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A scalar Calabi-type flow in Hermitian geometry:
short-time existence and stability

Lucio BEDULLI AND LUIGI VEZZONI

Abstract. We introduce a new geometric flow of Hermitian metrics which
evolves an initial metric along the second derivative of the Chern scalar curva-
ture. The flow depends on the choice of a background metric, it always reduces to
a scalar equation and preserves some special classes of Hermitian structures, such
as balanced and Gauduchon metrics. We show that the flow has always a unique
short-time solution and we provide a stability result when the background metric
is Kéhler with constant scalar curvature (cscK). The main theorem is obtained by
proving a general result about stability of parabolic flows on Riemannian mani-
folds which is interesting in its own right and in particular implies the stability of
the classical Calabi flow near cscK metrics.

Mathematics Subject Classification (2010): 53C44 (primary); 53C55, 35K55,
53C10 (secondary).

1. Introduction

Giving an Hermitian metric on an 2n-dimensional complex manifold (M, J) is
equivalent to assigning an (n — 1,n — 1)-form ¢ which is positive in the sense
that

(p(Zl, ey anl, Zl, ey anl) >0

forevery {Z1, ..., Z,—1} linearly independent vector fields of type (1,0) on (M, J).
Indeed if such a ¢ is given, there exists a unique Hermitian metric g whose funda-
mental form w satisfies *,w = ¢, where *,, is the induced “star” Hodge operator.
This point of view suggests to consider special Hermitian metrics by imposing re-
strictions on the derivatives of @" !, instead of w. For instance, an Hermitian metric
is called balanced [9] if

do" ' =0,
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Gauduchon [4] if .
300" ' =0

and strongly Gauduchon [10] if

"~1is -exact.

dw
Given an Hermitian form w on a complex manifold M, we consider the set of func-
tions

CO(M) = {v e C®M) 1 o'+ V103" ) > 0} .

Every v € C.°(M) induces the Hermitian form w, defined by a)’j_l =" 4+
V=188 (vw"2); we denote by C,, (M) the set

CoM) ={wy : veCPM)}.
Note that {0~ : v € C3°(M)} is contained in
Ko = {w”_l ++/—10800 > 0}.

When w is balanced, /C,, is the set of closed positive (n — 1, n — 1)-forms on M
belonging to the Bott-Chern cohomology class of "~
In this paper we are interested in solutions w; € C, (M) of the geometric flow

atw;l_l =N _laé(swtwn_z) ) w\t=0 =, (11)

whose definition depends on the background Hermitian form w. By s,, we denote
the scalar curvature of the Chern connection induced by w;. If the background
metric is Kéhler then Hermitian metrics with constant Chern scalar curvature are
stationary solutions to the flow.

Equation (1.1) preserves the balanced, the Gauduchon and the strongly Gaudu-
chon condition and can be reduced to the scalar equation

Oy =8y, Up=0 = U,

where ug € C;°(M) is such that w,, = wp and for v € C°(M), s, is the Chern
scalar curvature of w,.
Our main result is the following:

Theorem 1.1 (Short-time existence and stability of the flow). Flow (1.1) has al-
ways a unique short-time solution {w;}ic[0,T,.y). Assume further that the back-
ground metric w is Kdhler with constant scalar curvature. Then if wy is close
enough to w in C*°-topology, the solution {w;} is defined for any positive t and
converges in C*°-topology to w.
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The short-time existence of a solution to (1.1) is obtained by proving that the op-
erator v > s, is elliptic in a very strong sense and then applying a general result
in [7,8] (see Sections 2, 3).

About the stability of (1.1) near Kahler metrics with constant scalar curvature,
we prove a general theorem about the stability of scalar flows and then we show
that our flow satisfies all the assumptions of the theorem. Namely we consider the
following set-up:

Let (M, g) be an oriented compact Riemannian manifold with volume form
dV, and let W3*(M) be an open neighbourhood of 0 in W2"2(M) which is invari-
ant by additive constants. For k > 2r we denote W_ZJ’Q(M YNWE2Z(M) by W_]ﬁ’z(M )
and let C°(M) = C®(M)NW3"*(M). Let Q: W *(M) — L*(M) be a smooth
elliptic operator of order 2r (elliptic in a strong sense explained in Section 2) and

denote by L the differential of Q at 0. Assume further that Q satisfies the following
conditions:

(h1) Q) =0and Q(v) = Qv + a) forevery v € Werr’z(M), a € R (here the
set of constant functions is identified with R);
(h2) The kernel of L is made only by constant functions and L(Wozr’z(M )) C

L%(M ); where the subscript O means that the elements have average O with
respect to g;

(h3) L is symmetric and semi-negative definite with respect to the L?-scalar prod-
uct induced by the fixed metric g on M, i.e.

/ L(vl)vdeng L(v2)v1dV, and/ L(v)v1dVg <0
M M M

for every vy, vy € W22(M).
Under these hypotheses we have:

Theorem 1.2 (Stability). For every € > 0 there exists § > 0 such that if uy €
C°(M) satisfies ||lugllcee < 8, then the parabolic problem

Our = Q(uy) , Ujr=0 = Uo (1.2)
has a unique solution u € C*°(M x [0, 00)) such that u; € C5°(M) for every t and
satisfies

1. |lusllce < € for everyt € [0, 00);
2. u; converges in C*—topology to a smooth function us, such that Q(us) = 0.

From Theorem 1.2 it easily follows the stability of flow (1.1) and the stability of the
classical Calabi flow near cscK metrics which was already proved in [2].

ACKNOWLEDGEMENTS. The authors would like to thank Ernesto Buzano, Jason
Lotay, Weiyong He, Carlo Mantegazza, Valentino Tosatti and Frederik Witt for
useful conversations and remarks.
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2. Preliminaries on parabolic flows on Riemannian manifolds

In this section we recall some results proved in [7,8] about the short-time existence
of parabolic flows on compact Riemannian manifolds.

Let (M, g) be a compact m-dimensional Riemannian manifold and let
Q: C®(M) — C*>(M) be a quasi-linear partial differential operator of order 2r.
Therefore Q(v) locally writes as
Q(v)(x)= A1 (x, v, Vo, ..., Vzr*lv)vzr v(x) + b(x, v, Vo, ..., Vzr*lv)

i]...ior

where V is the Levi-Civita connection of g and the functions Al and b are
smooth in their entries. We further assume that Q is elliptic in a very strong sense
by requiring
Ai]j]...i,-jr — (_l)r—lEilj] . E’l;rjr

where each Ej is a tensor of type (2, 0) for which there exists a positive A € R such
that B

E e, .. Yo 1)E Ej = MEL; forevery & € TFM 2.1)
when x € M and ¥, € ®; T M. Given such a Q and an initial datum ug €
C° (M), we consider the parabolic problem

Our = Q(ur),  Up=0 = uo - (2.2)
We recall the following theorem whose proof can be found in [7,8]:

Theorem 2.1. Equation (2.2) has always a maximal solution u€C (M x [0, Tmax)),
for some Tpax > 0. Moreover the solution u depends continuously on the initial
datum ug.

Let k € N and [t1, 2] C Rxg. Then the parabolic Sobolev spaces P*([11, 1a]) are
defined as the completion of C*°(M x [f1, t,]) with respect to the norm

15}
2 _
”f||P"([t1,tz]) - Z / /
s<2rk Y0 M

2
oV f| avyd.
l,seN, 2lr+

We recall the following theorem (see [7, Theorem 7.14] and [8, Proposition 2.3 and
Lemma 2.5]).

Theorem 2.2. Assume 6 5
k> "“F;, 2.3)
4r
and let u € P*([0,T1). Then (uj=0, du — Q(u)) belongs to W*k=1-2(M1) x

P*=1([0, T) and the map
F: PX0, T — W =D20apy x P10, T)

defined as
Fu) = (M\I:O’ dpu — Q(u)) )

is C' and its differential dF,, is an isomorphism for every u € P*([0, T)).
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Remark 2.3. In the next part of the paper we need to apply Theorem 2.2 to oper-
ators defined on open subsets of W*2(M) instead of on the whole WX-2(M). The
results described in this section can be easily adapted to this slightly more general
setting.

In the sequel we will need the following corollary of Theorem 2.2.

Corollary 24. Let k be an odd multiple of r and T € R™. For every ¢ € (0,T)
there exists C = C(k, €) such that ifu € P% ([0, TY), then

u < Cllu ’
{ t||Wk,2 =l ”sz#([t,T])

Joreveryt € [0, T —€].

Proof. By [8, Proposition 2.3] we have that if u € PkZ# ([0, t]) then there exists
C(t) > 0 such that

u < C(1t)l||lu r :
| 0||W/<,2 =COl Hp%([o,r])

On the other hand it is clear that C(7) can be chosen so that C is decreasing with
and that the previous estimate is translation invariant, hence the estimate

u < C(e)l||lu r ’
I OHWM =C@l “P%([O,T—l])

for every ¢t € [0, T — €] implies the statement. O

3. Short-time existence of flow (1.1)
In the set-up of the introduction: let (M, g) be an Hermitian manifold with funda-

mental form w = /—1g,5dz" A dz*. Then, as we have already mentioned in the
introduction, the geometric flow (1.1) can be reduced to a scalar flow by using the

substitution )
! = 0"+ V=100 (10" ?)

which leads to the evolution equation
Oy = Sy, ,  Ujp=0 = U . 3.1
We have the following:

Proposition 3.1. v — s, is a 4"-order quasi-linear elliptic operator.

Proof. For v in C;° (M), we have

sy = —g"" 8,0 log(det(g,))
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where g, is the Hermitian metric induced by v. Following [3], we write

-1 n o -
wﬁ_1=[<\/—_l>n (n—l)!:| Z wij-sijvdzl/\dzl/\--~/\dziA~--/\de/\-~-/\dZ”

ij=1

where ¢; i is 1ifi < j and it is —1 otherwise (the symbol ~ means that the term is

omitted). Since
1

(det(gy)) = (det(y)) ™
we have

1 -
S = g, 9 g log(det(y)) .

Now
0,0 log(det(¥) =0, (V™9 (W3) ) =900 W) — Y0 V1) V™0 (V)
and therefore

sv= —n—ilgf’wga 8,0t (Vap) + n—ilgf’w’” 0 (W)™ 0 (5) -

Furthermore we have

Vir= Y olltl (v, i &, 4 -8y s )+lot
1 (“l @1y % )% 2 Y (=) ¥z (n—1)

0,TE0,—| o

where ‘ . A
(a’l,...,a;_l)=(1,...,i,...,n)

and l.o.t. means “lower order terms”. Now we fix a point p in M and holomorphic
coordinates {z"} around p such that

&ni = Onk»  (u)pi = Yudnk at p,
where y), are some positive real constants. We easily get
yi = Aidijat p,

where A; are positive and depend on yj,. An easy computation yields

| Ai
s = Z Z ;vrr_k,; +lot.atp
r.k=1i#k

and the claim follows. O
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Now we can prove the existence and uniqueness of a short-time solution to
(1.1). Since Q is a quasilinear elliptic operator, Theorem 2.1 implies that (3.1) has
a unique maximal solution u and the corresponding w, solves (1.1). In order to
prove that w, is unique, let us consider another solution w; to (1.1). The function
solves

{(&ﬁz) "% = (s7,) "+ fro"? (3.2)

U= = U ,
where f; € C°°(M) is smooth in # and is such that
30(fr 0" %) = 33(i1p " %) = 0.
Let ,
u, =ft,—/0 fsds + (ug — ig) .
Then u’ solves (3.1) and
Wy = Wy .
Since (3.1) has unique solution, we have v’ = u and consequently
Wi = Wy ,

as required.

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2. The argument of the proof is inspired by [16,
Section 8], where it is proved the stability around torsion-free G,-structures of a
certain geometric flow.

Accordingly to the set-up described in the introduction, let Wir’z(M ) be an
open neighbourhood of 0 in W?>2(M) which is invariant by translations by con-

stants and let Q: Wi”Z(M ) — L2?(M) be a smooth elliptic operator of order 2r.

Forv e WJZ:’Z(M ), we denote by

L,=dQ,: W"2(M) —> L*(M)

the differential of Q at v. In order to simplify the notation, we write L to denote the
differential of Q at 0.

Lemma4.1. Let! > %dimM + 2r — 1. For every T, € > 0 there exists 6 > O,
depending on €, T and 1, such that if ug € W ?'=D-2(M) satisfies

luollwra-n2 <6,

then (2.2) has a solution u defined in M x [0, T such that

”u”PI([O,T]) < €. (41)
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Proof. Fix T,e > 0. Using notation of Theorem 2.2, we have F(0) = (0, 0).
The same theorem, via the implicit function theorem, implies that F is a homeo-
morphism from an open neighbourhood ¢/ of 0 in P!([0, T']) to a neighbourhood
Y of (0,0) in W @=D-2(p1) x P=1([0, T]). Now the continuity of F~! means
that for every € > 0 we can find § > 0 such that if [[uollyr@-1.2(3 < & we have
|l F = (uo, Ol pi 0,77y < €- Note that F~(up, 0) is nothing but the solution u of
the problem (2.2) with initial value 1o and the claim follows. O

Note that the choice of [ in the previous lemma allows us to apply both the
Sobolev embedding theorem and Theorem 2.2. From now on we fix k > %dim M+

2r — 1 and consider Q as an operator defined on Wfr’z(M ).

Now we show that when the initial datum is close enough to 0, then the so-
lution to (1.2) converges exponentially fast to a point in Q~1(0). This part of the
proof is obtained showing that W*-2-norm of the solution decreases exponentially.
From now on we assume that Q satisfies conditions (h1)-(h3) described in the in-
troduction.

Lemma 4.2. Near the origin the set Q™' (0) is a segment (—a, a).

Proof. Let O Wé"Z(M) — Wé‘_Qr’Z(M) be defined as
- 1
Q) =0u) — W /M Q(u)dVg.

Then Q is a differentiable operator whose derivative at 0 is an isomorphism in view
of (h2). The implicit function theorem implies that Q is a bijection between an open

neighbourhood of 0 in Wéc 2 (M) and an open neighborhood of 0 in WéC —2r,2(M ) and
condition (h1) implies the statement. ]

Next we observe that Q: W_kpz(M ) — L2(M) is differentiable in the Fréchet
sense.

Lemma4.3. O: W_Iﬁ’Z(M ) — L%(M) is Fréchet differentiable at 0, i.e. for every
€ > 0 there exists § > 0 such that if v € Wi’Z(M) satisfies ||v|yk2 < 8, then

1O(W) — L()ll;2 < €llvllykz -

Proof. In view of a classical result (see, e.g., [14]), it is enough to show that the
Gateaux derivative of Q is continuous at 0. Namely, let X = Wk2(M) and
Y = L*(M) and L(X, Y) be the set of continuous linear maps from X to Y. Let
Q' WE(M) — L(X,Y) be the map Q'(v) = L, (note that Q'(0) = L). Then
the continuity of Q’ at 0 is equivalent to require that for every € > 0 there exists a
positive § such that

[Ly(w) — Lw) 2 < €llwllyr2

for every w € W52(M) and v € W_Iﬁ’z(M) such that [[v|yr2 < 8. The last in-
equality is implied by the smoothness of the coefficients of O and by the Sobolev
embedding theorem which ensures that the coefficients of L, are continuous. [
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The following lemma is based on a general theorem about symmetric 7 -
bounded operators (see Theorem 6.1 in the appendix at the end of the present pa-
per).

Lemma 4.4. For every € > 0 there exists § > 0 such that if v € WJkr,z( M) satisfies
lvllye2 < 8, then

—(Ly(2), 2012 = (1 — €)(=L(2), 2) ;2 — €|zl (4.2)

for every z € W¥2(M).

Proof. For notation used in this proof see the appendix. Fix € > 0. Let H = L>(M)
and consider the operators on H, T := —eL and V,, := L — %(Lv + L), with

v e WEA(M). We take D(T) = D(V,) = W?*2(M). Condition (h3) implies
that T is symmetric and bounded from below (with yr = 0). Elliptic regularity
of T implies also that there exists C > 0 such that ||z|y22 < C|T(2)|2 for

all z WO2 r’z(M ). Moreover reasoning as in the proof of the previous lemma we
deduce that v — V), is continuous as a map W_]ﬁ’z — L(W?2L?). Now let us

write 7 = 79 + z1 according to the decomposition W22(M) = ker L @ (ker L)*.
Thus we can find § > 0 such that if ||v||yr2 < &, we have

IVo@Dll2 < bC7 21 llwe2 < BIT ()12

for every z € WK=2"2(M), with b > 0 arbitrarily small. Consequently

1

V@l 2 = 3 [L0Go) + L3 12 + [ Vo@D 12 = az] 2 + 8[| T @] 12

with @ > 0 arbitrarily small. Takinga = §,b = % and using (6.2) we have that —e
is a lower bound for 7' 4 V, hence the desired inequality. O

Next we show that under our assumptions, Q () has an L?-exponential decay.
From now on when [ is a time interval, we denote by C3°(M x I) the set {u €
C®M x I): u, € C3°(M) for every t € I}.

Lemma 4.5. There exists § > 0 such that ifu € C°(M x [0, T]) solves (1.2) and
satisfies

llusllweo < 8, foreveryt € [0,T],

then
103, < e ™ Qo).

where A1 is the first positive eigenvalue of —L.
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Proof. We have

MMQ( D)% = (Lu, (Qur)), Q) »

Hypothesis (h2) implies that
—(L(),v)2 > A1[v]7,

forall v € Wé‘ ’2(M). We can write Q(u;) = A; + B; according to the orthogonal
splitting L2(M,R) = R @ L3(M), i.e.,

Ar = /Q(uz)dVg, By = O(us) — /Q(Mt)dvg

Vol, (M) (M) Vol (M) (M)

Then
—(L(Q(us)), Que)) 2 = —(L(By), B) 2 > MIIBzIIiz

which implies

2
) . (4.3)

Next we observe that for every € > 0 there exists § > 0 such that if ||v|y«2 < 6,
then

—(L(Q(uy)), Qus)) 2 = A (II Q(ur)ll g2 _V()lg(M)_%

f O(uy) dVg
M

=ellQWllg2.

’/ Q()dV,
M

Indeed, since Q(0) = 0 and Q is Fréchet differentiable at O, we have that for every
€ > 0 there exists § > 0 such that

QW) = L)z < €llvllyr2

for every v € W*52(M) such that lvllwe2 < 8. Furthermore, elliptic regularity and
assumption (h2) imply that

k2 2
L: Wy“(M) — Ly(M)
is an isomorphism on the image and then there exists a constant C such that

1
c LWz = llvliwez = CILO)] 2

for every v € Wé‘ ’2(M ). Therefore

1Q(W) = L)l 2 < €ClIL() .2
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for every v € WX2(M) such that lvllwk2 < 8; and so, using (h2) again, we have

‘/M Q)dVg| = ‘/M[Q(v) — L()]dVg| = /Volg(M)[|Q(v) — L)L,
C
= €ClILOz2 = 5 iECIIQ(v)IILz,

where to obtain the last inequality we used that

QW2 = ILW)ll2 = 1QW) = LW)ll2 = (1 = €C)|[L(W)][ 2

And so for a suitable choice of € we find § > 0 such that if ||v||y«2 < §, then

‘ / oY, Vol (M)
M

= —F10Wll;2,
and equation (4.3) implies

4

9
—(L(Q)), Q)2 = hi Il Q)7
Now Lemma 4.4 says that, for every ¢’ > 0, up to taking a smaller § we have
—(Lu, Qur), Q)2 = (1= €)(=L(Qwy)). Qun))2 — €| QulZ,
9
((1 — e - e’) QN7 -

v

Choosing €’ small enough we obtain

A
(Lu, Q(ur), Q) 12 < == 1QGun)l2

which yields
d 2 2
NI < =211 Q@]

Hence Gronwall’s lemma implies

Q)32 < e Qo3 .
as required. O

The following lemma is a version with compact time of [7, Lemma 7.13].

Lemma4.6. Lettg > 0, T > 0and I = [tg, to + T]. For every h > 0 there exist

I > kand § > 0 such that for u € C°(M x I) N BY'D(8) and w € P*(I) we
have
lwll prsi sy < € (Ilwig llwrensna + 19w — Ly ()l pap)) (4.4)

for some C =C(n,h,T,$).
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Proof. First of all we recall that by [8, Proposition 2.3] for every h > 0, z €
P (1) and v € P"(I) we have

||Z||Ph+1(l) < C (||Zt0||Wr(2h+]),2 + ”atZ - LU(Z)”ph([)) (45)

forsome C = C(n, h, T, v).

For every [ let us denote by [L,] PU(I) the norm of L, as an operator from P! )
to P!=1(I). We first observe that if [L, — Llpn(yy < &', for 8" small enough, then
(4.5) with v = u holds with C dependent on &', but independent of u. This can be
done as follows. Let w € P"*1(I) and let

f=L,(w)—ow.
Then z = w is a solution to
dhz=L@)+ Ly, —Ly(w)+ f
and formula (4.5) tells

lwll prsi 1y < C (lwpllwreninz + 1Ly = LYw) + £ pr(ry)

with C independent of L,. Hence

lwll prs1¢py < C (lwgy lwrensnz + 1Ly — LYW | iy + 1 f 1 prry)
<C (||wt0||wr(2h+1>,2 + [Ly — Llpr(py lwll prsipy + ||f||Ph(1))
< C (lwiyllyrenenz + 8" wll prsi gy + 1 f L pry) -

and for 8’ small enough we get

lwll pr+1(y < lweo ll ywrenn.2 + ||f||Ph(1))

1—C8/(

1—cCs (||wt0||wr(2h+1>.2 + 0w — Lu(w)”Ph(])) .

Since the coefficients of L, depend smoothly on u and its space derivatives up to
order 2r — 1, a suitable bound on ||u||cm (mx 1y, for m sufficiently large in terms of /4,
implies that [L, — L]pr(;) < 8’. Using the parabolic Sobolev embedding theorem
of [8, Proposition 4.1] we can find / > k depending on m such that condition
ueCPMx1)n BPI(I)(S) with & small enough implies [Ly, — L]pn(py < 8" and
the claim follows. U

Now we can prove the following interior estimate for solutions of the linearized
equation.
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Lemma4.7. Let I = [to, 10 + T] € Rsg. Foralle < T and h € N there exist
I > kand 8 > 0 such that for w € P*(I) and u € C*(M x I) N BP'(D(8) and

oow = L,w,

we have
lwll pr(rgre,i0+11) < Cllwllpory (4.6)
for some C =C(n,h,5,T,¢€).

Proof. We fix 0 < € < T and we prove the statement by induction on k. For
h = 0 the claim is trivial. So we assume the statement true up to 4 = N. Fix
w e PNTI(D) satisfying d,w = L, w. Take a smooth cut-off function v : [0, T] —
[0, 1] such that ¥ = 01in [0, €/2] and ¥ = 1 in [€, T]. Take x(¢) = ¥ (t — tp) and
set Wy (x) = x(t)w;(x). Then 9, w = xw + x 0, w and

dw — Ly(w) = xw

and inequality (4.4) implies

Il p¥+1 1 tes2.00+7) < CIXWI PN (g 1e /200471 = C IWI PN (191€/2.10+ 1)

where in the second inequality we use a new constant C. Therefore

lwll pv+t ety = N0 p3+t g reaiprry = C W PN (rg1e2.00+7D) -
Now the claim follows by the induction assumption. O
Now we are in a position to prove the W*-2-exponential decay of Q(u;).

Lemma 4.8. Letu € C°(M x [0, T]) be a solution to d,u; = Q(u,) in [0, T] and
let A1 be the first positive eigenvalue of —L. Then for every € € (0, T /2) there exist
8 > 0andl > k such that ifu € BPI([O’T])((S), we have

1Q) 3z < ClIQO)II7, e~ for everyt € [, T — €],
for some positive C = C(n, k, 5, T, €).
Proof. First note that the assumption u € B (07D (8) implies, via Corollary 2.4,
the pointwise bound ||u;||yyx2 < &' for every ¢ € [0, T] for some 8’ > 0 such that

8 — 0 when § — 0. In view of Lemma 4.5 for a suitable choice of § > 0 we have
that,

1QN3, < e [ Quo)3, foreveryt € [0, T].
Integrating we get
—At

Al

r 2 € 2
/ Qo). dr < 1Q@o)ll;> -
t
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By differentiating d,;u; = Q(u;) we get that v = Q(u) solves
orv— Ly (v) =0.

Hence we can apply Lemma 4.7 and there exist C = C(n, k, 8, T, €) such that for
t €le/2,T]

2 2
QW e = CIOWN ooy

T , e—HM(t—€/2) R
= C/ 1Quo)ll;.dr < CT“Q(MO)”Lz .
t

—€/2

Furthermore, using Corollary 2.4 with the same €, we have that

10w, , < CIOWI i

P2 ([t.T)

forevery t € [e, T — €] and so
1012, , =< CllQo) 76~

for every t € [e, T — €] which implies the statement. O

Proof of Theorem 1.2. Let T > 0 be fixedand 0 < € < % In view of Lemma 4.1
and Lemma 4.8, there exists § > 0 such that if |lug||y.2 < 6 for every [ > k, then
the solution u; to the geometric flow (1.2) exists in [0, T'] and

Qw2 < ClIQ(uo) |l 26™/% forevery t € [e, T — €],

for some C = C(n, k, 8, T, €) > 0. Choose uq and € such that |[ug| y«2 < § and

—ie 0

CllQuo)ll 2

e MIT=29 4 el yprn < 6. (4.7)
h=0

Now we show that u can be extended in M x [0, 00). Fort € [e, T — €] we have

luell ez =

/t O(ug)dt +ue

—)\.16

t
= f 10 ez d + ey
wk. €

<CllQwo)ll 2 + llute llyyr.2

and condition (4.7) implies |lu;||yr2 < 6.
In particular, ||ur—¢|lyr2 < 8 and u can be extended in M x [0, 2T — 2¢].
Since also ||ur—2¢|lyr2 < § we have

Q)2 < CIQuo)ll;2 e M for every t € [T —e€,2T — 3€]



A CALABI-TYPE FLOW IN HERMITIAN GEOMETRY 671

and so fort € [T — €, 2T — 3¢] we have
t

t
< / 1 Q) s dT + ur—clype

luellwra = Qur)dt +ur
T—¢ wk.2 T—¢
e—M(T—e) e—kle
<ClQwo)ll2 + + luellyrz <6
Al Al

In particular, ||ua7—3¢|lywr2 < 8 and u can be extended in M x [0, 3T — 3€]. More-
over since ||uzr—4c|| < 8 fort € [2T — 3¢, 3T — S5¢] we have

llut llwr2 =

t
/ Our)dt + uar_3¢
2T -3¢

Wk,2

t
< / 10 s dT + luar—sell e
2T —3¢

7}»](27‘736) efAI(Tfe) ef}»]G

e
SCIIQ(uo)Ile( + + )"‘”ueuwkl =94.

A A A

By iterating this procedure yields that for every positive integer N we have the
estimate

—X\i€

N
D e T2 luglyra <68
h=0

luN+)T—@eN+Dellwk2 < CllQ(uo) | 12

Therefore the maximal solution to (1.2) is defined in M x [0, co). Finally we define
o
Uoo = U +/ O(u;)dt .
0
Since
t o o
Ur — oo =/ Q(uc)dt —/ Quc)dt = —/ Q(ur)dr,
0 0 t

we have

/oo Qur)dr
t

o
5/ |Quo)llwradr < C||Q(u0)||ize—>»|t/2’
t

ller — voollyr2 = ‘
Wk,2

and u, converges exponentially fast to us, in WX2-norm. Finally, since Q is con-
tinuous, we have

1QGs e = | lim 0@, < lim 10 ez =0

and then Q(u,) = 0, as required.
Finally to obtain the claim it is enough to observe that k > %dim M+2r—1
is arbitrary. 0
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5. Stability of Calabi-type flows

5.1. Stability of the classical Calabi flow around cscK metrics

In [2] Chen and He proved the stability of the Calabi flow around cscK metrics.
Here we observe that Theorem 1.2 can be used to obtain an alternative proof of the
same result.

Let (M, g) be a compact Kahler manifold with fundamental form w. The Cal-
abi flow is the geometric flow of Kéhler forms governed by the following equation

dwy = —130R;, =0 =y, (5.1)

where R; is the scalar curvature of w; and the initial wg lies in the same cohomology
class as w. As an application of our Theorem 1.1 we can give an alternative proof
of [2, Theorem 4.1]. We restate it for the sake of completeness

Theorem 5.1 (Chen-He). Let (M, w) be a compact Kihler manifold with constant
scalar curvature. Then there exists § > O such that if wg is a Kdhler metric satisfy-

ing
lwo — wllce <4,

then the Calabi-flow starting from wq is immortal and converges in C* topology to
a constant scalar curvature Kdihler metric in [w].

Proof. Let
CEMn = fu e CM) : w+v/~Tobu > 0}.
We can rewrite the Calabi-flow (5.1) in terms of Kihler potential as

oy = R, — R, Ujp=0 = Uo,

where wy = w + i9dug, R; is the scalar curvature of w; = w + i9du, and R is the
scalar curvature of w. Consider the operator

Q) =R, — R

defined on Kahler potentials, where R, is the scalar curvature of w + i9dv. We
observe that Q satisfies conditions (h1)-(h3) described in the introduction. It is
obvious that Q satisfies (h1). On the other hand since R is constant we have

L) = Qx0(v) = =D*Dv

for every smooth function v, where D*D is the Lichnerowicz operator induced by
w (see, e.g., [11, Section 4]). It follows that Q satisfies also conditions (h2) and
(h3) and therefore Theorem 1.2 implies the statement. ]

We observe that Proposition 5.1 is also implied by [12, Theorems 1 and 2].
Moreover it is worth noting that the stability of the Calabi flow has been extended
to extremal metrics in [6].
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5.2. Stability of (1.1) near cscK metrics

Now we prove the second part of Theorem 1.1 about the stability of (1.1) near
constant scalar curvature Kahler (cscK) metrics.
On a compact complex manifold M with cscK metric w consider the parabolic
flow (1.1) with background form w. In this case the flow reduces to
0 ,_ = _
PRt D= V=180 (50,) A 0" %, @m0 = wo (5.2)
since w is closed. Here it is convenient to reduce the balanced flow to a scalar one
by using the substitution @; = "' 4+i33(u; — R) A ©"~! where R is the scalar
curvature of w. This leads to consider the parabolic equation

Oy =Sy, — R,  us—0 =up.

Let Q: CX(M) — C° (M) be the operator Q(v) = s, — R. As usual denote by L
the differential of Q at 0. Note that since w is closed, Q obviously satisfies hypoth-
esis (h1). Next we show that Q satisfies also conditions (h2) and (h3) described in
the introduction and then we apply Theorem 1.2. Let f € CJ°(M x (=6, 8)) be an
arbitrary time-dependent smooth function such that fo = 0. Let v = 0, fj;=0. We
denote by w the time derivative of wy, att = 0. Since w is closed we have

(n— D A" = d=0} = V=100 A "2,

which implies

Now -
O(fy) =sf, —R= —g’}f‘aaab logdetgy, — R
and in analogy with the Kihler case we have

1 .= T 1 Poo= -
L(v) = =0 Q(f1) = = ——— " hdrvg" pp — ~— 8" dadog™ v
1

=— D*Dv
n—1

where p is the Ricci form of w and D*D is the Lichnerowicz operator, see again
[11]. Thus Q satisfies all the hypotheses of Theorem 1.2 and the result follows.

6. Remarks

It is rather natural to compare the flow introduced in this paper with other flows
of Hermitian metrics considered in literature. For instance in [1] the authors intro-
duced the balanced flow

81(1);171 =+—1(n— 1)'85 *y (RICSI A a),) + (n— I)ABCa)ffl ,  Wp=0 = Wo
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which evolves an initial balanced form in its Bott-Chern class and in [13] Tosatti
and Weinkove introduced the (n — 1)-plurisubharmonic flow

dhop ' =—(n—DRicS A0"?, w0 = wp (6.1)
which depends on the choice of a background form w (the flow was subsequently
studied by Gill in [5]). In both flows Ricgt is the Chern Ricci form of w;, while in
the the first one A pc is the Bott-Chern Laplacian of w,. Flow (1.1) and the balanced
flow can be both seen as a generalisation of the classical Calabi flow (see, e.g., [2])
to the non-Kdhler case, but they are in fact different in many aspects. Firstly, (1.1)
is always a potential flow, while in general the balanced flow cannot be reduced to a
scalar equation; (1.1) does not preserve the Kihler condition, whilst when the initial
form is Kahler the balanced flow reduces to the classical Calabi flow; the definition
of (1.1) depends on a fixed background metric; moreover as far as we know, the
balanced flow equation is well-posed only when the initial form is balanced, while
Theorem 1.1 in the present paper says that (1.1) is always well-posed; finally, when
the initial wo is balanced, then (1.1) evolves wg in C,(M), while in general the
balanced flow moves wy in its Bott-Chern class, but outside C,,(M).

The (n — 1)-plurisubharmonic flow is in some aspects similar to the flow con-
sidered in this paper, since its definition depends on the choice of a background
metric. But in contrast to (1.1), (6.1) does not necessarily preserve the balanced
condition if the background metric is non-Kihler.

As a final remark we note that recently Zheng introduced in [17] a new sec-
ond order flow of Gauduchon metrics whose definition depends on the choice of a
background Gauduchon metric.

Appendix: Symmetric 7-bounded operators

We refer to [15] for a detailed description of the following topics. Let (H, (-, -)) be
a Hilbert space. A linear operator T on H is a linear map from a linear subspace
D(H) of H (called the domain of T) into H. T is symmetric if D(T) is dense in H
and

(h1, T(h2)) = (T (h1), ha)  forevery hy, hy € D(T).
Moreover T is called self-adjoint if it is symmetric and
D*(T)={he€ H : themap f — (h, T(f)) is continuous on D(T)}

coincides with D(T). The self-adjoint condition is in general more restrictive than
the symmetry since D*(T') can properly contain D(T); for instance when T is
bounded, then D*(T) is always the whole H. Furthermore 7 is said to be bounded
from below if there exists a constant y such that

(h, T(h)) = yllhll, forevery h € D(T).
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Let us consider now two linear operators 7,V in H. V is called T-bounded if
D(T) € D(V) and there exists a constant C such that

IVl < Cy/lIRlI> + 1T ()12, forevery h € D(T).

If V is T-bounded, then
VI = ClRI+ 1T ()N,  forevery h € D(T)

and the infimum of all numbers 4 > 0 for which there exists an a > 0 such that
VW < allkll +bIT (A, forevery h € D(T)

is called the T-bound of V. Note that if V is bounded (i.e. there exists a constant

C such that ||V (h)|| < C|hl|), then V is also T-bounded with bound O by every
operator 7 on H . In the paper we use the following (see, e.g., [15, Theorem 9.1])

Theorem 6.1. Let T,V be linear operators on H. Assume T self-adjoint and

bounded from below with lower bound yr and V symmetric and T -bounded with

T-bound < 1. Then T + V is self-adjoint and bounded from below. Moreover if
V(W < allhll +bIT (W), for every h € D(T),

where b < 1, then

a
V=VT—maX{1_b,a+b|VT|} (6.2)

is a lower bound of T + V.
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