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Maximal rank divisors onMg,n

İRFAN KADIKÖYLÜ

Abstract. We compute the class of the effective divisors onMg,n , which are
set theoretically equal to the locus of moduli points [C, p1, . . . , pn] where C lies
on a quadric under the map given by the linear series |KC � p1 � · · · � pn |.
Using this divisor class we show that the moduli spacesM16,8 andM17,8 are
of general type. We also note that the divisor classes computed in the papers [10]
and [11] can be used to show thatM12,10 is of general type.

Mathematics Subject Classification (2010): 14H10 (primary); 14H51 (sec-
ondary).

1. Introduction

Given a curve C and a line bundle L on it, one can consider the natural multiplica-
tion maps

µk : Symk H0(C, L) ! H0
�
C, L⌦k�.

Harris conjectured that these maps are of maximal rank (i.e., either injective or
surjective) for general C and L in the range where the Brill-Noether number is non-
negative [13]. Although the general conjecture is still open, there are numerous
partial results covering various cases of the conjecture. The cases where the dimen-
sion r := h0(L) � 1 of the projective space is equal to 3, 4 or 5, as well as the case
of non-special curves (i.e., r = deg(L) � g) has been verified by Ballico and Ellia
(see [2] and references therein). Voisin proved the case where

OC(1) = KC � A,

and A is a pencil and using this, she was able to deduce the surjectivity of the
Gaussian-Wahl map for generic curves [19]. Farkas confirmed the conjecture when
the Brill-Noether number is zero and the map µ2 is expected to be an isomorphism.
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350 İRFAN KADIKÖYLÜ

By considering the locus of curves, where µ2 fails to be an isomorphism, he ob-
tained the first infinite family of divisors inMg violating the slope conjecture [7].
Later, Ballico and Fontanari [3] proved the conjecture in the range, where

dimSym2 H0(C, L) � dim H0
�
C, L⌦2�.

More recently, using the theory of limit linear series and degenerating to a chain of
elliptic curves Liu, Osserman, Teixidor and Zhang managed to systematically treat
many other cases of the conjecture (See [18] for a precise statement). There is also
a tropical proof of the case of quadrics by Jensen and Payne [16].

In this paper, we use a construction analogous to [7] to obtain new divisor
classes onMg,n , which are singled out as the failure locus of the maximal rank
conjecture. More precisely, we consider a map of vector bundles � : E ! F over
Mg,n , which restricts at a moduli point x = [C, p1, . . . , pn] to the multiplication
map

Sym2
�
H0

�
KC � p1 � · · · � pn

�� �(x)
��! H0

�
K⌦2
C � 2p1 � · · · � 2pn

�
. (1.1)

We consider pairs

(g(t), n(t)) =

✓
1
2
�
t2 + 5t + 10

�
,
1
2
�
t2 + 3t + 2

�
◆
for t 2 N, (1.2)

in which case the dimensions of both sides in (1.1) are equal. Since the maximal
rank conjecture holds for quadrics, the locus where the vector bundle map � fails
to be an isomorphism is a divisor Quadg(t),n(t) inMg(t),n(t). By taking its closure
we obtain a divisor inMg(t),n(t) for every t 2 N.

The sequence of the pairs g(t), n(t) has the following pattern:

t 0 1 2 3 4 5 6 ...
g 5 8 12 17 23 30 38 ...
n 1 3 6 10 15 21 28 ...

In Section 2, we compute the class ofQuadg(t),n(t):

Theorem 1.1. The class of the divisor Quadg(t),n(t) is given by the following for-
mula:

Quadg(t),n(t) = (8� t) · �+ t ·
n(t)X

j=1
 j � �irr �

X

i,s�0
bi :s(t) ·

X

|S|=s
�i :S

where

b0:s(t) =
s
2
(st + s + t � 1) for s � 2,

b1:0(t) = t + 4, b1:s(t) =
1
2
�
s2t + s2 � st + s + 6

�
for s � 1,

and bi :s(t) � 1 for 2  i  g(t)/2 and 0  s  n(t).
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In the case t = 0 we recover a well known class: Given [C, p] 2 M5,1, the linear
system |KC � p| embeds C to P3 and the existence of a quadric containing C is
equivalent to the existence of a g13. Therefore,Quad5,1 is the pullback of the Brill-
Noether divisor

BN15,3 :=
n
[C] 2M5 | W 1

3 (C) 6= ;
o

toM5,1. It is well known that BN15,3 has the class

BN15,3 = 8�� �0 � 4�1 � 6�2,

see [6]. Therefore, its pullback toM5,1 has the class

8�� �irr � 4�1:1 � 6�2:1 � 6�3:1 � 4�4:1,

which agrees with the formula forQuad5,1 in Theorem 1.1.
In Section 3, we use the classQuadg(t),n(t) to study the birational geometry of

Mg,n . The moduli spaceMg,n is known to be of general type when g � 24 [6,15]
and its birational type for various g, n in the range g  23 are established in the
papers [17] and [7]. Using the divisor Quadg(t),n(t), we manage to treat some of
the unknown cases of this problem:

Theorem 1.2. The moduli spacesM16,8,M17,8 andM12,10 are of general type.

ACKNOWLEDGEMENTS. This work is part of my PhD thesis. I am grateful to
my advisor Gavril Farkas and my coadvisor Angela Ortega for suggesting me this
problem. My thanks also go to my colleagues in Humboldt University for many
helpful discussions.

2. The computation of the classQuadg(t),n(t)Quadg(t),n(t)Quadg(t),n(t)

As we already pointed out in the introduction, the divisor Quadg(t),n(t) is defined
as the closure of the degeneracy locus of a vector bundle map overMg(t),n(t). To
extend this degeneracy locus description to the boundary, we let

⇡ :Mg(t),n(t)+1 !Mg(t),n(t)

be the map that forgets the last marked point andL be the cotangent line bundle on
Mg(t),n(t)+1. That is,L is naturally isomorphic to !C when restricted to the fiber
⇡�1 �[C, p1, . . . , pn(t)]

�
. We let � denote the natural multiplication map

Sym2
 

⇡⇤L

 

�
n(t)X

j=1
�0:{ j,n(t)+1}

!!
�
�! ⇡⇤L

⌦2

 

�2 ·
n(t)X

j=1
�0:{ j,n(t)+1}

!

. (2.1)
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Over a moduli point [C, p1, . . . , pn(t)] where C is a smooth curve, the map � re-
stricts to the map (1.1) and therefore extends the degeneracy locus structure to the
boundary.

Note that if we have

i < s or g(t) � i < n(t) � s,

the evaluation map

⇡⇤L
ev
�! ⇡⇤

✓
L |Pn(t)

j=1 �0:{ j,n(t)+1}

◆

fails to be surjective over 1i :S (Here and in what follows we set s := |S|). We
will deal with such boundary components later, for now we restrict our attention to
the partial compactification fMg(t),n(t), which we define as the union ofMg(t),n(t)
together with boundary divisors 1i :S , where

s  i and n(t) � s  g(t) � i.

The sheaves in (2.1) are locally free over fMg(t),n(t) away from loci of codimen-
sion at least 2. Therefore the first degeneracy locus D1(�) contains the divisor
Quadg(t),n(t) \ fMg(t),n(t). We use Grothendieck-Riemann-Roch formula to com-
pute its class and obtain the following result:

Theorem 2.1. The coefficients of �, i and �irr in Quadg(t),n(t) are 8 � t, t and
�1, respectively, Moreover, bi :s(t) � 1 whenever s  i and n(t) � s  g(t) � i .

Proof. On fMg(t),n(t) we have the exact sequence

0 ! ⇡⇤

 

L

 

�
n(t)X

j=1
�0:{ j,n(t)+1}

!!

! ⇡⇤L
ev
�! ⇡⇤

✓
L |Pn(t)

j=1 �0:{ j,n(t)+1}

◆

! R1⇡⇤

 

L

 

�
n(t)X

j=1
�0:{ j,n(t)+1}

!!

! R1⇡⇤L ! 0.

It is easy to see that the evaluation map ev is surjective in codimension 2 in the
range s  i and n(t) � s  g(t) � i . Since R1⇡⇤L ⇠= O, it follows that

R1⇡⇤

 

L

 

�
n(t)X

j=1
�0:{ j,n(t)+1}

!!

is isomorphic toO in codimension 2. Since the rank of ⇡⇤L (�
Pn(t)

j=1 �0:{ j,n(t)+1})

is equal to g(t) � n(t) = t + 4, we have that

c1

 

Sym2
 

⇡⇤L

 

�
n(t)X

j=1
�0:{ j,n(t)+1}

!!!

=(t + 5) · c1

 

⇡⇤L

 

�
n(t)X

j=1
�0:{ j,n(t)+1}

!!

.
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From the exact sequence above, it follows immediately that

c1

 

⇡⇤L

 

�
n(t)X

j=1
�0:{ j,n(t)+1}

!!

= ��
n(t)X

j=1
 j .

We use Grothendieck-Riemann-Roch formula to compute that

c1

 

⇡⇤L
⌦2

 

�2 ·
n(t)X

j=1
�0:{ j,n(t)+1}

!!

= 13�� 5 ·
n(t)X

j=1
 j � �,

where � denotes the class of the whole boundary. By Porteous formula we get that

[D1(�)] = (8� t) · �+ t ·
n(t)X

j=1
 j � �.

The class [D1(�)] is equal to the sum ofQuadg(t),n(t) and positive multiples of the
boundary components, over which the map (2.1) is degenerate. Thus we obtain the
bound bi :s(t) � 1 whenever s  i and n(t)� s  g(t)� i . In Theorem 2.7, we will
prove that (2.1) is generically non-degenerate over 1irr , which will imply that the
coefficient of �irr is equal to �1.

To obtain a bound for bi :s(t) in the case when i < s or g(t) � i < n(t) � s, we
modify the sheaves in (2.1) as follows.

We let

L 0 := L

0

B
B
B
B
@

�
n(t)X

j=1
�0:{ j,n(t)+1} +

X

0ig(t)
i<s

|S|=s

(i � s � 1) · �i :S[{n(t)+1}

1

C
C
C
C
A

,

and consider the natural map

Sym2
�
⇡⇤L

0� �0

�! ⇡⇤

⇣
L 0⌦2

⌘
. (2.2)

Using Grauert’s Theorem it can easily be confirmed that the dimension of fibers
of ⇡⇤L

0 and ⇡⇤

⇣
L 0⌦2

⌘
stay constant over an open subset ofMg(t),n(t), whose

complement has codimension at least 2. Therefore in codimension 2, the map �0 is
a map of vector bundles and is an extension of �.

To compute the class of the degeneracy locus [D1(�0)], we will intersect it with
simple test curves, whose intersection with the generators of Pic(Mg,n) we already
know. To this end, we let

[D, q 0, {p j | j 2 S}] 2Mi,S[{q 0}
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and
[C, {p j | j 2 Sc}] 2Mg(t)�i,Sc

be general pointed curves and define the test curve Ti :S as follows:

Ti :S :=
�
[C [q⇠q 0 D, p1, . . . , pn(t)]

 
q2C ,

that is, the point of attachment moves on the curve C . The intersection of Ti :S with
the standard divisor classes ofMg,n can be computed using in [1, Lemma 1.4]. We
note them here for readers convenience:

i) Ti :S ·  j = 1 if j 2 Sc;
ii) Ti :S · �i :S[{ j} = 1 if j 2 Sc;
iii) Ti :S · �i :S = �(2(g(t) � i) � 2+ n(t) � s);

the intersection of Ti :S with all other generators of Pic(Mg,n) equals zero.

Lemma 2.2. For 0  i  g(t) and i < s, we have the following intersection
numbers:

Ti :S · c1
�
⇡⇤L

0� = �(i � s) ((i � s � 1)(g � i � 1) + n � s) ,

Ti :S · c1
⇣
⇡⇤

�
L 0⌦2�

⌘
= �2

⇣
i2(4g + 6s + 1) + i

⇣
�g(6s + 5) + 3n � 2s2 + 5

⌘⌘

� 2s(g(2s + 3) � 2n � 3) + 8i3.

Proof. The fiber of the bundle ⇡⇤L
0 over the point [C [q⇠q 0 D, p1, . . . , pn(t)] 2

Ti :S is equal to the sections of

H0
 

KC + (i � s)q �
X

j2Sc
p j

!

� H0
 

KD + (2� i + s)q 0 �
X

j2S
p j )

!

(2.3)

that are compatible at the node q ⇠ q 0. To prove the lemma we need to globalize
this fibral description. To this end, we define the clutching maps

⌘g�i :Mg�i,Sc[{n+1,0} ⇥Mi,S[{0} !Mg,n+1,

⌘i :Mg�i,Sc[{0} ⇥Mi,S[{n+1,0} !Mg,n+1,

which are defined as the maps that identify the points with the labels 0. Clearly they
map onto the boundary divisors 1i :S and 1i :S[{n+1}, respectively. These boundary
divisors intersect at the locus where the point with the label n + 1 hits the node and
this locus is isomorphic to the image of the clutching map

⌘6 :Mg�i,Sc[{0} ⇥M0,{0,n+1,�1} ⇥Mi,S[{�1} !Mg,n+1,
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which identifies the points with labels 0 and �1, respectively. We also have maps
from the domains of these 3 clutching maps to

Mg�i,Sc[{0} ⇥Mi,S[{0},

which are defined as the maps that forget the point with label n+1. We denote these
maps by ⇡g�i ,⇡i and ⇡6 , respectively. In what follows (by abuse of notation) we
denote by ⇡⇤L

0 the pullback of its restriction to 1i :S ✓Mg,n under the clutching
map

Mg�i,Sc[{0} ⇥Mi,S[{0} ! 1i :S.

The bundle ⇡⇤L
0 sits in the following exact sequence

0 ! ⇡⇤L
0 ! ⇡g�i ⇤

⇣
⌘⇤
g�iL

0
⌘

� ⇡i ⇤
�
⌘⇤
i L

0� ! ⇡6⇤
�
⌘⇤
6L 0� ! 0.

Therefore, we have that

c1
�
⇡⇤L

0� = c1
⇣
⇡g�i ⇤

�
⌘⇤
g�iL

0�
⌘

+ c1
�
⇡i ⇤

�
⌘⇤
i L

0��� c1
�
⇡6⇤

�
⌘⇤
6L 0�� . (2.4)

To prove the lemma we need to compute the intersection number of these Chern
classes with Ti :S . These classes are elements of

H2
⇣
Mg�i,Sc[{0}, Q

⌘
� H2

⇣
Mi,S[{0}, Q

⌘
,

and classes belonging to the second direct summand clearly have 0 intersection
with the test curve Ti :S . Therefore it suffices to compute H2(Mg�i,Sc[{0}, Q) part
of the Chern classes appearing in the formula (2.4) and their intersection with the
test curve T 0

i :S ✓ Mg�i,Sc[{0}, which is defined by fixing a general element of
Mg�i,Sc[{0} and letting the point with label 0 vary on the curve.

Using the formula

c1(L ) =  n+1 �
nX

j=1
�0:{ j,n+1},

we first compute that

c1
�
L 0� =  n+1 � 2

nX

j=1
�0:{ j,n+1} + (i � s � 1) · �i :S[{n+1}

+
X

j2Sc
(i � s � 2) · �i :S[{ j,n+1} + . . .

(Here the “dots” denote the classes which have 0 intersection with the test curve
Ti :S and hence are irrelevant to our computation.)
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Using the pullback formulas in [1] and the fact that the map ⇡6 is an isomor-
phism, we compute that

c1
�
⇡6⇤(⌘

⇤
6L 0)

�
= �(i � s � 1) ·  0 +

X

j2Sc
(i � s � 2) · �0:{0, j} + . . .

2 H2
�
Mg�i,Sc[{0}, Q

�
.

To compute c1
�
⇡i ⇤(⌘

⇤
i L

0)
�
, we observe that

c1
�
⌘⇤
i L

0�=�(i�s�1) · 0+
X

j2Sc
(i�s�2) ·�0:{0, j}+. . .2H2

⇣
Mg�i,Sc[{0},Q

⌘
.

The restriction of the bundle ⇡i ⇤(⌘⇤
i L

0) toMg�i,Sc[{0} is a trivial bundle twisted
by this class. Therefore,

c1
�
⇡i ⇤

�
⌘⇤
i L

0�� = rank
�
⇡i ⇤

�
⌘⇤
i L

0�� · c1
�
⌘⇤
i L

0�.

From the fibral description (2.3), it is easy to see that rank(⇡i ⇤(⌘⇤
i L

0)) = 1. There-
fore, we have that

T 0
i :S · c1

�
⇡⇤L

0� = T 0
i :S · c1

⇣
⇡g�i ⇤

�
⌘⇤
g�iL

0�
⌘

.

To compute this last quantity, we use Grothendieck-Riemann-Roch formula. First
we compute that

c1
�
⌘⇤
g�iL

0� =  n+1 � 2
X

j2Sc
�0:{ j,n+1} + (i � s � 1) · �0:{0,n+1}

+
X

j2Sc
(i � s � 2) · �0:{0, j,n+1} + · · · 2 H2

�
Mg�i,Sc[{n+1,0}, Q

�
.

As in the proof of Theorem 2.1, one can show that

R1⇡g�i ⇤
⇣
⌘⇤
g�iL

0
⌘

⇠= O.

Then a standard Grothendieck-Riemann-Roch computation yields that

T 0
i :S · c1

⇣
⇡g�i ⇤

�
⌘⇤
g�iL

0�
⌘

= �(i � s) ((i � s � 1)(g � i � 1) + n � s) .

The computation of Ti :S · c1
�
⇡⇤(L

0⌦2)
�
is done in the exact same way and we skip

these details.

Theorem 2.3. We have that bi :s(t) � 1 for 0  i  g(t) and 0  s  n(t).
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Proof. In Theorem 2.1 we have already shown that bi :s(t) � 1 whenever s  i and
n(t) � s  g(t) � i . To deal with the remaining cases, we assume that i < s. We
consider the degeneracy locus of the map (2.2) and write the relation

⇥
D1(�0)

⇤
= Quadg(t),n(t) +

X
di :s(t) · �i :S,

where di :s(t) � 0. By intersecting both sides of this equality with the test curve
Ti :S , we obtain the relation

Ti :S ·
⇥
D1(�0)

⇤
= (2g(t)�2i�2+n(t)�s)b̃i :s(t)�(n(t)�s)b̃i :s+1(t)+(n(t)�s)t,

where b̃i :s(t) := bi :s(t) � di :s(t). Since, bi :s(t) � b̃i :s(t) it suffices to prove that
b̃i :s(t) � 1. Using Lemma 2.2 we solve this equation and obtain that

b̃i :s(t) =
1
2

⇣
i2(t � 3) � i(2s(t � 1) + t � 5) + s(st + s + t � 1)

⌘
. (2.5)

It is elementary to check that this quantity is always greater than 1.

The vector bundle map (2.2) is degenerate over most of the boundary divisors
inMg(t),n(t), but it is actually generically non-degenerate over 10:S . To see this,
first note that the fiber of (2.2) over a general element of the test curve T0:S has the
form

Sym2
 

H0
 

KC � s · q �
X

j2Sc
p j

!!
�0

�! H0
 

K⌦2
C � 2s · q � 2

X

j2Sc
p j

!

.

In Theorem 2.5 we will prove that this map is an isomorphism if the pointed curve
⇥
C, q, {p j | j 2 Sc}

⇤
2Mg(t),Sc[{q}

is general. We first state a lemma known as “Lemme d’Horace”, which we will be
using in the proof of Theorem 2.5.

Lemma 2.4. Let H ✓ Pr be a hyperplane and X,Y ✓ Pr be reduced subschemes
such that Y ✓ H and no irreducible component of X lies in H . Then for any integer
m � 1, one has a short exact sequence of ideal sheaves

0 ! IX/Pr (m � 1) ! IX[Y/Pr (m) ! I(X[Y )\H/H (m) ! 0.

Proof. See [14].

Theorem 2.5. Let C be a general curve of genus g(t) and p1, . . . , pk general
points on C . Let a1, . . . , ak be natural numbers such that

Pk
j=1 a j = n(t). Then

the multiplication map

Sym2 H0
 

KC �
kX

j=1
a j p j

!

! H0
 

K⌦2
C �

kX

j=1
2a j p j

!

is an isomorphism.
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Proof. Clearly, it is sufficient to prove the theorem for the special case where all
points come together, i.e., it suffices to find a pointed curve [C, p] 2 Mg(t),1 such
that

Sym2 H0(KC � n(t)p) ! H0
⇣
K⌦2
C � 2n(t)p

⌘

is an isomorphism.
To prove this we use degeneration. Let C 0 be a genus g(t) � 2 curve and

q1, q2, q3, p general points on it. We consider the stable pointed curve [X, p] 2
Mg(t),1, which we obtain by gluing C 0 with a rational curve R0 at the points
q1, q2, q3. We have the short exact sequence

0 ! !X (�n(t)p) ! !X̃ (�n(t)p) ! Cq1 � Cq2 � Cq3 ! 0,

where X̃ is the normalization of X and the right most map is the difference of
the residues of the differentials on C 0 and R0. Therefore, the space of sections
H0(!X (�n(t)p)) is equal to the kernel of the map

H0(!C 0(q1 + q2 + q3 � n(t)p)) � H0(!R0(q1 + q2 + q3))
'
�! Cq1 � Cq2 � Cq3 .

Moreover, Ker(') can be identified with H0(!C 0(q1 + q2 + q3 � n(t)p)), since for
any section of H0(!C 0(q1+q2+q3�n(t)p)) with residues �1, �2, �3 at q1, q2, q3,
one can find and element of H0(!R0(q1+q2+q3)) having residues��1,��2,��3
at these points, so that these sections glue to give a section of H0(!X (�n(t)p)).

Therefore, the invertible sheaf !X (�n(t)p) is base point free and gives a map
to the projective space, whose image consists of the image of C 0 ! Pr under the
linear system

|!C 0(q1 + q2 + q3 � n(t)p)|

(that is, r = dim |!C 0(q1 + q2 + q3 � n(t)p)|) and the 3-secant line q1, q2, q3
(embedded by the linear system |!R0(q1 + q2 + q3)|).

Since a quadric in Pr containing C 0 automatically contains the 3-secant line,
to prove the theorem it is sufficient to prove that the map

Sym2 H0(KC 0 + q1 + q2 + q3 � n(t)p)!H0
⇣
K⌦2
C 0 +2q1+2q2+2q3 � 2n(t)p

⌘

is an isomorphism.
To prove this we degenerate further and consider the following stable curve:

We let R00 be a rational curve with r + 2 marked points on it, which are labeled
as q1, q2, s1, . . . , sr . Let C 00 be a curve of genus g(t) � r � 1 with marked points
q3, p, s1, . . . , sr . We let [X, q1, q2, q3, p] 2 Mg(t)�2,4 be the stable curve, which
we obtain by gluing C 00 with R00 at the points labeled with s j . Along the same lines
of reasoning as above, we observe that the linear system !X (q1 + q2 + q3 � n(t)p)
is base point free and its image in Pr can be described as follows:

The image of R00 is a rational normal curve in Pr embedded via

|!R00(q1 + q2 + s1 + · · · + sr )|
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and C 00 is embedded to the hyperplane H := span{s1, . . . , sr } via the linear series

|!C 00(q3 + s1 + · · · + sr � n(t)p)|.

Since C 00 lies in the hyperplane and C 00 \ R00 = {s1, . . . , sr }, by Lemma 2.4,

H1(IX/Pr (2)) = H1(IC 00/H (2)).

That is, the original problem is now reduced to finding a general pointed curve
[C, p, q1, . . . , qr+1] of genus g(t) � r � 1 such that

Sym2 H0
 

KC +
r+1X

j=1
q j � n(t)p

!

! H0
 

K⌦2
C + 2

r+1X

j=1
q j � 2n(t)p

!

is an isomorphism.
Note that as opposed to the first degeneration, the latter one reduces the dimen-

sion of the projective space in consideration. Using this degeneration successively
(that is, in the next step we consider a pointed curve [C 000, p, q3, . . . , qr+1, s1, . . . ,
sr�1] of genus g(t) � 2r + 1 glued to a pointed rational curve [R000, q1, q2, s1, . . . ,
sr�1] at the points with label s j ), we can reduce the question to a question in P3.
Precisely, to prove the theorem it suffices to show that the map

Sym2 H0
 

KC +
n(t)+2X

j=1
q j � n(t)p

!

! H0
 

K⌦2
C + 2

n(t)+2X

j=1
q j � 2n(t)p

!

is an isomorphism for a general pointed curve [C, q1, . . . , qn(t)+2, p], where the
genus of C is 3. (That the number of the points q j is n(t)+2 and the genus is 3 can
be computed using the formulas in (1.2) and the fact that we need precisely t such
degenerations, since r = g(t) � n(t) � 1 = t + 3).

To prove this final statement we can specialize to the case where q j = p for
j = 4, . . . , n(t) + 2 and show that

Sym2 H0(KC + q1+ q2+ q3� p) ! H0
⇣
K⌦2
C + 2q1 + 2q2 + 2q3 � 2p

⌘
(2.6)

is an isomorphism for a general pointed genus 3 curve [C, q1, q2, q3, p]. (Note that
the union of the image of C via |KC + q1 + q2 + q3 � p| with the 3 secant line
q1, q2, q3 is an element ofM5,1 which is the t = 0 case of our problem).

This statement (which can be confirmed also directly) is true by [12], since
deg(KC + q1+ q2+ q3� p) = 6 and it is equal to 2g(C) + 1�Cliff(C) if C is not
hyperelliptic. Hence, (2.6) is an isomorphism, if C is not hyperelliptic.

Corollary 2.6. We have that b0:s(t) = s
2 (st + s + t � 1) for s � 2.

Proof. Setting i = 0 in (2.5) we obtain the claimed formula.
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Using the samemethods as in the proof of Theorem 2.5, we prove the following
theorem, which finishes the computation of the coefficient of �irr :

Theorem 2.7. The vector bundle map (2.1) is generically non-degenerate over
1irr .

Proof. To prove the theorem it is sufficient to exhibit a curve C of genus g(t) � 1
with marked points q1, q2, p1, . . . , pn(t) such that the image of C under the map
given by |KC + q1 + q2 � p1 � · · · � pn(t)| does not lie on any quadric. To
prove this we will use the same type of degenerations that we used in the proof
of Theorem 2.5. We let [X, q1, q2, p1, . . . , pn(t)] 2 Mg(t)�1,n(t)+2 be the stable
curve which we obtain by gluing a pointed rational curve [R, q1, q2, s1, . . . , sr ]
with a pointed genus g(t)� r curve [C, s1, . . . , sr , p1, . . . , pn(t)] at the points with
the same labels s j (As before r = g(t) � n(t) � 1 = t + 3). The image of X under
|!X (q1+q2� p1� · · ·� pn(t))| is again the union of the rational curve R embedded
to Pr via

|!R(q1 + q2 + s1 + · · · + sr )|
with the curve C embedded to the hyperplane H := span{s1, . . . , sr } via

�
�!C + s1 + · · · + sr � p1 � · · · � pn(t)

�
�.

By Lemma 2.4, we obtain H1(IX/Pr (2)) = H1(IC/H (2)), which again reduces
the problem showing that C ✓ H does not lie on any quadrics. As in the proof of
Theorem 2.5, we keep degenerating in this manner until the question is reduced to
proving that for a general pointed genus 4 curve [C, q1, . . . , qn(t)+1, p1, . . . , pn(t)]
the image of C under the linear system

�
�KC + q1 + · · · + qn(t)+1 � p1 � · · · � pn(t)

�
�

does not lie on any quadrics. Specializing to the case q j = p j for j = 1, . . . , n(t)�
1 reduces our problem to finding a pointed genus 4 curve [C, q1, q2, p] such that
the image of C under |KC + q1 + q2 � p| does not lie on any quadrics, which we
already know, since this is the t = 0 case of our problem and in that particular case
C lies on a quadric only if it is Brill-Noether special as we indicated earlier in the
introduction.

Remark 2.8. Note that as opposed to other degeneration arguments, we did not
address the problem of smoothability of the degenerate curves in the proofs of The-
orem 2.5 and Theorem 2.7, as the degenerate curves we consider here are already
elements of the moduli space in consideration.
Remark 2.9. With the same methods used in the proofs above, one can prove a
finer version of the maximal rank conjecture in the case g � r + d = 1. Namely,
one can prove that for a general curve C of genus g and general points p1, . . . , pk
the map

Sym2 H0
 

KC �
kX

j=1
a j p j

!

! H0
 

K⌦2
C �

kX

j=1
2a j p j

!
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is of maximal rank for any choice of natural numbers a1, . . . , ak . We did not modify
the proof to cover also these cases only because it would complicate the numerology
in the proof further and we will not need this fact in what follows.
We have proven that the vector bundle map (2.2) is generically non-degenerate over
10:S , but this is no longer true over 11:S . In order to compute the coefficients
b1:s(t) precisely (rather than just giving a lower bound for it), one needs a finer
analysis of the limit points of Quadg(t),n(t) inside the boundary ofMg,n . We will
use limit linear series to carry out this analysis. The limiting behaviour of very
similar multiplication maps over moduli spaces has been successfully studied using
limit linear series in the papers [5,9] and [8]. Here we will adapt the ideas developed
in these papers to our situation. We start with some definitions.
Definition 2.10. Given a pointed smooth curve [C, p] and a line bundle L on it,
we define the vector space Wk(p, L) of symmetric tensors of L with vanishing
order � k at p as follows: We let (aL0 (p), . . . , aLr (p)) be the vanishing sequence of
L at p and {�0, �1, . . . , �r } ✓ H0(L) be a basis such that

ordp(�i ) = aLi (p).

Then we define

Wk(p, L) := span
n
�i� j | aLi (p) + aLj (p) � k

o
✓ Sym2 H0(L).

Moreover, for ⇢ 2 Sym2 H0(L) we define ordp(⇢) = k if ⇢ 2 Wk(p, L) \
Wk+1(p, L).

Lemma 2.11. The definition of Wk(p, L) is independent of the chosen basis.

Proof. If we let {� 0
0, �

0
1, . . . , �

0
r } ✓ H0(L) be another basis with the property that

ordp(� 0
i ) = aLi (p) then clearly

� 0
i =

rX

`=i
�`�` �` 2 C.

Therefore � 0
i �

0
j can be written as a linear combination of symmetric tensors �m�n

where m � i and n � j .

Using very similar ideas as in [4], we (locally) construct a space of “limit
quadrics”, which coincides with Quadg(t),n(t) in the smooth locus ofMg(t),n(t)
and has a concrete geometric description for its elements in the boundary:

Theorem 2.12. For ; 6= S ✓ {1, . . . , n(t)}, let [E, q 0, {p j | j 2 S}] be a general
pointed genus one curve and [C, {p j | j 2 Sc}] a general pointed genus g(t) � 1
curve. We let q 2 C and fix the nodal curve

X0 :=
⇥
C [q⇠q 0 E, p1, . . . , pn(t)

⇤
2Mg(t),n(t).
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We further let

⇡ : X ! B � j : B ! X for j = 1, . . . , n(t)

be the versal deformation space of [X0, p1, . . . , pn(t)] with ⇡�1(0) = X0 and
� j (0) = p j . Then there exists a schemeQ ✓ B, which is singled out by the follow-
ing geometric conditions:

If b 2 Q and Xb is smooth then the multiplication map

Sym2 H0
 

KXb �
n(t)X

j=1
� j (b)

!

! H0
 

K⌦2
Xb � 2

n(t)X

j=1
� j (b)

!

(2.7)

is not an isomorphism. If b 2 Q and Xb is a singular curve obtained by gluing
[C 0, q, {� j (b) | j 2 Sc}] and [E 0, q 0, {� j (b) | j 2 S}] at the marked points q and
q 0 then the map

W3

 

q, KC 0 �(s�1)q�
X

j2Sc
� j (b)

!

!H0
 

K⌦2
C 0 �(2s+1)q�2

X

j2Sc
� j (b)

!

(2.8)

is not an isomorphism.
Moreover, every irreducible component ofQ has dimension � dim B � 1.

Proof. We let 1 ✓ B be the locus where the node q of X0 is not smoothed and let
Cq and Eq be the components of ⇡�1(1) containing C \ q and E \ q 0, respectively.
By shrinking B, if necessary, we can assume thatOX (Cq + Eq) ⇠= OX . We let

LC := !⇡

 

�s · Eq �
n(t)X

j=1
� j (B)

!

and
LE := LC

�
�(t + 3) · Eq

�
, (2.9)

where as before t + 3 = g(t) � n(t) � 1. Note that the twists for the bundles are
chosen in such a way that over X0 the space of sections can be identified as follows:

H0
�
LC |X0

�
= H0

 

KC � (s � 1)q �
X

j2Sc
p j

!

and

H0
�
LE |X0

�
= H0

 

OE

 

(s + t + 4)q 0 �
X

j2S
p j

!!

.

We let FC ! B and FE ! B be the bundle of projective frames of the vector
bundles ⇡⇤LC and ⇡⇤LE and we consider

F := FC ⇥B FE .
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The space F parametrizes the data [b, {�Cj }t+3j=0, {�
E
j }t+3j=0], where {�Cj }t+3j=0 and

{� Ej }t+3j=0 are ordered bases of the fibers of ⇡⇤LC and ⇡⇤LE at b 2 B up to scalars.
We fix sections ⌧C 2 OX (Cq) and ⌧E 2 OX (Eq) that only vanish on Cq and Eq ,
respectively. We denote by �̃Cj and �̃

E
j the tautological bundles on F , whose fibers

over each point are the 1-dimensional vector spaces corresponding to the frame with
the same symbol. We define a subscheme F 0 ✓ F subject to the conditions

�̃Cj · ⌧ t+3� j
C = �̃ Ej · ⌧ jE (2.10)

as sections of the bundles

⇡⇤LC
�
(t + 3� j) · Cq

� ⇠= ⇡⇤LE
�
j · Eq

�
,

where the isomorphism is induced by (2.9) and the isomorphism OX (Cq + Eq) ⇠=
OX . The resulting space F 0 parametrizes the data [b, {�Cj }t+3j=0, {�

E
j }t+3j=0], where

�Cj and �
E
j are identified if b 2 B \1 and if b 2 1 then

ordq
⇣
�Cj

⌘
� j and ordq 0

⇣
� Ej

⌘
� t + 3� j.

Note by (2.10) that the section �̃Cj vanishes at least j times along Eq . Thus, we
have an injective map

�̃Cj ,! ⇡⇤LC
�
� j · Eq

�
.

Similarly, we have that

�̃ Ej ,! ⇡⇤LE
�
�(t + 3� j) · Cq

�
.

Therefore for j + k � 3, we have maps

�̃Cj ⌦ �̃Ck ,! ⇡⇤LC
�
� j · Eq

�
⌦ ⇡⇤LC

�
� k · Eq

�
! ⇡⇤L⌦2

C
�
�( j + k) · Eq

�

! ⇡⇤L⌦2
C

�
� 3 · Eq

�
,

where the middle map is the usual multiplication map and the last map is induced
by multiplying sections with ⌧ j+k�3E . On the other hand, for j + k < 3, we have
maps

�̃ Ej ⌦ �̃ Ek ,! ⇡⇤LE
�
�(t + 3� j) · Cq

�
⌦ ⇡⇤LE

�
�(t + 3� k) · Cq

�

! ⇡⇤L⌦2
E

�
�(2t + 6� j � k) · Cq

�
! ⇡⇤L⌦2

E
�
�(2t + 3) · Cq

�

⇠= ⇡⇤L⌦2
C

�
� 3 · Eq

�
,

where similarly the last map is multiplying sections with ⌧ 3� j�k
C and the isomor-

phism is induced by (2.9). Next, we define the vector bundle

S :=

0

B
B
@

M

j+k�3
k� j

�̃Cj ⌦ �̃Ck

1

C
C
A �

0

B
B
@

M

j+k<3
k� j

�̃ Ej ⌦ �̃ Ek

1

C
C
A ,
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and consider the vector bundle map

� : S ! ⇡⇤L⌦2
C

�
� 3 · Eq

�
,

which at fibers is the map that takes the quadratic polynomials given by the indi-
vidual direct summands of S and evaluates their sum under the multiplication map.
Note that due to the identifications (2.10) the fiber of this vector bundle map at a
point b 2 B \ 1 is the map in (2.7). Next, we describe the fiber over b = 0. First
note that the fiber of ⇡⇤L⌦2

C (�3 · Eq) over 0 is identified by the vector subspace of
sections in

H0
 

K⌦2
C � (2s + 1)q � 2

X

j2Sc
� j (b)

!

� H0
 

OE

 

(2s + 5)q 0 � 2
X

j2S
� j (b)

!!

that are compatible at the node q.
The direct summands �̃ Ej ⌦ �̃ Ek in S are multiplied by non-trivial powers of ⌧C

(since 3� j�k > 0) as described above. Therefore, the sections of ⇡⇤L⌦2
C (�3 ·Eq)

that are in the image of the map

�̃ Ej ⌦ �̃ Ek ! ⇡⇤L⌦2
C

�
� 3 · Eq

�

restrict to zero on C and on E they restrict to sections of

H0
 

OE

 

(2s + 5)q 0 � 2
X

j2S
� j (b)

!!

,

that vanish at q 0. Arguing in the same way, we observe that for j + k > 3, sections
that are in the image of

�̃Cj ⌦ �̃Ck ! ⇡⇤L⌦2
C

�
� 3 · Eq

�

restrict to zero on E and on C they restrict to sections of

H0
 

K⌦2
C � (2s + 1)q � 2

X

j2Sc
� j (b)

!

,

that vanish at q. The images of the remaining direct summands, �̃C0 ⌦ �̃C3 and
�̃C1 ⌦ �̃C2 in ⇡⇤L⌦2

C (�3 · Eq) restrict to sections on E and C that are compatible at
the node q ⇠ q 0.

It is elementary to observe that the fiber of � at 0 2 B always surjects onto the
sections on E . Therefore, � fails to be an isomorphism over 0 2 B if and only if
the map (2.8) is not an isomorphism.

We define Q̃ ✓ F 0 as the locus where the map � fails to be an isomorphism
and letQ be the image of Q̃ under the morphism F ! B.
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To estimate the dimension of Q, first observe that the fibers of F are isomor-
phic to two copies of the projective linear group of a vector space of dimension
t + 4. Therefore,

dim F = dim B + 2(t + 3)(t + 4).
Each of the conditions in (2.10) is a single equation on the elements of a projective
bundle with fibers isomorphic to Pt+3. Therefore, each of them imposes t + 3 con-
ditions. The determinantal condition on � clearly imposes (at most) one condition.
Thus, we have the estimate that every irreducible component of Q̃ has dimension
at least

dim F � (t + 3)(t + 4) � 1 = dim B + (t + 3)(t + 4) � 1.

To finish the proof, we need to show that the fiber dimension of Q̃! B is at most
(t + 3)(t + 4). This is clear over b 2 B \ 1, since in this case the frames are
identified and the fiber of F 0 ! B is isomorphic to a single copy of PGLt+4. Over
b 2 1, we have the same estimate on the fiber dimension, because by the generality
of the pointed elliptic curve [E, q 0, {p j | j 2 S}], we have that

H0
 

OE

 

s · q 0 �
X

j2S
p j

!

= 0

!

,

which forces ordq 0(� Ej ) = t + 3 � j for all j . Similarly, by the generality of the
pointed curve [C, {p j | j 2 Sc}], we have that ordq(�Cj ) = j for all j (We are
disregarding the case where s = n(t) and q is a Weierstrass point of C , because it
plays no role in the dimension count). An elementary dimension count now shows
that the possible frames {�Cj }t+3j=0, {�

E
j }t+3j=0 subject to conditions

ordq
⇣
�Cj

⌘
+ ordq 0

⇣
� Et+3� j

⌘
= t + 3,

depend on (t + 3)(t + 4) parameters.

Note that by Theorem 2.12, we have the necessary condition that if the pointed
nodal curve [X0, p1, . . . , pn(t)] 2 Quadg(t),n(t) then the map (2.8) fails to be an
isomorphism. To show that this is also sufficient, one has to rule out the possi-
bility that an irreducible component of Q lies in the boundary. Since we have
already shown that the dimension of every irreducible component of Q is at least
dimMg(t),n(t) � 1, we can exclude this possibility by checking that the map (2.8)
is generically non-degenerate over the boundary divisors 11:S . This is the content
of the next theorem.
Theorem 2.13. For ; 6= S ✓ {1, . . . , n(t)} and a general pointed genus g(t) � 1
curve [C, q, {p j | j 2 Sc}] 2Mg(t)�1,Sc[{q} the map

W3

 

q, KC �
X

j2Sc
p j � (s � 1)q

!

! H0
 

K⌦2
C � 2

X

j2Sc
p j � (2s + 1)q

!

is an isomorphism.
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Proof. Clearly it is sufficient to specialize to the case where the points p j = q for
all j 2 Sc and prove that the map

W3(q, KC � (n(t) � 1)q) ! H0
⇣
K⌦2
C � 2(n(t) � 1)q

⌘

is an isomorphism for a general element [C, q] 2Mg(t)�1,1.
To prove this statement, we follow the same steps of successive degenerations

as in the proof of Theorem 2.5, which (skipping the details) reduces the question to
prove that there exists a pointed curve [C, q, q1, q2, q3, q4] 2M2,5 such that

W3(q, KC + q1 + q2 + q3 + q4 � q)!H0
⇣
K⌦2
C +2q1+2q2+2q3+2q4�2q

⌘

is an isomorphism.
To see this, note that if we choose the points q, q1, q2, q3, q4 2 C to be general,

then the image of C under |KC+q1+q2+q3+q4�q| is contained in a unique (rank
4) quadric, which correspond to the pencils |KC | and |q1 + q2 + q3 + q4 � q|, both
of which have the vanishing type (0, 1) at the point q. That is, the tangent space
of the quadric has multiplicity 2 at q and therefore the quadric is not an element of
W3(q, KC + q1 + q2 + q3 + q4 � q).

Corollary 2.14. We have that b1:0(t) = t + 4 and b1:1(t) = 4.

Proof. We consider the gluing map

⌫ :M1,2 !Mg(t),n(t)

that attaches a general genus g(t) � 1 curve [C, q, p1, . . . , pn(t)�1] to [E, p, q 0] 2
M1,2 by identifying the points q and q 0. By Theorem 2.13, we have that

⌫⇤
⇣
Quadg(t),n(t)

⌘
= 0.

Thus we get the relation

(8� t) · �� �irr + t ·  p + b1:1(t) ·  q 0 � b1:0(t) · �0:{p,q 0} = 0 (2.11)

in Pic(M1,2). Among the classes �, p, q 0, �irr , �0:{p,q 0}, we have the following
relations (see [1]):

12� = �irr and  p =  q 0 = �+ �0:{p,q 0}.

Using these, we can rewrite the relation (2.11) as

(b1:1(t) � 4) · �+ (b1:1(t) � b1:0(t) + t) · �0:{p,q 0} = 0,

from which the statement clearly follows.
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Corollary 2.15. We have that b1:s(t) = 1
2 (s

2t + s2 � st + s + 6) for s � 1.

Proof. Intersecting the test curve T1:S withQuadg(t),n(t) we obtain the relation

T1:S · Quadg(t),n(t) = t (n(t) � s) + (2g(t) � 4+ n(t) � s)b1:s(t)
� (n(t) � s)b1:s+1(t).

(2.12)

The construction of the spaceQ in Theorem (2.12) can be carried out with obvious
modifications in the special case, where q 2 C and one of the marked points p j 2 C
come together (See the computation in the next paragraph for the counterpart of the
condition (2.8) in this case). This enables us to compute the left hand side of the
equation (2.12):

We consider the maps

C ⇥ C
⇡1

{{x

x

x

x

x

x

x

x

x

⇡2

##

F

F

F

F

F

F

F

F

F

C C

and let 1 := {(p, p) 2 C ⇥ C | p 2 C} and

L := ⇡⇤
1

 

!C

 

�
X

j2Sc
p j

!!

⌦O(�(s � 1)1).

The intersection number T1:S · Quadg(t),n(t) is equal to the class of the degeneracy
locus of the vector bundle map

W3
⇣
Sym2 ⇡2⇤L

⌘
✓
�! ⇡2⇤

⇣
L⌦2 ⌦O(�31)

⌘
.

The bundle W3(Sym2 ⇡2⇤L) sits naturally in the following exact sequences:

0 ! Sym2 ⇡2⇤ (L(�21)) ! W 0 ! ⇡2⇤ (L(�21)) ⌦ ⇡2⇤

⇣
L ⌦ I1/I21

⌘
! 0,

and

0 ! W 0 ! W3
⇣
Sym2 ⇡2⇤L

⌘
! ⇡2⇤ (L(�31)) ⌦ ⇡2⇤ (L ⌦O1) ! 0.

Using these exact sequences and applying G-R-R and Porteous formula, we com-
pute

[D1(✓)] =
1
2

⇣
s2

⇣
t3 + 6t2 + 13t + 8

⌘
� 2s

⇣
t3 + 4t2 + 4t � 3

⌘

+t3 + 8t2 + 29t + 34
⌘

.

Using this equation we solve the recurrence relation (2.12) and obtain that

b1:s(t) =
1
2

⇣
s2t + s2 � st + s + 6

⌘
.
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3. Kodaira dimension ofMg,n

In this section we use Theorem 1.1 to obtain some results about the Kodaira dimen-
sion ofMg,n . The canonical class ofMg,n is well known to be

KMg,n
= 13�� 2�irr +

nX

j=1
 j � 2

X

S2P
|S|�2

�0:S � 3
X

S2P
�1:S � 2

bg/2cX

i=2

X

S2P
�i :S,

where P denotes the power set of {1, . . . , n}. Since the class
Pn

j=1  j is big, ex-
pressing the canonical divisor KMg,n

as a positive linear combination of
Pn

j=1  j

and other effective divisors implies thatMg,n is of general type.

Proof of Theorem 1.2. We consider the map

⌫i, j :M16,8 !M17,10

that attaches an elliptic curve with two marked points to the point labeled by i and
a rational curve with two marked points to the point labeled by j .

We want to pullback the divisorQuad17,10 via this gluing map. To ensure that
we obtain an effective divisor onM16,8 this way, one needs to check that the map

W3

 

pi , KC � pi � 2p j �
8X

6̀=i, j
p`

!

! H0
 

K⌦2
C � 2pi � 4p j � 2

8X

6̀=i, j
p`

!

is an isomorphism for a general element [C, p1, . . . , p8] 2M16,8, so that the image
of ⌫i, j is not contained inQuad17,10. This clearly follows from Theorem 2.13.

Using the pullback formulas in [1], we compute

⌫⇤
i, j

⇣
Quad17,10

⌘
= 5�+ 3

X

6̀=i, j
 ` � �irr + 9 i + 10 j � . . .

We compute this pullback for every choice of markings {i, j} ✓ {1, . . . , 8} and take
the average of the resulting divisors to obtain the effective class

D16,8 = 40�+ 37
8X

j=1
 j � 8�irr � . . .

Next, we consider the pullback of the effective divisor Z16 ✓ M16, which is de-
fined as the closure of the locus of curves [C] 2M16 that are contained in a quadric
under the map given by a g721. The class of Z16 is computed in [8]:

Z16 = 407�� 61�irr � . . .
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Using these two classes, the canonical class ofM16,8 can be written as

KM16,8
=
13
272

8X

j=1
 j +

7
272

D16,8 +
1
34
Z16 + E,

where E an effective divisor supported onM16,8 \ (M16,8 [1irr ).
To obtain an analogous description for KM17,8

, we consider the map

⌫i, j :M17,8 !M17,10

that attaches a genus zero curve with two marked points to each of the points labeled
by i and j . By Theorem 2.5, we have that

⌫i, j

⇣
M17,8

⌘
6✓ Quad17,10.

Therefore, the class

⌫⇤
i, j

⇣
Quad17,10

⌘
= 5�+ 3

X

6̀=i, j
 ` � �irr + 10 i + 10 j � . . .

is an effective divisor on M17,8. As before, we apply this procedure for every
{i, j} ✓ {1, . . . , 8} and take the average to obtain the divisor

D17,8 = 20�+ 19
8X

j=1
 j � 4�irr � . . .

The pullback of the Brill-Noether divisor onM17 toM17,8 has the class

BN17 = 20�� 3�irr � . . .

Using these, we can write

KM17,8
=
1
20

8X

j=1
 j +

1
20
D17,8 +

3
5
BN17 + E,

where as before E is an effective divisor supported onM17,8 \ (M17,8 [1irr ).
Finally forM12,10, we use two divisor classes computed by Farkas and Verra.

The first one is defined as the closure of the locus of curves inM12, which are
contained in a quadric under the map given by a g414. The class of this divisor is
computed in [10]:

D12 = 13245�� 1926�irr � . . .
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The second one is given as the closure of the locus of pointed curves [C,p1,. . . ,p10]
inM12,10, where the curve admits a map C ! P1 of degree 11, where the points
p1, . . . p10 lie in a fiber. The class of this divisor is computed in [11]:

F12,10 = 9
10X

j=1
 j � �irr � . . .

Now the canonical class ofM12,10 can be written as

KM12,10
=

59
4415

10X

j=1
 j +

13
13245

D12 +
484
4415

F12,10 + E,

with E being an effective divisor supported onM12,10 \ (M12,10 [1irr ).
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