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Optimal estimates for the triple junction function
and other surprising aspects of the area functional

RICCARDO SCALA

Dedicated to Francesco

Abstract. We consider the relaxed area functional for vector valued maps and
its exact value on the triple junction function u : B1(O) ! R2, a specific func-
tion which represents the first example of map whose graph area shows nonlocal
effects. This is a map taking only three different values ↵,�, � 2 R2 in three
equal circular sectors of the unit radius ball B1(O). We prove a conjecture due to
G. Bellettini and M. Paolini asserting that the recovery sequence provided in [5]
(and the corresponding upper bound for the relaxed area functional of the map u)
is optimal. At the same time, we show by means of a counterexample that such
construction is not optimal if we consider different domains than B1(O), which
still contain the same discontinuity set of u in B1(O). Such domains are obtained
from B1(O) erasing part of interior of the sectors where u is constant.
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1. Introduction

The analysis of polyconvex energies arises in many branches of calculus of vari-
ations, and more specifically in problems coming from the mechanics of solids,
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like elasticity theory [2]. Particular attention has been given to energies with lin-
ear growth, and special issues concern the property of lower-semicontinuity on the
class of admissible states (see [1] and references therein). A fundamental exam-
ple of polyconvex function with linear growth is the area functional, the functional
which measures the area of the graph of a given map. This is the simplest example
of polyconvex energy related to a variable of a (physics, mechanics) system, and
already shows many particular features and issues which are surprising and row
against intuition.

The area functional is introduced as follows. Let � ⇢ Rn be an open set. The
graph of a smooth function v : � ! RN is defined as the subset Gv of � ⇥ RN

given by

Gv :=
�
(x, y) 2 �⇥ RN : y = v(x)

 
. (1.1)

The graph Gv is a surface of dimension n embedded in Rn+N , and then its area
can be computed, namely its n-dimensional Hausdorff measure. Considering the
embedding 8 : x 7! (x, v(x)), easy computation brings to the formula that, in the
specific case N = 1 is given by

A(v) :=
Z

�

�
1+ |rv|2

� 1
2 dx, (1.2)

whereas, if, for example, n = N = 2, reads as
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dx . (1.3)

Here J (v) stands for the Jacobian determinant of v, i.e.,

J (v) :=
@v1
@x1

@v2
@x2

�
@v2
@x1

@v1
@x2

. (1.4)

It is easy to realize that such definition can be extended to all maps v 2
W 1,min{n,N }(�; RN ). More in general, one can try to define the area of the graph of
still less regular maps, proceeding by approximating them by regular functions (for
the theory of polyconvexity in W 1,p see [16]). To this respect, one is led to define
the area functional for any map v 2 L1(�; RN ), given by

A(v) := inf
n
lim inf
n!+1

A(vn)
o
, (1.5)

where the infimum is computed on all sequences of functions vn 2 C1(�; RN )
such that vn ! v in L1(�; RN ). However, in general, it is not true that the relaxed
functional (1.5) coincides with the original area functional (1.3) in W 1,1(�; RN ),
which is not lower-semicontinuous (see [1]). Moreover, it might happen that the
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value of the lower semicontinuous envelope A(v) be not finite for some function
v 2 L1(�; RN ) \ W 1,min{n,N }(�; RN ). Therefore the first natural question arising
from definition (1.5) is to determine the exact domain D(A) ⇢ L1(�; RN ) of the
functional A. A second natural question is, of course, to determine the exact value
of it, namely a general formula like (1.2) or (1.3). This very challenging problem
has been completely solved in codimension 1, that is in the case the target space is
R (N = 1) (see [8]). In this case, the lower semicontinuous envelope of the area
functionalA : C1(�; R) ! R is the functional

A(v) =

8
<

:

Z

�

q
1+ |rv|2dx + |Dsv|(�) if v 2 BV (�)

+1 otherwise,
(1.6)

where rv represents the absolutely continuous (with respect to the Lebesgue mea-
sure Ln) part of the gradient Dv of v, and Dsv its singular part. In other words,
the area functional has as natural domain the space BV (�) of functions of bounded
variations where it assumes the general integral form (1.6). In particular, thanks
to the good properties of the integral form, it turns out that the area functional is
subadditive if seen as function on sets. More precisely, let us consider on any open
set U ⇢ � the area functional restricted to U , defined as

A(v;U) :=
Z

U

�
1+ |rv|2

� 1
2 dx . (1.7)

Then, for fixed v 2 BV (�), we can look atA(v; ·) as a function on Borel sets. As a
consequence of the expression (1.6) it turns out thatA(v; ·) is subadditive, namely

A(v;U1 [U2)  A(v;U1) +A(v;U2) for all U1,U2 ⇢ �. (1.8)

In higher dimension N � 2 all these good properties fail. First, it is only possible
to prove that

A(v;U) �
Z

U

q
1+ |rv|2dx + |Dsv|(U), (1.9)

and the inequality is strict in some cases. Furthermore an explicit example in [1]
(which consider a slight modification of an example in [2]) shows that the subad-
ditivity property does not hold true in general. In this example, first suggested by
De Giorgi in [9], it is exhibited a simple function u : � ⇢ R2 ! R2, called triple
junction function. The function u takes only three values ↵, �, and � , which are
the vertices of an equilateral triangle of side

p
3 centered at the origin O of R2.

The plane R2 is divided in three sectors DA, DB , and DC , which have as bound-
aries three halflines with endpoint O and forming three equal angles of 2⇡/3. The
function u then is defined by setting

u = ↵ on DA, u = � on DB, u = � on DC , (1.10)
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thus showing three jumps on the halflines meeting in the triple junction O. In [1] it
is proved that for the function u : R2 ! {↵,�, � } the following happens:

(a) Let R > 0 be fixed and let BR(O) be the ball centered in O and with radius
R. In any open subdomain U ⇢ BR(O) such that O /2 U the relaxed area
functionalA(u;U) takes the form (1.9), and therefore its value is

A(u;U) = L2(U) + |Dsu|(U).

Specifically, if ⇢ 2 (0, R) and U = BR(O) \ B⇢(O), then

A(u;U) = ⇡
�
R2 � ⇢2

�
+ 3

p
3(R � ⇢);

(b) The following two inequalities are provided

A(u; BR(O))  L2(BR(O)) + 4
p
3R, (1.11)

A(u; BR(O)) > L2(BR(O)) + 3
p
3R; (1.12)

(c) There are s > R > ⇢ > 0 such that

A(u; BR(O)) > A(u; B⇢(O)) +A(u; Bs(O) \ B⇢/2(O)). (1.13)

The estimate (1.11), proved in [1], is not optimal. In [5] this bound has been im-
proved. In order to give the precise value of the upper bound found in [5] we need
some preliminaries. Let us define the rectangle R := (0, R) ⇥ (�

p
3/2,

p
3/2).

Consider the function ' : (�
p
3/2,

p
3/2) ! R+ defined as
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(1.14)

We will deal with the following minimum problem: we want to minimize the area
of the graph of continuous functions v : R ! R belonging to the family

A1'(R) :=
n
v2W 1,1(R) : v=0 on (0, R)⇥

�
�
p
3/2,

p
3/2

 
, v(0, ·)='(·)

o
. (1.15)

If v is a minimizer for this minimum problem, the corresponding value of the area
of the graph is denoted by mR , namely

mR := A(v;R) = inf{A(v;R) : v 2 A1'(R)}. (1.16)

Hence, in [5], the following inequality has been proved:

A(u; BR(O))  L2(BR(O)) + 3mR . (1.17)
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Furthermore Bellettini and Paolini [5] conjectured that such value is optimal, that
is, for any sequence of maps vk 2 C1(BR(O); R2) such that vk ! u strongly in
L1(BR(O); R2) it holds

lim inf
k!1

A(vk; BR(O)) � L2(BR(O)) + 3mR . (1.18)

In the present paper we propose a proof of this conjecture. Actually, without loss of
generality, we work in the specific case R = 1 and denote m1 = m. Therefore we
prove

A(u; B1(O)) = ⇡ + 3m. (1.19)

In order to show this result, we have to introduce some preliminaries on currents
and the concept of Cartesian maps. We thus exploit some well-known cornerstone
theorems of calculus with Cartesian currents, as their properties of closure and com-
pactness. Then, the proof of (1.19) is articulated in three sections. In the first one,
Section 3, we introduce the problem in the domain � = B1(O), and start by taking
a sequence {vk} ⇢ C1(�; R2) approaching u, supposing it is optimal, namely

A(vk;�) ! A(u;�).

Then we divide the domain in sectors in order to detect the different behavior of the
approaching sequence {vk}. In particular we consider one small triangular sector
containing the junction point O , and three other main sectors each containing one
of the lines forming the jump set of u. We first look at the graphs of vk in these
sectors, treating them as integral currents in �⇥ R2. Choosing suitable maps from
R4 to R3, and considering the push forward by them, we then reduce to consider
integral currents in R3, which have the advantage of being currents of codimension
1. This procedure of dimension reduction leads to four integral currents bS 1, bS 2,
bS 3, and T , which satisfy the following key inequality1

�
�bS 1

�
�+

�
�bS 2

�
�+

�
�bS 3

�
�+

�
�T
�
�+ L2(�)  A(u;�). (1.20)

The currents bS 1, bS 2, bS 3, and T show the following properties: they are supported
in the prism P := [0, 1) ⇥ T , where T is the closed triangle in R2 with vertices ↵,
�, and � , T is supported in {0}⇥ T , the sumbS 1+bS 2+bS 3+T is a closed current
in (�1, 1) ⇥ R2, and eachbSi shows a specific boundary @bSi which, up to an error
(see formula below), is supported on the edges of the prism: more specifically, there
are integral 1-currents N A, N B , and NC , such that,

@bS 1 = �N A + N B � (I d ⇥ ↵)][[[0, 1]]]+ (I d ⇥ � )][[[0, 1]]]+ V1,

1 To be precise, we prove this inequality with L2(�) replaced by L2(�) � ✏, where ✏ > 0 is a
small parameter depending on the geometric construction; the inequality in (1.20) follows from
the fact that we can render ✏ as small as we want optimizing the geometry of the construction, see
Section 3 and Theorem 3.7.
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with (I d ⇥ ↵)][[[0, 1]]] representing the graph of the constant map f = ↵ on the
segment (0, 1), and V1 being a current supported on {0}⇥T . Similar formulas hold
for bS 2 and bS 3 (see Section 3 for details).

Finally we are ready to state our main result, Theorem 3.7. This asserts that

�
�bS 1

�
�+

�
�bS 2

�
�+

�
�bS 3

�
�+

�
�T
�
� � 3m, (1.21)

which, together with (1.20), will provide the lower bound

A(u;�) � L2(�) + 3m.

Combining this with the upper bound proved in [5], namely (1.17), we finally con-
clude (1.19).

Let us spend some words on the optimal construction obtained in [5]. For
the recovery sequence therein the limit currents bS 1, bS 2, bS 3 will coincide with the
minimal surfaces providing the solution of problem (1.16). In particular the current
V1 (and similarly V2 and V3) turns out to be the graph of ' appearing in (1.14).
Moreover in this case the current T turns out to be null, as for the currents N A,
N B , and NC , which do not appear for the optimal recovery sequence. In some
sense, the presence of T and N A, N B , NC , do not provide better estimates for the
area functional, and at optimality, they must vanish.

In order to prove Theorem 3.7 we need to get rid of the currents N A, N B , and
NC , appearing in the boundaries of bSi . To this aim, we introduce a Steiner type
symmetrization technique in Section 4. This is the heaviest part of the paper, and
the more technical. The main idea relies in constructing three symmetrization op-
erators SA, SB , SC , each symmetrizing the currents bSi and T with respect to one
of the heights of the triangle T , and with the property of decreasing the masses of
bSi , T , and of their boundaries (see Lemma 4.23). Then, applying repeatedly these
operators, we are able to reduce to integral currents S1, S2, S3, and T which still
satisfy (1.20), but have now good properties at the boundaries; in particular the new
currents N A, N B , and NC , are null. This brings us to Section 5, where we finally
prove Theorem 3.7. First we list some key features of the brand new currents S1,
S2, S3, and T (see properties (i) and (ii) at the beginning of Section 5). Observing
that such properties are closed in the class of integral currents, we reduce our argu-
ment to a problem of minimal surfaces. This problem consists of minimizing the
mass |S1| + |S2| + |S3| + |T | among the class of integral currents satisfying prop-
erties (i) and (ii), which in particular contain a fixed boundary condition for such
currents (see problem (5.12)). Some additional Lemmas bring us to deduce that the
minimizers of this variational problem consists of three currents Si (the currents
T turns out to be zero) which can be identified with three Cartesian currents on
the rectangle R1 = (0, 1) ⇥ (�

p
3/2,

p
3/2). The boundaries of these Cartesian

currents are shown to satisfy the same Dirichlet boundary datum as in (1.15). From
this it easily turns out that the minimal mass of each Si must be m, and (1.21) is
achieved.
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In this last step it is evident how we use the good feature of the class of Carte-
sian currents in codimension 1. In fact we strongly exploit the fact that every Carte-
sian current is approximable by graphs of smooth functions, which is a property
that is true only if the target space of these functions is R (i.e., one dimensional).
We stress that at this point the dimension reduction exploited in Section 3 becomes
crucial.

In the following Section 6 we face the problem of studying the optimality of
the bound in (1.17) for different domains� still containing the triple junction. First
let us emphasize that part of the conjecture in [5] also asserts that the same bound
holds in the case that the lines meeting in O , boundaries of the regions DA, DB ,
and DC , form angle not necessary equal to 2⇡/3. We do not treat this case directly,
but a sharp inspection of the proof we provide should show that it can be adapted
to such a case, encouraging us to assert that also for this more general geometry the
conjecture is true (however we do not detail this argument here and then are not in
position to state a general result). On the one hand, as a consequence of the lack of
subadditivity, it is not possible to express the area functional with an integral for-
mula like (1.9). The example of the triple junction function and the corresponding
features described in (a) above show that it is evident that the nonlocal behavior
of A(u; ·) strongly depends on the presence of the junction point. In absence of it
the additivity comes back. Furthermore, the recovery sequence {vk} ⇢ C1(�; R2)
provided in [5] such that

L2(BR(O)) + 3mR = lim inf
k!1

A(vk; BR(O)),

shows the following feature: if we look at the graphs of vk as integral currents in
BR(O) ⇥ R2, they concentrate in the singular set Ju ⇥ R2, Ju being the union of
the three radii with endpoint the triple junction O (i.e. the jump set of u). In other
words, if Gvk 2 D2(BR(O) ⇥ R2) denotes the current carried by the graph of vk ,
then

Gvk * S,

with S a Cartesian current which writes as S = Gu + V , where V 2 D2(BR(O) ⇥
R2) represents the vertical part originated by the concentration of Gvk , and sup-
ported on the set Ju ⇥ R2. This phenomenon might lead to the following issue:
if, let us say, u 2 SBV (�; R2) and Ju represents the jump set of u, and if vk are
C1(�; R2) functions providing

A(u;U) = lim inf
k!1

A(vk;U), (1.22)

then is it true that the graphs Gvk tend to a Cartesian current S = Gu + V where the
vertical part V is concentrated on the set Ju ⇥ R2? If this question had a positive
answer, we would be led to conjecture thatA(u; ·) writes as

A(u;U) = |Gu | +Anl(u+, u�; Ju), (1.23)
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where Anl is a nonlocal term whose value depends only on the jump set Ju and on
the traces of u on it, namely u+ and u�. To my opinion this reasoning is misleading
and the answer to the previous question is, in general, negative. To justify this
assertion, we provide an example in which the domain Ub of the triple junction
function u is a subdomain of B1(O) obtained by biting part of the area where u is
constant (namely the inner part of the sectors DA, DB , and DC ). This domain still
contains the whole jump set Ju of u in B1(O), and in particular the junction point
O , since it contains a neighborhood of it (see Figure 1.1, on the right). Contrarily
to what one might aspect, the area functional computed on this domain is less then
L2(Ub) + 3m, i.e.

A(u;Ub) < L2(Ub) + 3m. (1.24)

This example proves the following assertions:

• The recovery sequence provided in [5] is not optimal for the domain Ub, even if
it contains the same discontinuity set of u in B1(O);

• A formula as (1.23) is false. Indeed, in the case � = B1(O) it turns out from
(1.19) that Anl(u+, u�; Ju) = 3m. However inequality (1.24) gives rise to a
different value ofAnl(u+, u�; Ju), even if Ju and the traces u± do not change.

We do not conjecture that the sequence vk of approximate functions we construct
in Section 6 and such that

lim inf
k!1

A(vk;Ub) < L2(Ub) + 3m

are optimal. At the same time, we believe that for this specific domain the graphs
Gvk of an optimal sequence concentrate outside the set Ju ⇥ R2. At least, in the

DA

DB

DC

O O

DA

DC

DB

Figure 1.1. On the left it is represented the domain B1(O) and the sectors DA, DB ,
and DC where the function u takes the values ↵, �, and � respectively. The three
segments meeting at O are the jump sets of u. The picture on the right represents the
thin domainUb, obtained from B1(O) by cutting part of the interior of the sectors where
u is constant; the jump set is still drawn in black, together with three small segments
connecting O to @Ub which represent the set where the vertical currents Gvk concentrate.
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specific example of Section 6, these graphs converge to a Cartesian current Gu + V
with the vertical part V supported on a set K⇥R2, where K contains, besides of Ju ,
three additional segments connecting O to the boundary of Ub, lying on the bisec-
tors of the halflines forming the triple junction (see Figure 1.1 on the right, where
the set K is emphasized). Similar examples of this behavior have been provided
in [7, Section 7], where the authors study the relaxed area functional in the pres-
ence of a function u with a prescribed discontinuity on a curve. Our construction of
the approximating sequence {vk} is similar to the one used in [7], where the jump
set of u is somehow prolonged on a path reaching the boundary. In our case, this
path is not fixed, but depends on k and in the limit as k ! 1 becomes exactly the
union of the three lines in 1.1 connecting O to the boundary. What is crucial here
is that on this set we do not have uniform convergence of vk to u.

Let us conclude this discussion emphasizing that the highly bad behavior of the
area functional becomes evident in the presence of junction points as for the map u.
It is possible that, when the jump set consists of a simple non self-intersecting curve,
a formula as (1.23) holds true. There are important contributions in this direction
in the very interesting papers [6, 7], where the authors study exactly this kind of
singularities. More specifically they prove a formula like (1.23) (with inequality
 replacing the equality =) that in some cases can be shown to be optimal (that
is equality holds). The nonlocal term Anl(u+, u�; Ju) is related to a problem of
minimal surfaces (see [6, Theorem 1.1]).

Under the light of these last observations we realize that the problem of a full
understanding of the relaxation of the area functional, and, more in general, of
polyconvex energies in codimension greater than 1, is still a challenging issue we
are far from.

ACKNOWLEDGEMENTS. I am grateful to Giovanni Bellettini for his numerous
precious suggestions which considerably enrich my work. I also thank the referees
for their careful reading of the manuscript.

2. Preliminaries

k-forms. Let ↵ be a multi-index, i.e., an ordered (increasing) subset of {1, 2, . . . ,
n}. We denote by |↵| the cardinality (or length) of ↵, and we denote by ↵ the
complementary set of ↵, i.e., the multi-index given by the ordered set {1, 2, . . . ,
n} \ ↵.

For all integers n > 0 and k � 0 with k  n, we denote by 3kRn the space of
k-vectors and by 3kRn the space of k-covectors. Let � ⇢ Rn be an open set. The
symbol Dk(�) stands for the topological vector space of smooth and compactly
supported k-forms (that is the topological vector space of compactly supported and
smooth maps on � with values in 3kRn). Any k-form ! 2 Dk(�) can be written
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as sum of elementary forms, namely

! =
X

|↵|=k
'↵dx↵,

where '↵ is a smooth compactly supported real function, and dx↵ is the simple
covector defined as dx↵ = dx↵1 ^ · · · ^ dx↵k .

Assume U ⇢ Rn and V ⇢ RN be open sets and F : U ! V be a smooth
map; then, for any ! 2 Dk(V ) is defined a form F]! 2 Dk(U) called pull-back of
! by F ; if ! = '↵dy↵ , |↵| = k, then

F]! = ('↵ � F)dF↵, (2.1)

with
dF↵ = dF↵1 ^ dF↵2 ^ · · · ^ dF↵k ,

where
dF↵i :=

X

k

@F↵i
@xk

dxk .

For a N ⇥ n matrix A with real entries and for multi-indices ↵ and � with |↵| =
|�| = k  min{n, N }, M�

↵ (A) denotes the determinant of the submatrix of A
obtained by erasing the i-th columns and the j-th rows, for all i 2 ↵ and j 2 �. We
denote by M(A) the n-vector in 3nRn+N given by

M(A) :=
nX

k=0

X

|↵|=|�|=k
� (↵,↵)M�

↵ (A)e↵ ^ "�,

where {ei }in is the canonical basis of Rn , {"i }iN the canonical basis of RN , and
� (↵,↵) is the sign of the permutation (↵,↵) (see [11, page 230]). Accordingly, we
set

|M(A)| :=

 

1+
min{n,N }X

k=1

X

|↵|=|�|=k

�
�M�

↵ (A)
�
�2
!1/2

.

Generalities on currents. The dual space of Dk(�), denoted by Dk(�), is the
space of k-currents on�. We define a weak convergence inDk(�) setting T j * T
as currents if for all ! 2 Dk(�) we have T j (!) ! T (!). For all currents T 2
Dk(�) the mass of T in U ⇢ � is the number |T |U 2 [0,+1] defined by

|T |U := sup
!2Dk(U), |!|1

T (!).

The boundary @T 2 Dk�1(Rn) of a current T 2 Dk(Rn) is defined as

@T (!) = T (d!) 8! 2 Dk�1(Rn). (2.2)

A current T is said closed if it has null boundary, namely if @T = 0 as current.
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Given an oriented surface S of dimension k  n embedded in Rn , this defines
a current in Dk(Rn), obtained as integration of k-forms over it (the “volume form”
is given by the orienting k-vector). We will often identify surfaces with currents
and use the same notation for both. Given a k-rectifiable set K (a countable union
of subsets of Lipschitz surfaces) and a summable real function ✓ on it (with respect
to the k-dimensional Hausdorff measure) we can define a current K integrating k-
forms over K as follows:

K(!) :=
Z

K
h!(x), ⌧✓(x)idHk(x), (2.3)

where h·, ·i is the duality product between covectors and vectors. Here ⌧ : S !
3k(Rn) and ✓ : S ! R are such that ⌧ (x) 2 Tx S is a simple unit k-vector for
Hk-a.e. x 2 S and ✓ is a Hk-integrable function. The current K, denoted by
K = {K , ⌧, ✓} is said rectifiable. If K has rectifiable boundary and ✓ is an integer-
valued function, then K is said rectifiable with integer multiplicity (or simply inte-
ger multiplicity current, i.m.c.). An integral current is an integer multiplicity current
with finite mass and finite boundary mass. We use the notation

N (T ) := |T | + |@T |.

An integral current T 2 Dk(Rn) is said indecomposable if there exists no integral
currentR such thatR 6= 0 6= T �R and

N (T ) = N (R) + N (T �R).

The very specific case in which the integer mutiplicity current K 2 Dn(Rn) is of
the form K = {K , ⌧, ✓} with ✓ = 1 and ⌧ = e1 ^ · · · ^ en , then K turns out to be
the standard integration over the set K and is denoted by

K = [[K ]].

Moreover if K is a set of finite perimeter then the current [[K ]] is integral.
The following theorem provides the decomposition of every integral current

and the structure of integer multiplicity indecomposable 1-currents (see [10, Section
4.2.25]).

Theorem 2.1. For every integral current T there exists a sequence of indecompos-
able integral currents Ti such that

T =
X

i
Ti and N (T ) =

X

i
N (Ti ).

Suppose T is an indecomposable integer multiplicity 1-current on Rn . Then there
exists a Lipschitz function : R ! Rn with Lip( f )  1 such that

f (0, |T |) is injective and T = f][[(0, |T |)]].

Moreover @T = 0 if and only if f (0) = f (|T |).
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Assume U ⇢ Rn and V ⇢ RN be open sets and F : U ! V be a smooth map.
The push-forward of a current T 2 Dk(U) by F is defined as

F]T (!) := T
�
⇣ F]!

�
for ! 2 Dk(V ),

where F]! is the standard pull-back of ! and ⇣ is any C1 function that is equal
to 1 on sptT \ sptF]!. It turns out that F]T 2 Dk(V ) does not depend on ⇣ and
satisfies

@F]T = F]@T . (2.4)

We will also employ the following crucial fact, which actually is valid in every
dimension but, in our setting, will be used only in codimension 1.

Theorem 2.2. Let n � 1 be an integer. Let T 2 Dn�1(Rn) be an integral current
such that @T = 0. Then there exists an integral current S 2 Dn(Rn) such that
@S = T .

This is a standard result; in particular the current S can be the so-called cone over
T , see [14, Section 7.4.4]. Besides, S can be given by the isoperimetric inequality
theorem, see [14, Theorem 7.9.1].
Cartesian currents and graphs. Let � ⇢ Rn be an open set, and let u : � ! RN

be a smooth map. The graph of u is the set

Gu :=
�
(x, y) 2 �⇥ RN : y = u(x)

 
.

This is the support of the current Gu 2 Dn(�⇥ RN ) given by

Gu := (I d ⇥ u)][[�]]. (2.5)

This turns out to be an integer multiplicity current whose mass is obtained as the
result of

|Gu |�⇥RN =
Z

�
|M(Du)|dx . (2.6)

Notice that this is exactly the area of the graph of u. In the specific case n = N = 2
this formula reads as (1.3), namely A(u;�) = |Gu |�⇥R2 . In order that Gu be an
integer multiplicity current much less regularity of u is needed. Indeed it suffices
that u is approximately differentiable a.e. in� and that all the minors M↵

� (Du) (for
all |↵| = |�| = k, for all k  min{n, N }) belong to L1(�). We denote the class of
functions u 2 L1(�; RN ) satisfying these conditions byA1(�; RN ), namely

A1
�
�; RN � :=

n
u 2 L1

�
�; RN � : u is appr. diff. a.e. in �,

and M↵
� (Du) 2 L1(�) 8 |↵| = |�| = k, k  min{n, N }

o
.
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The class of Cartesian maps is Cart(�; RN ) defined as

Cart
�
�; RN � :=

n
u 2 A1

�
�; RN � : |Gu | < +1, @Gu = 0 in �⇥ RN

o
. (2.7)

Let T be an i.m.c. inDn(�⇥RN ). For all multi-indices ↵ and � with |↵|+|�| = n
we define

T ↵�(!) := T
�
!↵�dx↵ ^ dy�

�
,

the ↵�-component of T . The T 00 component can be identified with a Radon mea-
sure on �. If the component T 00 is a Radon measure with bounded variation it is
well defined the norm

kT k1 := sup
n
T ('(x, y)|y|dy) : ' 2 C0c

�
�⇥ RN �, |'|  1

o
.

We define the class of graphs as

graph
�
�⇥ RN � :=

n
T 2Dn

�
�⇥RN � so that T is an i.m.c. with M(T )<1,

kT k1 < 1,M(@T ) < 1, T 00 � 0, ⇡]T = [[�]]
o
,

(2.8)

where ⇡ : � ⇥ RN ! � is the standard projection into �. A proper subclass of
the graphs is the class of Cartesian currents defined as follows:

cart
�
�⇥ RN � :=

n
T 2Dn

�
�⇥RN � so that T is an i.m.c. with M(T )<1,

kT k1<1, @T
�
�⇥ RN �=0, T 00�0, ⇡]T = [[�]]

o
.
(2.9)

By the structure theorem for Cartesian currents (see [11, Section 4.2.3]) we can
always decompose a Cartesian current T as a graph plus a vertical part, namely

T = Gu + S, (2.10)

where S is concentrated on a set �0 ⇥ RN , Ln(�0) = 0, and satisfies

S
�
!↵�dx↵ ^ dy�

�
= 0 if ↵ 6= 0.

In codimension 1 every Cartesian current can be approximated by graphs of Carte-
sian maps: if T 2 cart(�⇥ R) then there exists a sequence of smooth functions uk
such that Guk * T . Moreover if T = Gu + S then uk ! u in L1(�). This is a
consequence of the approximability of BV-functions with real values (see [11, Sec-
tion 4.2.4]).
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Slicing. We will need some elementary application of the technique of slicing.
Very often in the following this technique can be reduced to a generalized version
of Fubini integration theorem. For this reason we do not go into details and we refer
to [14] (see also [10] and [11]) for a complete discussion.

Let S be an integral current in Dk(R3), k � 1 and let x be one of the three
coordinates in R3. We denote by hS, ti the slice of S on the plane {x = t}. This is
an integral current of dimension k � 1 with some important features related to S .
In particular (see [14, Lemma 7.6.3]), if S is supported on a rectifiable set (denoted
by S), then hS, ti is supported on S \ {x = t}, and it holds

Z 1

�1
|hS, ti|dt  |S|. (2.11)

Moreover it holds true, forH1-a.e. t 2 R,

@hS, ti = �h@S, ti. (2.12)

2.1. Technical preliminaries

Lemma 2.3. Let D ⇢ R2 be a bounded open set and vk 2 C1(D; R2) be such that
vk ! v ⌘ c, a constant, in L1(D; R2). Assume that

kDvkkL1 + kJ (vk)kL1 < C < +1 for all k. (2.13)

Then, up to a subsequence, Gvk * Gv + S as currents, where S is the vertical part,
and

|Gv + S| = |Gv| + |S| = L2(D) + |S|. (2.14)

Moreover for all ✏ > 0 sufficiently small there exists an open set A✏ ⇢ D with
|A✏ |  ✏ such that, for a not relabeled subsequence,

Gvk

�
A✏ ⇥ R2

�
* Gv

�
A✏ ⇥ R2

�
+ S. (2.15a)

Let us write Gvk (D ⇥ R2) = Zk✏ + eZk✏ where, for any ! = !↵�dx↵ ^ dy� 2
D2(D ⇥ R2), |↵| + |�| = 2,

Zk✏
�
!↵�dx↵ ^ dy�

�
=
Z

A✏\D
!↵�(x, vk(x)))M

�
↵̄ (Dvk)(x)dx,

eZk✏
�
!↵�dx↵ ^ dy�

�
=
Z

Ac✏\D
!↵�(x, vk(x))M

�
↵̄ (Dvk)(x)dx,

and define b5 : D ⇥ R2 ! R3 the map b5 : (x1, x2, y1, y2) 7! (
q
x21 + x22 , y1, y2).

Then

b5]eZk✏ * 0. (2.15b)



OPTIMAL ESTIMATES FOR THE TRIPLE JUNCTION FUNCTION 505

Proof. By the theory of Cartesian currents we know that the weak limit of the cur-
rents Gvk is of the form Gv D+ + S where D+ is a Borel subset of D such that
|D \ D+| = 0 (see [11, Theorem 2 in Section 4.2.3]). Expression (2.14) follows
from the fact that Gv and S are singular with respect to each other, and furthermore
|Gv| = L2(D), being v ⌘ c a constant.

Let us fix ✏ > 0. By (2.13) and the biting Lemma [4] there exists a (not
relabeled) subsequence and a Borel set A✏ ⇢ D with |A✏ |  ✏ such that Dvk and
J (vk) are equi-uniformly integrable in L1(D \ A✏; R2), and thus there exist the
limits

Dvk * G weakly in L1
�
D \ A✏; R2⇥2

�
,

J (vk) * d weakly in L1(D \ A✏).

From [11, Theorem 5 in Section 4.2.3] (see formula (17) for d and (18) for G with
|�| = 2) we find out that G = 0 and d = 0, namely

Dvk * 0 weakly in L1
�
D \ A✏; R2⇥2

�
,

J (vk) * 0 weakly in L1(D \ A✏). (2.16)

Fix now any function ' 2 C1
c (D ⇥ R2); setting !i j = 'dxi ^ dy j , we infer that

Gvk (A✏ ⇥ R2)(!i j ) =
Z

A✏
'(x, vk(x))Di (vk) j (x)dx (2.17)

=
Z

D
'(x, vk(x))Di (vk) j (x)dx

�
Z

D\A✏
'(x, vk(x))Di (vk) j (x)dx,

(2.18)

tends to

Gv

�
!i j
�
+S

�
!i j
�
�
Z

D\A✏
'(x, v(x))Div j (x)dx=Gv

�
!i j
� �

A✏ ⇥ R2
�
+ S

�
!i j
�
.

To let the last term pass to the limit we have here used [11, Proposition 1, Section
1.2.4, page 54]. Arguing similarly for a form ! = !i j = 'dxi ^ dx j and for
! = 'dyi ^ dy j , thanks to the convergence of the Jacobians, we conclude (2.15a).

To prove (2.15b) we check that b5]eZk✏ (!) ! 0 for all ! 2 D2(R3). It suffices
to consider the three cases ! = 'd⇢ ^ dyi , i = 1, 2 and ! = 'dy1 ^ dy2. Take
! = 'd⇢ ^ dyi , i = 1, 2,

b5]! = ' � b5(x)
✓
x1
|x |

dx1 ^ dyi +
x2
|x |

dx2 ^ dyi
◆

,

so that, thanks to (2.16),

b5]Gvk

�
(D \ A✏) ⇥ R2

�
(!) =

X

j=1,2

Z

D\A✏
' � b5(x)

x j
|x |
@(vk)i

@x j
dx ! 0.
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If we choose ! = 'dy1 ^ dy2 we have

b5]! = ' � b5(x)dy1 ^ dy2,

and hence, from (2.16),

b5]Gvk

�
(D \ A✏) ⇥ R2

�
(!) =

Z

D\A✏
' � b5(x)J (vk)dx ! 0,

so that (2.15b) follows.

Let T be the triangle in R2 with vertices ↵, �, and � . Let ⇡T : R2 ! T be the
orthogonal projection onto the convex set T .

Lemma 2.4. Let v 2 C1(�; R2). ThenA(⇡T � v)  A(v).

Proof. We observe first that the map ⇡T � v is Lipschitz, that is of class W 1,1(�;
R2), and its Jacobian determinant satisfies, almost everywhere on �,

J (⇡T � v) = J (⇡T )(v)J (v)  J (v), (2.19)

the inequality following from the fact that J (⇡T ) is 1 on T and null elsewhere.
Moreover since ⇡T is a contraction, it holds

�
�
�
�
@(⇡T � v)1

@x1

�
�
�
�

2
+

�
�
�
�
@(⇡T � v)1

@x2

�
�
�
�

2
+

�
�
�
�
@(⇡T � v)2

@x1

�
�
�
�

2
+

�
�
�
�
@(⇡T � v)2

@x2

�
�
�
�

2

=

�
�
�
�
@(⇡T � v)

@x1

�
�
�
�

2
+

�
�
�
�
@(⇡T � v)

@x2

�
�
�
�

2


�
�
�
�
@v

@x1

�
�
�
�

2
+

�
�
�
�
@v

@x2

�
�
�
�

2

=

�
�
�
�
@v1
@x1

�
�
�
�

2
+

�
�
�
�
@v1
@x2

�
�
�
�

2
+

�
�
�
�
@v2
@x1

�
�
�
�

2
+

�
�
�
�
@v2
@x2

�
�
�
�

2
.

(2.20)

Putting together (2.19) and (2.20) we conclude.

Here we state a result which relies on standard techniques in the theory of
minimal surfaces:

Lemma 2.5. Let ' : (�
p
3/2,

p
3/2) ! R+ be the piecewise affine function de-

fined in (1.14). Let l j be an increasing sequence of positive numbers such that

l j % l > 0 as j ! 1, (2.21)

and let R j be the rectangle (0, l j ) ⇥ (�
p
3/2,

p
3/2). Let m j be the area of the

minimal surface satisfying problem (1.16) inR j , namely m j = ml j . Then

m j ! ml as j ! 1. (2.22)
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Proof. On one hand it holds m j  ml for all j . Indeed, let u j be the minimizer of
the minimum problem (1.16), i.e.,

A
�
u j ;R j

�
=
Z p

3/2

�
p
3/2

Z l j

0

q
1+ |ru j |2dx1dx2 = m j , (2.23)

and let u be the minimizer of the same problem in the domain Rl := (0, l) ⇥
(�

p
3/2,

p
3/2). We easily see that u (0, l j ) ⇥ (�

p
3/2,

p
3/2) is an immediate

competitor for the problem (1.16) inR j , and therefore

m j  A
�
u j ;R j

�
 A

�
u;R j

�
 A

�
u;Rl

�
= ml . (2.24)

We therefore deduce limm j  ml . Let us prove the opposite inequality. For fixed
j we define the function ũ j on the domainRl = (0, l) ⇥ (�

p
3/2,

p
3/2) as

ũ j (x1, x2) =

(
u j (x1 � (l � l j ), x2) if x1 2

�
(l � l j ), l

�

'(x2) otherwise.
(2.25)

It is then checked that ũ j is an admissible competitor for the problem (1.16) inRl ,
and moreover

A
�
ũ j ;Rl

�
= m j + 2

�
l � l j

�
. (2.26)

In conclusion we have found

m j + 2
�
l � l j

�
= A

�
ũ j ;Rl

�
 ml , (2.27)

and the thesis follows.

We will consider a suitable sequence {vk} ⇢ C1(�; R2) approaching the triple
junction function u and such that

lim
k!1

A(vk;�) = A(u;�). (2.28)

Notice that if we focus our attention to sequences of Lipschitz functions, the value
of the area functional does not change thanks to the approximability of functions of
class C1(�; R2) (see [5, Step 1 of the proof in Section 2]).

3. The problem in � = B1(O)

We study the problem of the area functional in the domain � = B1(O), the ball
centered at the origin and with radius R = 1. In the sequel we will denote by
u : � ! {↵,�, � } the triple junction function defined in the introduction. Let
{vk} be a sequence of functions in C1(�; R2) with vk ! u in L1(�; R2) such that



508 RICCARDO SCALA

(2.28) holds true for � = B1(O). In particular we can assume that vk converge to
u pointwise a.e. in�. Thanks to Lemma 2.4, up to replacing vk by ⇡T � vk , it is not
restrictive to assume that vk takes values in T for all k 2 N. With this assumption
we cannot ensure that vk is of class C1 everywhere, but we can still suppose that it
is of class C1 in the set v�1

k (T̊ ), where T̊ = T \ @T is the interior of T . We will
prove that

lim
k!1

A(vk,�) � L2(�) + 3m = ⇡ + 3m, (3.1)

with m = m1 being the value introduced in (1.16).

Geometric setting. Let us denote by Ji , i = 1, 2, 3, the segments of length 1 which
are the jump sets of the function u; specifically J1 is the interface between the sets
{u = ↵} and {u = � }, J2 is the interface between {u = �} and {u = ↵}, and J3 is
the interface between {u = � } and {u = �}.

We will now select three sequences of real numbers ✓ j 2 (�⇡/6,⇡/6), ⇢ j 2
(0, 1), and � j 2 (0, 1) with ✓ j ! 0, ⇢ j ! 0, and � j ! 0. We first set (identifying
R2 with C)

Bj := ⇢ j e✓ j i , A j := e
2⇡ i
3 Bj , C j := e

4⇡ i
3 Bj .

The points Bj , A j , and C j are the vertices of equilateral triangles with edge
p
3⇢ j

centered at the origin. The numbers ✓ j and ⇢ j > 0 are then chosen in such a
way that the sequence {vk} converges to u at the points Bj , A j , and C j , for all
fixed j = 1, 2, . . . . Notice that such a choice is possible since vk converges to
u a.e. in �. Moreover thanks to the specific choice of ✓ j , it is easy to see that
vk(Bj ) ! u(Bj ) = �, vk(A j ) ! u(A j ) = ↵, and vk(C j ) ! u(C j ) = � , for all
j = 1, 2, . . . .

Let l j1 and r
j
1 be two parallel halflines starting from the points A j and C j

respectively, perpendicular to the edge A jC j , and contained in the halfplane {x <

0} (see Figure 3.1). Similarly, construct the halflines l j2 := e
2⇡
3 i l j1 , r

j
2 := e

2⇡
3 i r j1 ,

l j3 := e
2⇡
3 i l j2 , and r

j
3 := e

2⇡
3 i r j2 . Up to choosing ✓ j small enough, we can assume

that these halflines form a neighborhood of the three segments Ji , i = 1, 2, 3.
The halflines l j1 and r

j
1 meet @B1�� j (O) at, say, P(l j1 ) and P(r j1 ). Similarly

are defined the points P(l ji ) and P(r ji ) for i = 2, 3. Consider the rectangle R1j of

vertices P(l j1 ), P(r j1 ), C j , and A j , let R2j := e
2⇡
3 i R1j and R

3
j := e

2⇡
3 i R2j . Let l j be

the lentgh of the segment A j P(l j1 ). The region enclosed between the lines l
j
1 , r

j
2 ,

and the circle @Bl j (A j ) (consider the sector not containing O) is denoted by DA
j .

The arc obtained as intersection of the boundary of DA
j and @Bl j (A j ) is denoted

by cAj . It is here remarkable that if the number ⇢ j is small enough with respect to
� j , then it is easily seen that the sector DA

j is contained in � = B1(O) (actually it
suffices ⇢ j  2� j ). Similarly DB

j , c
B
j are obtained by rotating D

A
j and c

A
j around O
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P (rj
2 )

rj
2cA
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DA

j

P (l 
j
1 ) lj

1
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J1R 1
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1 )

rj
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j
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j
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2

P (l 
j
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3
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3 )

Figure 3.1. The domain B1(O) is decomposed in many sectors where we treat the
graphs of vn in different way.

clockwise of an angle of 2⇡/3. If the angle is 4⇡/3 we get DC
j and c

C
j respectively.

We define the set
L j := [3i=1@R

i
j [ cAj [ cBj [ cCj .

Wewill now suitably choose the sequence of real numbers � j > 0. Let us first make
some elementary deductions from (2.28). We observe that there exists a constant
C > 0 such that

X

i,h

Z

�

�
�
�
�
@(vk)i

@xh

�
�
�
� dx +

Z

�
|J (vk)|dx  C 8k 2 N. (3.2)

In particular, by Fubini theorem, it is not restrictive to assume (up to choosing
suitably the numbers ✓ j , ⇢ j , and � j ) that for all j = 1, 2, . . . , there is a constant
C( j) > 0 such that it holds

lim inf
k!1

 
X

i,h

Z

L j

�
�
�
�
@(vk)i

@xh

�
�
�
� dH

1 +
Z

L j

|J (vk)|dH1

!

 C( j) 8 j 2 N. (3.3)

This is a consequence of the Fatou Lemma. Moreover we can also assume that the
functions vk pointwise converge to u H1-a.e. on L j . Notice that in general the
constant C( j) depends on j .
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Summarizing, we choose ✓ j , ⇢ j , and � j in such a way that:

(H1) The functions vk converge to u at the points Bj , A j , and C j , and at the points
P(l ji ), P(r ji ) for i = 1, 2, 3 and for all fixed j = 1, 2, . . . .

(H2) The functions vk pointwise converge to u H1-a.e. on L j , for all fixed j =
1, 2, . . . .

(H3) The functions vk admit a subsequence (depending on j) of functions with
uniform (with respect to k) bounded variation on L j (as a consequence of
(3.3)) for all j = 1, 2, . . . .

The set L j consists of 3 arcs and 12 segments, six of the latters are the long sides
of the rectangles Rij whose length is l j , the other six are the short sides of these
rectangles with length

p
3⇢ j . Denoting by {Lhj }

15
h=1 these arcs and segments, we

parametrize each of them by a homomorphism �hj : [0, 1] ! Lhj . Notice that

l j % 1, ⇢ j & 0, � j & 0. (3.4)

We now fix the index j 2 N. We will pass to the limit as j ! 1 only in the end of
the proof of our main result (3.1) (see Theorem 3.7 below).

Exploiting hypotheses (H1)-(H3) it is not hard to see that we can extract a
(non-relabeled) subsequence of {vk} such that

(H4) the functions vk ��hk converge in L
1([0, 1]; R2), pointwise a.e. on (0, 1), and

pointwise at the points {0, 1}, for all h = 1, . . . , 15, and converge weakly star
in BV ([0, 1]; R2).

From hypothesis (H4) it follows that the image currents (vk � �hk )][[[0, 1]]] admit
limits in the weak topology [14] in the class of integral 1-currents (and will be
identified with curves in R2 with specific endpoints). These will be crucial in the
following discussion. Notice that with this notation, and still denoting by l j1 the
segment between A j and P(l j1 ) for instance, the current (vk)][[l

j
1 ]] coincides with

(vk � �hk )][[[0, 1]]], for some h 2 {1, . . . , 15}.

Remark 3.1. The construction of the sets L j depends on the parameters in (3.4).
In what follows we will keep j fixed, and many objects we are going to define will
depend on j . We will get rid of such dependence only at the end of this section, in
the proof of Theorem 3.7 below.

The current S1k originated from R1j . Let us now focus on the rectangle R1j and let
(x1, x2) be a system of Cartesian coordinates such that R1j = (a, b) ⇥ (�

p
3⇢ j/2,p

3⇢ j/2). We can assume x1 represents the distance between the point (x1, x2)
and the segment A jC j . In such a case we have a = 0 and b = l j , with l j be-
ing the length of the part of l j1 inside the ball B1�� j (O), hence R1j = (0, l j ) ⇥
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(�
p
3⇢ j/2,

p
3⇢ j/2). We define, following the idea in [6]2, the map 8k : R1j !

R3 given by

8k(x1, x2) :=
⇣
x1, vk(x1, x2)

⌘
. (3.5)

The image of 8k is a surface in R3 which is identified with an integral current
S1k 2 D2(R3). Thus

S1k := (8k)]
⇥⇥
R1j
⇤⇤
. (3.6)

In a similar way we construct the maps 8k : Rij ! R3 and the associated image
currents Sik , for i = 2, 3. Let us introduce the projection5 : R4 ! R3 given by

5(x1, x2, y1, y2) = (x1, y1, y2). (3.7)

If we denote by 9k : R2 ! R2 ⇥ R2 the function 9k := I d ⇥ vk : (x1, x2) 7!
(x1, x2, vk(x1, x2)) we can write

8k = 5 �9k . (3.8)

The current S1k 2 D2(R3) satisfies

S1k = 5](9k)]
⇥⇥
R1j
⇤⇤

= 5]

⇣
Gvk

�
R1j ⇥ R2

�⌘
. (3.9)

Now, if T 2 D2(R4), for any 2-form ! 2 D2(R3) the push-forward of T by 5 is
defined as

5]T (!) = T
�
5]!

�
,

5]! being the pull-back of ! by 5. It is easily seen that 5]! is ! itself (can be
identified with it). As a consequence we see that5] : D2(R4) ! D2(R3) does not
increase the mass, namely

�
�S1k
�
� 

�
�Gvk

�
�
R1j⇥R2 . (3.10)

By definition, the currents Sik have boundaries @S
i
k = (8k)][[@Rij ]], i = 1, 2, 3.

Thanks to (H3) and the fact that5] does not increase the mass, it is easily checked
that the masses of these boundaries are uniformly bounded with respect to k. Let us
consider again the case i = 1 (we will argue similarly for i = 2, 3); the boundary

2 This function, using the terminology introduced in [6, 7], is a semicartesian parametrization,
whose role of dimension reduction will be crucial in the following discussion.
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can be split in four parts, each corresponding to one edge of R1j . Remembering that
R1j = (0, l j ) ⇥ (�

p
3⇢ j/2,

p
3⇢ j/2), set

T 1k = (8k)]
⇥⇥
(0, l j ) ⇥ {

p
3⇢ j/2}

⇤⇤
, (3.11a)

T 1k = (8k)]
⇥⇥
(0, l j ) ⇥ {�

p
3⇢ j/2}

⇤⇤
, (3.11b)

V 1k = (8k)]
⇥⇥
{0} ⇥ (�

p
3⇢ j/2,

p
3⇢ j/2)

⇤⇤
, (3.11c)

V 1k = (8k)]
⇥⇥
{l j } ⇥ (�

p
3⇢ j/2,

p
3⇢ j/2)

⇤⇤
, (3.11d)

(see Figure 3.2). We have

@S1k = T 1k � T 1k + V 1k � V 1k . (3.12)

T1k

V1k–V1k
–

–T1k
–

Figure 3.2. The rectangle R1j is depicted with the standard orientation. The push for-
ward of the integration on the edges by 8k gives rise to the currents denoted in the
figure.

We then use the compactness theorem for integral currents (see [14]), and letting
k ! 1 we find an integral current S1 2 D2(R3) such that, up to a not relabeled
subsequence,

S1k * S1

(we remark that S1 depends on j ; not to overburden notation we drop the label j
here). By lower semicontinuity and (3.10), we get

�
�S1
�
�  lim inf

k!1

�
�Gvk

�
�
R1j⇥R2 . (3.13)

The current SAk on the sector D
A
j . On the sector DA

j we consider polar coordinates
(⇢, ✓) centered at A j . Consider the map e5 : DA

j ⇥ R2 ! [0, l j ] ⇥ R2 given by

e5(⇢, ✓, y1, y2) = (⇢, y1, y2).

Let T be an integral current inD2(DA
j ⇥R2), and consider the push-forward by e5,

namely e5]T . Writing e5 in euclidean coordinates it is an easy check that the map
e5 is a contraction and that e5] does not increase the mass of T .
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In the spirit of what we have made on the set R1j let us now consider the fol-
lowing map e8k : DA

j ! R3,

e8k : (⇢, ✓) 7! (⇢, vk(⇢, ✓)). (3.14)

By definition, it is checked that

(e8k)]
⇥⇥
DA
j
⇤⇤

= e5]Gvk

⇣
DA
j ⇥ R2

⌘
.

We thus define

SAk := (e8k)]
⇥⇥
DA
j
⇤⇤
. (3.15)

Let SA be a weak limit for (a not-relabeled subsequence of) {SAk }, namely

e5]Gvk

⇣
DA
j ⇥ R2

⌘
= SAk * SA. (3.16)

We emphasize the dependence of SA on j . Fix ✏ > 0 and let A✏ be as in Lemma 2.3
with D = DA

j , so |A✏ |  ✏. We now split the current Gvk (DA
j ⇥ R2) = Zk✏ + eZk✏

where

Zk✏
�
!↵�dx↵ ^ dy�

�
=
Z

A✏\DA
j

!↵�(x, vk(x))M
�
↵̄ (Dvk)(x)dx, (3.17)

eZk✏
�
!↵�dx↵ ^ dy�

�
=
Z

Ac✏\DA
j

!↵�(x, vk(x))M
�
↵̄ (Dvk)(x)dx, (3.18)

for all ! 2 D2(DA
j ⇥ R2). By Lemma 2.3 we know that

e5]eZk✏ * 0, (3.19)

so that

e5]Zk✏ = e5]Gvk

⇣
DA
j ⇥ R2

⌘
� e5]eZk✏ = SAk � e5]eZk✏ * SA. (3.20)

By lowersemicontinuity we infer
�
�SA

�
�  lim inf

k!1

�
�e5]Gvk

�
�
(DA

j \A✏)⇥R  lim inf
k!1

�
�Gvk

�
�
(DA

j \A✏)⇥R2

= lim inf
k!1

⇣�
�Gvk

�
�
DA
j ⇥R2 �

�
�Gvk

�
�
(DA

j \Ac✏)⇥R2
⌘

 lim inf
k!1

�
�Gvk

�
�
DA
j ⇥R2 � lim sup

k!1

�
�Gvk

�
�
(DA

j \Ac✏)⇥R2

= lim inf
k!1

�
�Gvk

�
�
DA
j ⇥R2 � lim sup

k!1

�
�Gvk

�
�
(DA

j \A✏)⇥R2

 lim inf
k!1

�
�Gvk

�
�
DA
j ⇥R2 �

�
�
�DA

j

�
�
�+ ✏.

(3.21)
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The last inequality is due to the fact that |Gvk |(DA
j \A✏)⇥R2 � |DA

j \ A✏ | � |DA
j | � ✏.

Thus by arbitrariness of ✏ > 0 we conclude
�
�SA

�
�+

�
�
�DA

j

�
�
�  lim inf

k!1

�
�Gvk

�
�
DA
j ⇥R2 . (3.22)

Let us now restrict our attention to the boundary of SAk = (8k)][[DA
j ]] in R3. For

any fixed k, the current
(e8k)]

⇥⇥
l j1
⇤⇤

coincides with the current T 1k defined in (3.11a). As a consequence, if we set

bS 1k := S1k + SAk , (3.23)

we infer that the boundary of bS 1k coincides with the current

@bS 1k = T 2k + V 1k � T 1k � V 1k � CA
k , (3.24)

where V 1k , T
1
k , and V

1
k are defined in (3.11), and CA

k and T
2
k are the currents

CA
k :=

�e8k
�
]

⇥⇥
cAj
⇤⇤

T 2k := (e8k)]
⇥⇥
r j2
⇤⇤
. (3.25)

A similar construction as above can be done for the sectors DB
k and D

C
k . Thus we

are led to define

bS 2k := S2k + (e8k)]
⇥⇥
DB
j
⇤⇤

= S2k + SBk ,

bS 3k := S3k + (e8k)]
⇥⇥
DC
j
⇤⇤

= S3k + SCk , (3.26)

whose boundaries are, respectively,

@bS 2k = (e8k)]
⇥⇥
r j3
⇤⇤

+ V 2k � T 2k � V 2k � CB
k ,

@bS 3k = (e8k)]
⇥⇥
r j1
⇤⇤

+ V 3k � T 3k � V 3k � CC
k . (3.27)

Since by mere observations we have T 3k = (e8k)][[r
j
3 ]], and T

1
k = (e8k)][[r

j
1 ]] (com-

pare (3.11)), we conclude

@
�bS 1k +bS 2k +bS 3k

�
=

3X

i=1

�
V i
k � V i

k
�
� CA

k � CB
k � CC

k .

We now aim to pass to the limit as k ! 1. Considering the limit of the terms
in (3.24), as a consequence of hypothesis (H4), we can find five Lipschitz curves
('1) j , (h = 1, . . . , 5) defined on the interval I := [0, 1] such that the push-forward
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P(rj
2 )

CA
j

P(l j
1 )

A j

P(rj
1 )

Cj

B j

T2k

V1
k–V1

k
–

–T1k
–

Figure 3.3. The area obtained by the union of R1j and D
A
j is depicted and painted in

grey, with the standard orientation of its boundary. The push forward of the integration
on R1j by8k and on DA

j by e8k has as sum the currentbS 1j , whose boundary is the images
by such maps of the edges of the area, as showed in the figure (see (3.24)). The two
integrations over the traced segment P(l j1 )A j cancel out, since the orientation of this
segment has opposite sign when seen as part of the boundary of R1j and D

A
j .

of the integrations on I by ('1)h , are the limit currents of T
2
k , V 1k , T

1
k , V

1
k , and CA

k .
In particular (renaming such curves) we have 'A : I ! R3 and 'C : I ! R3 such
that

T 2k * ('A)][[I ]],

T 1k * �('C)][[I ]].
(3.28)

Thanks to the fact that the maps vk are converging pointwise on r
j
2 and r

j
1 to ↵

and � (respectively)3, we again infer from the theory of Cartesian currents that
the currents ('A)][[I ]] and ('C)][[I ]] are the graphs over the interval [0, 1] of the
constants ↵ and � , respectively, (possibly) plus an additional vertical part.

As for the case i = 1, we have that all currents on the right-hand side of
(3.27) admit limits as k ! 1. Indeed we see that there exists a Lipschitz curve

3 More precisely, referring to hypothesis (H4), such convergence takes place a.e. on the interval
[0, 1].
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'B : I ! R3 such that

(e8k)]
⇥⇥
r j3
⇤⇤
* ('B)][[I ]]. (3.29)

Let us first state:

Proposition 3.2. There exist three Lipschitz curves 'A : I ! R3, 'B : I ! R3,
and 'C : I ! R3 such that (3.28) and (3.29) hold true and for a.e. s 2 [0, 1] we
have

'A(I ) \ ({s} ⇥ R2) = {(s,↵)}, (3.30)
'B(I ) \ ({s} ⇥ R2) = {(s,�)}, (3.31)
'C(I ) \ ({s} ⇥ R2) = {(s, � )}. (3.32)

Proof. The current T 2k = (e8k)][[r
j
2 ]] 2 D1([0, l j ] ⇥ R2) is exactly the graph on

[0, l j ] of ((vk)1, (vk)2).
Moreover such functions restricted to [0, l j ] have equi-uniformly bounded vari-

ations, and are continuous, so that, in particular, their graphs are Cartesian currents
on [0, l j ] ⇥ R2. Up to re-parametrize these functions on [0, l j ] we can apply the
structure theorem for Cartesian Currents (see [11, Section 4.2.3]) which asserts that
the limit graph has the form (I d ⇥ u)][[[0, l j ]]] + N A, with u the limit of vk in
L1([0, l j ]; R2), and N A a vertical part which is supported on a singular set S⇥ R2.
Namely, we have

(I d ⇥ vk)]
⇥⇥⇥
0, l j

⇤⇤⇤
* (I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
+ N A, (3.33)

where we have denoted the constant map equal to ↵ by the symbol ↵ itself. There-
fore there is a subset I+ of full measure in [0, l j ] such that N A is concentrated in
([0, 1] \ I+) ⇥ R = S ⇥ R2, and on the complement I+ ⇥ R the limit current is
the integration over the segment [0, l j ] ⇥ ↵ ⇢ R3. The fact that the limit current
can be parametrized by only one path 'A = (('A)1, ('A)2) is a consequence of the
fact that for all k the current T 2k is the image of the integration over r

j
2 by uniformly

bounded BV functions4. The thesis then follows for 'A, and a similar argument
applies for 'B and 'C .

Regarding the convergence of the other terms in (3.24) and (3.27) we have
proved the following:

4 Equivalently, this is a consequence of the fact that the currents T 2k can be parametrized by
uniformly bounded BV maps defined on the same interval [0, 1] (see hypothesis (H4)). We will
see later that the set S is at most countable. This will follow from the fact that N A is a vertical
1-current with no boundary, see Proposition 3.4.
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Proposition 3.3. There exist integral currents bS 1,bS 2,bS 3 2 D2([0, l j ] ⇥ R2),
V1,V2, V3 2 D1({0} ⇥ R2), and V1,V2,V3,CA,CB,CC 2 D1({l j } ⇥ R2), such
that5

bSik * �bSi , i = 1, 2, 3, (3.34)
V i
k * �V i , i = 1, 2, 3, (3.35)

V i
k * V i , i = 1, 2, 3, (3.36)

CA
k * CA, CB

k * CB, CC
k * CC , (3.37)

and

@bS 1 = �('A)][[I ]]+ V1 + ('C)][[I ]]+ V1 + CA, (3.38)

@bS 2 = �('B)][[I ]]+ V2 + ('A)][[I ]]+ V2 + CB, (3.39)

@bS 3 = �('C)][[I ]]+ V3 + ('B)][[I ]]+ V3 + CC . (3.40)

Actually, we can say more about the currents 'A, 'B , and 'C . From the proof of
Proposition 3.2 we have found that there is a vertical current N A (see (3.33)) such
that

('A)][[I ]] = (I d ⇥ ↵)]
⇥⇥⇥
0, l j

⇤⇤⇤
+ N A, (3.41a)

and similarly we will have

('B)][[I ]] = (I d ⇥ �)]
⇥⇥⇥
0, l j

⇤⇤⇤
+ N B, (3.41b)

('C)][[I ]] = (I d ⇥ � )]
⇥⇥⇥
0, l j

⇤⇤⇤
+ NC . (3.41c)

The currents N A, N B , NC will be concentrated on a set S⇥R2, with S = {si }i2N ⇢
[0, l j ] at most countable. Indeed, using the decomposition theorem for 1-currents
(Theorem 2.1) we conclude that N A can be decomposed as a countable sum of
closed loops ↵i : [0, t Ai ] ! {si } ⇥ R2 and we might assume, by construction, that
↵i (0) = ↵i (t Ai ) = (si ,↵). In particular the cardinality of such possible set {si } is at
most countable. This is summarized in the following:

Proposition 3.4. There is a countable set S = {si }i2N ⇢ [0, l j ] and a family of
closed curves ↵i : [0, t Ai ] ! {si } ⇥ T , �i : [0, t Bi ] ! {si } ⇥ T , � i : [0, tCi ] !
{si }⇥ T (we recall that T is the closed triangle with vertices ↵, �, and � ) such that
for all i 2 N

↵i (0) = ↵i (t Ai ) = (si ,↵), (3.42)
�i (0) = �i (t Bi ) = (si ,�), (3.43)
� i (0) = � i (t

C
i ) = (si , � ), (3.44)

5 The choice of the sign in front ofbSi and V i is just a definition which will turn out to be helpful
in order to simplify some notation in the next section.
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and

('A)]t[[I ]] = (I d ⇥ ↵)]
⇥⇥⇥
0, t j

⇤⇤⇤
+
X

i
(↵i )]

⇥⇥⇥
0, t Ai

⇤⇤⇤
, (3.45)

('B)][[I ]] = (I d ⇥ �)]
⇥⇥⇥
0, t j

⇤⇤⇤
+
X

i
(�i )]

⇥⇥⇥
0, t Bi

⇤⇤⇤
, (3.46)

('C)][[I ]] = (I d ⇥ � )]
⇥⇥⇥
0, t j

⇤⇤⇤
+
X

i
(� i )]

⇥⇥⇥
0, tCi

⇤⇤⇤
. (3.47)

We remark that the sum of the lengths of the curves ↵i , �i , and � i , is finite, and
therefore up to reparametrization we can choose t Ai , t

B
i , t

B
i with finite sum.

Finally, from (3.23), by (3.13) and (3.22), we infer
�
�bS 1

�
�+

�
�DA

j
�
� 

�
�S1
�
�+

�
�SA

�
�+

�
�DA

j
�
�

 lim inf
k!1

�
�Gvk

�
�
R1j⇥R2 + lim inf

k!1

�
�Gvk

�
�
DA
j ⇥R2,

(3.48)

and similarly
�
�bS 2

�
�+

�
�DB

j
�
�  lim inf

k!1

�
�Gvk

�
�
R2k⇥R2 + lim inf

k!1

�
�Gvk

�
�
DB
k ⇥R2, (3.49)

�
�bS 3

�
�+

�
�DC

j |  lim inf
k!1

|Gvk

�
�
R3k⇥R2 + lim inf

k!1

�
�Gvk

�
�
DC
k ⇥R2 . (3.50)

Triangle current. Consider the triangle Tj with vertices A j , Bj , and C j , and let
[[Tj ]] be the current given by integration on Tj . Let J : R2 ! R3 be given by

J (y1, y2) = (0, y1, y2).

The map Jk := J � vk : Tj ! R3, induces the current (Jk)][[Tj ]] 2 D2({0} ⇥ R2)
whose total mass is easily seen to be smaller than that of Gvk in Tj ⇥ R2. Indeed,
the map J is a natural immersion and preserves the mass, whereas the mass of
(vk)][[Tj ]] is given by

Z

Tj
|J (vk)(x)|dx < A(vk, Tk) =

�
�Gvk

�
�
Tj⇥R2 . (3.51)

Notice here that the inequality is strict since we are integrating only the Jacobian of
v. As for the boundary of (Jk)][[Tj ]], this is given by the sum of the push-forward
by Jk of the integration over the edges of Tj , i.e.,

(Jk)]
⇥⇥
A jC j

⇤⇤
+ (Jk)]

⇥⇥
C j B j

⇤⇤
+ (Jk)]

⇥⇥
Bj A j

⇤⇤
.

Going back to the definition of 8k and of V 1k (see (3.8) and (3.11c)), it is observed
that Jk A jC j ⌘ 8k , and similarly for the other indices. In particular we have

@(Jk)]
⇥⇥
Tj
⇤⇤

= �V 1k � V 2k � V 3k . (3.52)
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Since by hypothesis (H3) the mass of this current is uniformly bounded with respect
to k, we infer the existence of an integral current T 2 D2({0} ⇥ R2) such that

�(Jk)]
⇥⇥
Tj
⇤⇤
* T , (3.53)

and thus

|T |  lim inf
k!1

�
�(Jk)]

⇥⇥
Tj
⇤⇤��  lim inf

k!1

�
�Gvk

�
�
Tj⇥R2, (3.54)

by (3.51). Let us finally study the boundary of T . From (3.53) we infer
�@(Jk)][[Tj ]]* @T and by (3.52), we find that

V i
k * �V i for i = 1, 2, 3, (3.55)
@T = �V1 � V2 � V3, (3.56)

where V i , i = 1, 2, 3,, are given in Proposition 3.3. By construction and again
hypothesis (H4) there exist three Lipschitz paths  i : [0, 1] ! R2, i = 1, 2, 3,
with

Vi = ( i )][[[0, 1]]], (3.57)
 1(0) = ↵,  1(1) = � =  3(0),  3(1) = � =  2(0),  2(1) = ↵. (3.58)

y2

y1

s

V2
V3

V1

b

y

Figure 3.4. This is the prism P = (0, l j ) ⇥ T . On the bottom face {0} ⇥ T the three
currents V i , i = 1, 2, 3, can be seen in grey. The area enclosed by them is the support
of the current T .

Remark 3.5. Notice again the choice of signs in front of T and V i ; this convention
is convenient to simplify notation in the next section. Notice also that with this con-
vention the currents V1, V2, V3 can be written as integration over paths connecting
↵ to � , � to ↵, and � to �, respectively.
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Total current. Consider now the currents bSik for i = 1, 2, 3 and (Jk)][[Tj ]]. With
(3.24) and (3.52) at disposal, we readly infer that the current

Uk := �bS1k �bS2k �bS3k � (Jk)]
⇥⇥
Tj
⇤⇤
, (3.59)

has boundary

@Uk = V 1k + CA
k + V 2k + CB

k + V 3k + CC
k . (3.60)

Moreover, since the maps vk take values in the triangle T , by definition of bSik and
(Jk)][[Tj ]] we find out that each currentbSik and (Jk)][[Tj ]] have support in the closure
of the prism P := [0, l j ) ⇥ T , namely

P :=
⇥
0, l j

⇤
⇥ T . (3.61)

Moreover, by (3.60), @Uk is supported in {l j } ⇥ T , or, in other words, the currents
Uk are closed as currents in D2((�1, l j ) ⇥ R2).

Passing to the limit in k ! 1 and appealing to Propositions 3.2 and 3.3 we
get:
Proposition 3.6. The current U 2 D2(R3) given by

U = bS 1 +bS 2 +bS 3 + T ,

has boundary
@U = V1 + CA + V2 + CB + V3 + CC .

Moreover U is supported in P and @U is supported in {l j } ⇥ T . In particular U is
a closed current in D2((�1, l j ) ⇥ R2).
Key inequality. We can write

A(vk,�) =
�
�Gvk

�
�
�⇥R2 =

�
�Gvk

�
�
DA
j ⇥R2 +

�
�Gvk

�
�
DB
j ⇥R2 +

�
�Gvk

�
�
DC
j ⇥R2

+
3X

i=1

�
�Gvk

�
�
Rij⇥R2 +

�
�Gvk

�
�
Tj⇥R2 +

�
�Gvk

�
�
E j⇥R2,

where E j := B1(O) \ ([3i=1R
i
j [ Tj [ DA

j [ DB
j [ DC

j ), so that, passing to the
liminf and taking into account (3.48)-(3.50) and (3.54), we conclude

A(u,�) �
�
�bS 1

�
�+

�
�bS 2

�
�+

�
�bS 3

�
�+ |T | +

�
�DA

j
�
�+

�
�DB

j
�
�+

�
�DC

j
�
�+

�
�Tj
�
�

=
�
�bS 1

�
�+

�
�bS 2| +

�
�bS 3

�
�+ |T | + ⇡ �

�
�E j

�
�.

(3.62)

We now state our main result:
Theorem 3.7. We have

�
�bS 1

�
�+

�
�bS 2

�
�+

�
�bS 3

�
�+ |T | � 3ml j . (3.63)

From this result we can easily address inequality (3.1). Indeed using (3.4) we infer
E j ! 0 as j ! 1. Inequality (3.1) is then achived from (3.62) if we show that
ml j ! m1 = m. But this is the content of Lemma 2.5.
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4. A symmetrization technique

In this section we construct three symmetrization operators for currents, denoted by
SA, SB , and SC . These are substantially based on a Steiner-type symmetrization
technique, and their role is crucial in order to prove Theorem 3.7. Indeed these
operators satisfy the feature of non-increasing the total mass of their arguments
(see Lemma 4.23). Hence, after suitably applying SA, SB , and SC to the currents
bS 1,bS 2,bS 3, and T , we will obtain the currents S1, S2, S3, and T which will satisfy

�
�S1
�
�+

�
�S2
�
�+

�
�S3
�
�+

�
�T
�
� 

�
�bS 1

�
�+

�
�bS 2

�
�+

�
�bS 3

�
�+ |T |. (4.1)

On the other hand, the symmetrization operators have the advantage of decreasing
the mass of the currents N A, N B , and NC in (3.41) (Lemma 4.23). In particular,
after a suitable combination of applications of SA, SB , and SC , they vanish. We
then arrive at the currents S1, S2, S3, and T whose corresponding N A, N B , and
NC , are null, and this will be a key ingredient in order to prove that

3ml j 
�
�
�S
1
�
�
�+

�
�
�S
2
�
�
�+

�
�
�S
3
�
�
�+

�
�T
�
�, (4.2)

(this last inequality will be addressed in Section 5). The last two inequalities to-
gether prove Theorem 3.7.

In order to introduce the symmetrization operators we first start by setting some
notation. Let us denote by hA, hB , and hC the heights of the triangle T passing
through A = ↵, B = �, and C = � respectively. We will denote the lines (axes)
obtained prolonging them bybhA,bhB , andbhC , respectively. We will now construct
an operator SB which symmetrizes the currents S

1, S2, S3, and T with respect to
the axisbhB (and similarly there will be operators relative to C and A).

Suppose for simplicity that the coordinates of ↵ 2 R2 and � 2 R2 have the
same ordinate (i.e. we choose a coordinate system in R2 such that ↵2 = �2). More-
over the coordinates of R3 are denoted by (x, y1, y2). Let PB be the foot of the
height hB , namely the intersection betweenbhB and the segment AC . Let l�B be the
halfline starting from PB and obtained by prolonging the height hB below the seg-
ment AC . Let l+B = bhB \ l�B . LetR1 := [[(0, l j ) ⇥ (↵1, �1) ⇥ {↵2}]] be the current
of integration over the rectangle in R3 with vertices (0,↵), (0, � ), (l j , � ), (l j ,↵).
Consider the current B1 2 D3(R3) obtained as integration over the set

B1 := R1 ⇥ l�B , (4.3)

i.e. B1 := [[B1]]. It is seen that

@B1 = L↵ � L� � H + H +R1, (4.4)
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I+B

I–B

B = b

C = gA = a

hB 

P B 

Figure 4.1. The triangle T with the notation introduced in Section 4.

where

L↵ =
⇥⇥
(0, l j ) ⇥ {↵1} ⇥ (�1,↵2)

⇤⇤
,

L� =
⇥⇥
(0, l j ) ⇥ {�1} ⇥ (�1,↵2)

⇤⇤
,

H =
⇥⇥
{0} ⇥ (�1,↵1) ⇥ (�1,↵2)

⇤⇤
,

H =
⇥⇥
{l j } ⇥ (�1,↵1) ⇥ (�1,↵2)

⇤⇤
.

(4.5)

Moreover (see (3.11c) and (3.35)), V1 + [[{0} ⇥ (�1,↵1) ⇥ {↵2}]] is a closed current
in D1({0} ⇥ R2) (by convention V1 has the orientation in such a way it connects ↵
to � ), so that there is a currentW1 2 D2({0} ⇥ R2) with

@W1 = �V1 � [[{0} ⇥ (�1,↵1) ⇥ {↵2}]].

By Proposition 3.3 and Proposition 3.4 the boundary of the current bS 1 is

@bS 1 = � (I d ⇥ ↵)]
⇥⇥
[0, l j ]

⇤⇤
�
X

i
(↵i )]

hh⇥
0, t Ai

⇤ii
+ V1

+ (I d ⇥ � )]
⇥⇥
[0, l j ]

⇤⇤
+
X

i
(� i )]

hh⇥
0, tCi

⇤ii
+ V1 + CA.

(4.6)
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Since (see (3.25) and (3.37)) V1 + CA is supported on {l j } ⇥ R2 we have

@bS 1
�
(�1, l j ) ⇥ R2

�
=�(I d ⇥ ↵)]

⇥⇥
[0, l j ]

⇤⇤
�
X

i
(↵i )]

⇥⇥⇥
0, t Ai

⇤⇤⇤
+ V1

+ (I d ⇥ � )]
⇥⇥
[0, l j ]

⇤⇤
+
X

i
(� i )]

⇥⇥⇥
0, tCi

⇤⇤⇤
.

(4.7)

Recall that the arcs ↵i have image in {si }⇥T , and are closed. We infer the existence
(see Theorem 2.2) of integral currents Y A

i 2 D2({si } ⇥ T ) such that

@Y A
i = (↵i )]

⇥⇥⇥
0, t Ai

⇤⇤⇤
, i 2 N.

There exist sets with finite perimeter (Ai )+h and (Ai )�h in {si } ⇥ R2 such that

Y A
i =

X

h

⇥⇥
(Ai )+h

⇤⇤
�
X

h

⇥⇥
(Ai )�h

⇤⇤
. (4.8)

Assume also that this decomposition is made of undecomposable components, as
in Theorem 2.1. Accordingly, we set

�
Y A
i
�+

:=
X

h

⇥⇥
(Ai )+h

⇤⇤
,

�
Y A
i
��

=
X

h

⇥⇥
(Ai )�h

⇤⇤
. (4.9)

Similarly

Y B
i =

�
Y B
i
�+

�
�
Y B
i
��

=
X

h

⇥⇥
(Bi )+h

⇤⇤
�
X

h

⇥⇥
(Bi )�h

⇤⇤
, (4.10)

YCi =
�
YCi
�+

�
�
YCi
��

=
X

h

⇥⇥
(Ci )+h

⇤⇤
�
X

h

⇥⇥
(Ci )�h

⇤⇤
. (4.11)

Notice that since these components are undecomposable we have, essentially,
(Ai )+h \ (Ai )�k = ? for all h, k, and similarly for B and C (by essentially we
mean that the intersection has nullH2-measure). Denote

Y A :=
X

i
Y A
i , Y B :=

X

i
Y B
i , YC :=

X

i
Y Ci .

We define G1 2 D2((�1, l j ) ⇥ R2) as

G1 := bS 1 + Y A � YC + L↵ � L� +W1 � H. (4.12)

By (4.5) and (4.7) we observe that G1 is closed (notice that in the last formula
we consider G1 as a current in (�1, l j ) ⇥ R2 instead of R3, so that we do not
need to add H to make it boundaryless.). Then there exists an integral current
G1 2 D3((�1, l j ) ⇥ R2) with @G1 = G1 (see, again, Theorem 2.2). The current
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V1

W1

Ŝ1

H

Lg

(0, b1 , b2 )

(0, a1 , a2 )

(0, g1 , g2 )

(lj, a1 , a2 )

(lj, g1 , g2 )

(lj, b1 , b2 )

Figure 4.2. In this picture is depicted in grey the surface bS 1. The curve in bold black
is instead V1, whereas the region contained between V1 and the segment with vertices
(0,↵1,↵2) and (0, �1, �2) is W1. The rectangle with vertices (0,↵1,↵2), (0, �1, �2),
(l j , �1, �2), and (l j ,↵1,↵2) isR1, while the parallelepiped (with infinite height) below
it is B1. There are labeled the two faces of it, H and L� . The face opposite to H is H ,
and the one opposite to L� is L↵ . For simplicity we have depicted the simpler case in
which the currents YC and Y A are null (as a consequence N A and N B are null).

G1 turns out to be a sort of “subgraph” of the surface bS 1 (see Figure 4.2). The idea
now is to symmetrize G1. To this aim we symmetrize G1 by Steiner symmetrization
and we will define the symmetrized of G1 as the boundary of the obtained set.
More precisely, let us explain this procedure in details. From Theorem 2.1 there are
measurable sets with locally finite perimeter U1h ⇢ (�1, l j ) ⇥ R2 such that

G1 =
X

h
✓h
⇥⇥
U1h
⇤⇤
, ✓h 2 {�1, 1}, (4.13)

and for every bounded open set A ⇢ (�1, l j ) ⇥ R2 it holds

|G1|A =
X

h

�
�@U1h

�
�
A.

Up to translating the sets U1i in the y1 direction ((x, y1, y2) 7! (x, y1 + t, y2)) we
can assume they are all mutually disjoint and with multiplicity +1 or �1 . Then
it is well defined the set SB(U1) obtained by Steiner symmetrization of the set
U1 := [hU1h with respect to the plane containing [0, l j ] ⇥ hB (see [15, Section
14.1] for the definition of Steiner symmetrization and its properties). The new set
SB(U1) defines a current

bSB(G1) :=
⇥⇥
SB
�
U1
�⇤⇤

, (4.14)
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whose boundary satisfies
�
�@bSB(G1)

�
�
A 

X

j

�
�
�@U1j

�
�
�
A

= |G1|A, (4.15)

for every bounded open set A ⇢ (�1, l j ) ⇥ R2 (see [15, Section 14.1]). It is
important here to observe that it might happen that the set SB(U1) is not contained
in the solid

Q := B1 [ P,

(where B1 is defined in (4.3) and with P being the prism P = [0, l j ) ⇥ T ), as it is
for the original current G1. This is due to the fact that before symmetrizing it, the
current G1 might have high multiplicity in Q, while the symmetrization enforces it
to have multiplicity 1. In the case SB(U1) exceeds Q we need to restrict it to Q,
and hence we set

SB(G1) :=
⇥⇥
SB(U1) \ Q

⇤⇤
.

It is easy to see that, since Q is a convex set, inequality (4.15) still holds true,
namely

|@SB(G1)|A  |G1|A, (4.16)

for every bounded open set A ⇢ (�1, l j ) ⇥ R2.
Definition 4.1. The symmetrization with respect to the hB axis of G1 is

SB(G1) := @SB(G1). (4.17)

Remark 4.2. Let us emphasize that the symmetrization of the current G1, obtained
as integration over the symmetrized set SB(U1) is well defined and does not depend
on the specific decomposition in (4.13). Indeed it is not difficult to see that SB(U1)
can be obtained also without the decomposition theorem for currents, in the fol-
lowing way. Consider the plane R ⇥bhB , containing the height hB and the edge
[0, l j ] ⇥ {�} of the prism P . Let (s, t) be two orthogonal coordinates on this plane,
and let rs,t be the line passing through the point (s, t) and orthogonal to R ⇥bhB .
By slicing it is possible to consider the 1-current hG1, (s, t)i, which represents the
restriction of G1 to the line rs,t . This is uniquely determined for a.e. (s, t) 2 R2.
Hence we can consider the mass ms,t := |hG1, (s, t)i| and define the set SB(U1)
symmetric with respect to R ⇥ bhB in such a way that, if rs,t is endowed with a
coordinate x such that x = 0 at rs,t \ (R ⇥bhB), then

SB(U1) \ rs,t :=
⇣
�
ms,t

2
,
ms,t

2

⌘
.

Remark 4.3. Let us also observe that the presence of the current B1 in the defi-
nition of G1 (see (4.3) and (4.4)) is not crucial but it is convenient for exposition.
Nevertheless the symmetrization of G1 is trivial below the plane containing R1,
since it transforms B1 into itself. The fact that the symmetrization of G1 might have
support exceeding the solid Q can only take place in the upper halfspace R2 ⇥ l+B .
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In order to define the symmetrization of the current bS 1 (introduced in Defini-
tion 4.13 below), we first need to symmetrize the currents Y A and YC (whose
symmetrizations are given in Definitions 4.7 and 4.10). To this aim, let us ana-
lyze what happens to the vertical parts of the current G1 after the symmetrization.
We consider two cases.
Case si > 0. Let si 2 (0, l j ) be as in Proposition 3.4, and consider the correspond-
ing decomposition in (4.8). The currents Y A

i and Y
C
i satisfy

@Y A
i =

X

h

⇥⇥
@A+

h
⇤⇤

�
X

h

⇥⇥
@A�

h
⇤⇤
, @YCi =

X

h

⇥⇥
@C+

h
⇤⇤

�
X

h

⇥⇥
@C�

h
⇤⇤
. (4.18)

Let bS 1 si = bS 1 ({si } ⇥ R2) be the part of the current bS 1 with support in the
plane {si } ⇥ R2. Notice that G1 ({si } ⇥ R2) := Y A

i � YCi + bS 1 si ; this is the
part of G1 in {si } ⇥ R2. More precisely, if, as in (4.13), G1 =

P
h ✓h[[U1h ]], then

G1
�
{si } ⇥ R2

�
:=
X

h
�h✓h

⇥⇥
@U1h \

�
{si } ⇥ R2

�⇤⇤
, (4.19)

where @U1h is the reduced boundary of U
1
h and �h is 1 or �1 according to whether

@U1h has external normal vector equal to (1, 0, 0) or (�1, 0, 0), respectively (the
orientation of @U1h is given by the volume form inherited by its normal unit vector).
Let I+ and I� be the sets of indices for which �h = ±1 respectively. Equivalently
(4.19) writes as

G1
�
{si } ⇥ R2

�
:=

X

h2I+
✓h
⇥⇥
@U1h \

�
{si } ⇥ R2

�⇤⇤

�
X

h2I�
✓h
⇥⇥
@U1h \

�
{si } ⇥ R2

�⇤⇤
.

(4.20)

Accordingly set

G1
�
{si } ⇥ R2

�±
:=

X

h2I±
✓h
⇥⇥
@U1h \

�
{si } ⇥ R2

�⇤⇤
, (4.21)

so that

G1
�
{si } ⇥ R2

�
= G1

�
{si } ⇥ R2

�+
� G1

�
{si } ⇥ R2

��
.

Now we want to study the boundary of the current SB(G1) which is concentrated
on the plane {si } ⇥ R2, i.e., the restriction of SB(G1) to such plane. Let (U̇1h )i :=
(U1h \ @U1h ) \ ({si } ⇥ R2).
Definition 4.4. Let bE0i be the Steiner symmetrization with respect tobhB of the set
[h(U̇1h )i (seen as a subset of {si } ⇥ R2). Let bE+

i be the Steiner symmetrization of
the set ⇣

[h
�
U̇1h
�
i

⌘[⇣
[h2I+

�
@U1h

�
\
�
{si } ⇥ R2

�⌘
,
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(again considered union of disjoint sets, up to translation) and let bE�
i be the Steiner

symmetrization of the set
⇣

[h
�
U̇1h
�
i

⌘[⇣
[h2I�

�
@U1h

�
\
�
{si } ⇥ R2

�⌘
.

Again it might happen that bE0i , bE
+
i , bE

�
i intersect R3 \ Q, so that we set

E0i := bE0i \ Q, E+
i := bE+

i \ Q, E�
i := bE�

i \ Q. (4.22)

Observe that E0i = bE0i \ Q = bE0i \ Ti where Ti = {si } ⇥ T . This holds true since
the original currents G1 ({si } ⇥ R2) have support in the triangle {si } ⇥ T .

Lemma 4.5. It holds

SB(G1)
�
{si } ⇥ R2

�
=
⇥⇥
E+
i \ E�

i
⇤⇤

�
⇥⇥
E�
i \ E+

i
⇤⇤
. (4.23)

In particular �
�SB(G1)

�
{si } ⇥ R2

��� =
�
�E+

i 1E
�
i
�
�.

Proof. We can always split

G1 =
�
G1i
�+

+
�
G1i
��

,

where (G1i )+ :=
P

h ✓h[[U1h\({x < si })]] and (G1i )� :=
P

h ✓ j [[U1h\({x > si })]]. It
is then easy to see that their boundaries (seen as sets, with a little abuse of notation)
are

@
�
G1i
�+

=
�
[h U̇1h

�
i

[⇣
[h2I+ @U1h \

�
{si } ⇥ R2

�⌘
,

and similarly

@
�
G1i
��

=
�
[h U̇1h

�
i

[⇣
[h2I� @U1h \

�
{si } ⇥ R2

�⌘
.

In particular the symmetrizations of (G1i )+ and (G1i )�, namely SB(G1i )+ and
SB(G1i )�, have boundaries on {si } ⇥ R2 given by bE+

i and bE�
i respectively. To

study the symmetrization of G1i we consider the sum of SB(G1i )+ and SB(G1i )�.
Since their orientations are opposite, the thesis follows just by considering the re-
strictions to Q.

The positive and negative part of the current SB(G1) ({si } ⇥ R2) are

SB(G1)+
�
{si } ⇥ R2

�
=
⇥⇥
E+
i \ E�

i
⇤⇤
,

SB(G1)�
�
{si } ⇥ R2

�
=
⇥⇥
E�
i \ E+

i
⇤⇤ (4.24)
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B = b B = b

A = a C = g

hB hB

A = a C = g

Figure 4.3. In the picture on the left we have drawn the current G1 ({si }⇥R2). The set
colored in dark grey is [h(U̇1h )i , the one in grey is ([ j (U̇1h )i )

S
([h2I+(@U1h ) \ ({si } ⇥

R2)) whereas the one in black is ([ j (U̇1h )i )
S

([h2I�(@U1h )\ ({si }⇥ R2)). The picture
on the right is the symmetrized set. In particular, the dark grey zone is the set E0i , the
one in dark grey and black is the set E�

i , while the one in dark and grey is E
+
i . In this

case we see that E+
i contains E

�
i (we have to consider that the grey area overlaps the

black one, i.e. the black area is part of the grey one in this example).

shortly denoted by

SB
�
G1i
�+

= SB(G1)+
�
{si } ⇥ R2

�
,

SB
�
G1i
��

= SB(G1)�
�
{si } ⇥ R2

�
,

(4.25)

and

SB(G1)
�
{si } ⇥ R2

�
= SB

�
G1i
�

= SB
�
G1i
�+

� SB
�
G1i
��

. (4.26)

At this stage it is convenient to define Yi = Y A
i �YCi = (Y A

i )+ �(YCi )+ �(Y A
i )� +

(YCi )� (the second equality due to (4.9)); it turns out that

Yi =
X

h

⇥⇥
(Di )+h

⇤⇤
�
X

h

⇥⇥
(Di )�h

⇤⇤
,

for suitable sets (Di )+h and (Di )�h in {si } ⇥ R2 (notice that by hypothesis of un-
decomposibility it turns out that [h(Di )+h and [h(Di )�h are essentially disjoint).
Hence we decompose Y i in a positive and negative part, namely Yi = Y+

i � Y�
i ,

where

Y±
i :=

X

h

⇥⇥
(Di )±h

⇤⇤
. (4.27)

It turns out

|Yi | =
�
�Y A
i � YCi

�
� =

�
�Y+
i
�
�+

�
�Y�
i
�
�. (4.28)
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Consider now the currents F+
i ,F�

i 2 D2({si } ⇥ R2) given by

F±
i := G1

�
{si } ⇥ R2

�±
� Y±

i , (4.29)

where we employed the notation (4.21). Note that

F+
i �F�

i = G1
�
{si } ⇥ R2

�
� Yi .

Decomposing F±
i in undecomposable components, we find two families of sets

(Z+
i )h and (Z�

i )h such that

F+
i =

X

h
✓h
⇥⇥�
Z+
i
�
h
⇤⇤
, F�

i =
X

h
✓h
⇥⇥�
Z�
i
�
h
⇤⇤

✓h 2 {�1, 1}. (4.30)

We are then led to define:
Definition 4.6. The set bF+

i is the Steiner symmetrization with respect tobhB of the
set �

[h U̇1h
�
i

[
[h
�
Z+
i
�
h

(again considered as union of disjoint sets in {si } ⇥ R2, up to translation) and bF�
i

is the Steiner symmetrization of the set
�
[h U̇1h

�
i

[
[h
�
Z�
i
�
h .

We consider their restrictions to Q, and, since also in this case Fi have supports in
Ti , such restrictions coincide with

F+
i := bF+

i \ Ti , F�
i := bF�

i \ Ti .

The symmetrizations of the currents Y A
i and Y

C
i are then defined as follows:

Definition 4.7. Let5↵ be the halfplane in R2 bounded by the axisbhB and contain-
ing ↵. Let5� be the complementary halfplane. We define

SB(Y A
i ) :=

⇥⇥
E+
i \5↵

⇤⇤
�
⇥⇥
E�
i \5↵

⇤⇤
�
⇥⇥
F+
i \5↵

⇤⇤
+
⇥⇥
F�
i \5↵

⇤⇤
, (4.31)

�SB(YCi ) :=
⇥⇥
E+
i \5�

⇤⇤
�
⇥⇥
E�
i \5�

⇤⇤
�
⇥⇥
F+
i \5�

⇤⇤
+
⇥⇥
F�
i \5�

⇤⇤
. (4.32)

It is also convenient to define SB(Yi ) = SB(Y A
i ) � SB(YCi ) = SB(Y+

i ) � SB(Y�
i )

with
SB
�
Y±
i
�

:=
⇥⇥
E±
i
⇤⇤

�
⇥⇥
F±
i
⇤⇤
.

First, by definition, it turns out that the currents SB(Y A
i ) and SB(YCi ) are supported

on disjoint sets. Therefore
�
�
�SB

�
Y A
i
�
� SB

�
YCi
���
� =

�
�
�SB

�
Y A
i
���
�+

�
�
�SB

�
YCi
���
� .
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Moreover, we have the following:

Lemma 4.8. The currents SB(Y A
i ) and SB(YCi ) satisfy

�
�
�SB

�
Y A
i
���
�+
�
�
�SB

�
YCi
���
�=
�
�
�SB

�
Y A
i
�
�SB

�
YCi
���
�
�
�Y A
i � YCi

�
�
�
�Y A
i
�
�+
�
�YCi

�
�. (4.33)

Proof. By writing
⇥⇥
E±
i
⇤⇤

�
⇥⇥
F±
i
⇤⇤

=
⇥⇥
E±
i \ F±

i
⇤⇤

�
⇥⇥
F±
i \ E±

i
⇤⇤
,

we infer

SB
�
Y A
i
�
�SB

�
YCi
�
=
⇥⇥
E+
i \ F+

i
⇤⇤

�
⇥⇥
F+
i \ E+

i
⇤⇤

�
⇥⇥
E�
i \ F�

i
⇤⇤

+
⇥⇥
F�
i \ E�

i
⇤⇤
.

Now, since |Y+
i | + |Y�

i | = |Y A
i � YCi | (by hypothesis on the decomposition), the

thesis will be proved if we show that
�
�⇥⇥E+

i \ F+
i
⇤⇤

�
⇥⇥
F+
i \ E+

i
⇤⇤�� 

�
�Y+
i
�
�, (4.34)

�
�⇥⇥E�

i \ F�
i
⇤⇤

�
⇥⇥
F�
i \ E�

i
⇤⇤�� 

�
�Y�
i
�
�. (4.35)

To see the first inequality (the second is similar) we argue by slicing, considering
sections of the currents G+

i = G1 ({si } ⇥ R2)+ and (Fi )+ at {y2 = t}. First
observe that the mass

�
�⇥⇥E+

i \ F+
i
⇤⇤

�
⇥⇥
F+
i \ E+

i
⇤⇤�� =

�
�E+

i 1F
+
i
�
� =

Z +1

�1

�
��E+

i 1F
+
i
�
\ {y2 = t}

�
� dt,

and then that |(E+
i 1F

+
i )\ {y2 = t}|  |(bE+

i 1
bF+
i )\ {y2 = t}|. Moreover, at fixed

t it follows, by Definitions 4.4 and 4.6, that |(bE+
i 1

bF+
i ) \ {y2 = t}| = ||hG+

i , ti| �
|hF+

i , ti|| (here we use that the decompositions in (4.13) and (4.30) are made of
undecomposable components; see also Remark 4.2), and hence |(E+

i 1F
+
i )\{y2 =

t}|  ||hG+
i , ti|� |hF+

i , ti||  |hG+
i �F+

i , ti| = |hY+
i , ti|. Therefore we conclude

�
�⇥⇥E+

i \ F+
i
⇤⇤

�
⇥⇥
F+
i \ E+

i
⇤⇤�� 

Z +1

�1

�
�⌦Y+

i , t
↵�� dt 

�
�Y+
i
�
�. (4.36)

Case si = 0. In this case we define the sets bE00 , bE
+
0 , bE

�
0 , E

0
0 , E

+
0 , E

�
0 as in Defini-

tion 4.4. First let us observe that the component G1 ({0} ⇥ R2)+ is null together
with the sets (U̇1j )0 (see (4.21)). As a consequence the sets bE

0
0 , bE

+
0 , E

0
0 , and E

+
0 ,

are all empty. In this case we need a different definition for the symmetrization of
Y A
0 = Y A ({0} ⇥ R2) and YC0 = YC ({0} ⇥ R2). As before, we define

Y0 = Y A
0 � YC0 .
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B = b B = b

A = a C = g A = a C = g

hB hB

Figure 4.4. The figure on the left represents the two currents Y A
i and Y

C
i . On the right,

referring also to Figure 4.3, the two sets F+
i and F�

i are depicted; the first one is the
union of all the colored area (grey, that overlaps the black one, and dark grey) whereas
F�
i is the union of the dark grey and black areas. These areas are a bit bigger than the
corresponding in Figure 4.3, their difference will give rise to the symmetrized currents
SB(Y A) and SB(YC ).

Then, in place of (4.29), we define

�F�
0 := �G1

�
{0} ⇥ R2

��
� Y0. (4.37)

Decomposing F�
0 in undecomposable components we find

F�
0 =

X

h
✓h[[(Z0)h]] ✓h 2 {�1, 1},

and therefore we arrive at:
Definition 4.9. The set bF�

0 is the Steiner symmetrization with respect tobhB of the
set [h(Z0)h (again considered as union of disjoint sets in {0} ⇥ R2). We consider
its restriction to Q,

F�
0 := bF�

0 \ Q.

We can now introduce the symmetrizations of the currents Y A
0 and Y

C
0 :

Definition 4.10. We define

SB
�
Y A
0
�

:= �
⇥⇥
E�
0 \5↵

⇤⇤
+
⇥⇥
F�
0 \5↵

⇤⇤
, (4.38)

�SB
�
YC0
�

:= �
⇥⇥
E�
0 \5�

⇤⇤
+
⇥⇥
F�
0 \5�

⇤⇤
. (4.39)

We also set SB(Y0) = SB(Y A
0 ) � SB(YC0 ) so that

SB(Y0) := �
⇥⇥
E�
0
⇤⇤

+
⇥⇥
F�
0
⇤⇤
.
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Lemma 4.11. The currents SB(Y A
0 ) and SB(YC0 ) satisfy

�
�
�SB

�
Y A
0
���
�+
�
�
�SB

�
YC0
���
�=
�
�
�SB

�
Y A
0
�
�SB

�
YC0
���
�
�
�Y A
0 �YC0

�
�
�
�Y A
0
�
�+
�
�YC0

�
�. (4.40)

Proof. As in Lemma 4.8 we infer

SB
�
Y A
0
�
� SB

�
YC0
�

= �
⇥⇥
E�
0 \ F�

0
⇤⇤

+
⇥⇥
F�
0 \ E�

0
⇤⇤
.

Then we will prove that
�
�⇥⇥E�

0 \ F�
0
⇤⇤

�
⇥⇥
F�
0 \ E�

0
⇤⇤��  |Y0|, (4.41)

Y0 = Y A
0 � YC0 . Also in this case we proceed by slicing considering sections of the

currents
�
G10
��

= G1
�
{0} ⇥ R2

�� and F�
0 at {y2 = t}.

We then conclude as in the proof of Lemma 4.8 by observing that

�
�⇥⇥E�

0 \ F�
0
⇤⇤

�
⇥⇥
F�
0 \ E�

0
⇤⇤�� =

�
�E�
0 1F

�
0
�
� =

Z +1

�1

�
��E�

0 1F0
�
\ {y2 = t}

�
� dt,

and using the inequality |(E�
0 1F

�
0 ) \ {y2 = t}|  ||h(G10)

�, ti| � |hF�
0 , ti|| 

|h(G10)
� �F�

0 , ti| = |hY0, ti|.

We now define the symmetrization of the currentW1. We recall that this is the
current in D2({0} ⇥ R2) such that @W1 = �V1 � [[{0} ⇥ (↵1, �1) ⇥ {↵2}]]. There
exist sets Wh ⇢ {0} ⇥ R2 with

W1 � H =
X

h
✓h[[Wh]] ✓h 2 {�1, 1}.

Definition 4.12. The Steiner symmetrization of [hWh with respect to the axisbhB
is the set bSB(W1), and its intersection with Q0 := Q \ ({0} ⇥ R2) is denoted by
SB(W1). We define the current

SB(W1) := �[[SB(W1)]]+ H,

where, by convention, the set SB(W1) is oriented by the unit vector (1, 0, 0). We
define

SB
�
V1
�

:= �[[{0} ⇥ (↵1, �1) ⇥ {↵2}]]� @SB(W1). (4.42)
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It turns out that

|SB(W1)|  |W1|. (4.43)

Notice that such inequality will be an equality if the symmetrization of [hWh is
already enclosed in Q0. Moreover it is observed that SB(V1) coincides with the
restriction of @SB(W1) to the halfplane {0} ⇥ R ⇥ l+B . Hence by the property of the
Steiner symmetrization it follows that

�
�SB

�
V1
��� 

�
�V1

�
�, (4.44)

(it is straightforward that, in addition, such inequality is strict if the symmetrization
of [hWh exceeds the set Q0, since the left-hand side becomes even smaller after the
intersection). Finally, observe that SB(V1)will have support in T0 = T\({0}⇥R2).

We are now in position to define the symmetrization of the current bS 1.
Definition 4.13. The symmetrization of the current bS 1 with respect to the axisbhB
is the current SB(bS 1) 2 D2((�1, l j ) ⇥ R2) defined as

SB
�bS 1

�
:= SB(G1) � SB

�
Y A�+ SB

�
YC
�
� L↵ + L� + H � SB(W1). (4.45)

Since SB(G1) is closed it turns out that

@SB
�bS 1

�
= �@SB

�
Y A�+ @SB

�
YC
�
� (I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤

+ (I d ⇥ � )]
⇥⇥⇥
0, l j

⇤⇤⇤
+ SB

�
V1
�
.

(4.46)

We now prove the crucial result:

Theorem 4.14. It holds �
�
�SB

�bS 1
���
� 

�
�bS 1

�
�.

Proof. We first decompose SB(bS 1) as

SB
�bS 1

�
= SB

�
L1
�
+
X

i
SB
�bS 1

� �
{si } ⇥ R2

�
,

where {si } ⇢ [0, l j ) is the countable set such that for all si the current
SB(bS 1) ({si } ⇥ R2) is not negligible. The complementary current is SB(L1).
Roughly speaking, SB(L1) is the lateral part of the current SB(bS 1). It is easy to
see, by the definition of the Steiner symmetrization, that the symmetrization SB(U)
of a set U does not increase the mass of both the lateral part of the set, and its com-
plementary part (@U \ {si } ⇥ R2). Moreover intersecting SB(U) with the solid Q
gives rise to a still smaller lateral part. In particular we infer

�
�
�SB

�
L1
���
� 

�
�L1

�
�, (4.47)
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so that to conclude the proof we have to show that for all sections {si } ⇥ R2 it turns
out

�
�
�SB

�bS 1
���
�
�
{si } ⇥ R2

�

�
�bS 1

�
� �

{si } ⇥ R2
�
. (4.48)

We distinguish the cases si = 0 and si 6= 0. In the previous one we have

SB
�bS 1

� �
{0} ⇥ R2

�
= �SB

�
G10
��

� SB(Y0) � SB
�
W1�+ H, (4.49)

(indeed in this case SB(G10)
+ = 0) whereas in the latter

SB
�bS 1

� �
{si } ⇥ R2

�
= SB

�
G1i
�+

� SB
�
G1i
��

� SB
�
Y+
0
�
+ SB

�
Y�
0
�
, (4.50)

(recall notation (4.25)). Let us treat the first case. We establish (4.48) arguing
by slicing, as in the proof of Lemma 4.8, namely restricting to every section of this
currents at {0}⇥R⇥{t}, t � ↵2 (since the currents involved are integration over sets,
this argument can be reduced to Fubini theorem). Recall that bS 1 ({0} ⇥ R2) =
�(G10)

� � Y0 �W1 + H , so that, by (4.43), for t � ↵2,
�
�
�
⌦bS 1

�
{0} ⇥ R2

�
, t
↵��
� �

�
�
�
�
�
�
⌦�
G10
��

+ Y0), t
↵��
��

�
�
�
⌦
W1, t

↵��
�
�
�
�

=
�
�
�
�
�
�bF�
0 \ {y2 = t}

�
�
��

�
�
�bSB(W1) \ {y2 = t}

�
�
�
�
�
� .

(4.51)

Here we have used bSB(W1), the set obtained by Steiner symmetrization of [hWh
without intersection with Q0 (see Definition 4.12). Notice that, by definition of
Steiner symmetrization with respect to hB , and taking into account that the edge of
T0 has length

p
3, it turns out that

�
�F�
0 \ {y2 = t}

�
� = ⌧

���bF�
0 \ {y2 = t}

�
��,

�
�SB(W1) \ {y2 = t}

�
� = ⌧

���bSB(W1) \ {y2 = t}
�
��,

(4.52)

where ⌧ (x) = min{|x |, l(t)}, with l(t) = 3/2 � t be the width of the triangle T at
height t . Since ⌧ is Lipschitz continuous with constant 1, from (4.51) it follows that

�
�
�
⌦bS 1

�
{0} ⇥ R2

�
, t
↵��
� �

�
�
�
�F�
0 \ {y2 = t}

�
��

�
�SB(W1) \ {y2 = t}

�
�
�
� . (4.53)

On the other hand, recalling that�SB(G10)
� = �[[E�

0 ]] and�SB(Y0) = �[[F�
0 ]]+

[[E�
0 ]], from (4.49) we infer

D
SB
�bS 1

� �
{0} ⇥ R2

�
, t
E
= �

⌦⇥⇥
F�
0
⇤⇤
, t
↵
� hSB(W1), ti, (4.54)

and, since for every t � ↵2 it holds (F�
0 \ {y2 = t}) ⇢ (SB(W1) \ {y2 = t}) (or

viceversa), we conclude
�
�
�
⌦
SB
�bS 1

� �
{0} ⇥ R2

�
, t
↵��
� =

�
�
�
�F�
0 \ {y2 = t}

�
��

�
�SB(W1) \ {y2 = t}

�
�
�
� .
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Combining this with (4.53) and integrating over t � ↵2 we get (4.48) for si = 0.
Let us now treat the case si 6= 0. Starting from (4.50) and taking into account

that SB(G1i ) = SB(G1i )
+ � SB(G1i )

� = [[E+
i ]] � [[E�

i ]] and SB(Yi ) = SB(Y+
i ) �

SB(Y�
i ) = [[E+

i ]]� [[F+
i ]]� [[E�

i ]]+ [[F�
i ]] we obtain

�
�
�
⌦
SB
�bS 1

� �
{si } ⇥ R2

�
, t
↵��
�=
�
�⌦⇥⇥F+

i
⇤⇤
, t
↵
�
⌦⇥⇥
F�
i
⇤⇤
, t
↵��=

�
��F+

i 1F
�
i
�
\ {y2 = t}

�
� .

This is less than or equal to
�
�⌦F+

i �F�
i , t

↵�� =
�
�
�
⌦bS 1

�
{si } ⇥ R2

�
, t
↵��
� ,

by (4.12) and (4.29). Integrating over t � ↵2 we conclude (4.48).

We are going to define the symmetrizations of the currents bS 2 and bS 3. We
proceed as for bS 1, and we replace G1 defined in (4.12) by eG1 given by

eG1 := �bS 2 �bS 3 � Y A + YC + L↵ � L� + fW1 � H, (4.55)

that is closed inD2((�1, l j ) ⇥ R2) as well. Here fW1 is a current inD2({0} ⇥ R2)
such that

@fW1 = V2 + V3 � [[{0} ⇥ (�1,↵1) ⇥ {↵2}]].

Defining eG1 2 D3((�1, l j ) ⇥ R2) with @eG1 = eG1, we are again led to write, as
for (4.13),

eG1 =
X

h
✓h
⇥⇥eU1h

⇤⇤
, ✓h 2 {�1, 1}, (4.56)

for some Borel sets eU1h ⇢ [0, l j ) ⇥ R2 with local finite perimeter such that
�
�eG1

�
�
A =

X

h

�
�@eU1h

�
�
A,

for any bounded open set A ⇢ (�1, l j ) ⇥ R2. The symmetrization of eG1, namely
SB(eG1), is then defined as for SB(eG1), the Steiner symmetrization of the union of
the (disjoint) sets eU1h , and then restricting it to Q. Therefore:

Definition 4.15. The symmetrization with respect to thebhB axis of eG1 is

SB
�eG1

�
:= @SB

�eG1
�
. (4.57)

As forW1, we first symmetrize fW1. We find sets eWh ⇢ {0} ⇥ R2 such that

fW1 � H =
X

h
✓h
⇥⇥eWh

⇤⇤
.
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Definition 4.16. The Steiner symmetrization of [h eWh with respect to the axisbhB
and restricted to Q0 is denoted by SB(eW1) (again {eWh}h are considered mutually
disjoint). We define the current

SB
�fW1

�
:= �

⇥⇥
SB
�eW1

�⇤⇤
+ H.

Moreover we set

J = SB
�
V2 + V3

�
:= [[{0} ⇥ (�1,↵1) ⇥ {↵2}]]+ @SB

�fW1
�
.

It turns out that
�
�
�SB

�fW1
���
� 

�
�fW1

�
�, (4.58)

with strict inequality if the symmetrization of [h eWh exceeds Q0 (also in this case
it is easily observed that SB(fW1) has support in T0). In order to define SB(V2)
and SB(V3) we still need some preliminary. The current J is supported on a 1-set
that is symmetric with respect to hB and has boundary �↵ � �� . In particular the
restriction of J to the halfplane5↵ , namely J↵ , has boundary �↵+

P
h �Ph�

P
h �Qh

with {Ph}h and {Qh}h a sequence of points on hB (and similarly J� has boundary
�
P

h �Ph +
P

h �Qh � �� ). Let rB be the (unique) 1-current supported on hB
with boundary �

P
h �Ph +

P
h �Qh � �� , and let us denote by zB its support (see

Figure 4.5). Therefore

zB

V1

b b

V2
V3

a g ga

zB
SB(V2 ) SB(V3 )

SB(V1 )

Figure 4.5. In this picture is depicted the bottom face {0} ⇥ T of the prism P =
(0, l j ) ⇥ T . On the left are drawn in red the three currents V i , i = 1, 2, 3, before
applying the operator SB . The picture of the right represents the same currents after the
symmetrization; on the two segments denoted by zB ⇢ hB the two currents SB(V2) and
SB(V3) overlap, and thus cancel each other. The set zB is the support of the current rB
(see Definition 4.17).

Definition 4.17. The currents SB(V2) and SB(V3) are defined as

SB
�
V2
�

:= J↵ + rB, SB
�
V3
�

:= J� � rB . (4.59)
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Notice that

@SB
�fW1

�
= SB

�
V2
�
+ SB

�
V3
�
� [[{0} ⇥ (↵1, �1) ⇥ {↵2}]]. (4.60)

It can be proved that
�
�SB

�
V2
���+

�
�SB

�
V3
��� 

�
�V3

�
�+

�
�V2

�
�. (4.61)

This will be addressed in Lemma 4.23 below.
Set K = bS 2 +bS 3. Let us recall that

@K
⇣�

� 1, l j
�
⇥ R2

⌘
= (I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
+ @Y A

� (I d ⇥ � )]
⇥⇥⇥
0, l j

⇤⇤⇤
� @YC + V2 + V3.

(4.62)

In the spirit of Definition 4.13 we are led to:
Definition 4.18. The symmetrization of the current K = bS 2 +bS 3 with respect to
the axisbhB is defined as

SB(K ) = SB
�bS 2 +bS 3

�
:= �SB

�eG1
�
+ SB

�
Y A�� SB

�
YC
�

+ L↵ � L� + SB
�fW1

�
� H.

(4.63)

The current SB(K ) is symmetric with respect to hB and contained in P , in partic-
ular it is an integral current SB(K ) = {KS, ⌧, ✓} where the rectifiable set KS is
symmetric with respect tobhB . Therefore let KS = K ↵S [ K �S with K

↵
S = KS \4↵ ,

K �S = KS \ 4� , where 4↵ = R ⇥5↵ (4� = R ⇥5� ) is the halfspace bounded
by R ⇥bhB and containing ↵ (� respectively). Notice that, by symmetry, the com-
ponent of the current SB(K ) on the plane R ⇥bhB is null. The currents SB(K↵) and
SB(K� ) are then defined as

SB(K↵) := SB(K ) K ↵S , SB(K� ) := SB(K ) K �S . (4.64)

By (4.63) it is easily seen that

@SB(K )
⇣�

�1, l j
�
⇥R2

⌘
=(I d⇥↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
+@SB

�
Y A��(I d ⇥ � )]

⇥⇥⇥
0, l j

⇤⇤⇤

� SB
�
@YC

�
+ SB

�
V2
�
+ SB

�
V3
�
,

and therefore

@SB(K ↵)
⇣�

� 1, l j
�
⇥ R2

⌘
= (I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
� @SB

�
Y A�

� ( �)]
⇥⇥⇥
0, t
⇤⇤⇤

+ SB
�
V2
�
,

(4.65)

where  � is a parametrization of the set SB(K ) \ ([0, l j ) ⇥ hB), t > 0 (more
precisely,  � might be a countable sum of disjoint curves; this is not an issue, and
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for simplicity of exposition, in what follows we will still denote by  � the sum of
these currents6). Let K0 be the 2-current in D2((0, l j ) ⇥ hB) with boundary

@K0 = ( �)][[[0, t]]]� (I d ⇥ �)]
⇥⇥⇥
0, l j

⇤⇤⇤
.

(That is, the integration over the stripe enclosed between the set  �((0, t)) and the
line (0, l j ) ⇥ {�}). Notice that by definition K0 will be the integration over a set
and hence is an integral current with multiplicity 1. This will be important to prove
Theorem 4.20 below.
Definition 4.19. We set

SB
�bS 2

�
= SB(K↵) + K0, SB

�bS 3
�

= SB
�
K�
�
� K0.

Eventually, we define
SA
�
Y B� := 0.

In such a way it holds

@SB
�bS 2

� ⇣�
� 1, l j

�
⇥ R2

⌘
= (I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
+ @SB

�
Y A�

� (I d ⇥ �)]
⇥⇥
[0, l j ]]]+ SB

�
V2
�
,

@SB
�bS 3

� ⇣�
� 1, l j

�
⇥ R2

⌘
= (I d ⇥ �)]

⇥⇥⇥
0, l j

⇤⇤⇤

� (I d ⇥ � )]
⇥⇥⇥
0, l j

⇤⇤⇤

� @SB
�
YC
�
+ SB

�
V3
�
.

(4.66)

Theorem 4.20. It holds
�
�
�SB

�bS 2
���
�+

�
�
�SB

�bS 3
���
� 

�
�bS 2

�
�+

�
�bS 3

�
�. (4.67)

Proof. In the case that ( �)][[[0, t]]] = (I d ⇥ �)][[[0, l j ]]], namely K0 = 0, the
thesis easily follows arguing as for Theorem 4.14. Then we have to treat the case
K0 6= 0. In this case, following the lines of the proof of Theorem 4.14, we first
infer

�
�
�SB

�bS 2 +bS 3
���
� 

�
�bS 2 +bS 3

�
�. (4.68)

Let us identify K0 with its support set; by construction SB(eG1) is null in K0 ⇥ R2,
and since SB(eG1) (K0 ⇥ R2) corresponds to the symmetrization of eG1 on K0⇥R,
it follows that eG1 is null in the set K0 ⇥ R (recall that here R denotes the line

6 If there is a unique parametrization, let us emphasize that such curve might be non-injective
and might cross two times, with opposite directions, a segment; this might happen if the set
SB(K ) \ ([0, l j ) ⇥ hB) is not connected.
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orthogonal to the plane containing [0, l j )⇥hB). In particular it follows that the two
currents bS 2 and bS 3 have null sum in this set, that is

bS 2 (K0 ⇥ R) = �bS 3 (K0 ⇥ R). (4.69)

Now, by (4.68), writing
�
�
�SB

�bS 2
���
�+

�
�
�SB

�bS 3
���
�=
�
�
�SB

�bS 2 +bS 3
���
�+ 2|K0| 

�
�bS 2 +bS 3

�
�+ 2|K0|, (4.70)

it remains to prove that

|K0| 
�
�bS 2

�
�
K0⇥R =

�
�bS 3

�
�
K0⇥R. (4.71)

Indeed thanks to (4.69), from (4.71) we infer
�
�bS 2 +bS 3

�
�+

�
�bS 2

�
�
K0⇥R| +

�
�bS 3

�
�
K0⇥R =

�
�bS 2

�
�
Kc
0⇥R +

�
�bS 3

�
�
Kc
0⇥R +

�
�bS 2

�
�
K0⇥R

+
�
�bS 3

�
�
K0⇥R 

�
�bS 2

�
�+

�
�bS 3

�
�,

that with (4.70) addresses the result. The claim (4.71) follows by an argument of
slicing: for s 2 (0, l j ) let us denote by � (s) the length of the intersection between
K0 and the plane {s} ⇥ R2, namely

� (s) = H1
⇣
K0 \

�
{s} ⇥ R2

�⌘
, (4.72)

then it holds,

�
�bS 2 (K0 ⇥ R)

�
� �

Z l j

0

�
�
�
⌦bS 2 (K0 ⇥ R), s

↵��
� ds �

Z l j

0
� (s)ds = |K0|.

(Observe that the projection of the support of hbS 2 (K0 ⇥ R), si ontobhB coincides
with K0 \ ({s} ⇥ R2) forH1-a.e. s 2 (0, l j ))7. The last equality follows since K0
has multiplicity 1.

Finally we define the symmetrization of the current T . Recalling Definitions
4.12 and 4.16 of SB(W1) and SB(fW1), we set:
Definition 4.21. The symmetrization of the current T 2 D2({0}⇥R2) is the current
SB(T ) 2 D2({0} ⇥ R2) defined as

SB(T ) := SB(W) � SB
�fW

�
. (4.73)

7 This is a consequence of the Constancy Lemma and (4.62). Indeed, roughly speaking, for a.e.
s 2 (0, l j ) the slice hbS 2, si is a curve connecting � to ↵, and hence its projection onto hB is
surjective.



540 RICCARDO SCALA

From (4.42) and (4.60) it follows

@SB(T ) = �SB
�
V1
�
� SB

�
V2
�
� SB

�
V3
�
. (4.74)

Moreover we can prove:

Proposition 4.22. It holds

|SB(T )|  |T |. (4.75)

Proof. We employ a simple argument of slicing, as in the proof of Theorem 4.14.
Let t 2 R, and consider the section line {0} ⇥ R ⇥ {y2 = t}. First we observe that
T = W1 � fW1, so that for all t 2 R we have

|hT , ti| �
�
�
�|hW1, ti| �

�
�⌦fW1, t

↵��
�
�
� . (4.76)

By Definition 4.12 and 4.16 we have
�
�
�
�SB(W1) \ {y2 = t}

�
��

�
�SB

�eW1
�
\ {y2 = t}

�
�
�
�

=
�
��SB(W1)1SB

�eW1
��

\ {y2 = t}
�
�

=
�
�
�
⌦
SB(W1) � SB

�fW1
�
, t
↵��
� = |hSB(T ), ti|,

where we have used that (SB(W1)\{y2 = t}) ⇢ (SB(eW1)\{y2 = t}) (or viceversa).
This, together with (4.76), and integrated over R gives (4.75) since

�
�|SB(W1) \ {y2 = t}| �

�
�SB

�eW1
�
\ {y2 = t}

�
�
�
�

=
�
�
�⌧
�bSB(W1) \ {y2 = t}

�
� ⌧

�bSB
�eW1

�
\ {y2 = t}

���
� 

�
�
�|hW1, ti| �

�
�⌦cW1, t

↵��
�
�
� ,

(recall that bSB(W1) and bSB(eW1) are the symmetrizations of the sets {Wh}h and
{eWh}h before intersecting with Q; then we employ the same argument in
(4.52)).

We finally observe that the current

SB(T ) + SB
�bS 1

�
+ SB

�bS 2
�
+ S1

�bS 3
�
,

is closed in D2((�1, l j ) ⇥ R2). This follows from (4.46), (4.66), and (4.74).
Let us collect some crucial observations about the symmetrization operator,

summarized in the following lemma.
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Lemma 4.23. The symmetrization operator SB enjoys the following features:

(a) It holds �
�
�SB

�
Y A�

�
�
�+

�
�
�SB

�
YC
���
� 

�
�Y A��+

�
�YC

�
�,

whereas �
�
�SB

�
Y B�

�
�
� = 0.

Moreover, by definition, |SB(Y A)| = |SB(YC)|;
(b) The currents SB(bSi ), i = 1, 2, 3, satisfy

@SB
�bS 1

� ⇣�
�1, l j

�
⇥R2

⌘
=� (I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
� SB

�
@Y A�

+(I d⇥� )]
⇥⇥⇥
0, l j

⇤⇤⇤
+ SB

�
@YC

�
+SB

�
V1
�
,

@SB
�bS 2

� ⇣�
�1, l j

�
⇥R2

⌘
=(I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
+ SB

�
@Y A�

� (I d ⇥ �)]
⇥⇥⇥
0, l j

⇤⇤⇤
+ SB

�
V2
�
,

@SB
�bS 3

� ⇣�
�1, l j

�
⇥R2

⌘
=(I d ⇥ �)]

⇥⇥⇥
0, l j

⇤⇤⇤
� SB

�
@YC

�

� (I d ⇥ � )]
⇥⇥⇥
0, l j

⇤⇤⇤
+ SB

�
V3
�
;

(c) The current SB(T ) satisfies

@SB(T ) = �SB
�
V1
�
� SB

�
V2
�
� SB

�
V3
�
, (4.77)

and
�
�SB

�
V1
��� 

�
�V1

�
�,

�
�SB

�
V2
���+

�
�SB

�
V3
��� 

�
�V2

�
�+

�
�V3

�
�; (4.78)

(d) We have

|SB(T )| +
�
�SB

�bS 1
���+

�
�SB

�bS 2
���+

�
�SB

�bS 3
���

|T | +
�
�bS 1

�
�+

�
�bS 2

�
�+

�
�bS 3

�
�.

(4.79)

Proof. Statement (a) is given by Lemma 4.8 and by definition of SB(Y B). Item (b)
follows from (4.46) and (4.66). The first equation in (c) is (4.74). Let us demon-
strate the second equation in (4.78) (the first inequality is (4.44)). The argument
is very similar to the one employed in the proof of Theorem 4.20; let us sketch it.
Recalling Definition 4.17, we want to prove that

|J | + 2|zB | 
�
�V2

�
�+

�
�V3

�
� =

�
�V2

�
�
R⇥zB

+
�
�V2

�
�
R⇥(hB\zB)

+
�
�V3

�
�
R⇥zB

+
�
�V3

�
�
R⇥(hB\zB)

,
(4.80)

where zB is the support set of the current rB (see Figure 4.5). Now, by Steiner sym-
metrization it is easily seen that |J |  |V2|R⇥(hB\zB) + |V3|R⇥(hB\zB), whereas the
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proof that |zB |  |V2|R⇥zB follows by noticing that zB is exactly the projection on
hB of the support of V2 (R ⇥ zB), that is onto on zB since V2 is an arc connecting
↵ to �.

Finally, we achieve (d) just gathering together (4.75) with Theorems 4.14 and
4.20.

The operators SA and SC are the symmetrizations with respect to the plane
R ⇥bhA and R ⇥bhC , respectively, constructed like SB switching the role of A, B,
and C , accordingly.

5. Proof of Theorem 3.7

We are now ready to prove Theorem 3.7. Our strategy will be to apply repeatedly
the symmetrization operators to the currents bSi and T . We proceed as follows: we
define S := SA � SB � SC and set

�bSi
�
k := Sk

�bSi
�
, i = 1, 2, 3,

Tk := Sk(T ),

for every k 2 N. We will prove the following:

Proposition 5.1. There exists integral currents Si ,T 2 D2((�1, l j ) ⇥ R2) such
that

�bSi
�
k * Si for i = 1, 2, 3,

Tk * T , (5.1)

and
�
�
�S
1
�
�
�+

�
�
�S
2
�
�
�+

�
�
�S
3
�
�
�+

�
�T
�
� 

�
�
�
�bS 1

�
k

�
�
�+

�
�
�
�bS 2

�
k

�
�
�+

�
�
�
�bS 3

�
k

�
�
�+ |Tk |, (5.2)

for all k 2 N. Moreover S1+S2+S3+T is a closed current inD2((�1, l j )⇥R2),
and

@S1
⇣�
0, l j

�
⇥ R2

⌘
= � (I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
+ (I d ⇥ � )]

⇥⇥⇥
0, l j

⇤⇤⇤
,

@S2
⇣�
0, l j

�
⇥ R2

⌘
=(I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤
� (I d ⇥ �)]

⇥⇥⇥
0, l j

⇤⇤⇤
,

@S3
⇣�
0, l j

�
⇥ R2

⌘
=(I d ⇥ �)]

⇥⇥⇥
0, l j

⇤⇤⇤
� (I d ⇥ � )]

⇥⇥⇥
0, l j

⇤⇤⇤
.

(5.3)

Remark 5.2. Notice that after one application of S nothing ensures us that the cur-
rents N A, N B , and NC vanish. This is because every application of a symmetriza-
tion operator reduces their mass but not necessarily nullify it. For these reason we
will need to apply S infinite times.
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Proof. The weak convergences (5.1) entail
�
�
�S
1
�
�
�+

�
�
�S
2
�
�
�+

�
�
�S
3
�
�
�+ |T |  lim inf

k!1

�
�
�
�bS 1

�
k

�
�
�+

�
�
�
�bS 2

�
k

�
�
�+

�
�
�
�bS 3

�
k

�
�
�+ |Tk |, (5.4)

and Lemma 4.23 (d) implies that the sequence on the right-hand side is nonincreas-
ing, so that for all h 2 N we have

lim inf
k!1

⇣�
��bS 1

�
k
�
�+
�
��bS 2

�
k
�
�+
�
��bS 3

�
k
�
�+
�
�Tk
�
�
⌘

�
��bS 1

�
h
�
�+
�
��bS 2

�
h
�
�+
�
��bS 3

�
h
�
�+|Th|,

and inequality (5.2) follows. Let us prove (5.1). We first focus on the currents Y A,
Y B , and YC . Owing to Lemma 4.23 (a) it is easy to prove that after an application
of S we have

�
�
�S
�
Y A�

�
�
�+

�
�
�S
�
Y B�

�
�
�+

�
�
�S
�
YC
���
� 

1
4

⇣�
�Y A��+

�
�Y B��+

�
�YC

�
�
⌘
.

Thus by induction we get

�
�
�Sk
�
Y A�

�
�
�+

�
�
�Sk
�
Y B�

�
�
�+

�
�
�Sk
�
YC
���
� 

1
4k
⇣�
�Y A��+

�
�Y B��+

�
�YC

�
�
⌘
.

In particular

Sk(YA) ! 0, Sk(YB) ! 0, Sk(YC) ! 0. (5.5)

Let us set

P1k :=
�bS 1

�
k + Sk

�
Y A�� Sk

�
YC
�
,

P2k :=
�bS 2

�
k + Sk

�
Y B�� Sk

�
Y A�,

P3k :=
�bS 3

�
k + Sk

�
YC
�
� Sk

�
Y B�;

(5.6)

from Lemma 4.23 (b) we infer that

@P1k
⇣�

� 1, l j
�
⇥ R2

⌘
= � (I d ⇥ ↵)]

⇥⇥⇥
0, l j

⇤⇤⇤

+ (I d ⇥ � )]
⇥⇥⇥
0, l j

⇤⇤⇤
+ Sk

�
V1
�
,

@P2k
⇣�

� 1, l j
�
⇥ R2

⌘
= � (I d ⇥ �)]

⇥⇥⇥
0, l j

⇤⇤⇤

+ (I d ⇥ ↵)]
⇥⇥⇥
0, l j

⇤⇤⇤
+ Sk

�
V2
�
,

@P3k
⇣�

� 1, l j
�
⇥ R2

⌘
= � (I d ⇥ � )]

⇥⇥⇥
0, l j

⇤⇤⇤

+ (I d ⇥ �)]
⇥⇥⇥
0, l j

⇤⇤⇤
+ Sk

�
V3
�
.

(5.7)



544 RICCARDO SCALA

Since Sk(V i ) have uniformly bounded masses by Lemma 4.23 (c), thanks to (4.79)
as well, we find limit integral currents Si ,T 2 D2((�1, l j ) ⇥ R2) such that, up to
subsequences,

(Pi )k * Si for i = 1, 2, 3,

Tk * T .

Thanks to (5.5) and (5.6) we infer (5.1). The fact that S1 + S2 + S3 + T is a closed
current inD2((�1, l j )⇥R2) follows from the fact that (bS 1)k+(bS 2)k+(bS 3)k+Tk
is closed for all k and tends to S1 + S2 + S3 + T . Finally (5.3) follows from (5.7)
passing to the limit.

The currents Si ,T 2 D2((�1, l j ) ⇥ R2) satisfy the following properties:

(i) The integral current T is supported in {0} ⇥ T and has boundary

@T = �V1 � V2 � V3.

There exist three Lipschitz functions  i : [0, 1] ! T , i = 1, 2, 3, such that

Vi = ( i )][[(0, 1)]] i = 1, 2, 3,
 1(0) = ↵,  1(1) = � =  3(0),  3(1) = � =  2(0),  2(1) = ↵.

Moreover there is a constant C > 0 such that

3X

i=1
|Vi |  C; (5.8)

(ii) The three currents Si i = 1, 2, 3 are integral and satisfy

@S1 = � (I d ⇥ ↵)]
⇥⇥⇥
0, l j

⇤⇤⇤
+ (I d ⇥ � )]

⇥⇥⇥
0, l j

⇤⇤⇤
+ V1, (5.9)

@S2 =(I d ⇥ ↵)]
⇥⇥⇥
0, l j

⇤⇤⇤
� (I d ⇥ �)]

⇥⇥⇥
0, l j

⇤⇤⇤
+ V2, (5.10)

@S3 =(I d ⇥ �)]
⇥⇥⇥
0, l j

⇤⇤⇤
� (I d ⇥ � )]

⇥⇥⇥
0, l j

⇤⇤⇤
+ V3. (5.11)

We can write down an additional condition, which however is a consequence of (i)
and (ii):

(ii0) The currentU := S1+ S2+ S3+T is a closed current inD2((�1, l j )⇥R2).

We then are led to the following minimum problem

min
n�
�S1
�
�+
�
�S2
�
�+
�
�S3
�
�+|T | : Si (i = 1, 2, 3), and T satisfy (i) and (ii)

o
. (5.12)
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The existence of a minimizer follows from the Compactness theorem for integral
currents. Let (S1, S2, S3,T ) be a minimizer. Of course, thanks to (5.2) for k = 0
and the definition of (S1, S2, S3,T ) we have

|bS 1| + |bS 2| + |bS 3| + |T | � |S1| + |S2| + |S3| + |T |.

Therefore if we prove that (S1, S2, S3,T ) satisfies (3.63) then the proof of Theorem
3.7 is complete. To this aim we will first prove three preliminary results. We begin
with some geometric definitions. The triangle T with vertices ↵, �, and � , can be
seen as the union of the three triangles Ti , i = 1, 2, 3, where T1 has vertices ↵,
� and O , T2 has vertices ↵, �, and O , while T3 has vertices �, � , and O . The
prism P = (0, l j ) ⇥ T can be seen as the union of the three prisms P1, P2, and P3,
given by Pi = (0, l j ) ⇥ Ti , i = 1, 2, 3. Let us recall that R1, R2, and R3 are the
rectangles with edges ↵� ⇥ (0, l j ), �↵⇥ (0, l j ), and �� ⇥ (0, l j ), respectively (see
Figure 5.1).

(0, b)

(0, a)
(0, g)

O

T3

T2

T1

(lj, a)

(lj, b)

(lj, g)

Figure 5.1. This figure represents the geometric setting introduced before Proposition
5.3. The prism P is the union of the three prisms Pi with base Ti , i = 1, 2, 3. The
lateral surface of the prism P is made of three rectangles Ri , i = 1, 2, 3. For instance,
the rectangleR1 is the one with vertices (0,↵), (0, � ), (l j , � ), and (l j ,↵).

Proposition 5.3. There is a minimizer (S1, S2, S3,T ) of the minimum problem
(5.12) such that the currents Si , i = 1, 2, 3, are the graphs of Cartesian maps on
D2(Ri ⇥ R), i = 1, 2, 3. Namely, there are functions ui 2 BV (Ri ; R), i = 1, 2, 3
such that

Si = (I d ⇥ ui )][[Ri ]],
�
�Si (Ri ⇥ R)

�
� = A(ui ;Ri ), (5.13)

for i = 1, 2, 3.

Proof. We will use the fact that, by the minimality assumption of (S1, S2, S3,T ),
if we apply a symmetrization operator to these currents, their total mass cannot
strictly decrease. We proceed in three steps.
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Step 1.We consider lines in R3 which are orthogonal to the s-axis and to the height
hB (i.e., parallel to the y1-axis). These lines are rs,t := {s}⇥R⇥{t}with s 2 [0, l j ]
and t 2 (↵2,�2) (recall we choose the system (y1, y2) is such a way that ↵2 = �2).
Let us identify the current Si with its support set. We claim that

H2
⇣�

(s, t) 2
�
0, l j

�
⇥ (↵2,�2) : ]

�
Si \ rs,t

 
> 1 for some i=2, 3

 ⌘
=0. (5.14)

First notice that for both i = 2, 3 it holds

]
�
Si \ rs,t

 
� 1 forH2 � a.e. (s, t). (5.15)

To see (5.14) we argue by contradiction, and denoting by A the set in (5.14),
suppose H2(A) > 0. Let eG1 be the current in D3((0, l j ) ⇥ R2) with boundary
S2+S3+R1 (we are neglecting the boundaries in {0}⇥T if we look at S2+S3+R1

as currents in (0, l j ) ⇥ R2). We identify eG1 with its support set (which coincides
with the area enclosed between the surfaces S2, S3, andR1). Define

CK =
n
(s, t) 2 (0, l j ) ⇥ (↵2,�2) : H1�rs,t \ eG1

�
> 0

o

and Cc
K := ((0, l j ) ⇥ (↵2,�2)) \ CK

8. By definition of SB(S2) it is seen that the
operator SB transforms S2\ (CK ⇥R) into SB(@eG1)\K↵ (see Definition 4.18) and
sends S2 \ (Cc

K ⇥ R) into K0 (see Definition 4.19); similarly for S3. IfH2(A) > 0
then either H2(A \ Cc

K ) > 0 or H2(A \ CK ) > 0. Let us treat the two cases
separately:
(1) (Case H2(A \ Cc

K ) > 0) suppose that (5.14) takes place in Cc
K and for the

index i = 2, namely

H2
⇣n

(s, t) 2
�
0, l j

�
⇥ (↵2,�2) \ Cc

K : ]
�
S2 \ rs,t

 
> 1

o⌘
> 0.

Since both the sets S2\ (Cc
K ⇥R) and S3\ (Cc

K ⇥R) are transformed into K0
by SB , we can write
�
�S2
�
�+

�
�S3
�
�

=
�
�S2 \ (CK ⇥ R)

�
�+
�
�S2\

�
Cc
K ⇥ R

���+
�
�S3 \ (CK ⇥ R)

�
�+

�
�S3 \

�
Cc
K ⇥ R

���

�
�
�
�SB

�
S2
�
\ (CK ⇥ R)

�
�
�+

�
�
�SB

�
S3
�
\ (CK ⇥ R)

�
�
�

+
Z

CcK
]
�
rs,t \ S2

 
dH2 +

Z

CcK
]
�
rs,t \ S3

 
dH2

>
�
�
�SB

�
S2
�
\ (CK ⇥ R)

�
�
�+

�
�
�SB

�
S3
�
\ (CK ⇥ R)

�
�
�+

Z

CcK
2dH2

=
�
�
�SB

�
S2
�
\ (CK ⇥ R)

�
�
�+

�
�
�SB

�
S3
�
\ (CK ⇥ R)

�
�
�+ 2

�
�
�K0 \

�
Cc
K ⇥ R

���
�

=
�
�
�SB

�
S2
���
�+

�
�
�SB

�
S3
���
�.

8 In other words CK is the projection of eG1 onto the rectangle (0, l j ) ⇥ hB .
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The fact that such inequality is strict contradicts the assumption that (S1, S2,
S3,T ) is a minimizer.

(2) (Case H2(A \ CK ) > 0) now we take into account that SB transforms S2 \
(CK ⇥ R) into SB(@eG1) \ K↵ and S3 \ (CK ⇥ R) into SB(@eG1) \ K� . In
CK ⇥ R it happens that @eG1 \ rs,t � 2. Suppose first that the subset B ⇢ CK
defined as

B :=
n
(s, t) 2 CK : ]

�
@eG1 \ rs,t

 
> 2

o

satisfiesH2(B) > 0. In this case, as a property of Steiner symmetrization, it is
known that |@SB(eG1)\ (B⇥R)| < |@eG1 \ (B⇥R)|, and thus we easily arrive
to |S2|+ |S3| > |SB(S2)|+ |SB(S3)|, again a contradiction. Suppose then that

]
�
@eG1 \ rs,t

 
= 2, forH2 � a.e. (s, t) 2 CK . (5.16)

On the other hand we have, by hypothesis, H2(A \ CK ) > 0, therefore we
again can assume that the set

B2 :=
n
(s, t) 2

�
(0, l j ) ⇥ (↵2,�2)

�
\ CK : ]

�
S2 \ rs,t

 
= 2

o
(5.17)

has positive H2 measure (similarly we might assume this happens for S3). At
the same time, by (5.15), it must occur that

]
�
S3 \ rs,t

 
� 1 forH2 � a.e.(s, t) 2 CK . (5.18)

Since @eG1 ⇢ S2 [ S3 we have two cases:
(a) H2((S2 [ S3) \ (CK ⇥ R)) > H2(@eG1 \ (CK ⇥ R)) and hence we have

H2((S2 [ S3)\ (CK ⇥R)) > H2(SB(@eG1)\ (CK ⇥R)) = H2((SB(S2)[
SB(S3)) \ (CK ⇥ R)), again contradicting the minimality;

(b) H2((S2[ S3)\(CK ⇥R)) = H2(@eG1\(CK ⇥R)), we find that essentially
((S2 [ S1)\ (CK ⇥R)) = @eG1 \ (CK ⇥R). Recall that, by (5.16),H2-a.e.
(s, t) 2 CK it holds @eG1 \ rs,t = 2; this together with (5.17) implies that,
up to a negligible set, @eG1 = S2 in B2 ⇥ R (see Figure 5.2). Thus, thanks
to (5.18) we infer
�
�S2\(B2⇥R)

�
�+
�
�S3 \ (B2⇥R)

�
�>
�
�S2 \ (B2 ⇥ R)

�
�=
�
�@eG1 \ (B2⇥R)

�
�

�
�
�SB(@eG1) \ (B2 ⇥ R)

�
�=
�
�SB

�
S2
�
\ (B2 ⇥ R)

�
�+

�
�SB

�
S3
�
\ (B2 ⇥ R)

�
�,

from which we again arrive atH2((S2[ S3)\(CK ⇥R)) > H2(SB(@eG1)\
(CK ⇥ R)) = H2((SB(S2) [ SB(S3)) \ (CK ⇥ R)), concluding the proof
of (5.14).

Step 2. From (5.14) it follows that for H2-a.e. (s, t) 2 (0, l j ) ⇥ (↵2,�2) it holds
]{S2 \ rs,t } = 1 where rs,t are lines parallel to ↵� , i.e. rs,t k ↵� . Arguing as in
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CK

B2
CK

S3

S2

hB

a

b

Figure 5.2. This figure is a section of the prism P at fixed ✓ 2 (0, l j ). The area colored
in grey is the set eG1; on the right are represented the set CK (black) and its subset B2 in
(5.17) (red). The dotted lines parallel to ↵� are r✓,t .

Step 1 we infer that the same is true if we consider lines rs,t parallel to the edge �� .
Thus we have

]
�
S2 \ rs,t

 
= 1 rs,t k ↵� and rs,t k �� . (5.19)

Consider now lines rs,t parallel to the height hC , so that we can assume (s, t) 2
R2 = (0, l j ) ⇥ (�1,↵1). We claim

]
�
S2 \ rs,t : rs,t k hC

 
= 1 forH2 � a.e (s, t) 2 R2. (5.20)

Denote by E the set of all (s, t) 2 R2 such that ]{S2 \ rs,t } > 1, namely

E :=
n
(s, t) 2 R2 : ]

�
S2 \ rs,t

 
> 1

o
,

and assume by contradiction that E has positiveH2-measure. Define E✓ :={(s, t)2
E : s = ✓}. As a consequence the set

2 :=
�
✓ 2 (0, l j ) : H1(E✓ ) > 0

 

has positive H1-measure. We are going to show that for H1-a.e. ✓ 2 2 either the
set

n
t 2 (�1,↵1) : ]

�
S2 \ r✓,t

 
> 1 for r✓,t k ↵�

o

or
n
t 2 (�1,↵1) : ]

�
S2 \ r✓,t

 
> 1 for r✓,t k ��

o

has positive measure. This will contradict (5.19) and hence prove (5.20).
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Let ✓ 2 2 be fixed, we can find t 2 (�1,↵1) such that ]{S2\rs,t : rs,t k hC } >
1. For almost every s 2 (0, l j ) the section S2 \ ({s} ⇥ R2) is given by the union
of Lipschitz curves {�i }i�0 such that �0 connects ↵ and �, and {�i }i>0 are closed
(by the decomposition theorem for integral 1-currents, Theorem 2.1), therefore we
can assume this for our choice of ✓ . Moreover each �i is injective. Since E✓ has
positive measure, we can find t such that either (1) rs,t intersects �0 in two points,
say P and Q, or (2) rs,t intersects �0 at one point and another curve �1. Let us treat
the two cases separately:

(1) in this case, up to change the choice of t , we can assume that the tangent
vectors to �0 at P and Q are defined and are not vertical, i.e., parallel to hC
(namely, the curve �0 crosses the lines r✓,t at P and Q and is not tangent to
that, see Figure 5.3). Since the curve �0 connects ↵ to �, it is easy to see, as
a consequence of the theorem of the Jordan curve, that there must be another
point, say R, in the intersection of r✓,t and �0. Up to rename the points, suppose
R stays between P and Q on the line r✓,t . Suppose first that R is also between
P and Q on the curve �0 (see Picture 5.3 left). In this case P is connected
to ↵ and Q to �, so that if P is below (above) R and Q above (below) it, we
see that the line passing through R and parallel to ↵� (�� , respectively) will
intersect �0 in three points. Instead, suppose that R is not between P and Q on
the curve �0. Let Q be the middle point, and suppose that P is connected to �
and P is below R (see picture 5.3 right; the other cases are similar). In such a
case the line passing through R and parallel to �� intersects �0 at least three
times, one on the arc connecting � to P , one at R, and one in the sub-curve of
�0 connecting P to Q;

(2) This case is simpler. Indeed all the lines parallel to �� (and also ↵� ) passing
through �1 also intersect �0. Moreover also almost every lines intersecting
�1 must intersect it in at least two points (again thanks to the theorem of the
Jordan curve).

g g

b a ab

P

R

Q

Q

R

P

Figure 5.3. In this figure the case (1) of Step 2 of the proof of Proposition 5.3 is depicted
in two possible configurations.
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In both cases (1) and (2) we can find a set of lines parallel to ↵� or �� intersect-
ing S2 in more than one point, which (suitably parametrized by coordinates in the
corresponding rectangle) have aH1-nonnegligible measure. Since this happens for
H1-a.e. s 2 2, and2 has nonzero measure, by Fubini theorem we contradict (5.19)
and therefore, by absurd, get (5.20).

Step 3.Notice that assertion (5.20) holds true for all Si , i = 1, 2, 3. Fix i , say i = 1.

]
�
S1 \ rs,t : rs,t = (s, t) ⇥ R

 
= 1 forH2 � a.e (s, t) 2 R1. (5.21)

Note also that S1 2 D2(R1 ⇥ R) is closed (its boundary is supported in @R1 ⇥ R).
Recall that R1 = (0, l j ) ⇥ (↵1, �1) ⇥ {↵2} ' (0, l j ) ⇥ (↵1, �1), again with an
appropriate choice of the coordinate system (x, y1, y2). We assume ↵2 = �2 = 0.
There exists an integral current G1 2 D3(R1 ⇥ R) with @G1 = S1. Moreover there
are sets Ui such that

G1 =
X

h
✓h[[Uh]], (5.22)

and it holds S1 =
P

h [[@Uh]]. As a consequence the set S11([h@Uh) hasH2-null
measure. We will prove that in this decomposition there is a unique set Uh (with
boundary the whole S1).

By (5.21) for H2-a.e. (s, t) 2 R1 there is a unique point in the intersection
of the vertical line rs,t = (s, t) ⇥ R with S1. If this point is Ys,t := (s, t, y2)
we denote by u1(s, t) = y2 its last coordinate. We see that u1 defines a map in
L1(R1) (the measurability of u1 easily follows from the fact that S1 is an integral
current, and thus it is the union of subsets of Lipschitz surfaces). We denote by
⇡ : (s, t, y2) ! (s, t) 2 R1 the projection ofR1 ⇥ R ontoR1. From the fact that
S1 = [h@Uh (up to negligible sets) it follows that

[h⇡(Uh) = R1. (5.23)

By slicing it is easily seen that Uh \ rs,t has boundary the unique point Ys,t , for
H2-a.e. (s, t) 2 R1; hence Uh \ rs,t is a halfline, either (s, t) ⇥ (�1, u1(s, t)) or
(s, t) ⇥ (u1(s, t),+1). Denote by

U+
h :=

�
(s, t, z) : z 2 (u1(s, t),+1), Uh \ rs,t = {(s, t) ⇥ (u1(s, t),+1)}

 
,

and

U�
h :=

�
(s, t, z) : z 2 (�1, u1(s, t)), Uh \ rs,t = {(s, t) ⇥ (�1, u1(s, t))}

 
,
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(where equalities are intended up to negligible sets). But now it easily follows that
@U+

h = (S1 \ @Uh) [ V+
h , where V

+
h is the set

V+
h :=

�
(s, t, r) : (s, t) 2 @⇡

�
U+
h
�
, z > u1(s, t)

 
,

and similarly @U�
h = (S1 \ @Uh) [ V�

h , with

V�
h :=

�
(s, t, z) : (s, t) 2 @⇡

�
U�
h
�
, z < u1(s, t)

 
.

Therefore, in order that @Uh ⇢ S1 it must hold that both V+
h and V�

h have null
H2-measure in (0, l j ) ⇥ (↵1, �1) ⇥ R (S2 has support in the prism P and hence
compact support while V±

h are unbounded). This implies that @⇡(U+
h ) [ @⇡(U�

h )
must be a subset of @R1. In particular @⇡(Uh) ⇢ @R1. This is possible only if
⇡(Uh) = R1, and thus @⇡(Uh) coincides with R1

9. In particular we have proved
that for some h we have ⇡(Uh) = R1 and, since for every other index i 6= h the
set ⇡(Ui ) \ ⇡(Uh) has nullH2-measure (by (5.21)), we conclude that there is only
one index h for whichUh has positive measure (namely, the decomposition of G1 in
(5.22) consists of only one set, call it U ). Finally, since the same argument applies
to @⇡(U+

h ) and @⇡(U�
h ), we also have obtained that the relative sets U+

h and U�
h

cannot have both nonzero measure. Hence, say U = U�
h (up to change orientation

of S1).
The subgraph of u1 is defined as the set

SG1 := {(s, t, z) 2 R1 ⇥ R : z  u1(s, t)}.

Let bG1 be the current defined as the integration on the subgraph of u, namely

bG1 = [[SG1]]. (5.24)

By definition, it turns out that SG1 = U�
h = U , and thus bG1 coincides with G1

defined in (5.22). Therefore @bG1 = @G1 = S1. Now we invoke [11, Theorem 2,
Section 4.2.4], that, combined with [11, Proposition 3, Section 4.2.4], implies that
S is a Cartesian current in Cart(R1 ⇥ R), u1 2 BV (R1; R), and

�
�S1
�
�
R1⇥R = A(u1,R1). (5.25)

The assertion for i = 2, 3 follows similarly.

9 This is a consequence of the Constancy Lemma; ifR1\⇡(Uh) and ⇡(Uh) have bothH2-positive
measure, and considering sections R1s of R1 at s fixed, we find that for a positive H1-measure
subset of (0, l j ) the section R1s contains an inner point Xs that belongs to the mutual boundary
ofR1 \⇡(Uh) and ⇡(Uh); this would imply that such mutual boundary has positiveH1-measure
insideR1.
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Lemma 5.4. There is a minimizer (S1, S2, S3,T ) satisfying the hypotheses of
Proposition 5.3 such that T = 0.

Proof. Let (S1, S2, S3,T ) be as in Lemma 5.3. Up to applying SB again we can
assume that S1, S2, S3 are symmetric with respect to hB . Moreover V1 5↵ (see
Definition 4.7 for5↵) is the graph of a nondecreasing function u1 defined on [↵1, 0]
(here 0 = �1 is the ascissa corresponding to the segment hB). Let P be the intersec-
tion between the curve V1 and hB . Consider the segment P�. The arc V1 5↵[P�
connects ↵ to �.

The curve V1 5↵ has H1-a.e. tangent vector Ev that forms an angle ✓ 2
[0,⇡/2] with the segment ↵� . As a consequence the angle between Ev and hC is
✓+⇡/6 2 [⇡/6, 2⇡/3] (see Figure 5.4 left). This means that the curveV1 5↵[P�
can be seen as the graph of a function v2 defined on the segment �↵. Furthermore
we know that V2 is the graph of a function u2 on �↵.

Notice that the current T 5↵ is the integral over the area enclosed between
the two graphs of u2 and v2. Let us denote by T↵ := T 5↵ such current. We
hence redefine V2 as bV2 := V1 5↵ [ P�, namely the graph of v2. Moreover S2
is redefined asbS 2 := S2 + T↵ . A similar construction is made on the halfplane5�
and S3 is defined in a symmetric way. It results that T , seen as the current with
boundary the new bV1 := V1, bV2, and bV3, becomes null. Hence we infer

�
�bS 2

�
�+

�
�bS 3

�
� 

�
�S2
�
�+ |T↵| +

�
�S3
�
�+

�
�T�

�
� =

�
�S2
�
�+

�
�S3
�
�+ |T |. (5.26)

The thesis is achieved since we got a minimizer with the desired properties.

Consider now the baricenter O of the triangle T . Let us denote by 31 :=
↵O [ O� , 33 := O� [ O�, 32 := O� [ ↵O .

g g

bb

q

a a

V1

V2

v⃗

VA

VB

VC

P
P'

Figure 5.4. In the picture on the left is an example of the proof of Lemma 5.4. In grey
it is depicted the area enclosed between V1 and V2, support of the current T 5↵ . The
tangent vector Ev to V1 forms an angle ✓ 2 [0,⇡/2] with the line ↵� . The picture on the
right describes the proof of Lemma 5.5; the operator SA projects P in P 0 = ⇡hA(P).
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Lemma 5.5. There is a minimizer (S1, S2, S3,T ) as in Lemma 5.4 with V i = 3i ,
for i = 1, 2, 3.

Proof.
Step 1. Apply SB and assume V2 is symmetric to V3 with respect to hB . By the
previous lemma we have V1 = �V2 �V3. Let P be the (unique) intersection of V1
with hB ; by symmetry the segment PB ⇢ hB is the common part of V2 and V3.
When we apply SA the point P is sent to P 0 := ⇡hA(P), the orthogonal projection
of P onto hA (see Figure 5.4 right). Denote by V the union of the support of the
currents V i . This is composed by three arcs VA, VB , VC connecting P to ↵, �,
and � respectively. By definition of SA this transforms VA into SA(VA) = ↵P 0. In
particular |VA| > |SA(VA)| if P is not on hA (i.e., if P does not coincide with O).
On the other hand it is easy to see that |VB | + |VC | � |SA(VB)| + |SA(VC)|, and
therefore we arrive at

3X

i=1
|V i | >

3X

i=1

�
�SA

�
V i
���, (5.27)

if P 6= O .

Step 2.We now consider the following minimum problem:

min

(
X

i

�
�V i
�
� :
�
S1, S2, S3,T

�
is as in Lemma 5.4

)

. (5.28)

From the features of the minimizers of problem (5.12) it is easily seen that such
family is compact in the set of integral currents. Moreover, thanks to (5.8), also
the corresponding currents {V i }i=1,2,3 form a compact family, and hence we infer
the existence of a solution of (5.28). We claim that the (not relabeled) minimizer
(S1, S2, S3,T ) satifies the thesis. Indeed, if not, we have two cases: P 6= O , and
thus after applying some symmetrization operator as described in Step 1 we got a
best minimizer, a contradiction. The second case is P = O but some among VB ,
VA, VC does not coincide with O�, O↵, or O� , respectively. Say VA 6= O↵; now
again SA transforms VA into SA(VA) = ↵O and in particular |VA| > |SA(VA)|,
again a contradiction.

We are finally ready to prove Theorem 3.7.

Proof of Theorem 3.7. We consider a minimizer (S1, S2, S3,T ) as in Lemma 5.5.
Let u1 : R1 ! R be the map in Proposition 5.3. The graph of u1, namely S1, has
boundary

@S1 = �(I d ⇥ ↵)]
⇥⇥⇥
0, l j

⇤⇤⇤
+ (I d ⇥ � )]

⇥⇥⇥
0, l j

⇤⇤⇤
+ V1, (5.29)

in D1((�1, l j ) ⇥ R2). Moreover, up to choosing coodinates of R2 in such a way
that ↵2 = �2 = 0 we see that the currents (I d⇥↵)][[[0, l j ]]] and (I d⇥� )][[[0, l j ]]]
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are exactly the graph over (0, l j ) ⇥ {↵1} and (0, l j ) ⇥ {�1} (respectively) of the
function u1 = 0. We also know that the current V1 is exactly the integration over
the graph of the function ' in (1.14) on {0}⇥(�1,↵1). Extending ' on (0, l j )⇥{↵1}
and (0, l j ) ⇥ {�1} by setting ' = 0 we see that ' is then a Lipschitz function on
@R1\R (set R = (�1, l j )⇥R), and then it can be extended to a Lipschitz function
(still denoted by ') defined on R \R1 (let us also take it with compact support on
R, for simplicity). Consider the graph of ' over R\R1, namely (I d⇥')][[R\R1]];
it is then easily observed that the current

S :=

(
S onR1 ⇥ R
(I d ⇥ ')][[R \R1]] on (R \R1) ⇥ R,

(5.30)

defines a Cartesian current in D2(R ⇥ R). We are then led to considering the
following minimum problem:

min
n�
�bS
�
�
R1⇥R : bS 2 cart1(R ⇥ R) and bS ((R \R1) ⇥ R)

= S ((R \R1) ⇥ R)
o
.

(5.31)

By [12, Theorem 8, Section 6.1.2] (see also [13, Theorem 15.9]), it is well-known
that this minimization problem admits a solution bS, and moreover bS satisfies the
following property: there existsbu 2 BV (R1) such that |S|R1⇥R = A(bu;R1), and

bu 2 argmin
⇢Z

R1

q
1+ |Du|2dx +

Z

@R1\R
|u � '|dH1 : u 2 BV (R)

�
. (5.32)

Finally, thanks to [5, Remark 2.1], it is observed that the minimum of the value in
the last expression is exactly ml j , so that we infer |S|R1⇥R = A(bu;R1) = ml j
(the value of ml j is defined in (1.16)). From (5.31), since S1 is a competitor, we
conclude

�
�S1
�
� � ml j . (5.33)

The same being true for S2 and S3, we have addressed Theorem 3.7.

Remark 5.6. The equivalence of problems (5.31) and (5.32) only holds when the
codimension of the Cartesian current is 1 (that is when we consider real valued BV-
functions graphs). This is a consequence of the fact that, for N = 1, it holds true
cart1(�; RN ) = Cart1(�; RN ) (see Proposition 3 in [11, Section 4.2.4]).

6. An example in a thin domain

In this section we consider the problem of the area functional in a thin domain Ub,
a tubular neighborhood of the jump set of u, instead of the whole ball B1(0). The
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domain Ub is depicted in Figure 1.1 right in the introduction. We then construct
a sequence of Lipschitz functions {vk} which converges in L1(Ub) to the triple
junction function u and whose area of the graphs satisfies

lim inf
k!1

A(vk;Ub) < L2(Ub) + 3m.

In particular we infer that the construction made in [5] (done for � the disk) does
not provide a recovery sequence for the area functional onUb, which in fact satisfies

A(u;Ub) < L2(Ub) + 3m.

This dependence on the domain has been pointed out, for a different function, in [7].
As explained in the introduction, the inequality above is due to a certain interaction
between the jump set of u and the boundary of the domain. This interaction has
been observed indeed already in [7, Section 7] (see also the example for the vortex
map in [1] upon which the examples in [7] are inspired). The main issue is the
absence of uniform convergence of vk outside the jump set.

An auxiliary construction

We start by defining an auxiliary function. Consider two fixed real numbers h1,
h2 > 0. Let x0 < x1 < x2 < x3 < x3 < x4 < x5, and �, ✏ > 0 be real
numbers with ✏ < h2, and set di := xi � xi�1 for i = 1, . . . , 5. In a plane
with Cartesian coordinates x and y consider the rectangles Ai , of vertices (xi�1, �),
(xi , �), (xi ,��), (xi�1,��), for i = 1, . . . , 5, and set R := [5i=1Ai . The set R is a
rectangle with basis of width d =

P5
i=1 di and height 2�. We define the following

partition of A4 and A5: write Ai = A0i [ A+
i [ A�

i , i = 4, 5, where

A04 := A4 \

(

(x, y) : |y| 
�✏

✏
�
1� x�x3

d4

�
+ h2 x�x3d4

)

,

A+
4 := A4 \

(

(x, y) :
�✏

✏
�
1� x�x3

d4

�
+ h2 x�x3d4

< y  �

)

,

A�
4 := A4 \

(

(x, y) : ��  y < �
�✏

✏
�
1� x�x3

d4

�
+ h2 x�x3d4

)

,

A05 := A5 \

⇢
(x, y) : |y| 

�✏

h2

✓
1�

x � x4
d5

◆�
,

A+
5 := A5 \

⇢
(x, y) :

�✏

h2

✓
1�

x � x4
d5

◆
< y  �

�
,

A�
5 := A5 \

⇢
(x, y) : ��  y < �

�✏

h2

✓
1�

x � x4
d5

◆�
.
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We will now define a continuous map v = (v1, v2) : R ! R2. The first component
v1 of v is defined as follows:

v1(x, y)=0 on A1 [ A2,

v1(x, y)=h1
x � x2
d3

on A3,

v1(x, y)=h1 on A04 [ A05,

v1(x, y)=
h1

h2 � ✏

✓
h2 �

y
�

✓
✏

✓
1�

x � x3
d4

◆
+ h2

x � x3
d4

◆◆
on A+

4 , (6.1)

v1(x, y)=
h1

h2 � ✏

✓
h2 +

y
�

✓
✏

✓
1�

x � x3
d4

◆
+ h2

x � x3
d4

◆◆
on A�

4 ,

v1(x, y)=
✓
h2 �

h2
�
y
◆

h1
h2 � ✏

�
1� x�x4

d5

� on A+
5 ,

v1(x, y)=
✓
h2 +

h2
�
y
◆

h1
h2 � ✏

�
1� x�x4

d5

� on A�
5 .

A4
+ A5

+

A4
– A5

–

A1 A2 A3 A4 A5
0 0

x0 x1 x2 x3 x4 x5

Figure 6.1. The rectangle R.

The component v2 is instead defined as:

v2(x, y) = y
h2
�

on A1 [ A5,

v2(x, y) = y
h2
�

✓
1�

x � x1
d2

◆
+ y

✏

�

x � x1
d2

on A2,
(6.2)

v2(x, y) = y
✏

�
on A3,

v2(x, y) = y
✏

�

✓
1�

x � x3
d4

◆
+ y

h2
�

x � x3
d4

on A4.
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It is easily checked that the function v is Lipschitz continuous on R and has partial
derivatives given by
@v1
@x

(x, y)=
@v1
@y

(x, y) = 0 on A1 [ A2 [ A04 [ A05,

@v1
@x

(x, y)=
h1
d3

,
@v1
@y

(x, y) = 0 on A3,

@v1
@x

(x, y)=
h1

h2 � ✏

✓
y✏
�d4

�
yh2
�d4

◆
on A+

4 ,

@v1
@x

(x, y)=�
h1

h2 � ✏

✓
y✏
�d4

�
yh2
�d4

◆
on A�

4 ,

@v1
@y

(x, y)=�
h1

�(h2 � ✏)

✓
✏

✓
1�

x � x3
d4

◆
+ h2

x � x3
d4

◆
on A+

4 ,

@v1
@y

(x, y)=
h1

�(h2 � ✏)

✓
✏

✓
1�

x � x3
d4

◆
+ h2

x � x3
d4

◆
on A�

4 ,

@v1
@x

(x, y)=�

�
h2 � h2

� y
� ✏h1
d5�

�� x�x4
d5 � 1

�
✏ + h2

�
�2

on A+
5 ,

@v1
@x

(x, y)=�

�
h2 + h2

� y
� ✏h1
d5�

�� x�x4
d5 � 1

�
✏ + h2

�
�2

on A�
5 ,

@v1
@y

(x, y)=�
h2h1
�

1
� x�x4

d5 � 1
�
✏ + h2

on A+
5 ,

@v1
@y

(x, y)=
h2h1
�

1
� x�x4

d5 � 1
�
✏ + h2

on A�
5 ,

and
@v2
@x

(x, y) = 0 on A1 [ A3 [ A5,

@v2
@y

(x, y) =
h2
�

on A1 [ A5,

@v2
@y

(x, y) =
✏

�
on A3,

@v2
@x

(x,y)= y
✏

�d2
�y

h2
�d2

,

@v2
@y

(x, y) =
h2
�

✓
1�

x � x1
d2

◆
+
✏

�

x � x1
d2

on A2,

@v2
@x

(x, y) = y
h2
�d4

� y
✏

�d4
,

@v2
@y

(x, y) =
✏

�

✓
1�

x � x3
d4

◆
+
h2
�

x � x3
d4

on A4.
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Moreover we can easily compute the Jacobian J (v) of v which turns out to be
nonzero only on sets A3, A+

5 , and A
�
5 where it holds

J (v)(x, y) =
✏h1
�d3

on A3,

J (v)(x, y) = �
(h2 � h2

� y)
✏h1h2
�d5�

�� x�x4
d5 � 1

�
✏ + h2

�
�2

on A+
5 ,

J (v)(x, y) = �
(h2 + h2

� y)
✏h1h2
�d5�

�� x�x4
d5 � 1

�
✏ + h2

�
�2

on A�
5 .

We now want to give an estimate of the area of the graph of v over R, considering
a small value of ✏, say ✏ < h2/2. Using the inequality

A(v, R) 
Z

R
1+

�
�
�
�
@v1
@x

�
�
�
�+

�
�
�
�
@v1
@y

�
�
�
�+

�
�
�
�
@v2
@x

�
�
�
�+

�
�
�
�
@v2
@y

�
�
�
�+ |J (v)| dxdy, (6.3)

we inferA(v, R)  2�d +
P5

i=1 Ii , where

Ii :=
Z

Ai

�
�
�
�
@v1
@x

�
�
�
�+

�
�
�
�
@v1
@y

�
�
�
�+

�
�
�
�
@v2
@x

�
�
�
�+

�
�
�
�
@v2
@y

�
�
�
�+ |J (v)| dxdy,

i = 1, . . . , 5, d =
P

i di = x5 � x0. Tedious computations lead to

I1 = 2h2d1,
I2 = d2h2 + d2✏ + �(h2 � ✏),

I3 = 2�h1 + 2✏d3 + 2✏h1,
I4 = �h1 + �h1✏2 + �(h2 � ✏) + d4(h2 + ✏) + h1d4,

whereas, splitting I5 = I 15 + I 25 , with I
2
5 =

R
A5 |J (v)|dxdy, we can estimate

I 15 
�✏h1h2

|h2 � ✏|2
+
2h1h2d5
|h2 � ✏|

+ 2h2d5,

I 25 
✏h1h22

|h2 � ✏|2
.

(6.4)

To bound these terms we have used that |y|  � and ( x�x4d5 � 1)✏ + h2 � h2 � ✏

in A5 and we integrated on the whole A5. From (6.4) we see that there exists a
constant C > 0 depending only on h1 and h2 (recall ✏ < h2/2) such that

A(v, R)  C(� + d) + C✏(d + � + �✏). (6.5)
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Geometry and construction of v

We consider the points in R2,

↵ =
�
� 1/2,

p
3/2

�
, � = (1, 0), � =

�
� 1/2,�

p
3/2

�
,

and fix a positive real number ⌘ < 1. Notice that identifying the Cartesian plane
with the complex one, we can also write ↵ = e

2⇡
3 i , � = 1, � = e

4⇡
3 i . Let us

introduce the following six halflines

l1 =

(

x < �
⌘

2
, y = ⌘

p
3
2

)

,

r1 =

(

x < �
⌘

2
, y = �⌘

p
3
2

)

,

l2 =
�
x > ⌘, y =

p
3x �

p
3⌘
 
,

r2 =
n
x > �

⌘

2
, y =

p
3x +

p
3⌘
o

,

l3 =
n
x > �

⌘

2
, y = �

p
3x �

p
3⌘
o

,

r3 =
�
x > ⌘, y = �

p
3x +

p
3⌘
 
,

which have endpoints in one of the points A = ⌘↵, B = ⌘�, C = ⌘� . Now
we define three subsets of B1(O), the ball centered at the origin O = (0, 0) with
radius 1. The set e�1 is defined as the subset of the plane which is enclosed by the
two halflines l1 and r1, the segments OA and OC , and which contains the halfaxis
{x < 0, y = 0}. Then we set �1 := e�1 \ B1(O). The sets �2 is constructed
similarly using the halflines l2 and r2, or in other words, is obtained clockwise
rotating the set �1 of an angle of 2⇡3 around O . Namely �2 = e�

2⇡
3 i�1. Similarly,

�3 = e�
2⇡
3 i�2. Finally we set � := [3i=1�i .

Let ⇠ > 0 be a small parameter, ⇠ < ⌘. Consider the triangle T ⇠ with vertices
A⇠ = ⇠↵, B⇠ = ⇠�, and C⇠ = ⇠� , and set �⇠i := �i \ T ⇠ , i = 1, 2, 3. Consider
also the halflines l⇠1 = (⇠/⌘)l1, r ⇠1 = (⇠/⌘)r1, which are parallel to l1 and r1, but
have as endpoints A⇠ and B⇠ respectively. Similarly are constructed the halflines
l⇠2 , r

⇠
2 , l

⇠
3 , r

⇠
3 , as shown in Figure 6.2.

Let us focus now on the set �⇠1. This can be divided into three sectors

U+
1 = �1 \

�
y >

p
3⇠/2

 
, U�

1 = �1 \
�
y < �

p
3⇠/2

 
,

U01 = �1 \
�

�
p
3⇠/2 < y <

p
3⇠/2

 
.

Consider x0 < x1 < x2 < x3 < x4 < x5 = �⇠/2, and let d = x5 � x0. In the
rectangle R1 := (x0, x5) ⇥ (�⇠

p
3/2, ⇠

p
3/2) we define a function v as follows:

v is defined in (6.1) and (6.2) with h1 = 1/2, h2 =
p
3/2, on R1. (6.6)
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l1

r1

l1
x

r1
xW1 R1

A

C

O B

W2

r2
x

Ax

r2

V1
+ V2

+V3
+V4

+ V5
+

Cx
Bx

l2
x l2

r3x r3l3
x

l3 W3

Figure 6.2. The thin domain � = Ub.

In the remaining part of U01 the function v is settled as

v(x, y) = (0, y/⇠) on U01 \ R1.

We then extend v on the sets U+
1 in the following way: define

V+
1 = U+

1 \
�
y � ⇠ < �

p
3(x � x1)

 
,

V+
2 = U+

1 \
�

�
p
3(x � x1) < y � ⇠ < �

p
3(x � x2)

 
,

V+
3 = U+

1 \
�

�
p
3(x � x2) < y � ⇠ < �

p
3(x � x3)

 
,

V+
4 = U+

1 \
�

�
p
3(x � x3) < y � ⇠ < �

p
3(x � x4)

 
,

V+
5 = U+

1 \
�

�
p
3(x � x4) < y � ⇠ < �

p
3(x � x5)

 
,

and

v(x,y) :=

 

0,
p
3
2

!

on V+
1 [ V+

5 ,

v(x,y) :=

 

0,
p
3
2

✓
1�

t (x) � x1
x2 � x1

◆
+ ✏

t (x) � x1
x2 � x1

!

on V+
2 ,

v(x,y) :=
✓
1
2
t (x) � x2
x3 � x2

, ✏

◆
on V+

3 ,

v(x,y) :=

 
1
2

✓
1�

t (x)�x3
x4�x3

◆
,✏

✓
1�

t (x) � x3
x4 � x3

◆
+

p
3
2
t (x) � x3
x4 � x3

!

on V+
4 ,
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where, for brevity, we have set t (x) = x + (y � ⇠) 1p
3
. In other words, the variable

v1 is constantly 0 on V+
1 , V

+
2 , V

+
5 , constantly

1
2 on the common boundary of V

+
3

and V+
4 , and affine on V

+
3 and V+

4 . As for the variable v2, it equals
p
3
2 on V+

1 and
V+
5 , equals ✏ on V

+
3 , and is affine on V

+
2 and V

+
4 . Moreover if z is the new variable

z := �
p
3x � y, so that the line OA corresponds to the set where z = 0, we see

that v on U1+ depends only on z, and it holds

@v

@z
(x, y) =

�
0, 0

�
on V+

1 ,

@v

@z
(x, y) =

 

0,
p
3� 2✏

2
p
3(x2 � x1)

!

on V+
2 ,

@v

@z
(x, y) =

✓
�

1
2
p
3(x3 � x2)

, 0
◆

on V+
3 ,

@v

@z
(x, y) =

 
1

2
p
3(x4 � x3)

,�

p
3� 2✏

2
p
3(x4 � x3)

!

on V+
4 ,

@v

@z
(x, y) =

�
0, 0

�
on V+

5 .

In U�
1 the function v is defined in such a way that v1 is even with respect to the

variable y, and v2 is odd with respect to y.
We also write, in complex coordinates, v = v1 + iv2, and we set

ev := v � 1/2.

For convenience we still denoteev by v. Notice that the function v is equal to e
2⇡
3 i

on V+
1 and V+

5 , and is equal to e
4⇡
3 i on V�

1 and V�
5 .

We now define v on �⇠2 and �
⇠
3. In the complex coordinate ! 2 C, this is

defined as follows

v(!) = e�
2⇡
3 iv

⇣
e
2⇡
3 i!

⌘
on �⇠2,

v(!) = e�
4⇡
3 iv

⇣
e
4⇡
3 i!

⌘
on �⇠3. (6.7)

It is easily checked that the function v is continuous on [3i=1�
⇠
i and on the common

boundaries of �⇠i , i = 1, 2, 3.
It remains to define v in the triangle T ⇠ . Let T ⇠1 , T

⇠
2 , and T

⇠
3 be the midpoints

of the edges of T ⇠ , namely

T ⇠1 = �
⇠

2
, T ⇠2 = ⇠e

⇡
6 i , T ⇠3 = ⇠e

5⇡
6 i .
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Notice that v = 0 at T ⇠i . We set v = 0 on the triangle with vertices T ⇠i , i = 1, 2, 3.
Finally since v = e

2⇡
3 i at A⇠ , we set v to be linear in the triangle with vertices A⇠ ,

T ⇠1 , T
⇠
2 . Similarly v is defined in the remaining triangles. It is straightforward to

check that with such definition v is Lipschitz continuous.

Ax

Cx

BxOT1
x

T2
x

T3
x

Figure 6.3. The triangle T ⇠ .

We now want to compute the area of the graph associated to the map v on �. By
symmetry, the areas associated to the domains �i , i = 1, 2, 3, are equal. Let us
first estimate the area in U01 . In the rectangle R1 we can use formula (6.5) with
d = x5 � x0, h1 = 1

2 , h2 =
p
3/2, so that we find an absolute constant C > 0 such

that

|Gv|R1⇥R2  C(⇠ + d) + C(d + ⇠)✏. (6.8)

In U01 \ R1 the only nonzero component of the gradient of v is @v2@y = 1
⇠ , and thus

|Gv|(U01 \R1)⇥R2 
p
3⇠
✓
1� d �

⇠

2

◆
+

p
3
✓
1� d �

⇠

2

◆
. (6.9)

Let us now estimate the contribution on U+
1 . Using the inequality (6.3) and the

values of the derivatives computed above, we easily get

|Gv|U+
1 ⇥R2  L2

�
U+
1
�
+

(⌘ � ⇠)
p
3

�p
3� 2✏ + 1

�
. (6.10)

The same estimate holds true in U�
1 . Finally the contribution in the triangle T

⇠ is
easily computed. Indeed all the derivatives are zero in the triangle with vertices T ⇠i ,
i = 1, 2, 3, and using the linearity of v in the triangle with vertices A⇠ , T ⇠1 , T

⇠
2 we
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get

|Gv|T ⇠⇥R2 = L2
�
T ⇠
�
+
3
p
3
4
⇠. (6.11)

Summing all the bounds obtained so far, we infer that there is a constant C with

|Gv|  L2(�) + C
�
⇠ + d + ✏ + d✏ + ✏2

�
+ C⌘ + 3

p
3. (6.12)

The example

Let us introduce a parameter k 2 N and let us choose a sequence ⇠k , dk , ✏k of
positive real numbers converging to 0. Let vk : � ! R2 be the Lipschitz function
corresponding to these values. The functions vk are almost everywhere converging
to the function u : � ! {↵,�, � } given by (1.10) restricted to the thin domain
�. Moreover, since vk are uniformly bounded in L1, they are converging to u in
L1(�; R2). Inequality (6.12) provides

A(u,�) |Gvk |�L2(�) + C
�
⇠k + dk + ✏k + dk✏k + ✏2k

�
+ C⌘ + 3

p
3. (6.13)

Passing to the limit as k ! 1 we get

A(u,�)  L2(�) + C⌘ + 3
p
3. (6.14)

Exploiting now the fact that m >
p
3, we can choose ⌘ small enough so that

A(u,�)  L2(�) + C⌘ + 3
p
3 < L2(�) + 3m.
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