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The P 0-operator, the Q0-curvature, and the CR tractor calculus

JEFFREY S. CASE AND A. ROD GOVER

Abstract. We establish an algorithm which computes formulae for the CR GJMS
operators, the P 0-operator, and the Q0-curvature in terms of CR tractors. When
applied to torsion-free pseudo-Einstein contact forms, this algorithm both gives an
explicit factorisation of the CR GJMS operators and the P 0-operator, and shows
that the Q0-curvature is constant, with the constant explicitly given in terms of
the Webster scalar curvature. We also use our algorithm to derive local formulae
for the P 0-operator and Q0-curvature of a five-dimensional pseudo-Einstein man-
ifold. Comparison with Marugame’s formulation of the Burns-Epstein invariant
as the integral of a pseudohermitian invariant yields new insights into the class of
local pseudohermitian invariants for which the total integral is independent of the
choice of pseudo-Einstein contact form.

Mathematics Subject Classification (2010): 32V05 (primary); 32T15 (sec-
ondary).

1. Introduction

An important class of differential operators in CR geometry are the CR GJMS (or
Gover-Graham) operators [28]. The CR GJMS operator P2k is a formally self-
adjoint differential operator with principal part the k-th power (�1b)

k of the neg-
ative of the sublaplacian; our convention is that �1b is a positive operator. This
operator is defined on any pseudohermitian manifold (M2n+1, H, ✓)with k  n+1
and is CR invariant, P2k : E(�n+1�k

2 ) ! E(�n+1+k
2 ); i.e. ifb✓ = e7✓ , then

e
n+1+k
2 7 bP2k ( f ) = P2k

⇣
e
n+1�k
2 7 f

⌘

for all f 2 C1(M). Special cases are the CR Laplacian P2 studied by Jerison and
Lee [41] and the CR Paneitz operator P4 which are, for example, important in the
study of the embedding problem in three dimensions [20].

ARG gratefully acknowledges support from the Royal Society of New Zealand via Marsden
Grants 13-UOA-018 and 16-UOA-051.
Received September 26, 2017; accepted in revised form May 31, 2018.
Published online May 2020.



566 JEFFREY S. CASE AND A. ROD GOVER

The critical CR GJMS operators P2n+2 are of particular interest. The kernel
of P2n+2 is nontrivial, containing the space P of CR pluriharmonic functions [19,
39]; indeed, this characterizes the kernel on the standard CR spheres [6]. As such,
Branson’s argument of analytic continuation in the dimension [5] gives rise to the
P 0-operator . This operator was first identified on the sphere by Branson, Fontana
and Morpurgo [6], then on general three-dimensional CR manifolds by Yang and
the first-named author [19], and then in general dimensions by Hirachi [39]. As an
operator P 0 : P ! C1(M), the P 0-operator is not invariant; rather, if b✓ = e7✓ ,
then

e(n+1)7 bP 0( f ) = P 0( f ) + P2n+2( f7) (1.1)

for all f 2 P . In this way, one could think of P 0 as a Q-curvature operator (cf. [7]).
For geometric applications, it is often preferable to regard the P 0-operator as a map
P 0 : P ! C1(M)/P?. Both P ⇢ E(0) and P? ⇢ E(�n � 1) are CR invariant
spaces, while the self-adjointness of P2n+2 and the fact P ⇢ ker P2n+2 combine
with (1.1) to imply that P 0 : P ! C1(M)/P? is CR invariant. In particular, P 0

determines a CR invariant pairing P ⇥ P 3 (u, v) 7!
R
u P 0v.

The natural extension of Branson’s Q-curvature to the CR setting is Q :=
P 0(1) (cf. [25]). While the total Q-curvature is a CR invariant, it is often trivial: The
total Q-curvature of a compact three-dimensional CR manifold is always zero [38]
and the Q-curvature vanishes identically for any pseudo-Einstein manifold [25].
The latter fact implies that we may again use analytic continuation in the dimension
to define the Q0-curvature as a pseudohermitian invariant of pseudo-Einstein mani-
folds; see [19] in dimension three and [39] in general dimension. Suppose that ✓ is
pseudo-Einstein. Thenb✓ = e7✓ is pseudo-Einstein if and only if 7 2 P; see [44].
If 7 2 P , we find that

e(n+1)7 bQ0 = Q0 + P 0(7) +
1
2
P2n+2(72), (1.2)

where we regard P 0 and Q0 as C1(M)-valued. Regarding instead P 0 and Q0 as
C1(M)/P?-valued, we have the transformation rule

e(n+1)7 bQ0 = Q0 + P 0(7).

It is in this context that the Q0-curvature prescription problem seems solvable;
see [18] for progress in the three-dimensional setting.

A key property of the Q0-curvature is that its total integral over a compact
pseudo-Einstein manifold is a secondary invariant. Following Hirachi [39], by a
secondary invariant we mean a pseudohermitian invariant which is not CR invari-
ant, but which is invariant within the distinguished class of pseudo-Einstein contact
forms. That the total Q0-curvature is independent of the choice of pseudo-Einstein
contact form follows from (1.2) and the self-adjointness of the critical CR GJMS
operator and of the P 0-operator [19, 39]; that it is not independent of the choice of
contact form follows from [19, Proposition 6.1].
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As a global secondary invariant, the total Q0-curvature is a biholomorphic in-
variant of domains in Cn+1 (cf. [25]). It is interesting to compare it with the Burns-
Epstein invariant [10, 11, 47]. In dimension three, the total Q0-curvature agrees
with the Burns-Epstein invariant up to a universal constant [19,39], whereupon one
obtains the Gauss-Bonnet formula

�(X) =
Z

X

✓
c2 �

1
3
c21

◆
+

1
16⇡2

Z

M
Q0 ✓ ^ d✓

for X ⇢ C2 a bounded strictly pseudoconvex domain with boundary M = @X and
the Chern forms are computed with respect to a complete Kähler-Einstein metric
in X . In dimension five, the total Q0-curvature and the Burns-Epstein invariant do
not in general agree; see Theorem 1.3 and Proposition 8.9 below for more precise
statements.

At present, there are only two ways to study the CR GJMS operators, the P 0-
operator, and the Q0-curvature. The first is to restrict to dimension three, where
local formulae are known and can be used to address questions involving the signs
of these objects [19]. The second is to pass to the ambient manifold, where the
definitions are relatively simple and may be readily used to prove many formal
properties of these objects [39]. However, it is not straightforward to produce local
formulae for these operators from the ambient definition, nor is it known how to use
the ambient definition to address issues such as the sign of the CR GJMS operators
and the P 0-operator or the value of the total Q0-curvature.

The goal of this article is to rectify some of these issues by giving a new inter-
pretation of the CR GJMS operators, the P 0-operator, and the Q0-curvature. Specif-
ically, we give an interpretation of these objects in terms of the CR tractor calculus,
building on the work of Graham and the second-named author on the CR GJMS
operators [28]. Our main result is an algorithm, encoded in Theorem 6.7, which
produces a tractor formula for these operators in terms of tractor D-operators and
the tractor curvature (cf. [29]). As an immediate application, we compute the Q0-
curvature and obtain factorisations of the CR GJMS operators and the P 0-operator
on any Einstein pseudohermitian manifold (cf. [27]); i.e., on any pseudo-Einstein
manifold with vanishing torsion.

Theorem 1.1. Let (M2n+1, H, ✓) be an embeddable Einstein pseudohermitian
manifold. For any integer 1  k  n + 1, the CR GJMS operator P2k is equal to

P2k =

8
>>>>>><

>>>>>>:

k
2Y

`=1
(�1b + c`ir0 + d`P) (�1b � c`ir0 + d`P) if k is even

Y

k�1
2Y

`=1
(�1b + c`ir0 + d`P) (�1b � c`ir0 + d`P) if k is odd,

(1.3)
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where c` = k � 2` + 1 and d` = n2�(k�2`+1)2
n and Y = �1b + nP is the CR

Yamabe operator. Moreover, the P 0-operator is

P 0
2n+2 = n!

✓
2
n

◆n+1 nY

`=0
(�1b + 2`P) (1.4)

and the Q0-curvature is

Q0
2n+2 = (n!)2

✓
4P
n

◆n+1
. (1.5)

An alternative proof of Theorem 1.1 has been given by Takeuchi [51] using purely
ambient techniques.

Since the standard CR sphere and the Heisenberg group with its standard con-
tact form are both Einstein pseudohermitian manifolds, (1.3) recovers the known
formulae for the CR GJMS operators on these manifolds [6, 33]. Moreover, (1.4)
recovers the formula for the P 0-operator obtained by Branson, Fontana and Mor-
purgo on the sphere and (1.5) gives a geometric meaning to the constant in their
sharp Onofri-type inequality on CR pluriharmonic functions [6].

Einstein pseudohermitian manifolds are equivalent to ⌘-Sasaki-Einstein mani-
folds (cf. [45, 50]). This observation leads to a wealth of examples to which Theo-
rem 1.1 applies (cf. [3, 4, 50]).

Theorem 1.1 gives factorisations of the CR GJMS operators in terms of Fol-
land-Stein operators and of the P 0-operator in terms of the sublaplacian. In particu-
lar, the spectrum of the P 0-operator is completely understood in terms of the scalar
curvature and the spectrum of the sublaplacian of an Einstein pseudohermitian man-
ifold. Likewise, it determines the total Q0-curvature of an Einstein pseudohermitian
manifold in terms of its scalar curvature and volume. As a special case of these ob-
servations, we have the following corollary.

Corollary 1.2. Let (M2n+1, H, ✓) be a compact embeddable Einstein pseudoher-
mitian manifold with nonnegative CR Yamabe constant. Then P 0 � 0, ker P 0 = R,
and Z

M
Q0 ✓ ^ (d✓)n 

Z

S2n+1
Q0
0 ✓0 ^ (d✓0)

n, (1.6)

where the right-hand side denotes the total Q0-curvature of the standard CR sphere.
Moreover, equality holds in (1.6) if and only if (M, H, ✓) is CR equivalent to the
standard CR sphere.

In three dimensions, the conclusions of Corollary 1.2 are true under weaker hy-
potheses involving only the CR Paneitz operator and the CR Yamabe constant [19].
It is natural to ask if similar positivity results extend to higher dimensions; Corol-
lary 1.2 suggests that there is scope for such a result. Reasons to be interested in
such a result are its characterization of the standard CR sphere and its role in finding
metrics of constant Q0-curvature by variational methods (cf. [18]).
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In five dimensions, it is straightforward to produce from Theorem 6.7 an ex-
plicit tractor formula for the CR GJMS operators, the P 0-operator, and the Q0-
curvature. In particular, we obtain an explicit local formula for the Q0-curvature in
this dimension:

Q0 = 412
b P + 41b|A↵� |2 � 16 Imr�

�
A�� r� P

�
+ 16ir� Y�

� 161b P2 � 32P|A↵� |2 + 32P3 � 16A↵� Q↵� ;
(1.7)

see Section 2 for a description of our notation. We thus obtain a formula for the
total Q0-curvature of a compact pseudo-Einstein five-manifold (cf. (8.9) and [40]).
On the other hand, Marugame [47] has computed the Burns-Epstein invariant in
this setting. By comparing these formulae, we obtain the following Gauss-Bonnet
formula for bounded strictly pseudoconvex domains in C3.

Theorem 1.3. Let X ⇢ C3 be a bounded strictly pseudoconvex domain with
boundary M5 = @X . Let ⇢ be a defining function for M such that g = �i@@ log ⇢
is a complete Kähler-Einstein metric in X . Then

�(X) =
Z

X

✓
c3 �

1
2
c1c2 +

1
8
c31

◆
+
1
⇡3

Z

M

�
Q0 + 16I 0� ✓ ^ (d✓)2, (1.8)

where I 0 is the pseudohermitian invariant

I 0 = �
1
8
1b

�
�
�S↵�̄� �̄

�
�
�
2
+ |V↵�̄� |2 +

1
2
P|S↵�̄� �̄|

2. (1.9)

In (1.9), S↵�̄� �̄ denotes the Chern tensor – the completely tracefree part of the pseu-
dohermitian curvature – and V↵�̄� is the CR analogue of the Cotton tensor; see
Section 2 for details. The pseudohermitian invariant I 0 should be regarded as the
analogue in the critical dimension of the nontrivial conformal invariant of weight
�6 discovered by Fefferman and Graham (cf. [24, (9.3)]). More precisely, there is
a CR invariant I of weight �3 and of the form |r⇢S↵�̄� �̄|

2 plus terms involving
V↵�̄� (see (8.23)) in general dimensions which is a pure divergence in dimension
five. Arguing by analytic continuation in the dimension yields, modulo divergences,
the pseudohermitian invariant I 0 on five-dimensional pseudo-Einstein manifolds;
in particular, one expects the total I 0-curvature to be a global secondary invariant.
In Proposition 8.9, we give an intrinsic proof of this fact provided c2(H1,0) van-
ishes in H4(M; R). If M is the boundary of a Stein manifold, then c2(H1,0) =
0; see Section 8 for details. Note that Marugame has already given an extrinsic
proof [47] of this fact, without assuming the vanishing of the second real Chern
class. Our study of I 0 suggests that the CR analogue of the Deser-Schwimmer
conjecture is more subtle than its conformal analogue; see Remark 8.13 for further
discussion.
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We conclude this introduction by outlining the algorithm for producing tractor
formulae for the CR GJMS operators, the P 0-operator, and the Q0-curvature con-
tained in Theorem 6.7 and how it is applied to obtain Theorem 1.1. To that end, we
first recall the definitions of these objects via the ambient manifold [39].

Suppose that (M, H) is a strictly pseudoconvex CR manifold which is em-
bedded in a complex manifold X ; note that compact strictly pseudoconvex CR
manifolds of dimension at least five are automatically embeddable [2, 37, 46]. Let
⇢ 2 C1(X) be a defining function for M which is positive on the pseudoconvex
side, and let ✓ = Im @⇢|T M be the induced contact form. Suppose that, near M in
X , there is a (n + 2)-nd root LX of the canonical bundle KX of X . The ambient
space of M , which we denote MA, is the total space of LX \ {0} ! X , and the re-
striction MA|M is denoted by F . Note that F is a CR manifold of (real) dimension
2n + 3 with Levi form which is positive definite except in the fibre direction, and
the pullback of ⇢ to MA, also denoted by ⇢, is a defining function for F .

Given � 2 C⇤, define the dilation �� : MA ! MA by fibre-wise scalar multi-
plication, ��(⇠) = �⇠ . Given w 2 R, denote

eE(w) =
n
f 2 C1(MA; C) : �⇤

� f = |�|2w f for all � 2 C⇤
o

.

A natural choice of defining function r 2 eE(1) for F is obtained by Fefferman’s
construction [23]: it is the unique defining function modulo O(⇢n+3) such that

Ric[r] = i⌘rn@r ^ @r + O
�
⇢n+1

�
, (1.10)

where Ric[r] is the Ricci curvature of the ambient metriceg[r] = �i@@r defined in
a neighborhood of F in MA and ⌘|F is a CR invariant, the obstruction function.

Let K = 3n+1(H0,1)? denote the canonical bundle of M . Note that K =
KX |M . Let LM = LX |M , so that LM is a (n + 2)-nd root of K. Given w,w0 2 C
such that w � w0 2 Z, we denote

E(w,w0) = L�w
M ⌦ L�w0

M .

A CR density of weight w 2 R is a smooth section of the bundle E(w) = E(w,w).
When clear by context, we also use E(w) to denote the space of CR densities of
weight w. Given a homogeneous function ef 2 eE(w) on the ambient space, its
restriction to F defines a CR density f = ef |F 2 E(w). We call ef an ambient
extension of f . Such functions are unique up to adding terms of the form �r with
� 2 eE(w � 1).

Let k 2 {0, 1, . . . , n + 1} and set w = �n+1�k
2 . Given f 2 E(w), define

P2k f :=
�
� 2e1

�k ef |F .

This definition is independent of the choice of ambient extension ef . In particular,
P2k : E(w) ! E(w � k) is a conformally covariant operator, the k-th order CR
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GJMS operator [28]. Our normalization is such that P2k has leading order term
(�1b)

k .
Set h✓ = r/⇢. Define the P-prime operator P 0

2n+2 on P by

P 0
2n+2 f = �

�
� 2e1

�n+1
( f log h✓ )|F 2 E(�n � 1). (1.11)

This operator depends only on f and the choice of contact form ✓ . Moreover,
computing with respect to the contact form b✓ = e7✓ yields the transformation
formula (1.1).

Suppose now that ✓ is a pseudo-Einstein contact form; equivalently, suppose
that log h✓ |F 2 P . Define the Q-prime curvature Q0

2n+2 by

Q0
2n+2 =

1
2
�
� 2e1

�n+1
(log h✓ )

2|F 2 E(�n � 1). (1.12)

This scalar depends only on the choice of contact form ✓ . Moreover, computing
with respect to the pseudo-Einstein contact formb✓ = e7✓ yields the transformation
formula (1.2).

An alternative approach to these definitions can be made through the CR tractor
calculus [28]. Specifically, Čap and the second-named author [12,14] have provided
a dictionary which effectively equates definitions of CR invariant objects made via
the ambient metric with definitions made via the CR tractor calculus. Using this
dictionary, we develop in Section 6 an algorithm for generating tractor formulae
for the CR GJMS operators, the P 0-operators, and the Q0-curvatures in general di-
mension. This has two benefits. First, it is easy to execute this algorithm in low
dimensions, and this allows us to derive (1.7); see Section 8 for further discussion.
Second, the algorithm almost immediately yields Theorem 1.1 using the local corre-
spondence between Einstein contact forms and parallel CR standard tractors. More
precisely, the algorithm leads to a formula (cf. Theorem 6.7) for the CR GJMS
operators in terms of tractor D-operators and the CR Weyl tractor, a tractor version
of the curvature tensor of the ambient metric. Since contractions of a parallel CR
standard tractor IA into the curvature necessarily vanish, we obtain a formula for
the CR GJMS operators in terms of compositions of I A I B̄DADB̄ and I B̄DB̄ which,
after some reorganization, recovers (1.3) (cf. [27]). The factorisations for P 0 and Q0

then follow from the “Branson trick,” made rigorous using log densities in a manner
analogous to the ambient definitions (1.11) and (1.12); see Section 4 and Section 6
for further discussion.
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2. Background

2.1. CR geometry

Recall that an almost CR structure, of hypersurface type, on a smooth manifold M
of real dimension 2n+ 1 is a rank 2n (real) subbundle H of the tangent bundle T M
equipped with an almost complex structure J : H ! H . For simplicity, throughout
the following we assume M is orientable. We write q : T M ! C for the canonical
bundle surjection onto the real (quotient) line bundle C := T M/H . For two sections
⇠, ⌘ 2 0(H) the expression q([⇠, ⌘]) is bilinear over smooth functions, and so there
is a skew symmetric bundle map L : H ⇥ H ! C given by L(⇠(x), ⌘(x)) =
q([⇠, ⌘](x)). If this skew form is non-degenerate then the almost CR structure is
said to be non-degenerate; such non-deneracy exactly means that H is a contact
distribution on M .

We shall write BC for the complexification of a real vector bundle B. Con-
sidering now TCM and HC ⇢ TCM , the complex structure on H is equivalent to
a splitting of the subbundle HC into the direct sum of the holomorphic part H1,0

and the antiholomorphic part H0,1 = H1,0. The almost CR structure is called in-
tegrable, or a CR structure, if the subbundle H1,0 ⇢ TCM is involutive; i.e. the
space of its sections is closed under the Lie bracket. Then, in particular, L is of type
(1, 1), meaning L(J⇠, J⌘) = L(⇠, ⌘) for all ⇠, ⌘ 2 H . We assume integrability.

Let qC denote the complex linear extension of q. The CR Levi form LC of an
almost CR structure is the CC-valued Hermitian form on H1,0 induced by (⇠, ⌘) 7!
2iqC([⇠, ⌘]). Note that L can be naturally identified with the imaginary part of LC,
and so non-degeneracy of the CR structure can be characterised by non-degeneracy
of the Levi form.

Choosing a local trivialisation of C and using the induced trivialisation of CC,
LC gives rise to a Hermitian form. If (p, q) is the signature of this form, then
one also says that M is non-degenerate of signature (p, q). If p 6= q, then such
local trivialisations of C necessarily fit together to give a global trivialisation. In
the case of symmetric signature (p, p) we assume that a global trivialisation of
C exists. A global trivialisation of C is equivalent to a ray subbundle of the line
bundle of contact forms for H ⇢ T M , so it gives a notion of positivity for contact
forms.

An important class of CR structures are those which arise from generic real
hypersurfaces in complex manifolds, as follows. LetM be a complex manifold
of complex dimension n + 1 and let M ⇢ M be a smooth real hypersurface. For
each point x 2 M , the tangent space TxM is a subspace of the complex vector space
TxM of real codimension one. This implies that the maximal complex subspace Hx
of TxM must be of complex dimension n. These subspaces fit together to define a
smooth subbundle H ⇢ T M , equipped with a complex structure. Since the bundle
H1,0 ⇢ TCM can be viewed as the intersection of the involutive subbundles TCM
and T 1,0M of TCM|M we see that we always obtain a CR structure in this way.
Generically this structure is non-degenerate, and in this case is referred to as an
embedded CR manifold.
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2.2. CR density bundles

In CR geometry an important role is played by a natural family of line bundles that
arise as follows. In the complexified cotangent bundle the annihilator of H0,1 has
complex dimension n+ 1, and so its (n+ 1)st complex exterior power is a complex
line bundle K; this is the canonical bundle.

It is convenient to assume the existence of certain roots of K. Specifically we
assume that there exists, and we have chosen, a complex line bundle E(1, 0) ! M
with the property that there is a duality between E(1, 0)⌦(n+2) and the canonical bun-
dle K. Such a bundle may not exist globally, but such a choice is always possible
locally. For CRmanifolds embedded inCn+1 the canonical bundle is trivial, so such
a bundle E(1, 0) exists globally in this setting. Forw,w0 2 R such thatw0�w 2 Z,
the map � 7! |�|2w�

(w0�w) is a well-defined one-dimensional representation of
C⇤. Hence we can define a complex line bundle E(w,w0) over M by forming the
associated bundle to the frame bundle of E(1, 0) with respect to this representa-
tion. By construction we get E(w0, w) = E(w,w0), E(�w,�w0) = E(w,w0)⇤ and
E(k, 0) = E(1, 0)⌦k for k 2 N. Finally, by definition K ⇠= E(0,�n � 2). For
simplicity, we denote E(w) = E(w,w).

2.3. Pseudohermitian structures

For the purposes of explicit calculations on a CR manifold (M, H) it is convenient
to use pseudohermitian structures, and we review some basic facts about these. This
also serves to fix conventions, which follow [28]. Since M is orientable the annihi-
lator H? of H in T ⇤M admits a nonvanishing global section. A pseudohermitian
structure is a choice ✓ of such a section and, from the non-degeneracy of the CR
structure, is a contact form on M . We fix an orientation on H? and restrict consid-
eration to choices of ✓ which are positive with respect to this orientation. The Levi
form of ✓ is the Hermitian form h✓ (or simply h) on H1,0 ⇢ TCM defined by

h(Z ,W ) = �2id✓(Z ,W ).

With the trivialisation of CC given by ✓ , this corresponds to LC introduced above.
Given a pseudohermitian structure ✓ , we define the Reeb field T to be the

unique vector field on M satisfying

✓(T ) = 1 and iT d✓ = 0. (2.1)

An admissible coframe is a set of complex valued forms {✓↵}, ↵ = 1, . . . , n, which
satisfy ✓↵(T ) = 0, annihilate H0,1, and whose restrictions to H1,0 are complex
linear and form a basis for (H1,0)⇤. We use lower case Greek indices to refer to
frames for T 1,0 or its dual. We shall also interpret these indices abstractly, and
use E↵ as an abstract index notation for the bundle H1,0 (or its space of smooth
sections) and write E↵ for its dual. This notation is extended in an obvious way to
the conjugate bundles, and to tensor products of various of these.
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There is a natural inclusion of the real line bundle C = T M/H into the density
bundle E(1) which is defined as follows. For a local nonzero section ↵ of E(1, 0)
recall that one can, by definition, view ↵�(n+2) as a section of the canonical bundle
K. Then, by [43, Lemma 3.2], there is a unique positive contact form ✓ with respect
to which ↵�(n+2) is length normalised. From the formula in [43, Lemma 3.2] one
sees that, in the other direction, ✓ determines ↵ up a phase factor, and scaling ✓
causes the inverse scaling of ↵↵. Thus the mapping T M 3 ⇠ 7! ✓(⇠)↵↵ descends
to an inclusion of C into E(1) which, by construction, is CR invariant. In particular,
the canonical contact form ✓ := ✓ ⌦ ↵↵ 2 C ⌦ E(1) depends only on the CR
structure. Conversely, a scale ↵↵̄ 2 E(1) determines a contact form ✓ by this
formula.

By integrability and (2.1), we have

d✓ = ih↵�✓↵ ^ ✓�

for a smoothly varying Hermitian matrix h↵� , which we may interpret as the matrix
of the Levi form h determined by ✓ , in the frame ✓↵ , or as the Levi form h itself in
abstract index notation. Using the inclusion C ,! E(1) from above, the CR Levi
form LC can be viewed as a canonical section of E↵�(1) which we also denote by
h↵� ; this agrees with h↵� if E(1) is trivialised using ✓ . By h↵� 2 E↵�(�1) we
denote the inverse of h↵� and this will be used to raise and lower indices without
further mention.

By r we denote the Tanaka-Webster connections (on various bundles) asso-
ciated to ✓ . In particular, these satisfy r✓ = 0, rh = 0, rh = 0, rT = 0, and
r J = 0, so the decomposition TCM = H1,0�H0,1�CT is invariant under r. On
tensors, the Tanaka-Webster connection is determined from the Webster connection
forms !

�
↵ and the torsion forms ⌧� = A↵� ✓↵ , defined in terms of an admissible

coframe by

d✓↵ = ✓� ^ !↵
� + ✓ ^ ⌧↵,

dh↵�̄ = !↵�̄ + !�̄↵,

A↵� = A�↵,

where !�̄↵ := !↵�̄ . We call A↵� the torsion of ✓ . The pseudohermitian curvature
R↵�̄� �̄ of ✓ is obtained from the curvature forms 5

�
↵ = d!

�
↵ � !

�
↵ ^ !

�
� via the

structure equations

5↵
� = R↵

�
µ⌫̄✓

µ ^ ✓ ⌫̄ + r� A↵µ✓µ ^ ✓ � r↵A⌫̄
�✓ ⌫̄ ^ ✓

+ ih↵⌫̄ A�̄
�✓ ⌫̄ ^ ✓ �̄ � i A↵µ✓µ ^ ✓�

(2.2)

where A↵̄�̄ := A↵� . The pseudohermitian Ricci tensor is R↵�̄ = R�

↵�̄�
and the

pseudohermitian scalar curvature is R = R�
� . The sublaplacian is

1b = r� r� + r� r� .
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A contact form ✓ on (M2n+1, H) is pseudo-Einstein if
(
R↵�̄ = 1

n Rh↵�̄ if n > 1
r↵R = ir� A↵� if n = 1.

The set of pseudo-Einstein contact forms, when non-empty, forms a distinguished
class of contact forms parameterised by P: If ✓ is pseudo-Einstein, then b✓ = e7✓
is pseudo-Einstein if and only if 7 is a CR pluriharmonic function [38,44].

We may decompose a tensor field relative to the splittings of TCM and its dual.
In this way, we may calculate the covariant derivative componentwise. Each of the
components may be regarded as a section of a tensor product of E↵ or its dual or
conjugates thereof. We therefore often restrict consideration to the action of the
connection on E↵ or E↵ . We use indices ↵,↵, 0 for components with respect to
the frame {✓↵, ✓↵̄, ✓} and its dual, so that the 0-components incorporate weights.
If f is a (possibly density-valued) tensor field, we denote components of the (ten-
sorial) iterated covariant derivatives of f in such a frame by preceding r’s; e.g.,
r↵r0 · · ·r�̄ . As usual, such indices may alternately be interpreted abstractly. For
example, if f� 2 E�(w,w0), we consider r f as the triple r↵ f� 2 E↵�(w,w0),
r↵̄ f� 2 E↵̄�(w,w0), r0 f� 2 E�(w � 1, w0 � 1).

From the standpoint of CR geometry, it is convenient to consider certain mod-
ifications of the curvature R↵�̄� �̄ and its traces. The CR Schouten tensor is defined
by

P↵�̄ =
1

n + 2

⇣
R↵�̄ � Ph↵�̄

⌘
,

where P = R/2(n + 1) is its trace. To describe the tractor connection, it is conve-
nient to introduce the tensors

T↵ =
1

n + 2
�
r↵P � ir� A↵�

�
,

S = �
1
n

⇣
r↵T↵ + r↵T ↵ + P↵�̄ P

↵�̄ � A↵� A↵�
⌘

(cf. [28, 43]). The Chern tensor is defined by

S↵�̄� �̄ = R↵�̄� �̄ � P↵�̄h� �̄ � P↵�̄h� �̄ � P� �̄h↵�̄ � P� �̄h↵�̄ .

This tensor is the analogue of the Weyl tensor, in that it is CR invariant, has Weyl-
type symmetries, and, when n � 2, is the obstruction to (M, H) being locally
equivalent to the standard CR sphere [22]. Some other important curvature tensors,
which together constitute the curvature of the CR tractor connection [28], are

V↵�̄� = r�̄ A↵� + ir� P↵�̄ � iT� h↵�̄ � 2iT↵h� �̄

Q↵� = ir0A↵� � 2ir� T↵ + 2P⇢
↵ A⇢�

U↵�̄ = r�̄T↵ + r↵T�̄ + P⇢
↵ P⇢�̄ � A↵⇢ A

⇢

�̄
+ Sh↵�̄

Y↵ = r0T↵ � ir↵S + 2i P⇢
↵ T⇢ � 3A↵⇢T ⇢ .
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Note that V↵�̄� and U↵�̄ are trace-free; this follows from the definitions of T↵ and
S, respectively. Note also that V↵�̄� and Q↵� are symmetric. Indeed, [44, (2.10)]
implies that

r� P↵�̄ � r↵P� �̄ = T↵h� �̄ � T� h↵�̄ (2.3)

and [44, (2.9)] implies that

r↵T� � r� T↵ = i P↵
⇢ A⇢� � i P�

⇢ A⇢↵; (2.4)

these equations imply V↵�̄� = V� �̄↵ and Q↵� = Q�↵ , respectively. When n = 1,
the Cartan tensor Q↵� is CR invariant and is the obstruction to (M, H) being lo-
cally CR equivalent to the standard CR sphere [16, 17]. In order to derive local
formulae for the CR GJMS operators, P 0-operator, and Q0-curvature, it will be use-
ful to know how these curvature tensors are related via divergence formula. Estab-
lishing such relationships needs some important Bianchi and commutator identities
proven by Lee [44].

Lemma 2.1. Let (M2n+1, H, ✓) be a pseudohermitian manifold. For any ⌧↵ 2 E↵ ,
it holds that

r↵r�⌧� = r�r↵⌧� + i A↵� ⌧� � i A�� ⌧↵, (2.5)

r↵̄r�̄ ⌧� = r�̄r↵̄⌧� + ih� �̄ A↵̄�̄ ⌧ �̄ � ih� ↵̄A�̄�̄ ⌧ �̄ , (2.6)

r�̄r� ⌧↵ = r� r�̄ ⌧↵ + ih� �̄r0⌧↵ + R� �̄↵�̄ ⌧ �̄ , (2.7)

r�̄r0⌧↵ = r0r�̄ ⌧↵ + A�̄�̄r �̄ ⌧↵ + ⌧� r↵A�
�̄ . (2.8)

Since commutators act as derivations, similar formulae hold on general tensor
fields. Moreover, we have the following Bianchi identities:

r �̄ P↵�̄ = r↵P + (n � 1)T↵, (2.9)

r �̄ S↵�̄� �̄ = (n + 1)r↵P� �̄ � r� P↵�̄ � nir�̄ A↵�

� (2n + 1)T� h↵�̄ � (n � 1)T↵h� �̄,
(2.10)

r⇢r�̄ A↵� = r� r�̄ A↵⇢ + ih� �̄r0A↵⇢ � ih⇢�̄r0A↵�

+ R↵�̄� �̄ A⇢
�̄ � R↵�̄⇢�̄ A�

�̄ ,
(2.11)

r0P↵�̄ = ir�̄T↵ � ir↵T�̄, (2.12)

r� A↵� = r� A↵� . (2.13)
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Proof. Each of (2.5), (2.6), (2.7), and (2.8) is contained in [44, Lemma 2.3]. Equa-
tion (2.9) follows immediately from [44, (2.11)]. Equation (2.10) follows imme-
diately from (2.9) and [44, (2.7)]. Equation (2.11) is exactly [44, (2.9)]. Equa-
tion (2.12) follows immediately from [44, (2.12)]. Equation (2.13) is exactly [44,
(2.6)].

We now derive the divergence formulae relating the tensors S↵�̄� �̄ , V↵�̄� , Q↵� ,
U↵�̄ , and Y↵:

Lemma 2.2. Let (M2n+1, H, ✓) be a pseudohermitian manifold. Then

r �̄ S↵�̄� �̄ = �niV↵�̄� , (2.14)

r �̄V↵�̄� = �(n � 1)Q↵� + S↵�̄� �̄ A
�̄�̄ , (2.15)

r� V↵�̄� = niU↵�̄ � i S↵�̄� �̄ P
� �̄ , (2.16)

r� Q↵� = �nY↵ + 2V↵�̄� P
� �̄, (2.17)

r �̄U↵�̄ = �(n � 1)iY↵ + iV↵�̄� P
� �̄ + V�̄↵�̄ A

�̄�̄ , (2.18)
Rer� Y� = Im A↵� Q↵� . (2.19)

Proof. Writing (2.10) in terms of V↵�̄� and using the symmetry V↵�̄� = V� �̄↵
yields (2.14).

Using (2.5) and the conjugate of (2.6), we deduce that

r �̄r� P↵�̄ = r� r �̄ P↵�̄ + (n � 1)i P↵�̄ A
�̄

� + i P� �̄ A
�̄

↵ � i P A↵� .

It follows from this, (2.9) and the definitions of V↵�̄� and T↵ that

r �̄V↵�̄� = r �̄r�̄ A↵� � r� r�̄ A
�̄

↵ + (2n � 1)ir� T↵ � ir↵T�

� (n � 1)P↵�̄ A
�̄

� � P� �̄ A
�̄

↵ + PA↵� .
(2.20)

Combining (2.4), (2.11), and (2.20) yields (2.15).
From the symmetry V↵�̄� = V� �̄↵ , we may write

r� V↵�̄� = r� r�̄ A↵� + ir� r↵P� �̄ � ir�̄T↵ � 2ir� T� h↵�̄ .

The commutators (2.6) and (2.7) imply that

r� r�̄ A↵� = r�̄r� A↵� � ni A↵� A�
�̄ + i

�
�A�⇢

�
�2 h↵�̄,

r� r↵P� �̄ = r↵r� P� �̄ + ir0P↵�̄ � S↵�̄� �̄ P
� �̄ + nP↵

� P� �̄ �
�
�P� �̄

�
�2 h↵�̄ .

Combining these three displays with (2.12) yields (2.16).
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Combining the commutator (2.8) and (2.13) yields

r� r0A↵� = r0r
� A↵� + r↵

�
�A�⇢

�
�2 + A↵� r⇢ A�⇢ .

Writing this in terms of T↵ and using the commutator (2.7) on functions yields

r� r0A↵� = (n + 2)ir0T↵ + r↵r� T� � r↵r� T �

+ r↵

�
�A�⇢

�
�2 � (n + 2)i A↵� T � + 2i A↵� r� P.

In particular, when combined with the definition of Q↵� , this yields

r� Q↵� =�(n+2)r0T↵ + ir↵r� T� � ir↵r� T � � 2ir� r� T↵

+2r⇢
�
P↵

� A�⇢

�
+ir↵

�
�A�⇢

�
�2 + (n + 2)A↵� T � � 2A↵� r� P.

(2.21)

Next, (2.4) and the commutator (2.7) yields

r� r� T↵ � r↵r� T� = ir0T↵ + (n + 2)P↵
� T� + PT↵ � ir⇢

�
P↵

� A�⇢

�

+ ir⇢
�
P⇢

� A�↵

�
.

Combining this with (2.9) and (2.21) yields (2.17).
Using (2.4) and the commutators (2.6) and (2.7), we deduce that

r�r↵T � � r↵r�T � = (n � 1)i A↵�T �,

r�r�T↵ � r↵r�T� = �(n � 1)ir0T↵ + i P�
� r� A�↵ � i A��r� P↵

�

� P↵
� r� P + (n + 2)P↵

� T� + i A↵� r� P
+ (n � 1)i A↵� T � ,

one readily derives (2.18).
From the definitions of T↵ , S, and Y↵ we compute that

Rer� Y� = �P↵
� r0P�

↵ +
1
2
r0

�
�A↵�

�
�2+ i P↵

�
�
r↵T� � r� T ↵

�
�Re A↵� r� T ↵.

Combining this with (2.12) and the definition of Q↵� yields (2.19).

3. Some tractor calculus

3.1. The CR tractor connection

On a hypersurface type CR structure there is no invariant connection on the tangent
bundle, or its contact subbundle. However there is a natural invariant connection
on a higher rank natural vector bundle known as the CR cotractor bundle [28]. A
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defining feature of this bundle EA is that for each choice of pseudohermitian contact
form ✓ this bundle decomposes into a direct sum

EA ✓
= E(1, 0) � E↵(1, 0) � E(0,�1). (3.1)

So for a section vA 2 0(EA) we may write [vA]✓ = (�, ⌧↵, ⇢), where � 2 E(1, 0),
⌧↵ 2 E↵(1, 0), and ⇢ 2 E(0,�1). When the choice of ✓ is understood it will
be omitted from the notation. A change of contact form to ✓̂ = e7✓ , where
7 2 C1(M), induces a different identification to the same direct sum bundle,
with the components in the ✓̂ direct sum related to those in the ✓ direct sum by the
transformation formula

[vA]b✓ =

0

@
�̂
⌧̂↵

⇢̂

1

A =

0

@
�

⌧↵ + 7↵�

⇢ � 7�⌧� � 1
2 (7

�7� + i70)�

1

A , (3.2)

where we have used an obvious notation; e.g., 7↵ := r↵7 . It follows from (3.2)
that EA has a composition series

EA = E(1, 0) +
⌥⌃ E↵(1, 0) +

⌥⌃ E(0,�1),

meaning that in a CR invariant way, E(0,�1) is a subbundle of EA, E(1, 0) is
a quotient bundle of EA, and the kernel of the surjection EA ! E(1, 0) is the
reducible subbundle E↵(1, 0) +

⌥⌃ E(0,�1). We write ZA to denote the canonical
bundle injection

ZA : E(0,�1) ! EA,

and also view this as a section ZA 2 0(EA(0, 1)). Note that conjugation extends to
tractors in the obvious way and, for example, the conjugate tractor bundle has the
composition series

E Ā = E(0, 1) +
⌥⌃ E↵̄(0, 1) +

⌥⌃ E(�1, 0),

with the inclusion of E(�1, 0) denoted

Z Ā : E(�1, 0) ! E Ā. (3.3)

For calculating one usually works in a pseudohermitian scale exploiting the splitting
(3.1) and for [vA]✓ = (�, ⌧↵, ⇢) we may equivalently write

vA = �YA + ⌧↵WA
↵ + ⇢ZA (3.4)

where W↵
A : E↵(1, 0) ! EA and YA : E(1, 0) ! EA are the bundle injections

determined by the splitting.
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For two sections vA and v0
B the quantity �⇢0+⇢� 0+h↵�⌧↵⌧ 0

� is independent of
the choice of ✓ ; this is the formula, in a given scale ✓ , for the CR invariant Hermitian
metric hAB̄ on EA. The tractor metric hAB̄ is the inverse of this, and it gives the
Hermitian metric on the (standard ) tractor bundle E A, which by definition is the
bundle dual to EA. The tractor metric is used to raise and lower tractor indices in
the usual way; e.g., Z A := hAB̄ Z B̄ . Note that from the formula for the metric this
gives the surjection

Z A : EA ! E(1, 0).

We refer to Z A as the (CR) canonical tractor.
In terms of the tractor splitting (3.1), the CR tractor connection is given by the

formulae

r�vA =

0

B
@

r�� � ⌧�

r�⌧↵ + i A↵��

r�⇢ � P↵
� ⌧↵ + T��

1

C
A ,

r�vA =

0

B
@

r��

r�⌧↵ + h↵�⇢ + P↵��

r�⇢ + i A↵
�
⌧↵ � T��

1

C
A ,

r0vA =

0

B
@

r0� + i
n+2 P� � i⇢

r0⌧↵ � i P�
↵ ⌧� + i

n+2 P⌧↵ + 2iT↵�

r0⇢ + i
n+2 P⇢ + 2iT ↵⌧↵ + i S�

1

C
A ,

(3.5)

where the r’s on the right-hand side refer to the pseudohermitian connection on the
appropriate weighted bundles. This connection is canonically determined by the CR
structure (and so, in particular, is independent of ✓); indeed, it is equivalent to the
normal Cartan connection on CR manifold [14]. The tractor connection preserves
the tractor metric, rhAB̄ = 0, and so covariant differentiation commutes with the
raising and lowering of tractor indices.

3.2. The tractor D-operator

For the construction of differential operators an important tool is the second order
tractor D-operator

DA : E?(w,w0) ! EA ⌦ E?
�
w � 1, w0�,

where E?(w,w0) indicates any weighted tractor bundle, meaning it is the tensor
product of E(w,w0) with any bundle constructed by taking a tensor part of any
tensor product of the tractor bundle, its dual, and the conjugates of these. This is
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defined by

DA f =

0

B
@

w(n + w + w0) f
(n + w + w0)r↵ f

�
⇣
r�r� f + wir0 f + w

�
1+ w0�w

n+2
�
P f

⌘

1

C
A

in the splitting (3.1) determined by a choice of ✓ , but is independent of the choice
of ✓ . Here r↵ f refers to the tractor connection defined above coupled with the
pseudohermitian connection. Conjugation produces the CR invariant operator

D Ā : E?
�
w,w0� ! E Ā ⌦ E?

�
w,w0 � 1

�
.

By construction both DA and D Ā commute with raising and lowering tractor in-
dices.

Two other important operators on weighted tractor bundles are the weight op-
erator w and its conjugate w0. The weight operators are defined to be the unique
derivations such that

w f = w f and w0 f = w0 f

for all f 2 E?(w,w0). One can express the tractor D-operator on arbitrary weighted
tractor bundles using the weight operator and tractor connection. A similar formula
for the composition DADB̄ is of particular importance in this article and is given in
Proposition 3.1 below.

Related to the tractor-D operator are the CR double-D operators. These are
defined generally in [14], but as differential operators on weighted tractor fields
they may be defined by

DAB := 2Z[BYA]w+ 2Z[BWA]
↵r↵, (3.6)

where [· · · ] indicates the skew part over the enclosed indices, and

DAB̄ := Z B̄YAw� ZAYB̄w0 + Z B̄WA
↵r↵ � ZAW

�̄

B̄r�̄

�ZAZ B̄
⇣
ir0 + P

n+2 (w
0 � w)

⌘
,

(3.7)

and their conjugates, cf. [14, Theorem 4.10]. For both we have used (3.4) to simplify
the presentation.

As mentioned above, the following formula for the composition DADB̄ is of
particular importance in this article.

Proposition 3.1. Let (M2n+1, H) be a CR manifold. Given any scale � �̄ 2 E(1),
the operator DADB = hBB̄DADB̄ acts on elements of E(w), w 2 R, by

DADB =

0

@
C3 (C2)� C1

(C5)↵ (C4)↵� (C2)↵
C6 (C5)� C3

1

A ,
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where

C1 = w2(n + 2w)(n + 2w� 1),

(C2)� = r�w(n + 2w)(n + 2w� 1),

C3 = �
1
2
(1b � ir0(n + 2w) + 2Pw)w(n + 2w� 1),

(C4)↵� =

✓
r↵r� �

1
n
h↵

�r� r�

◆
(n + 2w)(n + 2w� 1)

+ P↵
�w(n + 2w)(n + 2w� 1) +

1
n
h↵

� (1b � nP)w(n + 2w� 1),

(C5)↵ = �
1
n

�
r↵r� r� + ni A↵� r�

�
(n + 2w)(n + 2w� 1)

+

✓
1
n
r↵1b � r↵P � T↵(n + 2w)

◆
w(n + 2w� 1),

C6 =
1
n2

r�
�
r� r↵r↵ + ni A↵� r↵

�
(n + 2w)2 + P(↵�̄)0r↵r�̄(n + 2w)

�
1
n2

12
bw(n + w)+

2
n
Imr� A�� r�w(n + 2w)�

1
n
P1bw(n � 1+2w)

+
4
n
Rer� Pr�w(n + w) �

2
n
Re(r� P + nT � )r�w(n + 2w)

+
1
n

�
r� (r� P + nT� )

�
w(n + 2w) +

�
�P(↵�̄)0

�
�2w(n + 2w)

+
1
n

⇣
(n + 2)P2 � (1b P) � nS(n + 2w)

⌘
w2,

P(↵�̄)0
= P↵�̄� P

n h↵�̄ is the trace-free part of the CR Schouten tensor, the term T↵ in
the definition of (C5)↵ acts as a multiplication operator, the terms

�
r�(r� P+nT� )

�

and (1b P) in the definition of C6 act as multiplication operators, and all other
operators in the definitions of C1, . . . ,C6 act to the right.

Remark 3.2. We raise an index and write DADB to make clear the meaning of the
rows and columns in our matrix representation for the composition DADB̄ .

Proof. Using the definition of the tractor D-operator and [28, Proposition 2.2], we
observe that if f 2 E(w), then

DB f =

✓
�
1
2
1b f +

n + 2w
2

ir0 f � wP f, (n + 2w)r� f, w(n + 2w) f
◆

. (3.8)
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Using this and the formula

DADB f =

0

B
@

w(n + 2w � 1)DB f
(n + 2w � 1)r↵DB f

�
⇣
r� r� DB f + wir0DB f + n+1

n+2wPDB f
⌘

1

C
A

yields the expressions for the operators C1, (C2)� , and C3.
Next observe that

1
2
�
1b f � (n + 2w)ir0 f + 2wP f

�
=
1
n

�
(n + 2w)r�r� f � w1b f + wnP f

�
.

Combining this with (3.8) and the expression for the tractor connection yields the
expressions for the operators (C4)↵� and (C5)� .

Finally, note that

r� r� IB̄ =

0

B
@

r� r� � � r� ⌧� � P� � n⇢
r� r� ⌧�̄ +P� �̄r� � +�

⇣
r�̄ P+(n � 1)T�̄

⌘
+r�̄⇢ � i A�̄

� r� �

B

1

C
A,

where

B=r� r� ⇢ � ir�
�
A↵� ⌧↵

�
�r�

�
�T�

�
�P↵

�
�
r� ⌧↵+� P�

↵+⇢h�
↵
�
+T � r� �.

Combining this with (3.8) and the definition of the tractor D-operator yields the
expression for the operator C6.

4. CR pluriharmonic functions and (pseudo-)Einstein contact forms

4.1. Log densities

In order to study CR pluriharmonic functions via tractors, it is useful to introduce
log densities (cf. [32]). Let eC ⇢ T ⇤M be theR+-bundle of positive elements of H?.
Given w 2 R, let ER(w) be the bundle associated to eC via the representation s 7!
s2w of R+. In particular, ER(w) can be identified with a real subbundle of E(w,w)

and ER(1) can be identified with eC. Hence ER(w) is trivial as a vector bundle.
We likewise let DR(w) be the real line bundle induced by the log representations
s 7! w log s of R+. In particular, a section � 2 DR(w) is equivalent to a function
� : eC ! R with the equivariance property

�
�
t2✓

�
= �(✓) + 2w log t. (4.1)

Note that if ⌧ is a positive section of ER(w) and ⌧ is the corresponding equivari-
ant section of eC, then the composition log � ⌧ has the property (4.1), and hence is
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equivalent to a section of DR(w). We shall denote this section by log ⌧ . It is clear
that a section of DR(1) is log ⌧ for some positive section ⌧ 2 ER(1). We define the
operator r : DR(1) ! T ⇤M by setting

r log ⌧ = ⌧�1r⌧. (4.2)

We can extend these definitions by complex linearity and thereby considerD(w) as
a complex bundle; in particular, we obtain the operator r : D(w) ! T ⇤

CM .
The requirement that the weight operators w and w0 satisfy the Leibniz prop-

erty means that the natural definition of the weight operators on log densities is such
that for any � 2 D(w0), it holds that

w� = w0 = w0�. (4.3)

Viewing the section � as a multiplication operator on the space of sections of any
density bundle, log density bundle, tractor bundle, or tensor product of these things,
we have equivalently that [w, �] = w0 = [w0, �].

4.2. CR pluriharmonic functions and tractors

One use of log densities is to provide a rigorous method for carrying out Branson’s
method of analytic continuation in the dimension [5,8,32]. For example, the deriva-
tion of the formula for the P 0-operator in dimension three [19] proceeds by observ-
ing that the CR Paneitz operator P4 : E(w) ! E(w � 2) can be written in general
dimension as P4 = C�wR forw = �n�1

2 and C = 4r� (r� r� +ni A�� )r� ; note
that C annihilates CR pluriharmonic functions [36]. Thus � 1

w P4 f = R f makes
sense for any f 2 P . This expression in the case n = 1, corresponding to w = 0,
yields the operator P 0

4 = R. As we explain below, by working with log densities
and the tractor formula for the CR Paneitz operator, this “division by zero” can be
realized through the commutator property (4.3).

To begin, we point out, as an immediate corollary of Proposition 3.1, the ten-
sor formula for the operator DADB̄ on E(0). From this formula we see that CR
pluriharmonic functions are annihilated by DADB̄ . A key point is that the tractor
formula for the critical CR GJMS operators always factors through this operator;
see Theorem 6.7. In particular, DADB̄ acting on E(0) is the tractor formula for the
CR Paneitz operator in dimension three.

Lemma 4.1. Let (M2n+1, H) be a CR manifold and let f 2 E(0). Given any scale
� �̄ 2 E(1), it holds that

DADB f =

0

@
0 0 0

�(n � 1)P↵( f ) n(n � 1)B↵
�( f ) 0

r� P� ( f ) + nP� �̄ B� �̄ ( f ) �(n � 1)P�( f ) 0

1

A , (4.4)
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where

B↵�̄( f ) = r↵r�̄ f �
1
n
r� r� f h↵�̄

P↵( f ) = r↵r�r� f + ni A↵�r� f.

In particular, if f 2 P , then DADB̄ f = 0.

Remark 4.2. When n > 1, we readily see that f 2 P if and only if f 2 kerDADB̄ .
The fact that CR pluriharmonic functions lie in the kernel ofDADB̄ when restricted
to E(0) means that the scale-dependent operator KAB̄ : P ! EAB̄(�1) defined by

KAB̄( f ) = �DADB̄ ( f log � �̄ ) (4.5)

for a given choice of scale � �̄ 2 E(1) is well-defined, as follows. We may regard
the displayed formula in Proposition 3.1 as giving a formula for DADB̄ acting on
log densities (as well as on densities). Using then the fact P ⇢ kerDADB̄ , we
obtain

DADB̄ ( f log � �̄ ) =
⇥
DADB̄, log � �̄

⇤
f. (4.6)

Since [w, log � �̄ ] = 1, we see that [DADB̄, log � �̄ ] takes values in linear differen-
tial operators mapping E(0) to EAB̄(�1). By Lemma 5.4 below, this commutator
agrees with the same commutator defined ambiently.

A tractor expression for KAB̄( f ) is readily derived using Proposition 3.1; we
give here the formula in the scale ✓ = (� �̄ )�1✓ .

Lemma 4.3. Let (M2n+1, H) be a CR manifold and let � �̄ 2 E(1) be a scale.
Given any f 2 P , the function KAB̄( f ) is given by

KA
B( f ) =

0

@
(n � 1)r� r� f �n(n � 1)r� f 0
(n � 1)C↵( f ) (n � 1)C↵

�( f ) �n(n � 1)r↵ f
D( f ) (n � 1)C�( f ) (n � 1)r� r� f

1

A , (4.7)

where

C↵�̄( f ) = �
1
n
h↵�̄1b f � n f P(↵�̄)0

,

C↵( f ) = �
1
n
r↵1b f + Pr↵ f + f (r↵P + nT↵),

D( f ) =
1
n
12
b f � 2 Imr�

�
A↵�r↵ f

�
� 4Rer↵ (Pr↵ f ) +

n � 1
n

P1b f

+ 2Re
�
(r↵P + nT↵)r↵ f

�
� f

⇣
n|P(↵�̄)0

|2 + r� (r� P + nT� )
⌘

.

In particular, if � �̄ is a pseudo-Einstein scale, then 1 2 ker KAB̄ .
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Remark 4.4. When n > 1, we readily see that 1 2 ker KAB̄ if and only if � �̄ is a
pseudo-Einstein scale.

Proof. By definition, we have that [r↵, log � �̄ ] = 0 in the scale � �̄ . It then follows
from (4.3) and (4.6) that KAB̄( f ) arises as the negative of the coefficient of w in
Proposition 3.1. This yields (4.7). Finally, � �̄ is a pseudo-Einstein scale if and only
if P(↵�̄)0

= 0 and r↵P + nT↵ = 0, from which the last claim readily follows.

In the case n = 1, Lemma 4.3 yields KAB̄( f ) = ZAZ B̄ P
0
4 f for all f 2 P ,

where P 0
4 is the operator defined by Yang and the first-named author [19]. This also

yields the transformation formula for the P 0-operator. The corresponding result in
general dimensions is described in Section 6.

The fact that constants lie in the kernel of KAB̄ when � �̄ determines a pseudo-
Einstein scale means that for such a scale, the tractor IAB̄ 2 EAB̄(�1) given by

IAB̄ =
1
2
DADB̄

⇣
(log � �̄ )2

⌘
(4.8)

is well-defined. Indeed, since 1 2 kerDADB̄ \ ker KAB̄ , we compute that

DADB̄

⇣
(log � �̄ )2

⌘
=

⇥
[DADB̄, log � �̄ ], log � �̄

⇤
. (4.9)

It follows at once from Lemma 5.4 below that IAB̄ agrees with the same expression
defined ambiently. On a fixed CR manifold this tractor field is determined entirely
by ✓ . A tractor expression for IAB̄ is readily derived; we give here the formula in
the scale ✓ .

Lemma 4.5. Let (M2n+1, H) be a CR manifold and let � �̄ 2 E(1) be a pseudo-
Einstein scale. Then IAB̄ is given by

IAB =

0

@
�(n � 1)P 0 n(n � 1)
2(n�1)

n r↵P 2(n�1)
n Ph↵

� 0
� 2
n1b P � |A↵� |2 + n+3

n P2 2(n�1)
n r�̄ P �(n � 1)P

1

A . (4.10)

Proof. Note that (4.3) implies [w2, log2 � �̄ ] = 2. Since [r↵, log � �̄ ] = 0 and
� �̄ is a pseudo-Einstein scale, we thus need only consider the coefficient of w2 in
Proposition 3.1.

In the case n = 1, Lemma 4.5 yields IAB̄ = ZAZ B̄Q
0 and also the transforma-

tion formula for the Q0-curvature. The corresponding result in general dimensions
is described in Section 6.

Finally, let us comment on our normalisations. Suppose that � �̄ , ss̄ 2 E(1) are
two scales and ss̄ = e�7� �̄ ; thus the contact forms ✓ = (� �̄ )�1✓ andb✓ = (ss̄)�1✓
are related by b✓ = e7✓ . Let KAB̄, bKAB̄ : P ! EAB̄(�1) be the operators defined
in terms of � �̄ and ss̄, respectively, by (4.5). It follows immediately from (4.5) that

bKAB̄( f ) = KAB̄( f ) + DADB̄(7 f ). (4.11)
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In particular, this normalisation recovers the familiar transformation formula (1.1)
for the P 0-operator in dimension three.

Suppose additionally that ✓ andb✓ are both pseudo-Einstein. Then 7 2 P and
the tractors IAB̄ and IAB̄ defined in terms of � �̄ and ss̄, respectively, by (4.8) are
well-defined. Moreover, (4.8) gives

bIAB̄ = IAB̄ + KAB̄(7) +
1
2
DADB̄

⇣
72

⌘
. (4.12)

In particular, this normalisation recovers the familiar transformation formula (1.2)
for the Q0-curvature in dimension three.

4.3. (Pseudo-)Einstein manifolds and (partially) parallel tractors

From the tractor perspective, a natural reason to study pseudo-Einstein and Einstein
structures on CR manifolds is that they correspond to the existence of holomorphic
and parallel standard tractors, respectively (for the latter cf. [14, 45]). Parallel trac-
tors are especially useful; we use them in Section 7 to derive simple local formulae
for P , P 0 and Q0 from tractor formulae in Einstein scales.

Proposition 4.6. Let (M,H) be a CRmanifold. Suppose that ✓ is a pseudo-Einstein
contact form. Then locally there exists a � 2 E(1, 0), unique up to multiplication by
a constant � 2 C with |�|2 = 1, such that ✓ = (� �̄ )�1✓ and DA� is holomorphic;
i.e. r�̄DA� = 0. Conversely, if IA 2 EA is holomorphic, then ✓ = (� �̄ )�1✓ is
pseudo-Einstein wherever � = Z A IA is nonzero.

Proof. Suppose that ✓ is a pseudo-Einstein contact form. By [38, Lemma 7.2]
and [44, Theorem 4.2], locally there exists a closed form ⇣ 2 K with respect to
which ✓ is volume-normalized. Let � 2 E(1, 0) be a �(n + 2)-nd root of ⇣ . Then
@b� = 0. By [28, Proposition 2.4], it holds that

�
1

n + 1

✓
r� r� � + ir0� +

n + 1
n + 2

P�

◆
= �ir0� +

P
n + 2

�.

It is now straightforward to check that DA� is holomorphic.
Conversely, suppose that IA is holomorphic and suppose that � = Z A IA is

holomorphic. Set ⇣ = ��(n+2) 2 K and let ✓ be the unique contact form which
is volume-normalized with respect to ⇣ . Since IA is holomorphic, ⇣ is closed, and
hence ✓ is pseudo-Einstein [38,44].

Proposition 4.7. Let (M, H) be a CR manifold. Suppose that ✓ is an Einstein
contact form. Then locally there exists a � 2 E(1, 0), unique up to multiplication
by a constant � 2 C with |�|2 = 1, such that ✓ = (� �̄ )�1✓ and DA� is parallel;
i.e. r�DA� = 0 and r�̄DA� = 0. Conversely, if IA 2 EA is parallel, then
✓ = (� �̄ )�1✓ is Einstein wherever � := Z A IA is nonzero.
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Proof. Suppose that ✓ is Einstein. Let � be as in Proposition 4.6, so that IA =
1

n+1DA� is holomorphic. In the scale ✓ , we have that |� |2 is parallel and hence,
since @b� = 0, it holds that db� = 0. It is then clear from (3.5) that r� IA = 0.

Conversely, suppose that IA is parallel. Set � = Z A IA. By Proposition 4.6,
✓ = (� �̄ )�1✓ is pseudo-Einstein. Evaluating r� IA = 0 in the scale ✓ yields
A↵� = 0, and hence ✓ is Einstein.

5. Tractors and the Fefferman ambient metric

On a CR manifold the tractor calculus provides the basic invariant calculus. It is the
CR analogue of the calculus surrounding the Levi-Civita connection in Riemannian
geometry. We need to link this to the Fefferman ambient metric for two reasons:
First the CR GJMS operators and the related basic objects are defined in terms of
the ambient metric. Second the ambient metric provides a powerful tool for sim-
plifying tractor calculus computations; this works well because the ambient metric
is effectively a non-linear extension of the tractor bundle and connection that cap-
tures these in terms of a Kähler metric (of mixed signature) and connection, see in
particular Theorem 5.1 below.

Most components of this link between tractors and the ambient metric are avail-
able in the literature. To adapt and extend these as required for our current purposes
it is useful to first understand the principal bundle structure equivalent to the tractor
connection, namely the Cartan connection. This provides a conceptual framework
for the tractor connection and its use. In particular, it enables us below to construct
and understand the Fefferman space and the ambient connection from this perspec-
tive. To understand the groups involved we first recall the model for CR geometry.

5.1. The Cartan connection and the model

Fix a complex vector spaceV of complex dimension n+2, equipped with a Hermi-
tian inner product h , i of signature (p + 1, q + 1), where p + q = n. LetN ⇢ V
be the cone of nonzero null vectors in V. Then the image S of N in the complex
projectivisation PV ⇠= CPn+1 has a CR structure, and this provides the usual flat
model for hypersurface type CR geometry.

Denote by G ⇠= SU(p + 1, q + 1) the special unitary group of (V, h , i).
Note that G acts transitively on S. Thus S may be naturally identified with the
homogeneous space G/P , where P ⇢ G is the isotropy subgroup of a nominated
point on S. Note that P stabilises a complex 1-dimensional subpace V1 in V.

Restricting the standard representation of G to the subgroup P , we obtain the
associated bundle T = G ⇥P V. Since V carries a representation of G, the map
G ⇥ V 3 (g, v) 7! (gP, g · v) 2 (G/P) ⇥ V descends to a canonical trivialisation
of T = G ⇥P V. Thus T has canonical connection and this is the specialisation to
S of the standard tractor connection described (as a complex vector bundle) in (3.5)
above. In the flat homogeneous setting of S = G/P this tractor connection may be
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viewed as arising as an associated connection from the Maurer-Cartan form !MC
on G.

On a general curved (hypersurface type) CR manifold M one can construct a
principal bundle G with fibre P , P ! G ! M , and this is canonically equipped
with a structure !, the Cartan connection [15, 22, 52]. Indeed G can be recovered
as an adapted frame bundle for the tractor bundle T and then the Cartan connection
derived from the tractor connection of (3.5), see [12, 14]. The Cartan connection
should be viewed as a curved analgue of the Maurer-Cartan form, with just weaker
equivariance properties. Its characterising properties are as follows. First, ! is a
g = Lie(G) valued 1-form field on G that provides a trivialisation of TG. Second,
this trivialisation is P-equivariant and reproduces the generators of fundamental
vector fields. Finally, there is a notion of curvature for any such Cartan connection
and one requires that this satisfy a normalisation condition defined in terms of Lie
algebra cohomology. With these properties satisfied, the pair (G,!) is uniquely
determined up to isomorphism and is then called the normal Cartan connection.
The tractor connection (3.5) is normal in this sense, in that the equivalent Cartan
connection is normal.

Given the Cartan bundle G and any representation of P , we may form as-
sociated vector bundles. For example, the tangent bundle is G ⇥P g/p, where
p = Lie(P) and the representation on g/p is induced by the restriction to P of
the adjoint representation. Although in general the Cartan connection does not in-
duce a linear connection on such associated bundles, it does induce a connection on
T W := G⇥P W ifW is the restriction (to P) of a G-representation, which we shall
denote ⇢. A section t 2 0

�
T W�

is represented by function t̃ : G ! W satisfying
the equivariance property t̃(u · q) = ⇢(q�1)t̃(u), for all u 2 G, and q 2 P . The
tractor connection is given by

rDp·⇠ t (x) = u
�
⇠ · t̃(u) + ⇢0(!(⇠))(t̃(u))

�
, (5.1)

where p : G ! M is the bundle map, ⇠ 2 TuG is any tangent vector, ⇢0 : g !
End(W) denotes the representation of g on W, and u : W ! T W

x , is the isomor-
phism fromW to the fiber of T W over x 2 M determined by u. Thus such bundles
are called tractor bundles, and note that the standard tractor bundle is induced from
V. So the connection (3.5) induces a connection on any such tractor bundle.

We conclude this subsection by discussing some other groups linked to the
geometry of the CR model. Let N ⇢ V be the cone of non-zero null vectors. The
CR manifold of the model S is the image of this under complex projectivisation.
We are interested also in the real projectivisation.

Let MF be the space of all real rays in V which are null for the inner product
h , iR, the real part of h , i. The space MF is a smooth hypersurface in PR+V ⇠=
RP2n+3, and we have an obvious projectionN ! MF , which is a principal bundle
with fibre group R+.

Any real null ray generates a complex null line containing it. Thus there is a
smooth projection MF ! M which is a fibre bundle over M = S, with fibre the
space S1 of real rays in C.
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Let G̃ be the orthogonal group of (V, h , iR), and let PF ⇢ G̃ be the stabiliser
of a real null ray in V. In this case we observe that there is a transitive action of G̃
on MF which leads to an identification MF ⇠= G̃/PF . By construction, G̃ acts by
conformal isometries on MF . It is well known that this action identifies G̃/Z(G̃)
with the group of conformal isometries of MF .

Now the subgroup G ⇢ G̃ acts transitively on N , so it also acts transitively
on MF . Taking a real null ray and the complex null line generated by it as the base
points of MF and M , respectively, we see that G \ PF ⇢ P , and G \ PF is the
stabiliser of a real null line, so we also obtain the identification MF ⇠= G/(G\PF ).
This is the model structure for the Fefferman space that we describe below. Again
using that G acts transitively onN we see thatN can be identified with G/(G\ Q̃),
where Q̃ is the subgroup of PF fixing a nominated point in the ray defining PF .

5.2. The Fefferman space and ambient metric

To a given CRmanifold M there are associated two equivalent geometric structures,
both due to Fefferman [23]; these are the Fefferman space and the Fefferman am-
bient metric. The latter associates to M a Kähler manifold (MA, J MA, hMA) that
is, in a suitable sense, approximately Ricci flat. The construction of this space is
recalled in Subsection 5.4. By construction, the Fefferman ambient metric admits
an action by aC⇤-parametrised family of homotheties and is equipped with a distin-
guished real hypersurface embedding ◆ : F ! MA that is equivariant with respect
to this action. We identify F with its image in MA and note that (as will become
clear) it is a generalising analogue of the cone N (of non-zero null vectors in V)
described above in connection with the CR model.

Considering the C⇤-action on F , the orbit space F/C⇤ is naturally identified
with M . That is, M = F/C⇤ and we write ⇡F : F ! M for the natural quotient
map. To handle the link between tensorial structures along F , in MA, and the cor-
responding objects on M , we use that the tractor connection on M can be recovered
from the Levi-Civita connection on MA as follows. For x 2 M , we denote by Fx
the fiber of F over x , and we view Fx as a 2-dimensional submanifold of MA via
Fx ⇢ F ⇢ MA.

Then T (MA)
�
�
Fx denotes the tangent bundle to MA restricted to the submani-

fold Fx , a (real) rank 2n + 4 vector bundle over Fx . Again using the construction
of the ambient manifold, it follows that the restriction of the ambient Levi-Civita
connection is flat without holonomy; so T (MA)

�
�
Fx may be globally trivialised by

parallel sections.
The standard tractor bundle on M may be realised as the complex rank n + 2

vector bundle T ! M with fibre

Tx =
n
U 2 0

�
T 1,0(MA)

�
�
Fx

�
: rAv U = 0 for all v 2 0(TF) vertical

o
, (5.2)

where rA is the Levi-Civita connection of the ambient metric and the condition
v 2 0(TF) vertical means that v is a generator of the C⇤-action. Thus a section of
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T on M is a vector field in MA, defined along F , which is constant in the vertical
directions. It is easily verified that the Hermitian metric and Levi-Civita connection
on MA induce a Hermitian metric and connection on T .

Theorem 5.1. The metric and connection on T , induced by the metric and con-
nection on MA agree, up to isomorphism, with the standard (normal) CR tractor
metric and connection introduced above.

This theorem may be proved by analogy with the treatments of corresponding con-
formal results, as in [13,29]. However we can recover the entire picture, and exploit
results in the existing literature, by using the Fefferman space as an intermediate
step.

Writing R+ to denote a chosen ray in C⇤, we can view C⇤ as a direct group
product C⇤ = S1 ⇥ R+. Then the map ⇡F : F ! M factors into the composition
of ⇡MF : MF ! M with ⇡ : F ! MF , where MF = F/R+ is the R+ orbit
space of F . Then ⇡MF : MF ! M has fibre S1 and MF is the Fefferman space;
this has a canonical conformal structure induced by the CR structure on M . In fact,
MF is very easy to construct directly via the Cartan and tractor bundle on M . This
provides a nice conceptual picture, but also a route to the recovery of the ambient
metric, the proof of Theorem 5.1, and other related identifications that we need.

5.3. The Fefferman space

Here we start again on the CR manifold M and build a Fefferman space and then
later the ambient metric directly. Our treatment is brief since for the first part of our
construction further details may be found in [14], while for the second part mainly
similiar ideas are used. Related earlier constructions of the Fefferman space exist
in [9, 42, 43]. In our treatment we use the groups defined in Section 5.1 above.

On a CR manifold M , recall that we write E(�1, 0) for the dual of E(1, 0) (the
chosen (n + 2)nd root of the anticanonical bundle). We define the Fefferman space
MF of M to mean the space of real rays in E(�1, 0) constructed as follows. Let F
be (the total space of) the bundle obtained by removing the zero section in E(�1, 0).
There is a free right action of C⇤ on F which is transitive on each fibre. Restricting
this action to the subgroup R+, we define MF to be the quotient F/R+. Hence
⇡MF : MF ! M is a principal fibre bundle with structure group C⇤/R+ ⇠= S1.

Via the bundle inclusion E(�1, 0) ! T we see that we may identify the total
space E(�1, 0) with G ⇥P V1. By construction, we can therefore view MF as the
associated fibre bundle G⇥PPR+(V1) with fibre the space of real rays inV1. Since
G acts transitively on the cone of nonzero null vectors, P acts transitively on the
space of real rays inV1; the stabiliser of one of these rays isG\PF and the stabiliser
of a point in that ray G\ Q̃, whence PR+V1 ⇠= P/(G\ PF ) andV1 ⇠= P/(G\ Q̃).
Now MF = G ⇥P (P/(G \ PF )) and F = G ⇥P (P/(G \ Q̃)) are naturally
identified with the orbit spaces G/(G \ PF ) and G/(G \ Q̃), respectively. Hence
we can view G as a principal bundle over MF with structure group G \ PF and,
alternatively, as a principal bundle over F with structure group G \ Q̃.
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Now for any closed Lie subgroup H ⇢ P we have the following observa-
tions. As for the cases just described we have a manifold G/H . The bundle G is
a principal bundle over this with fibre P/H , and the normal CR Cartan connection
! 2 �1(G, g) also provides a Cartan connection on G ! G/H . This is clear:
The property that ! gives a trivialisation of G is not dependent on the base; the
P-equivariance of this trivialisation restricts to H -equivariance; and the fundamen-
tal vector fields for G ! G/H have generators in Lie(H) ⇢ p so ! provides the
map to these generators simply by restriction. Similarly any representation W of
P then determines an associated bundle G ⇥H W over G/H that corresponds to
the bundle G ⇥P W over M = G/P . In particular this applies to the case that W
is a G-representation, so corresponding to each tractor bundle W on M there is
a corresponding tractor bundleWH on G/H and the Cartan connection induces a
tractor connection onWH . Furthermore since sections of the tractor bundleW on
M correspond to functions G ! W that are P-equivariant, it follows at once from
the explicit formula (5.1) that these are the same as sections onWH that are parallel
in the vertical directions of G/H ! M .

Thinking of the cases that H isG\PF orG\Q̃ ⇢ G\PF , we may apply these
results in particular to the standard representation V of G to obtain the associated
bundle TH := G ⇥H V ! G/H . The Hermitian inner product on V is G-invariant,
so it gives rise to a Hermitian bundle metric on TH of signature (p+1, q+1). Taking
the real part of this defines a real bundle metric hH of signature (2p+2, 2q+2) on
TH . The real rayV1R+

⇢ V, stabilised by G\ PF (or in the case of H = G\ Q̃, the
point in V1R+

) gives rise to an oriented real line subbundle T 1H ⇢ TH (respectively,
this line subbundle with also a nowhere zero distinguished section), and each of
these lines is null with respect to hH . Thus, defining T 0H to be the real orthogonal
complement of T 1H , we obtain a filtration TH = T �1

H � T 0H � T 1H by smooth
subbundles. The real volume form on V induces a trivialisation of the highest real
exterior power 32n+4TH .

Specialising to the case H = G \ PF we come to the following. We write
TMF , hMF rather than TH , hH , etc.

Theorem 5.2 ( [14]). Let (M, H,E(1, 0)) be a CR geometry of signature (p, q).
The corresponding Fefferman space MF canonically carries a conformal structure
cMF of signature (2p + 1, 2q + 1).

The Cartan connection ! on G induces a tractor connection rTMF on the
bundle TMF ! MF , and (TMF ,T 1MF , hMF ,rTMF ) is a standard tractor bundle for
the natural conformal structure on MF . The tractor connection rTMF is normal.

Proof. It is staightforward to identify the quotient bundle T 0MF /T 1MFwith a weighted
twisting of T MF . Using this, the conformal metric is then seen to be induced by
the tractor metric, as in the usual conformal case. For more details (with a slightly
different approach) see [14, Theorem 2.1]. The identification of TMF andrMF with
the usual conformal tractor bundle and connection follows from the characterisation
of the latter (see [12]), or is proved in detail and directly in [14, Theorem 2.3].
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Remark 5.3. In fact the conformal structure on MF carries a canonical spin struc-
ture, but we do not need that here.
Finally, we note that conformal tractor bundle (TMF ,rTMF ) inherits a complex
structure JMF corresponding to multiplication by i on the defining representation
V of G. This is parallel for the tractor connection because G is complex linear and
the Cartan connection is g-valued. We may complexify T and identify TMF with
the part T 1,0MF in C ⌦ TMF .

5.4. The ambient metric

We now specialise to the case H = G \ Q̃. Then G/H = F and so over this
we have the bundle TF = TH and this is equipped with the metric hF = hH
and a connection rF preserving hF . From the above we see that the sections
of TF ! F that are parallel along the submanifolds generated by the C⇤-action
may be identified with sections of T ! M and conversely. Similarly one sees
that sections of TF ! F that are parallel in the vertical directions of F ! MF
(which coincide with the directions of the R+-action) are the same as sections of
TF ! MF .

Now it is easily verified that, at each point p of F , T 0F can be naturally identi-
fied with TpF ⇠= T 1,0p F ⇢ TCF , and T 1F with the vertical subspace (with respect
to ⇡ : F ! MF ) therein. We write g for the restriction of hF to TF ⇠= T 0F ; i.e., g
on F is defined for X , Y 2 TpF by g(X,Y ) = hFx (X,Y ).

Using these observations we have that the quotient space T 0F/T 1F , at p, is nat-
urally identified with T⇡(p)MF . So each point p of F determines a metric g⇡(p)
(from the conformal class of the Fefferman space) by lifting tangent vectors in
T⇡(p)MF to vectors in TpF and evaluating using the pairing g. The result is in-
dependent of the choice of lift because the subbundle T 1F is orthogonal to T 0F (as
mentioned above). For x 2 MF , distinct points of the fibre ⇡�1(x) determine dis-
tinct metrics on TxMF intertwining the R+ action. Thus F may be identified with
the natural ray bundle

{(x, gx ) : x 2 MF , g 2 cMF } ⇢ S2T ⇤MF
of conformally related metrics over MF ; so metrics in the conformal class cMF are
sections of the metric bundle F . Let �s : F ! F denote the dilations defined
by �s(x, gx ) = (x, s2gx ), s > 0, and let T = d

ds �s |s=1. So T is the infinitesimal
generator of the dilations.

Now the ambient space is constructed as follows. Regard F as a hypersurface
in MA = F⇥R via ◆(z) = (z, 0), z 2 F . The variable in theR factor is denoted ⇢.
In the language of [24], a straight pre-ambient metric for (MF , cMF ) is a smooth
metric gMA of signature (p + 1, q + 1) on a dilation-invariant neighborhood eF of
F satisfying
(1) �⇤

s gMA = s2gMA for s > 0;
(2) ◆⇤gMA = g;
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(3) rAT = I d, where I d denotes the identity endomorphism and rA the Levi-
Civita connection of gMA .

Now if SI J is a symmetric 2-tensor field on an open neighborhood of F in F ⇥ R
and m � 0, we write SI J = O+

I J (⇢
m) if SI J = O(⇢m) and for each point p 2 F ,

the symmetric 2-tensor (◆⇤(⇢�mS))(p) is of the form ⇡⇤t for some symmetric 2-
tensor t at x = ⇡(p) 2 MF satisfying trgx t = 0. Since the dimension 2n + 2
of MF is even, an ambient metric for (MF , cMF ) is a straight pre-ambient metric
gMA such that Ric(gMA) = O+

I J (⇢
n). From [24], there exists an ambient metric for

(MF , cMF ) and it is unique up to addition of a term which is O+
I J (⇢

n+1) and up
to pullback by a diffeomorphism defined on a dilation-invariant neighborhood of F
which commutes with dilations and which restricts to the identity on F . Since MF
is a Fefferman space, an invariant natural density obstructs the existence of smooth
solutions to Ric(gMA) = O(⇢n+1).

Next we note that the restriction of the ambient Levi-Civita connection rA

to T MA|F agrees (up to isomorphism) with the normal tractor connection on TF .
This follows by combining the results in [13] (and see also [29]) with Theorem 5.2.
The former show that the usual conformal tractor connection is induced by the
Fefferman-Graham ambient connection. By the uniqueness of the normal confor-
mal tractor connection, it then follows from Theorem 5.2 that the conformal tractor
connection on MF determines the usual CR tractor connection on M . It is eas-
ily verified that both steps are compatible with our claim above Theorem 5.1 for
the way in which the tractor bundle arises from T MA|F and that the CR tractor
connection is then induced in the obvious way from the ambient connection.

Putting the above together we see that Theorem 5.1 is proved.
Finally, we claim that (MA, gA) can be taken to be Kähler. Indeed, since M

is embedded, Fefferman’s original construction (cf. [39, 40]) produces an ambient
metric which is Kähler. By the uniqueness of ambient metrics explained above, this
latter metric can be taken to be (MA, gA).

5.5. Tractors via the ambient metric

Theorem 5.1 and its proof show that any section V of the standard tractor bundle
on M may be identified with the restriction to F of a vector field Ṽ on MA that is
parallel in the vertical directions of MA � F ! M . These directions are generated
by theC⇤-action onF mentioned above. Taking tensor powers we may assume that
any tractor field on M arises from a tensor field on MA that is parallel along theC⇤-
orbits of F .

Now in view of our treatment of Theorem 5.1 above, creating the Rosetta stone
relating tractor operators and similar objects to their ambient equivalents can be
broken into a two step process. First we have the bijection between such objects
on M and their equivalents on the Fefferman space MF , then second we have the
bijection between these tractor tools on the Fefferman space and their equivalents
on the ambient manifold. But the first part of this is treated in [14], see especially
Sections 3.2 to 3.7. The second is treated in [13, 29], and [30]. Only some minor
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additional input is required to specialise the latter to the case that conformal tractor
bundle has a parallel complex structure. In fact conformal manifolds with a parallel
complex structure are treated in Sections 4.4 to 4.7 of [14] (cf. [45]).

Putting these results together we can simply read off the correspondence be-
tween the canonical CR tractor fields and operators and their (Fefferman CR) am-
bient metric counterparts. For example, the canonical tractor Z A giving the in-
clusion (3.3) corresponds to the (1, 0)-part E of the generator X of the standard
R+-action on the ambient manifold. This vector field, which we also denote by
Z A, provides an Euler operator E on the ambient manifold, in that if a function
f : MA ! C is homogeneous of degree w, with respect to the C⇤-action on F ,
then E · f = Z ArAA f = w f along F . CR densities in 0(E(w,w0)) correspond to
functions f on F that satisfy Z ArAA f = w f and Ē · f = Z ĀrAĀ f = w0 f . We
shall always extend such functions to MA with the same homogeniety. Putting this
together with our earlier convention, weighted tractor fields on M are associated
with homogeneous tensor fields on MA that satisfy the same transport equations.

The calculus of the conformal ambient metric is by now well-known from
[24, 35]; see also [13, 29]. From this we can read off useful identities for the case
considered here. Since X is a homothetic gradient field such that rAX is the iden-
tity endomorphism field, we have

rAA Z
B = �BA and rAĀ Z

B = 0. (5.3)

Thus
[E, Z A] = Z A, and

⇥
E, Z Ā

⇤
= 0, (5.4)

and
Z ARAB̄

C
D = 0 = Z B̄ RAB̄

C
D.

It also follows that
h
E,rAA

i
= �rAA ,

h
E,rAB̄

i
= 0, and so

⇥
E,1A⇤

= �1A. (5.5)

It also follows from the definition of Z A that r = Z AZA is a defining function for
F ⇢ MA, in that F is the zero locus of r , and from (5.3) that rAA r = ZA; in
particular, rAA r is non-vanishing along F .

Putting all this together, it follows that the CR double-D operators (3.6) and
(3.7) on weighted tractor fields correspond to the ambient operators

DAB = ZBrAA � ZArAB and DAB̄ = Z B̄rAA � ZArAB̄ ,

respectively. From this it follows that the tractor-D operator DA corresponds to

DA = (n + E + Ē + 1)rAA � ZA1A

on MA. Note that these ambient operators are defined on all of MA, but strictly
it is only along the hypersurface F (and restricted to homogeneous tensor fields)
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that they correspond precisely to the given tractor operators. Along F they each
act tangentially, meaning that they do not depend on how the given tensor field is
smoothly extended off F . This follows because r is a defining function for F and

⇥
DAB, r

⇤
=

⇥
DAB̄, r

⇤
= 0,

while [DA, r] = r · Op for some differential operator Op.
We need the following technical result.

Lemma 5.4. Let ⌧̃ be a function on MA which is homogenous of bidegree (w,w0)
on MA and let ⌧ denote the corresponding density on M . Then

⇥
DADB̄, log ⌧̃

⇤
|F

is a homogeneous linear differential operator along F and so, applied to functions
homogeneous of degree zero, determines a linear differential operator from sections
of E(0) (over M) to sections of the tractor bundle TAB̄(�1). This tractor operator
agrees with ⇥

DADB̄, log ⌧
⇤

: E(0) ! TAB̄(�1)

calculated in any scale.
Similarly, h⇥

DADB̄, log ⌧̃
⇤
, log ⌧̃

i
(1)|F

(where 1 denotes the unit-valued constant function) is a homogeneous tensor along
F , so descends to a tractor field in TAB̄(�1), and this agrees with

h⇥
DADB̄, log ⌧

⇤
, log ⌧

i
(1)

as calculated in any scale.

Proof. The first statement is immediate from the definition of the ambient op-
erators DA and DB̄ . Note also that, from the tangentiality of these operators,
[DADB̄, log ⌧̃ ]|F is independent of how ⌧̃ extends off F . Then recall that, by defi-
nition, log ⌧ means the log-density that corresponds to log ⌧̃ .

Next by direct calculation one verifies that
⇥
DAB, log ⌧̃

⇤��
F and

⇥
DAB̄, log ⌧̃

⇤��
F

are also homogeneous and correspond to the tractor commutators
⇥
DAB, log ⌧

⇤
and

⇥
DAB̄, log ⌧

⇤��
F .

But it is easily verified that there are algebraic formulae for DA and DB̄ in terms of
compositions of DAB and DAB̄ and these are equivalent to corresponding formulae
for DA and DB̄ in terms of compositions of DAB and DAB̄ on MA; cf. [13] for the
analogous conformal case. (Using the Leibniz property of DAB and DAB̄ , one sees
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that the formulae formulae for DA and DB̄ in terms of DAB and DAB̄ give the usual
matrix formulae forDA andDB̄ when applied to log densities.) Thus [DB̄, log ⌧̃ ]|F
and [DA, log ⌧̃ ]|F are equivalent to well-defined fields and these are [DB̄, log ⌧ ]
and [DA, log ⌧ ], as calculated in any scale.

The final statement follows similarly.

In the subsequent sections, we normally omit the superscript MA in the nota-
tion for ambient objects, relying instead on context. Also, we often identify tractor
operators with the corresponding tangential ambient space operators without com-
ment.

6. Tractor formulae for CR GJMS operators

It is straightforward to compute from the definitions of r , ZA and E that

[1, r] = n + E + Ē + 2. (6.1)

It follows that, as an operator on ambient tensors of weight �n+3�k
2 ,

⇥
1k, r

⇤
= r · Op. (6.2)

Thus if f 2 E
⇣
�n+1�k

2

⌘
, then

P2k f = (�21)k f̃
�
�
�
F

(6.3)

is independent of the choice of homogeneous extension f̃ of f to MA. Let k 
n+1. Since the ambient metric is uniquely determined up to O+(⇢n+1), the opera-
tor (6.3) is well-defined, and hence defines the CR GJMS operator of order 2k. Our
goal in this section is to develop an algorithm which converts (6.3) into a tractor
formula.

To derive tractor formulae for the CR GJMS operators, we first need to de-
rive some useful identities on the ambient manifold MA. In the following, 1 is
the Kähler Laplacian 1 = gAB̄rArB̄ and RAB̄

C̄
D̄ is the (1, 1)-part of the am-

bient curvature. We write RAB̄] to denote the usual action of this 2-form-valued
endomorphism field on ambient tensors. Since g is Kähler, we have the operator
equations on ambient tensors

⇥
rA,rB

⇤
= 0, (6.4)

⇥
rA,rB̄

⇤
= RAB̄ ]; (6.5)

e.g., on a vector field T A we have [rA,rB̄]TC = �RAB̄
C
DT D . With these con-

ventions we obtain the following:
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Lemma 6.1. As operators on arbitrary ambient tensors,
⇥
1, Z B̄

⇤
=rB̄, [1, ZA] = rA, (6.6)

[1,rA]=�RAC ]rC+O
�
rn�1

�
,

⇥
1,rB̄

⇤
= RC B̄ ]rC + O

�
rn�1

�
, (6.7)

⇥
1, ZAZ B̄

⇤
= ZArB̄ + Z B̄rA + gAB̄, (6.8)

[1, Z B̄rA]=rB̄rA � Z B̄ RA
C ]rC + O

�
rn�1

�
, (6.9)

⇥
1,rArB̄

⇤
=�RAC ]rCrB̄ + rARC B̄ ]rC + O

�
rn�2

�
. (6.10)

Moreover, as operators on ambient functions,

[1,rA] = O
�
rn

�
,

⇥
1,rB̄

⇤
= O

�
rn

�
, (6.11)

⇥
1,rArB̄

⇤
= �RAC ]rCrB̄ + O

�
rn�1

�
. (6.12)

Remark 6.2. That these formulas hold as operators means that we are writing com-
positions; e.g., rARC B̄ ]rC acts on T B̄ by

rARC B̄ ]rCT B̄ = rA

⇣
RC B̄ ]rCT B̄

⌘
.

Proof. Using (5.3) we compute that

[1, ZA] = [rC , ZA]rC + rC

h
rC , ZA

i
= rA,

and the other result follows by conjugation. Using (6.4) and (6.5), we compute that

[1,rA] = [rC ,rA]rC+rC

h
rC ,rA

i
= �rC RAC ] = �RAC ]rC+O

�
rn�1

�
,

where the last equality uses Ric = O(rn). Moreover, since RCA ] annihilates func-
tions, we see that [1,rA] also annihilates functions. Similarly,

⇥
1,rB̄

⇤
= RC B̄ ]rC ,

and hence on functions,
⇥
1,rB̄

⇤
= �RC B̄rC = O(rn).

Using (5.3) and (6.6) we compute that
⇥
1, ZAZ B̄

⇤
= rAZ B̄ + ZArB̄ = Z B̄rA + ZArB̄ + gAB̄ .

Using (6.6) and (6.7) immediately yields (6.9). Finally, using both parts of (6.7) (re-
spectively of (6.11) on functions) gives (6.10) (respectively (6.12) on func-
tions).
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The main step in deriving a tractor formula for the CR GJMS operators is the
following formula for the difference between 1k DADB̄ and ZAZ B̄1k+2 as opera-
tors on ambient tensors. As in Lemma 6.1, we only identify this difference along the
hypersurface F and identify the order of the error. To simplify the exposition, we
do not keep track of the order of the error throughout the proof, but only record the
final result; one counts the order of the error terms by using Lemma 6.1, counting
additional derivatives, and using the identity (6.1).

Proposition 6.3. Modulo the addition of terms O(rn�k�1) the following holds:

1k DADB̄ = ZAZ B̄1k+2

�
�
n+E+ Ē+k+1

�⇣
Z B̄rA1

k+1+ZArB̄1k+1+gAB̄1k+1
⌘

+
�
n + E + Ē + k + 1

�⇣
n + E + Ē + k + 2

⌘
rArB̄1k

�ZARC B̄ ]
⇣
1�E

C � REC ]
⌘k
DE

+
k�1X

j=0
( j + 1)rA1

k�1� j RC B̄ ]
⇣
1�E

C � REC ]
⌘ j
DE

�
k�1X

j=0

⇣
1�A

C + RAC ]
⌘ j
RC E ]1k�1� j DE DB̄

+
k�1X

j=0

⇣
1�A

C+RAC ]
⌘ j
DC RE B̄ ]

⇣
1�F

E�RF E ]
⌘k�1� j

DF .

(6.13)

Here the left- and right-hand side are operators acting on arbitrary ambient tensors,
and we interpret

�
1�C

B � RC B ]
�k at k = 0 to mean the identity endomorphism

field, while for k � 2 there is an obvious abuse of the abstact index notation.

Proof. The proof is by induction. To begin, we compute that

DADB̄ =
�
(n + E + Ē + 1)rA � ZA1

� �
(n + E + Ē + 1)rB̄ � Z B̄1

�

= Z B̄ ZA1
2 � (n + E + Ē + 1)

�
Z B̄rA1 + ZArB̄1 + gAB̄1

�

+ (n + E + Ē + 1)(n + E + Ē + 2)rArB̄

� (n + E + Ē + 2)ZARC B̄ ]rC ,

where the second equality uses Lemma 6.1; for the purposes of determining the or-
der of vanishing of the error, note that the only commutator involving errors which
was evaluated in the above derivation is [1,rB̄]. Using the definition of (the am-
bient) DA and the fact RC B̄ ] ZC = 0, we see that

(n + E + Ē + 2)ZARC B̄ ]rC = Z B̄ RC B̄ ] DC .

Together, these two displays yield the case k = 0.
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Suppose now that (6.13) holds. We want to compute1k+1DADB̄ . To that end,
we make a number of observations. Note that, by Lemma 6.1, the formulae derived
below all hold up to terms of order O(rn�2), and up to terms of order O(rn�1)
on functions. Thus the lowest order error comes from commuting the Laplacian
through the error term in 1k DADB̄ , accounting for the loss of a power of r in the
order of the error.

First, as an immediate consequence of (6.8), for any k it holds that

1ZAZ B̄1k+2 = ZAZ B̄1k+3 +
�
Z B̄rA + ZArB̄ + gAB̄

�
1k+2. (6.14)

Second, as an immediate consequence of (6.5) and (6.9), for any k it holds that

1(n + E + Ē + k + 1)
⇣
Z B̄rA + ZArB̄ + gAB̄

⌘
1k+1

= (n + E + Ē + k + 3)
⇣�
Z B̄rA + ZArB̄ + gAB̄

�
1k+2

+
�
2rArB̄ � RAB̄ ]+ZArC RC B̄ ]

� Z B̄rC RAC ]
�
1k+1

⌘
.

(6.15)

Third, it holds for any k that

(n + E + Ē + k + 1)rB1k = Z B1k+1 +
⇣
1�C

B � RC B ]
⌘k
DC . (6.16)

Indeed, (6.16) trivially holds when k = 0. Using first (6.7) and then proceeding by
induction, one finds that

(n + E + Ē + k + 1)rB1k

=
⇣
1�C

B � RC B ]
⌘ �
n + E + Ē + k � 1

�
rC1k�1

=
⇣
1�C

B � RC B ]
⌘✓

ZC1k � rC1k�1 +
⇣
1�E

C � REC ]
⌘k�1

DE
◆

= 1Z B1k � 1rB1k�1 + RC B ]rC1k�1 +
⇣
1�C

B � RC B ]
⌘k
DC

= Z B1k+1 +
⇣
1�C

B � RC B ]
⌘k
DC .

Fourth, as an immediate consequence of (5.5), (6.10) and (6.16), for any k it holds
that

1(n + E + Ē + k + 1)(n + E + Ē + k + 2)rArB̄1k

= (n + E + Ē + k + 3)(n + E + Ē + k + 4)rArB̄1k+1

+ (n + E + Ē + k + 3)rARC B̄ ]
⇣
1�E

C � REC ]
⌘k
DE

� RAC ](n + E + Ē + k + 1)(n + E + Ē + k + 2)rCrB̄1k .

(6.17)
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Note that the last summand is easily rewritten in terms of 1k DC DB̄ using the in-
ductive hypothesis (6.13).

Fifth, as an immediate consequence of (6.6) and the definition of the tractor D
operator, it holds that

1ZARC B̄ ] = �DARC B̄ ]+(n + E + Ē + 2)rARC B̄ ] . (6.18)

Sixth, as an immediate consequence of (5.5), for any k it holds that

RAC ](n + E + Ē + k + 1)
�
ZCrB̄ + Z B̄rC + gC B̄

�
1k+1

=
�
n + E + Ē + k + 3

� ⇣
Z B̄ RA

C ]rC + RAB̄ ]
⌘

1k+1.
(6.19)

Seventh, as an immediate consequence of (6.16), for any k it holds that
�
n + E + Ē + k + 3

�
ZArC RC B̄ ]1k+1

= ZARC B̄ ]
⇣
1�E

C � REC ]
⌘k+1

DE .
(6.20)

Eighth, as an immediate consequence of (6.7), it holds that

1rARC B̄ ] = rA1RC B̄ ]�RAE ]rE RC B̄ ] . (6.21)

It is then straightforward to use the above eight observations and the inductive hy-
pothesis (6.13) to show that 1k+1DADB̄ is given as in (6.13).

Lemma 6.1 and the fact that RAC ] and RAB̄ ] annihilate functions together
simplify (6.13) and yield an improved order of vanishing when acting on functions.

Corollary 6.4. Modulo the addition of terms O(rn�k), the following holds on func-
tions:

1k DADB̄ = ZAZ B̄1k+2

� (n + E + Ē + k + 1)
⇣
Z B̄rA1

k+1 + ZArB̄1k+1 + gAB̄1k+1
⌘

+ (n + E + Ē + k + 1)(n + E + Ē + k + 2)rArB̄1k

�
k�1X

j=0

⇣
1�A

C + RAC ]
⌘ j
RC E ]1k�1� j DE DB̄ .

In particular, when acting on E
⇣
�n�1�k

2 ,�n�1�k
2

⌘
,

1k DADB̄ = ZAZ B̄1k+2�
k�1X

j=0

⇣
1�A

C + RAC ]
⌘ j
RC E ]1k�1� j DE DB̄, (6.22)

modulo the addition of terms O(rn�k).
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Proof. Let ef 2 eE(w,w0). Then REC ] DE ef = REC F E DF ef = O(rn). Using this
observation in Proposition 6.3 and the improved order of vanishing in Lemma 6.1
yields the final result.

The next step in deriving a tractor formula for the CR GJMS operators is to
derive a tractor formula for the summation on the right-hand side of (6.22). To
that end, we first observe that the operator acting on DADB̄ in the right-most sum-
mand acts tangentially on E?

⇣
�n+1�k

2

⌘
, where we recall from Subsection 3.2 that

E?(w,w0) denotes a weighted tractor bundle.

Proposition 6.5. As an operator on E?
⇣
�n+1�k

2

⌘
,

k�1X

j=0

⇣
1�A

C + RAC ]
⌘ j
RC E ]1k�1� j (6.23)

acts tangentially.

Proof. We must show that the commutator of (6.23) with r is of the form r · Op,
for some operator Op, when applied to an element of E?

⇣
�n+3�k

2

⌘
. This follows

directly from the formula (6.1).

The key point of Proposition 6.5 is that it shows that (6.23) is a tangential
differential operator of order 2(k � 1). Since we assume that k  n + 1, the
operators (6.23) are all subcritical, in the sense that they depend on strictly fewer
derivatives of the metric than the number guaranteed to be uniquely determined in
the construction of the ambient metric. In particular, we can adapt the arguments
from [27, 29, 30] to easily produce tractor formulae for the operators (6.23). (Here
and below we identify tractor operators with the corresponding tangential ambient
operators.)

Proposition 6.6. Suppose that k  n � 1. There is a tractor operator

8AĒ : E?
⇣
�n+1�k

2

⌘
! EAĒ ⌦ E?

⇣
�n+1+k

2

⌘

such that

8A
E =

k�1X

j=0

⇣
1�A

C + RAC ]
⌘ j
RC E ]1k�1� j .

Moreover, for any parallel tractor I A it holds that I A8E
A = 0.

Proof. Let T 2 E?
⇣
�n+1�k

2

⌘
. Since k  n� 1, we may extend T harmonically so

that 1 j T = 0 along F for j 2 {0, . . . , k � 1}. In particular,
k�1X

j=0

⇣
1�A

C + RAC ]
⌘ j
RC E ]1k�1� j T =

⇣
1�A

C + RAC ]
⌘k�1

RC E ] T . (6.24)
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Moreover, since k  n � 1, the ambient tensors 1 j RAB̄C Ē are well-defined for all
j 2 {0, . . . , k � 1}. Using the commutator identity (6.7), we may thus distribute
the Laplacians in (6.24) to obtain an equivalent expression which is polynomial
in r j T and rr1s RAB̄C Ē for j, r, s  k � 1. Using the identity 1RAB̄E F̄ =
�RC B̄ ] RACE F̄ , we may then rewrite this as a polynomial in D

jT and Dr RAB̄C Ē ,
which is manifestly a tractor formula. Finally, from direct inspection of (6.24), we
see that in every term, after expanding and eliminating the Kronecker deltas, the free
indices are always on curvature terms RAB̄C Ē . Thus I A8AĒ involves contracting I
into the curvature tensor. Since I A is parallel, such contractions must vanish.

By repeating this argument and arguing inductively from Proposition 6.3, we
obtain the following general tractor formula for the CR GJMS operators.

Theorem 6.7. Let k  n � 1. There is a tractor operator

9Ck+2...C2C̄1
E2 Ē1 : EE2 Ē1

⇣
k+1�n
2

⌘
! ECk+2...C2C̄1

⇣
� k+1+n

2

⌘

such that

(�1)k ZCk+2 . . . ZC4 ZC̄3 ZC2 ZC̄11
k+2

= DCk+2 . . . DC4DC̄3DC2DC̄1 + 9Ck+2...C4C̄3C2C̄1
E2 Ē1DE2DĒ1

and the full contraction I Ck+2 · · · I C2 I C̄19Ck+2...C2C̄1
E2 Ē1 vanishes for any parallel

tractor IA.

Proof. By Corollary 6.4 and Proposition 6.6, it holds that

ZCk+2 . . . ZC4 ZC̄3 ZC2 ZC̄11
k+2 = ZCk+2 . . . ZC4 ZC̄31

k DC2DC̄1
+ ZCk+2 . . . ZC4 ZC̄38C2

E DE DC̄1 .

Moreover, the second summand on the right-hand side is already a tractor operator
satisfying the annihilation by contraction with IA condition, so we need only con-
sider the first summand. If k = 0, we are done. If k = 1, we may immediately write
�ZC̄31DC2DC̄1 = DC̄3DC2DC̄1 , so we are again done. Suppose now that k � 2.
By applying Proposition 6.3, we find that

ZC4 ZC̄31
k DC2DC̄1 = 1k�2DC4DC̄3DC2DC̄1

+
k�3X

j=0

⇣
1�C4

E + RC4
E ]

⌘ j
RE F ]1k�1� j DF DC̄3DC2DC̄1

� 9
(1)
C4C̄3

DC2DC̄1,

where9
(1)
C4C̄3

is the action of the operators which factor through a single DE in (6.13)
(i.e. the fourth, fifth and seventh summands). From Proposition 6.5 combined with
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Proposition 6.3 we see that 9(1)
C4C̄3

is tangential. Here we used that in Proposition
6.3 the Laplacian powers appearing on the left-hand side and in the first term on
the right-hand side are each tangential. Hence, by arguing as in Proposition 6.6,
9

(1)
C4C̄3

admits a tractor formula which is annihilated upon complete contraction
with a parallel tractor and its conjugate. Arguing inductively in this manner yields
the final conclusion.

Note that the proofs of Proposition 6.6 and Theorem 6.7 provide an algorithm
for producting tractor formulae for the CR GJMS operators. It is easy to carry out
this algorithm at low orders to obtain tractor formulae for P4 and P6 as well as the
P 0-operators and Q0-curvatures of the corresponding order. The formulae for the
fourth-order invariants are self-evident; see also [19]. The formulae for the sixth-
order invariants are discussed in Section 8.

7. The product formulae

We are now prepared to prove Theorem 1.1. For convenience, we separate the proof
into two parts. First, we prove the factorisation of the CR GJMS operators.

Proposition 7.1. Let (M2n+1, H, ✓) be an embeddable Einstein pseudohermitian
manifold. For any integer 1  k  n + 1, the CR GJMS operator P2k is equal to

P2k =

8
>>>>><

>>>>>:

k
2Y

`=1
(�1b + c`ir0 + d`P) (�1b � c`ir0 + d`P) if k is even

Y

k�1
2Y

`=1
(�1b + c`ir0 + d`P) (�1b � c`ir0 + d`P) if k is odd,

(7.1)

where c` = k � 2` + 1 and d` = n2�(k�2`+1)2
n and Y = �1b + nP is the CR

Yamabe operator.

Remark 7.2. To pass from (7.1) to the factorisation given in [6, Proposition 1.1],
reindex the product in terms of `0 = k

2 � ` when k is even, or `0 = k+1
2 � ` when k

is odd. Note that our formula (7.1) in the case when k is odd also corrects a minor
typo in [6, Proposition 1.1], where the index of the product incorrectly starts at zero.

Proof. Fix a point p 2 M . By Proposition 4.7, there is a neighborhood U of p in
which there exists a � 2 E(1, 0) such that ✓ = (� �̄ )�1✓ and DA� is parallel. Set
IA = 1

n+1DA� and observe that in the scale ✓ it holds that I Ā = (�P�/n, 0, � ). It
follows from Theorem 6.7 that

(� �̄ )k/2P2k = 2k IC1 I C̄2 · · · I Ck/2�1 I C̄k/2DC1DC̄2 · · · DCk/2�1DC̄k/2
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if k is even and

� (� �̄ )(k�1)/2P2k = 2k I C̄1 · · · I C(k�3)/2 I C̄(k�1)/2DC̄1 · · · DC(k�3)/2DC̄(k�1)/2

if k is odd. Since IA 2 EA is parallel, this implies that

P2k =

8
><

>:

(� �̄ )�k/2
⇣
4I A I B̄DADB̄

⌘k/2
if k is even

2(� �̄ )�(k�1)/2��1 I C̄DC̄

⇣
4I A I B̄DADB̄

⌘(k�1)/2
if k is odd.

(7.2)

Denote by D1 and D2 the operators

D1 := 2��1 I C̄DC̄ : E(w) ! E(w � 1),

D2 := 4I A I B̄DADB̄ : E(w) ! E(w � 1).

Using the definition of the tractor D-operator and Proposition 3.1 and recalling that
r� �̄ = 0 in the scale ✓ , we readily compute that, in the scale ✓ ,

D1=Y f + air0 �
a2

n
P, (7.3)

D2=� �̄

✓
�1b + air0 �

4w(n + w)

n
P

◆✓
�1b � air0 �

4w(n + w)

n
P

◆
(7.4)

for a = n + 2w. Inserting (7.3) and (7.4) into (7.2) and recalling that P2k acts
on E

�
� n�k+1

2
�
yields the desired factorisation in U . Since the factorisation is

independent of the choice of � , the factorisation holds in all of M .

Second, we prove the factorisation of the P 0-operator and compute the Q0-
curvature.

Proposition 7.3. Let (M2n+1, H, ✓) be an embeddable Einstein pseudohermitian
manifold. Then the P 0-operator is given by

P 0
2n+2 = n!

✓
2
n

◆n+1 nY

`=0
(�1b + 2`P) , (7.5)

and the Q0-curvature is given by

Q0
2n+2 = (n!)2

✓
4P
n

◆n+1
. (7.6)
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Proof. Since ✓ is Einstein, [1b, T ] = 0 and the operator C defined in Subsec-
tion 4.2 satisfies C = 12

b + n2T 2. A straightforward computation reveals that, for
c` and d` as in Proposition 7.1,

(�1b + c`ir0 + d`P) (�1b � c`ir0 + d`P)

=
c2`
n2
C +

d`

n
(�1b + (n � c`)P) (�1b + (n + c`)P) .

Inserting this into (7.1) and recalling that P ⇢ kerC yields

P2k
�
�
P =

8
>>>>><

>>>>>:

k
2Y

`=1

d`

n
(�1b + (n � c`)P) (�1b + (n + c`)P) if k is even

Y

k�1
2Y

`=1

d`

n
(�1b + (n � c`)P) (�1b + (n + c`)P) if k is odd.

Equivalently, we have that

P2k
�
�
P =

kY

`=1

n � k � 1+ 2`
n

�
�1b + (n � k � 1+ 2`)P

�
. (7.7)

Formally we have that

P 0
2n+2 =

✓
2

n � k + 1
P2k

�
�
P

◆

k=n+1
(7.8)

Q0
2n+2 =

✓
4

(n � k + 1)2
P2k(1)

◆

k=n+1
. (7.9)

Inserting (7.7) into (7.8) yields (7.5). Inserting (7.7) into (7.9) yields (7.6). As
discussed in Subsection 4.2, this argument is made rigorous via log densities.

8. Q0-curvature in dimension five

For five-dimensional CR manifolds, Corollary 6.4 implies the ambient formula

�ZC̄ ZAZ B̄13 = DC̄ DADB̄ � ZC̄ RAB̄E
F DF DE (8.1)

acting on E(0). Obtaining from this a tractor formula for the sixth-order CR GJMS
operator and both the P 0-operator and the Q0-curvature in dimension five requires
establishing a tractor formula for the restriction of the ambient curvature RAB̄C Ē to
F . This tractor is a multiple of the CRWeyl tractor SAB̄C Ē 2 EAB̄C Ē (�1), a tractor
defined in all dimensions which has Weyl-type symmetries and whose projecting
part is the CR Weyl curvature S↵�̄� �̄ when n � 2.

The following proposition defines the CR Weyl tractor in terms of the split-
ting (3.1) and verifies that it satisfies the correct transformation formula.
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Proposition 8.1. Let (M2n+1, H, ✓) be an embeddable pseudohermitian manifold.
With respect to ✓ , the CR Weyl tractor is

SAB̄C Ē = (n � 1)WA
↵WB̄

�̄�↵�̄C Ē + (n � 1)WA
↵Z B̄8↵C Ē

+ (n � 1)ZAWB̄
�̄8�̄C Ē + ZAZ B̄9C Ē ,

where WA
↵ is defined in (3.4), �↵�̄C Ē is the tractor curvature

�↵�̄C Ē = WC
�WĒ

�̄ S↵�̄� �̄ + iWC
� ZĒV↵�̄� � i ZCWĒ

�̄V�̄ ↵�̄ + ZC ZĒU↵�̄, (8.2)

8↵C Ē and 9C Ē are given by

8↵C Ē = iWC
�WĒ

�̄V� �̄↵ + iWC
� ZĒ Q↵� + ZCWĒ

�̄U↵�̄ + i ZC Z ĒY↵,

9C Ē = (n � 1)WC
�WĒ

�̄U� �̄ + (n � 1)iWC
� ZĒY�

� (n � 1)i ZCWĒ
�̄Y�̄ + ZC ZĒO,

8�̄C Ē is given by conjugation, andO is given by

O = �ir� Y� + 2P↵�̄U↵�̄ + A↵� Q↵� .

Remark 8.2. By the symmetries of the CRWeyl tractor,O is real-valued. This also
follows immediately from (2.19); in dimension three, this observation and (2.17) to-
gether recover the Bianchi-type identity for the Cartan tensor discovered by Cheng
and Lee [21, Proposition 3.1]. Although O is not in general a CR invariant, Propo-
sition 8.1 implies that it is a CR invariant for three-dimensional CR manifolds. In-
deed, by invariant theory, it must be a nonzero constant multiple of the obstruction
function ⌘ in (1.10) (cf. [34]). In these ways, we can regard the pseudohermitian
invariant O as an extension of the obstruction function for three-dimensional CR
manifolds to higher dimensions.

Proof. Recall that the tractor curvature �↵�̄C Ē 2 E↵�̄C Ē (0) is CR invariant and
��

�

C Ē = 0. The CR Weyl tractor is obtained from the embedding E(↵�̄)0
(0) ,!

EAB̄(�1), where E(↵�̄)0
(0) is the space of CR invariant trace-free Hermitian (1, 1)-

forms of weight zero. One can directly check that

M↵�̄

AB̄ S↵�̄ :=(n+w � 1)(n + w0 � 1)WA
↵WB̄

�̄S↵�̄ � (n + w0 � 1)WA
↵Z B̄r �̄ S↵�̄

� (n + w � 1)ZAWB̄
�̄r� S� �̄

+ ZAZ B̄
⇣
r� r �̄ S� �̄ + (n + w � 1)P� �̄ S� �̄

⌘

is a linear map M↵�̄

AB̄ : E(↵�̄)0
(w,w0) ! EAB̄(w � 1, w0 � 1).
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Note that the above formula for M↵�̄

AB̄ can be obtained by making the ansatz
that

MAB̄ = WA
↵WB̄

�̄S↵�̄ + ZAWB̄
�̄!�̄ + WA

↵Z B̄!↵ + ZAZ B̄⇢

is a tractor. Thus DB̄MAB̄ is a tractor, and hence zero for generic values of w and
w0. Computing DB̄MAB̄ in components then yields the components for MAB̄ in
terms of S↵�̄ ; multiplying by (n + w � 1)(n + w0 � 1) to cancel the poles of these

components yields our expression for the operator M↵�̄

AB̄ . In fact, this argument can

be modified to give a rigorous proof that M↵�̄

AB̄ has the claimed mapping properties
(cf. [31]).

Next, applying Lemma 2.2 to (8.2) yields

r �̄�↵�̄C Ē

= �(n � 1)
h
iWC

�WĒ
�̄V� �̄↵ + iWC

� ZĒ Q↵� + ZCWĒ
�̄U↵�̄ + i ZC Z ĒY↵

i

and
⇣
r↵r �̄ + (n � 1)P↵�̄

⌘
�↵�̄C Ē = (n � 1)2WC

�WĒ
�̄U� �̄

+ (n � 1)2iWC
� ZĒY� � (n � 1)2i ZCWĒ

�̄Y�̄

+ (n � 1)ZC ZĒO.

In particular, we see that SAB̄C Ē = 1
n�1M

↵�̄

AB̄�↵�̄C Ē makes sense in all dimensions.
Finally, direct inspection shows that the CRWeyl tractor hasWeyl-type symmetries,
as desired.

The relationship between the restriction of the ambient curvature and the CR
Weyl tractor can be derived by considering the commutator [DA, DB̄] and its tractor
analogue acting on homogeneous vectors of weight zero and sections of EA(0),
respectively. The following argument is an adaptation to the CR setting of the
argument given from [29, page 369] for the analogous result in conformal geometry.

Lemma 8.3. Let (M2n+1, H) be an embeddable CR manifold with n > 1. Then

SAB̄C Ē = (n � 1) RAB̄C Ē
�
�
F .

Proof. Let VC 2 EC(0) and let eVC 2 ẼC be an extension of VC which is homoge-
neous of degree zero. It follows from Proposition 6.3 and properties of the ambient
connection that

[DA, DB̄]eVC = n(n � 1)RAB̄E
CeV E

� nZARE B̄F
CW E �̄r�̄

eV F � nZ B̄ RAĒF
CW Ē↵r↵

eV F .
(8.3)
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Since all the operators in (8.3) are tangential, we can restrict to M and regard this as
a tractor formula for VC . On the other hand, a straightforward computation using
the definition of the tractor D-operator, the tractor curvature, and Proposition 8.1
yields

[DA, DB̄]VC = nSAB̄E
CV E

�
n

n � 1
ZASE B̄F

CW E �̄r�̄V
F

�
n

n � 1
Z B̄ SAĒF

CW Ē↵r↵V F .

(8.4)

Multiplying both (8.3) and (8.4) by ZG ZH̄ and skewing over the pairs (A,G) and
(B̄, H̄) yields (n � 1)Z[G ZH̄ RAB̄]EC̄ = Z[G ZH̄ SAB̄]EC̄ . Contracting WG�̄ into
this yields (n�1)ZAZ[H̄ RGB̄]EC̄W

G�̄ = ZAZ[H̄ SGB̄]EC̄W
G�̄ , where our notation

means skew over the pair (B̄, H̄). Now multiplying both (8.3) and (8.4) by ZH̄ and
skewing over the pair (B̄, H̄) yields (n � 1)Z[H̄ RAB̄]EC̄ = Z[H̄ SAB̄]EC̄ . Contract-
ing with W H̄� yields (n � 1)Z B̄ RAH̄ EC̄W H̄� = Z B̄ SAH̄ EC̄W

H̄� . Using this and
its conjugate to compare (8.3) and (8.4) yields the desired result.

Considering Lemma 8.3 in the case of dimension five and using (8.1) yields the
following tractor formulae for the sixth-order CR GJMS operator, the P 0-operator,
and the Q0-curvature.

Proposition 8.4. Let (M, H) be a five-dimensional CR manifold. Then

1
8
ZC̄ ZAZ B̄ P6 f = DC̄DADB̄ f � ZC̄ SAB̄E

FDFDE f (8.5)

for all f 2 E(0). Moreover, given a choice of contact form ✓ = (� �̄ )�1✓ , it holds
that

1
8
ZC̄ ZAZ B̄ P

0u = DC̄ KAB̄(u) � ZC̄ SAB̄E
F KF

E (u), (8.6)

1
8
ZC̄ ZAZ B̄Q

0 = DC̄ IAB̄ � ZC̄ SAB̄E
F IF E (8.7)

for all u 2 P , where KAB̄(u) and IAB̄ are as in Lemma 4.3 and Lemma 4.5, re-
spectively, and we require that ✓ is pseudo-Einstein in (8.7).

Remark 8.5. Since all formulas in Proposition 8.4 depend only on finite jets of the
geometry, we can approximate our CR manifold by a real analytic manifold with
the same result. The latter manifolds are always embeddable, and thus we need not
assume the original CR manifold is itself embeddable in this result.
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Using Proposition 8.1 and the formula for the tractor D-operator, one could derive
local formulae for the sixth-order CR GJMS operator P6 in general dimensions as
well as the P 0-operator and the Q0-curvature for five-dimensional CR manifolds.
Here we derive local formulae for the P 0-operator and Q0-curvature of a pseudo-
Einstein five-manifold. First, we consider the Q0-curvature.

Corollary 8.6. Let(M,H,✓)be a five-dimensional pseudo-Einstein manifold. Then

1
8
Q0 =

1
2
12
b P +

1
2
1b|A↵� |2 � 2 Imr�

�
A�� r� P

�

� 21b P2 � 4P|A↵� |2 + 4P3 � 2O.

(8.8)

In particular, the total Q0-curvature of a compact pseudo-Einstein five-manifold is
Z

M5
Q0 ✓ ^ (d✓)2

= 16
Z

M5

⇣
2P3 � 2P|A↵� |2 � S↵�̄� �̄A

↵� A�̄�̄ � |V↵�̄� |2
⌘

✓ ^ (d✓)2.

(8.9)

Proof. The local formula (8.8) follows from a straightforward computation using
Proposition 8.1 and Proposition 8.4. Lemma 2.2 and the definition ofO imply that

Z

M5
O ✓ ^ (d✓)2 =

Z

M5

⇣
S↵�̄� �̄A

↵� A�̄�̄ + |V↵�̄� |2
⌘

✓ ^ (d✓)2,

from which (8.9) readily follows.

Second, we consider the P 0-operator on pseudo-Einstein manifolds. Note that
while the formula below can be derived from Proposition 8.1 and Proposition 8.4,
the derivation is simplified using (8.8) and the transformation formula (1.2) for the
Q0-curvature.

Corollary 8.7. Let(M,H,✓)be a five-dimensional pseudo-Einstein manifold. Then

P 07 = �213
b7 + 24Re1br

�
�
Pr� 7

�
+ 24Rer�

�
Pr� 1b7

�

+ 8 Im1br
�

�
A�� r�7

�
+ 8 Imr�

�
A�� r�1b7

�

� 16Rer�r�
�
Pr� r�7

�

� 16Rer�
h⇣
2U�

� + 2A�µAµ� +
⇣
1b P � 4P2 � |A↵�|

2
⌘
h�

�
⌘

r�7
i

� 64 Imr�
�
PA�� r�7

�

for all 7 2 P .

Remark 8.8. Note that this formula for the P 0-operator is manifestly formally self-
adjoint. In particular, Corollary 8.7 and the transformation formula (1.2) give an in-
trinsic proof of the fact that the total Q0-curvature is a global invariant in dimension
five.
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Proof. Since 7 2 P and U� �̄ + A�µAµ
�̄ � 1

2 |A↵�̄ |2h� �̄ is trace-free, Lemma 2.2
implies that

r�

✓✓
U�

� + A�µAµ� �
1
2
|A↵�|

2h�
�

◆
r�7

◆

=

✓
iY � � i A�� r� P +

1
2
r� |A↵�|

2
◆

r� 7.

(8.10)

Using the commutator identities [44, Lemma 2.2] and the assumption 7 2 P , we
compute that

r� r� r�7 =
3
2
r�1b7 + 3i A�� r� 7 + 3Pr�7. (8.11)

Consider now the family b✓t = et7✓ of pseudo-Einstein contact forms. In the fol-
lowing, we shall use hats to denote pseudohermitian invariants defined in terms of
b✓t and suppress the dependence on t in our notation. It follows from (1.2) that

P 0(7) =
@

@t

�
�
�
�
t=0

e3t7 bQ0. (8.12)

The right-hand side of (8.12) is readily expanded using the identities
@

@t

�
�
�
�
t=0

et7 bP = �
1
2
1b7,

@

@t

�
�
�
�
t=0

bA↵� = ir↵r�7,

@

@t

�
�
�
�
t=0

e2t7 bO = �4 ImY � r� 7,

@

@t

�
�
�
�
t=0

e(1�w)t7r�
�
ewt7!�

�
= (w + 2)!� r� 7

for all !� 2 E� and all w 2 R (cf. [28,44]). Using (8.10) and (8.11) to simplify the
resulting expansion yields the desired formula.

It is interesting to compare the total Q0-curvature (8.9) to the other known and
interesting global secondary invariant in dimension five, namely the Burns-Epstein
invariant [11]. Marugame [47] computed the Burns-Epstein invariant µ(M) of the
boundary M of a strictly pseudoconvex bounded domain X ⇢ C3, showing that

µ(M)

=�
1

16⇡3

Z

M

✓
2P3�2P|A↵� |2�S↵�̄� �̄A

↵�A�̄�̄+
1
2
P|S↵�̄� �̄ |2

◆
✓^(d✓)2,

(8.13)

while the Burns-Epstein invariant is related to the Euler characteristic of X via the
formula

�(X) =
Z

X

✓
c3 �

1
2
c1c2 +

1
8
c31

◆
+ µ(M). (8.14)
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Indeed, one can regard the formula (8.13) as defining a global pseudohermitian in-
variant µ(M5). By realizing M as the boundary of a complex manifold, Marugame
gave an extrinsic proof that µ(M) is a global secondary invariant [47].

Direct comparison of (8.9) and (8.13) implies both Theorem 1.3 and the fact
that

R
|V↵�̄� |2 + 1

2 P|S↵�̄� �̄ |2 is a secondary invariant. We here give an intrinsic
proof of the latter fact under the additional assumption that c2(H1,0) vanishes in
H4(M; R) by studying properties of the pseudohermitian invariant I 0.

Proposition 8.9. Let (M, H, ✓) be a five-dimensional pseudohermitian manifold
and define

I 0 = �
1
8
1b

�
�
�S↵�̄� �̄

�
�
�
2
+

�
�
�V↵�̄�

�
�
�
2
+
1
2
P

�
�
�S↵�̄� �̄

�
�
�
2
, (8.15)

X↵ = �i S↵⇢̄� �̄V ⇢̄� �̄ +
1
4
r↵

�
�S� �̄ �⇢̄

�
�2 . (8.16)

Supposeb✓ = e7✓ . Then

e37bI 0 = I 0 + 2Re X� r� 7. (8.17)

Moreover, if M is compact, c2(H1,0) vanishes in H4(M; R), and both ✓ andb✓ are
pseudo-Einstein, then

Z

M
bI 0 b✓ ^ (db✓)2 =

Z

M
I 0 ✓ ^ (d✓)2.

The proof of Proposition 8.9 depends on an explicit realisation of the real Chern
class c2(H1,0) 2 H4(M; R) and the observation that

S↵�̄ := S↵⇢̄� �̄ S⇢̄
�̄

�̄ � �
1
n

�
�S� �̄ �⇢̄

�
�2 h↵�̄ (8.18)

vanishes in dimension five. Indeed, if dimC H1,0 = 2, then

0 = h[↵�̄S�
�

|µ|
⌫S⇢]

⇢
⌫
µ = 2S↵�̄,

where our notation means that we skew over the lower indices ↵, � , ⇢.
Define

⇠ = X↵ ✓ ^ d✓ ^ ✓↵ + X �̄ ✓ ^ d✓ ^ ✓�̄ . (8.19)

The vanishing of S↵�̄ enables us to identify ⇠ as an element of 4⇡2c2(H1,0) on any
five-dimensional pseudo-Einstein manifold.
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Lemma 8.10. Let (M, H, ✓) be a five-dimensional pseudo-Einstein manifold and
let ⇠ be as in (8.19). Then ⇠ is a representative of c2(H1,0) 2 H4(M; R). In
particular, if the real Chern class c2(H1,0) vanishes, then

Re
Z

M
X� r� v ✓ ^ (d✓)2 = 0

for all v 2 P .

Proof. Observe that ⇠ ^ ✓ = 0 = ⇠ ^ d✓ . Suppose that ⇠ is exact. As observed by
Rumin [48], we obtain a three-form ↵ such that d↵ = ⇠ and ↵ ^ ✓ = 0 = ↵ ^ d✓ .
Denote dcbv = �ir↵v ✓↵ + ir�̄v ✓�̄ and observe that dcbv ^ ⇠ = 2Re X� r� v.
Since v 2 P if and only if ddcbv = 0 mod d✓ (cf. [44]), we conclude that if v 2 P ,
then

2Re X� r� v = dcbv ^ ⇠ = �d
�
dcbv ^ ↵

�
.

In particular, Re
R
X� r� v = 0.

We now show that ⇠ is exact. It suffices to show that ⇠ 2 4⇡2c2
�
H1,0

�
.

Since ✓ is pseudo-Einstein, c1
�
H1,0

�
vanishes in H2(M; R) (cf. [44]). It fol-

lows that 8⇡2c2
�
H1,0

�
=

⇥
5µ

⌫ ^ 5⌫
µ
⇤
for 5↵

� the curvature forms (2.2). Since
dimC H1,0 = 2, we compute that

5µ
⌫ ^ 5⌫

µ = R↵�̄µ
⌫R� �̄⌫

µ✓↵^✓�̄ ^✓� ^✓ �̄ � 2R↵�̄µ
⌫rµA� ⌫ ✓^✓↵^✓�̄ ^✓�

+2R↵�̄µ
⌫r⌫ A�̄

µ✓^✓↵^✓�̄ ^✓ �̄ � 2i A�̄
⌫r�̄ A� ⌫✓^✓� ^✓�̄ ^✓ �̄

�2i A↵µr� A�̄
µ✓^✓↵ ^ ✓� ^✓ �̄ � 2A↵µA⇢̄

µh⌫�̄ ✓↵^✓ �̄ ^✓⌫ ^✓ ⇢̄ .

To simplify this, observe that, since dimC H1,0 = 2 and r⇢ A↵� = r� A↵⇢ (cf.
[44]),

d
⇣
A↵µAµ

�̄ ✓ ^ ✓↵ ^ ✓�̄
⌘

= A↵µr� Aµ
�̄ ✓ ^ ✓↵ ^ ✓� ^ ✓�̄

+A�̄
µr�̄ A↵µ✓ ^ ✓↵ ^ ✓�̄ ^ ✓ �̄ + A↵µAµ

�̄ d✓ ^ ✓↵ ^ ✓�̄ .
(8.20)

Furthermore, since dimC H1,0 = 2 and ✓ is pseudo-Einstein,

R↵�̄µ
⌫R� �̄⌫

µ✓↵^✓�̄ ^✓� ^✓ �̄ =

✓
1
2
|S↵�̄� �̄ |2 � 3P2

◆
d✓ ^ d✓, (8.21)

R↵�̄µ
⌫rµA� ⌫✓^✓↵^✓�̄ ^✓� =

✓
i S� �̄µ⌫̄V �̄µ⌫̄ �

3
2
r�

�
P2

�
◆

✓^d✓^✓� . (8.22)
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Using (8.20), (8.21) and (8.22) to simplify the expression for5µ
⌫ ^ 5⌫

µ yields

5µ
⌫ ^ 5⌫

µ =2⇠ + d
✓
1
2
|S↵�̄� �̄ |2�3P2

◆
✓ ^ d✓ � 2i A↵µAµ

�̄ ✓ ^ ✓↵ ^ ✓�̄

�
.

In particular, we see that 4⇡2c2(H1,0) = [⇠ ], as desired.

Proof of Proposition 8.9. Let (M2n+1, ✓) be a pseudohermitian manifold and de-
fine X↵ by

X↵ = �i S↵⇢̄� �̄V ⇢̄� �̄ +
1
2n

r↵|S� �̄ �⇢̄ |2.

A straightforward computation using the transformation formulae in [28,44] yields
that ifb✓ = e7✓ , then

e27 bX↵ = X↵ + S↵�̄r�7.

It follows immediately that X↵ is a CR invariant when n = 2. This observation and
the transformation formulae in [28, 44] readily yield (8.17). The final conclusion
now follows from Lemma 8.10.

One important class of CR manifolds are those which embed as boundaries
of Stein domains. As pointed out to us by Taiji Marugame, five-dimensional CR
manifolds in this class always have vanishing Chern classes.

Proposition 8.11. Let (M, H, ✓) be a five-dimensional pseudo-Einstein manifold
which is the boundary of a Stein manifold V . Then c2(H1,0) = 0.

Proof. Note that the holomorphic normal bundle N1,0 of M ⇢ V is trivial and
H1,0 � N1,0 = i⇤T 1,0V , the pullback of T 1,0V with respect to the inclusion
i : M ! V . Thus

c2
�
H1,0

�
= c2

�
H1,0 � N1,0

�
= c2

�
i⇤T 1,0V

�
.

By naturality of the Chern classes,

c2
�
i⇤T 1,0V

�
= i⇤c2

�
T 1,0V

�
.

Since dimC V = 3 and V is Stein, it holds that H4(V ; C) = 0 (see [49]). In
particular, c2(T 1,0V ) = 0.
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We conclude this article with two remarks about possible interpretations of the
pseudohermitian invariant I 0.
Remark 8.12. I 0 can be informally regarded as the “primed analogue” of the con-
formal invariant |rARBCEF |2 discovered by Fefferman and Graham [24], in the
same spirit as the P 0-operator is the “primed analogue” of the Paneitz operator.
Indeed, on a pseudohermitian manifold (M, H, ✓), define

I = r�

✓
i S� �̄↵�̄V

�̄ ↵�̄ �
1
2n

r� |S↵�̄� �̄ |2
◆

� S↵�̄ P(↵�̄)0

+(n � 2)
✓

1
2n(n � 4)

1b|S↵�̄� �̄ |2+|V↵�̄� |2�
2

n(n � 4)
P|S↵�̄� �̄ |2

◆
.

(8.23)

Set
KCĒ = �↵�̄C F̄��̄↵ F̄

Ē 2 EC Ē (�2).

It is straightforward to compute that

1
n � 3

DCKCĒ �
1

2(n � 4)
DĒ

�
�
�S↵�̄� �̄

�
�
�
2

= IZĒ 2 EĒ (�2,�3). (8.24)

In particular, it follows that (8.23) defines a CR invariant of weight (�3,�3).
(Strictly speaking, it is (n�4)-times the right-hand side of (8.23) which is a CR in-
variant in all dimensions, and the verification that this is a CR invariant when n = 3
– and hence the tractor expression (8.24) has a pole – follows from either direct
computation or analytic continuation in the dimension.) The invariant I is defined
via a tractor expression equivalent to the tractor expression giving the Fefferman-
Graham invariant (cf. [13]). Restricting to pseudo-Einstein metrics, one observes
that, modulo divergences, I = (n � 2)I 0 + O

�
(n � 2)2

�
. This motivates the defi-

nition of I 0.
Remark 8.13. Alexakis [1] proved that any local Riemannian invariant I (g) for
which

R
I (g) dvolg is a conformal invariant admits a decomposition

I (g) = cQg + (local conformal invariant)+ (divergence).

Hirachi conjectured [39, page 242] that any local pseudohermitian invariant I (✓) for
which

R
I (✓) ✓ ^d✓n is a secondary invariant should admit a similar decomposition

in terms of a constant multiple of the Q0-curvature, a local CR invariant, and a
divergence. It seems to us that the I 0-invariant, through the following two questions,
provides a new insight into this conjecture.

First, is there a five-dimensional pseudo-Einstein manifold for which the CR
invariant one-form X� is nonzero? If so, then I 0 is not a local secondary invariant,
and thus provides a counterexample to Hirachi’s conjecture. If not, then Hirachi’s
conjecture seems correct, at least in dimension five and after modifying it to allow
local secondary invariants.
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Second, how can one understand the transformation formula (8.17)? Specif-
ically, observe that the proof of Lemma 8.10 shows that if ⇠ = d↵ for ↵ =
i�↵�̄✓ ^ ✓↵ ^ ✓�̄ and �↵�̄ 2 E(↵�)0 – that is, if ↵ can be chosen to be an element
of F2,1 in the graded Rumin complex [26] – then the map P 3 v 7! Re X� r� v is
formally self-adjoint on the space of CR pluriharmonic functions. Thus, one might
suspect that the transformation formula for I 0 is governed by a formally self-adjoint
operator on CR pluriharmonic functions, a property shared by the Q0-curvature.
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