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Free boundary minimal surfaces: a nonlocal approach

FRANCESCA DA LIO AND ALESSANDRO PIGATI

Abstract. Given a Ck -smooth closed embedded manifoldN ⇢ Rm , with k � 2,
and a compact connected C1-smooth Riemannian surface (S, g) with @S 6= ;,
we consider 12 -harmonic maps u 2 H1/2(@S,N ). These maps are critical points
of the nonlocal energy

E( f ; g) :=
Z

S
|reu|2 dvolg, (0.1)

whereeu is the harmonic extension of u in S. We express the energy (0.1) as a sum
of the 12 -energies at each boundary component of @S (suitably identified with the
circle S1), plus a quadratic term which is continuous in the Hs(S1) topology,
for any s 2 R. We show the Ck�1,� regularity of 12 -harmonic maps. We also
establish a connection between free boundary minimal surfaces and critical points
of E with respect to variations of the pair ( f, g), in terms of the Teichmüller space
of S.

Mathematics Subject Classification (2010): 58E20 (primary); 35B65 (sec-
ondary).

1. Introduction

Let (S, g) be a connected C1-smooth surface with nonempty boundary @S,
equipped with a smooth metric g (S is not necessarily oriented) and let N ⇢ Rm

be an embedded closed (i.e., compact without boundary) C2-smooth submanifold.
We set

H1/2
�
@S,N

�
:=
n
f 2 H1/2(@S, Rm) : f (x) 2 N for a.e. x

o
.

Given a map f 2 H1/2(@S,N ), we define the 12 -energy of f to be

E( f ; g) :=
Z

S

�
�r ef

�
�2 dvolg. (1.1)
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Here ef denotes the harmonic extension of f , i.e. the unique harmonic map ef 2

H1(S, Rm) such that ef
�
�
�
@S

= f . We observe that E( f ; g) depends only on the
conformal class of g.

Definition 1.1. A map u 2 H1/2(@S,N ) is called 1
2 -harmonic if u is a criti-

cal point for the 1
2 -energy E = E(·; g), in the following sense: for any � 2

C1(@S, Rm) we have
d
dt
E(5(u + t�))

�
�
�
�
t=0

= 0, (1.2)

where 5 : U ! N is any fixed C2 projection, defined on some tubular neighbor-
hood U ofN .
Definition 1.1 extends the one introduced for the first time in [9] in the case S = D
or in the noncompact case S = H (D and H being the unit disk and the upper half-
plane, respectively). One can check that5(u+t�) = u+tv+o(t) in H1/2(@S, Rm)
as t ! 0, where v := d5(u)[�], and therefore1

d
dt
E(5(u + t�))

�
�
�
�
t=0

= 2
Z

S
hreu;revi dvolg = 2

Z

@S
d5(u)[�] ·

@eu
@⌫

dvolg.

By a standard density argument, u is 12 -harmonic if and only if

Z

@S
d5(u)[�] ·

@eu
@⌫

dvolg = 0, (1.3)

for any � 2 L1 \ H1/2(@S, Rm) (which is a Banach algebra), which is in turn
equivalent to ask Z

@S

@eu
@⌫

· v dvolg = 0 (1.4)

for any v 2 L1\H1/2(@S, Rm) satisfying v 2 TuN a.e. In particular, the definition
is independent of the choice of5.

Let PT (⇠) denote the orthogonal projection onto the tangent space T⇠N , for
⇠ 2 N , and observe that PT 2 C1(N , Rm⇥m). In the paper we will also call
PN := I � PT the projection onto the normal space. The same argument showing
the equivalence of (1.3) and (1.4) proves that one can replace d5 with PT in (1.3)
(notice that, onN , PT is the differential of the nearest point projection, canonically

1 The normal derivative @eu@⌫ 2 H�1/2(@S, Rm) is defined precisely by asking that, for any v 2

H1/2(@S, Rm), Z

S
hreu;revi dvolg =

Z

@S

@eu
@⌫

· v dvolg .



FREE BOUNDARY MINIMAL SURFACES: A NONLOCAL APPROACH 439

defined near N , but we cannot use this projection in (1.2) as it is merely C1).
Hence,

u is
1
2
-harmonic ,

Z

@S

@eu
@⌫

· PT (u)v dvolg=0, 8v2L1\H1/2(@S, Rm)

, PT (u)
@eu
@⌫

= 0 in D0(@S).
(1.5)

Solutions to the last equation are of special geometric interest because they are
strictly connected to the so-called free boundary minimal surfaces, in the following
sense.
Definition 1.2. We say that a map eu 2 C2(S, Rm) is a free boundary (branched)
minimal immersion with supporting manifold N if it is a harmonic map which
is also conformal (with the possible exception of finitely many points where deu
vanishes) and meetsN orthogonally, i.e.

PT (u)
@eu
@⌫

= 0 on @S.

In the case S = D the following connection between 1
2 -harmonic maps u : S1 !

N and free boundary minimal disks is now a well-known fact (see, e.g., [6, 7, 20]
and Remark 3.3).

Proposition 1.3. The harmonic extensioneu of a 12 -harmonic map u2H1/2(S1,N )
is conformal. Geometrically, this means that u is the boundary of a free boundary
(branched) minimal disk.

We point out that Proposition 1.3 has been at the origin of the study of 12 -harmonic
maps.

In this paper we are going to investigate the regularity of 12 -harmonic maps
u 2 H1/2(@S,N ). Besides showing the Hölder continuity of such maps, we will
illustrate how to bootstrap to higher regularity. Precisely we will show the follow-
ing.

Theorem 1.4. Let N ⇢ Rm be a Ck-smooth closed embedded manifold, with k �
2, and let u 2 H1/2(@S,N ) be 12 -harmonic. Then

u 2
\

0<�<1
Ck�1,�(@S,N ).

In particular, ifN is C1 then u 2 C1(@S,N ).

The proof of Theorem 1.4 is rather technical and we defer it to the appendix.
We point out that one of the key steps to prove the regularity of 12 -harmonic

maps is the representation of the energy E( f ; g) as a sum of the fractional 12 -
energies at each boundary component (according to a suitable identification with
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S1), plus a quadratic term which is continuous in the Hs-topology, for any s 2 R.
The identification of the energy of ef with a fractional energy on the boundary in
the case of the flat disk D is a well-known fact.

In the model case where S = At := Bt \ B1, t > 1, we have the following
decomposition.
Lemma 1.5. Let a, b 2 H1/2(S1, Rm) and define f 2 H1/2(@At , Rm) by setting
f (ei✓ ) := a(ei✓ ), f (tei✓ ) := b(ei✓ ). Then the Dirichlet energy of the harmonic
extension ef 2 H1(At , Rm) is given by

1
2⇡

Z

At

�
�r ef

�
�2

=
X

n
|n|
�
|an|2 + |bn|2

�
+

|b0 � a0|2

log t

+
X

n>0
n
✓

4
t2n � 1

�
|an|2 + |bn|2

�
�

8tn

t2n � 1
<(an · bn)

◆

=
1
2⇡

✓�
�
�(�1)1/4a

�
�
�
2

L2(S1)
+
�
�
�(�1)1/4b

�
�
�
2

L2(S1)
+ Bt ((a, b), (a, b))

◆
,

(1.6)

where Bt : D0(S1, Rm)2 ⇥D0(S1, Rm)2 ! R is a symmetric bilinear functional.

By using the decomposition (1.6) we succeed in rewriting condition (1.5) in the
form of a nonlocal linear Schrödinger system with an antisymmetric potential, as it
has been done in [8, 10, 19] in the case of the flat disk.

We will also show that the conformality2 of the harmonic extensioneu is equiv-
alent to criticality of E with respect to variations of the conformal class of S. For
instance, if S is diffeomorphic to an annulus, then up to a conformal diffeomor-
phism we can assume that (S, g) = (At , gR2) for some t > 0 (see Theorem A.1).
In this case a variation of the conformal class corresponds to a variation of the
parameter t .
Theorem 1.6. Let a, b 2 H1/2(S1,N ) and define u[t] 2 H1/2(@At ,N ) by
u[t](ei✓ ) := a(ei✓ ), u[t](tei✓ ) := b(ei✓ ). Assume that u[t] is 1

2 -harmonic for
the annulus (At , gR2). Then its harmonic extension is conformal if and only if

d
dt
Et (u[t])

�
�
�
t=t

= 0,

where Et is the 12 -energy for At .

We will extend Theorem 1.6 to the hyperbolic case where S is neither a disk nor an
annulus (see Theorem 3.4).

In the interesting special case whereN is the boundary of a convexC1-smooth
domain �, we also prove the following result.

2 Conformality will mean weak conformality, i.e. at every point deu either is a linear conformal
map or vanishes.
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Corollary 1.7. The harmonic extension eu defines a conformal (branched) free
boundary minimal immersion eu : (

�
S, @S) ! (�, @�), with branch points only in

�
S, if and only if u is a nontrivial critical point of E( f ; g) with respect to the pair
( f, g).3

In view of the results in this paper, it would be interesting to study the flow version
of the energy E( f ; g), where the evolution of the conformal class of g would be
given by the lack of conformality of eu, in a similar way as for the Teichmüller
harmonic map flow studied in [21]. This would correspond to a Teichmüller 12 -
harmonic flow.

This paper is organized as follows.

• Section 2 provides the decomposition of the 12 -energy (1.1) in terms of nonlocal
operators defined on @S; we also obtain a similar decomposition for the related
Dirichlet-to-Neumann operator.

• Section 3 establishes the criterion for the conformality of the harmonic extension
ef , as well as Corollary 1.7.

• In Section Appendix A we show a well-known uniformization theorem for com-
pact annuli, exhibiting a conformal equivalence which is smooth up to the bound-
ary; this is needed for the construction made in Section 2.

• Section Appendix B collects the definitions and basic facts concerning all the
functional spaces involved in the paper; in particular we show some useful re-
sults about the space Ḣ 1/2(R).

• In Section Appendix C we recall some fundamental three-term commutator es-
timates, which were first obtained in [9], as well as a two-term commutator
estimate due to Coifman-Rochberg-Weiss from [5].

• Section Appendix D details the proof of the Hölder continuity of a 12 -harmonic
map u and uses localized versions of the integrability by compensation effects
recalled in Section Appendix C.

• In Section Appendix E we bootstrap the results of Section Appendix D to obtain
higher regularity of u, i.e. Theorem 1.4, exploiting another two-term commuta-
tor.

ACKNOWLEDGEMENTS. The authors would like to thank Tristan Rivière for sug-
gesting the investigation of the problem and for the helpful discussions.

2. Decomposition of the energy

The purpose of this section is to obtain the decomposition of the 12 -energy (1.1) in
terms of nonlocal operators defined on @S.

3 The meaning of criticality with respect to g will be specified in Section 3.
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We will also show that the so-called Dirichlet-to-Neumann operator

H1/2(@S, Rm) ! H�1/2(@S, Rm), f 7!
@ ef
@⌫

can be represented as the sum of the usual fractional Laplacian at each boundary
component and a remainder B : D0(@S, Rm) ! C1(@S, Rm), which represents a
sort of interaction between the boundary data.

We will start from the model case of the flat annulus, where this decomposition
is explicit.

2.1. The case of an annular domain

For a fixed t > 1, let At := Bt \B1 ⇢ C be the standard annulus with the Euclidean
metric.

Given f 2 H1/2(@At , Rm), we denote

a
�
ei✓
�

:= f
�
ei✓
�
, b
�
ei✓
�

:= f
�
tei✓

�
2 H1/2

�
S1, Rm�.

We use the notation (an)n2Z and (bn)n2Z for the Fourier coefficients of the two
functions, namely

an :=
1
2⇡

Z 2⇡

0
a
�
ei✓
�
e�in✓ d✓, bn :=

1
2⇡

Z 2⇡

0
b
�
ei✓
�
e�in✓ d✓ .

We observe that
P

n2Z 2⇡ |n| |an|2 = k(�1)1/4ak2L2 and similarly for b.
Given (a, b), (c, d) 2 D0(S1, Rm)2 ⇥ D0(S1, Rm)2 we define the following

symmetric bilinear operator:
Bt ((a, b), (c, d))

:= 2⇡
(b0 � a0) · (d0 � c0)

log t

+
X

n>0

8⇡n
t2n � 1

<
�
an · cn + bn · dn � tnan · dn � tnbn · cn

�
.

(2.1)

Lemma 2.1. Bt is a sequentially continuous bilinear functional onD0(S1, Rm)2⇥
D0(S1, Rm)2.
Proof. Assume a, b, c, d 2 Hs(S1, Rm). Since t > 1 we have
|Bt ((a, b), (c, d))|

2⇡


|b0 � a0| |d0 � c0|
log t

+
X

n>0

4n
t2n � 1

(|an| |cn| + |bn| |dn|)

+
X

n>0

4ntn

t2n � 1
(|an| |dn| + |bn| |cn|) (2.2)

.
X

n�0

�
1+ n2

�s
(|an| |cn| + |bn| |dn| + |an| |dn| + |bn| |cn|)

kakHs kckHs +kbkHs kdkHs +kakHs kdkHs +kbkHs kckHs ,
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thanks to the elementary estimate ntn
t2n�1 . n2s and the Cauchy–Schwarz inequality

(the implied constants depend of course on s, t). Since D0(S1) =
S

s2R Hs(S1),
we get in particular that Bt is a linear functional on D0(S1, Rm)2 ⇥D0(S1, Rm)2.

If (((ai , bi ), (ci , di )))i2N is a sequence converging to ((a, b), (c, d)) in this
space, by the uniform boundedness principle (applied to the Fréchet space
D(S1, Rm)) we deduce that the set {ai , bi , ci , di | i 2 N} is bounded in Hs+1(S1),
for some real s.

By the compact embedding Hs+1(S1) ,! Hs(S1), any subsequence admits a
further subsequence converging in Hs(S1, Rm)2⇥Hs(S1, Rm)2, where we have al-
ready shown the continuity of Bt . This shows that Bt ((ai , bi ), (ci , di ))!Bt ((a, b),
(c, d)).

Lemma 2.2. For any f 2 H1/2(@At , Rm), the Dirichlet energy of its harmonic
extension ef 2 H1(At , Rm) is given by

Z

At

�
�r ef

�
�2 = 2⇡

X

n
|n|
�
|an|2 + |bn|2

�
+ 2⇡

|b0 � a0|2

log t

+ 2⇡
X

n>0
n
✓

4
t2n � 1

�
|an|2 + |bn|2

�
�

8tn

t2n � 1
<(an · bn)

◆

=
�
�(�1)1/4a

�
�2
L2(S1) +

�
�(�1)1/4b

�
�2
L2(S1) + Bt ((a, b), (a, b)).

(2.3)

Proof. One can check, e.g., by a density argument involving trigonometric polyno-
mials, that the harmonic extension ef is given by

ef
�
rei✓

�
= a0 +

b0 � a0
log t

log r +
X

n 6=0

tnbn � an
t2n � 1

rnein✓

+
X

n 6=0

t2nan � tnbn
t2n � 1

r�nein✓ .
(2.4)

Calling

ec =
b0 � a0
log t

, cn =
tnbn � an
t2n � 1

, c0n =
t2nan � tnbn
t2n � 1

,

we have

@ ef
@r

(r, ✓) =ecr�1 +
X

n 6=0
n(cnrn�1 � c0nr

�n�1)ein✓ ,

1
r
@ ef
@✓

=
X

n 6=0
in(cnrn�1 + c0nr

�n�1)ein✓ .
(2.5)



444 FRANCESCA DA LIO AND ALESSANDRO PIGATI

Thus the Dirichlet energy of ef equals
Z

At

�
�r ef

�
�2 = 2⇡ |ec|2 log t + 2⇡

X

n 6=0
n
⇣
|cn|2 (t2n � 1) �

�
�c0n
�
�2(t�2n � 1)

⌘

= 2⇡
|b0 � a0|2

log t
+ 2⇡

X

n 6=0

n
t2n � 1

⇣�
�tnbn � an

�
�2 +

�
�tnan � bn

�
�2
⌘

.

Since a�n = an and b�n = bn , we deduce
R
At

�
�r ef

�
�2

2⇡
=

|b0 � a0|2

log t
+
X

n 6=0

n
t2n � 1

⇣
(t2n + 1)(|an|2 + |bn|2) � 4tn<(an · bn)

⌘

=
|b0 � a0|2

log t
+
X

n 6=0
|n| (|an|2 + |bn|2)

+
X

n>0
n
✓

4
t2n � 1

(|an|2 + |bn|2) �
8tn

t2n � 1
<(an · bn)

◆
.

Lemma 2.3. The normal derivatives on @B1 and @Bt are given by

@ ef
@⌫

�
ei✓
�

= (�1)1/2a +Rt [a, b],

@ ef
@⌫

�
tei✓

�
= t�1(�1)1/2b + t�1Rt [b, a],

(2.6)

where Rt : D0(S1, Rm)2 ! C1(S1, Rm) is a sequentially continuous linear oper-
ator defined by

Rt [a, b]
�
ei✓
�

:= �
b0 � a0
log t

+
X

n>0

2n
t2n � 1

�
an � tnbn

�
ein✓

+
X

n<0

2n
t2n � 1

�
t2nan � tnbn

�
ein✓ .

(2.7)

Proof. Let ↵(ei✓ ) := @ ef
@⌫ (ei✓ ) and �(ei✓ ) := @ ef

@⌫ (tei✓ ). Given any h 2 C1(@At , Rm),
let c(ei✓ ) := h(ei✓ ) and d(ei✓ ) := h(tei✓ ). Since ef is harmonic we get

2⇡
X

n
↵n · cn + 2⇡ t

X

n
�n · dn =

Z

@At

@ ef
@⌫

h =
Z

At
r ef · reh

=
Z

S1
(�1)1/4a(�1)1/4c +

Z

S1
(�1)1/4b(�1)1/4d + Bt ((a, b), (c, d)).

From this equation we easily get (2.6), with Rt [a, b] given by (2.7). We observe
that the formula (2.7) can also be obtained directly from (2.5). The continuity of
Rt is proved by arguing as in the proof of Lemma 2.1.
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Remark 2.4. The symmetry Bt ((a, b), (c, d)) = Bt ((b, a), (d, c)), as well as the
fact that the formulas for t @ ef@⌫ (tei✓ ) and @ ef

@⌫ (ei✓ ) can be obtained from each other
by exchanging a and b, are not surprising in view of the existence of the conformal
map

At ! At , z 7!
t z
|z|2

,

which exchanges the two boundary components.

2.2. General compact surfaces with boundary

The boundary @S is the disjoint union of finitely many circles diffeomorphic to S1:

@S =
kG

j=1
C( j).

We can find, for each j , a smooth map

� j : [0, 1] ⇥ S1 ! S

with the following properties:

• � j is a diffeomorphism onto its image;
• � j ({0} ⇥ S1) = C( j);
• � j ([0, 1] ⇥ S1) \ � j 0([0, 1] ⇥ S1) = ; for any j 6= j 0.

Applying Theorem A.1 to the annulus

A( j) := � j
�
[0, 1] ⇥ S1

�
,

we can find a conformal transformation  j : A( j) ! At j (where At j := Bt j \ B1 ⇢
C, equipped with the flat metric) such that  j (C( j)) = @B1. Finally, we call

S0 := S \
kG

j=1
� j ([0, 1) ⇥ S1).

The picture illustrates our decomposition of S.

←− −→

At1
At2

A(1) A(2)

C(1)
C(2)

y1 y2
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We notice that S0 is still a smooth surface with boundary

@S0 =
kG

j=1
� j
�
{1} ⇥ S1

�
=

kG

j=1
 �1
j
�
@Bt j

�
.

Lemma 2.5. For any f 2 H1/2(@S,N ) the 12 -energy E( f ; g) admits the decom-
position

E( f ; g) =
X

j

�
� f j

�
�2
H1/2 + BS

⇣
( f j )kj=1, ( f j )

k
j=1

⌘
,

where f j (ei✓ ) := f �  �1
j (ei✓ ) and BS : D0(S1, Rm)k ⇥ D0(S1, Rm)k ! R is a

sequentially continuous symmetric bilinear functional.

Proof. Let G 2 C1((
�
S ⇥ S) \1) be the Green function for the Dirichlet problem

(see, e.g., [2, Theorem 4.17]), satisfying for each x 2
�
S

(
�1gG(x, ·) = �x on S
G(x, ·) = 0 on @S

and let H 2 C1(
�
S ⇥ @S) which is defined, for any fixed x 2

�
S, by the formula

H(x, ·) := � @
@⌫G(x, ·). For any f 2 H1/2(@S, Rm) and any x 2

�
S, the harmonic

extension is given by the formula

ef (x) =
Z

@S
H(x, y) f (y) dvolg(y).

Now
�
H(x, ·) | x 2 S0

 
is a compact subset ofC1(@S) and in particular is bounded

in Ck(@S) for all k � 0. The same holds for the derivatives of any order in x .
Therefore the map

D0(@S, Rm) ! C1(S0, Rm), f 7! ef
�
�
�
S0

given by the above formula is sequentially continuous. In particular, ( f, h) 7!R
S0

⌦
r ef ;reh

↵
dvolg defines a sequentially continuous symmetric bilinear operator

on D0(@S, Rm) ⇥D0(@S, Rm).
Moreover, for any j 2 {1, . . . , k}, let

 j
�
ei✓
�

:= ef �  �1
j
�
t j ei✓

�
2 H1/2

�
S1, Rm�.

By conformal invariance we have 1(ef �  �1
j ) = 0 on At j and

Z

A( j)

�
�r ef

�
�2 dvolg =

Z

At j

�
�r
� ef �  �1

j
���2 =

�
�(�1)1/4 f j

�
�2
L2 +

�
�(�1)1/4� j

�
�2
L2

+ Bt j (( f j ,  j ), ( f j ,  j ))
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by Lemma 2.2. We remark that f 7!  j is sequentially continuous as a linear map
D0(@S, Rm) ! C1(S1, Rm). Finally, we can write

E( f ; g) =
kX

j=1

Z

A( j)

�
�r ef

�
�2 dvolg +

Z

S0

�
�r ef

�
�2 dvolg

=
kX

j=1

�
�(�1)1/4 f j

�
�2
L2 + BS

�
( f j ), ( f j )

�
,

where for any f, h 2 H1/2(@S, Rm) we let

BS(( f j ), (h j )) :=
kX

j=1

Z

S1
(�1)1/4 j (�1)1/4⇠ j +

kX

j=1
Bt j
�
( f j ,  j ), (h j , ⇠ j )

�

+
Z

S0

⌦
r ef ;reh

↵
dvolg,

with h j (ei✓ ) := h �  �1
j (ei✓ ) and ⇠ j (ei✓ ) :=eh �  �1

j (t j ei✓ ).

Lemma 2.6. For any ` = 1, . . . , k, the normal derivative on C (`) is given by

@ ef
@⌫

= e�`
⇣
(�1)1/2 f`

⌘
�  ` + e�`R`

⇣
( f j )kj=1

⌘
�  `,

where e2�` is defined by g = e2�` ⇤
` (gR2) and R` : D0(S1, Rm)k ! C1(S1, Rm)

is a sequentially continuous linear operator.

Proof. Indeed, for any ' 2 C1(S, Rm) supported in �`([0, 1) ⇥ S1),
Z

C(`)
e�`' ·

⇣
(�1)1/2 f`

⌘
�  ` dvolg =

Z

S1
' �  �1

` · (�1)1/2 f`

=
Z

@At j
' �  �1

` ·
@(ef �  �1

` )

@⌫
�
Z

S1
' �  �1

` · Rt`[ f`, `]

=
Z

At`

⌦
r(' �  �1

` );r(ef �  �1
` )

↵
�
Z

C(`)
e�`' · Rt`[ f`, `] �  ` dvolg,

where the operator Rt` is provided by (2.6). But, by conformality of  `,
Z

At`

D
r
�
' �  �1

`

�
;r
� ef �  �1

`

�E
=
Z

A(`)

⌦
r';r ef

↵
dvolg

=
Z

S

⌦
r';r ef

↵
dvolg =

Z

@S
' ·

@ ef
@⌫

dvolg

and thus we can let R`(( f j )kj=1) := Rt`[ f`, `].
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3. Conformality of the harmonic extension

This section is devoted to show that, if the energy of the harmonic extension eu is
also critical with respect to variations of the conformal class, then eu is conformal.
We will use the Teichmüller space T (S) of S to describe such variations. Through-
out the section we will assume that S is orientable (actually this hypothesis can
be dropped: one can repeat the same theory on the two-sheeted oriented cover eS,
restricting to equivariant metrics and variations).

We will start from the easier case of the annulus, which can be treated in an
elementary fashion (due to the simple explicit form of its Teichmüller space).
Remark 3.1. In the disk case, i.e. S = D, conformality holds automatically for
1
2 -harmonic maps (and indeed in this case T (S) is trivial): see Remark 3.3 below.
Recall that the disk and the annulus have Euler characteristic 1 and 0, respectively.
If the surface S has a different topology, then its Euler characteristic is

�(S) = 2� 2g � k < 0

(with an abuse of notation, we denote by g also the genus of S, while k � 1 is
the number of boundary components). Thus S is intrinsically hyperbolic, namely
by Gauss–Bonnet theorem any constant curvature metric such that @S is totally
geodesic must have negative curvature. In this case T (S) does not possess an im-
mediate presentation as for the annulus, although it is well known that it is diffeo-
morphic to R6g+3k�6 (and can be parametrized by means of the so-called Fenchel–
Nielsen coordinates). The precise definition of T (S) is given below.

3.1. The annular case

If S is diffeomorphic to an annulus, then up to a conformal diffeomorphism we
can assume that (S, g) = (At , gR2) for some t > 0, thanks to Theorem A.1. A
variation of the conformal class (or, more precisely, the conformal class up to dif-
feomorphisms isotopic to the identity) corresponds to a variation of the parameter t .

For any a, b2H1/2(S1, Rm), we define u[t]2H1/2(@At , Rm) by u[t](ei✓ ) :=
a(ei✓ ), u[t](tei✓ ) := b(ei✓ ). We will denote byeu[t] the harmonic extension of u[t].

Lemma 3.2. For any a, b 2 H1(S1, Rm) we have

d
dt
Et (u[t]) =

Z

@Bt

 
1
t2

�
�
�
�
@eu
@✓

�
�
�
�

2
�

�
�
�
�
@eu
@r

�
�
�
�

2
!

.

Proof. We can assume a, b 2 C1(S1, Rm) (by a density argument, using the fact
that Et (u[t]) depends smoothly on (t, a, b) 2 (1,1) ⇥ H1/2(S1) ⇥ H1/2(S1), as
can be seen from the explicit formula (1.6)). Soeu[t](z) defines a smooth function
on the set

{(t, z) 2 (1,1) ⇥ C : 1  |z|  t} .
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By the divergence theorem we have

d
dt

✓Z

At
|reu[t]|2

◆
=
Z

@Bt
|reu[t]|2 + 2

Z

At

⌧
reu[t];r

✓
deu[s]
ds

�
�
�
�
s=t

◆�

=
Z

@Bt

 �
�
�
�
@eu[t]
@r

�
�
�
�

2
+
1
t2

�
�
�
�
@eu[t]
@✓

�
�
�
�

2
!

+ 2
Z

@Bt

@eu[t]
@r

·

✓
deu[s]
ds

�
�
�
�
s=t

◆

(as deuds = 0 on @B1). Differentiating the identityeu[s](sei✓ ) = b(ei✓ ) in s we get
✓
deu[s]
ds

◆
�
sei✓

�
�
�
�
�
s=t

= �
@eu[t]
@r

�
tei✓

�
.

Hence, combining these identities,

d
dt
Et (u[t]) =

Z

@Bt

 �
�
�
�
@eu[t]
@r

�
�
�
�

2
+
1
t2

�
�
�
�
@eu[t]
@✓

�
�
�
�

2
!

� 2
Z

@Bt

�
�
�
�
@eu[t]
@r

�
�
�
�

2
.

Proof of Theorem 1.6. We introduce the Hopf differential

h(z) := H(z) dz ⌦ dz, H(z) :=
@eu
@z

·
@eu
@z

=
1
4

 �
�
�
�
@eu
@x

�
�
�
�

2
�

�
�
�
�
@eu
@y

�
�
�
�

2
� 2i

@eu
@x

·
@eu
@y

!

.

Awell-known straightforward computation shows that h is a holomorphic quadratic
differential, i.e. H is holomorphic, vanishing identically if and only ifeu is (weakly)
conformal. From Theorem 1.4 it follows in particular that u 2 C1(@At ). Since
0 = PT (u) @eu@r and 0 = PN (u) @u@✓ = PN (u) @eu@✓ on @At , we have that

@eu
@r

·
@eu
@✓

= 0 on @At .

By the maximum principle we deduce that, for any z = rei✓ 2
�
At ,

�2=
⇣�
rei✓

�2H
�
rei✓

�⌘
= r

@eu
@r
�
rei✓

�
·
@eu
@✓

�
rei✓

�
= 0,

i.e. the harmonic function =(z2H(z)) vanishes identically. Since z2H(z) is holo-
morphic, it must coincide with a real constant c. By Lemma 3.2, c = 0 precisely
when d

dt Et (u[t])
�
�
t=t = 0, since

�4c = �4<
⇣�
rei✓

�2H
�
rei✓

�⌘
=

�
�
�
�
@eu
@✓

�
rei✓

�
�
�
�
�

2
� r2

�
�
�
�
@eu
@r
�
rei✓

�
�
�
�
�

2
.

Remark 3.3. In the disk case we get z2H(z) = c for some real c, hence c = 0
(being H bounded near the origin) and H(z) = 0.
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3.2. The hyperbolic case

Assume now that �(S) < 0 (i.e. S is not a disk nor an annulus) and N is C1-
smooth. LetM(S) be the space of all Riemannian metrics on S and P(S) the space
of all smooth positive functions S ! R. M(S) is an open subset of the Fréchet
space 0(S2S) (smooth symmetric covariant 2-tensors on S). The quotient

C(S) :=M(S)/P(S)

is the set of conformal classes on S. Moreover, let M�1(S) ✓ M(S) be the
subset of metrics having constant curvature �1 and making @S totally geodesic.
Every equivalence class [g] 2 C(S) has exactly one representative e2�g 2M�1(S),
� 2 C1(S) being a solution of Liouville’s equation

(
1� = K + e2� on S
@�
@⌫ =  on @S,

where K is the Gaussian curvature of g and  is the geodesic curvature of the
boundary (i.e.  =

⌦
r�̇ �̇ , ⌫

↵
if @S is locally parametrized by a unit-speed curve � ).

The map
� : M(S) !M�1(S), �(g) := e2�g

is C1-smooth (as a map fromM(S) into itself).
In order to have a finite-dimensional space, we quotient C(S) by the (right)

action of the group D0(S) of diffeomorphisms isotopic to the identity. The set
T (S) := C(S)/D0(S)

is the Teichmüller space of S. It can be given a canonical structure of (6g+3k�6)-
dimensional differentiable manifold. The resulting map ⇡ : M(S) ! T (S) is
smooth and admits locally a smooth section taking values intoM�1(S).

For the proofs of these facts, we refer the reader to [13], where the Teichmüller
theory for closed surfaces is developed. See also [12, Section 4.3], which illustrates
the necessary modifications for surfaces with boundary (using the convenient device
of the Schottky double).

Theorem 3.4. Let (S, g) be a Riemannian surface with @S 6= ;, �(S) < 0 and
let � : U ! M(S) be a local smooth section of ⇡ through g (i.e. ⇡(g) 2 U
and �(⇡(g)) = g). If u 2 H1/2(@S,N ) is 1

2 -harmonic with respect to g, then
eu : (S, g) ! Rm is conformal if and only if ⇡(g) is a critical point for the map

p 7! E(u;�(p)).

We remark that the harmonic extensioneu p 2 H1(S) of u 2 H1/2(@S) with respect
to �(p) depends on the couple (u, p) 2 H1/2(@S, Rm) ⇥ U in a smooth fashion:
this follows from the inverse function theorem applied to the map

H1(S) ⇥U ! H�1(S) ⇥ H1/2(@S) ⇥U, (w, p) 7! (�1�(p)w,w
�
�
@S, p).

In particular, the function (u, p) 7! E(u;�(p)) is smooth as well.
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Proof. (() Replacing g with �(g) and � with � � �, we can assume that g 2
M�1(S) and �(U) ✓ M�1(S): indeed, thanks to the conformal invariance of the
Dirichlet energy, E(w; g0) = E(w;�(g0)) for any w 2 H1/2(@S, Rm) and any
metric g0, so u is still 12 -harmonic with respect to �(g) and ⇡(�(g)) = ⇡(g) is still
critical for p 7! E(u;� � �(p)).

The Hopf differential h of the mapeu, defined in any local conformal chart (for
g) by the formula

h(z) := H(z) dz ⌦ dz, H(z) :=
@eu
@z

·
@eu
@z

=
1
4

 �
�
�
�
@eu
@x

�
�
�
�

2
�

�
�
�
�
@eu
@y

�
�
�
�

2
� 2i

@eu
@x

·
@eu
@y

!

,

is a globally defined holomorphic quadratic differential (i.e. H is holomorphic in
any conformal chart), as a consequence of the fact that1geu = 0. The conformality
ofeu is equivalent to h = 0.

Moreover, h is real at the boundary @S, meaning that in any local conformal
chart (V, z) mapping V \ @S into the real line {=(z) = 0} we have

@eu
@x

·
@eu
@y

= 0

on the real line. Indeed, at such points @eu@x 2 Tu(z)N , while @eu
@y ? Tu(z)N by 1

2 -
harmonicity (observe that by the preceding regularity result we haveeu 2 C1 up to
the boundary).

Let now v := d⇡g[<(h)]. Since g 2M�1(S), the symmetric tensor d�⇡(g)[v]
can be decomposed as

d�⇡(g)[v] = <(q) + LX g, (3.1)

where q is a holomorphic quadratic differential which is real at @S, while LX g
is the Lie derivative of g with respect to a vector field X satisfying X

�
�
�
@S

k @S
(see [13, Theorem 8.2] for the corresponding statement for closed surfaces). The
tensor LX g belongs to the kernel of d⇡g, as X generates a one-parameter subgroup
of D0. Thus, using ⇡ � � = idU ,

d⇡g[<(h)] = v = d⇡g[d�⇡(g)[v]] = d⇡g[<(q) + LX g] = d⇡g[<(q)].

But T (S) is built precisely in such a way that the map d⇡g restricts to a bijection
from the space of such real quadratic differentials to T⇡(g)T (S). We deduce that
<(h) = <(q).

We also remark that dE(u; ·)g[LX g] = 0: indeed, calling 8X
t the flow gener-

ated by X , we have

E
⇣
u;
�
8X
t
�⇤g

⌘
= E

⇣
u �8X

�t ; g
⌘



452 FRANCESCA DA LIO AND ALESSANDRO PIGATI

and differentiation at t = 0 gives

dE(u; ·)g[LX g] = �2
Z

@S

@eu
@⌫

· du[X] dvolg = 0,

by characterization (1.5) of 12 -harmonicity. From (3.1) we finally deduce that

0 = dE(u;�(·))⇡(g)[v] = dE(u; ·)g[<(q) + LX g] = dE(u; ·)g[<(h)]

= �
Z

S
<(h)[reu;reu] dvolg +

1
2

Z

S
|reu|2g trg(<(h)) dvolg

(using the fact that the variation ofeu gives no contribution, thanks to harmonicity).
But, as is readily seen in conformal coordinates,

trg(<(h)) = 0, <(h)[reu;reu] = 2 |<(h)|2g .

We infer that <(h) = 0, which implies h = 0.
()) Conversely, for any v 2 T⇡(g)U , we can write (assuming again � = � ��)

d�⇡(g)[v] = <(q) + LX g

for suitable q and X as before. We have

dE(u;�(·))⇡(g)[v] = dE(u; ·)g[<(q) + LX g] = dE(u; ·)g[<(q)]

= �
Z

S
<(q)[reu;reu] dvolg +

1
2

Z

S
|reu|2g trg(<(q)) dvolg.

Again we have trg(<(q)) = 0, while the conformality of eu gives @eu@z · @eu@z = 0 in
conformal coordinates, hence <(q)[reu;reu] = 0 as well.

Proof of Corollary 1.7. In view of the preceding results, it suffices to show that, for
a nontrivial 12 -harmonic map u with conformaleu, we haveeu(

�
S) ✓ � and reu 6= 0

at the boundary @S. Recall thateu is C1-smooth up to the boundary of S.
Sinceeu is nontrivial we have @eu@⌫ 6= 0 at some x 0 2 @S (being

R
S |reu|2 dvolg =R

@Seu · @eu@⌫ dvolg). Combining this with the condition P
T (u) @eu@⌫ = 0, we geteu(x 00) 2

� for at least an x 00 2
�
S.

Fix now any point p 62 �. By convexity of �, there exists an affine map
F : Rm ! R such that F(p)  0 and F(�) ✓ (0,1). Since F � u takes
nonnegative values (as u takes values in @�) and F � eu(x 00) > 0, by the strong
maximum principle we get F �eu > 0 on

�
S. Hence,eu(

�
S) ✓ �.

Finally, if x 2@S we can let p :=u(x): then Hopf’s lemma gives @(F�eu)
@⌫ (x)< 0.

In particular, reu never vanishes at @S.
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Appendix A. Uniformization theorem for annuli with boundary

Theorem A.1. Let (A, g) be a compact Riemannian two-dimensional manifold
with boundary, diffeomorphic to [0, 1] ⇥ S1. Then there exists some t > 1 such
that (A, g) is conformally equivalent to the standard annulus At := Bt \ B1 ⇢ C.

Proof. We fix a diffeomorphism � : [0, 1]⇥S1 ! A and we orient A by declaring
that � is orientation-preserving. We call � j : S1 ! @A the restrictions � j :=
�( j, ·), for j = 0, 1, so that �1 preserves the orientation while �0 reverses it. Let
u 2 C1(A) be the unique harmonic function which equals j on � j (S1) (for j =

0, 1). Denoting by
�
A the interior of A, we remark that by the maximum principle

0 < u < 1 on
�
A and by Hopf’s lemma ⇤du[�̇ j ] > 0 for j = 0, 1. Recall that, in

local conformal coordinates (x, y), ⇤du = � @u
@y dx + @u

@x dy.
Let  :=

R
�0

⇤du > 0. Since ⇤du is closed,
R
� ⇤du 2 Z for any closed, piece-

wise smooth curve � taking values in A. Thus, we can define v 2 C1(A, R/Z)
by the formula v(p) :=

R
↵ ⇤du, where ↵ is any piecewise smooth curve joining

�0(0) to p. Now the map

 : A ! C,  := exp
✓
2⇡


(u + iv)

◆

is well defined and smooth.
The metric g, together with the orientation, induces a complex structure on A.

As v locally lifts to a primitive of ⇤du, we have dv = ⇤du. Hence, in local con-
formal coordinates, the map u + iv : A ! C/ iZ satisfies the Cauchy–Riemann
equations and is thus holomorphic; so  is holomorphic as well. We now prove
that  is a diffeomorphism onto its image. Since ⇤du[�̇i ] > 0, the compact set
F := {p 2 A : d (p) = 0} is contained in

�
A. As  is holomorphic, F is finite.

We have F 0 :=  �1( (F)) ✓
�
A (as  (@A) \  (

�
A) = ;), so by holomorphicity

F 0 is finite as well.
It is easy to check that  

�
�
�
A\F 0

: A \ F 0 !  (A) \ (F) is a covering (indeed,

any z 2  (A) \  (F) has finitely many preimages p1, . . . , pk 2 A \ F 0; we
can find open disjoint neighborhoods Uj ✓ A \ F 0 of p j which are all mapped
diffeomorphically onto some neighborhood V of z; up to replacing V with V \ (A\F

j U j ) and shrinking each Uj accordingly, V is evenly covered by
F

j U j ). But

 is injective on @A ✓ A \ F 0, so  
�
�
�
A\F 0

is injective and hence a diffeomorphism
onto its image.

As  is holomorphic,  cannot be injective in any punctured neighborhood
of any point in F . It follows that F = ;, thus also F 0 = ;. Finally, calling t :=

exp
⇣
2⇡


⌘
, we have  (A) ✓ At and  (@A) = @At . As  (

�
A) =  (A) \

�
At ,  (

�
A)
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is both open and closed in
�
At , so by connectedness it follows that  : A ! At is

surjective. The map  provides the desired conformal equivalence.

Appendix B. Functional spaces

In this section we recall the definition of the functional spaces used in the paper, as
well as some of their main properties and some key facts concerning the so-called
Littlewood-Paley dyadic decomposition.

We denote respectively by S(R) and S 0(R) the spaces of (real or complex)
Schwartz functions and tempered distributions. All the functional spaces used in
this paper should be understood as subspaces of S 0(R). Given a function ' 2 S(R),
we denote either by b' or by F' the Fourier transform of ', i.e.

b'(⇠) = F'(⇠) =
Z

R
v(x)e�2⇡ i⇠ x dx,

while if v 2 S 0(R) we definebv = Fv 2 S 0(R) by hbv,'i := hv,b'i.
We recall the definition of the inhomogeneous fractional Sobolev (Bessel po-

tential) spaces: for a real s and 1 < p < 1 we let

Hs,p(R) :=
�
v 2 S 0(R) : kvkHs,p :=

�
�F�1[(1+ 4⇡2|⇠ |2)s/2Fv]

�
�
L p < 1

 
.

Observe that Hs,p(R) is stable under multiplication by Schwartz functions, i.e. if
v 2 Hs,p(R) and  2 S(R) then v 2 Hs,p(R) (see, e.g., the proof of [17,
Lemma 2.2]).

We also recall the definition of the homogeneous fractional Sobolev spaces that
will be used in the paper, namely Ḣ 1/2(R) and Ḣ�1/2(R):

Ḣ1/2(R) :=

⇢
v 2 L2loc(R) : kvk2Ḣ1/2 :=

ZZ

R2

|v(x) � v(y)|2

|x � y|2
dx dy < 1

�
,

Ḣ�1/2(R) :=

⇢
v 2 S 0(R) :bv 2 L2loc(R) and

Z

R
|⇠ |�1 |bv(⇠)|2 d⇠ < 1

�
.

We remark that Ḣ1/2(R) is naturally a subspace of S 0(R), although k·kḢ1/2 is only
a seminorm (which vanishes on constant functions).

We recall that, given v 2 Ḣ1/2(R), we always have bv 2 L2loc(R \ {0}) and
moreover in D0(R \ {0}) we can identify the distribution |⇠ |1/2bv with an L2(R)
function (which we continue to denote, by abuse of notation, with |⇠ |1/2bv) with

Z

R
|⇠ | |bv(⇠)|2 d⇠ = c kvk2Ḣ1/2 (B.1)

for some constant c > 0 (see, e.g., the proof of [11, Proposition 3.4]).
We list below some useful elementary results concerning Ḣ1/2(R).
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Lemma B.1. Given v 2 Ḣ1/2(R), for any j � 0 it holds

kvkL2(B(0,2 j )) . 2 j/2
�
�(v)B(0,1)

�
�+ ( j + 1)2 j/2 kvkḢ1/2 .

Proof. We notice that, for j � 0,
�
�v � (v)B(0,2 j )

�
�2
L2(B(0,2 j )) . 2� j

ZZ

B(0,2 j )2
|v(x) � v(y)|2

. 2 j
ZZ

B(0,2 j )2

|v(x) � v(y)|2

|x � y|2
,

therefore
�
�v � (v)B(0,2 j )

�
�
L2(B(0,2 j )) . 2 j/2 kvkḢ1/2 .

Similarly for j � 1
�
�(v)B(0,2 j�1) � (v)B(0,2 j )

�
� . 2� j

Z

B(0,2 j )

�
�v � (v)B(0,2 j )

�
� . kvkḢ1/2 .

The desired inequality follows from these estimates and

kvkL2(B(0,2 j )) 
�
�v � (v)B(0,2 j )

�
�
L2(B(0,2 j ))

+ 2 j/2
jX

`=1

�
�(v)B(0,2`�1) � (v)B(0,2`)

�
�+ 2 j/2

�
�(v)B(0,1)

�
� .

Lemma B.2. Given v 2 Ḣ1/2(R), there exists a sequence vk 2 S(R), with bvk 2
C1
c (R \ {0}),4 and a sequence ck 2 R such that

kv � (vk + ck)kḢ1/2 = kv � vkkḢ1/2 ! 0, vk + ck
⇤
* v in S 0(R),

kv � (vk + ck)kL2(B(0,2 j )) . ( j + 1)2 j/2 kv � (vk + ck)kḢ1/2 .

Proof. Fix � 2 C1
c (R) with 1B(0,1/2)  �  1B(0,1). As observed above, the

function
wk := (�(2�k ·) � �(2k ·))bv

belongs to L2(R), is supported in the annulus {2�k�1  |⇠ |  2k} and verifiesR
|⇠ | |wk(⇠)|2 d⇠ < 1. We can find vk 2 S(R) with bvk 2 C1

c (R \ {0}) andR
|⇠ | |wk �bvk |2 (⇠) d⇠  2�k . Since

R
R\{0} |⇠ | |bv � wk |2 (⇠) d⇠ ! 0, we get

kv � vkk
2
Ḣ1/2 '

Z

R\{0}
|⇠ | |bv �bvk |2 (⇠) d⇠ ! 0.

We now choose ck in such a way that (vk+ck)B(0,1) = (v)B(0,1). The last part of the
claim follows from Lemma B.1 and the convergence vk + ck

⇤
* v is an immediate

consequence.

4 With abuse of notation, we denote by C1
c (R \ {0}) the space of those functions in C1

c (R)
which are supported in R \ {0} .
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Remark B.3. If v lies also in L1(R), we can also ensure that kvkkL1 , |ck | .
kvkL1 , with vk + ck ! v a.e. Indeed, F�1(�(2�k ·) � �(2k ·)) is bounded in
L1(R), so

�
�w̌k

�
�
L1 . kvkL1 ; moreover, vk can be chosen arbitrarily close to w̌k in

L1(R). Since vk + ck ! v in L2loc(R), we can ensure a.e. convergence by passing
to a subsequence.

We also define the Hardy spaceH1(R) as

H1(R) :=
n
v 2 L1(R) : sup

t>0
|'t ⇤ v| (x) 2 L1(R)

o
,

where ' 2 S(R) is an arbitrary function such that
R
' 6=0 and 't (y) := t�1'(t�1y).

This definition does not depend on the choice of ' (for this and many useful charac-
terizations ofH1(R), we refer the reader to [16, Chapter 2] and [23, Chapter III]).

Finally we define the Lorentz spaces L2,1(R) and L2,1(R):

L2,1(R) :=
n
v 2 L1loc(R) :

Z 1

0
L1({| f | > t})1/2 dt < 1

o
,

L2,1(R) :=
n
v 2 L1loc(R) : sup

t>0
tL1({| f | > t})1/2 < 1

o
,

where L1 denotes the Lebesgue measure on R. These are Banach spaces with the
norms

kvkL2,1 :=
Z 1

0
t�1/2

 

sup
tL1(E)<1

Z

E
|v|

!

dt,

kvkL2,1 := sup
0<L1(E)<1

L1(E)�1/2
Z

E
|v|

and L2,1(R) is the dual of L2,1(R): see, e.g., [15, Section 1.4] and [15, Exer-
cises 1.1.12 and 1.4.3].

B.1. Products, fractional Laplacian and Hilbert-Riesz transform

We fix a nonnegative bump function ⇢ 2 C1
c (R) with

R
⇢ = 1. Given v,w 2

S 0(R), we define their product

vw := lim
✏!0

(⇢✏ ⇤ v)(⇢✏ ⇤ w)

as a limit in S 0(R), provided that it exists. Notice that (⇢✏⇤v)(⇢✏⇤w) 2 C1\S 0(R).
In general, this limit could fail to exist or could depend on ⇢. In all the instances
appearing in this paper, we are implicitly claiming that the product is defined, is
associative and is independent of ⇢.
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From the definition of Ḣ1/2(R) it easily follows that Ḣ1/2 \ L1(R) is an al-
gebra, i.e. it is closed under the product: more precisely,

kvwkḢ1/2 . kvkḢ1/2 kwkL1 + kvkL1 kwkḢ1/2 , kvwkL1  kvkL1 kwkL1

whenever v,w 2 Ḣ1/2 \ L1(R). Using this and the obvious inclusion S(R) ✓
Ḣ1/2 \ L1(R), as well as (B.1), one checks that the product vw can always be
formed when v 2 Ḣ�1/2(R) and w 2 Ḣ1/2 \ L1(R).

Moreover, for any real s, we define the fractional Laplacian (�1)s/2 as

(�1)s/2v := lim
✏!0

F�1
h�
✏2 + 4⇡2 |⇠ |2

�s/2Fv
i
,

provided that the limit exists in S 0(R); in other words, we approximate the frac-
tional Laplacian by means of Bessel potentials. We recall some properties of the
fractional Laplacian for the values of s mostly used in the paper, namely s = ± 1

4 .
Clearly, (�1)1/4 maps L2(R) isomorphically onto Ḣ�1/2(R), with inverse

(�1)�1/4. The following statement is less obvious.

Lemma B.4. If v 2 Ḣ1/2(R), then (�1)1/4v exists, lies in L2(R) and is given by

(�1)1/4v = F�1
⇣
(2⇡ |⇠ |)1/2bv

⌘
,

where we denote by (2⇡ |⇠ |)1/2bv the function in L2(R) agreeing with the corre-
sponding distribution on R \ {0}.

Proof. We denote by w the function in L2(R) which coincides with (2⇡ |⇠ |)1/2bv
in D0(R \ {0}). We observe that (✏2 + 4⇡2⇠2)1/4 = ✏1/2 + ⇠2

2
R 1
0 4⇡

2t (✏2 +
4⇡2t2⇠2)�3/4 dt , with the second term vanishing for ⇠ = 0. Using Lemma B.2
and (B.1) we get

�
✏2 + 4⇡2⇠2

�1/4bv=✏1/2bv+ lim
k!1

 
⇠2

2

Z 1

0
4⇡2t

�
✏2 + 4⇡2t2⇠2

��3/4 dt

!

(bvk +bck)

=✏1/2bv +

 Z 1

0

t
2
(2⇡ |⇠ |)3/2

�
✏2 + 4⇡2t2⇠2

��3/4 dt

!

w.

Finally, ✏1/2bv
⇤
* 0 in S 0(R) and the nonnegative integral converges to 1R\{0} from

below.

A similar proof shows that

(�1)1/2v = F�1(2⇡ |⇠ |bv), so (�1)1/2v = (�1)1/4(�1)1/4v.

One has also the following integral representation for (�1)1/4v.
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Lemma B.5. For all v 2 Ḣ1/2(R) and some constant c > 0 (independent of v) we
have

(�1)1/4v(x) = c lim
✏!0

Z

R\B(x,✏)

v(x) � v(y)
|x � y|3/2

dy in L2(R).

Proof. Let w✏(x) :=
R
R\B(x,✏)

v(x)�v(y)
|x�y|3/2

dy (which lies in S 0(R) by Lemma B.1)
and take ' 2 S(R). Fubini’s theorem gives

hbw✏,'i = hw✏,b'i =
ZZ

R⇥(R\B(0,✏))

v(x) � v(x + h)
|h|3/2

b'(x) dx dh

=
ZZ

R⇥(R\B(0,✏))

v(x)(b'(x) �b'(x � h))
|h|3/2

dx dh

=
Z

R\B(0,✏)

⌦
bv, (1� e2⇡ ihx )'(x)

↵

|h|3/2
dh.

Since (1� e2⇡ ihx )'(x) vanishes at 0, Lemmas B.2 and B.4 show that
D
bv,
�
1� e2⇡ ihx

�
'(x)

E
= lim

k!1

Z
|x |1/2bvk(x)

1� e2⇡ ihx

|x |1/2
'(x) dx

=
Z
F
�
(�1)1/4v

� 1� e2⇡ ihx

(2⇡ |x |)1/2
'(x) dx .

We conclude that

bw✏(x) = F((�1)1/4v)(x)
Z 1

✏

2� 2 cos(2⇡hx)
h3/2(2⇡ |x |)1/2

dh

and, for x 6= 0, the last integral equals
R1
✏|x |

2�2 cos(2⇡ t)
(2⇡)1/2t3/2 dt , which converges to some

positive constant from below, as ✏ ! 0.

As for the formal inverse, the Riesz potential operator (�1)�1/4, notice that
F�1(|⇠ |�1/2) = c |x |�1/2 for some c 2 R (indeed, |x |�1/2 is the only �1

2 -homo-
geneous tempered distribution up to multiples, see, e.g., [15, Proposition 2.4.8]).

Since |x |�1/2 2 L2,1(R), we get (�1)�1/4(L1(R)) ✓ L2,1(R) and
(�1)�1/4(L2,1(R)) ✓ L1(R).5 Also, (�1)�1/4 maps H1(R) into L2,1(R): this
is a straightforward consequence of the atomic decomposition property of H1(R)
(see [23, Section III.2]).

Finally, we define the Hilbert–Riesz transform of v 2 S 0(R) as

Rv := lim
✏!0

F�1

�i

⇠

(✏2 + |⇠ |2)1/2
bv
�

,

5 For v 2 L2,1(R) the fractional Laplacian (�1)�1/4v exists and equals c |x |�1/2 ⇤ v: in-
deed, from [16, Proposition 1.2.5] one easily deduces the weak* convergence of F�1[(✏2 +
4⇡2 |⇠ |2)�1/4] to F�1((2⇡ |⇠ |)�1/2) in L2,1(R).
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whenever the limit exists. A well-known consequence of Hörmander–Mikhlin es-
timates is the fact that this limit exists on L p(R) andR maps L p(R) continuously
into itself, for 1 < p < 1.

The same holds for Hs,p(R) and Ḣ�1/2(R), being the former isomorphic
to L p(R) via v 7! F�1[(1 + 4⇡2 |⇠ |2)s/2Fv] and the latter to L2(R) via v 7!
F�1((2⇡ |⇠ |)�1/2v).

Moreover,R also mapsH1(R) continuously into itself: this follows from [16,
Corollary 2.4.7] andR(Rv) = �v for v 2 L1(R).

B.2. Littlewood-Paley decomposition

We briefly recall a well-known tool in harmonic analysis, the Littlewood-Paley
dyadic decomposition. This decomposition can be obtained as follows. Let � 2
C1
c (B(0, 2)) be an even function, with � = 1 on B(0, 1). Let % := � � �(2·) and
observe that the support of % is included in the annulus B(0, 2) \ B(0, 1/2).

Let %0 := � and % j := %(2� j ·) for j > 0, so that the support of % j , for j > 0,
is contained in B(0, 2 j+1) \ B(0, 2 j�1). The functions (⇢ j ) j2N realize a so-called
inhomogeneous dyadic partition of unity, i.e.

P1
j=0 ⇢ j = 1 pointwise. We further

denote � j (⇠) :=
P j

k=0 %k = �(2� j ·).
For every v 2 S 0(R) we define the inhomogeneous Littlewood-Paley projec-

tion operators:

v j = F�1[% jbv ], v j = F�1[� jbv]. (B.2)

Roughly,v j and v jmimic a frequency projection to the annulus B(0, 2 j )\B(0,2 j�1)
and to the ball B(0, 2 j ), respectively.

We observe that v j =
P j

k=0 vk and v =
P1

k=0 vk in the distributional sense.
Given v,w 2 S 0(R), we can formally split their product in the following way:

vw = 51(v,w) +52(v,w) +53(v,w), (B.3)

where

51(v,w) :=
+1X

j=3
v jw

j�3, 52(v,w) :=
+1X

j=3
v j�3w j ,

53(v,w) :=
1X

j=0
v j

X

|k� j |<3
wk .

We observe that the support of F [v jw j�3] is contained in the sum of the supports
of Fv j and Fw j�3, i.e. in the annulus B(0, 2 j+2) \ B(0, 2 j�2) (for j � 3). A
similar remark applies to F [v j�3w j ].

Next we recall the definition of the inhomogeneous Besov spaces Bsp,q(R) and
Triebel–Lizorkin spaces Fsp,q(R) in terms of the above dyadic decomposition.
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Definition B.6. Let s 2 R and 1  p, q  1. For f 2 S 0(Rn) we set

kvkBsp,q :=

✓ 1X

j=0
2 jsqkv jk

q
L p

◆1/q
if q < 1,

kvkBsp,q := sup
j2N

2 jskv jkL p if q = 1.

When 1  p, q < 1 we also set

kvkFsp,q =

�
�
�
�
�
�

 
1X

j=0
2 jsq |v j |q

!1/q
�
�
�
�
�
�
L p

.

The space of all v 2 S 0(R) for which kvkBsp,q < 1 is the inhomogeneous Besov
space with indices s, p, q and is denoted by Bsp,q(R). The space of all v 2 S 0(R)
for which kvkFsp,q < 1 is the inhomogeneous Triebel–Lizorkin space with indices
s, p, q and is denoted by Fsp,q(R). These spaces do not depend on the choice of � :
see [24, Proposition 2.3.2/1].

A well-known fact is that Hs,p(R) = Fsp,2(R), with equivalent norms: see,
e.g., [24, Theorem 2.5.6].

Corollary B.7. If s > 1
p , then H

s,p(R) ✓ L1(R) \ Ck,↵(R), for all k 2 N and
0 < ↵ < 1 with k + ↵  s � 1

p .

Proof. By [24, Theorem 2.3.8] we can assume k = 0, as well as s = ↵ + 1
p .

Settinge% j := % j�1 + % j + % j+1 (with %�1 := 0), we have v j = F�1(e% jFv j ) and�
�F�1e% j

�
�
L p0 .2

j/p,
�
�r(F�1e% j )

�
�
L p0 .2

j+ j/p (as F�1e% j =2 j�2(F�1e%2)(2 j�2·)
for j � 2). Hence, given 0 < h < 1,

1X

j=0

�
�v j

�
�
L1 =

1X

j=0

�
�
�(F�1e% j ) ⇤ v j

�
�
�
L1

.
1X

j=0
2 j/p

�
�v j

�
�
L p


1X

j=0
2� j (s�1/p) kvkFsp,2 . kvkHs,p ,

1X

j=0

�
�v j (· + h) � v j

�
�
L1 .

X

2 j h1
h
�
�rv j

�
�
L1 +

X

2 j h>1

�
�v j

�
�
L1


X

2 j h1
h
�
�
�r(F�1e% j ) ⇤ v j

�
�
�
L1

+
X

2 j h>1

�
�
�(F�1e% j ) ⇤ v j

�
�
�
L1

.
✓ X

2 j h1
h2 j (1+1/p�s) +

X

2 j h>1
2� j (s�1/p)

◆
kvkFsp,2

. h↵ kvkHs,p .
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Similarly, one can form the homogeneous Littlewood–Paley decomposition us-
ing instead % j := %(2� j ·) and � j := �(2� j ·), for all j 2 Z, and defining v j and
v j as in (B.2). One then has the formal identities

v =
X

j2Z
v j , v j =

X

k j
vk, vw = 51(v,w) +52(v,w) +53(v,w),

but notice that not even the first two are always true distributionally: for instance
they fail when v = 1 (in which case vk = 0 for all k 2 Z). This reflects the
fact that

P
j2Z % j = 1R\{0} and

P
k j %k = 1R\{0}� j . Using this homogeneous

decomposition, with the same formulas as above one can define the homogeneous
Besov and Triebel–Lizorkin spaces Ḃsp,q(R) and Ḟsp,q(R) (the above norms now
become merely seminorms).

If v 2 L p(R) and 1 < p < 1, then kvkL p . kvkḞ0p,2
and kvkḞ0p,2

. kvkL p :
see [15, Theorem 6.1.2].

B.3. Spaces on the unit circle S1

We let D(S1) := C1(S1) be the Fréchet space of smooth functions on S1 =
R/2⇡Z and D0(S1) its topological dual. The product of two elements in D0(S1) is
defined as before for R. For v 2 D0(S1) and k 2 Z we letbv(k) := 1

2⇡
⌦
v, e�ikx

↵
.

Notice that, for all v 2 D0(S1), there exists some N > 0 such that |bv(k)| .
(1+ |k|)N . Also, we recall that v 2 C1(S1) if and only if the Fourier coefficients
bv(k) have rapid decay, i.e. supk(1+ |k|)N |bv(k)| < 1 for all N > 0.

Given v 2 D0(S1), we define (�1)sv to be the distributional limit of

NX

k=�N
|k|2sbv(k)eikx

as N ! 1. Observe that (�1)sv can be characterized as the unique w 2 D0(S1)
such that bw(k) = |k|2sbv(k), for all k 2 Z.

Given s 2 R, we define the Sobolev space

Hs(S1) :=

(

v 2 D0(S1) : kvk2Hs :=
X

k2Z
(1+ |k|2)s |bv(k)|2 < 1

)

.

We observe that D0(S1) =
S

s2R Hs(S1). Also, the Fréchet space structure of
D(S1) is equivalent to the one given by all Hs-norms with s 2 N, by the em-
beddings Cs(S1) ✓ Hs(S1) ✓ Cs�1(S1). Hence, by the uniform boundedness
principle, any sequence v j converging in D0(S1) will form a bounded set in some
H�s(S1), with s 2 N (by the canonical duality with Hs(S1)).
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Lemma B.8. The space H1/2(S1) is the set of traces of H1(D). Moreover, for
v 2 L2(S1)

ZZ

(S1)2

�
�v(ei✓ ) � v(ei⌧ )

�
�2

�
�ei✓ � ei⌧

�
�2

d✓ d⌧ = 4⇡2
X

k2Z
|k| |bv(k)|2 . (B.4)

Proof. Given u 2 C1(D), let v := u
�
�
�
S1
be its trace and

ev(rei✓ ) :=
X

k2Z
bv(k)r |k|eik✓ =

X

k<0
bv(k)

⇣
rei✓

⌘|k|
+
X

k�0
bv(k)

�
rei✓

�k
,

which lies in C1(D), is harmonic and has trace v. We have
R

D hrev,r(u �ev)i = 0
by the divergence theorem, so
Z

D
|ru|2 =

Z

D
|rev|2 + 2

Z

D
hrev,r(u �ev)i +

Z

D
|r(u �ev)|2 �

Z

D
|rev|2 .

Astraightforward computation shows that the last integral equals 2⇡
P

k2Z |k||bv(k)|2,
so by density of smooth functions we deduce that the trace of a function in H1(D)
lies in H1/2(S1). Conversely, given v 2 H1/2(S1) one checks that ev, with the
above definition, is in H1(D). It has trace v since ev 2 C1(D) and, as ⌧ " 1,
ev(⌧ ·) ! ev in H1(D), as well as v(⌧ ·)

�
�
�
S1

! v in L2(S1). Finally, the left-hand
side of (B.4) equals

Z

S1

�
�v � v(ei� ·)

�
�2
L2�

�1� ei�
�
�2

d� = 2⇡
Z

S1

P

k
|bv(k)|2

�
�1� eik�

�
�2

�
�1� ei�

�
�2

= 2⇡
X

k
|bv(k)|2

Z

S1

�
�
�
�
�

|k|�1X

`=0
ei`�

�
�
�
�
�

2

d�.

B.4. Spaces on a boundary @S

Given a smooth compact Riemannian surface (S, g) with boundary, we define the
spaces Hs(@S) by isometrically identifying each boundary component with (a dila-
tion of) S1. Lemma B.8, together with a partition of unity argument, immediately
implies the following result.
Lemma B.9. We have

H 1/2(@S) =

(

v 2 L2(@S) :
ZZ

(@S)2

|v(x) � v(y)|2

d(x, y)2
dvolg(x) dvolg(y) < 1

)

,

d(x, y) denoting the Riemannian distance. Moreover, the traces of functions in
H1(S) are precisely the functions in H1/2(@S). In particular, each v 2 H1/2(@S)
has a unique harmonic extensionev 2 H1(S).
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Appendix C. Commutator estimates

We introduce the following commutators for functions defined on the real line:

T (Q, v) := (�1)1/4(Qv) + ((�1)1/4Q)v � Q((�1)1/4v),

U(Q, v) := �R(�1)1/4(Qv) + (R(�1)1/4Q)v + Q(R(�1)1/4v),

T ⇤(P, Q) := ((�1)1/4P)Q + P((�1)1/4Q) � (�1)1/4(PQ),

U⇤(P, Q) := (R(�1)1/4P)Q + P(R(�1)1/4Q) �R(�1)1/4(PQ),

3(Q, v) := Qv +R(QRv),

F( f, v) := R fRv � f v.

The notation T ⇤ and U⇤ is motivated by the formal identities
Z

PT (Q, v) =
Z
T ⇤(P, Q)v,

Z
PU(Q, v) =

Z
U⇤(P, Q)v.

Using the technology of Littlewood–Paley decomposition and paraproducts, one
can establish the following estimates of integrability by compensation.
Theorem C.1. If P, Q2 Ḣ 1/2 \ L1(R), we have T ⇤(P, Q),U⇤(P, Q)2 L2,1(R)
and �

�T ⇤(P, Q)
�
�
L2,1 ,

�
�U⇤(P, Q)

�
�
L2,1 . kPkḢ1/2 kQkḢ1/2 .

Proof. By [9, Theorem 1.7] we have (�1)1/4T ⇤(P, Q) 2 H1(R), with
�
�(�1)1/4T ⇤(P, Q)

�
�
H1 . kPkḢ1/2 kQkḢ1/2 .

The estimate for T ⇤ follows from the fact that (�1)�1/4(H1(R)) ✓ L2,1(R). The
estimate for U⇤ can be obtained in a completely analogous way. It can also be
deduced from Theorem C.5 below, since

U ⇤(P, Q) = RT ⇤(P, Q) +3(P,R(�1)1/4Q) +3(Q,R(�1)1/4P)

andR maps the spaces L2(R) and L2,1(R) into themselves continuously.

Theorem C.2. If Q2 Ḣ1/2 \ L1(R) and v 2 L2(R), we have T (Q, v),U(Q, v)2
H1(R) and

kT (Q, v)kH1 , kU(Q, v)kH1 . kQkḢ1/2 kvkL2 .

Proof. For the estimate of T (Q, v), we refer the reader to the proof of [6, Theo-
rem 1.3] (where one just replaces (�1)1/4u with v). The estimate of U(Q, v) can
be achieved with a completely analogous proof. It also follows from the identity

U(Q, v) = �T (Q,Rv) � F((�1)1/4Q,Rv) + (�1)1/43(Q,Rv)

and Theorem C.6, together with the estimate
�
�(�1)1/43(Q,Rv)

�
�
H1 . kQkḢ1/2 kvkL2

(see the proof of Theorem C.5).
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The two following results now follow from Theorems C.1 and C.2 by a duality
argument.

Corollary C.3. If P, Q 2 Ḣ1/2 \ L1(R), we have
�
�T ⇤(P, Q)

�
�
L2 ,

�
�U⇤(P, Q)

�
�
L2 . kPkḢ1/2

�
�(�1)1/4Q

�
�
L2,1 .

Proof. Since T (P, Q) vanishes if P or Q is constant, we can assume that P, Q 2
S(R) with bQ 2 C1

c (R \ {0}) (see Lemma B.2 and Remark B.3). For any v 2 S(R)

Z
T ⇤(P, Q)v=

Z
T ⇤(Q, P)v =

Z
QT (P, v) =

Z
(�1)1/4Q(�1)�1/4T (P, v)

.
�
�(�1)1/4Q

�
�
L2,1

�
�(�1)�1/4T (P, Q)

�
�
L2,1

.
�
�(�1)1/4Q

�
�
L2,1 kT (P, Q)kH1

.
�
�(�1)1/4Q

�
�
L2,1 kPkḢ1/2 kvkL2 ,

where we used Theorem C.2 and the fact that (�1)�1/4(H1(R)) ✓ L2,1(R). A
similar argument applies for U⇤.

Corollary C.4. If Q2 Ḣ1/2 \ L1(R) and v2L2(R), we have T (Q, v),U(Q, v)2
Ḣ�1/2(R) and

kT (Q, v)kḢ�1/2 , kU(Q, v)kḢ�1/2 . kQkḢ1/2 kvkL2,1 .

Proof. Since T (Q, v) vanishes when Q is constant, we can assume that Q, v 2
S(R). For any P 2 S(R) we get

Z
PT (Q, v) =

Z
T ⇤(P, Q)v .

�
�T ⇤(P, Q)

�
�
L2,1 kvkL2,1

. kPkḢ1/2 kQkḢ1/2 kvkL2,1 ,

thanks to Theorem C.1. A similar argument applies for U .

Theorem C.5. If Q 2 Ḣ1/2 \ L1(R) and v 2 L2(R), we have 3(Q, v)2 L2,1(R)
and

k3(Q, v)kL2,1 . kQkḢ1/2 kvkL2 .

Proof. By [8, Lemma B.5] (which contains a wrong sign in the statement) we know
that (�1)1/43(Q, v) 2 H1(R), with

�
�(�1)1/43(Q, v)

�
�
H1 . kQkḢ1/2 kvkL2 ,

and thus k3(Q, v)kL2,1=
�
�(�1)�1/4(�1)1/43(Q, v)

�
�
L2,1 . kQkḢ1/2 kvkL2 .

The following inequality is due to Coifman-Rochberg-Weiss.
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Theorem C.6. If f, v 2 L2(R), we have F( f, v) 2 H1(R) and

kF( f, v)kH1 . k f kL2 kvkL2 .

Proof. The Hilbert-Riesz transform R satisfies the identity R( f v � R fRv) =
fRv + vR f : indeed, taking the Fourier transform at ⇠ 2 R, this amounts to say
that for a.e. ⇠

� i sgn(⇠)
Z

(1+ sgn(⇠ � ⇣ ) sgn(⇣ ))bf (⇠ � ⇣ )bv(⇣ ) d⇣

= � i
Z

(sgn(⇠ � ⇣ ) + sgn(⇣ ))bf (⇠ � ⇣ )bv(⇣ ).

If ⇠ > 0, 1+sgn(⇠�⇣ ) sgn(⇣ )�sgn(⇠�⇣ )�sgn(⇣ ) = (1�sgn(⇠�⇣ ))(1�sgn(⇣ ))
vanishes identically (since either ⇣ > 0 or ⇠ � ⇣ > 0). On the other hand, if ⇠ < 0,
1 + sgn(⇠ � ⇣ ) sgn(⇣ ) + sgn(⇠ � ⇣ ) + sgn(⇣ ) = (1 + sgn(⇠ � ⇣ ))(1 + sgn(⇣ ))
vanishes also identically (since either ⇣ < 0 or ⇠ � ⇣ < 0). In both cases we get

sgn(⇠)(1+ sgn(⇠ � ⇣ ) sgn(⇣ )) = sgn(⇠ � ⇣ ) + sgn(⇣ )

and the identity follows. Thus we have kF( f, v)kL1 . k f kL2 kvkL2 and

RF( f, v) = � fRv � vR f 2 L1(R), kRF( f, v)kL1 . k f kL2 kvkL2 .

The claim follows from [16, Theorem 2.4.6].

Appendix D. Hölder continuity of 12 -harmonic maps

In this section we obtain the Hölder continuity of 12 -harmonic maps on @S with
values into (at least) C2-smooth closed manifolds.

Theorem D.1. LetN ⇢ Rm be a Ck-smooth closed embedded manifold, with k �
2, and let u 2 H1/2(@S,N ) be 12 -harmonic. Then u is Hölder continuous.

The strategy for the proof of Theorem D.1 is similar to the one used to get the
Hölder continuity of 12 -harmonic maps defined on R (see [8, 9, 22]). We provide
here the details for the reader’s convenience. The proof can be described (roughly
speaking) by the following steps.

1. By means of a stereographic projection we can reduce to a problem on R, as it
was already observed in [6, 7].

2. We rewrite the Euler equation on R as a Schrödinger-type linear system with
antisymmetric potential satisfied by (�1)1/4w (where w := u �  �1

` � 5�1,
5�1 being the inverse of the stereographic projection.
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3. We show that (�1)1/4w 2 L ploc(R) for some p > 2, giving u 2 C0,�loc (R) for
some 0 < � < 1.

Lemma D.2. Let u 2 H1/2(@S,N ) be a 12 -harmonic map and let5 : S1\{i} ! R
be the stereographic projection. Then w := u �  �1

` �5�1 2 Ḣ1/2(R,N ) and w
satisfies

PT (w)(�1)1/2w+
2

1+ x2
PT (w)

⇣
R`
�
( f j )kj=1

�
�5�1

⌘
=0 in D0(R), (D.1)

PN (w)rw = 0 in D0(R). (D.2)

Proof.

Step 1.We first prove (D.1).

Claim: w 2 Ḣ1/2(R, Rm) and (�1)1/2w = 2
1+x2 ((�1)1/2(w � 5)) � 5�1 in

distributional sense.

Proof of the claim: let D := {|z| < 1} and H := {=z > 0} be the standard unit disk
and upper half-plane in C and notice that the map

e5 : D ! H, e5(z) :=

✓
2

z � i
� i
◆

is conformal, with trace 5 on S1 \ {i}. Hence, by conformal invariance of the
Dirichlet energy, this map gives a bijection between H 1(D) and Ḣ1(H) := {w 2
W 1,2
loc (H) :

R
H |rw|2 dx < 1}. Moreover, 5 gives a bijection between H1/2(S1)

and Ḣ1/2(R): indeed, for a real measurable function f on R,

ZZ

R2

| f (x) � f (y)|2

|x � y|2
dx dy=

ZZ

(S1)2

�
� f �5(ei✓ ) � f �5(ei⌧ )

�
�2

�
�ei✓ � ei⌧

�
�2

d✓ d⌧, (D.3)

since
�
�50(ei✓ )

�
� = 2

|ei✓�i|2
and

�
�5(ei✓ ) �5(ei⌧ )

�
��2 =

�
�ei✓�i

�
�2
�
�ei⌧�i

�
�2

4|ei✓�ei⌧ |2
. In particular

we get that w 2 Ḣ1/2(R, Rm). We infer that Ḣ1/2(R) is precisely the image of the
trace of Ḣ1(H) and that any f 2 Ḣ1/2(R) is the trace of a unique harmonic map in
Ḣ1(H) (since the corresponding statements for the unit disk hold).

Given any f 2 C1(S1), the normal derivative of its harmonic extension ef 2

H1(D, Rm) at the boundary is given by @ ef
@⌫ = (�1)1/2 f , as is readily checked

using the formula ef (rei✓ ) =
P

n2Z bf (n)r
|n|ein✓ . The same formula also shows

that
�
�ef
�
�
H1(D)

=
�
�(�1)1/4 f

�
�
L2 .

By Lemma B.2, w can be approximated in S 0(R, Rm) by a sequence wn =
hn + cn 2 S(R, Rm) + Rm such that wn ! w in Ḣ1/2(R, Rm) and in S 0(R, Rm).
The functions fn := wn �5 extend smoothly to all the circle. By conformality of
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e5, ewn := efn �e5�1 is the unique harmonic extension of wn in Ḣ(H) and its normal
derivative is

@ewn

@⌫
=
�
�
�50 �5�1

�
�
�
�1 @ efn

@⌫
�5�1 =

2
x2 + 1

@ efn
@⌫

�5�1.

By uniqueness, ewn(x + iy) =
R
R e

�2⇡y|⇠ |e2⇡ i x⇠ bhn(⇠) d⇠ + cn and thus @ewn
@⌫ (x) =

(�1)1/2wn .
From (D.3) and (B.4), (�1)1/4 fn ! (�1)1/4(w �5) in L2(S1, Rm). Hence,

(�1)1/2w = lim
n!1

(�1)1/2wn = lim
n!1

@ewn

@⌫
= lim

n!1

2
x2 + 1

@ efn
@⌫

�5�1

= lim
n!1

2
x2 + 1

((�1)1/2 fn) �5�1=
2

x2 + 1
((�1)1/2(w �5)) �5�1

in the distributional sense. Using Lemma 2.3 we can conclude that (D.1) holds.

Step 2. Next we show (D.2). To this aim let us fix a nonnegative bump function
⇢ 2 C1

c (B(0, 1)) with
R
⇢ = 1 and let w✏ := ⇢✏ ⇤ w, where ⇢✏ := ✏�1⇢(✏�1·).

From (B.1) it immediately follows that w✏ ! w in Ḣ1/2(R, Rm), i.e.

w✏(x) � w✏(y)
|x � y|

!
w(x) � w(y)

|x � y|
in L2

�
R2, Rm�. (D.4)

In particular, for some sequence ✏ j # 0 there exists h 2 L2(R2) such that�
�
�w✏ j (x)�w✏ j (y)

�
�
�

|x�y|  h(x, y) and w✏ j ! w a.e. Moreover, since N is a C2 sub-
manifold, there exists a neighborhood U ◆ N such that the map p 2 C1(U,N ),
associating to x 2 U the unique nearest point p(x) on N , is defined. Notice that
dist(w✏,N ) ! 0 in L1(R), as

dist(w✏(x),N )2 
Z

|w✏(x) � w(x � z)|2 ⇢✏(z) dz


ZZ

|w(x � y) � w(x � z)|2 ⇢✏(y)⇢✏(z) dy dz

. ✏�2
ZZ

B(0,✏)2
|w(x � y) � w(x � z)|2 dy dz

.
ZZ

B(x,✏)2

|w(y) � w(z)|2

|y � z|2
dy dz,

which converges to 0 uniformly in x . Thus, eventually p(w✏ j ) 2 Ḣ1/2(R,N ) is
defined. Since PN � p(w✏ j )r(p(w✏ j )) = 0, it suffices to show that

PN � p(w✏ j ) ! PN � p(w) = PN (w), p(w✏ j ) ! p(w) = w
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in Ḣ1/2(R, Rm). This immediately follows by dominated convergence, since the
maps PN � p and p are Lipschitz (up to shrinking U ).

We finally remark that h := � 2
1+x2 P

T (w)
⇣
R`(( f j )kj=1) �5�1

⌘
lies in L1 \

L1(R, Rm).

Being w 2 Ḣ1/2(R,N ), the quantity PN (�1)1/4w enjoys special regularity
properties. This has already been observed in [19].

Lemma D.3. For any w 2 Ḣ1/2(R,N ) it holds
�
�
�PN (w)(�1)1/4w

�
�
� .

�
�T ⇤(w;w)

�
� a.e.

Proof. Since w takes values in the C2 submanifoldN , it holds
�
�
�PN (w(x))(w(x) � w(x + y))

�
�
� . |w(x) � w(x + y)|2

and, in view of Lemma B.5, we deduce that for some sequence ✏ j # 0

�
�
�PN (w)(�1)1/4w

�
�
� (x) . lim inf

j!1

Z

R\B(0,✏ j )

|w(x) � w(x + y)|2

|y|3/2
dy,

T ⇤(w;w)(x) = (�1)1/4w · w + w · (�1)1/4w � (�1)1/4(w · w)

= c lim
j!1

Z

R\B(0,✏ j )

|w(x) � w(x + y)|2

|y|3/2
dy,

thanks to the identity (with z := x + y)

(w(x) � w(z)) · w(x) + w(x) · (w(x) � w(z)) � (w(x) · w(x)

� w(z) · w(z)) = |w(x) � w(z)|2 .

In what follows, given x0 2 R and r > 0, we set B := B(x0, r), A0 :=
B(x0, 2r) and, for j � 1, A j := B(x0, 2 j+1r) \ B(x0, 2 j r). We now give some
preliminary estimates.

Lemma D.4. For any w 2 Ḣ1/2(R) and any 1  p < 1 we have

r�1/p kw � (w)BkL p(B) . kwkḢ1/2 , (D.5)

r�1/2 kw � (w)BkL2(B) . r�3/4

 ZZ

B2

|w(x) � w(y)|2

|x � y|1/2
dx dy

!1/2

.
1X

j=0
2� j/2��(�1)1/4w

�
�
L2,1(A j )

.

(D.6)
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Proof. By translating and rescaling, we can assume x0 = 0 and r = 1. Moreover,
we can suppose w = (�1)�1/4v = c |x |�1/2 ⇤ v for some v 2 S(R), with bv 2
C1
c (R \ {0}).

Proof of (D.5): letting w1 := (�1)�1/4(v1A0), w2 := (�1)�1/4(v1R\A0) and
using Young’s inequality, the mean value theorem and Hölder’s inequality,

kw � (w)BkL p(B) . kw1kL p(B) + sup
x,x 02B

�
�w2(x) � w2(x 0)

�
�

.
�
�
�(|x |�1/2 1B(0,3)) ⇤

�
v1A0

���
�
L p(B)

+ sup
x,x 02B

Z

R\A0

�
�
�|x � y|�1/2 �

�
�x 0 � y

�
��1/2

�
�
� |v(y)| dy

.
�
�
�|x |�1/2

�
�
�
L2p/(p+2)(B(0,3))

kvkL2(A0) +
Z

R\A0
|y|�3/2 |v(y)| dy . kvkL2

(assuming without loss of generality p � 2), which proves the first part.
Proof of (D.6): Jensen’s inequality gives

kw � (w)Bk2L2(B)
.
ZZ

B2
|w(x) � w(y)|2 dx dy

.
ZZ

B2

|w(x) � w(y)|2

|x � y|1/2
dx dy

.
Z 2

0

Z

B

|w(x + h) � w(x)|2

h1/2
dx dh.

(D.7)

Setting fh(z) := (|z + h|�1/2 + |z|�1/2)1B(0,2h)(z),

|w(x + h) � w(x)| .
Z �
�
�|x + h � y|�1/2 � |x � y|�1/2

�
�
� |v(y)| dy

. fh ⇤ |v| (x)

+
Z

R\B(x,2h)

�
�
�|x+h�y|�1/2�|x � y|�1/2

�
�
� |v(y)| dy

. fh ⇤ |v| (x) + h
Z

R\B(x,2h)
|x � y|�3/2 |v(y)| dy,

(D.8)

where we used again the mean value theorem. Notice that, by Young’s inequality,
Z 2

0
h�1/2

Z

B
| fh ⇤ |v| (x)|2 dx dh

=
Z 2

0
h�1/2 �� fh ⇤ (|v| 1B(0,5))

�
�2
L2(B)

dh


Z 2

0
h�1/2 k fhk2L4/3 kvk2L4/3(B(0,5)) dh . kvk2L2,1(B(0,5)) ,

(D.9)
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since k fhkL4/3 . h1/4. On the other hand, by Hölder’s inequality,

Z

A0\B(x,2h)
|x � y|�3/2 |v(y)| dy .

✓Z 1

2h
t�9/2 dt

◆1/3
kvkL3/2(A0)

. h�7/6 kvkL2,1(A0) ,

(D.10)

while, since |x � y|�3/2 . 2�3 j/2 for x 2 B and y 2 A j (when j � 1),

Z

R\A0
|x � y|�3/2 |v(y)| dy =

1X

j=1

Z

A j

|x � y|�3/2 |v(y)| dy

.
1X

j=1
2� j kvkL2,1(A j ) .

(D.11)

By combining (D.7)-(D.11) and by applying Cauchy-Schwarz inequality we con-
clude that

Z 2

0

Z

B1

|w(x + h) � w(x)|2

h1/2
dx dh.kvk2L2,1(B(0,5)) +

Z 2

0
h�5/6 kvk2L2,1(A0)

dh

+
Z 2

0
h3/2

✓ 1X

j=1
2� j kvkL2,1(A j )

◆2
dh . kvk2L2,1(A0)

+
1X

j=1
2� j kvk2L2,1(A j )

.

The claim follows.

Lemma D.5. Given w 2 Ḣ1/2 \ L1(R, Rm), we can estimate

�
�T ⇤(w;w)

�
�
L2(B)

.
⇣
kwkḢ1/2(B(x0,4r)) +

�
�(�1)1/4w

�
�
L2,1(B(x0,4r))

⌘ �
�(�1)1/4w

�
�
L2,1(A0)

+
1X

j=1
2� j/4

⇣
kwkḢ1/2(B(x0,4r)) +

�
�(�1)1/4w

�
�
L2,1(A j )

⌘ �
�(�1)1/4w

�
�
L2,1(A j )

,

where kwk2Ḣ1/2(B(x0,4r))
:=
RR

B(x0,4r)2
|w(x)�w(y)|2

|x�y|2
dx dy.

Proof. Again we can assume x0 = 0, r = 1. Given ⇢ 2 C1
c (B(0, 3)) with

⇢ = 1 on B(0, 2), we define w0 := w � (w)B(0,4) and observe that T ⇤(w;w) =
T ⇤(w0;w0), since T ⇤ vanishes when one of the arguments is constant, while
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k⇢w0k2Ḣ1/2 equals

k⇢w0k
2
Ḣ1/2 .

ZZ

B(0,4)

|⇢(x)w0(x) � ⇢(y)w0(y)|2

|x � y|2

+
ZZ

B(0,4)⇥(R\B(0,4))

|⇢(x)w0(x)|2

|x � y|2

.
ZZ

B(0,4)

|w0(x) � w0(y)|2

|x � y|2
+
Z

B(0,4)

�
�w0 � (w0)B(0,4)

�
�2

.
ZZ

B(0,4)2
|w0(x) � w0(y)|2 (|x � y|�2 + 1)

. kwk2Ḣ1/2(B(0,4)) ,

(D.12)

wherewesplit⇢(x)w0(x)�⇢(y)w0(y)=⇢(x)(w0(x)�w0(y))+(⇢(x)�⇢(y))w0(y)
and used the fact that (w0)B(0,4) = 0. Next we write

T ⇤(w;w) = T ⇤(⇢w0; ⇢w0) + T ⇤((1� ⇢)w0; ⇢w0) + T ⇤(w0; (1� ⇢)w0),

so that Corollary C.3 gives
�
�T ⇤(w;w)

�
�
L2(B)

.k⇢w0kḢ1/2
�
�(�1)1/4(⇢w0)

�
�
L2,1+

�
�T ⇤((1�⇢)w0;⇢w0)

�
�
L2(B)

+
�
�T ⇤(w0; (1� ⇢)w0)

�
�
L2(B)

.

Estimate of k⇢w0kḢ1/2
�
�(�1)1/4(⇢w0)

�
�
L2,1 : from (D.12) we get k⇢w0kḢ1/2 .

kwkḢ1/2(B(0,4)). Also,

�
�(�1)1/4(⇢w0)

�
�2
L2,1(R)

.
�
�⇢(�1)1/4w

�
�2
L2,1(R)

+
Z �
�
�
�

Z
(⇢(x) � ⇢(y))w0(y)

|x � y|3/2
dy
�
�
�
�

2
dx

(D.13)

(see Lemma B.5). It suffices to bound the last term of (D.13). Splitting (⇢(x) �
⇢(y))w0(y) = �(⇢(x) � ⇢(y))(w0(x) � w0(y)) + (⇢(x) � ⇢(y))w0(x) and using
Cauchy-Schwarz, as well as |⇢(x) � ⇢(y)| . |x � y|,

Z

B(0,4)

�
�
�
�

Z

B(0,4)

(⇢(x) � ⇢(y))w0(y)
|x � y|3/2

dy
�
�
�
�

2
dx . kw0k

2
L2(B(0,4))

+
Z

B(0,4)

 Z

B(0,4)

|⇢(x) � ⇢(y)|2

|x � y|5/2
dy

! Z

B(0,4)

|w(x) � w(y)|2

|x � y|1/2
dy

!

dx

. kw0k
2
L2(B(0,4)) +

ZZ

B(0,4)

|w(x) � w(y)|2

|x � y|1/2
dx dy.
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Moreover,

Z

R\B(0,4)

�
�
�
�

Z

B(0,4)
�
⇢(y)w0(y)
|x � y|3/2

dy
�
�
�
�

2
dx .

Z

B(0,3)

✓Z

R\B(0,4)

|w0(y)|2

|x � y|3
dx
◆
dy

. kw0k
2
L2(B(0,4)) .

Now we use the elementary inequality

kw0kL1(B(0,2 j )) .
�
�w0 � (w0)B(0,2 j )

�
�
L1(B(0,2 j ))

+
jX

`=3
2 j
�
�
�(w0)B(0,2`) � (w0)B(0,2`�1)

�
�
�

.
jX

`=2
2 j�`/2

�
�w � (w)B(0,2`)

�
�
L2(B(0,2`))

(for j � 2) and we get

 Z

B(0,4)

�
�
�
�

Z

R\B(0,4)

⇢(x)w0(y)
|x � y|3/2

dy
�
�
�
�

2
dx

!1/2

.
1X

j=2
2�3 j/2 kw0kL1(A j )

.
1X

j=2

j+1X

`=2
2� j/2�`/2��w � (w)B(0,2`)

�
�
L2(B(0,2`))

.
1X

`=2
2�`

�
�w � (w)B(0,4)

�
�
L2(B(0,2`)).

Thus, applying Lemma D.4 to B(0, 4) and B(0, 2`), we get
�
�(�1)1/4(⇢w0)

�
�
L2,1 .

�
�(�1)1/4w

�
�
L2,1(B(0,3))

+
1X

`=2
2�`/2

 
X̀

p=0

�
�(�1)1/4w

�
�
L2,1(Ap)

+
1X

p=`+1
2(`�p)/2��(�1)1/4w

�
�
L2,1(Ap)

!

.
1X

p=0
(p + 1)2�p/2��(�1)1/4w

�
�
L2,1(Ap)

.
1X

p=0
2�p/4��(�1)1/4w

�
�
L2,1(Ap)

.
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Estimate of kT ⇤(w0; (1� ⇢)w0)kL2(B): by Lemma B.5 we have

�
�w0 · (�1)1/4((1� ⇢)w0)

�
�
L2(B)

.
�
�w0 � (w0)B(0,4)

�
�
L2(B(0,4))

�
�(�1)1/4((1� ⇢)w0)

�
�
L1(B)

. kwkḢ1/2(B(0,4))

1X

j=1
2�3 j/2 kw0kL1(A j )

. kwkḢ1/2(B(0,4))

1X

p=0
2�p/4��(�1)1/4w

�
�
L2,1(Ap)

,

where the last inequality is obtained as before. Hence,
�
�
�w0 · (�1)1/4((1� ⇢)w0)

�
�
�
L2(B)

has the desired upper bound. Similarly, using Cauchy–Schwarz inequality twice,
�
�(�1)1/4((1� ⇢) |w0|

2)
�
�
L2(B)

.
�
�(�1)1/4((1� ⇢) |w0|

2)
�
�
L1(B)

.
1X

j=1
2�3 j/2 kw0k

2
L2(A j )

.
1X

j=1
2�3 j/2

 j+1X

`=2
2 j/2�`/2

�
�w � (w)B(0,2`)

�
�
L2(B(0,2`))

!2

.
1X

j=1

j+1X

`=2
2� j/2�``2

�
�w � (w)B(0,2`)

�
�2
L2(B(0,2`))

.
1X

`=2
2�3`/2`2

�
�w � (w)B(0,2`)

�
�2
L2(B(0,2`))

.
1X

`=2
2�`/2`2

 
X̀

p=0
(p + 1)2

�
�(�1)1/4w

�
�2
L2,1(Ap)

+
1X

p=`+1
(p + 1)22`�p��(�1)1/4w

�
�2
L2,1(Ap)

!

.
1X

p=0
2�p/4��(�1)1/4w

�
�2
L2,1(Ap)

.

Estimate of T ⇤((1� ⇢)w0; ⇢w0) = T ⇤(⇢w0; (1� ⇢)w0): analogous.
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Lemma D.6. Let P 2 Ḣ1/2 \ L1(R) and v 2 L2(R). Then, uniformly in s � 1,

�
�(�1)�1/4T (P, v)

�
�
L2(B)

. kvkL2,1(B(0,2s))

1X

j=s
2s/2� j/4 kPkḢ1/2(B(0,2 j r))

+ kPkḢ1/2
1X

j=s
2� j/4 kvkL2,1(A j ) .

Proof. The proof is similar to the one of Lemma D.5, but is substantially simpler:
as before we assume x0 = 0, r = 1. Setting P0 := P � (P)B(0,2s+3), notice that
T (P, v) = T (P0, v).

Let ⇢ 2 C1
c (B(0, 2s+2)) with ⇢ = 1 on B(0, 2s+1) and

�
�⇢0
�
� . 2�s . By

Corollary C.4 we can write

(�1)�1/4T (P, v) = (�1)�1/4T
�
⇢P0, v1B(0,2s)

�

+ (�1)�1/4T
�
(1� ⇢)P0, v1B(0,2s)

�

+
1X

j=s
(�1)�1/4T

�
P0, v1A j

�

in L2(R) and as before
�
�(�1)�1/4T

�
⇢P0, v1B(0,2s)

���
L2 . k⇢P0kḢ1/2 kvkL2,1(B(0,2s))

. kPkḢ1/2(B(0,2s+3)) kvkL2,1(B(0,2s)) .

To estimate the two other pieces, fix any j � 1 and let � j 2 C1
c (B(0, 2 j+2)) with

� j = 1 on B
�
0, 2 j+1

�
\ B

�
0, (5/6)2 j

�
,

� j = 0 on B
�
0, (4/6)2 j

�
[
�
R \ B

�
0, 2 j+2

��

and
�
�� 0

j
�
�
L1 . 2� j . In particular, � j vanishes in a neighborhood of B. Next we are

going to use [15, Proposition 2.4.8](which implies that, onR\A j ,(�1)1/4(P0v1A j )

is smooth and bounded by |x |�3/2 ⇤
�
�P0v1A j

�
�) and the fact that,6 by Lemma D.4,

kP0kL4(A`) .
max(`+1,s+3)X

p=0
2`/4�p/4��P0 � (P0)B(0,2p)

�
�
L4(B(0,2p))

. max(`+ 1, s)2`/4 kP0kḢ1/2 .

6 Since (P0)B(0,2s+3) = 0, if ` � s + 2 we can write P0 = P0 � (P0)B(0,2`+1) +
P`+1

p=s+4((P0)B(0,2p) � (P0)B(0,2p�1)) and if `  s + 2 we write P0 = P0 � (P0)B(0,2`+1) +
Ps+3

p=`+2((P0)B(0,2p�1) � (P0)B(0,2p)).
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We split T (P0, v1A j ) = (1� � j )T (P0, v1A j ) + � j T (P0, v1A j ). For all ` � 0 we
have

�
�(1� � j )T (P0, v1A j )

�
�
L2(A`)

. 2`/2
�
�(1� � j )(�1)1/4(P0v1A j )

�
�
L1(A`)

+ 2`/4 kP0kL4(A`)
�
�(1� � j )(�1)1/4(v1A j )

�
�
L1(A`)

. 2�3max( j,`)/2
⇣
2`/2 kP0kL4(A j ) + 2`/42 j/4 kP0kL4(A`)

⌘
kvkL4/3(A j )

. max( j + 1, `+ 1, s)2 j/2+`/22�3max( j,`)/2 kPkḢ1/2 kvkL2,1(A j ) .

Since T (P0, v1A j ) 2 L1(R) by Theorem C.2, it follows that for all j � s

�
�(�1)�1/4((1� � j )T (P0, v1A j ))

�
�
L2(B)

.
✓�
� |x |�1/2 ⇤ ((1� � j )T (P0, v1A j )1A0)

�
�
L2(B)

+
1X

`=1
2�`/2 ��(1� � j )T (P0, v1A j )

�
�
L1(A`)

◆

.
1X

`=0

�
�(1� � j )T (P0, v1A j )

�
�
L2(A`)

. kPkḢ1/2 kvkL2,1(A j )

✓ jX

`=0
( j + 1)2� j+`/2 +

1X

`= j+1
(`+ 1)2 j/2�`

◆

. 2� j/4 kPkḢ1/2 kvkL2,1(A j ) .

Similarly, as T ((1 � ⇢)P0, v1B(0,2s)) = (�1)1/4((1 � ⇢)P0)v1B(0,2s) � (1 �
⇢)P0(�1)1/4(v1B(0,2s)), using Lemma B.5 we get

�
�T ((1� ⇢)P0, v1B(0,2s))

�
�
L2,1(B(0,2s))

.
1X

p=s
2�p kP0kL2(Ap) kvkL2,1(B(0,2s))

.
1X

p=s
p2�p/2 kPkḢ1/2(B(0,2p+1)) kvkL2,1(B(0,2s)) ,

�
�T ((1� ⇢)P0, v1B(0,2s))

�
�
L2(A`)

. 2�3`/2 kP0kL2(A`) kvkL1(B(0,2s))

. `2s/2�` kPkḢ1/2(B(0,2`+3)) kvkL2,1(B(0,2s))
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for ` � s (notice that 1� ⇢ vanishes near B(0, 2s)). Since
�
�(�1)�1/4

�
T
�
(1� ⇢)P0, v1B(0,2s)

�
1B(0,2s)

���
L2(B)

.
�
�
�|x |�1/2

�
�
�
L4/3(B(0,2s+1))

�
�T
�
(1� ⇢)P0, v1B(0,2s)

���
L4/3(B(0,2s))

. 2s/2
�
�T
�
(1� ⇢)P0, v1B(0,2s)

���
L2,1(B(0,2s)) ,

we get
�
�(�1)�1/4T

�
(1� ⇢)P0, v1B(0,2s)

���
L2(B)

.
1X

j=s
2s/2� j/4 kPkḢ1/2(B(0,2 j )) kvkL2,1(B(0,2`)) .

Finally, we estimate
�
�(�1)�1/4(� j T (P0, v1A j ))

�
�
L2(B)

by duality: given  2
C1
c (B) with k kL2  1,

⌦
(�1)�1/4

�
� j T (P0, v1A j )

�
, 
↵

=
Z
� j T (P0, v1A j )(�1)�1/4 

=
Z

(�1)�1/4T (P0, v1A j )(�1)1/4(� j (�1)�1/4 ).

The first identity holds since T (P0, v1A j ) 2 L1(R) (by Theorem C.2), while the
second is justified by � j (�1)�1/4 2 C1

c (R), (�1)�1/4T (P0, v1A j ) 2 L2(R)
(by Corollary C.4) and Plancherel’s theorem.

We observe that, on the support of � j , (�1)�1/4 is bounded by 2� j/2 and
its derivative by 2�3 j/2 (as (�1)�1/4 = c |x |�1/2 ⇤  ), so f := � j (�1)�1/4 

has k f kL1 . 2� j/2,
�
� f 0

�
�
L1 . 2�3 j/2 and

�
�(�1)1/4 f

�
�2
L2 .

Z
|⇠ |
�
� bf (⇠)

�
�2 d⇠ .

Z �
2� j + 2 j⇠2

��� bf (⇠)
�
�2 d⇠

. 2� j k f k2L2 + 2 j
�
� f 0

�
�2
L2 . 2� j .

Moreover, by Corollary C.4,
�
�(�1)�1/4T (P0, v1A j )

�
�
L2 . kPkḢ1/2 kvkL2,1(A j ).

We deduce that
�
�(�1)�1/4(� j T (P0, v1A j ))

�
�
L2 . 2� j/2 kPkḢ1/2 kvkL2,1(A j ) .
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D.1. Rewriting the Euler-Lagrange equation

In Lemma D.2 we have seen that w := u �  �1
` �5�1 2 Ḣ1/2(R,N ) satisfies

PT (w)(�1)1/2w +
2

1+ x2
PT (w)

⇣
R`
�
( f j )kj=1

�
�5�1

⌘
= 0 in D0(R).

Therefore we can write

(�1)1/2w = PN (w)(�1)1/2w + h , (D.14)

where h = � 2
1+x2 P

T (w)
⇣
R`(( f j )kj=1) �5�1

⌘
2 L1 \ L1(R). We are going to

reformulate (D.14) in the same spirit as it has been done in [10,19].
This equivalent reformulation will be crucial in order to obtain the regularity

of w. First of all, writing for simplicity PT and PN in place of PT (w) and PN (w),

PN (�1)1/2w = (�1)1/4
�
PN (�1)1/4w

�

+ (�1)1/4PN (�1)1/4w � T
�
PN , (�1)1/4w

�

= (�1)1/4
�
PN (�1)1/4w

�
+ (�1)1/4PN PN (�1)1/4w

+ (�1)1/4PN PT (�1)1/4w � T
�
PN , (�1)1/4w

�
.

Next, we observe that

(�1)1/4PN PT = �PN (�1)1/4PT + T ⇤�PN , PT
�

=PN (�1)1/4PN + T ⇤�PN , PT
�

= �0 +�1 + (�1)1/4PN PN ,

where �0 := PN (�1)1/4PN � (�1)1/4PN PN 2 L2(R, so(m)), �1 :=
T ⇤(PN , PT ) 2 L2,1(R, Rm⇥m). Hence, setting v := (�1)1/4w 2 L2(R, Rm),
we arrive at

(�1)1/4v = �0v +�1v + (�1)1/4
�
PNv

�

+ 2(�1)1/4PN �PNv
�
� T

�
PN , v

�
+ h.

(D.15)

Theorem D.7. The map v = (�1)1/4w has (�1)1/4(PT v),R(�1)1/4(PNv) 2
L1(R, Rm) and there exists ↵ > 0 such that

�
�(�1)1/4(PT v)

�
�
L1(B(x0,r))

+
�
�R(�1)1/4

�
PNv

���
L1(B(x0,r))

. r↵,

for all r > 0, uniformly in x0 2 R.

Proof.

Step 1. Fix any x0 2 R. We first proceed to locally remove the antisymmetric matrix
�0: if R > 0 is small enough, then we can write�01B(x0,R) = 1

2 (Q
�1(�1)1/4Q�
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(�1)1/4Q�1Q) for some Q 2 Ḣ1/2(R, SO(m)) with kQkḢ1/2 . k�0kL2(B(x0,R))
(see [8, Section 4] and [10, Section 4]). The mapev := Qv then satisfies

(�1)1/4ev = Q(�1)1/4v � (�1)1/4Qv + T (Q, v)

= Q�0v + Q�1v + Q(�1)1/4
�
PNv

�
+ 2

�
Q(�1)1/4PN ��PNv

�

� QT
�
PN , v

�
+ Qh � (�1)1/4Qv + T (Q, v).

Using the identities

Q�01B(x0,R) � (�1)1/4Q=�
Q
2
T ⇤�Q�1, Q

�
,

Q(�1)1/4
�
PNv

�
=(�1)1/4

�
QPNv

�
+(�1)1/4QPNv � T

�
Q, PNv

�
,

QT
�
PN , v

�
=T ⇤�Q, PN �v + T

�
QPN , v

�
� T

�
Q, PNv

�
,

we get

(�1)1/4ev = Q�01R\B(x0,r)v �
Q
2
T ⇤(Q�1, Q)v + Q�1v + (�1)1/4(QPNv)

+ (�1)1/4QPNv + 2
�
Q(�1)1/4PN ��PNv

�

� T ⇤�Q, PN �v � T
�
QPN , v

�
+ Qh + T (Q, v)

= e�0ev + e�1ev + e�2PNv + (�1)1/4
�
QPNv

�
+ T

�
QPT , v

�
+ Qh,

with

e�0 := Q�01R\B(x0,r)Q
�1

e�1 := Q
✓
�1 �

1
2
T ⇤�Q�1, Q

�
◆
Q�1 � T ⇤�Q, PN �Q�1

and e�2 := (�1)1/4Q + 2Q(�1)1/4PN . Notice that e�0,e�2 2 L2(R, Rm⇥m)
and e�1 2 L2,1(R, Rm⇥m). Recall that

�
�PNv

�
� . |T ⇤(w;w)| by Lemma D.3 (see

also [10, Lemma 3.5] for related properties).

Step 2. Next, we use the last equation satisfied byev in order to estimate locally the
L2,1-norm of v. Asev 2 L2(R, Rm), we have

ev = (�1)�1/4(�1)1/4ev

= (�1)�1/4
�e�0ev

�
+ (�1)�1/4(e�1ev) + (�1)�1/4

�e�2PNv
�

+ QPNv + (�1)�1/4T
�
QPT , v

�
+ (�1)�1/4(Qh).

Fix any radius r  R
2 and an integer s � 1.

Notice that (�1)�1/4(e�0ev) = c |x |�1/2 ⇤ (e�0ev) restricts to an L1 function
on B = B(x0, r) bounded by c

� R
2
��1/2 ��e�0ev

�
�
L1 , as e�0ev is supported far from
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B, while (�1)�1/4(Qh) 2 L1(R) since |x |�1/2 2 L1(R) + L1(R) and h 2
L1 \ L1(R). Moreover, being |x |�1/2 2 L2,1(R),
�
�(�1)�1/4(e�1ev)

�
�
L2,1(B)

.
�
�e�1ev

�
�
L1(B(x0,2sr))

+
1X

j=s
r1/2

�
�
�|x |�1/2 ⇤ (e�1ev1A j )

�
�
�
L1(B)

.
�
�e�1

�
�
L2,1(B(x0,2sr))

kvkL2,1(B(x0,2sr)) +
1X

j=s
2� j/2��e�1ev

�
�
L1(A j )

.
�
k�1kL2,1(B(x0,2sr))+k�0kL2(B(x0,R))

�
kvkL2,1(B(x0,2sr))+

1X

j=s
2� j/2kvkL2,1(A j ),

where we used Theorem C.1 and we neglected
�
�e�1

�
�
L2,1 in the estimate of�

�e�1ev
�
�
L1(A j )

, as well as
�
�PN��

Ḣ1/2 (recall that A j = B(x0, 2 j+1r) \ B(x0, 2 j r)).
Similarly, by Lemmas D.3 and D.5,

�
�(�1)�1/4(e�2PNv) + QPNv

�
�
L2,1(B)

.
1X

j=0
2� j/2

�
�
�PNv

�
�
�
L2(B(x0,2 j r))

.
1X

j=0
2� j/2

⇣
kwkḢ1/2(B(x0,2 j+2r)) + kvkL2,1(B(x0,2 j+2r))

⌘
kvkL2,1(B(x0,2 j+1r))

+
1X

j=0

1X

`= j+1
2� j/2�(`� j)/4

⇣
kwkḢ1/2(B(x0,2 j+2r)) + kvkL2,1(A`)

⌘
kvkL2,1(A`)

.
⇣
kwkḢ1/2(B(x0,2s+1r)) + kvkL2,1(B(x0,2s+1r))

⌘
kvkL2,1(B(x0,2sr))

+
1X

j=s+1
2� j/4 kvkL2,1(B(x0,2 j r)) ,

where we neglected
�
�e�2

�
�
L2 and kvkL2,1 , kwkḢ1/2 . kvkL2 . Finally, using Lem-

ma D.6 and neglecting
�
�QPT

�
�
Ḣ1/2 ,

�
�(�1)�1/4T (QPT , v)

�
�
L2(B)

. kvkL2,1(B(0,2s))

1X

j=s
2s/2� j/4

�
�
�QPT

�
�
�
Ḣ1/2(B(0,2 j r))

+
1X

j=s
2� j/4 kvkL2,1(A j )

. 2s/2
✓

k�0kL2(B(x0,R)) +
1X

j=s
2� j/4

�
�
�PT

�
�
�
Ḣ1/2(B(x0,2 j r))

◆
kvkL2,1(B(x0,2sr))

+
1X

j=s
2� j/4 kvkL2,1(A j ) .
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Combining the previous estimates, given ✏ we can fix R (depending on ✏ and s) so
small that

kvkL2,1(B(x0,r))  ✏ kvkL2,1(B(x0,2sr)) + C
1X

j=s+1
2� j/4 kvkL2,1(B(x0,2 j r))

+ Cr1/2 + CR�1/2r1/2

 ✏ kvkL2,1(B(x0,2sr))+C
1X

j=s+1
2� j/4 kvkL2,1(B(x0,2 j r)) + Cr1/4

for all sufficiently small r (depending on ✏ and s), with C independent of ✏ and s.
Choosing s large enough, it follows that

kvkL2,1(B(x0,r)) . r� . (D.16)

for some 0 < � < 1
4 and all r > 0 small enough (see, e.g., [3, Lemma A.8],

applied to the sequence b0 := kvkL2,1 , bk := kvkL2,1(B(x0,2�kr0)) for k > 0, with
r0 small enough). Hence, being kvkL2 finite, this holds for all r > 0. Notice that
this inequality is uniform in x0.
Step 3. We define ⇣ := (�1)�1/4(e�1ev) + (�1)�1/4(e�2PNv) 2 L2,1(R, Rm)
(where e�1 and e�2, defined above, depend on x0). From (D.16) and the preceding
estimates we deduce �

�(�1)1/4⇣
�
�
L1(B(x,r)) . r�

for all r > 0 and all x 2 R. This Morrey-type estimate for the local L1-norm of
(�1)1/4⇣ implies that ⇣ 2 L ploc(R, Rm) for some 2 < p < 1: indeed, arguing as
in [1, Proposition 3.1], we have ⇣ = c |x |�1/2 ⇤ (�1)1/4⇣ and thus, for a.e. x 2 R
and all r > 0,

|⇣(x)| .
X

j2Z

�
2 j r

��1/2��(�1)1/4⇣
�
�
L1(B(x,2 j r)\B(x,2 j�1r))

. M
�
(�1)1/4⇣

�
(x)

X

j0
2 j/2r1/2 +

X

j>0

�
2 j r

���1/2

. r1/2M
�
(�1)1/4⇣

�
(x) + r��1/2.

Optimizing this inequality in r , we infer that

|⇣(x)| . M
�
(�1)1/4⇣

�
(x)(

1
2��)/(1��),

for all x 2 R. The right-hand side lies in L(1��)/( 12��),1(R) (as (�1)1/4⇣ 2
L1(R, Rm)), so we get the claim for any 2 < p < 1��

1
2��

. In particular, we get

k⇣kL2(B(x,r)) . r� 0 for some � 0 > 0 and all 0 < r < R
2 . On the other hand,

ev � ⇣ = (�1)�1/4(e�0ev) + QPNv + (�1)�1/4T (QPT , v) + (�1)�1/4(Qh)
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and so the estimates derived in Step 2 give kev � ⇣kL2(B(x0,r)) . r� , for all 0 < r <
R
2 . We deduce that, for all 0 < r < R

2 ,

kvkL2(B(x0,r))  kev � ⇣kL2(B(x0,r)) + k⇣kL2(B(x0,r)) . r↵,

with ↵ := min
�
�,� 0

 
. Hence kvkL2(B(x0,r)) . r↵ for all r > 0, uniformly in x0.

Step 4. Finally, Lemma D.2 gives the two identities

(�1)1/4
�
PT v

�
= h � (�1)1/4PT v + T

�
PT , v

�
,

R(�1)1/4
�
PNv

�
= R(�1)1/4PNv �U

�
PN , v

�
,

as R(�1)1/2w = �rw. Arguing as in the proof of Lemma D.6, but using Theo-
rem C.2 in place of Corollary C.4, we finally get

�
�
�T (PT , v)

�
�
�
L1(B)

. kvkL2(A0) +
1X

j=1

�
�
�T (PT , v1A j )

�
�
�
L1(B)

.
1X

j=0
2� j/2 kvkL2(A j ) . r↵

and similarly
�
�U(PN , v)

�
�
L1(B)

. r↵ . The statement follows.

Corollary D.8. We have v 2 L ploc(R, Rm) and w 2 C0,�loc (R, Rm), for some p > 2
and some � > 0.

We include the standard proof for the reader’s convenience.

Proof. Arguing as in Step 3 of the proof of Theorem D.7, we infer that
Z

B(x0,4)

�
�
�PT v

�
�
�
p

+
Z

B(x0,4)

�
�
�R(PNv)

�
�
�
p

. 1

for some p > 2, uniformly in x0. If ⇢ 2 C1
c (B(x0, 4)) is a cut-off function with

⇢ = 1 on B(x0, 2),

PNv = �RR
�
PNv

�
= �R

�
⇢R(PNv)

�
�R

�
(1� ⇢)R

�
PNv

��
.

Using [15, Proposition 2.4.8] applied to�i sgn(⇠) (whose inverse Fourier transform
is (�1)-homogeneous) and the fact that (1�⇢)R(PNv) 2 L2(R, Rm) is supported
far from B(x0, 1),

�
�
�R((1� ⇢)R

�
PNv)

���
�
L1(B(x0,1))

. 1
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and, from the L p-boundedness of the Hilbert-Riesz transform,
�
�
�R

�
⇢R(PNv)

���
�
L p

.
�
�
�R

�
PNv

���
�
L p(B(x0,4))

.

We deduce that v = PT v + PNv also satisfies an estimate
R
B(x0,1) |v|p . 1, uni-

formly in x0. In particular,
�
�(�1)1/4w

�
�
L2(B(x0,r))

. r� with � = 1
2 � 1

p 2
⇣
0, 12

⌘

(for 0 < r < 1 and hence for all r > 0). Using Lemma D.4 we deduce that

✓Z

B(x0,r)

�
�w � (w)B(x0,r)

�
�2
◆1/2

.
1X

j=0
2� j/2(2 j r)� . r� .

This is the integral characterization of Hölder continuity with exponent � : see,
e.g., [14, Theorem III.1.2].

Applying a rotation before taking the stereographic projection, we arrive at the
following.

Corollary D.9. The map u � �1
` : S1 ! Rm is Hölder continuous and, being ` is

arbitrary, u is Hölder continuous.

Appendix E. Higher regularity of 12 -harmonic maps

In this section we prove that 12 -harmonic maps u 2 H1/2(@S,N ) are Ck�1,�
loc , for

any 0 < � < 1, wheneverN is a Ck-smooth closed manifold (k � 2). We mention
that higher regularity of the so-called half-wave maps into S2 has recently been
obtained in [18].

Throughout the section, we will say that a 2 S 0(R) belongs to Hs,p
loc (R) (with

s � 0, 1 < p < 1) if  a 2 Hs,p(R) for any  2 C1
c (R).

Corollary D.8 shows that (�1)1/4w 2 L ploc(R, Rm), wherew = u� �1
` �5�1,

for some p > 2. We now bootstrap this information to get higher regularity. We
first prove two results concerning the regularity of the commutatorR(ab)�aR(b).
The proofs will rely on the technique of splitting products into paraproducts, using
the Littlewood–Paley decomposition (see Section B.2):

ab =
X

j
a j b j�3 +

X

j
a j�3b j +

X

| j�k|2
a jbk, ba j = % jba, bb j = % jbb.

We will treat the first and third summands together, namely we will just decompose

ab =
X

j
a j b j+2 +

X

j
a j�3b j .
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Lemma E.1. Let a 2 Ḣ1/2 \ L1(R) with (�1)1/4a 2 L p(R), for some 2 < p <
1, and b 2 Ḣ�1/2(R). Then

kR(ab) � aR(b)kL2p/(p+2) .
�
�(�1)1/4a

�
�
L p kbkḢ�1/2 .

Notice that R(ab) is defined, as for ⇢ 2 S(R) the function F
h
�i ⇠

(✏2+|⇠ |2)1/2
⇢̌
i

converges (as ✏ ! 0) in Ḣ1/2 \ L1(R) and ab extends to a continuous functional
on this space (see Appendix B).

Proof. Notice that the commutator vanishes if a is constant. Thus, as the proof of
Lemma B.2 and Remark B.3 show, we can assumeba,bb 2 C1

c (R \ {0}).7 Using the
homogeneous decomposition, we write

R(ab) � aR(b)=
X

j2Z

�
R(a j�3b j ) � a j�3R(b j )

�
+
X

j2Z

�
R
�
a jb j+2

�
�a jR(b j+2)

�

and remark that the first sum vanishes since

F(R(a j�3b j ) � a j�3R(b j ))(⇠) = � i sgn(⇠)
Z

da j�3(⇠ � ⌘)bb j (⌘) d⌘

+ i
Z

da j�3(⇠ � ⌘) sgn(⌘)bb j (⌘) d⌘ = 0

(as sgn(⌘) = sgn(⇠) whenever da j�3(⇠ � ⌘)bb j (⌘) 6= 0).
Since R is an isomorphism of L2p/(p+2)(R) and of Ḣ�1/2(R), it suffices to

bound
P

j2Z a jb j+2 in L2p/(p+2)(R). We do this by duality: let h 2 S(R) and
observe that

Z X

j2Z
a jb j+2h =

Z X

j2Z
a jb j+2h j+4

.
Z
0

@
X

j2Z
2 j
�
�a j
�
�2
1

A

1/20

@
X

j2Z
2� j

�
�
�b j+2

�
�
�
2
1

A

1/2

(Mh),

as F(a jb j+2) is supported in B(0, 2 j+4) and as we have the elementary inequality�
�h j+4

�
� . Mh. Note that kMhkL2p/(p�2) . khkL2p/(p�2) , while the `2(Z)-norm

7 We can assumeba has compact support in R \ {0}, by replacing it with w̌k (defined as in Lemma
B.2): the norm

�
�(�1)1/4a

�
�
L p stays controlled by Lemma B.4 and the same argument of Remark

B.3; we can then choose |⇠ |1/2bvk arbitrarily close to |⇠ |1/2wk in L p
0
(R), obtaining (�1)1/4vk

close to (�1)1/4w̌k in L p(R).
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⇣P
j2Z

�
�2� j/2b j+2

�
�2
⌘1/2

equals

0

@
X

j2Z

�
�
�
�
�

2X

k=�1

2� j/2b j+k

�
�
�
�
�

2
1

A

1/2


2X

k=�1

0

@
X

j2Z

�
�
�2� j/2b j+k

�
�
�
2
1

A

1/2

.

0

@
X

j2Z
2� j ��b j

�
�2
1

A

1/2

(as
P

j2Z
�
�2� j/2b j+k

�
�2 = 2k

P
j2Z 2� j ��b j

�
�2), so that, by Plancherel’s identity,

�
�
�
�
�
�
�

0

@
X

j2Z
2� j

�
�
�b j+2

�
�
�
2
1

A

1/2
�
�
�
�
�
�
�

2

L2

.
X

j2Z
2� j

Z �
�b j
�
�2 =

Z X

j2Z
2� j⇢2j

�
�bb
�
�2

.
Z

|⇠ |�1
�
�bb(⇠)

�
�2 = kbk2Ḣ�1/2 .

To conclude, using [24, Theorem 1.6.3] with the multipliers 2 j/2 |⇠ |�1/2(% j�1+
% j + % j+1) and [15, Theorem 6.1.2], we infer
�
�
�
�
�
�
�

0

@
X

j2Z
2 j
�
�a j
�
�2
1

A

1/2
�
�
�
�
�
�
�
L p

.

�
�
�
�
�
�
�

0

@
X

j2Z

�
�
�(�1)1/4a j

�
�
�
2
1

A

1/2
�
�
�
�
�
�
�
L p

.
�
�(�1)1/4a

�
�
L p .

To sum up, by Hölder’s inequality we get the desired bound
Z X

j2Z
a jb j+2h .

�
�(�1)1/4a

�
�
L p kbkḢ�1/2 khkL2p/(p�2) .

Lemma E.2. Let a 2 Hs,p(R) and b 2 Lq(R), with s > 1
p , 1 < p, q < 1. Then,

for any � > 1
p ,

kR(ab) � aR(b)kHs�� ,q . kakHs,p kbkLq .

Proof. We can assume ba,bb 2 C1
c (R). We use the inhomogeneous Littlewood-

Paley decomposition, so that a =
P

j�0 a j and b =
P

j�0 b j , whereba j = % jba.

As in the previous proof, we need only estimate
�
�
�
P

j�0 a jb j+2
�
�
�
Hs�� ,q

, asR is
an isomorphism of Hs�� ,q(R) and of Lq(R).We have

�
�a j

�
�
L1 .2� j (s�1/p)kakHs,p
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(see the proof of Corollary B.7). Given h 2 S(R), observe thatF(a jb j+2) vanishes
outside B(0, 2 j+4), so

�
�
�
�
�

Z X

j�0
a jb j+2h

�
�
�
�
�
=

�
�
�
�
�

X

j�0

Z
a jb j+2h j+4

�
�
�
�
�
. kakHs,p kMbkLq khkF�(s�1/p)

q0,1
,

thanks to the pointwise inequalities
�
�b j+2

�
� . Mb (Mb being the maximal function

of b) and
�
�
�
�
�

X

j�0
a jb j+2h j+4

�
�
�
�
�
.
X

j�0
2� j (s�1/p) kakHs,p (Mb)

�
�
�h j+4

�
�
�

. kakHs,p (Mb)
X

j�0
2� j (s�1/p) ��h j

�
� .

But H�(s�� ),q 0
= F�(s�� )

q 0,2 ,! F�(s�1/p)
q 0,1 (see [24, Proposition 2.3.2/2]), so

�
�
�
�

Z X

j�0
a jb j+2h

�
�
�
� . kakHs,p kbkLq khkH�(s�� ),q0 .

We will implicitly use many times the following result.

Lemma E.3. If u 2 Hs,p
loc (R) for some s � 1 and 1 < p < 1, then PT (u) 2

Hmin(s,k�1),ploc (R).

Proof. We can assume that 1  s  k. The claim is trivial for s 2 N, while
when s > 1 is not an integer it follows from [4, Theorem 5.2], the map PT being
Ck�1-smooth. Notice that u 2 W 1,sp

loc (R) by [4, Lemma 3.1] with (p, q, s) :=
(sp, 2, 1), (p1, q1, s1) := (p, 2, s), (p2, q2, s2) := (1,1, 0) and the fact that
u 2 H1,ploc (R) ✓ L1

loc(R).

We also need the following lemmata, where we use the dyadic partition of
unity (% j )

1
j=0 ✓ C1

c (R) introduced in Appendix B.

Lemma E.4. If f 2 Ḣ1/2(R) and ⇢ 2 C1
c (B(0, 1)), we have

⌦
(�1)1/2 f, ⇢

↵
=

1X

j=0

Z
((�1)1/2⇢)(% j f ). (E.1)

Proof. Notice that f 2 L1loc(R) and (�1)1/2⇢ 2 L1(R), so each term in the right-
hand side makes sense. By the remark after Lemma B.4, the left-hand side equals
2⇡
R

|⇠ | bf (⇠)b⇢(⇠) d⇠ .
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For any j � 2, by Lemma B.1 and the fact that F�1(|⇠ |) 2 C1(R \ {0}) is
homogeneous of degree �2 (see [15, Proposition 2.4.8]),

�
�
�
�

Z
((�1)1/2⇢)(% j f )

�
�
�
� . 2�2 j k f kL1(B(0,2 j+1)\B(0,2 j�1))

. 2� j k f kL1(B(0,1)) + 2� j ( j + 1) k f kḢ1/2 .

Therefore the sum in the right-hand side of (E.1) converges and is bounded by
k f kL1(B(0,1)) + k f kḢ1/2 . Hence, by Lemma B.2, it is enough to prove (E.1) on
S(R) + R.

If f 2 S(R), the identity is trivially satisfied since in this case we have

1X

j=0

Z �
(�1)1/2⇢

�
(% j f ) =

Z �
(�1)1/2⇢

�
f = 2⇡

Z
|⇠ | bf (⇠)b⇢(⇠) d⇠.

If f = c is constant then

⌦
(�1)1/2c, ⇢

↵
=0=2⇡c lim

N!1

Z
|⇠ |b⇢(⇠)

NX

j=0
b% j (⇠) d⇠ =

1X

j=0

Z
((�1)1/2⇢)(% j c),

the second equality being true since
PN

j=0 b% j (⇠) approximates the Dirac mass �0
as N ! 1.

Lemma E.5. Assume w 2 Ḣ1/2(R) is supported outside B(x0, 2), for some x0 2
R. Then the distribution (�1)1/2w restricts to a C1 function on B(x0, 1).

Proof. We can assume x0 = 0. For ⇢ 2 C1
c (B(0, 1)) and k � 0 integer, Lemma

E.4 gives

⌦
(�1)1/2w, (�1)k⇢

↵
=
X

j�1

Z
((�1)k+1/2⇢)(% jw)

.
X

j�1
2�(2k+2) j k⇢kL1 kwkL1(B(0,2 j+1)\B(0,2 j�1))

.
X

j�1
2�(2k+2) j k⇢kL2 · ( j + 1)2 j . k⇢kL2 ,

where the inequalities follow from [15, Proposition 2.4.8] and Lemma B.1. So,
calling f the restriction of (�1)1/2w to B(0, 1), we have (�1)k f 2 L2(B(0, 1)).
Equivalently, d

2k f
dx2k 2 L2(B(0, 1)). This implies that d

2k�1 f
dx2k�1 2 C0(B(0, 1)) for all

k � 0, hence f 2 C1(B(0, 1)).
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Proof of Theorem 1.4. We fix x02R and we take a cut-off function ⌘2C1
c (B1(x0))

satisfying ⌘ = 1 in a neighborhood of x0. Recall from Lemma D.2 that

PT (w)(�1)1/2w = h, PN (w)rw = 0,

with h = � 2
1+x2 P

T (w)
⇣
R`(( f j )kj=1) �5�1

⌘
2 L1 \ L1(R). Therefore we have

⌘rw =⌘PT (w)rw = �⌘PT (w)R(�1)1/2w

=R(⌘PT (w)(�1)1/2w) � ⌘PT (w)R(�1)1/2w �R(⌘h).
(E.2)

We remark that w 2 H1/2,ploc (R, Rm): by Lemma B.5

�
�(�1)1/4( w) �  (�1)1/4w

�
�(x) .

Z
| (x) �  (y)|

|x � y|3/2
|w(y)| dy

. g ⇤ |w| (x) 2 L1(R)

with g(x) := min(|x |�1/2 , |x |�3/2) 2 L1(R), for any  2 C1
c (R). Hence

(�1)1/4( w) lies both in L2(R) and in L p(R)+ L1(R) and thus it lies in L p(R),
as well (which can be checked using the formulak f krLr =

R1
0 r�r�1L1({| f |>�}) d�

for 1  r < 1). Since trivially  w 2 L p(R), [24, Theorem 1.6.3] gives  w 2
F1/2p,2 (R) = H1/2,p(R).

Thus ⌘PT (w) 2 H1/2,p(R) and, using again [24, Theorem 1.6.3] (with multi-
pliers |⇠ |1/2 (1+|⇠ |2)�1/4(% j�1+% j+% j+1) for j 2 Z) and [15, Theorem 6.1.2], we
infer that ⌘PT (w) and (�1)1/2w satisfy the hypotheses of Lemma E.1. So, in view
of (E.2), we get ⌘rw 2 L2p/(p+2)(R), i.e. w 2 H1,eploc (R) with ep = 2p/(p + 2).

We now fix another cut-off function � 2 C1
c (R) such that � = 1 on B(x0, 2)

and we set
w1 := �w, w2 := (1� �)w.

Lemma E.5 yields that (�1)1/2w2 2 C1(B(x0, 1)). Now assume that we al-
ready know w 2 Hs,ep

loc (R) for some real s � 1: by Lemma E.3 we get h 2

Hmin(s,k�1),eploc (R), soeh := PT (w)(�1)1/2w1 = �PT (w)(�1)1/2w2 + h restricts
to a function in Hmin(s,k�1),eploc (B(x0, 1)). We rewrite (E.2) as

⌘rw =⌘PT (w)rw1 = �⌘PT (w)R(�1)1/2w1

=R
�
⌘PT (w)(�1)1/2w1

�
� ⌘PT (w)R(�1)1/2w1 �R(⌘eh).

The commutator on the right-hand side belongs to Hmin(s,k�1)�� ,ep(R), for any
� > 1

ep , thanks to Lemma E.2 (applied with p = q := ep). Therefore ⌘rw 2

Hmin(s,k�1)�� ,ep(R), which implies w 2 Hmin(s+1,k)�� ,ep
loc (R). Iterating this proce-

dure we eventually get
w 2

\

�>1/ep
Hk�� ,ep
loc (R).
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We now show that, for any fixed 1 < p < 1,

w 2
\

�>1/p
Hk�� ,p
loc (R).

Since k � 2, we know that w 2 H1,qloc (R) for all q <
ep
2�ep (because H

2�� ,ep
loc (R) ✓

H1,qloc (R) with 1
q = � + 1

ep � 1 whenever � < 1, see [24, Proposition 2.3.2/2 and
Theorem 2.7.1]). Proceeding as above we obtain

w 2
\

�>1/q
Hk�� ,q
loc (R)

for all q <
ep
2�ep (notice that

ep
2�ep > ep). Iterating this with q in place of ep, we

will eventually reach an exponent q � 2 and hence, as
T
�>1/q H

2�� ,q
loc (R) ✓

T
1<r<1 H1,rloc (R), all exponents in (1,1). This proves the assertion. Finally,

applying Corollary B.7,

w 2
\

1<p<1

\

✏>0
Hk�1/p�✏,p
loc (R) ✓

\

0<�<1
Ck�1,�
loc (R).

So u 2 Ck�1,�(@S) for all 0 < � < 1. In particular, if N is C1-smooth then u is
C1 as well.
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