2⇡"0
Pn0

j=2 |� 0
j | < ", we find L(P"0⇣ ) < L(⇣ ) + ", hence

one can take � = P"0⇣ . When ⇣ 2 `e for an edge e = (v, v") 2 E�, we can

construct such a path P"0⇣ 2 5� by totally the same discussion.

Notice that, since the sequence v0 in the proof of Lemma 3.10 is uniquely
determined by ⇣ 2 X�, the choice of the path P"

0

⇣ depends only on the radius "0

of the circles C"0
!0
j
. Further, from the construction of the path P"0⇣ , we can extend

Lemma 3.10 as follows:

Lemma 3.11. For all " > 0 and ⇣ 2 X�, there exist a neighborhood U ⇣ of ⇣ and,

for "0 small enough, a continuous deformation Q"0
⇣ ,⇣ 0 2 5� (⇣ 0 2 U ⇣ ) of the path

� = P"0⇣ constructed in the proof of Lemma 3.10 such that L(Q"0
⇣ ,⇣ 0) < L(⇣ 0) + 2"

for each ⇣ 0 2 U ⇣ and the lift Q"
0

⇣ ,⇣ 0 on X� satisfies Q"
0

⇣ ,⇣ 0(0) = 0 and Q"0
⇣ ,⇣ 0(1) = ⇣ 0.

Indeed, the deformation of P"0⇣ is concretely given as follows:

– When ⇣ 2 Uv for v 2 V�, taking a neighborhood U ⇣ ⇢ Uv of ⇣ sufficiently
small, we find that the family of the paths P"0

⇣ 0 (⇣ 0 2 U ⇣ ) constructed in the proof
of Lemma 3.10 gives such a deformation.
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– When ⇣ 2 `e for e 2 E�, we can take a neighborhood U ⇣ ⇢ Ue of ⇣ so that
[!0

n0,+(⇣ 0), p�(⇣ 0)] ⇢ Ue for all ⇣ 0 2 U ⇣ , where !0
n0,+(⇣ 0) is the intersection

point of [!0
n0, p�(⇣ 0)] and C"0

!0
n0
. Define a deformation Q"0

⇣ ,⇣ 0 (⇣ 0 2 Ue) of P"
0

⇣

by continuously varying the arc of C"0
!0
n0
from !0

n0,� to !0
n0,+(⇣ 0) and the line

segment [!0
n0,+(⇣ 0), p�(⇣ 0)] and fixing the other part of P"0⇣ . Then, shrinkingU ⇣

if necessary, we find that Q"0
⇣ ,⇣ 0 satisfies Q"

0

⇣ ,⇣ 0 2 5� and L(Q"0
⇣ ,⇣ 0) < L(⇣ 0)+2"

for each ⇣ 0 2 U ⇣ .

Beware that, when the edge (v, v") is of type i), Q"0
⇣ ,⇣ 0 is different from P"0

⇣ 0 for ⇣ 2

`v!v"
and ⇣ 0 2 U ⇣ \Uv"

. On the other hand, Q"0
⇣ ,⇣ 0 = P"0

⇣ 0 holds for ⇣ 0 2 U ⇣ \Uv .

When the edge (v, v") is of type ii) or iii), Q"0
⇣ ,⇣ 0 = P"0

⇣ 0 holds for ⇣ 2 `v!v"
and

⇣ 0 2 U ⇣ .

Let (X, p, 0) be an �-endless Riemann surface. For each ⇣ 2 X�, take � 2
5� such that � (1) = ⇣ and let � X be its lift on X . Then, define a map q : X� ! X
by q(⇣ ) = � X (1). We now show the well-definedness of q. For that purpose, it
suffices to prove the following:

Proposition 3.12. Let �0, �1 2 5� such that � 0(1) = � 1(1). Then, there exists a
continuous family (Hs)s2[0,1] of �-allowed paths satisfying the conditions:

1. Hs(0) = 0 and Hs(1) = �0(1) for all s 2 [0, 1];
2. Hj = � j for j = 0, 1.

The proof of Proposition 3.12 is reduced to the following:

Lemma 3.13. For each � 2 5� and "0 > 0 sufficiently small, there exists a con-
tinuous family (H̃s)s2[0,1] of �-allowed paths satisfying the following conditions:

1. L
�
H̃s

�
 L(�|s) and H̃ s(1) = � (s) for all s 2 [0, 1];

2. H̃s = P"0� (s) for s = 0, 1.

Notice that, since � (0) = 0�, P"
0

� (0) is the constant map P
"0

� (0) = 0.

Reduction of Proposition 3.12 to Lemma 3.13. For each � 2 5� and s 2 (0, 1],
define Hs using H̃s constructed in Lemma 3.13 as follows:

Hs(t) :=

(
H̃s(t/s) when t 2 [0, s]
� (t) when t 2 [s, 1].

It extends continuously to s = 0 and gives a continuous family (Hs)s2[0,1] of
�-allowed paths satisfying the assumption in Proposition 3.12 with �0 = �

and �1 = P"0� (1).
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Now, let �0 and �1 be the �-allowed paths satisfying the assumption in Propo-
sition 3.12. Applying the above discussion to each of �0 and �1, we obtain two
families of �-allowed paths connecting them to P"0� 0(1)

and, concatenating the de-

formations at P"0� 0(1)
, we obtain a deformation (Hs)s2[0,1] satisfying the conditions

in Proposition 3.12.

Proof of Lemma 3.13. Take �, L > 0 so that � 2 5�,L� . We first show the follow-
ing:

When � (t0) 2 Uv!(0,0) for t0 2 (0, 1] and v = ((0, 0), (!2, �2)), the
following estimate holds for t 2 [t0, 1]:

L(� (t)) +
q

|!2|2 + �2 � |!2|  L(�|t ).

(3.3)

Notice that, since � 2 5�,L� , the length L(�|t0) of �|t0 must be longer than that of the
polygonal curve C obtained by concatenating the line segments [0,!2 + �ei✓ ] and
[!2+ �ei✓ , � (t0)], where ✓ = arg(!2)��2⇡/2. Then, we find that, for an arbitrary
" > 0, taking "0 > 0 sufficiently small, the path �̃ "0 obtained by concatenating the
paths P"0� (t0) and � |[t0,1] satisfies �̃ "

0
2 5�, �̃ "

0
(t) = � (t) and L(�̃ "

0

|t )  L(�̃ 0|t ) + "

for t 2 [t0, 1]. Therefore, we have

L(� (t))  L(�̃ 0|t ) for t 2 [t0, 1] .

Since L(C) �
p

|!2|2 + �2 + |� (t0) � !2|, we find

L(�|t ) = L(�̃ 0|t ) + L(�|t0) � L([0, � (t0)]) � L(� (t)) +
q

|!2|2 + �2 � |!2|

holds for t 2 [t0, 1], and hence, we obtain (3.3).
Now, we shall construct (Hs)s2[0,1]. Let " > 0 be given. We assign the path

P"
0
t
� (t) ("0t > 0) to each t 2 [0, 1] and take a neighborhood U� (t) of � (t) and the

deformation Q"
0
t
� (t),⇣ 0 (⇣ 0 2 U� (t)) of P

"0t
� (t) constructed in Lemma 3.11. Then, we

can cover [0, 1] by a finite number of intervals I j = [a j , b j ] ( j = 1, 2, · · · , k)
satisfying the following conditions:

– The interior I �j of I j satisfies I
�
j1 \ I �j2 6= ; when | j1� j2|  1 and I j1 \ I j2 = ;

otherwise;
– There exists t j 2 I j such that t j < t j+1 for j = 1, · · · , k � 1 and � (I j ) ⇢
U� (t j ).
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Notice that, since U� (t) is taken for each t 2 [0, 1] so that it is contained in one of
the charts Uv (v 2 V�) or Ue (e 2 E�), one of the followings holds:

– � (t j ) 2 Uv and � (I j ) ⇢ Uv (v 2 V�);
– � (t j ) 2 `e and � (I j ) ⇢ Ue (e 2 E�).

We set "0 = min
j

{"0t j | � (t j ) /2 U (0,0)}. Then, P"
0

� (t j ) and its deformation Q
"0

� (t j ),⇣ 0

(⇣ 0 2 U� (t j )) also satisfy the conditions in Lemma 3.10 and Lemma 3.11. Let
JE ⇢ {1, · · · , k} denote the set of suffixes satisfying the condition that there exists
e 2 E� such that � (t j ) 2 `e and let j0 be the minimum of JE . Shrinking the
neighborhood U� (t) for each t 2 [0, 1] at the first, we may assume without loss of
generality that,

– |� (t) � � (t j )|  " for t 2 I j and j = 1, · · · , k;
– if j , j + 1 2 JE , there exists an edge e 2 E� such that � (t j ), � (t j+1) 2 `e.

Recall that, from the construction of Q"0
⇣ ,⇣ 0 ,

Q"
0

� (t j ),� (t) = Q"
0

� (t j+1),� (t) for t 2 I j \ I j+1

except for the cases where there exists an edge e = (v, v") 2 E� of the type i) such
that

– � (t j ) 2 Ue and � (t j+1) 2 Uv"
;

– � (t j ) 2 Uv"
and � (t j+1) 2 Ue.

In the first case, the difference between Q"0� (t j ),� (t) and Q
"0

� (t j+1),� (t) is the part from

!t (v") to � (t), where !t (v") is the intersection point of C"0!(v") and [!(v"), � (t)]:
Let !e,i (i = 0, · · · ,m + 1) be the points on the line segment [!(v"),!(v)]
satisfying the conditions (Le,i ,!e,i ) 2 S� and Le,i < Le,i+1, where Le,i :=
L(v")+|!e,i �!(v")|. Then, the part of Q"0� (t j ),� (t) from !

t (v") to � (t) is given by

concatenating the arcs of C"0!e,i (i = 0, · · · ,m+1), the intervals of the line segment
[!(v"),!(v)] and [!t (v), � (t)], where !t (v) is the intersection point of C"0!(v) and
[!(v), � (t)]. (See Figure 3.4 (a).) On the other hand, Q"0� (t j+1),� (t) goes directly
from !t (v") to � (t). (See Figure 3.4 (d).)

Now, let !ti,+ (respectively !ti,�) be the intersection point of C
"0
!e,i and

[!t (v"),!t (v)] that is the closer to !t (v) (respectively !t (v")). While t moves
on I j \ I j+1, we first deform the part of Q"0� (t j ),� (t) from !t (v") to !t (v) to the

line segment [!t (v"),!t (v)] by shrinking the part of Q"0� (t j ),� (t) from !
t
i,� to !

t
i,+

(respectively from !ti,+ to !ti+1,�) to the line segment [!ti,�,!ti,+] (respectively
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[!ti,+,!ti+1,�]) for each i . (See Figure 3.4 (b) and (c).) Then, further shrink-
ing the polygonal line given by concatenating [!t (v"),!t (v)] and [!t (v), � (t)] to
the line segment [!t (v"), � (t)], we obtain a continuous family of �-allowed paths�
H̃s

�
s2[t j ,t j+1]

satisfying the following conditions:

– H̃s = Q"0� (t j ),� (s) when s 2 [t j , t j+1] \ I j+1,

– H̃s = Q"0� (t j+1),� (s) when s 2 [t j , t j+1] \ I j ,

– L
�
H̃s

�
 L

�
Q"0� (t j ),� (s)

�
and H̃ s(1) = � (s) when s 2 I j \ I j+1.

we,2

we,1

we,0

(a) (b) (c) (d)

g(t)

Figure 3.4.

For the second case, we can also construct a continuous family of �-allowed paths�
H̃s

�
s2[t j ,t j+1]

satisfying the first and the second conditions above and

– L
�
H̃s

�
 L

�
Q"0� (t j+1),� (s)

�
and H̃ s(1) = � (s) when s 2 I j \ I j+1.

Then, we can continuously extend H̃s to [0, 1] by interpolating it by Q"0� (t j ),� (s) so
that it satisfies

L
�
H̃s

�
 max

j

�
L
�
Q"

0

� (t j ),� (s)
�

| s 2 I j
 
and H̃ s(1) = � (s) for all

s 2 [0, 1].

(3.4)

Since I j0 is taken so that |� (t) � � (t j0)|  " holds on I j0 , applying (3.3) with
t0 = t j0 , we have the following estimates:

L(� (t)) +
q

|!2|2 + �2 � |!2| � "  L(�|t ) for t 2 [a j0, 1].

On the other hand, since � (t) 2 U (0,0) for t 2 [0, a j0], we find L
�
Q"0� (t j ),� (t)

�
=

L(� (t)) holds for t 2 I j and j < j0 from the construction of Q"0
⇣ ,⇣ 0 . Therefore,
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taking " > 0 sufficiently small so that

3" 
q

|!2|2 + �2 � |!2|,

we obtain the following estimates from Lemma 3.10 and (3.4):

L
�
H̃s

�
 L(�|s) for s 2 [0, 1].

Finally, from the construction of H̃s , we find that H̃s satisfies H̃s = P"0� (s) for
s=0, 1.

Since p� = p � q and p is isomorphic near 0, all the maps q : X� ! X must
coincide near 0�, and hence, uniqueness of q follows from the uniqueness of the
analytic continuation of q. Finally, X� is unique up to isomorphism because X� is
an initial object in the category of �-endless Riemann surfaces.

3.3. Supplement to the properties of X�

Let OX denote the sheaf of holomorphic functions on a Riemann surface X and
consider the natural morphism p⇤

� : p�1
� OC ! OX� induced by p� : X� ! C.

Since X� is simply connected, we obtain the following:

Proposition 3.14. Let '̂ 2 OC,0. Then the followings are equivalent:

i) '̂ 2 OC,0 is �-continuable;
ii) p⇤

�'̂ 2 OX�,0� can be analytically continued along any path on X�;
iii) p⇤

�'̂ 2 OX�,0� can be extended to 0(X�,OX�).

Therefore, we find
p⇤
� : R̂�

⇠
�! 0(X�,OX�).

Notation 3.15. For L , � > 0, using5�,L� of (2.7), we define a compact subset K �,L�
of X� by

K �,L� :=
�
⇣ 2 X� | 9� 2 5�,L� such that ⇣ = � (1)

 
. (3.5)

Notice that X� is exhausted by (K �,L� )�,L>0. Therefore, the family of seminorms
k · k�,L� (�, L > 0) defined by

k f̂ k�,L� := sup
⇣2K �,L�

| f̂ (⇣ )| for f̂ 2 0(X�,OX�)

induces a structure of Fréchet space on 0(X�,OX�).
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Definition 3.16. We introduce a structure of Fréchet space on R̃� by a family of
seminorms k · k�,L� (�, L > 0) defined by

k '̃ k�,L� := |'0| + k p⇤
�'̂ k�,L� for '̃ 2 R̃�,

where B('̃) = '0� + '̂ 2 C� � R̂�.

Let �0 be a d.f.s. such that � ⇢ �0. Since 5�0 ⇢ 5�, X� is �0-endless.
Therefore, Theorem 3.2 yields a morphism

q : (X�0, p�0, 0�0) ! (X�, p�, 0�),

which induces a morphism q⇤ : q�1OX� ! OX�0 . Since q(K �,L�0 ) ⇢ K �,L� , we
have

k q⇤ f̂ k�,L�0  k f̂ k�,L� for f̂ 2 0(X�,OX�),

and hence,
k '̃ k�,L�0  k '̃ k�,L� for '̃ 2 R̃�.

In view of Theorem 4.8 below, the product map R̃�⇥R̃�0 ! R̃�⇤�0 is continuous
and hence, when � ⇤� = �, R̃� is a Fréchet algebra.

3.4. The endless Riemann surface associated with a d.d.f.s.

In this section we discuss the construction of the endless Riemann surfaces associ-
ated with an arbitrary d.d.f.s. �. Let us first define the skeleton of �:
Definition 3.17. Let V� ⇢

S1
n=1(C ⇥ Z)n be the set of vertices

v := ((!1, �1), · · · , (!n, �n)) 2 (C ⇥ Z)n

that satisfy the conditions 1) and 2) in Definition 3.3 and

30)
�
Mj (v), L j (v),! j

�
2 S� for j = 2, · · · , n,

with L j (v) :=
P j�1

i=1 |!i+1 � !i | ( j = 2, · · · , n),

Mj (v) :=

8
><

>:

0 ( j = 2)
j�1X

i=2

�
Ai (v) + 2⇡(|�i | � 1)

�
( j = 3, · · · , n)

and
Ai (v) :=

⇢
|✓i | if ✓i�i � 0
2⇡ � |✓i | if ✓i�i < 0,

where
✓i := arg

!i+1 � !i

!i � !i�1
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is taken so that ✓i 2 (�⇡,⇡]. Let E� ⇢ V� ⇥ V� be the set of edges e = (v0, v)
that satisfy one of the conditions i) ⇠ iii) in Definition 3.3. We denote the directed
tree diagram (V�, E�) by Sk� and call it skeleton of �.

Now, assigning a cut plane Uv (respectively an open set Ue) to each v 2 V�
(respectively each e 2 E� of type i)) defined by totally the same way with Section
3.1 and patching them as in Section 3.1, we obtain an initial object (X�, p�, 0�) in
the category of�-endless Riemann surfaces associated with a d.d.f.s.�. We denote
the lift of � 2 5 dv

� on X� by � .

4. Estimates for the analytic continuation of iterated convolutions

In this section our aim is to prove the following theorem, which is the analytical
core of our study of the convolution product of endlessly continuable functions.

Theorem 4.1. Let �, L > 0 be real numbers. Then there exist c, �0 > 0 such
that, for every d.f.s. � such that �4� = ;, for every integer n � 1 and for every
f̂1, . . . , f̂n 2 R̂�, the function 1 ⇤ f̂1 ⇤ · · · ⇤ f̂n (which is known to belong to R̂�⇤n )
satisfies

�
� p⇤
�⇤n

�
1 ⇤ f̂1 ⇤ · · · ⇤ f̂n

�
(⇣ )

�
�


cn

n!
sup

L1+···+Ln=L

�
� p⇤

� f̂1
�
��0,L1
�

· · ·
�
� p⇤

� f̂n
�
��0,Ln
�

for ⇣ 2 K �,L�⇤n
(4.1)

(with notation (3.5)).

Using the Cauchy inequality, the identity d
d⇣ (1 ⇤ f̂1 ⇤ · · · ⇤ f̂n) = f̂1 ⇤ · · · ⇤ f̂n

and the inverse Borel transform, one easily deduces the following:

Corollary 4.2. Let �, L > 0 be real numbers. Then there exist c, �0, L 0 > 0 such
that, for every d.f.s. � such that �4� = ;, for every integer n � 1 and for every
f̃1, . . . , f̃n 2 R̃� without constant term, the formal series f̃1 · · · f̃n (which is known
to belong to R̃�⇤n ) satisfies

�
� f̃1 · · · f̃n

�
��,L
�⇤n 

cn+1

n!
�
� f̃1

�
��0,L 0

�
· · ·

�
� f̃n

�
��0,L 0

�
.

In fact, one can cover the case f̂1 2 R̂�1 , . . . , f̂n 2 R̂�n with different d.f.s.’s
�1, . . . ,�n as well—see Theorem 4.8—, but we only give details for the case of
one d.f.s. so as to lighten the presentation.
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4.1. Notation and preliminaries

We fix an integer n � 1 and a d.f.s. �. In view of Remark 2.12, without loss of
generality, we can suppose that � coincides with its upper closure:

� = �̃. (4.2)

Let ⇢ > 0 be such that �3⇢ = ;. We set

U := { ⇣ 2 C | |⇣ | < 3⇢ }.

For each ⇣ 2 U , the path �⇣ : t 2 [0, 1] 7! t⇣ is �-allowed and hence has a lift �
⇣

on X� starting at 0�. Then L(⇣ ) := �
⇣
(1) defines a holomorphic function on U

and induces an isomorphism

L : U ⇠
�! U , where U := L(U) ⇢ X�, (4.3)

such that p� � L = Id.
Let us denote by 1n the n-dimensional simplex

1n := { (s1, . . . , sn) 2 Rn
�0 | s1 + · · · + sn  1 }

with the standard orientation, and by [1n] 2 En(Rn) the corresponding integration
current. For ⇣ 2 U , we define a map ED(⇣ ) on a neighbourhood of 1n in Rn by

ED(⇣ ) : Es = (s1, . . . , sn) 7! ED(⇣, Es ) :=
�
L(s1⇣ ), . . . ,L(sn⇣ )

�
2 Un ⇢ Xn�

and denote by ED(⇣ )#[1n] 2 En(Xn�) the push-forward of [1n] by ED(⇣ ). (See [20]
for the notations and notions related to integration currents.)

As in [20], our starting point will be

Lemma 4.3. Let f̂1, . . . , f̂n 2 R̂� and � := (p⇤
� f̂1)

�
⇣ 1

�
· · · (p⇤

� f̂n)
�
⇣ n

�
d⇣ 1 ^

· · · ^ d⇣ n , where we denote by d⇣ 1 ^ · · · ^ d⇣ n the pullback by p⌦n
� : Xn� ! Cn of

the n-form d⇣1 ^ · · · ^ d⇣n . Then

1 ⇤ f̂1 ⇤ · · · ⇤ f̂n(⇣ ) = ED(⇣ )#[1n](�) for ⇣ 2 U .

Proof. This is just another way of writing the formula

1 ⇤ f̂1 ⇤ · · · ⇤ f̂n(⇣ ) = ⇣ n
Z

1n

f̂1(⇣ s1) · · · f̂n(⇣ sn) ds1 · · · dsn. (4.4)

See [20] for the details.

Notation 4.4. We set

N (⇣ ) :=
��
⇣ 1, . . . , ⇣ n

�
2 Xn� | p�

�
⇣ 1

�
+ · · · + p�

�
⇣ n

�
= ⇣

 
for ⇣ 2 C, (4.5)

N j :=
��
⇣ 1, . . . , ⇣ n

�
2 Xn� | ⇣ j = 0�

 
for 1  j  n. (4.6)
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4.2. � -adapted deformations of the identity

Let us consider a path � : [0, 1] ! C in 5�⇤n for which there exists a 2 (0, 1)
such that

� (t) = t
a� (a) for t 2 [0, a], |� (a)| = ⇢, � |[a,1] is C1. (4.7)

We now introduce the notion of � -adapted deformation of the identity, which is a
slight generalization of the � -adapted origin-fixing isotopies which appear in [20,
Definition 5.1].

Definition 4.5. A � -adapted deformation of the identity is a family (9t )t2[a,1] of
maps

9t : V ! Xn�, for t 2 [a, 1],

where V := ED
�
� (a)

�
(1n) ⇢ Xn�, such that 9a = Id, the map

�
t, E⇣

�
2 [a, 1] ⇥

V 7! 9t
�
E⇣
�

2 Xn� is locally Lipschitz, and for any t 2 [a, 1] and j = 1, . . . , n,

9t
�
V \N

�
� (a)

��
⇢ N

�
� (t)

�
, 9t

�
V \N j

�
⇢ N j (4.8)

(with the notation (4.5)–(4.6)).

Let � denote the lift of � in X� starting at 0�. The analytic continuation
along � of a convolution product can be obtained as follows:

Proposition 4.6 ([20]). If (9t )t2[a,1] is a � -adapted deformation of the identity,
then

p⇤
�⇤n

�
1 ⇤ f̂1 ⇤ · · · ⇤ f̂n

��
� (t)

�
=

�
9t � ED

�
� (a)

��
#[1n](�) for t 2 [a, 1] (4.9)

for any f̂1, . . . , f̂n 2 R̂�, with � as in Lemma 4.3.

Proof. See the proof of [20, Proposition 5.2].

Note that the right-hand side of (4.9) must be interpreted as

Z

1n

(p⇤
� f̂1)

�
⇣ t1

�
· · · (p⇤

� f̂n)
�
⇣ tn

�
det


@⇣ ti
@s j

�

1i, jn
ds1 · · · dsn (4.10)

with the notation
�
⇣ t1, . . . , ⇣

t
n

�
:= 9t � ED

�
� (a)

�
, ⇣ ti := p� � ⇣ ti for 1  i  n (4.11)

(each function ⇣ ti is Lipschitz on 1n and Rademacher’s theorem ensures that it is
differentiable almost everywhere on 1n , with bounded partial derivatives).
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The following is the key estimate:

Theorem 4.7. Let � 2 (0, ⇢) and L > 0. Let � 2 5�,L�⇤n satisfy (4.7) and let

�0(t) := ⇢ e�2
p
2��1L(� |[a,t]), c(t) := ⇢ e3�

�1L(� |[a,t]) for t 2 [a, 1]. (4.12)

Then there exists a � -adapted deformation of the identity (9t )t2[a,1] such that

9t � ED
�
� (a)

�
(1n)⇢

[

L1+···+Ln=L(�|t )

K �
0(t),L1
� ⇥· · ·⇥K �

0(t),Ln
� for t 2 [a, 1]. (4.13)

Further, with the notation (4.11), the partial derivatives @⇣ ti /@s j satisfy

�
�
� det

h@⇣ ti
@s j

i

1i, jn

�
�
� 

�
c(t)

�n a.e. on 1n (4.14)

for each t 2 [a, 1].

Proof that Theorem 4.7 implies Theorem 4.1. Let �, L > 0. We will show that (4.1)
holds with

�0 := min
�
�, ⇢ e�4

p
2(1+��1L)

 
, c := max

�
2⇢, ⇢ e6(1+�

�1L)
 
, where ⇢ := 4

3�.

Let � be a d.f.s. such that �4� = ;. Without loss of generality we may suppose
that � = �̃.

In view of formula (4.4), the inequality (4.1) holds for ⇣ 2 K �,L�⇤n \U , whereU
is defined by (4.3), because the Lebesgue measure of 1n is 1/n!.

Let ⇣ 2 K �,L�⇤n \ U . We can write ⇣ = � (1) with � 2 5�,L�⇤n , assuming
without loss of generality that the first two conditions in (4.7) hold. If the third
condition in (4.7) does not hold, i.e. if � |[a,1] is not C1, then we use a sequence
of paths �k 2 5

�/2,L+�
�⇤n such that �k |[0,a] = � |[0,a], �k(1) = � (1), �k |[a,1] is

C1 and supt2[a,1] |� (t) � �k(t)| ! 0 as k ! 1; for k large enough one has
�k(1) = ⇣ , thus one then can replace � by �k . Hence we can assume that (4.7)
holds. Let (9t )[t2[a,1]] denote the � -adapted deformation of the identity provided
by Theorem 4.7, possibly with (�, L) replaced by (�/2, L + �). Proposition 4.6
shows that, for f̂1, . . . , f̂n 2 R̂�, p⇤

�⇤n
�
1⇤ f̂1 ⇤ · · ·⇤ f̂n

�
(⇣ ) can be written as (4.10)

with t = 1, and (4.13)–(4.14) then show that (4.1) holds because �0(t) � �0 and
c(1)  c. Therefore, (4.1) holds on K �,L�⇤n \U too.

In fact, in view of the proof of Theorem 4.7 given below, one can give the
following generalization of Theorem 4.1:

Theorem 4.8. Let �, L be positive real numbers. Then there exist positive con-
stants c and �0 such that, for every integer n � 1 and for all d.f.s. �1, . . . ,�n
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with � j,4� = ; ( j = 1, · · · , n) and f̂1 2 R̂�1, . . . , f̂n 2 R̂�n , the function
1 ⇤ f̂1 ⇤ · · · ⇤ f̂n belongs to R̂�, where � := �1 ⇤ · · · ⇤�n , and

�
�p⇤
�

�
1 ⇤ f̂1 ⇤ · · · ⇤ f̂n

�
(⇣ )

�
�


cn

n!
sup

L1+···+Ln=L

�
� p⇤

�1
f̂1
�
��0,L1
�1

· · ·
�
� p⇤

�n f̂n
�
��0,Ln
�n

for ⇣ 2 K �,L� .
(4.15)

4.3. Proof of Theorem 4.7

We suppose that we are given n � 1, ⇢ > 0, a d.f.s. � such that � = �̃ and
�3⇢ = ;, and � 2 5�,L�⇤n satisfying (4.7) with � 2 (0, ⇢) and L > 0.

We set �̃ (t) :=
�
L(�|t ), � (t)

�
and define functions

⌘ : R ⇥ C ! R�0, D : [a, 1] ⇥ (R ⇥ C)n ! R�0

by the formulas

⌘(v) := dist
�
v, {(0, 0)} [ S�

�
,

D
�
t, Ev

�
:= ⌘(v1) + · · · + ⌘(vn) +

�
��̃ (t) � (v1 + · · · + vn)

�
�,

(4.16)

where | · | is the Euclidean norm in R ⇥ C ' R3. The assumptions � = �̃ and
� 2 5�,L�⇤n yield

Lemma 4.9. The function D satisfies

D � � on [a, 1] ⇥ (R ⇥ C)n. (4.17)

Proof. Let (t, Ev ) 2 [a, 1]⇥(R⇥C)n . For each j 2 {1, . . . , n}, pick u j 2 {(0, 0)}[
S� so that ⌘(v j ) = |v j � u j |, and let u := u1 + · · · + un . Either all of the u j ’s
equal (0, 0), in which case u = (0, 0) too, or u = (�,!) is a non-trivial sum of
at most n points of the form u j = (� j ,! j ) 2 S�, in which case we have in fact
! j 2 �� j because of Lemma 2.4 and the assuption �̃ = �, hence (2.12) then yields
! 2 �⇤n

� . We thus find

D
�
t, Ev

�
= |v1�u1|+· · ·+|vn�un|+

�
��̃ (t)�(v1+· · ·+vn)

�
� � |�̃ (t)�u| (4.18)

with u 2 {(0, 0)} [ S�⇤n .
If u = (0, 0), then D

�
t, Ev

�
�

�
��̃ (t)

�
� � L(�|t ) � ⇢ � � because t � a.

Otherwise, u2S�⇤n and (4.18) shows that D
�
t, Ev

�
�� because � 25�,L�⇤n .

Since D never vanishes, we can define a non-autonomous vector field

(t, Ev ) 2 [a, 1] ⇥ (R ⇥ C)n 7! EX(t, Ev ) 2 TEv
�
(R ⇥ C)n

�
' (R ⇥ C)n
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by the formulas

EX(t, Ev ) =

�
�
�
�
�
�
�
�
�
�
�
�

X1(t, Ev ) :=
⌘(v1)

D(t, Ev )
�̃ 0(t)

...

Xn(t, Ev ) :=
⌘(vn)

D(t, Ev )
�̃ 0(t).

(4.19)

Note that �̃ 0(t) =
�
|� 0(t)|, � 0(t)

�
.

The functions X j : [a, 1] ⇥ (R ⇥ C)n ! R ⇥ C are locally Lipschitz, thus
we can apply the Cauchy-Lipschitz theorem on the existence and uniqueness of
solutions to differential equations and get a locally Lipschitz flow map

(t⇤, t, Ev ) 2 [a, 1] ⇥ [a, 1] ⇥ (R ⇥ C)n 7! 8t⇤,t (Ev ) 2 (R ⇥ C)n (4.20)

(value at time t of the unique maximal solution to dEv/dt = EX(t, Ev ) whose value at
time t⇤ is Ev ). We construct a � -adapted deformation of the identity out of the flow
map as follows:

Proposition 4.10. Let E⇣ =
�
L(⇣1), . . . ,L(⇣n)

�
2 V , i.e. ⇣ j = s j� (a) with

(s1, . . . , sn) 2 1n . We define Ev :=
�
(|⇣1|, ⇣1), . . . , (|⇣n|, ⇣n)

�
2 (R ⇥ C)n and

0 = (�̃1, . . . , �̃n) : [0, 1] ! (R ⇥ C)n by

t 2 [0, a] )0(t) :=
� t
a (|⇣1|, ⇣1), . . . ,

t
a (|⇣n|, ⇣n)

�
, t 2 [a, 1] ) 0(t) := 8a,t (Ev ).

Then, for each j 2 {1, . . . , n}, �̃ j is a path [0, 1] ! R ⇥ C whose C-projection � j
belongs to5�, and the formula

9t
�
E⇣
�

:=
�
� 1(t), . . . , � n(t)

�
2 Xn� for t 2 [a, 1] (4.21)

defines a � -adapted deformation of the identity.

Proof. We first prove that �1, . . . , �n 2 5�. In view of (2.5), we just need to check
that, for each j 2 {1, . . . , n}, the path �̃ j = (� j , � j ) satisfies

t 2 [0, 1] ) �̃ j (t) 2M� and d� j/dt = |d� j/dt |. (4.22)

Since ⇣ j 2 U and � j (t) = t
a ⇣ j for t 2 [0, a], the property (4.22) holds for t 2

[0, a].
For t 2 [a, 1], the second property in (4.22) follows from the fact that the

R-projection of X j (t, Ev ) 2 R ⇥ C coincides with the modulus of its C-projection.
Since

�
�̃1(t), . . . , �̃n(t)

�
= 8a,t��̃1(a), . . . , �̃n(a)

�
and the first property

in (4.22) holds at t = a, the first property in (4.22) for t 2 [a, 1] is a consequence
of the inclusion

8a,t�Mn
�

�
⇢Mn

�, (4.23)
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which can itself be checked as follows: suppose Ev⇤ 2 (R ⇥ C)n \Mn
�, then it has

at least one component v⇤
j in S� and, in view of the form of the vector field (4.19),

the submanifold { Ev 2 (R⇥C)n | v j = v⇤
j } is invariant by the maps8

t1,t2 (because
⌘(v j ) = 0 implies that X j = 0 on this submanifold), in particular 8t,a�(R ⇥ C)n \
Mn

�

�
⇢ (R⇥C)n\Mn

�, whence (4.23) follows because8
a,t and8t,a are mutually

inverse bijections.
Therefore the paths �1, . . . , �n are �-allowed and have lifts in X� starting

at 0�, which allow us to define the maps 9t by (4.21) on V .
We now prove that (9t )t2[a,1] is a � -adapted deformation of the identity. The

map (t, Ev ) 7! 9t (Ev ) is locally Lipschitz because the flow map (4.20) is locally
Lipschitz, and 9a = Id because 8a,a is the identity map of (R ⇥ C)n; hence, we
just need to prove (4.8).

We set

Ñ (w) :=
�
(v1, . . . , vn) 2 (R ⇥ C)n | v1 + · · · + vn = w

 
for w 2 R ⇥ C,

Ñ j :=
�
(v1, . . . , vn) 2 (R ⇥ C)n | v j = (0, 0)

 
for 1  j  n.

Let j 2 {1, . . . , n}. The second part of (4.8) follows from the inclusion

8a,t�Ñ j
�

⇢ Ñ j for t 2 [a, 1],

which stems from the fact that the j th component of the vector field (4.19) vanishes
on Ñ j (because ⌘

�
(0, 0)

�
= 0).

Since ⇣1+· · ·+⇣n = � (a) ) |⇣1|+· · ·+|⇣n| = |� (a)| for any (⇣1, . . . , ⇣n) 2
V , the first part of (4.8) follows from the inclusion

8a,t�Ñ
�
�̃ (a)

��
⇢ Ñ

�
�̃ (t)

�
for t 2 [a, 1],

which can be itself checked as follows: consider first an arbitrary initial condition
Ev 2 (R ⇥ C)n and the corresponding solution Ev(t) := 8a,t (Ev ), and let v0(t) :=
v1(t) + · · · + vn(t); then (4.19) shows that

d
dt

�
�̃ (t) � v0(t)

�
=

�
��̃ (t) � v0(t)

�
�

D(t, Ev(t))
�̃ 0(t),

hence the Lipschitz function h(t) :=
�
��̃ (t) � v0(t)

�
� has an almost everywhere de-

fined derivative which satisfies |h0(t)| 
�
� d
dt
�
�̃ (t) � v0(t)

���  1
D(t,Ev(t)) |�̃

0(t)| h(t),
which is  ��1

p
2 |�̃ 0(t)| h(t) by (4.17), whence

�
��̃ (t) � v0(t)

�
� 

�
��̃ (a) � v0(a)

�
� exp

�
��1

p
2 L(� |[a,t])

�

for all t ; now, if Ev 2 Ñ
�
�̃ (a)

�
, we find v0(a) = �̃ (a), whence v0(t) = �̃ (t) for

all t .
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We now show that the � -adapted deformation of the identity that we have
constructed in Proposition 4.10 meets the requirements of Theorem 4.7.

In view of (2.6)–(2.7) and (3.5), the inclusion (4.13) follows from:

Lemma 4.11. Let Ṽ :=
��
s1�̃ (a), . . . , sn �̃ (a)

�
| (s1, . . . , sn) 2 1n

 
2 (R ⇥ C)n .

Then
8a,t�Ṽ

�
⇢

[

L1+···+Ln=L(�|t )

ML1,�0(t)
� ⇥ · · · ⇥MLn,�0(t)

� (4.24)

for all t 2 [a, 1], with �0(t) as in (4.12).

Proof of Lemma 4.11. Let us consider an initial condition Ev 2 Ṽ and the cor-
responding solution Ev(t) := 8a,t (Ev ), whose components we write as v j (t) =�
� j (t), ⇣ j (t)

�
for j=1,. . . ,n. We also have v j (a) = s j �̃ (a) for some (s1,. . . ,sn) 2

1n , whence �1(a) + · · · + �n(a)  |� (a)| = ⇢ and |v j (a)| = ⇢ for j = 1, . . . , n.
We first notice that

nX

j=1
|�0

j (t)| =
nX

j=1

⌘
�
v j (t)

�

D(t, Ev(t))
|� 0(t)|  |� 0(t)|,

hence �1(t) + · · · + �n(t)  �1(a) + · · · + �n(a) +
R t
a |�

0|  L(�|t ). Therefore, we
just need to show that

dist
�
v j (t),S�

�
� �0(t) for j = 1, . . . , n. (4.25)

Let j 2 {1, . . . , n}. Since ⌘ is 1-Lipschitz, we can define a Lipschitz function
on [a, 1] by the formula h j (t) := ⌘

�
v j (t)

�
, and its almost everywhere defined

derivative satisfies

|h0
j (t)|  |v0

j (t)| =
h j (t)

D(t, Ev(t))
|�̃ 0(t)|  g(t)h j (t), where g(t) := ��1

p
2 |� 0(t)|.

Since
R t
a g(⌧ ) d⌧ = ��1

p
2 L(� |[a,t]), we deduce that

⌘
�
v j (a)

�
e��

�1p2 L(� |[a,t])  ⌘
�
v j (t)

�

 ⌘
�
v j (a)

�
e�

�1p2 L(� |[a,t]) for all t 2 [a, 1].
(4.26)

Let us now fix t 2 [a, 1]. We conclude by distinguishing two cases.
Suppose first that ⌘(v j (a)) � ⇢ e�

p
2 ��1L(� |[a,t]). Then the first inequality

in (4.26) yields ⌘(v j (t))��0(t), and since dist
�
v j (t),S�

�
�⌘(v j (t)) we get (4.25).

Suppose now that ⌘(v j (a)) < ⇢ e�
p
2 ��1L(� |[a,t]). Then the second inequality

in (4.26) yields ⌘(v j (t 0)) < ⇢ for all t 0 2 [a, t]. This implies that v j
�
[a, t]

�
⇢ B :

= { v 2 R ⇥ C | |v| < 3⇢/2 }; indeed, if not, since v j (a) 2 B, there would exist
t 0 2 (a, t] such that v j (t 0) 2 @B, but using �3⇢ = ; it is easy to check that

v 2 B ) dist(v,S�) � 3⇢/2,
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hence we would have dist(v j (t 0),S�) � 3⇢/2 > ⌘(v j (t 0)), whence ⌘(v j (t 0)) =
dist

�
v j (t 0), (0, 0)

�
= 3⇢/2, which is a contradiction. Therefore v j (t) 2 B, whence

dist(v j (t),S�) � 3⇢/2 > �0(t) and we are done.

Only the inequality (4.14) remains to be proved. We first show the following:

Lemma 4.12. For any t 2 [a, 1] and Eu, Ev 2 (R ⇥ C)n, the vector field (4.19)
satisfies

nX

j=1
|X j (t, Eu ) � X j (t, Ev )|  3

|�̃ 0(t)|
D(t, Eu )

nX

j=1
|u j � v j |. (4.27)

Proof of Lemma 4.12. We rewrite X j (t, Eu ) � X j (t, Ev ) as follows:

X j (t, Eu ) � X j (t, Ev ) =
⇣
⌘(u j ) � ⌘(v j ) +

�
D(t, Ev ) � D(t, Eu )

� ⌘(v j )
D(t, Ev )

⌘ �̃ 0(t)
D(t, Eu )

.

Since |⌘(u j ) � ⌘(v j )|  |u j � v j | holds for j = 1, . . . , n, we have

�
�D(t, Eu ) � D(t, Ev )

�
� 

nX

j=1

�
�⌘(u j ) � ⌘(v j )

�
� +

�
�
�
�

�
�
��̃ (t) �

nX

j=1
u j

�
�
� �

�
�
��̃ (t) �

nX

j=1
v j

�
�
�

�
�
�
�

 2
nX

j=1
|u j � v j |.

Then, summing up |X j (t, Eu )� X j (t, Ev )| in j , we obtain (4.27) from the inequalityPn
j=1 ⌘(v j )  D(t, Ev ).

We conclude by deriving the inequality (4.14) from Lemma 4.12. We use the
notation (4.11) to define ⇣ t1, . . . , ⇣

t
n : 1n ! C, and we now define vtj : 1n !

R ⇥ C for t 2 [a, 1] by the formulas vaj (Es ) := s j �̃ (a) and

Ev t := (vt1, . . . , v
t
n) := 8a,t � (va1 , . . . , v

a
n ).

Let

V (t) :=
nX

j=1
|⇣ tj (Es ) � ⇣ tj (Es

0)| for Es, Es 0 2 1n .

We obtain from (4.17) and (4.27) the following estimate:

V (t)  V (a) +
1

p
2

nX

j=1

Z t

a

�
�X j

�
⌧, Ev ⌧ (Es )

�
� X j

�
⌧, Ev ⌧ (Es 0)

��� d⌧

 V (a) +
3
�

Z t

a
|� 0(⌧ )|V (⌧ )d⌧.
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Therefore, Gronwall’s lemma yields V (t)  V (a) e3�
�1L(� |[a,t]), and hence, since

V (a) = ⇢
Pn

j=1 |s j � s0j |, we have

V (t)  ⇢ e3�
�1L(� |[a,t])

nX

j=1
|s j � s0j |. (4.28)

Then, (4.28) entails via Rademacher’s theorem that the following estimate holds
a.e. on 1n:

nX

i=1

�
�
�
�
@⇣ ti
@s j

�
�
�
�  ⇢ e3�

�1L(� |[a,t]).

Finally, (4.14) follows from the inequality
�
�
�
� det

h @⇣ ti
@s j

i

1i, jn

�
�
�
� 

nY

j=1

✓ nX

i=1

�
�
�
�
@⇣ ti
@s j

�
�
�
�

◆
.

Remark 4.13. Theorem 4.8 is verified by replacing the vector field (4.19) by

EX(t, Ev ) =

�
�
�
�
�
�
�
�
�
�
�
�

X1 :=
⌘1(v1)

D(t, Ev )
�̃ 0(t)

...

Xn :=
⌘n(vn)

D(t, Ev )
�̃ 0(t),

where ⌘ j (v) := dist
�
v, {(0, 0)}[S� j

�
, D

�
t, Ev

�
:= ⌘1(v1)+· · ·+⌘n(vn)+|�̃ (t)�

(v1 + · · · + vn)|.

4.4. The case of endless continuability with respect to bounded direction
variation

In this subsection, we extend the estimates of Theorem 4.1 to the case of a d.d.f.s..

Notation 4.14. Given �,M, L > 0, we denote by 5�,M,L
� the set of all paths � 2

5 dv
� such that V (� )  M , L(� )  L and inf

t2[0,t⇤]
dist1

�
�̃ dv(t),S�

�
� �, where

�̃ dv is as in (2.13) and dist1 is the distance associated with the norm k · k1 defined
on R2 ⇥ C by k(µ, �, ⇣ )k1 := |µ| +

p
|�|2 + |⇣ |2.

Let us fix an arbitrary d.d.f.s. �. We fix ⇢ > 0 such that �3⇢,M = ; for every
M � 0. We consider a path � : [0, 1] ! C in 5�,M,L

�⇤n , with arbitrary � 2 (0, ⇢)
and L > 0, satisfying the following condition:

There exists a 2 (0, 1) such that � (t) = t
a� (a) for t 2 [0, a] and

|� (a)| = ⇢.
(4.29)
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Then, for t 2 [0, 1] and v 2 R ⇥ C, we set

⌘(t, v) := dist1
�
(V (�|t ), v),

�
R ⇥ {(0, 0)}

�
[ S�

�

and, for Ev = (v1, · · · , vn) 2 (R ⇥ C)n ,

D
�
t, Ev

�
:= ⌘(t, v1) + · · · + ⌘(t, vn) + |�̃ (t) � (v1 + · · · + vn)|.

Choosing (µ j , u j ) 2
�
R ⇥ {(0, 0)}

�
[ S� so that ⌘(t, v j ) = k(V (�|t ), v j ) �

(µ j , u j )k1 for each j and using (µ j0, u1 + · · · + un) 2
�
R ⇥ {(0, 0)}

�
[ S�⇤n

with max
j=1,··· ,n

µ j = µ j0 , we see that

D(t, Ev ) =
nX

j=1
(|V (�|t ) � µ j | + |v j � u j |) + |�̃ (t) � (v1 + · · · + vn)|

�
�
�V (�|t ) � µ j0

�
� + |�̃ (t) � (u1 + · · · + un)| � min{�, ⇢}

for (t, Ev ) 2 [a, 1] ⇥ (R ⇥ C)n .
We can thus define a map (t⇤, t, Ev ) 2 [a, 1]⇥ [a, 1]⇥(R⇥C)n 7! 8t⇤,t (Ev ) 2

(R ⇥ C)n as the flow map of

EX(t, Ev ) =

�
�
�
�
�
�
�
�
�
�
�
�

X1(t, Ev ) :=
⌘(t, v1)
D(t, Ev )

�̃ 0(t)

...

Xn(t, Ev ) :=
⌘(t, vn)
D(t, Ev )

�̃ 0(t).

(4.30)

Let Ev t = (Ev t
1, · · · , Ev t

n) be the flow of (4.30) with the initial condition Ev a
j :=

(|� (a)|s j , � (a)s j ) with Es 2 1n . Since �̃ 0(t), ⌘(t, v j ) and D(t, Ev ) are Lipschitz
continuous on [a, 1] ⇥ (R ⇥ C)n , we find by Rademacher’s theorem that d⇣ tj/dt is
differentiable a.e. on [a, 1] and satisfies

d2⇣ tj/dt
2

d⇣ tj/dt
=

1
⌘(vtj )

d⌘(vtj )
dt

�
1

D(t, Ev t )

dD(t, Ev t )

dt
+
� 00(t)
� 0(t)

when s j 6= 0. Since ⌘(vtj ) and D(t, Ev t ) are real valued functions, we have

Im
d2⇣ tj/dt

2

d⇣ tj/dt
= Im

� 00(t)
� 0(t)

.

Therefore, the following holds for every t 2 [a, 1]:

V
�
⇣ ·
j |[0,t]

�
= V (�|t ) when s j 6= 0.
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Arguing as for Theorem 4.1, we obtain:
Theorem 4.15. Let �, L ,M > 0 be real numbers. Then there exist c, �0 > 0 such
that, for every d.d.f.s. � such that �4�,M = ; (M � 0), for every integer n � 1
and for every f̂1, . . . , f̂n 2 R̂

dv
� , the function 1 ⇤ f̂1 ⇤ · · · ⇤ f̂n belongs to R̂

dv
�⇤n and

satisfies �
� p⇤

�⇤n
�
1 ⇤ f̂1 ⇤ · · · ⇤ f̂n

����,M,L
�n


cn

n!
sup

L1+···+Ln=L

�
� p⇤

� f̂1
�
��0,M,L1
�

· · ·
�
� p⇤

� f̂n
�
��0,M,Ln
�

,
(4.31)

where the seminorm k · k�,M,L
�n on R̂

dv
� is defined by the supremum on the set

�
� (1) | � 2 5�,M,L

�

 
.

5. Applications

In this section we display some applications of our results of Section 4. We first
introduce convergent power series with coefficients in R̃�:
Definition 5.1. Given � a d.f.s. and r � 1, we define R̃�{w1, · · · , wr } as the
space of all

F̃(z, w1, · · · , wr ) =
X

k2Z r
�0

F̃k(z)wk1
1 · · ·wkr

r 2 R̃�[[w1, · · · , wr ]]

such that, for every �, L > 0, there exists a positive constant C satisfying
k F̃k k�,L�  C |k|+1 for every k = (k1, · · · , kr ) 2 Z r

�0,

where |k| := k1 + · · · + kr (with the notation of Definition 3.16 for k · k�,L� ).
We can now deal with the substitution of resurgent formal series in a context

more general than in Theorem 1.3.
Theorem 5.2. Let r � 1 be an integer and let �0, . . . , �r be d.f.s. Then for any
F̃(w1, . . . , wr ) 2 R̃�0{w1, · · · , wr } and for any '̃1, . . . , '̃r 2 C[[z�1]] without
constant term, one has

'̃1 2 R̃�1, . . . , '̃r 2 R̃�r ) F̃('̃1, . . . , '̃r ) 2 R̃�0⇤�⇤1,

where � := �1 ⇤ · · · ⇤�r .

Proof. Since the family {�0 ⇤�⇤k := �0 ⇤�⇤k1
1 ⇤ · · · ⇤�⇤kr

r | k = (k1, · · · , kr ) 2
Z r

�0} of d.f.s. satisfies the conditions in Theorem 4.8 for sufficiently small � > 0,
for every L > 0, there exist �0, L 0,C > 0 such that

�
� F̃k '̃k1 · · · '̃kr

�
��,L
�0⇤�⇤1 

C |k|+2

(|k| + 1)!
�
� F̃k

�
��0,L 0

�0

��� '̃1
�
��0,L 0

�0

�k1 · · ·
��� '̃r

�
��0,L 0

�0

�kr .

Therefore, since F̃(w1, . . . , wr ) 2 R̃�0{w1, · · · , wr }, we find that F̃('̃1, . . . , '̃r )

converges in R̃�0⇤�⇤1 and defines an �0 ⇤�⇤1-resurgent formal series.
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Notice that, in view of Theorem 2.13, Theorem 1.3 is a direct consequence of
Theorem 5.2.

Next, we show the following implicit function theorem for resurgent formal
series:

Theorem 5.3. Let F̃(z, w) 2 R̃�{w} and assume that F(x, w) := F̃(x�1, w)
satisfies F(0, 0) = 0 and @wF(0, 0) 6= 0. Then, the unique solution '̃ 2 zC[[z]] of

F̃(z, '̃(z)) = 0 (5.1)

satisfies '̃ 2 R̃�⇤1 .

Proof. We rewrite F̃(z, w) into the form

F̃(z, w) = F̃0(z) + @wF(0, 0)w +
1X

k=1
F̃k(z)wk .

Considering (5.1) as the equation for  ̃ = z�1('̃(z)�'1z), we can assume that F̃k
has no constant term for k = 0, 1, . . . Further, we can assume without loss of
generality that @wF(0, 0) = �1. Then, the unique solution '̃ 2 zC[[z]] of (5.1)
can be written as '̃ = H̃(z, F̃0), where

H̃(z, w) =
X

m�1
H̃m(z)wm, H̃m :=

X

k�1

(m + k � 1)!
m!k!

X

n1+···+nk=m+k�1
n1,··· ,nk�1

F̃n1 · · · F̃nk

(see proof of Theorem 4 in [20] for the detail). Since F̃(z, w) 2 R̃�{w}, we
obtain from Corollary 4.2 the following estimates: For every �, L > 0, there exist
�0, L 0,C > 0 such that k Fk k�

0,L 0

�  Ck+1 and

kH̃mk�,L�⇤1 
X

k�1

(m + k � 1)!
m!k!

X

n1+···+nk=m+k�1
n1,··· ,nk�1

Ck+1

k!
kF̃n1k

�0,L 0

� · · · kF̃nkk
�0,L 0

�


X

k�1
2m+k

X

n1+···+nk=m+k�1
n1,··· ,nk�1

Cm+3k

k!


X

k�1
22m+3k�2Cm+3k

k!

 e8C
3
(4C)m .

This yields H̃(z, w) 2 R̃�⇤1{w}, whence, H̃(z, F̃0(z)) 2 R̃�⇤1 .

References

[1] I. ANICETO and R. SCHIAPPA, Nonperturbative ambiguities and the reality of resurgent
transseries, Comm. Math. Phys. 335 (2015), 183–245.

[2] I. ANICETO, R. SCHIAPPA and M. VONK, The resurgence of instantons in string theory,
Commun. Number Theory Phys. 6 (2012), 339–496.



ITERATED CONVOLUTIONS AND ENDLESS RIEMANN SURFACES 215
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[11] J. ÉCALLE, “Les Fonctions Résurgentes”, Vol. 3, Publ. Math. d’Orsay 85-05, 1985.
[12] M. GARAY, A. DE GOURSAC and D. VAN STRATEN, Resurgent deformation quantisation,

Ann. Physics 342 (2014), 83–102.
[13] S. KAMIMOTO, Resurgence of formal series solutions of nonlinear differential and differ-

ence equations, Proc. Japan Acad. Ser. A Math. Sci. 92 (2016), 92–95.
[14] S. KAMIMOTO, T. KAWAI and T. KOIKE, On the singularity structure of WKB solution of

the boosted Whittaker equation – its relevance to resurgent functions with essential singu-
larities, Lett. Math. Phys. 106 (2016), 1791–1815.

[15] S. KAMIMOTO and D. SAUZIN, Nonlinear analysis with endlessly continuable functions,
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