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A scalar Calabi-type flow in Hermitian geometry:
short-time existence and stability

LUCIO BEDULLI AND LUIGI VEZZONI

Abstract. We introduce a new geometric flow of Hermitian metrics which
evolves an initial metric along the second derivative of the Chern scalar curva-
ture. The flow depends on the choice of a background metric, it always reduces to
a scalar equation and preserves some special classes of Hermitian structures, such
as balanced and Gauduchon metrics. We show that the flow has always a unique
short-time solution and we provide a stability result when the background metric
is Kähler with constant scalar curvature (cscK). The main theorem is obtained by
proving a general result about stability of parabolic flows on Riemannian mani-
folds which is interesting in its own right and in particular implies the stability of
the classical Calabi flow near cscK metrics.

Mathematics Subject Classification (2010): 53C44 (primary); 53C55, 35K55,
53C10 (secondary).

1. Introduction

Giving an Hermitian metric on an 2n-dimensional complex manifold (M, J ) is
equivalent to assigning an (n � 1, n � 1)-form ' which is positive in the sense
that

'(Z1, . . . , Zn�1, Z̄1, . . . , Z̄n�1) > 0

for every {Z1, . . . ,Zn�1} linearly independent vector fields of type (1,0) on (M, J ).
Indeed if such a ' is given, there exists a unique Hermitian metric g whose funda-
mental form ! satisfies ⇤!! = ', where ⇤! is the induced “star” Hodge operator.
This point of view suggests to consider special Hermitian metrics by imposing re-
strictions on the derivatives of !n�1, instead of !. For instance, an Hermitian metric
is called balanced [9] if

d!n�1 = 0 ,

This work was supported by the project FIRB “Geometria differenziale e teoria geometrica delle
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Gauduchon [4] if
@@̄!n�1 = 0

and strongly Gauduchon [10] if

@!n�1 is @̄-exact .

Given an Hermitian form ! on a complex manifold M , we consider the set of func-
tions

C1
! (M) =

n
v 2 C1(M) : !n�1 +

p
�1@@̄(v!n�2) > 0

o
.

Every v 2 C1
! (M) induces the Hermitian form !v defined by !n�1v = !n�1 +p

�1@@̄(v!n�2); we denote by C!(M) the set

C!(M) =
�
!v : v 2 C1

! (M)
 
.

Note that {!n�1v : v 2 C1
! (M)} is contained in

K! =
�
!n�1 +

p
�1@@̄� > 0

 
.

When ! is balanced, K! is the set of closed positive (n � 1, n � 1)-forms on M
belonging to the Bott-Chern cohomology class of !n�1.

In this paper we are interested in solutions !t 2 C!(M) of the geometric flow

@t!
n�1
t =

p
�1@@̄

�
s!t!

n�2� , !|t=0 = !0 , (1.1)

whose definition depends on the background Hermitian form !. By s!t we denote
the scalar curvature of the Chern connection induced by !t . If the background
metric is Kähler then Hermitian metrics with constant Chern scalar curvature are
stationary solutions to the flow.

Equation (1.1) preserves the balanced, the Gauduchon and the strongly Gaudu-
chon condition and can be reduced to the scalar equation

@t ut = sut u|t=0 = u0 ,

where u0 2 C1
! (M) is such that !u0 = !0 and for v 2 C1

! (M), sv is the Chern
scalar curvature of !v .

Our main result is the following:

Theorem 1.1 (Short-time existence and stability of the flow). Flow (1.1) has al-
ways a unique short-time solution {!t }t2[0,Tmax). Assume further that the back-
ground metric ! is Kähler with constant scalar curvature. Then if !0 is close
enough to ! in C1-topology, the solution {!t } is defined for any positive t and
converges in C1-topology to !.
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The short-time existence of a solution to (1.1) is obtained by proving that the op-
erator v 7! sv is elliptic in a very strong sense and then applying a general result
in [7, 8] (see Sections 2, 3).

About the stability of (1.1) near Kähler metrics with constant scalar curvature,
we prove a general theorem about the stability of scalar flows and then we show
that our flow satisfies all the assumptions of the theorem. Namely we consider the
following set-up:

Let (M, g) be an oriented compact Riemannian manifold with volume form
dVg and let W 2r,2

+ (M) be an open neighbourhood of 0 in W 2r,2(M) which is invari-
ant by additive constants. For k > 2r we denoteW 2r,2

+ (M)\Wk,2(M) byWk,2
+ (M)

and let C1
+ (M) = C1(M)\W 2r,2

+ (M). Let Q : W 2r,2
+ (M) ! L2(M) be a smooth

elliptic operator of order 2r (elliptic in a strong sense explained in Section 2) and
denote by L the differential of Q at 0. Assume further that Q satisfies the following
conditions:
(h1) Q(0) = 0 and Q(v) = Q(v + a) for every v 2 W 2r,2

+ (M), a 2 R (here the
set of constant functions is identified with R);

(h2) The kernel of L is made only by constant functions and L(W 2r,2
0 (M)) ✓

L20(M); where the subscript 0 means that the elements have average 0 with
respect to g;

(h3) L is symmetric and semi-negative definite with respect to the L2-scalar prod-
uct induced by the fixed metric g on M , i.e.

Z

M
L(v1)v2 dVg =

Z

M
L(v2)v1dVg and

Z

M
L(v1)v1 dVg  0

for every v1, v2 2 W 2r,2(M).
Under these hypotheses we have:
Theorem 1.2 (Stability). For every ✏ > 0 there exists � > 0 such that if u0 2
C1

+ (M) satisfies ku0kC1 < �, then the parabolic problem

@t ut = Q(ut ) , u|t=0 = u0 (1.2)

has a unique solution u 2 C1(M⇥ [0,1)) such that ut 2 C1
+ (M) for every t and

satisfies

1. kutkC1 < ✏ for every t 2 [0,1);
2. ut converges in C1–topology to a smooth function u1 such that Q(u1) = 0.
From Theorem 1.2 it easily follows the stability of flow (1.1) and the stability of the
classical Calabi flow near cscK metrics which was already proved in [2].

ACKNOWLEDGEMENTS. The authors would like to thank Ernesto Buzano, Jason
Lotay, Weiyong He, Carlo Mantegazza, Valentino Tosatti and Frederik Witt for
useful conversations and remarks.
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2. Preliminaries on parabolic flows on Riemannian manifolds

In this section we recall some results proved in [7,8] about the short-time existence
of parabolic flows on compact Riemannian manifolds.

Let (M, g) be a compact m-dimensional Riemannian manifold and let
Q : C1(M) ! C1(M) be a quasi-linear partial differential operator of order 2r .
Therefore Q(v) locally writes as

Q(v)(x)= Ai1...i2r
�
x, v,rv, . . . ,r2r�1v

�
r2ri1...i2r v(x) + b

�
x, v,rv, . . . ,r2r�1v

�

where r is the Levi-Civita connection of g and the functions Ai1...i2r and b are
smooth in their entries. We further assume that Q is elliptic in a very strong sense
by requiring

Ai1 j1...ir jr = (�1)r�1Ei1 j11 . . . Eir jrr

where each Ek is a tensor of type (2, 0) for which there exists a positive � 2 R such
that

Ei jk (x, 1, . . . , 2r�1)⇠i ⇠ j � �|⇠ |2g for every ⇠ 2 T ⇤
x M (2.1)

when x 2 M and  k 2 ⌦kT ⇤
x M . Given such a Q and an initial datum u0 2

C1(M), we consider the parabolic problem

@t ut = Q(ut ) , u|t=0 = u0 . (2.2)

We recall the following theorem whose proof can be found in [7, 8]:
Theorem 2.1. Equation (2.2) has always a maximal solution u2C1(M⇥[0,Tmax)),
for some Tmax > 0. Moreover the solution u depends continuously on the initial
datum u0.
Let k 2 N and [t1, t2] ⇢ R�0. Then the parabolic Sobolev spaces Pk([t1, t2]) are
defined as the completion of C1(M ⇥ [t1, t2]) with respect to the norm

k f k2Pk([t1,t2]) =
X

l,s2N , 2lr+s2rk

Z t2

t1

Z

M

�
�
�@ltr

s f
�
�
�
2
dVg dt .

We recall the following theorem (see [7, Theorem 7.14] and [8, Proposition 2.3 and
Lemma 2.5]).
Theorem 2.2. Assume

k >
m + 6r � 2

4r
, (2.3)

and let u 2 Pk([0, T ]). Then
�
u|t=0, @t u � Q(u)

�
belongs to Wr(2k�1),2(M) ⇥

Pk�1([0, T ]) and the map

F : Pk([0, T ]) ! Wr(2k�1),2(M) ⇥ Pk�1([0, T ])

defined as
F(u) =

�
u|t=0, @t u � Q(u)

�
,

is C1 and its differential dF|u is an isomorphism for every u 2 Pk([0, T ]).
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Remark 2.3. In the next part of the paper we need to apply Theorem 2.2 to oper-
ators defined on open subsets of Wk,2(M) instead of on the whole Wk,2(M). The
results described in this section can be easily adapted to this slightly more general
setting.
In the sequel we will need the following corollary of Theorem 2.2.

Corollary 2.4. Let k be an odd multiple of r and T 2 R+. For every ✏ 2 (0, T )

there exists C = C(k, ✏) such that if u 2 P
k+r
2r ([0, T ]), then

kutkWk,2  Ckuk
P
k+r
2r ([t,T ])

,

for every t 2 [0, T � ✏].

Proof. By [8, Proposition 2.3] we have that if u 2 P
k+r
2r ([0, ⌧ ]) then there exists

C(⌧ ) > 0 such that
ku0kWk,2  C(⌧ )kuk

P
k+r
2r ([0,⌧ ])

.

On the other hand it is clear that C(⌧ ) can be chosen so that C is decreasing with ⌧
and that the previous estimate is translation invariant, hence the estimate

ku0kWk,2  C(✏)kuk
P
k+r
2r ([0,T�t])

,

for every t 2 [0, T � ✏] implies the statement.

3. Short-time existence of flow (1.1)

In the set-up of the introduction: let (M, g) be an Hermitian manifold with funda-
mental form ! =

p
�1grs̄dzr ^ dz̄s . Then, as we have already mentioned in the

introduction, the geometric flow (1.1) can be reduced to a scalar flow by using the
substitution

!n�1t = !n�1 +
p

�1@@̄
�
ut!n�2

�

which leads to the evolution equation

@t ut = sut , u|t=0 = u0 . (3.1)

We have the following:

Proposition 3.1. v 7! sv is a 4th-order quasi-linear elliptic operator.

Proof. For v in C1
! (M), we have

sv = �gk̄rv @r@k̄ log(det(gv))
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where gv is the Hermitian metric induced by v. Following [3], we write

!n�1v =

⇣p
�1
⌘n�1

(n�1)!
� nX

i, j=1
 i j̄"i j̄ dz

1^dz̄1^ · · ·^ cdzi^ · · ·^ddz̄ j ^ · · ·^dz̄n

where "i j̄ is 1 if i  j and it is �1 otherwise (the symbolbmeans that the term is
omitted). Since

�
det(gv)

�
=
�
det( )

� 1
n�1

we have
sv = �

1
n � 1

gk̄rv @r@k̄ log(det( )) .

Now

@r@k̄ log(det( ))=@r
⇣
 b̄a@k̄ ( ab̄)

⌘
= b̄a@r@k̄ ( ab̄) �  b̄l@r ( lm̄) m̄a@k̄ ( ab̄)

and therefore

sv = �
1

n � 1
gk̄rv  

b̄a@r@k̄ ( ab̄) +
1

n � 1
gk̄rv  

b̄l@r ( lm̄) m̄a@k̄
�
 ab̄

�
.

Furthermore we have

 i j̄ =
X

�,⌧2�n�1

|� | |⌧ |

✓
v
↵i� (1)↵̄

j
⌧ (1)
g
↵i� (2)↵̄

j
⌧ (2)

. . . g
↵i� (n�1)↵̄

j
⌧ (n�1)

◆
+ l.o.t

where �
↵i1, . . . ,↵

i
n�1

�
=
�
1, . . . , î, . . . , n

�

and l.o.t. means “lower order terms”. Now we fix a point p in M and holomorphic
coordinates {zr } around p such that

ghk̄ = �hk , (gv)hk̄ = �h�hk at p ,

where �h are some positive real constants. We easily get

 i j̄ = �i�i j at p ,

where �i are positive and depend on �h . An easy computation yields

sv = �
1

n � 1

nX

r,k=1

X

i 6=k

�i

�r
vrr̄kk̄ + l.o.t. at p

and the claim follows.
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Now we can prove the existence and uniqueness of a short-time solution to
(1.1). Since Q is a quasilinear elliptic operator, Theorem 2.1 implies that (3.1) has
a unique maximal solution u and the corresponding !u solves (1.1). In order to
prove that !u is unique, let us consider another solution !ũ to (1.1). The function ũ
solves (

(@t ũt )!n�2 = (sũt )!
n�2 + ft !n�2

ũ|t=0 = ũ0 ,
(3.2)

where ft 2 C1(M) is smooth in t and is such that

@@̄
�
ft !n�2

�
= @@̄

�
ũ0 !n�2

�
= 0 .

Let
u0
t = ũt �

Z t

0
fs ds + (u0 � ũ0) .

Then u0 solves (3.1) and
!u0 = !ũ .

Since (3.1) has unique solution, we have u0 = u and consequently

!ũ = !u ,

as required.

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. The argument of the proof is inspired by [16,
Section 8], where it is proved the stability around torsion-free G2-structures of a
certain geometric flow.

Accordingly to the set-up described in the introduction, let W 2r,2
+ (M) be an

open neighbourhood of 0 in W 2r,2(M) which is invariant by translations by con-
stants and let Q : W 2r,2

+ (M) ! L2(M) be a smooth elliptic operator of order 2r .
For v 2 W 2r,2

+ (M), we denote by

Lv = dQv : W 2r,2(M) ! L2(M)

the differential of Q at v. In order to simplify the notation, we write L to denote the
differential of Q at 0.

Lemma 4.1. Let l > 1
2dimM + 2r � 1. For every T, ✏ > 0 there exists � > 0,

depending on ✏, T and l, such that if u0 2 Wr(2l�1),2(M) satisfies

ku0kWr(2l�1),2 < �,

then (2.2) has a solution u defined in M ⇥ [0, T ] such that

kukPl ([0,T ]) < ✏ . (4.1)
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Proof. Fix T, ✏ > 0. Using notation of Theorem 2.2, we have F(0) = (0, 0).
The same theorem, via the implicit function theorem, implies that F is a homeo-
morphism from an open neighbourhood U of 0 in Pl([0, T ]) to a neighbourhood
V of (0, 0) in Wr(2l�1),2(M) ⇥ Pl�1([0, T ]). Now the continuity of F�1 means
that for every ✏ > 0 we can find � > 0 such that if ku0kWr(2l�1),2(M) < � we have
kF�1(u0, 0)kPl ([0,T ]) < ✏. Note that F�1(u0, 0) is nothing but the solution u of
the problem (2.2) with initial value u0 and the claim follows.

Note that the choice of l in the previous lemma allows us to apply both the
Sobolev embedding theorem and Theorem 2.2. From now on we fix k > 1

2dimM+

2r � 1 and consider Q as an operator defined on Wk,2
+ (M).

Now we show that when the initial datum is close enough to 0, then the so-
lution to (1.2) converges exponentially fast to a point in Q�1(0). This part of the
proof is obtained showing that Wk,2-norm of the solution decreases exponentially.
From now on we assume that Q satisfies conditions (h1)-(h3) described in the in-
troduction.
Lemma 4.2. Near the origin the set Q�1(0) is a segment (�a, a).

Proof. Let Q̃ : Wk,2
0 (M) ! Wk�2r,2

0 (M) be defined as

Q̃(u) = Q(u) �
1

Volg(M)

Z

M
Q(u) dVg .

Then Q̃ is a differentiable operator whose derivative at 0 is an isomorphism in view
of (h2). The implicit function theorem implies that Q̃ is a bijection between an open
neighbourhood of 0 inWk,2

0 (M) and an open neighborhood of 0 inWk�2r,2
0 (M) and

condition (h1) implies the statement.

Next we observe that Q : Wk,2
+ (M) ! L2(M) is differentiable in the Fréchet

sense.
Lemma 4.3. Q : Wk,2

+ (M) ! L2(M) is Fréchet differentiable at 0, i.e. for every
✏ > 0 there exists � > 0 such that if v 2 Wk,2

+ (M) satisfies kvkWk,2  �, then

kQ(v) � L(v)kL2  ✏kvkWk,2 .

Proof. In view of a classical result (see, e.g., [14]), it is enough to show that the
Gâteaux derivative of Q is continuous at 0. Namely, let X = Wk,2(M) and
Y = L2(M) and L(X,Y ) be the set of continuous linear maps from X to Y . Let
Q0 : Wk,2

+ (M) ! L(X,Y ) be the map Q0(v) = Lv (note that Q0(0) = L). Then
the continuity of Q0 at 0 is equivalent to require that for every ✏ > 0 there exists a
positive � such that

kLv(w) � L(w)kL2  ✏kwkWk,2

for every w 2 Wk,2(M) and v 2 Wk,2
+ (M) such that kvkWk,2  �. The last in-

equality is implied by the smoothness of the coefficients of Q and by the Sobolev
embedding theorem which ensures that the coefficients of Lv are continuous.
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The following lemma is based on a general theorem about symmetric T -
bounded operators (see Theorem 6.1 in the appendix at the end of the present pa-
per).

Lemma 4.4. For every ✏ > 0 there exists � > 0 such that if v 2 Wk,2
+ (M) satisfies

kvkWk,2 < �, then

�hLv(z), ziL2 � (1� ✏)h�L(z), ziL2 � ✏kzk2L2 (4.2)

for every z 2 W 2r,2(M).

Proof. For notation used in this proof see the appendix. Fix ✏ > 0. Let H = L2(M)
and consider the operators on H , T := �✏L and Vv := L � 1

2 (Lv + L⇤
v), with

v 2 Wk,2
+ (M). We take D(T ) = D(Vv) = W 2r,2(M). Condition (h3) implies

that T is symmetric and bounded from below (with �T = 0). Elliptic regularity
of T implies also that there exists C > 0 such that kzkW 2r,2  CkT (z)kL2 for
all z 2 W 2r,2

0 (M). Moreover reasoning as in the proof of the previous lemma we
deduce that v 7! Vv is continuous as a map Wk,2

+ ! L(W 2r,2, L2). Now let us
write z = z0 + z1 according to the decomposition W 2r,2(M) = ker L � (ker L)?.
Thus we can find � > 0 such that if kvkWk,2  �, we have

kVv(z1)kL2  bC�1kz1kW 2r,2  bkT (z)kL2

for every z 2 Wk�2r,2(M), with b > 0 arbitrarily small. Consequently

�
�Vv(z)

�
�
L2 

1
2
�
�Lv(z0) + L⇤

v(z0)
�
�
L2 +

�
�Vv(z1)

�
�
L2  a

�
�z
�
�
L2 + b

�
�T (z)

�
�
L2

with a > 0 arbitrarily small. Taking a = ✏
2 , b = 1

2 and using (6.2) we have that �✏
is a lower bound for T + V , hence the desired inequality.

Next we show that under our assumptions, Q(ut ) has an L2-exponential decay.
From now on when I is a time interval, we denote by C1

+ (M ⇥ I ) the set {u 2
C1(M ⇥ I ) : ut 2 C1

+ (M) for every t 2 I }.

Lemma 4.5. There exists � > 0 such that if u 2 C1
+ (M ⇥ [0, T ]) solves (1.2) and

satisfies
kutkWk,2 < � , for every t 2 [0, T ] ,

then
kQ(ut )k2L2  e��1tkQ(u0)k2L2 ,

where �1 is the first positive eigenvalue of �L .
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Proof. We have

d
dt
1
2
�
�Q(ut )

�
�2
L2 =

⌦
Lut (Q(ut )), Q(ut )

↵
L2 .

Hypothesis (h2) implies that

�hL(v), viL2 � �1kvk2L2

for all v 2 Wk,2
0 (M). We can write Q(ut ) = At + Bt according to the orthogonal

splitting L2(M, R) = R � L20(M), i.e.,

At =
1

Volg(M)

Z

M
Q(ut ) dVg , Bt = Q(ut ) �

1
Volg(M)

Z

M
Q(ut ) dVg .

Then
�hL(Q(ut )), Q(ut )iL2 = �hL(Bt ), Bt iL2 � �1kBtk2L2

which implies

�hL(Q(ut )),Q(ut )iL2 ��1
✓

kQ(ut )kL2�Volg(M)�
1
2

�
�
�
�

Z

M
Q(ut ) dVg

�
�
�
�

◆2
. (4.3)

Next we observe that for every ✏ > 0 there exists � > 0 such that if kvkWk,2 < �,
then �

�
�
�

Z

M
Q(v)dVg

�
�
�
�  ✏ kQ(v)kL2 .

Indeed, since Q(0) = 0 and Q is Fréchet differentiable at 0, we have that for every
✏ > 0 there exists � > 0 such that

kQ(v) � L(v)kL2  ✏kvkWk,2

for every v 2 Wk,2(M) such that kvkWk,2 < �. Furthermore, elliptic regularity and
assumption (h2) imply that

L : Wk,2
0 (M) ! L20(M)

is an isomorphism on the image and then there exists a constant C such that

1
C

kL(v)kL2  kvkWk,2  CkL(v)kL2

for every v 2 Wk,2
0 (M). Therefore

kQ(v) � L(v)kL2  ✏CkL(v)kL2
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for every v 2 Wk,2(M) such that kvkWk,2 < �; and so, using (h2) again, we have
�
�
�
�

Z

M
Q(v)dVg

�
�
�
� =

�
�
�
�

Z

M
[Q(v) � L(v)]dVg

�
�
�
� 

q
Volg(M)kQ(v) � L(v)kL2

 ✏CkL(v)kL2 
✏C

1� ✏C
kQ(v)kL2 ,

where to obtain the last inequality we used that

kQ(v)kL2 � kL(v)kL2 � kQ(v) � L(v)kL2 � (1� ✏C)kL(v)kL2 .

And so for a suitable choice of ✏ we find � > 0 such that if kvkWk,2 < �, then
�
�
�
�

Z

M
Q(v)dVg

�
�
�
� 

p
Volg(M)

4
kQ(v)kL2 ,

and equation (4.3) implies

�hL(Q(ut )), Q(ut )iL2 � �1
9
16

kQ(ut )k2L2 .

Now Lemma 4.4 says that, for every ✏0 > 0, up to taking a smaller � we have

�hLut Q(ut ), Q(ut )iL2 � (1� ✏0)h�L(Q(ut )), Q(ut )iL2 � ✏0kQ(ut )k2L2

�

✓
(1� ✏0)�1

9
16

� ✏0
◆

kQ(ut )k2L2 .

Choosing ✏0 small enough we obtain

hLut Q(ut ), Q(ut )iL2  �
�1
2

kQ(ut )k2L2

which yields
d
dt

kQ(ut )k2L2  ��1kQ(ut )k2L2 .

Hence Gronwall’s lemma implies

kQ(ut )k2L2  e��1tkQ(u0)k2L2 ,

as required.

The following lemma is a version with compact time of [7, Lemma 7.13].

Lemma 4.6. Let t0 � 0, T > 0 and I = [t0, t0 + T ]. For every h > 0 there exist
l � k and � > 0 such that for u 2 C1

+ (M ⇥ I ) \ BPl (I )(�) and w 2 Ph+1(I ) we
have

kwkPh+1(I )  C
�
kwt0kWr(2h+1),2 + k@tw � Lu(w)kPh(I )

�
(4.4)

for some C = C(n, h, T, �).
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Proof. First of all we recall that by [8, Proposition 2.3] for every h > 0, z 2
Ph+1(I ) and v 2 Ph(I ) we have

kzkPh+1(I )  C
�
kzt0kWr(2h+1),2 + k@t z � Lv(z)kPh(I )

�
(4.5)

for some C = C(n, h, T, v).
For every l let us denote by [Lu]Pl (I ) the norm of Lu as an operator from Pl(I )

to Pl�1(I ). We first observe that if [Lu � L]Ph(I ) < �0, for �0 small enough, then
(4.5) with v = u holds with C dependent on �0, but independent of u. This can be
done as follows. Let w 2 Ph+1(I ) and let

f = Lu(w) � @tw .

Then z = w is a solution to

@t z = L(z) + (Lu � L)(w) + f

and formula (4.5) tells

kwkPh+1(I )  C
�
kwt0kWr(2h+1),2 + k(Lu � L)(w) + f kPh(I )

�

with C independent of Lu . Hence

kwkPh+1(I )  C
�
kwt0kWr(2h+1),2 + k(Lu � L)(w)kPh(I ) + k f kPh(I )

�

 C
�
kwt0kWr(2h+1),2 + [Lu � L]Ph(I ) kwkPh+1(I ) + k f kPh(I )

�

 C
�
kwt0kWr(2h+1),2 + �0 kwkPh+1(I ) + k f kPh(I )

�
,

and for �0 small enough we get

kwkPh+1(I ) 
C

1� C�0
�
kwt0kWr(2h+1),2 + k f kPh(I )

�

=
C

1� C�0
�
kwt0kWr(2h+1),2 + k@tw � Lu(w)kPh(I )

�
.

Since the coefficients of Lu depend smoothly on u and its space derivatives up to
order 2r�1, a suitable bound on kukCm(M⇥I ), form sufficiently large in terms of h,
implies that [Lu � L]Ph(I ) < �0. Using the parabolic Sobolev embedding theorem
of [8, Proposition 4.1] we can find l � k depending on m such that condition
u 2 C1

+ (M ⇥ I ) \ BPl (I )(�) with � small enough implies [Lu � L]Ph(I ) < �0 and
the claim follows.

Nowwe can prove the following interior estimate for solutions of the linearized
equation.
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Lemma 4.7. Let I = [t0, t0 + T ] ✓ R�0. For all ✏ < T and h 2 N there exist
l � k and � > 0 such that for w 2 Ph(I ) and u 2 C1

+ (M ⇥ I ) \ BPl (I )(�) and

@tw = Luw ,

we have
kwkPh([t0+✏,t0+T ])  CkwkP0(I ) , (4.6)

for some C = C(n, h, �, T, ✏).

Proof. We fix 0 < ✏ < T and we prove the statement by induction on h. For
h = 0 the claim is trivial. So we assume the statement true up to h = N . Fix
w 2 PN+1(I ) satisfying @tw = Luw. Take a smooth cut-off function : [0, T ] !
[0, 1] such that  ⌘ 0 in [0, ✏/2] and  ⌘ 1 in [✏, T ]. Take �(t) =  (t � t0) and
set w̃t (x) = �(t)wt (x). Then @t w̃ = �̇w + �@tw and

@t w̃ � Lu(w̃) = �̇w

and inequality (4.4) implies

kw̃kPN+1([t0+✏/2,t0+T ])  Ck�̇wkPN ([t0+✏/2,t0+T ])  C kwkPN ([t0+✏/2,t0+T ])

where in the second inequality we use a new constant C . Therefore

kwkPN+1([t0+✏,t0+T ])  kw̃kPN+1([t0+✏/2,t0+T ])  C kwkPN ([t0+✏/2,t0+T ]) .

Now the claim follows by the induction assumption.

Now we are in a position to prove the Wk,2-exponential decay of Q(ut ).

Lemma 4.8. Let u 2 C1
+ (M ⇥ [0, T ]) be a solution to @t ut = Q(ut ) in [0, T ] and

let �1 be the first positive eigenvalue of�L . Then for every ✏ 2 (0, T/2) there exist
� > 0 and l � k such that if u 2 BPl ([0,T ])(�), we have

kQ(ut )k2Wk,2  CkQ(u0)k2L2 e
��1t for every t 2 [✏, T � ✏] ,

for some positive C = C(n, k, �, T, ✏).

Proof. First note that the assumption u 2 BPl ([0,T ])(�) implies, via Corollary 2.4,
the pointwise bound kutkWk,2  �0 for every t 2 [0, T ] for some �0 > 0 such that
�0 ! 0 when � ! 0. In view of Lemma 4.5 for a suitable choice of � > 0 we have
that,

kQ(ut )k2L2  e��1tkQ(u0)k2L2 for every t 2 [0, T ].

Integrating we get
Z T

t
kQ(u⌧ )k2L2 d⌧ 

e��1t

�1
kQ(u0)k2L2 .
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By differentiating @t ut = Q(ut ) we get that v = Q(u) solves

@tv � Lu(v) = 0 .

Hence we can apply Lemma 4.7 and there exist C = C(n, k, �, T, ✏) such that for
t 2 [✏/2, T ]

kQ(u)k2
P
k+r
2r ([t,T ])

 CkQ(u)k2P0[t�✏/2,T ]

= C
Z T

t�✏/2
kQ(u⌧ )k2L2 d⌧  C

e��1(t�✏/2)

�1
kQ(u0)k2L2 .

Furthermore, using Corollary 2.4 with the same ✏, we have that

kQ(ut )k2
Wk,2  CkQ(u)k2

P
k+r
2r ([t,T ])

for every t 2 [✏, T � ✏] and so

kQ(ut )k2
Wk,2  CkQ(u0)k2L2e

��1t

for every t 2 [✏, T � ✏] which implies the statement.

Proof of Theorem 1.2. Let T > 0 be fixed and 0 < ✏ < T
2 . In view of Lemma 4.1

and Lemma 4.8, there exists � > 0 such that if ku0kWl,2  � for every l � k, then
the solution ut to the geometric flow (1.2) exists in [0, T ] and

kQ(ut )kWk,2  CkQ(u0)kL2e
��t/2 for every t 2 [✏, T � ✏] ,

for some C = C(n, k, �, T, ✏) > 0. Choose u0 and ✏ such that ku0kWk,2  � and

CkQ(u0)kL2
e��✏

�

1X

h=0
e��h(T�2✏) + ku✏kWk,2  � . (4.7)

Now we show that u can be extended in M ⇥ [0,1). For t 2 [✏, T � ✏] we have

kutkWk,2 =

�
�
�
�

Z t

✏
Q(u⌧ ) d⌧ + u✏

�
�
�
�
Wk,2


Z t

✏
kQ(u⌧ )kWk,2 d⌧ + ku✏kWk,2

 CkQ(u0)kL2
e��1✏

�1
+ ku✏kWk,2

and condition (4.7) implies kutkWk,2  �.
In particular, kuT�✏kWk,2  � and u can be extended in M ⇥ [0, 2T � 2✏].

Since also kuT�2✏kWk,2  � we have

kQ(ut )kWk,2  CkQ(u0)kL2 e
��1t , for every t 2 [T � ✏, 2T � 3✏]
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and so for t 2 [T � ✏, 2T � 3✏] we have

kutkWk,2 =

�
�
�
�

Z t

T�✏
Q(u⌧ ) d⌧ + uT

�
�
�
�
Wk,2


Z t

T�✏
kQ(u⌧ )kWk,2 d⌧ + kuT�✏kWk,2

 CkQ(u0)kL2

 
e��1(T�✏)

�1
+
e��1✏

�1

!

+ ku✏kWk,2  � .

In particular, ku2T�3✏kWk,2 < � and u can be extended in M ⇥ [0, 3T � 3✏]. More-
over since ku2T�4✏k < � for t 2 [2T � 3✏, 3T � 5✏] we have

kutkWk,2 =

�
�
�
�

Z t

2T�3✏
Q(u⌧ ) d⌧ + u2T�3✏

�
�
�
�
Wk,2


Z t

2T�3✏
kQ(u⌧ )kWk,2 d⌧ + ku2T�3✏kWk,2

 CkQ(u0)kL2

 
e��1(2T�3✏)

�1
+
e��1(T�✏)

�1
+
e��1✏

�

!

+ ku✏kWk,2  � .

By iterating this procedure yields that for every positive integer N we have the
estimate

ku(N+1)T�(2N+1)✏kWk,2  CkQ(u0)kL2
e��1✏

�1

NX

h=0
e��h(T�2✏) + ku✏kWk,2  � .

Therefore the maximal solution to (1.2) is defined in M⇥ [0,1). Finally we define

u1 := u0 +
Z 1

0
Q(ut ) dt .

Since

ut � u1 =
Z t

0
Q(u⌧ ) d⌧ �

Z 1

0
Q(u⌧ ) d⌧ = �

Z 1

t
Q(u⌧ ) d⌧ ,

we have

kut � u1kWk,2 =

�
�
�
�

Z 1

t
Q(u⌧ ) d⌧

�
�
�
�
Wk,2


Z 1

t
kQ(u⌧ )kWk,2 d⌧  CkQ(u0)k2L2e

��1t/2 ,

and ut converges exponentially fast to u1 in Wk,2-norm. Finally, since Q is con-
tinuous, we have

kQ(u1)kWk,2 =
�
�
� lim
t!1

Q(ut )
�
�
�
Wk,2

 lim
t!1

kQ(ut )kWk,2 = 0

and then Q(u1) = 0, as required.
Finally to obtain the claim it is enough to observe that k > 1

2dimM + 2r � 1
is arbitrary.
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5. Stability of Calabi-type flows

5.1. Stability of the classical Calabi flow around cscK metrics

In [2] Chen and He proved the stability of the Calabi flow around cscK metrics.
Here we observe that Theorem 1.2 can be used to obtain an alternative proof of the
same result.

Let (M, g) be a compact Kähler manifold with fundamental form !. The Cal-
abi flow is the geometric flow of Kähler forms governed by the following equation

@t!t =
p

�1@@̄Rt , !|t=0 = !0 , (5.1)

where Rt is the scalar curvature of !t and the initial !0 lies in the same cohomology
class as !. As an application of our Theorem 1.1 we can give an alternative proof
of [2, Theorem 4.1]. We restate it for the sake of completeness

Theorem 5.1 (Chen-He). Let (M,!) be a compact Kähler manifold with constant
scalar curvature. Then there exists � > 0 such that if !0 is a Kähler metric satisfy-
ing

k!0 � !kC1 < � ,

then the Calabi-flow starting from !0 is immortal and converges in C1 topology to
a constant scalar curvature Kähler metric in [!].

Proof. Let
C1

+ (M) =
n
u 2 C1(M) : ! +

p
�1@@̄u > 0

o
.

We can rewrite the Calabi-flow (5.1) in terms of Kähler potential as

@t ut = Rt � R , u|t=0 = u0 ,

where !0 = ! + i@@̄u0, Rt is the scalar curvature of !t = ! + i@@̄ut and R is the
scalar curvature of !. Consider the operator

Q(v) = Rv � R

defined on Kähler potentials, where Rv is the scalar curvature of ! + i@@̄v. We
observe that Q satisfies conditions (h1)-(h3) described in the introduction. It is
obvious that Q satisfies (h1). On the other hand since R is constant we have

L(v) = Q|⇤0(v) = �D⇤Dv

for every smooth function v, where D⇤D is the Lichnerowicz operator induced by
! (see, e.g., [11, Section 4]). It follows that Q satisfies also conditions (h2) and
(h3) and therefore Theorem 1.2 implies the statement.

We observe that Proposition 5.1 is also implied by [12, Theorems 1 and 2].
Moreover it is worth noting that the stability of the Calabi flow has been extended
to extremal metrics in [6].
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5.2. Stability of (1.1) near cscK metrics

Now we prove the second part of Theorem 1.1 about the stability of (1.1) near
constant scalar curvature Kähler (cscK) metrics.

On a compact complex manifold M with cscK metric ! consider the parabolic
flow (1.1) with background form !. In this case the flow reduces to

@

@t
!n�1t =

p
�1@@̄

�
s!t
�
^ !n�2 , !|t=0 = !0 (5.2)

since ! is closed. Here it is convenient to reduce the balanced flow to a scalar one
by using the substitution !t = !n�1 + i@@̄(ut � R) ^ !n�1 where R is the scalar
curvature of !. This leads to consider the parabolic equation

@t ut = sut � R , ut=0 = u0 .

Let Q : C1
! (M) ! C1(M) be the operator Q(v) = sv � R. As usual denote by L

the differential of Q at 0. Note that since ! is closed, Q obviously satisfies hypoth-
esis (h1). Next we show that Q satisfies also conditions (h2) and (h3) described in
the introduction and then we apply Theorem 1.2. Let f 2 C1

! (M ⇥ (��, �)) be an
arbitrary time-dependent smooth function such that f0 = 0. Let v = @t f|t=0. We
denote by !̇ the time derivative of ! ft at t = 0. Since ! is closed we have

(n � 1)!̇ ^ !n�2 = @t |t=0!
n�1
f =

p
�1@@̄v ^ !n�2 ,

which implies

!̇ =

p
�1

n � 1
@@̄v .

Now
Q( ft ) = s ft � R = �gb̄aft @a @̄b log det g ft � R

and in analogy with the Kähler case we have

L(v) = @t |t=0Q( ft ) = �
1

n � 1
gb̄k@k @̄lvgl̄a⇢ab̄ �

1
n � 1

gb̄a@a @̄bgm̄l@l@m̄v

= �
1

n � 1
D⇤Dv

where ⇢ is the Ricci form of ! and D⇤D is the Lichnerowicz operator, see again
[11]. Thus Q satisfies all the hypotheses of Theorem 1.2 and the result follows.

6. Remarks

It is rather natural to compare the flow introduced in this paper with other flows
of Hermitian metrics considered in literature. For instance in [1] the authors intro-
duced the balanced flow

@t!
n�1
t =

p
�1(n � 1)!@@̄ ⇤t

�
RicC!t ^ !t

�
+ (n � 1)1BC!

n�1
t , !|t=0 = !0
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which evolves an initial balanced form in its Bott-Chern class and in [13] Tosatti
and Weinkove introduced the (n � 1)-plurisubharmonic flow

@t!
n�1
t = �(n � 1)RicC!t ^ !n�2 , !|t=0 = !0 (6.1)

which depends on the choice of a background form ! (the flow was subsequently
studied by Gill in [5]). In both flows RicC!t is the Chern Ricci form of !t , while in
the the first one1BC is the Bott-Chern Laplacian of !t . Flow (1.1) and the balanced
flow can be both seen as a generalisation of the classical Calabi flow (see, e.g., [2])
to the non-Kähler case, but they are in fact different in many aspects. Firstly, (1.1)
is always a potential flow, while in general the balanced flow cannot be reduced to a
scalar equation; (1.1) does not preserve the Kähler condition, whilst when the initial
form is Kähler the balanced flow reduces to the classical Calabi flow; the definition
of (1.1) depends on a fixed background metric; moreover as far as we know, the
balanced flow equation is well-posed only when the initial form is balanced, while
Theorem 1.1 in the present paper says that (1.1) is always well-posed; finally, when
the initial !0 is balanced, then (1.1) evolves !0 in C!(M), while in general the
balanced flow moves !0 in its Bott-Chern class, but outside C!(M).

The (n � 1)-plurisubharmonic flow is in some aspects similar to the flow con-
sidered in this paper, since its definition depends on the choice of a background
metric. But in contrast to (1.1), (6.1) does not necessarily preserve the balanced
condition if the background metric is non-Kähler.

As a final remark we note that recently Zheng introduced in [17] a new sec-
ond order flow of Gauduchon metrics whose definition depends on the choice of a
background Gauduchon metric.

Appendix: Symmetric T -bounded operators

We refer to [15] for a detailed description of the following topics. Let (H, h·, ·i) be
a Hilbert space. A linear operator T on H is a linear map from a linear subspace
D(H) of H (called the domain of T ) into H . T is symmetric if D(T ) is dense in H
and

hh1, T (h2)i = hT (h1), h2i for every h1, h2 2 D(T ) .

Moreover T is called self-adjoint if it is symmetric and

D⇤(T ) = {h 2 H : the map f 7! hh, T ( f )i is continuous on D(T )}

coincides with D(T ). The self-adjoint condition is in general more restrictive than
the symmetry since D⇤(T ) can properly contain D(T ); for instance when T is
bounded, then D⇤(T ) is always the whole H . Furthermore T is said to be bounded
from below if there exists a constant � such that

hh, T (h)i � � khk, for every h 2 D(T ) .
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Let us consider now two linear operators T, V in H . V is called T -bounded if
D(T ) ✓ D(V ) and there exists a constant C such that

kV (h)k  C
q

khk2 + kT (h)k2, for every h 2 D(T ) .

If V is T -bounded, then

kV (h)k  C(khk + kT (h)k), for every h 2 D(T )

and the infimum of all numbers b � 0 for which there exists an a � 0 such that

kV (h)k  akhk + bkT (h)k, for every h 2 D(T )

is called the T -bound of V . Note that if V is bounded (i.e. there exists a constant
C such that kV (h)k  Ckhk), then V is also T -bounded with bound 0 by every
operator T on H . In the paper we use the following (see, e.g., [15, Theorem 9.1])

Theorem 6.1. Let T, V be linear operators on H . Assume T self-adjoint and
bounded from below with lower bound �T and V symmetric and T -bounded with
T -bound < 1. Then T + V is self-adjoint and bounded from below. Moreover if

kV (h)k  akhk + bkT (h)k, for every h 2 D(T ),

where b < 1, then

� = �T �max
⇢

a
1� b

, a + b|�T |

�
(6.2)

is a lower bound of T + V .
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