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On the images of the Galois representations attached
to generic automorphic representations of GSp(4)

LuUls DIEULEFAIT AND ADRIAN ZENTENO

Abstract. By making use of Langlands functoriality between GSp(4) and GL(4),
we show that the images of the Galois representations attached to “genuine” glob-
ally generic automorphic representations of GSp(4) are “large” for a set of primes
of density one. Moreover, by using the notion of (n, p)-groups (introduced by
Khare, Larsen and Savin) and generic Langlands functoriality from SO(5) to
GL(4) we construct automorphic representations of GSp(4) such that the com-
patible system attached to them has large image for all primes.

Mathematics Subject Classification (2010): 11F80 (primary); 11F12, 11F46
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Introduction

Let f be a newform of level N, weight k > 1, and Nebentypus y with g-expansion
Yoas1anq" (@ = q(2) = e?™2): and E := Q(a,, : (n, N) = 1) be the coefficient
field of f which is a number field. By a construction of Shimura and Deligne [17],
for each maximal ideal A of OF (the ring of integers of E), one can attach to f a
2-dimensional Galois representation

ps: Gg — GL(2, E))

unramified at all rational primes p 1 N¢ (where E; denotes the completion of E at
A and £ denotes the rational prime below 1) and such that Tr(p; (Frob,)) = a, and
det(py (Frobp)) = x (p)p"‘*1 for every rational prime p { N2.

Let o, be the semisimplification of the reduction of p, modulo A and ﬁiroj its
projectivization. We say that f is exceptional at A if the image of ﬁiroj is neither

PSL(2, F¢s) nor PGL(2, Fys) for some integer s > 0. In the 70’s and 80’s Carayol,
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Deligne, Langlands, Momose, Ribet, Serre and Swinnerton-Dyer proved that, if f
does not have complex multiplication then f is exceptional at most at finitely many
A (see the introduction of [41]).

In this paper, we prove a weak version of the analogous result for automorphic
representations of GSp(4, Ag). More precisely, let 7 = 7, ®7 ¢ be a unitary cuspi-
dal irreducible automorphic representation of GSp(4, Ag) of cohomological weight
(my1, mp), my > my > 0, for which 7, belongs to the discrete series. Thanks to
the work of Laumon, Taylor and Weissauer [47] we can attach to 7 a number field
E, and for all maximal ideal A of O, a 4-dimensional Galois representation

o Ggo — GL(4, F,x)

which is unramified outside S U {€}, where S is the set of places where 7 is not
spherical. Then, by using the generic Langlands transfer from GSp(4) to GL(4) and
some recent results about residual irreducibility of compatible systems, we prove
that if 7 is genuine and globally generic then 7 is “exceptional” at most at a set of
primes of density zero.

Alternatively, a way to build representations with large image is by using the
notion of (n, p)-groups introduced in [33]. With this tool we prove that a symplec-
tic compatible system of 4-dimensional semisimple Galois representations attached
to a RAESDC automorphic representation of GL(4) has only finitely many excep-
tional primes if it is maximally induced in an appropriate prime (see Section 4).

In the same direction, stronger results have been proved in [22] and [23] for
compatible systems attached to classical and Hilbert modular forms. More pre-
cisely, in loc. cit. there have been constructed (Hilbert) modular forms such that the
compatible systems attached to them, do not have exceptional primes. At the end
of this paper, by making use of Langlands functoriality (from SO(5) to GL(4) and
from GL(4) to GSp(4)), we generalize this construction to automorphic representa-
tions of GSp(4, Aq).

Notation

We shall use the following notation. Let K be a number field or an £-adic field. We
denote by Ok its ring of integers. For a maximal ideal q of O, we let Dg and I
be the corresponding decomposition and inertia group at q, respectively. We denote
by Gk the absolute Galois group of K. In particular if K is a number field by a
prime of K we mean a nonzero prime ideal of Ok . In this paper, the symplectic
similitude group GSp(4) is defined with respect to the following skew-symmetric

matrix:
0o J 01
(_] 0), WhereJ:(lo).

Finally, WD(p)? =5 will denote the Frobenius semisimplification of the Weil-De-
ligne representation attached to a representation p of G, , and rec is the notation for
the Local Langlands Correspondence, which attaches to an irreducible admissible
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representation of GL(4, Q) (respectively GSp(4, Q¢)) a Weil-Deligne representa-
tion of the Weil group W, as in [27] (respectively [26]).
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to the anonymous referee, whose comments and suggestions have greatly improved
the presentation and readability of this paper.

1. RAESDC automorphic representations of GL(4)

In this section we review some facts about RAESDC automorphic representations
and the Galois representations associated to them. Our main references are [15,
Section 2], [13] and [14]. Let A be the ring of rational adeles. By a RAESDC
(regular algebraic, essentially self-dual, cuspidal) automorphic representation of
GL(4, A) we mean a pair (IT, u) consisting of a cuspidal automorphic represen-
tation IT = Iy ® ITf of GL(4, A) and an algebraic character 1 : AX/Q* — C*
such that:

i) (Essentially self-dual) IT = 1Y ® u;
ii) (Regular algebraic) recr(ITeo ® | |*%) restricted to C* is a direct sum of

pairwise distinct algebraic characters. Here recg denotes the Local Langlands
correspondence for GL(4, R) with the Langlands’normalization.

Recall that, by the lemma of Purity [14, Lemma 4.9], there exist an integer w € Z
such that recg (Iy) restricted to C* is of the form

w—o| s w—ay
Yo

z > diag (z'Z L, 2TV,
where o; € 3/2+ Z and o > --- > 4. The tuple ¢ = (ay, - - , aq) are called
the infinite type of I1. We remark that w = 0 if and only if IT is unitary. Finally
we define the weight of I1 as the tuple a = (ay, - - - , a4) where q; is defined by the
formulag; =i —as5_; —5/2,s0a; > --- > a4.

Let n € N. A compatible system p = (p,); of n-dimensional Galois represen-
tations of G consist of the following data:

i) A number field E;
ii) A finite set S of primes of Q;
iii) For each prime p ¢ S, a monic polynomial P,(X) € Og[X];
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iv) For each prime A of E (together with fixed embeddings E < Ej < E;)a
continuous Galois representation

P - GQ — GL(n, E;L)

such that p, is unramified outside S U {£} (where ¢ is the residual character-
istic of A) and such that for all p ¢ S U {¢} the characteristic polynomial of
oy (Frob,) is equal to P, (X).

Theorem 1.1. Let (T1, i) be a RAESDC automorphic representation of GL(4, A).
Then, there exist a number field E, a finite set S of primes of Q, and compatible
systems of semisimple Galois representations

en,. - Go — GL4, E;) and Puxr:Go —> Ff ,

where A ranges over all primes of E (together with fixed embeddings E — E; —>
E,) such that the following properties are satisfied:

D) ona E ona® Xc} “"pr..(), where x¢ denotes the £-adic cyclotomic charac-
ter;
i) The representations pr ). and py ;. are unramified outside S U {£};
iii) The representations pr, )‘|G@z and py, klg@l are de Rham, and if £ ¢ S, they
are crystalline;
iv) pm,. is regular, and the set of Hodge-Tate weights HT (pr15.) is equal to:

{as, a3 +1,a2 + 2, a1 + 3};

V) Fix any isomorphism 1 : E; ~ C compatible with the inclusion E C C. Then
tWD (pn,k|@P)F_ss = rec (I'Ip ® | det |;3/2> .

Proof. This theorem follows from the analogous result for RACSDC (regular alge-
braic, conjugate self-dual, cuspidal) automorphic representations over CM fields,
by using the solvable base change theorems of Arthur-Clozel [3] and the patch-
ing lemma of [44]. The proof of the existence of the representations pry ;, in the
RACSDC case, can be found in [13] and the strong form of local-global compati-
bility is proved in [11] and [12]. ]

2. Cuspidal automorphic representations of GSp(4)

Let m = moo ® 7 be a globally generic, irreducible, cuspidal, automorphic repre-
sentation of GSp(4, A) with cohomological weight (m1, my), m; > my > 0, and
central character w; , such that 4, belongs to the discrete series. Let w = m +m»
and 7° := 7 ® |c|"/?, where ¢ denotes the similitude character of GSp(4). From
now on, we will assume that 77 ° is unitary and that r is neither CAP nor endoscopic.
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Remark 2.1. When 7 is CAP or endoscopic, it is well known that the Galois rep-
resentations associated to & are reducible, so they cannot have large image. See
Section 3.2 of [40] and the Introduction of [47] for more details.

With 7 satisfying the above hypotheses, we can lift 7 to a cuspidal automorphic
representation IT of GL(4, A) with central character wr = a)?, and such that its
archimedean L-parameter ¢ has the following restriction to C*:

”1‘5”2 v —Up v —vp v1+v2>
b

> |z|7" - diag ((Z/E)—, (z/2)7 7 ,(/2)" "7 ,(z/2)” 2

where v; = m1+2 and vy = m>+ 1 give the Harish-Chandra parameter of 7, (see
[44, Section 2] or [40, Section 3.1]). Such lifting satisfies the following properties:

) M>1Y Q® wy;
i) L5(s, 1, A> ® w; ) has a pole at s = 1; and
iii) It is a strong lift, that is, rec(sr,) = rec(I1,) for each place v.

It has been known for some time that we can obtain a weak lift using theta series.
This was first announced by Jacquet, Piatetski-Shapiro and Shalika, but to the best
of our knowledge they never wrote up a proof. However, there is an alternative
proof due to Asgari and Shaidi [6] relying on the converse theorem. The strong lift
and the characterization of its image is due to Gan and Takeda (see [26, Section
12]).

We say that a compatible system p = (p), of 4-dimensional Galois rep-
resentations of G is symplectic if for all A the representation p; is of the form

Gg — GSp, E)).

Theorem 2.2. Suppose that v is a cuspidal automorphic representation of
GSp4, A)

satisfying the hypotheses in the beginning of this section. Let S denote the set

of places where 1 is not spherical. Then, there exist a number field E, and a
symplectic compatible system of semisimple Galois representations

prs: Gg = GSp(4, E;) ,

where A ranges over the finite places of E (together with fixed embeddings E —
E, — FE;) such that the following properties are satisfied:

1) The representation py ) is unramified outside S U {€};

ii) The representations pr, AIG@[ are de Rham, and if € & S, they are crystalline;
iii) The set of Hodge-Tate weights HT (pr ) is equal to:

{0,my+1,my +2,my +my +3};
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iv) Fix any isomorphism 1 : E; ~ C compatible with the inclusion E C C. Then
F—ss ~ -3/2
tWD (pr.lg,) > rec (np®|c|p / )

Proof. First, from the previous discussion we can lift 7 to a RAESDC automorphic
representations (IT, i) of GL(4, A). Then we define the compatible system of Ga-
lois representations oy ; associated to 7 as oy, (the compatible system of Galois
representations associated to (IT, i) in Theorem 1.1). In fact, p, , can be also con-
structed directly from the cohomology of a suitable Siegel threefold (see [47, The-
orem I]). As the representations of both constructions have the same Frobenius
traces, we can conclude, by the Brauer-Nesbitt theorem, that the representations
obtained in both constructions are isomorphic.

On the other hand, we know that all globally generic cuspidal automorphic
representations of GSp(4, A) have multiplicity one (see [32]). Then, [47, from The-
orem IV], pr , takes values in GSp(4, E;). The Hodge-Tate weights, item iii), can
be calculated as at the end of [44, Section 4.4], and the local-global compatibility,
item iv), is as in [40, Theorem 3.1]. O

Remark 2.3. Note that from the property iv) of the previous theorem follows that
the conductor of py ; is independent of A. Then, this can be called the conductor of
the compatible system.

3. Galois representations with large images

Let pr3 : Gg — GSp(4, E;) be a 4-dimensional symplectic Galois representa-
tions as in Theorem 2.2. In this case, we can take as E, the number field gener-
ated over (Q by the coefficients of the characteristic polynomials of all p, ; (Frob,),
p ¢ S. By using [24, Lemma 3], we can define the residual mod A Galois repre-
sentation p,, ; : Gg — GSp(4,F;), where F, = Og/A. We denote by ﬁgrf;f the
composition of o, ; with the natural projection GSp(4, ;) — PGSp(4, IF;.).

Let w be a cuspidal automorphic representation of GSp(4, A) as in Theo-
rem 2.2, we say that w is exceptional at a prime A if the image of ﬁfrr’(j\] is neither
PSp(4, Fys) nor PGSp(4, Fys) for some integer s > 0. On the other hand, such &
will be called genuine, if it is neither a symmetric cube lift from GL(2), nor an au-
tomorphic induction after lift to GL(4). The rest of this section is devoted to prove
the following result.

Theorem 3.1. Let w be a genuine cuspidal automorphic representation of
GSp(4, A) satisfying the hypotheses in the beginning of the Section 2. Then 7
is exceptional at most at a set of primes of density zero.

The proof is inspired by [18] where the case of genuine cuspidal automorphic rep-
resentations of GSp(4, A) of level 1 and parallel weight was proved. As in Dieule-

fait’s paper, the proof is done by considering all possible images of ﬁgrf;j, given by
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the classification of maximal subgroups of GSp(4, Fyr). Such classification was
first provided by Mitchell in [37]. However, we use a more modern formulation
due to Aschbacher [5] which is as follows:

Theorem 3.2. Let ¢ be a odd rational prime and r be an integer > 0. Let G be
a maximal subgroups of GSp(4, Fyr) which does not contain Sp(4, Fer). Then at
least one of the following holds:

1) G stabilizes a totally singular or a non-singular subspace;
il) G stabilizes a decomposition IF‘;, =V & V,, dim(V;) = 2;
iii) G stabilizes a structure of F 2 -vector space on F‘l}r ;
iv) G is a cross characteristic group of order smaller than 5040,
v) The projectivization of G is an almost simple group isomorphic to PGL(2,IF¢r);
vi) The projectivization of G is an almost simple group isomorphic to PSp(4, Fys)
or PGSp(4, Fys), for some integer s > 0 dividing r.

For more details and relevant definitions see [7, Chapter 2 and Chapter 4]. The
Aschbacher’s classification is in fact a much more general result, which give a clas-
sification of maximal subgroups of all the finite classical groups.

When ¢ —1 > m|+my+3and £ ¢ S, we have from Theorem 2.2 that p;; j is
crystalline with Hodge-Tate weights {0, my+1, m1+2, m1+my+3}. Then we have
the following result which follows from Fontaine-Laffaille theory [25, Theorem 5.3]
(see also [45, Section 3.1]).

Proposition 3.3. Let w be a cuspidal automorphic representation of GSp(4, A) as
in Theorem 2.2. Then for all prime £ ¢ S, such that £ — 1 > m| + my + 3, we have
the following possibilities for the action of the inertia group at €:

mi+m +3 m+2
1+m2 1 . X

m1+2 m2+1 llf(m1+m2+3)6 wm1+m2+3)

Piel1e = diag (x ma+l 1),
diag (x
diag (w(m1+2)+(mz+1)€ Y DFmADE ymitmat3 gy

X

dlag w(m1+2)+(m2+l)f w(m2+1)+(m1+2)f w(m1+n12+3)f wm1+m2+3)

where x is the cyclotomic character and v denotes a fundamental character of
level 2.

We remark that the particular choice of the exponents and the fundamental char-
acters in the previous result are deduced from the fact that the roots of the char-
acteristic polynomial of an element of GSp(4) come in two pairs having the same
product.

Now, we are ready to give the proof of Theorem 3.1, which will be given by
considering the following cases:
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3.1. Reducible images

In this section, we will deal with the reducible cases. We remark that, instead
of following Dieulefait’s proof (which depends on the generalized Ramanujan’s
conjecture and Serre’s conjecture), we use the recent results of [8] and [9] about
reducibility of compatible systems.

First, recall that in the proof of Theorem 2.2 we define the compatible system
of Galois representations pr ; associated to 7 as the compatible system of Ga-
lois representation pry 5 associated to a RAESDC automoprihc representation IT of
GL4(A) via the generic Langlands transfer from GSp(4) to GL(4). By [9, Theo-
rem 3.2], we have that the representations pry , on the compatible system attached
to a RAESDC automorphic representation IT of GL(4, A) are absolutely irreducible
for a set of primes A of density one. Then, by [8, Proposition 5.3.2], we have that
the residual representations oy, are irreducible for a set of primes A of density one.
Thus, we can conclude that the reducible cases can only happen for a set of primes
of density zero.

Remark 3.4. As the results of [8] and [9] (see also [10]) only work for a set of
density one of primes, we are not able to prove in general that 7 is non exceptional
for all but finitely many primes A. However partial results are well known. For
example, in [18] the first author proved that if & is of parallel weight £ and such
that 77, is spherical for all prime p (i.e. S = ) then p,, , is irreducible for all but
finitely many primes A. In fact, the method of loc. cit. works when 7 is of parallel
weight k and the Galois representations associated to it are semistable at primes in
S (see [19, Theorem 2.3]).

Recently, in [46, Section 5], has been proved that the representations o, , are
irreducible for all but finitely many primes A without conditions on S. Then a strong
version of our result is now available.

3.2. Image equal to a group having a reducible index two subgroup

Assume that we are in the case ii) or iii) of Theorem 3.2. In these cases 0, ; is the
induction of some 2-dimensional representation o, of G, that is not the restriction
of a 2-dimensional representation of G, for L a quadratic extension of Q. Now,
assume that for infinitely many primes A

prs =Ind2(0;) mod 1.

A priori L and o, depend on the prime A. By using the description of the image
of inertia at £ given in Proposition 3.3, we have that L is unramified at ¢ for ¢ suf-
ficiently large and by Dirichlet principle we can assume without loss of generality
that L is independent of A (see the arguments in [21, Section 3]). Since this induced
representation is irreducible (because the reducible case has been covered before),
we have that

Tr(p; 5 (Froby)) =0 mod A
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forall p ¢ SU{£} inertin L. Since this holds for infinitely many primes A, we have
that p), = Ind(g (o), for some two-dimensional family of A-adic representations
{o;} of G, and that

Pr = Pr,) ®N
for all A, where 7 is the quadratic character of L/Q (see [21, Section 4.2]). Then,
since pr ). = pm, for some RAESDC automorphic representation IT of GL(4, A),
by strong multiplicity one for GL(4) (see [29]), we have that

[MI=II®n.

By applying of [3, Theorem 4.2, page 202], we deduce that I1 is an automorphic
induction from the quadratic field L/Q. Hence 7 is not genuine. Therefore, these
cases of our classification of maximal subgroups of GSp(4, F¢r) can only happen
for finitely many primes A.

3.3. Image equal to the stabilizer of a twisted cubic

Now, we will deal whit the case v) of Theorem 3.2. In this case all matrices are of
the form (see [28, page 233] and [7, Proposition 5.3.6.i]):

613 azc ac2 C3
Symm3 (a c) _ 3a2b a?d + 2abc bc? + 2acd 3c*d
bd 3ab? bc + 2abd ad® + 2bcd 3cd? |’
b b*d bd? a3
then
prs. = Symm’(0;) mod A, (3.1)

where o, is a 2-dimensional Galois representation. Assume that for infinitely many
primes A the congruence (3.1) is satisfied. If we suppose that £ ¢ Sand £ — 1 >
m1 + my + 3, comparing the structure of Symm? (o;,) with the four possibilities for
the image of inertia subgroup at £ given in the Proposition 3.3, we have that this
case can only happen if the weight of 7 is of the form (2m,, m;). We remark that
this affirmation is independent of the choice of basis because the eigenvalues of a
matrix Symm?>(M), M € GL(2), is of the form o>, o28, a2, B> where o, B are
the eigenvalues of M and our comparison just depend on the eigenvalues. So, in
this case we have that the residual mod A representation o, when restricted to the
inertia group at £, is as follows:

sz—i—l % 1ﬁ(mz-i-l)( 0
o 1) * 0 ymtl)

Then, by Serre’s conjecture [42] (which is now a theorem, cf. [34,35] and [20]), for
every A that falls in this case, there is a classical cuspidal Hecke eigenform f of
weight my 4 2 and level N such that

O = Symm3(aﬂ,x) mod A,
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where N divides the conductor of the compatible system attached to 7. Then we
have finitely many possibilities for the modular form f;, and by the Dirichlet prin-
ciple, we can assume that fj = f is independent of A. Thus we have that

prs = Symm®(a7;) mod A,

for infinitely many A, therefore p; ) = Symm3 (0f,) for all A. Then, as in the
previous case, by strong multiplicity one theorem 7 must be the symmetric cube of
some cusp form and 7 is not genuine. Hence we can have image the stabilizer of a
twisted cubic at most for finitely many primes A.

3.4. The rest of exceptional images

Finally, we will deal with the case iv) of Theorem 3.2. In this case, comparing
the exceptional groups G C Sp(4, ;) (its order and structure, see [7, Table 8.12

and Table 8.13]) with the fact that the image of ﬁfrr’(j\] contains the image of ﬁzi()’ﬂ I
(assuming £ ¢ S and £ — 1 > m; + my + 3) described in Proposition 3.3, we
concluded that this case can only happen for finitely many primes A.

3.5. Conclusion

Having gone through all cases in Theorem 3.2 (except vi)) we conclude that, if &
is genuine satisfying the hypotheses in the beginning of the Section 2, we have at
most a set of primes A of density zero where 7 is exceptional.

4. Maximally induced representations

It was observed by Khare and Wintenberger [34] (see also [33]) that the existence of
exceptional primes in a compatible system can be avoided by imposing certain local
conditions on the Galois representations. More precisely, let p, ¢ > 5 be distinct
primes such that p = 1 mod 4 and the order of ¢ mod p is 4. Denote by Qq4 the

unique unramified extension of Q, of degree 4. Recall that QQ ;4 > pga_y X Ui x q”,
where f1,4_; is the group of (g* —1)-th roots of unity and U] is the group of 1-units.

. —X
We consider a character x, : Qqﬂ — Q, , such that:

i) x4 has order 2p;

i) xq(q) =—1;
iii) Xq|ﬂq4_1><U1 is of order p.

By local class field theory, we can regard x, as a character (which by abuse of
notation we call also x,) of GQq , orof W@q .- In[33] it is proved that the represen-

tation p, = Indcg" (Xg¢) is irreducible and symplectic, in the sense that it can be
4
q

conjugated to take values in Sp(4, @g).
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Letl # p,a: Gg, —> @Z be an unramified character, and ¥, (respectively
@) be the composite of x, (respectively o) and the projection Z; — ;. Note
that the image of the reduction p, of py in GL(4, E) is Indgg”4 (Yq) which is an
irreducible representation and the representation p, ® @ is irreducible too.

Definition 4.1. Let p, g, € be primes and x4, a be characters, all as above. We say
that a Galois representation

pe : Gg — GSp4, Q).

is maximally induced at q of order p if the restriction of p, to a decomposition

. . G
group at ¢ is equivalent to Indcg”4 (Xg) ® .
q

Remark 4.2. Let N € N. Note that, if we choose a prime p = 1 mod 4 greater
than max{N, 13}, then Chevotarev’s density theorem allows us to choose a prime
g =5 (from a set of positive density) which splits completely in Q(, \/p1,. . . ,/Pm)
(where p1, ..., pm are the prime divisors of N) and such that g> = —1 mod p.

Theorem 4.3. Let N, p, and q as in Remark 4.2. Let k be a positive integer and
¢ # p, q be a prime such that £ > 24k + 1 and £ N. Let pg : Gg — GSp(4, Qp)
be a Galois representation, which ramifies only at the primes dividing Ngt, and
such that a twist of p, by some power of the cyclotomic character is regular in the
sense of [1, Definition 3.2] with tame inertia weights at most k. If py is maximally
induced at q of order p, then the image of ﬁgroj is PSp(4, Fys) or PGSp(4, Fys) for
some integer s > 0.

Proof. We will closely follow the proof of [1, Theorem 1.5]. As in the previous
section we will proceed by cases.

4.1. Reducible cases

Since p; is maximally induced at g and £ # p, py|p, is absolutely irreducible.
Hence p, is absolutely irreducible and the reducible cases in the classification of
maximal subgroups of GSp(4, [F¢) cannot happen.

4.2. Induced cases

Now suppose that the image of p, corresponds to an irreducible subgroup inside
some of the maximal subgroups in cases ii) or iii) of Theorem 3.2. Because this case
is very similar to [1, Lemma 3.7], we will omit some details. In these cases there

exist a quadratic extension L € Q(, Ve, VG /Py -y /Pm) (Where py, ..., pm
are the prime divisors of N) with Galois group H = Gal(@/ L) < Gg and a
representation a¢ : H — GL(2, [F) such that

— o~ GQ ,—
0¢ = Ind* (7).
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Applying Mackey’s formula to Resgg (Inde (Eg)) (which is irreducible because
q

G
we know that Resggq (Indg@ (Eg)) = Indcg"4 (X,) ® @) we have that
q

G _ G _ —
Indgo? y (Resé, 1 @0) = Inngz4 X, ®a.
Then, from [1, Proposition 3.5], it follows that GQq4 < GQq NH = Gal(@q /Lg),
where q is a prime of L above g. Thus

Q S LS Qu Q.

and hence L cannot ramify at g since Qq4 is an unramified extension of QQ,. More-
over, note that

4 = dim(5,) = dim (Indf,@ @)) = (Gg : H)dim(@y)
and
. Go H _ . L
4 = dim (IndGQZmH (ResGquH(og))> = (Gg, : Gg, N H)dim(@),

hence [Lq: Q] = (G, : Gg, NH) = (Gg : H) = [L : Q]. Therefore, g is inert
in L/Q.

On the other hand, as p, is regular with tame inertia weights at most k£ and
¢ is greater than 24k + 1, by [1, Proposition 3.4], L cannot ramify at £. Then,
L € Q(@, \/p1, - .., /Pm) and therefore, by assumption, ¢ is split in L. Thus we
have a contradiction.

4.3. Symmetric cube case

In order to deal with the case v) of Theorem 3.2 we will use the well-known Dick-
son’s classification of maximal subgroups of PGL(2, [Fyr) which states that they can
be either a group of upper triangular matrices, a dihedral group Dy, (for some inte-
ger n not divisible by £), PSL(2, Fys), PGL(2, Fys) (for some integer s dividing r),
A4, S4 or A5 .

G
Let G, be the projective image of Indcgq4 (X4)- If G4 is contained in a group

of upper triangular matrices, this is contained in fact in the subset of diagonal ma-
trices because £ and 2 p are coprime. But we know that G, is non-Abelian, then this
cannot be contained in a group of upper triangular matrices. Moreover, G, cannot
be contained in A4, S4 or As because we have chosen p > 13.

Now, assume that G is contained in a dihedral group. As any subgroup of a
dihedral group is either cyclic or dihedral, G, must be isomorphic to a cyclic or
dihedral group. In fact, as G, is non-Abelian, without loss of generality, we can
assume that G, is isomorphic to a dihedral group D;,. By definition of dihedral
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groups we know that a dihedral group of order 2n has an element of order n. On the
other hand, we know that the order of G, is 4p. Then, from the equality 4p = 2n,
we have that G, = D,, contain an element of order n = 2p. But, by definition of
G, its elements have order at most p, so we have a contradiction. Thus, G, cannot
be contained in a dihedral group.

Hence G should be PSL(2, [Fys ) or PGL(2, Fys) for some integer s. We know
that the stabilizer of a twisted cubic can only occur when ¢ > 5 in which case
PSL(2, Fys) is a index 2 simple subgroup of PGL(2, Fys). But G, contains a nor-
mal subgroup (of order p) of index greater than 2. Therefore the case v) in the
classification of maximal subgroups of GSp(4, [F¢r) cannot occur.

4.4. The rest of exceptional cases

Finally, the order of the groups in case iv) of Theorem 3.2 are 520, 1440, 1920,
3840 and 5040. Then all these groups can be discarded by using the fact that the

image of ﬁlgmj contains an element of order p > 13. O

5. Galois representations with large image

The goal of this section is to prove a representation-theoretic result which gives us
the local conditions needed to construct compatible systems without exceptional
primes. Roughly speaking, the idea is to construct compatible systems which are
maximally induced at two primes simultaneously. In order to do this, we start ex-
plaining how to choose such primes.

Lemma 5.1. Let k, N € N such that 281 { N, and M be an integer greater than
N and 24k + 1. Let p’ =281 and p =1 mod 4 be a prime different from p’ and
greater than max{M, 13}. Then, we can choose two primes q and q’ different from
p and p' such that:

i) q and q' are greater than M,
i) g’ is a quadratic residue modulo q;
iii) g> = —1 mod p and ¢’* = —1 mod p/;
iv) g splits completely in Q(, /p1, ..., /Pm), Where p1, ..., py are the primes
smaller than or equal to M ;
v) q' splits completelyin Q(i,,/p}. ..., /P,,), where p\, ..., p., are the primes
different from p’ and smaller than or equal to M.

Proof. The result follows from Chevotarev’s density theorem because Q(¢)),

Q). Q/9),and QG, / p, - - ., |/ P,,) are all linearly disjoint over Q. O

The proof of the main result in this section, as in the previous results, relies
on the classification of maximal subgroups of GSp(4). Then we need to know such
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classification in even characteristic too. In this case PSp(4, F»r) = PGSp(4, Fyr),
and the maximal subgroups of Sp(4, For),r > 1, are as follows (see [7, Section 7.2
and Table 8.14]):

i) The stabilizer of a totally singular or a non-singular subspace;
ii) The stabilizer of a decomposition ]F‘ZL,. =V & Vp,dim(V;) = 2;
iii) The stabilizer of a structure of [F,2,-vector space on F‘z‘,;
iv) SOt (4, Fy), SO~ (4, Fy);

v) The Suzuki group Sz(IF»r) (when r is odd);
vi) Sp(4, Fos) for some integer s > 0 dividing r.

Theorem 5.2. Let k, N, M, p, p’, q and q’ as in Lemma 5.1. Consider a com-
patible system of Galois representations p; : Gg — GSp(4, Q) such that, for
every prime £, py ramifies only at the primes dividing Nqq't. Assume that for every
0> k+2,01Nqq', amwist of py by some power of the cyclotomic character is reg-
ular in the sense of [1, Definition 3.2] with tame inertia weights at most k. If py is
maximally induced at q of order p (for every £ # q) and maximally induced at q' of
order p’ (for every £ # q'), then the image ofﬁgroj is PSp(4, Fys) or PGSp(4, Fys)
for all prime £.

Proof. Mixing Theorem 3.2 and characteristic 2 classification of maximal sub-
groups of GSp(4) we have the following cases.

5.1. Reducible cases

As we saw in the proof of Theorem 4.3, the maximally induced behavior implies
that p, is absolutely irreducible. Indeed, if £ ¢ {p, g} then p,|p, is absolutely
irreducible and if £ € {p, g}, then ﬁz|Dq/ is absolutely irreducible. Hence, the
reducible cases of both classifications cannot occur.

5.2. Induced cases

Now suppose that the image of p, corresponds to an irreducible subgroup inside
some of the subgroups in cases ii) and iii) of Theorem 3.2; or in the cases ii) and iii)
of characteristic 2 classification. In these cases, there exist a proper open subgroup
H C Gg of index 2 and a representation oy : H — GL(2, F;) such that p, =

IndflQ o¢. Let L be the quadratic field such that H = Gal(Q/L). Note that, as
p¢(1g) (respectively p, (1)) has order p (respectively p") and Gal(L /Q) has order
2, L/Q is unramified at ¢ and ¢’. In fact, as in subsection 4.2 (by using the strategy
of [1, Lemma 3.7]), it can be proved that ¢ and ¢’ are inert.

Now, if £ ¢ {p,q,q’} is greater than M, we have that g split completely
in Q@, /r1, ..., /Te) (Where ry, ..., r. are the prime divisors of N), q2 = —1
mod p, ¢ > 24k + 1 and € 1 Ng’ then we can apply the same arguments as in sub-
section 4.2 to obtain a contradiction. Similarly, if £ ¢ {p’, ¢, ¢’} we can also apply
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the arguments of Theorem 4.3. Thus, we can assume that £ € {q,q’, p1, ..., pm},
where p1, ... py are the primes smaller than or equal to the bound M.
Let ¢ € {¢/, p1, ..., pm}. We know, from the ramification of 5, and from the

fact that L is unramified at ¢, that L is contained in Q(, \/E Pl s A/ Pm)-
Then, by the choice of g, it is completely split in L. Thus, we have a contradiction.

Finally, from the quadratic reciprocity law we have (%) = 1, then exchanging the

roles g <> ¢’ and p <> p’ we deal with the case £ = q.

5.3. Orthogonal cases

Note that SOT (4, For) (respectively SO~ (4, F>r)) contains a normal subgroup
' of index 2 which is isomorphic to PSL(2, For) x PSL(2, Fyr) (respectively

G
PSL(2, [F52-)). Assume that the image of Inng"4 Xq is contained in SO' (4, Fyr)
q

or SO~ (4, Fy). Let L the quadratic extension of Q corresponding to Im(p,) N T
Lo . . . . Goy, — .
which is contained in Q(, /@, v/q', /D1, - - - » /Pm)- Since IndG@Z4 X 4 restricted
to I, is of order p > 2 it follows that L is unramified at g. Then L is contained
in QG, /q', o/P1s - - » /Pm) Which implies that ¢ splits in L and the image of

G
IndGQ” X, is therefore contained in T".
Qq4 q

If I' = PSL(2, Fy,) we obtain by using the Dickson’s classification of max-
G
imal subgroups of PSL(2, Fyr) that the image of Indcg"4 X4 cannot be contained
q
G
in ['. Indeed, the image of Inng"4 X4 cannot be contained in a dihedral group

D5, because in characteristic 2 we know that n = (2" & 1). Moreover, in such
characteristic, the groups A4, S4 and As cannot occur.

The case of groups of upper triangular matrices can be excluded by observing
that such groups are isomorphic to the semidirect product of an elementary Abelian

G
2-group and a cyclic group of order 2" — 1 and that the image of Inngq4 X4 contain
q

an element of order 4. G
Therefore the image of Inngq4 X4 should be PSL(2, IFys) for some integer s.

q
As we have chosen p > 13 (then s > 1) we have that PSL(2, Fys) is a simple

. Goy, — .
group. But the image of Indcgq X4 contains a proper normal subgroup of order p.
4
q

G
Then the image of IndGE" X4 cannot be contained in SO~ (4, Fyr).
q4

G
Finally if I =PSL(2,[F>r) x PSL(2, F>r) we have, from the fact that Indcgq Xy
4

q

G
is irreducible, that the image of Inngq %, cannot be contained in SO™ (4, Fy)
4

q
either. Then, the case iv) of characteristic 2 classification cannot occur.
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5.4. Suzuki groups case

In order to deal with case v) of characteristic 2 classification we have to prove the
following result.

Lemma 5.3. The order of any Suzuki group is not divisible by 281.

Proof. Letr be a positive integer and Sz(IF»-) be a Suzuki group. We know that the
order of Sz(IFy) is equal to 2% (22" 4+1)(2" —1) and that the Suzuki group only exist
if r is odd. Suppose that 281 divides the order of Sz(IF,r), in particular 281 divides
(2% + 1)(2" — 1). If 281 divides (2" — 1), then 2" = 1 mod 281. But the order
of 2 modulo 281 is 70 then we have a contradiction because r is odd. Then we can
assume that 281 divides (2% + 1), in particular we have that 2% = —1 mod 281
and 2 =1 mod 281. From this, we have that 70 divides 4r and therefore that 70
divides 2r. Thus 2 = 1 mod 281 which is a contradiction too (it contradicts the
previous line). 0

By the choice of p’ and the previous Lemma, we have that the Suzuki groups
cannot occur.

5.5. Stabilizer of a twisted cubic case

The case v) of Theorem 3.2 was dealt with for all £ ¢ {2, p, g} in the proof of
Theorem 4.3. Moreover, exchanging the roles ¢ <> ¢’ and p < p’ we deal with
the case £ € {p, ¢q}. Finally, we know that the stabilizer of a twisted cubic does not
appear in the classification of maximal subgroups if £ < 5.

5.6. The rest of exceptional cases

The cases iv) of Theorem 3.2 cannot happen because we have chosen p and p’
greater than 13. We remark that by the same reason we exclude the case whenr = 1
in the characteristic 2 classification since the order of Sp,(IF>) is 24.32.5, O

Remark 54. Let pi1 = (pm1,2)x be a symplectic compatible system of 4-dimen-
sional semisimple Galois representations attached to a RAESDC automorphic rep-
resentation IT of GL(4, A). By part iii) of Theorem 1.1 this compatible system is
Hodge-Tate regular with constant Hodge-Tate weights and for every £ ¢ S and A€
the representation prq 5 is crystalline. Let a € Z be the smallest Hodge-Tate weight,
k be the biggest difference between any two Hodge-Tate numbers and £ ¢ S be a
prime such that £ > k+2. By Fontaine-Lafaille theory the representation x;/®pp ;.
AL, is regular in the sense of Definition 3.2 of [1] with tame inertia weights at most
k and the tame inertia weights of this representation are bounded by k.
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6. Automorphic representations without exceptional primes

In this section we will construct a cuspidal automorphic representation IT of
GL(4, A) such that its associated compatible system satisfies the conditions of The-
orem 5.2. Then these compatible system will have “large” image for all primes.

More precisely, fixing a rational prime 7 different from 281 and given p, p/,
g and ¢’ different primes as in Lemma 5.1 (where N = ¢ and k > 12), we will
construct a cuspidal automorphic representation IT of GL(4, A) with the following
properties:

i) ITis unramified outside {z, g, q¢'};
ii) IT ~ ITY and the central character of I1 is trivial;
iii) rec(I1y) >~ WD(pq) and rec(I1,) >~ WD(p,/) (Where p, and p, are represen-
tations as in Section 4);
iv) Il is of symplectic type and such that recg (I1) is a direct sum of 2-dimen-
sional representations o and o, such that, the restriction of ; to C*,i =1, 2,

1—-2k; 1—-2k;
is of the form (z/z) 2 "B(z /7)” 2 “, where k; are positive integers such that

ko >2and k] — Kk > 4.

Remark 6.1. The conditions in the «; are in order to assure that Il is a local lift of
an integrable discrete series representation T, of SO(3, 2) (see [33, Section 5.1]).
In particular, according to Section 1, the Hodge-Tate weights are {2 —k1, 2—«2, 1+
k2, 1 4+ k1}. Then, we have that the biggest difference between any two Hodge-Tate
numbers is 2k; — 1, which is greater than 12. So, we must assume that k (as in
Remark 5.4) is greater than 12 in order to allow the possibility that the conditions
in the k; are satisfied.

In order to construct such automorphic representation, we will start by constructing
a globally generic cuspidal automorphic representation t of SO(5, A). Let SO(5)
be the split special orthogonal group of rank 2 defined over Q. Fix two finite and
disjoint sets of places: D = {00, ¢, ¢’} and S = {r} such that SO(5) is unramified
at all primes not in D U S (this means that SO(5, Z,) is a hyperspecial maximal
compact subgroup of SO(5, Q,)).

First, we need to specify what we want at the local places ¢, ¢’ and co. For
such purpose we use the following result of Jiang and Soudry ([30, Theorem 6.4]
and [31, Theorem 2.1]), which is a particular case of [33, Theorem 5.3].

Theorem 6.2. There exist a bijection between irreducible generic discrete series
representations of SO(5, Q) and irreducible generic representations of GL(4, Q)
with Langlands parameter of the form )  o; with o; irreducible symplectic repre-
sentations which are pairwise non-isomorphic.

From this result we have that there is a generic supercuspidal representation 7,
of SO(5, Q) (respectively 7,/ of SO(5, Q,)) which corresponds to a supercusp-
idal representations IT, of GL(4, Q) (respectively IT, of GL(4, Q,)) such that
rec(ITy) =~ WD(p,) (respectively rec(Il,)) >~ WD(p,/)). This correspondence
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is also know at the archimedean places, see [33, Section 5.1]. From this we de-
duce that there is a generic integrable discrete series representation 7o, on SO(5, R)
which corresponds to the representation I, fixed above with the desired Langlands
parameter.

The following result is a particular case of [33, Theorem 4.5], which is proved
by using Poincaré Series.

Theorem 6.3. Let S and D disjoint sets as above. Assume that we are given a
generic integrable discrete series representation to, of SO(5, R) and a generic su-
percuspidal representation t, of SO(5, Q) for every g € D. Then there exist a
globally generic cuspidal automorphic representation t of SO(5, A) such that the
local component of T at oo (respectively at q) is Too (respectively t;) and T, is
unramified for every v outside D U S.

Then, this result implies that there exists a globally generic cuspidal automor-
phic representation T on SO(5, A) with trivial central character, unramified outside
{t, q, q'} and with our desired local components at ¢, ¢’ and co.

Finally, combining [16, Theorem 7.1] with [31, Theorem E], we can lift T to an
irreducible automorphic representation IT of GL(4, A) with trivial central character,
such that

i) I ~11Y,;
ii) IT is cuspidal;
1ii) L5(s, T, A%) has a simple pole at s = 1;
iv) IT is unramified outside {z, g, ¢'};
v) rec(ITy) >~ WD(pq);
vi) rec(ITy) >~ WD(py);
vii) Il has the regular algebraic parameter described in the beginning of the sec-
tion.

Observe that under these conditions the compatible system attached to I, as in
Theorem 1.1, has symplectic images (see [33, Section 5.2]). Then by Theorem 5.2
(see also Remark 5.4), applied to this compatible system, we have the following
result.

Theorem 6.4. There are compatible systems (p,); such that the image of ﬁiroj is
PSp(4, Fys) or PGSp(4, Fys) for all prime A.

Remark 6.5. Note that in particular there is an infinite family of RAESDC auto-
morphic representations (ITn)nen of GL(4, A) such that, for a fixed prime £, the
size of the image of 5‘;{:{ 5, for A, € is unbounded for running n, because we can
choose p as large as we please by increasing the bound M, so that elements of

bigger and bigger orders appear in the inertia images.

On the other hand, by using a result of Jacquet, Piatetski-Shapiro, and Shalika
(see [36, Theorem 9.1]) there exist a globally generic cuspidal automorphic repre-
sentation 7w of GSp(4, A) with trivial central character, such that IT is the functorial
lift of 7 in the sense of Section 2. Therefore we have the following result.
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Theorem 6.6. There are infinitely many globally generic cuspidal automorphic
representations of GSp(4, A) without exceptional primes.

Another method to construct automorphic representations with prescribed local
conditions is by assuming the Arthur’s work on endoscopic classification of auto-
morphic representation for symplectic groups [4] and adapting some results of [43].
This work is still conditional on the stabilization of the twisted trace formula and a
few expected technical results in harmonic analysis. However, significant progress
in this direction has been made by Moeglin and Waldspurger [38,39].

This method is used in [2] in order to construct 2n-dimensional symplectic
compatible systems (0, ), such that the image of p, contain a subgroup conjugated
to Sp(2n, IFy) for a density one set of primes. The limitation on the set of primes in
loc. cit. is due to the authors need to assume the existence of a transvection in order
to control the different possibilities for the images of the Galois representations in
the compatible system. However, in dimension 4, we eliminate this problem by
using the Aschbacher’s classification.
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