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Co-axial monodromy

ALEXANDRE EREMENKO

Abstract. For Riemannian metrics of constant positive curvature on a punctured
sphere with conic singularities at the punctures and co-axial monodromy of the
developing map, possible angles at the singularities are completely described.
This completes the recent result of Mondello and Panov.

The related problem of describing possible multiplicities of critical points
of logarithmic potentials of finitely many charges is also solved.

Mathematics Subject Classification (2010): 57M50 (primary); 53C45, 31A99
(secondary).

1. Introduction

Existence of a Riemannian metric of constant positive curvature in a given con-
formal class on a punctured sphere with conic singularities at the punctures and
prescribed angles at the singularities is an important problem, but at present the so-
lution in this generality seems to be out of reach, see for example the surveys in the
introductions of [6, 10].

Mondello and Panov [10] proposed a reduced problem: to describe possible
angles at the singularities for such metrics. (The conformal class is not prescribed.)
They solved this problem for generic angles. In this paper their solution is com-
pleted by the study of the remaining case which was excluded in [10].

The results in [10] are the following. Let

↵ = {↵1, . . . ,↵n}, ↵ j > 0, ↵ j 6= 1 (1.1)

be the set of angles. We measure all angles in turns: 1 turn is 2⇡ radians. Strictly
speaking, ↵ is an unordered multiset; some elements can be repeated. Alternatively,
↵ is an element of the n-th symmetric power of R>0. Whenever it is convenient, we
list non-integer ↵ j ’s first, followed by integer ↵ j ’s.
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The restrictions are: the Gauss-Bonnet theorem,
nX

j=1
(↵ j � 1) + 2 > 0, (1.2)

and
d1(Zno,↵ � 1) � 1, (1.3)

where 1 = (1, . . . , 1), andZno is the subset of the integer lattice consisting of vectors
with odd sums of coordinates, and d1 is the `1 distance.

Mondello and Panov proved that these two conditions are always necessary,
and if one replaces (1.3) by the strict inequality, they also become sufficient. So to
complete their description, it remains to investigate the case of equality in (1.3):

d1(Zno,↵ � 1) = 1. (1.4)

Moreover, they proved that every metric satisfying (1.4) is co-axial, which means
that the monodromy group of the developing map is a subgroup of the unit cir-
cle. This gives a motivation for study of metrics with co-axial monodromy. Here
and in what follows, S is the Riemann sphere (compact simply-connected Riemann
surface). The sphere with the standard spherical metric will be denoted by C. In
general, co-axial monodromy does not imply (1.4).

We say that a multiset (1.1) is admissible if there exists a metric of constant
curvature 1 on S\{n points}with conic singularities at these n points with angles ↵ j ,
and the developing map of this metric has co-axial monodromy. Our main result is:

Theorem 1.1. For a multiset (1.1) assume that ↵m+1, . . . ,↵n are integers while
↵1, . . . ,↵m are not integers. For ↵ to be admissible it is necessary that there exist
a choice of signs ✏ j 2 {±1} and a non-negative integer k0 such that

mX

j=1
✏ j↵ j = k0, (1.5)

and the number

k00 :=
nX

j=m+1
↵ j � n � k0 + 2 is non-negative and even. (1.6)

If the coordinates of the vector

c := (↵1, . . . ,↵m, 1, . . . , 1| {z }
k0+k00 times

) (1.7)

are incommensurable, then (1.5) and (1.6) are also sufficient.
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If c = ⌘b, where coordinates of b are integers whose greatest common factor
is 1, then there is an additional necessary condition

2 max
m+1 jn

↵ j 
qX

j=1
|b j |, where q := m + k0 + k00. (1.8)

Conditions (1.5), (1.6), (1.8) are sufficient for ↵ to be admissible.

As a corollary we mention that unless n = 2, a co-axial metric must have some
integer angles whose sum is at least n + k0 � 2 and has the same parity as n + k0,
where k0 is a number that satisfies (1.5) with some choice of signs.

The plan of the paper is the following. In Section 2 we explain some prelimi-
naries, reduce Theorem 1.1 to a problem of potential theory (Question 2.3 below),
state the answer to this question (Theorem 2.4), and give several examples. Sec-
tion 3 contains the proof of the main technical result, Theorem 2.4. In Section 4,
we complete the proof of Theorem 1.1 and end with a discussion of the results.

ACKNOWLEDGEMENTS. The author thanks Andrei Gabrielov, Michael Kapovich,
Dmitry Novikov, Carlo Petronio and Vitaly Tarasov for helpful discussions, and the
referee for useful remarks.

2. Reduction to a question of potential theory

We briefly recall the definition of the developing map of a metric of constant pos-
itive curvature. Start with a small region in S\{singularities}. It is well-known
that there is an isometry from this region to a region in the standard sphere C.
This isometry is conformal and thus analytic, and it admits an analytic continua-
tion along every curve which does not pass through the singularities. We obtain
a multi-valued function f : S\{singularities} ! C (or a genuine function on the
universal covering) which is called the developing map. Conic nature of the singu-
larities means that f (z) = f (a) + (c + o(1))z↵ near a singularity a with angle ↵,
or f (z) = (c + o(1))z�↵ if f (a) = 1, where z is a local conformal coordinate
which equals 0 at a, and ↵ is the angle, f (a) means the radial limit when z ! 0,
and c 6= 0. The result f� of an analytic continuation of f along a closed path � not
passing through the singularities is related to the original germ of f by f� = � � � ,
where � is an isometry ofC, so we obtain a representation of the fundamental group
of S\{singularities} in the group of linear-fractional transformations. The image of
this representation is called the monodromy group, and the developing map and the
metric are called co-axial if this monodromy group is a subgroup of the unit circle.
See [5, 6, 10].

Suppose now that f : S ! C is the developing map of a metric with co-axial
monodromy. Monodromy group consists of transformations w 7! �w, |�| = 1.
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Then the meromorphic 1-form d f/ f is well defined on the sphere, so

R = f 0/ f (2.1)

is a rational function. We assume without loss of generality that1 2 S is not a pole
of R(z)dz, so that R has a zero of order two at 1. From the local considerations
we see that every pole of R is simple, the residue � is real, and every pole of R is a
conic singularity of the metric with the angle ↵ j = |�|, unless � = ±1. In the last
case the pole of R is a non-singular point of the metric. Moreover, a zero of R in C
of multiplicity r is a conic singularity with the angle ↵ j = r+1. As R has a double
zero at infinity, the number of zeros (counting multiplicity) in C is q � 2, where q
is the number of poles.

Thus

R(z) =
mX

j=1

✏ j↵ j

z � a j
+

kX

j=1

� j

z � b j
, (2.2)

where ✏ j 2 {±1}, � j 2 {±1}, and R has zeros in C whose sum of multiplicities is
q � 2, q = m + k, and these multiplicities are ↵ j � 1 for m + 1  j  n. The
developing map itself is thus given by

f (z) =
qY

j=1
(z � z j )� j , (2.3)

where � j = ✏ j↵ j for 1  j  m and � j = � j�m for m+1  j  q. The condition

mX

j=1
✏ j↵ j +

kX

j=1
� j = 0 (2.4)

holds by the residue theorem. As the number of zeros of R in Cmust be m+ k� 2,
and each zero is a singularity of the metric, we obtain

nX

j=m+1
(↵ j � 1) = m + k � 2. (2.5)

So a necessary condition for ↵ to be admissible is:
Condition 2.1. There exists a partition ↵ = A [ B into two sub-multisets A =
{↵1, . . . ,↵m} and B = {↵m+1, . . . ,↵n} so that:

• All elements of B are integers;
• There exist an integer k, and a choice of signs ✏ j 2 {±1}, 1  j  m and

� j 2 {±1}, 1  j  k, such that (2.4) and (2.5) hold.

Proposition 2.2. Condition 2.1 implies (1.5) and (1.6).



CO-AXIAL MONODROMY 623

Proof. Condition 2.1 coincides with (1.5) and (1.6) when A contains no integers.
In this case we have k = k0 + k00.

If for some ↵ a partition A, B and numbers k, ✏ j , � j as required by Condi-
tion 2.1 exist, then there exists another partition A0, B0 with the same properties
and with the additional property that A0 contains no integers.

Indeed, suppose that A = {↵1, . . . ,↵m} and ↵m is an integer. Then define
A0 = {↵1, . . . ,↵m�1} and B0 = {↵m, . . . ,↵n}. To restore (2.4) we must add ↵m of
� j ’s equal to�✏m ; this increases k to k⇤ = k+↵m and decreases m to m⇤ = m� 1,
so the total increases in the right- and left-hand sides of (2.5) are equal, so this
condition (2.5) is satisfied for the new partition A0, B0. We repeat this procedure
until all integer angles are removed from A. In the special case when all angles are
integers, A will be empty. This proves the proposition and necessity of conditions
(1.5) and (1.6) in Theorem 1.1.

We will call such partitions where A consists of all non-integer angles of ↵
reduced. In a reduced partition of ↵, m is the number of non-integer angles, and the
only reason why a reduced partition may be non-unique is that different choices of
signs ✏ j in (2.2) may be possible.

When the number of non-integer angles m  3, conditions equivalent to (1.5)
and (1.6) were obtained in [5], [6, Theorem 4.1], [7], and for m  3 they are also
sufficient.

Formula (2.2) for a reduced partition can be written as

f 0

f
=

mX

j=1

✏ j↵ j

z � a j
�

k0X

j=1

1
z � b j

+
k0+k00X

j=k0+1

(�1) j

z � b j
,

and the residue theorem combined with (1.5) shows that k00 must be even, as stated
in (1.6).

We will see that for co-axial metrics, (1.5) and (1.6) are also sufficient in the
generic situation, when the coordinates of the vector c in (1.7) are incommensu-
rable. When coordinates of c are commensurable, there are additional restrictions.

For a given multiset ↵ = {↵1, . . . ,↵n} satisfying Condition 2.1 we call a
quadruple (A, B, k, {✏ j }, {� j }) of parameters in (2.2) an arrangement for ↵. For
an admissible ↵, different arrangements may give different metrics. We do not re-
quire that all ↵ j 2 A are non-integers. If they are non-integers, the arrangement is
called reduced. If ↵ is admissible, there exist finitely many arrangements, at least
one of them is reduced. This reduced arrangement may be non-unique: various
choices of ✏ j in (1.5) are sometimes possible. A priori, we have to deal with non-
reduced arrangements because we have further conditions besides conditions (1.5)
and (1.6); it is possible that some of the arrangements satisfy them, others do not.

The geometric meaning of a reduced arrangement is the following. The devel-
oping map f as in (2.3) is a multi-valued function, but the preimage f �1({0,1})
is well defined (as radial limits). Metrics corresponding to reduced arrangements
are exactly those for which the developing map does not take the values 0,1 at the
singularities with integer angles.
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From now on, we assume that Condition 2.1 is satisfied, an arrangement (per-
haps not reduced) is fixed, and the logarithmic derivative of the developing map is
written as in (2.2). We denote for simplicity

{✏1↵1, . . . , ✏m↵m, �1, . . . , �k} = {c1, . . . , cq}, (2.6)

where q = m + k. In the case of reduced arrangement k = k0 + k00. The question is
what multiplicities of zeros of R are possible for a given vector of residues c:

Question 2.3. Suppose that real non-zero numbers {c1, . . . , cq} are given, and
qX

j=1
c j = 0. (2.7)

Which partitions {`1, . . . , `k} of q � 2 can be realized as multiplicities of zeros in
C of the function

g(z) =
qX

j=1

c j
z � z j

, (2.8)

where z j are pairwise distinct complex numbers?
Notice that zeros of g are critical points of the potential

u(z) =
qX

j=1
c j log |z � z j |, (2.9)

and Question 2.3 seems to be of independent interest.
The trivial but important property is the following:
If all c j are multiplied by a constant, the multiplicities of zeros of R do not
change.

So we introduce the real projective space RPq�2 which consists of non-zero
q-tuples (c1, . . . , cq) satisfying (2.7), modulo proportionality. A point c 2 RPq�2

is called rational if its equivalence class contains a q-tuple with all c j rational. Let
Z be the union of coordinate hyperplanes Z j = {c : c j = 0}, 1  j  q. Let P
be a partition of q � 2. A point c 2 RPq�2 is called P-admissible, if there exist
pairwise distinct z j 2 C such that the function g in (2.8) has zeros of multiplicities
P . A point c 2 RPq�2\Z which is not P-admissible is called P-exceptional.
Theorem 2.4. Let P = {`1, . . . , `s} be a partition of q � 2. Every irrational point
c 2 RPq�2\Z is P-admissible. A rational point if P-admissible if and only if

2
✓
1+ max

1 js
` j

◆


qX

j=1
|b j |, (2.10)

where
{b1, . . . , bq} = {⌘c1, . . . , ⌘cq}, ⌘ 6= 0, (2.11)

is a vector with mutually prime integer coordinates proportional to c.
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When all residues in (2.8) are mutually prime integers the developing map f =
exp

R
g is a rational function, for which positive residues are multiplicities of zeros,

negative residues are multiplicities of poles, and k j := ` j + 1, 1  j  s are the
multiplicities of f at other critical points, different from zeros and poles. So our
Question 2.3 with mutually prime integer residues is a special case of the Hurwitz
problem [2,9]:
Question 2.5. Given two partitions {n1, . . . , nr } and {m1, . . . ,mt } of the same
number d > 1 and a multiset of integers {k1, . . . , ks}, k j � 2, such that

rX

j=1
(n j � 1) +

tX

j=1
(m j � 1) +

sX

j=1
(k j � 1) = 2d � 2, (2.12)

does there exist a rational function f of degree d with zeros of multiplicitiesm j and
poles of multiplicities n j and other critical points where multiplicities of f are k j?
Here m j are positive residues in (2.8) and n j are negative residues in (2.8).

By a simple perturbation argument, it is sufficient to consider the case when
the values of f at these “other critical points” are all distinct: critical points with the
same critical value other than 0,1 can be perturbed so that all these critical points
will have different critical values, and the multiplicities of zeros and poles are not
affected.

The answer to Question 2.5 was recently obtained by Song and Xu [12]. The
necessary and sufficient condition of existence of f is

k j  d =
1
2

qX

i=1
|bi |, 1  j  s. (2.13)

The necessity of this condition is evident because the right-hand side is the degree
d of f . Sufficiency was proved by Song and Yu who generalized the result of
Boccara [2] for s = 1. This solves Question 2.5 and proves Theorem 2.4 for the
case of rational vector c.

We state a trivial but important fact:
Remark 2.6. For each P there are finitely many integer vectors (b1, . . . , bq)which
do not satisfy (2.13), thus there are finitely many rational points in RPq�2\Z which
are P-exceptional.
Theorem 2.4 gives an algorithm which determines whether a given multiset ↵ is ad-
missible. The algorithm works as follows. Starting with a multiset ↵={↵1, . . . ,↵n}
we check conditions (1.5) and (1.6). If they are not satisfied, then ↵ is not admissi-
ble. If these conditions are satisfied, we consider all arrangements for ↵ and vectors
c corresponding to them as in (2.6). If one of these vectors is irrational, then ↵ is
admissible. If all are rational, we construct integer vectors b as in (2.11). If one of
these vectors b satisfies (2.10) with ` j = ↵ j+m � 1, then ↵ is admissible, if none,
then not.
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Most of Theorem 1.1 is a corollary of Theorem 2.4, except the statement that
it is enough to check condition (1.8) only for one reduced arrangement. This will
be addressed in the formal proof of Theorem 1.1 in the end of the paper.
Example 2.7. For arbitrary non-integer � > 0 the multiset {�,�,�,�, 3} is not
admissible. Conditions (1.5) and (1.6) are satisfied. The only reduced arrangement
is A = {�,�,�,�}, B = {3}, k = 0. So q = 4, b = (1, 1,�1,�1), and condition
(1.8) is violated.
Example 2.8. For arbitrary � > 0 the multiset {�,�, 2�, 2�, 3} is admissible.
Conditions (1.5) and (1.6) are satisfied. Take the arrangement A = {�,�, 2�, 2�},
B = {3}, k = 0. We have q = 4, b = (1,�1, 2,�2). Inequality (1.8) is satisfied.
Let us write a developing map explicitly for this case:

f (z) =

 
(z � 1)2(2z + 1)
(z + 1)2(2z � 1)

!�

= h�(z).

The corresponding metric has angles � at±1/2 and angles 2� at±1. In addition to
this, there is angle 3 at 0, because h has a triple point at 0 with critical value �1.

3. Proof of Theorem 2.4

Sketch of the proof. First we notice that the problem of constructing a surface of
constant positive curvature, with co-axial monodromy and with prescribed angles at
conic singularities is equivalent to a similar construction problem for a surface with
a flat metric. Trying to construct this flat surface by gluing cylinders, we discover
the general nature of obstructions: the given angles must satisfy some systems of
inequalities. These inequalities are too complicated to write explicitly, but we de-
termine their general nature: they are inequalities between some linear forms in
the residues c j with integer coefficients. Therefore, for each partition P , the set
of P-exceptional points is a rational polyhedron in the space RPq�2. If this poly-
hedron consists of infinitely many points, then it must also contain infinitely many
rational points. But we know from Theorem 2.4 that the number of exceptional
rational points is finite for given P , see Remark 2.6. Therefore the polyhedron of
P-exceptional points consists of finitely many points and thus all exceptional points
must be rational.

Proof of Theorem 2.4.

1. From spherical to flat and back. Let f : S ! C be the developing map as in
(2.3). Let � = S\{z1, . . . , zq}. Then we have the restricted map f ⇤ : � ! C⇤.

We equip C⇤ with the flat metric whose length element is |dz/z|. This metric
makes C⇤ into an open cylinder infinite in two directions whose girth (the length of
the shortest non-trivial geodesic, a. k. a. the systole) is 2⇡ . We pull back this flat
metric to � via f ⇤ and obtain a flat surface which is conformally equivalent to a
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sphere with q punctures, and some neighborhoods of the punctures are semi-infinite
cylinders of girths 2⇡ |� j |. We call this surface (�, ⇢), where ⇢ is the flat metric.
The developing map f ⇤ of (�, ⇢) has two special features: it maps � to C⇤ (rather
then C) and it tends to 0 or to1 at the punctures in the sense of radial limits.

Conversely, suppose that � is a Riemann surface conformally equivalent to a
punctured sphere, equipped with a flat Riemannian metric ⇢ such that some neigh-
borhoods of the punctures are semi-infinite cylinders of girth 2⇡µ j . Moreover,
suppose that the developing map h maps � to C⇤ and tends at each puncture either
to 0 or to 1. By filling the punctures, we can extend h to a (multivalued) map
f : S ! C and pull back the spherical metric to S. The resulting surface has con-
stant curvature 1, and in addition to conic singularities in � has conic singularities
at the punctures S\�. The angles at these additional singularities z j are µ j .
2. From flat surface to a system of linear inequalities. Nowwe study this auxiliary
flat surface (�, ⇢) and its developing map h. The level sets

Lt = {z 2 � : log |h(z)| = t}, �1 < t < 1,

make a foliation of �. This means that � is a disjoint union of leaves and finitely
many critical points of log |h|. Leafs are the curves on which |h(z)| is constant;
these curves are either simple closed curves (ordinary leaves) or simple open curves
with both ends at singular points (singular leaves). Foliations are considered here
as topological objects: up to homeomorphisms which respect leaves.

Notice that unlike the developing map h, the function u = log |h| is a well-
defined (single-valued) harmonic function. Level sets Lt which contain singular
points are called critical level sets. A non-critical level set consists of finitely many
ordinary leaves, while a critical level set may contain both ordinary and singular
leaves and some critical points.

The region � is a disjoint union of open foliated cylinders and critical level
sets. A model foliated cylinder is obtained by taking a rectangle in the plane foli-
ated into horizontal segments and identifying its vertical sides in the natural way.
An open foliated surface homeomorphic to such a cylinder, by a homeomorphism
respecting the foliation is called a foliated cylinder.

Every singular point in � is a saddle point of u and it has an index: a positive
integer k such that the singular leaves in a neighborhood of this point look like the
2(k+1) intervals of the set {z : |z| < 1, Re zk+1 = 0}meeting at 0. This is because
our function u is harmonic.

Our foliation has an additional structure: there are two functions on the set of
leaves: one is the height t , another is the length of a leaf with respect to the intrinsic
metric ⇢. For a leaf � ⇢ Lt the height is t . The length of a leaf � is a positive
number which can be computed by the formula

|� | =
Z

�

�
�
�
�
@u
@n

�
�
�
� |dz|, u(z) = log |h(z)|,

where n is the unit normal to � . The same formula defines the length of any arc of
a leaf.
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Suppose that an interval (t 0, t 00) contains no critical values of u. For t 2 (t 0, t 00),
let �t ⇢ Lt be a leaf which depends continuously on t . (Convergence of leaves
which is used here is uniform, using some parametrization).

Then the length |�t | does not depend on t .
This follows from Green’s formula applied to u in the ring between �t1 and �t2

where t1, t2 are any numbers between t 0 and t 00.
When t passes through a critical value, some leaves break into singular leaves

and then these singular leaves re-assemble into new ordinary leaves.
More precisely, let (t 0, t 00) be as above, and suppose that t 0 is a singular value.

Choose a leaf �t 2 Lt which depends continuously on t for t 2 (t 0, t 00). Then as
t ! t 0+, some parametrization of �t converges uniformly to a closed curve, which
can be an ordinary leaf, or a finite union of singular leaves � j ⇢ Lt 0 and singular
points. Moreover, we have

|�t | =
X

j
|� j |, (3.1)

where the summation is over all those leaves which form the limit of �t , and all
summands in the right-hand side are strictly positive.

Relations (3.1) form a system of linear equations which the lengths of leaves
of a given topological foliation must satisfy, assuming that the lengths of ordinary
leaves do not change with height.

3. From foliations with height and length back to flat surfaces. Suppose now that
� is a topological punctured sphere with a topological foliation whose leaves are
level sets of some smooth function v : � ! R with finitely many critical points,
and v(z) ! ±1 when z tends to a puncture, and

a) In a neighborhood of each critical point v is topologically equivalent to a har-
monic function.

Suppose further that a strictly positive function � on the set of leaves is given which
has the formal properties of the length function, namely:

b) If �t ⇢ Lt is a family of ordinary leaves continuously depending on t 2 (t 0, t 00)
on an interval containing no critical values, then �(�t ) is constant on (t 0, t 00);

c) If t 0 is a singular value, and �t is the same as in b), and �t tends to the union of
singular leaves [ j�

j as t ! t 0, we have

�(�t ) =
X

j
�
�
� j�. (3.2)

We claim that whenever such a foliation and functions t and � on the leaves are
given, one can introduce a flat metric on�whose developing map h has the property
that the level sets of v = log |h| define our given foliation, and the function � is the
length of the leaves of this foliation. The flat metric defines on � the conformal
structure of a punctured sphere.
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To prove the claim, we consider the partition of � into foliated cylinders C j
and critical level sets as described in part 2 of the proof. Each cylinder is mapped
by v into a maximal interval (t 0, t 00) free of critical values of v. In the trivial case
when there are no critical points at all, we have (t 0, t 00) = (�1,1). In all other
cases there are two such semi-infinite intervals and finitely many finite intervals.

Each foliated cylinder C j is homeomorphic to the product � j ⇥ (t 0, t 00), where
� j is an ordinary leaf in Lt for some t 2 (t 0, t 00). We pull back to C j the standard
Euclidean metric from this product, so that |� j | = �(� j ). This defines the flat
metric ⇢ on the cylinders of the foliation. Some of them are of finite height, others
semi-infinite, except the trivial case when there is only one doubly-infinite cylinder.

Let C j be completions of the C j with respect to their metrics. The boundary
circles of C j correspond to some leaves of the foliation on the singular level sets,
and some finite sets of points on each boundary circle must be glued together into
singular points. So we break every boundary circle into arcs which will correspond
to the singular leaves. The lengths of these arcs are determined by our function �,
and this is where relation (3.2) is used. Then we glue together our cylinders along
these arcs respecting the length. To perform this gluing we use the theorem of
Aleksandrov and Zalgaller, see, for example [11, Theorem 8.3.2], about gluing two
surfaces along a geodesic arc. It guarantees that we obtain a “surface of bounded
curvature” in the sense of Aleksandrov, with a flat metric and finitely many conic
singular points. (This is a surface of special kind which is called a polyhedral
surface in [11]). The total angle at a singularity is equal to one half of the number
of boundary points of cylinders which are glued together at this point.

That the resulting surface is connected and of genus 0 is guaranteed by the
topology of the foliation. For a given foliation, the only condition for the possibility
of this gluing is the linear relations (3.2) between the lengths of the leaves.

4.Conclusion of the proof of Theorem 2.4. Suppose that the vector c has p positive
and r negative coordinates, p+ r = q. Take a q-punctured sphere�, and construct
a function v : � ! R which tends to �1 at p punctures of � and to +1 at the
remaining r punctures. Moreover, we require that all critical points of v in � are
saddle points of the topological types which are possible for harmonic functions,
and the multiplicities of these critical points are the parts of the partition P .

Lemma 3.1. For every p, r and P there exists a function v with these properties.

Postponing the proof of the lemma, we complete the proof of Theorem 2.4.

Consider all foliations defined by functions v satisfying our conditions with
fixed p, r, P . To assign a length function � consistent with a foliation, we have
to solve the system of equations (3.2) which is determined by the foliation. In this
system, the given numbers are the girths of the semi-infinite cylinders (these are our
|c j |), and the unknown variables are the girths of all finite height cylinders and the
lengths of the singular leaves.

In addition to (3.2), we have the restriction that all girths and lengths must be
strictly positive.
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If this linear system has a strictly positive solution, we can construct our metric
by performing steps described in parts 3 and 1. If not, a metric corresponding to
this particular foliation does not exist.

We give an illustrating example. Suppose we want to construct a function g as
in (2.8) with two positive residues a, b, two negative residues �c,�d and a single
critical point where the local degree of h is 3. Then the critical level set must have
the form as in Fig. 1, where the regions represent semi-infinite cylinders, the dots
labeled a, b are the poles of h, and the dots labeled c, d are zeros of h. The girths
of the four cylinders are 2⇡a, 2⇡b, 2⇡c, 2⇡d and the length of the three singular
leaves are 2⇡b, 2⇡d, and 2⇡x (see Figure 3.1). Non-singular leaves of the foliation
are not shown in the picture, each of them is a Jordan curve that surrounds the
puncture in its cylinder. Equations (3.2) for this case are

a = x + d, c = x + b,

which are consistent if and only if a�d+b�c = 0. Now x must be strictly positive,
so we obtain necessary and sufficient conditions of existence of such g: a > d and
c > b, in other words, the positive residues must be unequal and negative residues
must be unequal. This explains examples 2.7, 2.8 above.

c

b d
a

x

Figure 3.1. A critical level set.

In any case, the condition that a vector c is P-admissible is stated in terms of linear
equations and linear inequalities with integer coefficients and Boolean operations.
So P-exceptional vectors c form a rational polyhedron inRPq�2. If this polyhedron
is infinite, then it contains infinitely many rational points [4], which is not the case:
we have seen that there are only finitely many P-exceptional rational vectors for
each given P (see Remark 2.6). So the polyhedron is finite. So it consists of only
rational points.

This completes the proof of Theorem 2.4.

5. Proof of Lemma 3.1. It is sufficient to prove the lemma for the special case
when there is only one critical point. Then it can be broken into pieces according
to partition P by a perturbation, as shown in the first three lines of Figure 3.2. In
lines 1-3, on the left-hand side we have a critical point of multiplicity 4. In lines 1
and 2 it is broken to two critical points of multiplicity 2, in line 3 it is broken into one
critical point of multiplicity 2 and two critical points of multiplicity 1. A foliation
with one critical point is defined by its critical level set, say v(z) = 0, and by
assigning a black or white color to the components of the complement according to
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(5,1)

(4,2)

(3,3)

(4,1)

(3,2)

(6,1)

(5,2)

Figure 3.2. Black and white regions represent semi-infinite cylinders, numbers on the
left are (p, r), and the arrows arrows show breaking a high multiplicity critical point
into critical points of the lower multiplicity.

the sign of v. Instead of describing these foliations in words we just present pictures
of their critical level sets in Figure 3.2. Each black or white region represents a
semi-infinite cylinder with one puncture inside. Numbers (p, r) are written on the
left. We start with (p, 1), a flower with p petals, and then pass to (p � 1, 2),
(p � 2, 3) etc., as shown in the picture.

4. Completion of the proof of Theorem 1.1

Necessity of conditions (1.5), (1.6) has been already explained, and sufficiency of
(1.5), (1.6) and (1.8) follows from Theorem 2.4. It remains to prove the necessity of
(1.8). It is necessary that (1.8) is satisfied for some arrangement. We have to prove
that it is enough to check it only for one reduced arrangement.

Suppose that ↵ is a multiset satisfying Condition 2.1. We claim that if it is
admissible, then there exists a metric with these angles corresponding to some re-
duced arrangement. Indeed if there are singular points with integer angles for which
the developing map takes the values 0 or1, then one can find another metric with
co-axial monodromy with the same angles for which the developing map does not
take the values 0 or1 at the singular points with integer angles. This follows from
a general argument which permits to “move around” a singular point with integer
angle.

Let f : S ! C be the developing map of a surface of curvature 1 with conic
singularities, and suppose that a 2 S is a singular point with integer angle ↵. Let
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r > 0 be smaller than the distance from a to other singularities, and such that the
closed intrinsic disk D of radius r centered at a is homeomorphic to a closed disk
in the plane.

We will remove the interior of D from S, and paste S\int D with a new surface
C homeomorphic to a closed disc in the plane, equipped with a metric of the same
constant curvature, having one singularity in the interior with the same angle ↵.
This can be so arranged that the distance in C from the singularity to @C is any
positive number less than r , and the closest point to the singularity on @C is any
given point of @C . So we have a continuous family of deformations. Moreover, the
resulting surface S0 = C [ (S\int D) is smooth, and has constant curvature except
at the conic singularities in S\D and in C .

Consider the disk U = {z : |z| < R}, R = tan(r/2)} equipped with the
standard spherical metric ⇢. (The spherical radius of this disk is r .) Let C =
{z : |z|  R1/↵} equipped with the metric ⇢1 = f ⇤⇢, where f (z) = z↵ . Let
D = {z : |z|  R1/↵} equipped with the metric ⇢2 = g⇤⇢, where

g(z) = R
z↵ + aR
1+ az↵

,

where |a| < 1. Consider the annulus B ⇢ U , B = {z : t < |z| < R} where
t 2 (R|a|, R), and let denote A1 = f �1(B), A2 = g�1(B). Then the metric
spaces (A1, ⇢1) ⇢ D and A2 ⇢ C are isometric, because they are both isometric
to the covering of B of degree ↵. So we can remove from our surface S a disk
isometric to D and glue in C instead. The parameter of deformation is a. Notice
that this deformation is isomonodromic, does not change the monodromy group.

This explains why the necessary condition (1.8) in Theorem 1.1 is enough to
verify for reduced arrangements: we can always perturb a co-axial metric and obtain
another co-axial metric with the same angles and reduced arrangement.

Now we notice, that if some reduced arrangement satisfies (1.8) of Theo-
rem 1.1, then all other reduced arrangements for the same multiset of angles will
also satisfy (1.8), because q and

P
|b j | are the same for all reduced arrangements.

Indeed, m and

q = m + k0 + k00 =
nX

j=m+1
(↵ j � 1) + 2,

depend only on ↵, and b j depend only on non-integer angles in ↵ and on k=k0+k00.
This proves necessity of condition (1.8) and completes the proof of Theorem1.1.
Remark 4.1. A similar deformation of a singularity with non-integer angle is im-
possible. Consider, for example a “football”, the sphere with a metric of curvature
1 and two conic singularities. The singularities of such surface must have equal
angles, and for each angle there is such a surface. But if the angle is non-integer,
then a football is unique, while with an integer angle there is a 1-parametric family
of footballs [13]. What was used in our argument is that the developing map is
single-valued in a neighborhood of a singularity with integer angle.
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Remark 4.2. If ↵ is an admissible multiset, there exists a metric of positive cur-
vature with angles ↵. But the conformal class of this metric cannot be arbitrarily
assigned. Take for example ↵ = (↵1, . . . ,↵n) where ↵n = n � 2, the rest of the
angles are not integers and

n�1X

j=1
↵ j = 0.

Compare Example 2.8 above. The developing map satisfies

f 0(z)
f (z)

=
n�1X

j=1

±↵ j

z � z j
,

and the right-hand side must have a zero of multiplicity n � 3. This imposes n � 4
conditions on the poles z j . Indeed, we may assume without loss of generality that
z1 = 0, z2 = 1, so we obtain n�4 conditions on n�3 variables z j which suggests
that there is only a one-dimensional family of conformal classes of such metrics.

Similar phenomenon may occur when all angles are non-integer. Lin and
Wang [8] studied a problem which is equivalent to description of metrics of posi-
tive curvature on the sphere with four singularities with angles (1/2, 1/2, 1/2, 3/2).
The conformal type of these metrics depends on one complex parameter, and it turns
out that the moduli space of quadruply punctured spheres is split into two parts, each
with non-empty interior, such that for one part a metric with these angles exists and
for the other part it does not. In all these examples the angles are very special. The
results in [1, 3] suggest that perhaps for generic angles satisfying (1.2) and (1.3) a
metric of curvature 1 exists in prescribed conformal class of the punctured sphere.

References

[1] D. BARTOLUCCI, D. DE MARCHIS and A. MALCHIODI, Supercritical conformal metrics
on surfaces with conical singularities, Int. Math. Res. Not. IMRN 24 (2011), 5625–5643.

[2] G. BOCCARA, Cycles comme produit de deux permutations de classes donnès, Discrete
Math. 58 (1982), 129–142.

[3] CHUIN-CHUAN CHEN and CHANG-SHOU LIN, Mean field equation of Liouville type with
singular data: topological degree, Comm. Pure Appl. Math. 68 (2015), 887–947.

[4] L. VAN DEN DRIES, “Tame Topology and o-minimal Structures”, London Mathematical
Society Lecture Notes Series, Vol. 248, Cambridge University Press, Cambridge, 1998.

[5] A. EREMENKO, Metrics of positive curvature with conic singularities on the sphere, Proc.
Amer. Math. Soc. 132 (2004), 3349–3355.

[6] A. EREMENKO, A. GABRIELOV and V. TARASOV, Metrics with conic singularities and
spherical polygons, Illinois J. Math. 58 (2014), 739–755.

[7] A. EREMENKO, A. GABRIELOV and V. TARASOV, Spherical quadrilaterals with three
non-integer angles, Zh. Mat. Fiz. Anal. Geom. 12 (2016), 134–167.

[8] CHANG-SHOU LIN and CHIN-LUNG WANG, Elliptic functions, Green functions and the
mean field equations on tori, Ann. of Math. 172 (2010), 911–954.

[9] A. D. MEDNYKH, Nonequivalent coverings of Riemann surfaces with a prescribed ramifi-
cation type, Sibirsk. Mat. Zh. 25 (1984), 120–142.



634 ALEXANDRE EREMENKO

[10] G. MONDELLO and D. PANOV, Spherical metrics with conical singularities on a 2-sphere:
angle constraints, Int. Math. Res. Not. IMRN 16 (2016), 4937–4995.

[11] YU. G. RESHETNIAK, Two-dimensional manifolds of bounded curvature, In: “Geometry
IV. Encyclopaedia of Math. Sci.”, Vol. 70, Springer-Verlag, Berlin 1993.

[12] J. SONG and B. XU, On rational functions with more than three branch points, arXiv:
1510.06291.

[13] M. TROYANOV, “Metrics of Constant Curvature on a Sphere with two Conical Singulari-
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