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Reverse approximation of gradient flows
as Minimizing Movements: a conjecture by De Giorgi

FLORENTINE FLEISSNER AND GIUSEPPE SAVARÉ

Abstract. We consider the Cauchy problem for the gradient flow

u0(t) = �r�(u(t)), t � 0; u(0) = u0, (?)

generated by a continuously differentiable function � : H ! R in a Hilbert
space H and study the reverse approximation of solutions to (?) by the De Giorgi
Minimizing Movement approach.

We prove that ifH has finite dimension and � is quadratically bounded from
below (in particular if � is Lipschitz) then for every solution u to (?) (which may
have an infinite number of solutions) there exist perturbations �⌧ : H ! R (⌧ >
0) converging to � in the Lipschitz norm such that u can be approximated by
the Minimizing Movement scheme generated by the recursive minimization of
8(⌧,U, V ) := 1

2⌧ |V �U |2 + �⌧ (V ):

Un
⌧ 2 argminV2H8

�
⌧,Un�1

⌧ , V
�

n 2 N, U0⌧ := u0. (??)

We show that the piecewise constant interpolations with time step ⌧ > 0 of all
possible selections of solutions (Un

⌧ )n2N to (??) will converge to u as ⌧ # 0. This
result solves a question raised by Ennio De Giorgi in [9].

We also show that even ifH has infinite dimension the above approximation
holds for the distinguished class of minimal solutions to (?), that generate all the
other solutions to (?) by time reparametrization.

Mathematics Subject Classification (2010): 49M25 (primary); 34G20, 47J25,
47J30 (secondary).

1. Introduction

In his highly inspiring paper [9] Ennio De Giorgi introduced the variational notion
of Minimizing Movement in order to present a general and unifying approach to a
large class of evolution problems in a vector, metric or even topological framework.
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In the case of time-invariant evolutions in a topological space H, Minimiz-
ing Movements can be characterized by the recursive minimization of a functional
8 : (0,1)⇥H⇥H ! [�1,+1]. For a given initial datum u0 2 H and a param-
eter ⌧ > 0 (which plays the role of discrete time step size) one looks for sequences
(Un

⌧ )n2N such that U0⌧ := u0 and for every n � 1

8
�
⌧,Un�1

⌧ ,Un
⌧

�
=min
V2H

8
�
⌧,Un�1

⌧ ,V
�
, i.e. Un

⌧ 2 argmin8
�
⌧,Un�1

⌧ , ·
�
. (1.1)

Any sequence satisfying (1.1) gives rise to a discrete solution U⌧ : [0,1) ! H at
time step ⌧ , obtained by piecewise constant interpolation of the values (Un

⌧ )n2N:

U⌧ (0) := U0⌧ = u0, U⌧ (t) := Un
⌧ if t 2 ((n � 1)⌧, n⌧ ], n 2 N. (1.2)

A curve u : [0,+1) ! H is called Minimizing Movement associated to 8 with
initial datum u0 (short u 2 MM(8, u0)) if there exist discrete solutionsU⌧ (for ⌧ in
a right neighborhood of 0) to the scheme (1.1) converging pointwise to u as ⌧ # 0:

u(t) = lim
⌧#0

U⌧ (t) for every t � 0. (1.3)

A curve u : [0,+1) ! H is more generally called Generalized MinimizingMove-
ment (short u 2 GMM(8, u0)) if there exist a suitable vanishing subsequence
k 7! ⌧ (k) of time steps and corresponding discrete solutions U⌧ (k) at time step
⌧ (k) to (1.1) such that

u(t) = lim
k!1

U⌧ (k)(t) for every t � 0. (1.4)

The general notion of Minimizing Movement scheme has proved to be extremely
useful in a variety of analytic, geometric and physical contexts; we refer to [2,4,10],
[6] and [17,20] for a more detailed account of some applications and developments
and to the pioneering paper [1] by Almgren, Taylor, and Wang.

Perhaps the simplest (though still interesting) situation arises if H is a Hilbert
space and one tries to implement the scheme (1.1) to solve the Cauchy problem for
the gradient flow

u0(t) = �r�(u(t)), t � 0, (1.5)
with initial datum u0 and continuously differentiable driving functional � : H ! R.
In this case a natural choice for the functional 8 is

8(⌧,U, V ) :=
1
2⌧

|V �U |2 + �(V ), (1.6)

for which the scheme (1.1) represents a sort of iterated minimization of � perturbed
by 1

2⌧ | · �U |2. The last term penalizes the squared distance (induced by the norm
| · | of H) from the previous minimizer U . The Euler equation associated with the
minimum problem (1.1) is then given by

Un
⌧ �Un�1

⌧

⌧
+ r�(Un

⌧ ) = 0, (1.7)
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so that the Minimizing Movement scheme can be considered as a variational formu-
lation of the implicit Euler method applied to (1.5). It is then natural to compare the
class of solutions to (1.5) and the classes of Minimizing Movements MM(8, u0)
and Generalized Minimizing Movements GMM(8, u0) for 8 as in (1.6).

If � is a convex (or a quadratic perturbation of a convex) function, it is possible
to prove (see, e.g., [2, 4, 7]) that the Minimizing Movement scheme (1.1) is conver-
gent to the unique solution u of (1.5) with initial datum u0, i.e. MM(8, u0) = {u}.
This fundamental result can be extended to general convex and lower semicontinu-
ous functions �, possibly taking the value+1 at some point ofH, provided (1.5) is
suitably formulated as a subdifferential inclusion. Convexity assumptions can also
be considerably relaxed [16, 21] as well as the Hilbertian character of the distance
(see, e.g., [4, 16, 19]).

Minimizing Movements and gradient flows governed by C1 functions

If H is a finite dimensional Euclidean space and � is a continuously differentiable
Lipschitz function, or more generally, a continuously differentiable function satis-
fying the lower quadratic bound

9 ⌧⇤ > 0, �⇤ 2 R :
1
2⌧⇤

|x |2 + �(x) � ��⇤ for every x 2 H, (1.8)

it is not difficult to see that the set GMM(�, u0) is not empty and that all its elements
are solutions to (1.5).

In general, there are more than one solution to (1.5) with initial datum u0.
A notable aspect is that the set MM(�, u0) may be empty and/or GMM(�, u0)
merely a proper subset of the class of solutions to (1.5) with initial datum u0. Such
peculiarities pointed out by De Giorgi can be observed even in one-dimensional
examples of gradient flows driven by C1 Lipschitz functions [9].

It is then natural to look for possible perturbations of the scheme associated
with (1.6), generating all the solutions to (1.5): this property would deepen our
understanding of a gradient flow as a minimizing motion. This kind of question has
also been treated in the different context of rate-independent evolution processes
[18] from which we borrow the expression reverse approximation.

A first contribution [12, 13] in the framework of the Minimizing Movement
approach to (1.5) deals with a uniform approximation of 8, based on allowing
approximate minimizers in each step of the scheme generated by (1.6).

A much more restrictive class of approximation was proposed by De Giorgi,
who made the following conjecture [9, Conjecture 1.1]:
Conjecture (De Giorgi ’93). Let us suppose that H is a finite dimensional Eu-
clidean space and � : H ! R is a continuously differentiable Lipschitz function.
A map u 2 C1([0,1); H) is a solution of (1.5) if and only if there exists a family
�⌧ : H ! R, ⌧ > 0, of Lipschitz perturbations of � such that

lim
⌧#0

Lip[�⌧ � �] = 0, (1.9)



680 FLORENTINE FLEISSNER AND GIUSEPPE SAVARÉ

and for the corresponding generating functional

8(⌧,U, V ) :=
1
2⌧

|V �U |2 + �⌧ (V ) (1.10)

one has u 2 GMM(8, u(0)).
Lip[·] in (1.9) denotes the Lipschitz seminorm

Lip
⇥
 
⇤

:= sup
x,y2H, x 6=y

 (y) �  (x)
|y � x |

whenever  : H ! R. (1.11)

One of the main difficulties of proving this property concerns the behaviour of u at
critical points w 2 H where r�(w) = 0 vanishes. Since r� is just a C0 map, it
might happen that u reaches a critical point after finite time, stays there for some
amount of time and then leaves the point again. An even worse scenario might
happen if the 0 level set of r� is not discrete. Even in the one dimensional case it is
possible to construct functions � : R ! R with a Cantor-like 0 level set K ⇢ R of
�0 and corresponding solutions u parametrized by a finite measure µ concentrated
on K and singular with respect to the Lebesgue measure (see Appendix A for an
explicit example).

A second difficulty arises from the lack of stability of the evolution, due to non-
uniqueness: since even small perturbations may generate quite different solutions,
one has to find suitable perturbations of � that keep these instability effects under
control.
Aim and plan of the paper In this paper we address the question raised by De
Giorgi and we give a positive answer to the above conjecture, in a stronger form
(Theorem 6.4): we will show that it is possible to find Lipschitz perturbations �⌧ of
� in such a way that (1.9) holds and

MM(8, u(0)) = {u} = GMM(8, u(0)) (1.12)

for the corresponding generating functional 8 defined by (1.10). An equivalent
characterization of (1.12) can be given in terms of the discrete solutions to the
scheme: all the discrete solutionsU⌧ of (1.1) will converge to u as ⌧ # 0. Our result
also covers the case of a C1 function � satisfying the lower quadratic bound (1.8).

Moreover, this reverse approximation can also be performed if H has infinite
dimension, for a particular class of solutions (Theorem 4.8), which is still suf-
ficiently general to generate all the possible solutions by time reparametrization
(Theorem 3.6).

In order to obtain an appropriate reverse approximation, we will introduce and
apply new techniques that seem of independent interest and give further information
on the approximation of the gradient flows (1.5) in a finite and infinite dimensional
framework.

In Section 2 we will collect some preliminary material and we will give a
detailed account of notions of approximability of gradient flows (Section 2.4), in
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particular the notion of strong approximability (which is equivalent to (1.12) in the
finite dimensional case) and the notion of strong approximability in every compact
interval [0, T ] (which appears to be more fitting in the infinite dimensional setting
lacking in compactness).

A first crucial concept in our analysis is a notion of partial order between
solutions to (1.5). Such notion plays an important role in any situation where non-
uniqueness phenomena are present. The basic idea is to study the family of all the
solutions u that share the same range R[u] = u([0,1)) in H. On this class it is
possible to introduce a natural partial order by saying that u � v if there exists an
increasing 1-Lipschitz map z : [0,1) ! [0,1) such that u(t) = v(z(t)) for every
t > 0.

We will show in Theorem 3.6 that for a given range R = R[u] there is always
a distinguished solution v (called minimal), which induces all the other ones by
such time reparametrization. This solution has the remarkable property to cross the
critical set of the energy {w 2 H : r�(w) = 0} in a Lebesgue negligible set of
times (unless it becomes eventually constant after some time T?, in that case it has
the property in [0, T?]).

This analysis will be carried out for C1 solutions to the Cauchy problem (1.5)
for a gradient flow in an infinite dimensional Hilbert space, but it can be consider-
ably generalized and adapted for abstract evolution problems [11] including general
gradient flows in metric spaces (under standard assumptions on the energy func-
tional and on its metric slope as in [4]) and generalized semiflows (which have been
introduced in [5]).

In Section 4.1 we will study the general problem to find Lipschitz perturbations
of � which confine the discrete solutions of the Minimizing Movement scheme
to a given compact set U . We will find that a “penalization” with the distance
from U is sufficient to obtain this property. The important thing here will be a
precise quantitative estimate of appropriate “penalty” coefficients depending on the
respective time step and on a sort of approximate invariance of U .

In Section 4.2 we will obtain a first result on the reverse approximation of
gradient flows. We will prove that every minimal solution to (1.5) is approximable
in the strong form (1.12) by applying the estimates from Section 4.1 to suitably
chosen compact subsets of its range.

This result can be extended to infinite dimensional Hilbert spaces, even if in
the infinite dimensional case, the existence of solutions to gradient flows of C1
functionals is not guaranteed a priori (existence of a solution can be proved if r�
is weakly continuous, see [8, Theorem 7]). However, if a solution exists, it always
admits a minimal reparametrization and our result can be applied.

The reparametrization technique and the technique of confining discrete so-
lutions to a given compact set provide a foundation for the reverse approxima-
tion of the gradient flows. The last crucial step is a reduction to the one dimen-
sional case and its careful analysis. The detailed study of the one dimensional
situation will be performed in Section 5. We will find a smoothing argument that
allows to approximate any solution to (1.5) by a sequence of minimal solutions
for perturbed energies. We can then base our proof of the reverse approximation
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(1.12) for arbitrary solutions on the approximation by minimal solutions (which
are approximable in the form (1.12)) instead of working directly on the discrete
scheme.

In Section 6 the one-dimensional result is ‘lifted’ to arbitrary finite dimension
by a careful use of the Whitney extension Theorem (this is the only point where
we need a finite dimension): in this way, we will obtain the reverse approximation
result (1.12) for arbitrary solutions to (1.5) in finite dimension.

List of main notation

H, h·, ·i, | · | Hilbert space, scalar product and norm;
dT (u, v), d1(u, v) distances between functions in H[0,T ] and

H[0,1), (2.1)-(2.2);
DT (v,U), D1(v,U) distances between a map v and a collection of

maps U , (2.4)-(2.5);
GF[�] solutions of the gradient flow equation (GF);
TGF[�] truncated solutions of equation (GF), see be-

fore Theorem 3.6;
GFmin[�] class of minimal solutions to (GF), Definition

3.1;
S[ ] subset of x 2 H where r (x) = 0;
T?(u) minimal time after which u is definitely con-

stant, (2.11);
U⌧ piecewise constant interpolant of a minimizing

sequence (Un
⌧ )n2N;

Lip[ ] Lipschitz constant of a real map  : H ! R,
(1.11);

� partial order in GF[�], Definition 3.1;
8(⌧,U, V ) functional characterizing the Minimizing

Movement scheme, (2.17)-(2.18);
MM(8, u0) Minimizing Movements, (2.19);
GMM(8, u0) Generalized Minimizing Movements, (2.20);
MS⌧ ( ; u0), MS⌧ ( ; u0, N ) Minimizing sequences, (2.13) and Remark 2.3;
M⌧ ( ; u0), M⌧ ( ; u0, T ) Discrete solutions, (2.14) and Remark 2.3;
N (⌧, T ) min{n 2 N : n⌧ � T }, Remark 2.3;
U(⌧, T ) sampled values of a map u, (4.23).
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2. Notation and preliminary results

2.1. Vector valued curves and compact convergence

Throughout the paper, let (H, h·, ·i) be a Hilbert space with norm | · | :=
p

h·, ·i.
A function  : H ! R is Lipschitz if Lip[ ] < 1, where Lip[·] has been

defined in (1.11). Lip(H) will denote the vector space of Lipschitz real functions
on H.

C1(H) will denote the space of continuously differentiable real functions: by
Riesz duality, the differential D (x) 2 H0 of  2 C1(H) at a point x 2 H can be
represented by a vector r (x) 2 H. The set of stationary points will be denoted
by S[ ] := {v 2 H : r (v) = 0}. Notice that a function  2 C1(H) belongs to
Lip(H) if and only if x 7! |r (x)| is bounded in H.

Let T 2 (0,1); we introduce a distance on the vector space H[0,T ] (respec-
tively H[0,+1)) of curves defined on [0, T ] (respectively [0,+1)) with values in
H by setting

dT (u, v) := sup
t2[0,T ]

⇣
|u(t) � v(t)| ^ 1

⌘
for every u, v : [0, T ] ! H, (2.1)

d1(u, v) := sup
t�0

1
1+ t

⇣
|u(t) � v(t)| ^ 1

⌘
for every u, v : [0,1) ! H. (2.2)

dT clearly induces the topology of uniform convergence on the interval [0, T ]. It is
not difficult to show that the distance d1 induces the topology of compact conver-
gence, i.e. the topology of uniform convergence on compact sets of [0,+1): for
every T > 0 we have

(1+ T )�1dT
⇣
u|[0,T ]

, v|[0,T ]

⌘
 d1(u, v)

 dT
⇣
u|[0,T ]

, v|[0,T ]

⌘
_ (1+ T )�1

(2.3)

so that a net (u�)�23 in H[0,1) is d1 convergent if and only if it is convergent in
the topology of compact convergence.

We will denote by R[u] the range of a function.
Ck([0,+1); H) will be the vector space of Ck curves with values in H. We

will consider C0([0,1); H) as a (closed) subspace of H[0,1) with the induced
topology. We introduced the distance (2.2) on the bigger space H[0,1) since we
will also consider (discontinuous) piecewise constant paths with values in H.

For T > 0 and U ⇢ H[0,T ], v 2 H[0,T ] we set

DT (v,U) := sup
u2U

dT (v, u); DT (v,U) := +1 if U is empty, (2.4)

and, similarly, for U ⇢ H[0,+1) and v 2 H[0,+1) we define

D1(v,U) := sup
u2U

d1(v, u); D1(v,U) := +1 if U is empty. (2.5)
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Notice that DT (v,U) (respectively D1(v,U)) is the Hausdorff distance between
the sets {v} and U induced by dT (respectively d1).

2.2. Gradient flows

Let � 2 C1(H) be given. GF[�] is defined as the collection of all curves u 2
C1([0,+1); H) solving the gradient flow equation

u0(t) = �r�(u(t)) (GF)

in [0,1). Let us collect some useful properties for u 2 GF[�] which directly
follow from the gradient flow equation (GF).

We first observe that u satisfies

|u0(t)|2 = |r�(u(t))|2 = �
d
dt
� � u(t) for every t � 0, (2.6)

and thus

�(u(t1)) � �(u(t2)) =
Z t2

t1
|u0(t)|2 dt =

Z t2

t1
|r�(u(t))| |u0(t)| dt

=
Z t2

t1
|r�(u(t))|2 dt

(2.7)

for every 0  t1  t2. In particular � � u may take the same value at two points
t1 < t2 iff u takes a constant stationary value in [t1, t2].

If � is Lipschitz it is immediate to check that u is also Lipschitz and satisfies

|u(t2) � u(t1)|  Lip[�] |t2 � t1| for every t1, t2 2 [0,1). (2.8)

More generally, when � satisfies (1.8), we easily get

d
dt
�
�(u(t)) +

1
⌧⇤

|u(t)|2 + �⇤
�


1
⌧ 2⇤

|u(t)|2 
2
⌧⇤

✓
�(u(t)) +

1
⌧⇤

|u(t)|2 + �⇤

◆

so that Gronwall lemma and (1.8) yield

|u(t)|2  2⌧⇤C0e2t/⌧⇤, �(u(0)) � �(u(t))  C0
�
1+ e2t/⌧⇤

�
,

C0 := �(u(0)) +
1
⌧⇤

|u(0)|2 + �⇤.
(2.9)

By applying Hölder inequality to (2.7) we thus obtain

|u(t2) � u(t1)| 
p
C0(1+ e2T/⌧⇤) |t2 � t1|1/2 for every t1, t2 2 [0, T ]. (2.10)
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Lemma 2.1. Let u 2 GF[�].

(i) R[u] is a connected set and the map u : [0,+1) ! R[u] is locally invertible
around any point x 2 R[u] \ S[�];

(ii) R[u] is locally compact and it is compact if and only if � attains its minimum
in R[u] at some point ū = u(t̄) and u is constant for t � t̄;

(iii) The restriction of � to R[u] is a homeomorphism with its image �(R[u]) ⇢ R;
(iv) If u is not constant, then R[u] \ S[�] is dense in R[u], and �(R[u] \ S[�]) is

dense in �(R[u]).

Proof. (i) is obvious. In order to show (ii), let us fix ū = u(t̄) 2 R[u]; if � attains its
minimum in R[u] at ū then �(u(t)) = �(u(t̄)) for every t � t̄ and (2.7) yields that
ū 2 S[�] and u(t) ⌘ u(t̄) for every t � t̄ , so that R[u] is compact. The converse
implication is obvious.

If �|R[u] does not take its minimum at ū = u(t̄) 2 R[u], there exists some
t1 > t̄ such that � := �(ū) � �(u(t1)) > 0. Since � is continuous, the set U :=
{u 2 H | �(u) � �(ū)��} is a closed neighborhood of ū and R[u]\U = u([0, t1])
which is compact.

(iii) By (2.7) the restriction of � to R[u] is continuous and injective. In order
to prove that it is an homeomorphism it is sufficient to prove that �|R[u] is proper,
i.e. the counter image of every compact set in J := �(R[u]) ⇢ R is compact. This
property is obvious if R[u] is compact; if R[u] is not compact, then � does not take
its minimum on R[u] and J is an interval of the form ('�,'+]where '+ = �(u(0))
and '� = infR[u] �. Therefore any compact subset of J is included in an interval of
the form [�(u(t̄)),'+] and its counter image is a closed subset of the compact set
u([0, t̄]) (recall that u is constant in each interval where � � u is constant).

(iv) Let 'i = �(u(ti )), i = 1, 2, be two distinct points in �(R[u] \ S[�]).
Assuming that t1 < t2, (2.7) shows that there exists a point t̄ 2 (t1, t2) such that
r�(u(t̄)) 6= 0, so that '̄ = �(u(t̄)) belongs to ('2,'1) \ �(S[�]). We deduce that
�(R[u] \ S[�]) is dense in �(R[u]) and, by the previous claim, that R[u] \ S[�] is
dense in R[u].

Notation 2.2. If u 2 C0([0,1); H) we will set

T?(u) := inf
�
t 2 [0,+1) : u(s) = u(t) for every s � t

 
(2.11)

with the usual convention T?(u) := +1 if the argument of the infimum in (2.11) is
empty.

It is not difficult to check that the map T? : C0([0,1); H) ! [0,+1],
u 7! T?(u), is lower semicontinuous with respect to the topology of compact con-
vergence in C0([0,1); H).

By Lemma 2.1(ii), if u 2 GF[�] then

T?(u) < 1 if and only if R[u] is compact; (2.12)

if R[u] is compact then u(t) = u? := u(T?(u)) for every t � T?(u) and u? is a
stationary point.
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2.3. Minimizing movements

Let a function  : H ! R, a time step ⌧ > 0, and an initial value u0 2 H be given.
We consider the (possibly empty) set MS⌧ ( ; u0) of Minimizing Sequences

(Un
⌧ )n2N such that U0⌧ = u0 and

1
2⌧
�
�Un
⌧ �Un�1

⌧

�
�2 +  

�
Un
⌧

�


1
2⌧
�
�V �Un�1

⌧

�
�2 +  (V ) for every V 2 H, n � 1.

(2.13)

We can associate a discrete sequence satisfying (2.13) with its piecewise constant
interpolation U⌧ : [0,1) ! H given by

U⌧ (0) := u0, U⌧ (t) := Un
⌧ if t 2 ((n � 1)⌧, n⌧ ]. (2.14)

(2.14) can be equivalently expressed as

U⌧ (t) :=
X

n2N
Un
⌧
�(t/⌧ � (n � 1)) for t > 0,

in which � : R ! R denotes the characteristic function of the interval (0, 1]. We
call M⌧ ( ; u0) the class of discrete solutions U⌧ at time step ⌧ > 0, which admit
the previous representation (2.14) in terms of solutions to (2.13).
Remark 2.3 (Bounded intervals). Sometimes it will also be useful to deal with
approximations defined in a bounded interval [0, T ], involving finite minimizing
sequences. For N 2 N we call

MS⌧ ( ; u0, N ) the set of sequences (Un
⌧ )0nN satisfying (2.13). (2.15)

Similarly, for a given final time T 2 (0,+1) we set

N (⌧, T ) := min{n 2 N : n⌧ � T }, (2.16)

and we defineM⌧ ( ; u0, T ) as the collection of all the piecewise constant functions
U⌧ : [0, T ] ! H satisfying (2.14) in their domain of definition, for some (Un

⌧ )n 2
MS⌧ ( ; u0, N (⌧, T )).

Let us now assign a family of functions �⌧ : H ! R depending on the param-
eter ⌧ 2 (0, ⌧o) and define the functional 8 : (0, ⌧o) ⇥ H ⇥ H ! R as

8(⌧,U, V ) :=
1
2⌧

|V �U |2 + �⌧ (V ). (2.17)

(2.13) for the choice  := �⌧ is equivalent to

U0⌧ := u0; Un
⌧ 2 argmin8

�
⌧,Un�1

⌧ , ·
�
for every n � 1. (2.18)
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According to [9], a curve u : [0,+1) ! H is called a Minimizing Movement
associated to 8 if there exist discrete solutions U⌧ 2 M⌧ (�⌧ ; u0) such that

lim
⌧#0

U⌧ (t) = u(t) for every t � 0. (2.19)

MM(8, u0) denotes the collection of all the Minimizing Movements.
A curve u : [0,+1) ! H is called a Generalized Minimizing Movement [9]

associated to 8 if there exist a decreasing sequence k 7! ⌧ (k) # 0 and correspond-
ing U⌧ (k) 2 M⌧ (k)(�⌧ (k); u0) such that

u(t) = lim
k!1

U⌧ (k)(t) for every t � 0. (2.20)

GMM(8, u0) denotes the collection of all the Generalized Minimizing Movements.
It clearly holds that MM(8, u0) ⇢ GMM(8, u0).
Remark 2.4 (Quadratic lower bounds). If for some ⌧⇤ > 0

inf
V
8(⌧⇤, u0, V ) = �A > �1 (2.21)

(this happens, in particular, if MS⌧?(�⌧⇤; u0, 1) is nonempty) and Lip[�⌧⇤ ��]  `,
then � satisfies the quadratic lower bound

�(x) � (�(u0)��⌧⇤(u0))�A�`/2�
`⌧⇤ + 1
2⌧⇤

|x�u0|2 for every x 2 H. (2.22)

This shows that the lower quadratic bound of (1.8) is a natural assumption in the
framework of minimizing movements. (2.22) follows by the fact that �(x) �
�(u0) � (�⌧⇤(x) � �⌧⇤(u0)) � �Lip[� � �⌧⇤] |x � u0| � �`|x � u0|.

Similarly, if � satisfies (1.8) and Lip[�⌧ � �]  `, we get

�⌧ (x) � (�⌧ (0) � �(0)) � �⇤ �
`

2
�
`⌧⇤ + 1
2⌧⇤

|x |2 for every x 2 H. (2.23)

It is a well known fact that if � 2 C1(H) \ Lip(H) and lim⌧#0 Lip[�⌧ � �] = 0,
then every u 2 GMM(8, u0) solves (GF) with initial datum u0. We present here
the proof of this statement (including the case of � 2 C1(H) satisfying (1.8)) and a
few related results that will turn to be useful in the following.

Lemma 2.5 (A priori estimates for minimizing sequences). Let � 2 C1(H) sat-
isfy (1.8), let �⌧ : H ! R be such that `⌧ := Lip[�⌧ � �] < 1, let T > 0 and
(Un

⌧ )0nN 2 MS⌧ (�⌧ ; u0, N ), 1  N  N (⌧, T ).

(i) For every 1  n  N we have
�
�
�
�
�
Un
⌧ �Un�1

⌧

⌧
+ r�(Un

⌧ )

�
�
�
�
�
 `⌧ ; (2.24)
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(ii) Suppose that �(u0) _ |u0|2  F , `⌧  1, ⌧  ⌧⇤/16. There exists a positive
constant C = C(�⇤, ⌧⇤, F, T ) only depending on �⇤, ⌧⇤, F, T , such that

sup
0nN

�
�Un
⌧

�
�2  C,

1
2⌧

NX

n=1

�
�Un
⌧ �Un�1

⌧

�
�2  �⌧ (u0)��⌧

�
UN
⌧

�
 C. (2.25)

Proof. (i) Let us set ⌧ := �⌧��. The minimality condition (2.18) yields for every
W 2 H

�(W ) +
1
2⌧
�
�Un�1
⌧ � W

�
�2 � �

�
Un
⌧

�
�
1
2⌧
�
�Un�1
⌧ �Un

⌧

�
�2

�  ⌧
�
Un
⌧

�
�  ⌧ (W ) � �`⌧

�
�Un
⌧ � W

�
�.

We can choose W := Un
⌧ + ✓v, divide the above inequality by ✓ > 0 and pass to

the limit as ✓ # 0 obtaining
D
⌧�1�Un

⌧ �Un�1
⌧

�
+ r�

�
Un
⌧

�
, v
E
� �`⌧ |v| for every v 2 H,

which yields (2.24).
(ii) It follows by [4, Lemma 3.2.2], by using (2.23) and u⇤ := 0. Up to the addition
of a constant to �⌧ , it is not restrictive to assume that �⌧ (0) = �(0).

Lemma 2.6. Let � 2 C1(H) and let �⌧ : H ! R, ⌧ 2 (0,⌧o), such that

lim
⌧#0

Lip[�⌧ � �] = 0.

(i) If there exist a vanishing decreasing sequence k 7! ⌧ (k) and discrete so-
lutions in a bounded interval U⌧ (k) 2 M⌧ (k)(�⌧ (k); u0, T ) such that u(t) =
limk!1U⌧ (k)(t) for every t 2 [0, T ], then u 2 C1([0, T ]; H) is a solution to
(GF) with initial datum u(0) = u0;

(ii) If u 2 GMM(8, u0) then u 2 GF[�];
(iii) Let T > 0 and U⌧ 2 M⌧ (�⌧ ; u0, T ), ⌧ 2 (0, ⌧o), be a family of discrete

solutions taking values in a compact subsetK ⇢ H. Then for every decreasing
and vanishing sequence k 7! ⌧ (k) there exist a further subsequence (still
denoted by ⌧ (k)) and a limit function u 2 C1([0, T ]; H) such that

lim
k!1

dT (U⌧ (k), u) = 0, u is a solution to (GF) in [0, T ]; (2.26)

(iv) Let U⌧ 2 M⌧ (�⌧ ; u0), ⌧ 2 (0, ⌧o), be a family of discrete solutions satisfying
the following property: for every T > 0 there exist ⌧̄ 2 (0, ⌧o) and a compact
set K ⇢ H such that U⌧ ([0, T ]) ⇢ K for every ⌧ 2 (0, ⌧̄ ). Then for every de-
creasing and vanishing sequence k 7! ⌧ (k) there exist a further subsequence
(still denoted by ⌧ (k)) and a limit function u 2 C1([0,1); H) such that

lim
k!1

d1(U⌧ (k), u) = 0, u 2 GF[�]. (2.27)
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Proof. (i) Let us call Û⌧ (t) the piecewise linear interpolant of the values Un
⌧ ,

0  n  N (⌧, T ) of the minimizing sequence associated to U⌧ : Û⌧ (t) =PN (⌧,T )
n=0 Un

⌧
�̂(t/⌧ � n) where �̂(t) = (1� |t |) _ 0.

Since MS⌧ (k)(�⌧ (k); u0, 1) are not empty and Lip[�⌧ ��] ! 0, by Remark 2.4
we deduce that � satisfies the lower quadratic bound (1.8). By Lemma 2.5(ii) we
deduce that there exists ⌧? 2 (0, ⌧o) sufficiently small such that any curve Û⌧ is
equi Hölder continuous for ⌧  ⌧?, i.e. there exists a constant C independent of ⌧
such that

|Û⌧ (t) � Û⌧ (s)|  C|t � s|1/2 for every s, t 2 [0, T ], ⌧ 2 (0, ⌧?), (2.28)

and
dT (Û⌧ ,U⌧ )  C

p
⌧ ⌧ 2 (0, ⌧?). (2.29)

(2.29) shows that Û⌧ has the same limit points of U⌧ ; since Û⌧ is equi-Hölder, the
pointwise convergence U⌧ (k) ! u(t) as k ! 1 for every t 2 [0, T ] implies the
uniform convergence of U⌧ (k) and of Û⌧ (k) to the same limit u, which belongs to
C0([0, T ]; H).

Since Û 0
⌧ (t) = ⌧�1(Un

⌧ � Un�1
⌧ ) in each interval ((n � 1)⌧, n⌧ ), we obtain

from (2.24)
�
�Û 0
⌧ (t) + r�(U⌧ (t))

�
�

Lip[�⌧ � �] for every t 2 [0, T ] \ {h⌧ : 0  h  N (⌧, T )}.
(2.30)

We can then pass to the limit in (the integrated version of) (2.30) for ⌧ = ⌧ (k) to
obtain that

u(t) = u0 �
Z t

0
r�(u(r)) dr for every t 2 [0, T ], (2.31)

which shows that u 2 C1([0, T ]; H) is a solution to (GF).
Let us remark that when � is Lipschitz a reinforced version of (2.28) and (2.29)

follows directly from (2.24), which yields
�
�Un
⌧ �Un�1

⌧

�
�  L⌧ ⌧ for 1  n  N (⌧, T ),

dT (U⌧ , Û⌧ )  L⌧ ⌧, Lip(Û⌧ )  L⌧ ,
(2.32)

where L⌧ := Lip[�] + `⌧ .
(ii) The proof is completely analogous to (i).
(iii) We observe that Û⌧ (k) takes values in the closed convex hull co(K), which

is still a compact subset of H (see, e.g., [22, Theorem 3.20]). Since k 7! Û⌧ (k) is
eventually equi-Hölder by (2.28), Ascoli-Arzelà Theorem yields the relative com-
pactness of the sequence in the uniform topology. We conclude by applying (2.29)
and the previous Claim (i).

(iv) We can apply the previous point (iii) and a standard diagonal argu-
ment.
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2.4. De Giorgi conjecture and notions of approximability

If the generating function 8 of (2.17) is induced by perturbations �⌧ converg-
ing to � 2 C1(H) in the Lipschitz seminorm, then Lemma 2.6(ii) shows that
GMM(8, u0) ⇢ GF[�].

The most challenging part of De Giorgi’s conjecture deals with the opposite
direction. It can be equivalently formulated in the following way:
Conjecture. Suppose that H has finite dimension, � 2 C1(H) \ Lip(H), and let
a solution u 2 GF[�] be given. There exist a family of functions �⌧ 2 Lip(H), a
decreasing sequence k 7! ⌧ (k) # 0 and corresponding U⌧ (k) 2 M⌧ (k)(�⌧ (k); u(0))
such that

lim
⌧#0

Lip[�⌧ � �] = 0, lim
k!1

d1(u,U⌧ (k)) = 0. (2.33)

We will introduce a stronger property, based on the set distance introduced in (2.5).
Definition 2.7 (Strongly approximable solutions). Let � 2 C1(H). We say that a
solution u 2 GF[�] is a strongly approximable solution if there exists a family of
perturbations �⌧ : H ! R, ⌧ 2 (0, ⌧o), such that

lim
⌧#0

Lip[�⌧ � �] = 0, lim
⌧#0

D1(u,M⌧ (�⌧ ; u(0))) = 0. (2.34)

We denote by AGF[�] the class of strongly approximable solutions.
The second part of (2.34) is equivalent to the following property: for every ⌧ > 0
sufficiently small the set M⌧ (�⌧ ; u(0)) is nonempty and all the possible selections
U⌧ 2 M⌧ (�⌧ ; u(0)) will converge to u in the topology of compact convergence as
⌧ # 0. We note that (2.34) implies

MM(8, u(0)) = {u} = GMM(8, u(0)) (2.35)

for the generating functional 8 of (2.17). In the finite dimensional case, (2.35) is
indeed equivalent to the second part of (2.34), due to the d1-compactness of every
sequence (U⌧ ) of discrete solutions.

It is clear that any u 2 AGF[�] satisfies the property expressed by De Giorgi’s
conjecture, and we will prove that in the finite dimensional Euclidean setting, in-
deed every solution u 2 GF[�] is strongly approximable.

In a few situations (H has infinite dimension and � is not bounded from below)
we will also consider approximations on bounded intervals, recalling the notation
introduced in Remark 2.3.
Definition 2.8. Let � 2 C1(H). We say that a solution u 2 GF[�] is strongly
approximable in every compact interval if there exists a family of Lipschitz pertur-
bations �⌧ 2 Lip(H), ⌧ 2 (0, ⌧o), such that

lim
⌧#0

Lip[�⌧ � �] = 0,

lim
⌧#0

DT (u|[0,T ],M⌧ (�⌧ ; u(0), T )) = 0 for every T > 0.
(2.36)
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The notion of strong approximability in every compact interval slightly differs from
the notion of strong approximability since we do not require the existence of ele-
ments in M⌧ (�⌧ ; u(0)) for ⌧ > 0 small enough and we work with M⌧ (�⌧ ; u(0), T )
instead. The next remark better clarifies the relation between the two notions.
Remark 2.9 (Strong approximability). If a solution u 2 GF[�] is strongly ap-
proximable in every compact interval and for every sufficiently small ⌧ > 0 the
set of minimizing sequences MS⌧ (�⌧ ; u(0)) is nonempty, then u is strongly ap-
proximable according to Definition 2.7: it is a simple consequence of (2.3) and
of the fact that for every U 2 M⌧ (�⌧ ; u(0)) the restriction U |[0,T ]

belongs to
M⌧ (�⌧ ; u(0), T ).

Conversely, if u is strongly approximable and for every ⌧ > 0 sufficiently
small and for every N > 0 any minimizing sequence in MS⌧ (�⌧ ; u(0), N ) can be
extended to a minimizing sequence in MS⌧ (�⌧ ; u(0)), then u is strongly approx-
imable in every compact interval [0, T ], according to Definition 2.8.

In the finite dimensional Euclidean case the two notions of approximability
are equivalent, since the minimization problems (2.18) are always solvable for ⌧
sufficiently small and � quadratically bounded from below.

At the end of this preliminary section, we want to show that the class of
strongly approximable solutions is closed with respect to Lipschitz convergence
of the functionals and compact convergence of the solutions. We make use of an
equivalent characterization of AGF[�] provided by the next lemma.

Lemma 2.10. Let � 2 C1(H). u 2 AGF[�] if and only if for every " > 0 there
exist ⌧̄ > 0 and a family �",⌧ : H ! R, 0 < ⌧  ⌧̄ , such that

Lip[�",⌧ � �]  ", D1(u,M⌧ (�",⌧ ; u(0))  " for every ⌧ 2 (0, ⌧̄ ]. (2.37)

Proof. Since it is obvious that any u 2 AGF[�] satisfies the condition stated in the
lemma, we only consider the inverse implication.

Let us fix a decreasing sequence "n # 0; we can find a corresponding sequence
⌧̄n and functions �"n,⌧ satisfying (2.37) for 0 < ⌧  ⌧̄n . By possibly replacing
⌧̄n with ⌧̃n := 2�n ^ min1mn ⌧̄m , it is not restrictive to assume that ⌧̄n is also
decreasing and converging to 0. We can thus define

�⌧ := �"n,⌧ whenever ⌧ 2 (⌧̄n+1, ⌧̄n], (2.38)

and it is easy to check that this choice satisfies (2.34). The fact that u 2 GF[�]
follows by (2.35) and Lemma 2.6(ii); hence, u is a strongly approximable solution
according to Definition 2.7.

Lemma 2.11. The class of strongly approximable solutions satisfies the following
closure property: if �,�k 2 C1(H) and uk 2 AGF[�k], k 2 N, with the same initial
datum ū = uk(0), satisfy

lim
k!1

Lip[�k � �] = 0, lim
k!1

d1(uk, u) = 0 (2.39)

then u 2 AGF[�].
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Proof. Let us fix " > 0; according to (2.39), we can find k 2 N such that

Lip[�k � �]  "/2, d1(u, uk)  "/2. (2.40)

Since uk 2 AGF[�k] we can also find ⌧̄ > 0 and a family of functions �k,",⌧ : H !
R, ⌧ 2 (0, ⌧̄ ), such that

Lip[�k,",⌧ � �k]  "/2, D1(uk,M⌧ (�k,",⌧ ; u(0)))  "/2
for every ⌧ 2 (0, ⌧̄ ).

(2.41)

The family �k,",⌧ obeys (2.37), since the triangle inequality yields

Lip[�k,",⌧ � �]  Lip[�k,",⌧ � �k] + Lip[�k � �]  ",

D1(u,M⌧ (�k,",⌧ ; u(0)))  d1(u, uk) + D1(uk,M⌧ (�k,",⌧ ; u(0)))  ".

3. The minimal gradient flow

In this section, we define and study a particular class of solutions to (GF) for a
function � 2 C1(H), which we call minimal gradient flows. Let us first introduce a
partial order in GF[�].
Definition 3.1. If u, v 2 GF[�] we say that u � v if R[v] ⇢ R[u] and there exists
an increasing 1-Lipschitz map z : [0,+1) ! [0,+1) with z(0) = 0 such that

0  z(t) � z(s)  t � s for every 0  s  t,
u(t) = v(z(t)) for every 0  t.

(3.1)

An element u 2 GF[�] is minimal if for every v 2 GF[�], u � v yields u = v. We
will denote by GFmin[�] the collection of all the minimal solutions.

As it appears from (3.1), by “increasing” we mean that z(s)  z(t) for all
s  t ; if we want to require a strict inequality, we will use the term “strictly in-
creasing”. The same goes for “decreasing” and “strictly decreasing”.
Remark 3.2 (Range inclusion). Notice that if u � v then R[u] ⇢ R[v] ⇢ R[u];
the inclusion R[u] ⇢ R[v] is guaranteed by (3.1).

The condition R[v] ⇢ R[u] prevents some arbitrariness in the extension of a
candidate minimal solution. In order to understand its role, consider the classical
1-dimensional example given by �0(x) = 2

p
|x |. For a given T⇤ > 0 the curve

u(t) :=
�
(T⇤� t)_0

�2 belongs to GF[�] and it is minimal according to the previous
definition (it is an easy consequence of the next Theorem 3.6(5)). However, the
curve v(t) := u(t) �

�
(t � 2T⇤) _ 0

�2 still belongs to GF[�] and satisfies (3.1) by
choosing z(t) = t ^ T⇤. u 6� v since R[v] 6⇢ R[u] = [0, T 2⇤ ].
We note that constant solutions are minimal by definition.
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Remark 3.3 (� is a partial order in GF[�]). It is easy to check that the relation
� is reflexive and transitive; let us show that it is also antisymmetric. If u, v 2
GF[�] satisfy u � v and v � u, we can find increasing and 1-Lipschitz maps
z1, z2 : [0,1) ! [0,1) such that u(t) = v(z1(t)) and v(t) = u(z2(t)) for every
t 2 [0,1); in particular u = u � z where z = z2 � z1 is also an increasing and
1-Lipschitz map satisfying z(t)  t . Notice that the inequalities zi (t)  t and the
monotonicity of zi yield

z(t)  zi (t)  t for every t � 0, i = 1, 2.

Let us fix t 2 [0,1): if z(t) = t then zi (t) = t so that u(t) = v(z1(t)) = v(t). If
z(t) < t then u is constant in the interval [z(t), t] so that u(t) = u(z2(t)) = v(t) as
well.
Remark 3.4 (Derivative of the time reparametrization map). If u, v 2 GF[�]
satisfy u � v, then the corresponding time reparametrization map z : [0,+1) !
[0,+1) is a.e. differentiable (since it is 1-Lipschitz) and for a.e. t 2 [0, T?(u)) it
holds that

�|r�(u(t))|2 = (� � u)0(t) = (� � v � z)0(t)
= �|r�(v(z(t)))|2z0(t) = �|r�(u(t))|2z0(t),

implying z0 = 1 a.e. in {t 2 [0, T?(u)) : r�(u(t)) 6= 0}.
The next result collects a list of useful properties concerning minimal solutions.

Recall that T?(u) has been defined by (2.11). We introduce the class of truncated
solutions TGF[�] � GF[�] whose elements are solutions in GF[�] or curves v :
[0,1) ! H of the form v(t) := ṽ(t ^ T ) for some ṽ 2 GF[�] and T 2 [0,1).
The set GF[�] is closed in C0([0,1); H).
Remark 3.5. If v : [0, S] ! H solves (GF) in [0, S] for some S > 0 and there
exists u 2 GF[�] and T > 0 so that u(T ) = v(S), then v can be identified with an
element in TGF[�] since ṽ 2 GF[�] where ṽ(t) := v(t) if t 2 [0, S] and ṽ(t) :=
u(t � S + T ) if t 2 (S,+1).

Theorem 3.6. Let � 2 C1(H) satisfy (1.8).

(1) For every R = R[y] ⇢ H which is the range of y 2 GF[�] there exists a unique
u 2 GFmin[�] such that R ⇢ R[u] ⇢ R. If v 2 GF[�] and R ⇢ R[v] ⇢ R, then
v � u. In particular, for every v 2 GF[�] there exists a unique u 2 GFmin[�]
such that v � u;

(2) u 2 GF[�] is minimal if and only if for every v 2 TGF[�] with v(0) = u(0)
and R[v] ⇢ R[u] the following holds: if u(t0) = v(t1) for some t0, t1 � 0 then
t0 ^ T?(u)  t1;

(3) u 2 GF[�] is minimal if and only if for every v 2 TGF[�] with v(0) = u(0)
and R[v] ⇢ R[u] we have �(v(t)) � �(u(t)) for every t � 0;

(4) If u 2 GFmin[�], v 2 TGF[�] with v(0) = u(0), R[v] ⇢ R[u] and �(v(t)) 
�(u(t)) for every t 2 [0, T?(v)), then v(t) = u(t) for every t 2 [0, T?(v));
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(5) u 2 GF[�] is minimal if and only if the restriction of u to [0, T?(u)) crosses
the set S[�] of critical points of � in an L 1-negligible set of times, i.e.

L 1
⇣
{t 2 [0, T?(u)) : r�(u(t)) = 0}

⌘
= 0. (3.2)

If u 2 GFmin[�] and T?(u) > 0, the map t 7! (� � u)(t) is strictly decreasing
in [0, T?(u)) and the map t 7! u(t) is injective in [0, T?(u));

(6) A non-constant solution u 2 GF[�] is minimal if and only if there exists a
locally absolutely continuous map

 :

✓
inf
R[u]

�,�(u(0))
�

!
⇥
0, T?(u)

�
such that

t =  (�(u(t)) for every t 2
⇥
0, T?(u)

�
.

Proof. (1) Let us fix v, y 2 GF[�], R = R[y] with R ⇢ R[v] ⇢ R; it is not
restrictive to assume that T? := T?(v) > 0 (otherwise v is constant and R is reduced
to one stationary point). We set '? := infR � and we select a sequence rn 2 R\S[�]
so that 'n = �(rn) is decreasing and converging to '?. We can find a corresponding
increasing sequence of points Tn ! T? such that v(Tn) = rn and we set Rn :=

�
r 2

R : �(r) � 'n} = v([0, Tn]). We consider the class

G[Rn] :=
n
w 2 TGF[�] : R[w] = Rn

o
.

G[Rn] is not empty since it contains the function t 7! v(t ^ Tn), and the sublevel
sets {w 2 G[Rn] : T?(w)  c}, c > 0, are compact in C0([0,1); H) by the Arzelà-
Ascoli Theorem. It follows that T? admits a minimizer in G[Rn] that we will denote
by un , with Sn := T?(un)  Tn . We now define

zn(t) := min
n
s 2 [0, Sn] : un(s) = v(t)

o
, t 2 [0, Tn], (3.3)

and we claim that zn is increasing, surjective and 1-Lipschitz from [0, Tn] to [0, Sn].
Since � is an homeomorphism between v([0, Tn]) and the interval [�(v(Tn)),
�(v(0))], zn can be equivalently defined as min

�
s 2 [0, Sn] : �(un(s)) = �(v(t))

 
,

which shows that zn is increasing. In order to prove that zn is 1-Lipschitz, we ar-
gue by contradiction and suppose that there exist times 0  t1 < t2  Tn with
�z = zn(t2) � zn(t1) > t2 � t1 = �t . Since by construction v(t) = un(zn(t)), we
can consider a new curve

w(r) :=

8
><

>:

un(r) if 0  r  zn(t1)
v(r + t1 � zn(t1)) if zn(t1)  r  �t + zn(t1)
un(r + �z � �t ) if r � �t + zn(t1).

DefiningWn := Sn��z+�t < Sn it is easy to check thatw(r) ⌘ un(Sn) = v(Tn) for
every r � Wn and w is a solution to (GF) in the interval [0,Wn), so that w 2 G[Rn]
and T?(w) = Wn < Sn which contradicts the minimality of un .



REVERSE APPROXIMATION OF GRADIENT FLOWS AS MINIMIZING MOVEMENTS 695

The same argument shows that un is in fact the unique minimizer of T? in
G[Rn]: another minimizer ũn will also belong to G[Rn] with T?(ũn) = Sn , so
that there exists an increasing 1-Lipschitz map r : [0, Sn] ! [0, Sn] such that
un(s) = ũn(r(s)) for every s 2 [0, Sn]. Since r(Sn) = Sn r should be the identity so
that ũn coincides with un .

Let us now show that

Sn < Sn+1, un(s) = un+1(s), zn(t) = zn+1(t)
for every s 2 [0, Sn], t 2 [0, Tn].

(3.4)

In fact, for every t̄ 2 [0, Tn] with zn(t̄) = s̄ 2 [0, Sn] there exists zn+1(t̄) = s0 2
(0, Sn+1) such that un+1(s0) = v(t̄) = un(s̄); if s0 < s̄ we would conclude that the
map

ŵ(s) :=

(
un+1(s) if s 2 [0, s0]
un(s � s0 + s̄) if s � s0

belongs to G[Rn] with T?(ŵ) = Sn + s0 � s̄ < Sn contradicting the minimality of
un . Choosing s̄ = Sn this in particular shows that Sn+1 > Sn . If s0 > s̄ we could
define

w̃(s) :=

(
un(s) if 0  s  s̄
un+1(s � s̄ + s0) if s � s̄

obtaining a function w̃ 2 G[Rn+1] with T?(w̃) = Sn+1 � (s0 � s̄) < Sn+1, contra-
dicting the minimality of un+1. We thus get s0 = s̄, and therefore un+1(s) = un(s)
in [0, Sn] and zn(t) = zn+1(t) in [0, Tn].

Let us now set S? := sup Sn . Due to (3.4) we can define the maps

u(s) :=

(
un(s) if s 2 [0, Sn] for some n 2 N
u? if s 2 [S?,1)

z(t) :=

(
zn(t) if t 2 [0, Tn] for some n 2 N
S? if t 2 [T?,1)

(3.5)

with u? := lims"S? u(s) if S? < 1. The curve u solves (GF) in [0, S?); due to
(2.10), the limit u? is well-defined for S? < 1. If T? < 1 then u? = v(T?); if
T? = +1 then u? = limt"1 v(t) is a critical point of � as (2.7) yields

Z 1

0
|r(�(v(t)))|2 dt < +1

in this case. So we constructed an element u2GF[�] with v�u and R⇢R[u]⇢ R.
Notice that by construction u just depends on R. Suppose now that there exists

ū 2 GF[�] with u � ū: in particular R ⇢ R[ū] ⇢ R̄ by Remark 3.2, so that the
above argument shows that ū � u and therefore ū ⌘ u. This property shows that
u 2 GFmin[�].
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(2) Let us first observe that if u 2 GFmin[�] is non-constant, then the map
t 7! u(t) is injective in [0, T?(u)). In fact, if u(t0) = u(t0 + �) for some 0  t0 <
t0 + � < T?(u), then � � u and thus u is constant in [t0, t0 + �] so that the curve

w(t) :=

(
u(t) if t 2 [0, t0]
u(t + �) if t � t0

belongs to GF[�], satisfies R[w] = R[u] and u(t) = w(z(t)) where z(t) = t ^ t0 +
(t� (t0+�))+. This yields u � w so that u ⌘ w by the minimality of u; we deduce
u(t) = u(t + �) for every t � t0, which implies that T?(u)  t0, a contradiction.

Let us now suppose that u 2 GFmin[�], v 2 TGF[�] with v(0) = u(0) and
R[v] ⇢ R[u]. It is not restrictive to assume T?(u) > 0. We fix t0 � 0 and t1 2
[0, T?(v)] such that u(t0) = v(t1), and we define the curve

w(t) :=

(
v(t) if 0  t  t1
u(t � t1 + t0) if t � t1.

We clearly have w 2 GF[�]; moreover Lemma 2.1(iii) yields u([0, t0]) = v([0, t1])
so that R[w] = R[u]. By the previous point (i) we deduce that w � u and there ex-
ists an increasing 1-Lipschitz map z : [0,1) ! [0,1) such that w(t) = u(z(t)).
In particular, w(t1) = v(t1) = u(z(t1)) = u(t0) and z(t1)  t1. On the other hand,
since t 7! u(t) is injective in [0, T?(u)) we deduce that t0 = z(t1) or z(t1) � T?(u).
If t1 > T?(v) we simply replace t1 by T?(v), since v(t1) = v(T?(v)).

The converse implication is a simple consequence of the previous claim: if
u 2 GF[�] we can construct the unique minimal flow v 2 GFmin[�] with R[u] ⇢
R[v] ⇢ R[u], so that u(t) = v(z(t)) for a suitable 1-Lipschitz map satisfying
z(0) = 0. By assumption, t ^ T?(u)  z(t) but the 1-Lipschitz property yields t �
z(t) so that z is the identity on [0, T?(u)). If T?(u) = +1 we deduce immediately
that u ⌘ v; if T?(u) < 1 we deduce that v(t) = u(t) for every t 2 [0, T?(u)] and
then v ⌘ u since R[v] ⇢ R[u] = u([0, T?(u)]). In particular u 2 GFmin[�].

(3) Let u 2 GFmin[�], v 2 TGF[�]with v(0) = u(0) and R[v] ⇢ R[u]; it is not
restrictive to assume T?(u) > 0. For every t 2 [0, T?(v)) there exists s 2 [0, T?(u))
such that v(t) = u(s). Claim (2) yields s  t so that �(v(t)) = �(u(s)) � �(u(t)).
If T?(v) < 1 we get by continuity �(v(T?(v))) � �(u(T?(v))) and therefore
�(v(t)) = �(v(T?(v))) � �(u(T?(v))) � �(u(t)) for every t � T?(v).

In order to prove the converse implication, we argue as in the previous claim
and we construct the minimal solution v 2 GFmin[�] with R[u] ⇢ R[v] ⇢ R[u],
so that u(t) = v(z(t)) for a suitable 1-Lipschitz map satisfying z(0) = 0. Since
z(t)  t we get �(u(t)) = �(v(z(t))) � �(v(t)), so that we deduce �(u(t)) =
�(v(t)) for every t � 0; since � is injective on R[v] � R[u] we obtain u(t) = v(t).

(4) Is an immediate consequence of the previous point (3) and Lemma 2.1(iii).
(5) We first prove that a solution u 2 GF[�] satisfying (3.2) is minimal. In

fact, if u � v we can find a 1-Lipschitz increasing map z such that u(t) = v(z(t)).
Since the map z is differentiable a.e. in [0,1) and u, v are solutions to (GF) we
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obtain for a.e. t 2 [0, T?(u))

�|r�(u(t))|2 = (� � u)0(t) = (� � v � z)0(t)
= �|r�(v(z(t)))|2z0(t) = �|r�(u(t))|2z0(t).

By (3.2) we deduce z0(t) = 1 for a.e. t 2 [0, T?(u)), so that z(t) = t in [0, T?(u))
and v ⌘ u.

Let us now prove that every u 2 GFmin[�] satisfies (3.2). Let T? := T?(u) > 0.
Starting from u we construct a solution w 2 GF[�] with the same range as u and
which crosses S[�] in an L1-negligible set of times. For this purpose, we introduce
the map

x 2 C1([0,+1)), x(t) :=
Z t

0
|u0(s)| ds with X :=

Z 1

0
|u0(s)| ds= lim

t"+1
x(t),

and we consider the dense open set� := {t 2 (0, T?) : x0(t) = |u0(t)| > 0}. Notice
that x is strictly increasing in [0, T?), since x(t0) = x(t1) for some 0  t0 < t1 < T?
yields u constant in (t0, t1) which is not allowed by the minimality of u. We can
thus define the continuous and strictly increasing inverse map y : [0, X) ! [0, T?)
such that y(x(t)) = t for every t 2 [0, T?). We notice that the set

4 :=
�
x 2 [0, X) : u(y(x))) 2 S[�]

 
= x

�
{t 2 [0, T?) : x0(t) = 0}

�
(3.6)

has Lebesgue measure 0 by the Morse-Sard Theorem and that the map y is differ-
entiable on its complement [0, X) \4 with

y0(x) =
1

|u0(y(x))| =
1

|r�(u(y(x)))| .

Since y is continuous and increasing, its derivative belongs to L1(0, X 0) for ev-
ery X 0 < X . We can thus consider the strictly increasing and locally absolutely
continuous function

# : [0, X) ! [0,2), #(x) :=
Z

[0,x]\4

1
|r�(u(y(r)))| dr,

2 :=
Z

[0,X)\4

1
|r�(u(y(r)))| dr .

It holds that # 0(x) = y0(x) > 0 for every x 2 (0, X) \4 and 0 < #(x1) � #(x0) 
y(x1) � y(x0) for every 0  x0 < x1 < X , so that the composition z := # � x
satisfies

0 < z(t1) � z(t0)  t1 � t0 for every 0  t0 < t1 < T?. (3.7)

z is 1-Lipschitz and differentiable a.e.; moreover, z is differentiable in � with

z0(t) = # 0(x(t))x0(t) = 1 for every t 2 �, z0(t) = 0 a.e. in [0, T?) \� (3.8)
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(see, e.g., [15, Theorem 3.44] for the chain rule for absolutely continuous func-
tions).

We will denote by t : [0,2) ! [0, T?) the continuous inverse map of z which
is differentiable in the dense open set z(�) with derivative 1. Since t is increasing,
it is of bounded variation in every compact interval [0,20] with 20 < 2. For every
h 2 H we set uh(t) := hu(t), hi, w := u � t : [0,2) ! H, and wh := uh � t :
[0,2) ! R. Since uh is locally Lipschitz, wh is a function of bounded variation in
every compact interval [0,20] with20 < 2: we want to show that wh is absolutely
continuous in [0,20]. To this aim, we use the chain rule for BV functions (see,
e.g., [3, Theorem 3.96]) and the facts that uh, t are continuous, uh is Lipschitz in
[0, t(20)], and that t is continuously differentiable on the open set z(�); the Cantor
part Dc t of the distributional derivative of t is therefore concentrated on the set
(0,20) \ z(�) and the BV chain rule yields

Dc wh = (u0
h � t)Dc t

where u0
h(t) := hu0(t), hi = h�r�(u(t)), hi = �rh�(u(t)).

(3.9)

On the other hand, for every s 2 (0,20) \ z(�) we have t(s) 2 (0, T?) \ � and
thus r�(u(t(s))) = 0. We conclude that Dc wh = 0 and wh is locally absolutely
continuous. The same argument shows that the pointwise derivative of wh vanishes
a.e. in (0,2) \ z(�), whereas the computation of the derivative of w in z(�) yields

w0(s) = u0(t(s))t0(s) = u0(t(s)) = �r�(u(t(s))) = �r�(w(s)).

Summarizing, we obtain

w0
h(s) = �rh�(w(s)) a.e. in (0,2); (3.10)

since the righthand side of (3.10) is continuous we deduce that wh is a C1 function
and (3.10) holds in fact everywhere in [0,2). Being w continuous and scalarly C1,
we deduce that w is of class C1 in [0,2) and w is a solution of (GF) satisfying
w(s) = u(t(s)). If 2 is finite, the uniform Hölder estimate (2.10) shows that w
admits the limit w̄ := lims"2w(s) = limt"+1 u(t). It follows that w̄ is a stationary
point of �, so that extending w by the constant value w̄ for t � 2 still yields
a solution to (GF). If we have T? < 1, we can extend z by the constant value
2 = limt"T? z(t) < 1 for t � T?. Since we have R[w] ⇢ R[u] and u(t) = w(z(t))
for every t � 0, we deduce that u � w. Since u is minimal, we should have w ⌘ u
so that z(t) ⌘ t for t 2 [0, T?). (3.8) then yields that [0, T?) \ � has 0 Lebesgue
measure and (3.2) holds.

(6) If u 2 GFmin[�] and T?(u) > 0, we know that the map ' : t 7! �(u(t))
is of class C1, strictly decreasing with '0(t) < 0 a.e. in (0, T?). It follows that
it has a locally absolutely continuous inverse  . Conversely, if ' has a locally
absolutely continuous left inverse  (which is then also the inverse) then '0(t) =
�|r�(u(t))|2 6= 0 a.e. in (0, T?), so that (3.2) holds and u 2 GFmin[�] by the
previous claim (5).
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We conclude this section with a definition and a simple remark.
Definition 3.7 (Eventually minimal solutions). We say that a solution u 2 GF[�]
is eventually minimal if there exists a time T > 0 such that u0(T ) 6= 0 and the curve
t 7! u(t + T ) is a minimal non-constant solution.
Remark 3.8 (Approximation by eventually minimal solutions). Any non-con-
stant u 2 GF[�] may be locally uniformly approximated by a sequence of eventu-
ally minimal solutions keeping the same initial data. For every n 2 N it is sufficient
to choose an increasing sequence tn " T?(u) with u0(tn) 6= 0 and replace the curve
vn := u(· + tn) with the unique minimal solution wn such that vn � wn , given by
Theorem 3.6. The curves

un(t) :=

(
u(t) if 0  t  tn,
wn(t � tn) if t > tn,

(3.11)

are eventually minimal and converge to u uniformly on compact intervals. The
uniform convergence on compact intervals follows directly from (3.11) for T?(u) =
+1; if T?(u) < +1, we can estimate

|un(t) � u(t)|  max
s2[0,T?(u)]

|r�(u(s))||T?(u) � tn| for all t � 0.

Any constant u 2 GF[�] is minimal.
Minimal gradient flows will play a crucial role in the proof of De Giorgi’s

conjecture. Roughly speaking, the conjecture can be proved directly for this class
of gradient flows, and in addition, any other gradient flow can be approximated by
a sequence of minimal gradient flows.

4. Approximation of the minimal gradient flow

In this section we study a particular family of perturbations that will be extremely
useful to approximate minimal gradient flows. As a first step, we present a general
strategy to force a discrete solution of the minimizing movement scheme to stay
in a prescribed compact set. We will always assume that � 2 C1(H) satisfies the
uniform quadratic bound (1.8), so that

inf
y2H

1
2⌧

|x � y|2 + �(y) > �1 for every x 2 H, ⌧ 2 (0, ⌧⇤). (4.1)

4.1. Distance penalizations from compact sets

Let a time step ⌧ > 0 and a nonempty compact set U ⇢ H be fixed. We denote by
 U : H ! R the distance function

 U (x) := dist(x,U) = min
y2U

|x � y|, (4.2)
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by 0U the closed convex set

0U :=
n
(a, b) 2 [0,1) ⇥ [0,1) : |r�(x) � r�(y)| ^ 1

 a + b|x � y| for every x 2 U , y 2 H
o (4.3)

and by !U : [0,1) ! [0,1) the concave modulus of continuity

!U (r) := inf
n
a + br : (a, b) 2 0U

o
. (4.4)

Notice that

!U is increasing, bounded by 1, concave, and satisfies lim
r#0

!U (r) = 0, (4.5)

with

|r�(x) � r�(y)| ^ 1  !U (|x � y|) whenever x 2 U , y 2 H. (4.6)

In order to prove the limit property of (4.5), we can argue by contradiction; let us
assume that we have instead infr>0 !U (r) = ā 2 (0, 1]. Choosing r = ā/(4n),
n 2 N, we see that the couple (ā/2, n) does not belong to 0U , so that for every
n 2 N there exist xn 2 U and yn 2 H such that

1 ^ |r�(xn) � r�(yn)| � n|xn � yn| > ā/2. (4.7)

In particular |xn � yn|  1/n so that limn!1 |xn � yn| = 0. Since xn 2 U and
U is compact, we can extract a subsequence k 7! n(k) such that limk!1 xn(k) =
x 2 U , and thus limk!1 yn(k) = x as well and therefore limk!1 |r�(xn(k)) �
r�(yn(k))| = 0 by the continuity of r�, a contradiction with (4.7).

We consider a family of perturbations of the function � depending on a param-
eter � � 0 and on a compact set U ⇢ H. It is given by

'�,U (x) := �(x) + � U (x), 8�,U (⌧, x, y) :=
1
2⌧

|x � y|2 + '�,U (y), (4.8)

J⌧,�,U (x) := argmin8�,U (⌧, x, ·). (4.9)

Our aim is to give a sufficient condition on the choice of � in dependence of ⌧ and U
in order to be sure that whenever x 2 U the minimizing set J⌧,�,U (x) is nonempty
and it is contained in U as well.

In Lemma 4.1, a rough estimate of |r�(y)| of an approximate minimizer y of
8�,U (⌧, x, ·) is given.

Lemma 4.1. There exists ⌧U 2 (0, ⌧⇤) so that for every y 2 H, x 2 U , ⌧ 2 (0, ⌧U )
satisfying

�(y) +
1
2⌧

|x � y|2  �(x) + |x � y|, (4.10)

it holds that
|r�(y) � r�(x)| 

1
2
. (4.11)
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Proof. Since limr#0 !U (r) = 0, there exists r̄ > 0 such that !U (r)  1
2 for every

0  r < r̄ . In view of (4.6), it is sufficient to prove that there exists ⌧U 2 (0, ⌧⇤)
such that |x � y| < r̄ whenever y 2 H, x 2 U satisfy (4.10) for some ⌧ 2 (0, ⌧U ).

Let us suppose that (4.10) holds for y 2 H, x 2 U , ⌧ 2 (0, ⌧⇤). We apply [4,
Lemma 2.2.1], and (1.8) in order to obtain

|x � y|2 
4⌧⌧⇤
⌧⇤ � ⌧

✓
�(y) +

1
2⌧

|x � y|2 + �⇤ +
1

⌧⇤ � ⌧
|x |2

◆


4⌧⌧⇤
⌧⇤ � ⌧

✓
max
z2U

�(z) +
1
2

+
1
2
|x � y|2 + �⇤ +

1
⌧⇤ � ⌧

max
z2U

|z|2
◆

.

The claim now easily follows.

The following Lemma 4.2 is a typical result for nonsmooth analysis of the
distance function.

Lemma 4.2. Let L := maxU |r�| _ 1, 0  ⌘  � < 1/4, ⌧ 2 (0, ⌧U ), x 2 U and
y 2 H be an approximate ⌘-minimizer of 8�,U (⌧, x, ·), i.e.

8�,U (⌧, x, y)  8�,U (⌧, x, w) + ⌘|w � y| for every w 2 H. (4.12)

Then the vector ⇠ := y�x
⌧ + r�(y) satisfies

|⇠ |  �+ ⌘, |y � x |  (L + 1/2+ �+ ⌘)⌧  2L⌧. (4.13)

Moreover, if y 62 U , then |⇠ | � �� ⌘.

Proof. Since  U is 1-Lipschitz, the minimality condition (4.12) yields for every
w 2 H

�(w) +
1
2⌧

|x � w|2 � �(y) �
1
2⌧

|x � y|2

�� U (y) � � U (w) � ⌘|w � y| � �(�+ ⌘)|y � w|.

We can choose w := y + ✓v, divide the above inequality by ✓ > 0 and pass to the
limit as ✓ # 0 obtaining

h⇠, vi � �(�+ ⌘)|v| for every v 2 H,

which yields the first part of (4.13). The second part of (4.13) then follows from the
estimate |y � x |  ⌧ (|⇠ | + |r�(y) � r�(x)| + |r�(x)|) and (4.11).

If we choose w := (1� ✓)y+ ✓ ŷ with ŷ 2 U satisfying |y� ŷ| =  U (y) > 0,
we also obtain U (w) = |(1�✓)y+✓ ŷ� ŷ| = (1�✓)|y� ŷ| and |y�w| = ✓ |y� ŷ|
so that

�(w) +
1
2⌧

|x � w|2 � �(y) �
1
2⌧

|x � y|2

��
⇣
 U (y) �  U (w)

⌘
� ⌘|y � w| = ✓(�� ⌘)|y � ŷ|
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and therefore
h⇠, ŷ � yi � (�� ⌘)|y � ŷ|

which yields |⇠ | � �� ⌘.

The next lemma provides a suitable condition on the choice of �.

Lemma 4.3. Let U be a compact subset of H, L := maxU |r�| _ 1, x, z 2 U ,
⌧ 2 (0, ⌧U ), and �, � 2 [0, 1/4), satisfy

�
�
�
z � x
⌧

+ r�(z)
�
�
�  �, (4.14)

�2 > 14 L !U (3L⌧ ) + 2�2. (4.15)

Then J⌧,�,U (x) is nonempty and contained in U .

Proof. We argue by contradiction and we suppose that

there exists y 2 H \ U such that 8�,U (⌧, x, y)  min
u2U

8�,U (⌧, x, u). (4.16)

We can apply Ekeland variational principle in H to the continuous function

w 7! 8�,U (⌧, x, w)

which is bounded from below by (4.1). For every ⌘ > 0 we can find y⌘ 2 H
satisfying the properties

8�,U (⌧, x, y⌘) + ⌘|y⌘ � y|  8�,U (⌧, x, y), (4.17)
8�,U (⌧, x, y⌘)  8�,U (⌧, x, w) + ⌘|y⌘ � w| for every w 2 H. (4.18)

(4.17) and (4.16) yield that y⌘ 62 U and

�(y⌘) +
1
2⌧

|y⌘ � x |2 + � U (y⌘)  �(z) +
1
2⌧

|z � x |2. (4.19)

Choosing ⌘ sufficiently small so that �+ � + ⌘  1/2, (4.13) and (4.14) yield

|y⌘ � x |  (L + 1/2+ �+ ⌘)⌧  2L ⌧, |z � x |  (L + �)⌧, (4.20)

and therefore
|y⌘ � z|  (2L + 1/2+ �+ � + ⌘)⌧  3L⌧. (4.21)

Since !U (3L ⌧ ) < �2  1 by (4.15), we get the estimate
�
�r�

�
(1� t)y⌘ + t z

�
� r�

�
y⌘
��� 

�
�r�

�
(1� t)y⌘ + t z

�
� r�(z)

�
�

+
�
�r�(z) � r�

�
y⌘
���

 2!U (|y⌘ � z|) for every t 2 [0, 1].
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The integral mean value theorem

�(z) � �(y⌘) �
⌦
r�(y⌘), z � y⌘

↵
=
Z 1

0

⌦
r�((1� t)y⌘ + t z) � r�(y⌘), z � y⌘

↵
dt

yields
�
��(z) � �(y⌘) � hr�(y⌘), z � y⌘i

�
�  2|z � y⌘|!U (|z � y⌘|). (4.22)

So, combining (4.19) and (4.22) we obtain
1
2⌧

|y⌘ � x |2 �
1
2⌧

|z � x |2 �
⌦
r�(y⌘), z � y⌘

↵
+ � U (y⌘)

�(z) � �(y⌘) �
⌦
r�(y⌘), z � y⌘

↵

 2|z � y⌘|!U (|z � y⌘|).

Using the identity |a|2 � |b|2 = ha + b, a � bi and neglecting the positive term
� U (y⌘) we get

1
2⌧

hy⌘ � x + 2⌧r�(y⌘) + z � x, y⌘ � zi  2|z � y⌘|!U (|z � y⌘|).

Setting ⇠⌘ := y⌘�x
⌧ + r�(y⌘) as in Lemma 4.2 we get

y⌘ � z = y⌘ � x + x � z = ⌧⇠⌘ � ⌧r�(y⌘) + x � z.

Thus, we obtain
1
2⌧

h⌧⇠⌘+⌧r�(y⌘) + z � x, ⌧⇠⌘ � ⌧r�(y⌘)�(z � x)i  2|z � y⌘|!U (|z � y⌘|),

yielding
⌧

2
|⇠⌘|

2 
1
2⌧

|⌧r�(y⌘) � (x � z)|2 + 2|z � y⌘|!U (|z � y⌘|).

Using (4.14) and the fact that |⇠⌘| � �� ⌘ if ⌘  � by Lemma 4.2, we obtain

|�� ⌘|2  2
⇣
|r�(y⌘) � r�(z)|2 + �2

⌘
+
4
⌧
|z � y⌘|!U (|z � y⌘|)

 2
⇣
!2U (3L⌧ ) + �2

⌘
+ 12L !U (3L⌧ )  14L !U (3L⌧ ) + 2�2,

where we used (4.21) and the fact that !U  1. Since ⌘ can be chosen arbitrarily
small, we get a contradiction with (4.15).

Notice that the use of Ekeland variational principle in the previous proof is
only needed when H has infinite dimension. If H has finite dimension, one can
directly select y⌘ as the minimizer of 8�,U (⌧, x, ·) in H setting ⌘ = 0.
Corollary 4.4. Let U ⇢ H be a compact set, L := 1_maxU |r�|, �, � 2 [0, 1/4),
⌧ 2 (0, ⌧U ). If (4.15) holds and for every x 2 U there exists z 2 U satisfying
(4.14), then for every initial choice of u0 2 U the set MS⌧ ('�,U ; u0) is nonempty
and every discrete solution U 2 M⌧ ('�,U ; u0) takes values in U .
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4.2. Strong approximation of minimal solutions

We can now apply Lemma 4.3 and Corollary 4.4 in order to construct good discrete
solutions by choosing suitable compact subsets of the range of u 2 GF[�]. We
distinguish two cases: the next lemma contains the fundamental estimates in the
case when � is bounded on the range of a solution u; Lemma 4.7 will deal with
solutions u for which �(u(t)) ! �1 as t ! +1.

We introduce the following notation (recall Remark 2.3): if u 2 GF[�], T > 0,
⌧ > 0 we set

U(⌧, T ) := {u(n⌧ ) : 0  n  N (⌧, T )}. (4.23)

Lemma 4.5. Let u 2 GF[�] such that

inf
t�0
�(u(t)) = lim

t"1
�(u(t)) > �1. (4.24)

For every " 2 (0, 1/4) there exist T = T (") � "�1 and ⌧̄ = ⌧̄ (") 2 (0, 1) such
that for every 0 < ⌧  ⌧̄ the set M⌧ ('",U(⌧,T ); u(0)) is nonempty, every element
U 2 M⌧ ('",U(⌧,T ); u(0)) takes values in U(⌧, T ) ⇢ u([0, T + 1]) and satisfies

�(U(t))  �(u(t ^ T )) for every t � 0. (4.25)

Moreover, for every S > 0, it holds that

M⌧ ('",U(⌧,T ); u(0), S) = {U |[0,S] | U 2 M⌧ ('",U(⌧,T ); u(0))}. (4.26)

Proof. Since u satisfies (4.24), the identity (2.7) yields
R1
0 |r�(u(t))|2 dt < 1

and therefore
lim inf
t"1

|r�(u(t))| = 0. (4.27)

We select T � "�1 such that |r�(u(T ))|  "/4 and consider the compact set
K := u([0, T + 1]); notice that U(⌧, T ) ⇢ K for every ⌧  1.

We set L := 1_maxK |r�| and we choose � := "/2 and ⌧̄ < ⌧K ^ 1 (with ⌧K
as in Lemma 4.1) so that (14 L + 1)!K(3L ⌧̄ ) < "2/2; in particular

14 L!K(3L ⌧̄ ) + 2�2 < "2, !K(L ⌧̄ )  �/2. (4.28)

We observe that for every x = u((n � 1)⌧ ) 2 U(⌧, T ), 1  n  N , N = N (⌧, T ),
⌧ 2 (0, ⌧̄ ], the choice z := u(n⌧ ) satisfies (4.14) since

z � x
⌧

+ r�(z) =
u(n⌧ ) � u((n � 1)⌧ )

⌧
+ r�(u(n⌧ ))

=
1
⌧

Z n⌧

(n�1)⌧

⇣
r�(u(n⌧ )) � r�(u(r))

⌘
dr

(4.29)

and therefore
�
�
�
�
z � x
⌧

+ r�(z)
�
�
�
�  !K(L⌧ )  !K(L ⌧̄ )  �/2 (4.30)
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by (4.28). Notice that |u0(t)| = |r�(u(t))|  L for t 2 [0, T + 1] so that |u(n⌧ ) �
u(r)|  L⌧ whenever r 2 ((n � 1)⌧, n⌧ ].

For x = u(N⌧ ) we can choose z = x = u(N⌧ ), since in this case

|r�(z)|  |r�(z) � r�(u(T ))| + |r�(u(T ))|  !K(L⌧ ) +
�

2
 �.

Since !U(⌧,T )(r)  !K(r), we can apply Lemma 4.3 with the choice � := " thanks
to (4.28): we obtain the fact that M⌧ ('",U(⌧,T ); u(0)) is nonempty, every element
U 2 M⌧ ('",U(⌧,T ); u(0)) takes values in U(⌧, T ) and (4.26) holds.

In order to prove (4.25) we write U(t) =
P

n Un
⌧
�(t/⌧ � (n � 1)) for t > 0

and we observe that (4.25) is equivalent to

�(Un
⌧ )  �(u(n⌧ ^ T )) for every n 2 N , (4.31)

thanks to the monotonicity of t 7! �(u(t)).
We argue by induction, observing that (4.31) is clearly true for n = 0.
If �(Un�1

⌧ )  �(u((n � 1)⌧ )) for some 1  n  N , then we can deduce that
Un�1
⌧ = u(k⌧ ) for some k � n � 1.
If k > n � 1 then we easily get �(Un

⌧ )  �(Un�1
⌧ )  �(u(k⌧ ))  �(u(n⌧ )).

It remains to consider the case k = n � 1, i.e. Un�1
⌧ = u((n � 1)⌧ ). If

�(u(n⌧ )) = �(u((n�1)⌧ )), the induction step is obvious. If �(u(n⌧ )) < �(u((n�
1)⌧ )), then it is sufficient to observe that 8�,U (⌧, u((n � 1)⌧ ), u(n⌧ )) < �(u((n �
1)⌧ )). Indeed, it then holds by (2.7) that

�(u(n⌧ )) +
1
2⌧

|u(n⌧ ) � u((n � 1)⌧ )|2  �(u(n⌧ )) +
1
2

Z n⌧

(n�1)⌧
|u0(r)|2 dr

=�(u(n⌧ )) +
1
2
�
�(u((n � 1)⌧ )) � �(u(n⌧ ))

�

=�(u((n � 1)⌧ )) �
1
2
�
�(u((n � 1)⌧ )) � �(u(n⌧ ))

�
< �(u((n � 1)⌧ )),

so that Un
⌧ belongs to {u(k⌧ ) : n  k  N } and thus satisfies �(Un

⌧ )  �(u(n⌧ )).
Eventually, for n > N , the induction step is trivial.

Remark 4.6. The proof shows that the statement of Lemma 4.5 in fact holds for
every u 2 GF[�] satisfying (4.27).

We now consider the case when � is unbounded on R[u].

Lemma 4.7. Let u 2 GF[�] such that

inf
t�0
�(u(t)) = lim

t"1
�(u(t)) = �1. (4.32)

For every " 2 (0, 1/4), T > 0 there exist ⌧̄ = ⌧̄ (", T ) 2 (0, 1) and T̄ = T̄ (T ) � T
such that for every 0 < ⌧  ⌧̄ the set M⌧ ('",U(⌧,T̄ ); u(0), T ) is nonempty, every
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element U 2 M⌧ ('",U(⌧,T̄ ); u(0), T ) takes values in U(⌧, T̄ ) ⇢ u([0, T̄ + 1]) and
satisfies

�(U(t))  �(u(t)) for every t 2 [0, T ]. (4.33)

Moreover, for every 0  S  T , it holds that

M⌧ ('",U(⌧,T̄ ); u(0), S) =
�
U |[0,S] | U 2 M⌧ ('",U(⌧,T̄ ); u(0), T )

 
. (4.34)

Proof. The argument of the proof is quite similar to the one of Lemma 4.5: the only
difference is that we cannot find a compact set containing the range of the whole
discrete solutions.

Let us set F := �(u(0)) _ |u(0)|2 and let C = C(�⇤, ⌧⇤, F, T ) the constant
provided by Lemma 2.5(ii). By (4.32) we can select a time T̄ � T such that

�(u(T̄ )) < �(u(0)) � C (4.35)

and we set K := u([0, T̄ + 1]), L := 1 _maxK |r�|, N̄ = N (⌧, T̄ ), � = "/2 and
⌧̄ 2 (0, 1 ^ ⌧⇤/16 ^ ⌧K) sufficiently small so that (4.28) holds.

Since U(⌧, T̄ ) ⇢ K, the same calculations of (4.29) and (4.30) show that for
every x 2 {u(k⌧ ) : 0  k < N̄ } there exists z 2 U(⌧, T̄ ) satisfying (4.14).

We can then apply Lemma 4.3 and the same induction argument of the previous
proof to prove that an integer M � 1 and a sequence

(Un
⌧ )0nM 2 MS⌧ ('",U(⌧,T̄ ); u(0),M)

exist such that Un
⌧ 2 {u(k⌧ ) : 0  k  N̄ } and UM

⌧ = u(N̄⌧ ). Since �(UM
⌧ ) =

�(u(N̄⌧ ))  �(u(T̄ )) < �(u(0)) � C and (2.25) yields

�
�
Un
⌧

�
� �(u(0)) � C for every 1  n  N (⌧, T ), (4.36)

we deduce that N (⌧, T ) < M so that M⌧ ('",U(⌧,T̄ ); u(0), T ) is not empty.
If nowU is any element of M⌧ ('",U(⌧,T̄ ); u(0), T ) corresponding to a sequence

(Un
⌧ )0nN 2 MS⌧ ('",U(⌧,T̄ ); u(0), N ), N = N (⌧, T ), then Lemma 4.3, the same

induction argument of the previous proof and (4.36) show that U take values in
U(⌧, T̄ ) and (4.33) holds. The same arguments show that (4.34) holds for every
0  S  T .

We are now able to state the main result of this section.

Theorem 4.8. Every minimal solution u 2 GFmin[�] is strongly approximable in
every compact interval, according to Definition 2.8.

If in addition H has finite dimension or (4.27) is satisfied, then u is strongly
approximable according to Definition 2.7.
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Proof. We pick a decreasing sequence "n # 0 and an increasing sequence Tn :=
"�1n " +1.

If (4.24) holds, we can apply Lemma 4.5 and we set ⌧̄n := ⌧̄ ("n), T̄n :=
T ("n) � Tn .

If (4.32) holds, we set ⌧̄n := ⌧̄ ("n, Tn) > 0, T̄n := T̄ (Tn) � Tn provided by
Lemma 4.7.

We can find a decreasing sequence �n # 0 satisfying �n  min1mn ⌧̄m and a
family �⌧ by choosing

�⌧ := '"n,U(⌧,T̄n) whenever �n+1 < ⌧  �n.

By construction
Lip[�⌧ � �]  "n if �n+1 < ⌧  �n,

so that lim⌧#0 Lip[�⌧ � �] = 0.
We first consider the case T?(u) < +1. If T?(u) < +1, then the range R[u]

is compact and (4.24) holds. Lemma 4.5 shows that M⌧ (�⌧ ; u(0)) is not empty
for ⌧ 2 (0, �1). Moreover, if U⌧ 2 M⌧ (�⌧ ; u(0)) is any selection depending on
⌧ 2 (0, �1), we have U⌧ ([0,+1)) ⇢ R[u] and �(U⌧ (t))  �(u(t ^ Tn)) for every
t � 0, �n+1 < ⌧  �n . By Lemma 2.6(iv), every decreasing vanishing sequence
k 7! ⌧ (k) admits a further subsequence (still denoted by ⌧ (k)) such that U⌧ (k)
converges in the topology of compact convergence to a limit v 2 GF[�]. It holds
that �(v(t))  �(u(t)) for all t � 0, which implies u(t) = v(t) for all t � 0 by
Theorem 3.6(4) since u is minimal and R[v] = R[u]. As the limit is unique, we
obtain

lim
⌧#0

D1(u,M⌧ (�⌧ ; u(0))) = 0,

showing that u is strongly approximable according to Definition 2.7. For every
T > 0, ⌧ 2 (0, �1), it holds that M⌧ (�⌧ ; u(0), T ) = {U |[0,T ] | U 2 M⌧ (�⌧ ; u(0))};
hence, by Remark 2.9, u is also strongly approximable in every compact interval.

Now, we consider the case T?(u) = +1. Let us fix T > 0 and take n̄ =
min{n 2 N : Tn � T +1}. Lemma 4.5 and 4.7 show that M⌧ (�⌧ ; u(0), T +1) is not
empty whenever ⌧  �n̄ . Moreover, if U⌧ 2 M⌧ (�⌧ ; u(0), T + 1) is any selection
depending on ⌧ 2 (0, �n̄), we have �(U⌧ (t))  �(u(t)) for every t 2 [0, T + 1].
According to Lemma 2.5(ii) and to (2.28) and (2.29), there exist ⌧? 2 (0, �n̄) and a
constant C > 0 independent of ⌧ such that

|U⌧ (t)�U⌧ (s)|2C
p
⌧+C|t�s|1/2 for every s, t 2 [0, T+1], ⌧ 2 (0, ⌧?). (4.37)

We define S⌧ := inf{t 2 [0, T + 1] | �(U⌧ (t))  �(u(T + 1))} for ⌧ 2 (0, �n̄) and
S̃ := lim inf⌧#0 S⌧ . The varying times S⌧ serve as auxiliary final times in order to
prove convergence ofU⌧ . We set �⌧ := (T +1� S⌧ )^⌧ . As the piecewise constant
functions U⌧ are left-continuous by definition and �(U⌧ (T + 1))  �(u(T + 1)),
it holds that S⌧ < T + 1 (thus �⌧ > 0) and �(U⌧ (S⌧ + �⌧ ))  �(u(T + 1)). The
plan is as follows. We show that S̃ > 0, we prove that U⌧ converges to u uniformly
in [0, S] for every 0 < S < S̃, and we conclude by proving that S̃ = T + 1.
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There exists a vanishing sequence l 7! ⌧ (l) such that liml"1 S⌧ (l) = S̃. A
contradiction argument shows that S̃ > 0. Suppose that S̃ = 0; then U⌧ (l)(S⌧ (l) +
�⌧ (l)) converges to u(0) by (4.37) and �(u(0)) = liml"1 �(U⌧ (l)(S⌧ (l) + �⌧ (l))) 
�(u(T +1)) in contradiction to �(u(T +1)) < �(u(0)) by the minimality of u and
Theorem 3.6(5). Hence, S̃ > 0. For every 0 < S < S̃ and sufficiently small ⌧ , it
holds that U⌧ ([0, S]) ⇢ u([0, T + 1]) so that by Lemma 2.6(iii), every decreasing
vanishing sequence k 7! ⌧ (k) admits a further subsequence (still denoted by ⌧ (k))
such that U⌧ (k) converges uniformly in [0, S] to a limit v 2 C1([0, S], H) solving
(GF) in [0, S]. Moreover, since we have v([0, S]) ⇢ R[u] and �(v(t))  �(u(t))
for all t 2 [0, S], we deduce that u(t) = v(t) for all t 2 [0, S] by the minimality of
u, Remark 3.5 and Theorem 3.6(4). Since the limit is unique, we can now infer that
lim⌧#0 dS(U⌧ , u) = 0 for every S < S̃. Using (4.37), we obtain

lim sup
l"1

�
�U⌧ (l)(S⌧ (l)) � u(S̃)

�
�

 lim sup
l"1

⇣
|U⌧ (l)(S⌧ (l)) �U⌧ (l)(S)| + |U⌧ (l)(S) � u(S̃)|

⌘

 lim sup
l"1

⇣
2C
p
⌧ (l) + C|S⌧ (l) � S|1/2 + |U⌧ (l)(S) � u(S̃)|

⌘

 C|S̃ � S|1/2 + |u(S) � u(S̃)|

for every S < S̃ and therefore u(S̃) = liml"1U⌧ (l)(S⌧ (l)) = liml"1U⌧ (l)(S⌧ (l) +
�⌧ (l)). It follows that �(u(S̃)) = liml"1 �(U⌧ (l)(S⌧ (l) + �⌧ (l)))  �(u(T + 1)))
which implies u(S̃) = u(T + 1) as S̃  T + 1. Since the minimal solution u
is injective for T?(u) = +1 by Theorem 3.6(5), it follows that S̃ = T + 1 =
lim⌧#0 S⌧ . So we obtain

lim
⌧#0

DT (u|[0,T ],M⌧ (�⌧ ; u(0), T )) = 0 (4.38)

by the preceding argument and the fact that M⌧ (�⌧ ; u(0), T ) = {U |[0,T ] | U 2
M⌧ (�⌧ ; u(0), T + 1)} for ⌧ 2 (0, �n̄). This shows that u is strongly approximable
in every compact interval.

If H has finite dimension, then Remark 2.9 shows that u is also strongly ap-
proximable.

If (4.24) holds, then Lemma 4.5 shows that M⌧ (�⌧ ; u(0)) is not empty for
⌧ 2 (0, �1); hence, according to Remark 2.9, u is also strongly approximable. The
same can be shown if (4.27) holds, see Remark 4.6.

The next step in the proof of De Giorgi’s conjecture is to show that we can
approximate any gradient flow curve by a sequence of minimal gradient flows for
slightly (in the Lipschitz norm) modified energies, and then to combine that conver-
gence result and Theorem 4.8 by Lemma 2.11. This will be first considered in the
one-dimensional setting.
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5. The one-dimensional setting

In this section we want to study the one-dimensional caseH = R. Just for this sec-
tion, we will call E := �� and we consider a continuously differentiable function
E : R ! R with derivative f := E 0.

Proposition 5.1. Let u 2 GF[�E] be an eventually minimal solution (see Defini-
tion 3.7), i.e.

there exists T > 0 with u0(T ) 6= 0 and t 7! u(t + T ) is minimal. (5.1)

Then there exist a sequence of energies E" 2 C1(R) and a sequence of curves
u" 2 GFmin[�E"] with u"(0) = u(0) such that

E 0
" = E 0 in R \ u([0, T ]), lim

"#0
Lip[E" � E] = 0, lim

"#0
d1(u, u") = 0. (5.2)

Proof. In order to simplify the notation, we may assume without loss of general-
ity that u(0) = 0. We notice that u is a monotone function. This can be shown
by contradiction: suppose that u is not monotone and choose a, b 2 (0,1) with
u0(a) > 0 and u0(b) < 0, without loss of generality a < b. Then there exists
� > 0 such that u is strictly increasing on [a, a + � ] and strictly decreasing on
[b � � , b]. It holds that u(a) < u(b): otherwise there would be s 2 (a + � , b]
with u(s) = u(a) which, by (2.7), would imply u(t) = u(a) for all t 2 [a, s]
contradicting the strict monotonicity of u in [a, a + � ]. A similar argument yields
u(b) < u(a), a contradiction. Hence, u is either increasing or decreasing. If Propo-
sition 5.1 holds for increasing solutions, then, by obvious reflection arguments, it
also holds for decreasing solutions, and thus for all solutions u. So we may assume
that u is an increasing function whose range R[u] is an interval of the form [0, R),
R 2 (0,1] or [0, R], R 2 (0,1). We define the left-continuous pseudo-inverse
map t : [0, R) ! [0, T?(u))

t(x) :=min{t�0 : u(t)= x}, satisfying u(t(x))= x for every x 2 [0, R). (5.3)

The map t is an increasing function, in particular it is a function of bounded variation
in any compact interval of [0, R); (5.3) yields that the set D of points in [0, R)
where t is differentiable coincides with the set {x 2 [0, R) : E 0(x) > 0} and
u0(t(x))t0(x) = 1 for every x 2 D. Lebesgue differentiation theorem shows that D
has full measure in [0, R). Since u0 = E 0(u) we deduce that

t0(x) =
1

u0(t(x)) =
1

E 0(x)
=

1
f (x)

for every x 2 D,

and the property
Z

[0,x]\D

1
f (y)

dy  t(x) < 1 for every x < R. (5.4)



710 FLORENTINE FLEISSNER AND GIUSEPPE SAVARÉ

(5.1) and Theorem 3.6(5) yield

L 1�{t 2 (T, T?(u)) : u(t) 62 D}
�

= 0, (5.5)

so that t is locally absolutely continuous in the interval [u(T ), R). Since the dis-
tributional derivative of t is a Radon measure on [0, R), there exists a nonnegative
finite Borel measure µ supported on [0, u(T )] such that

t(x) =
Z

[0,x]\D

1
f (r)

dr + µ([0, x)) for every x 2 [0, R).

Notice that µ([0, R))  T . We can approximate µ by convolution (we will still
denote by µ its trivial extension to 0 outside the interval [0, R))

m"(x) := µ ⇤ "(x) =
1
"

Z +1

�1
((x � y)/") dµ(y)

where  is a shifted standard C1
c mollifier (see, e.g., [3, page 41]) with support in

[0, 1] and we define

t"(x) :=
Z x

0

1
f (r)

+ m"(r) dr =
Z x

0

1+ m" f
f

(r) dr

for x 2 [0, R).
We denote by Jt ⇢ [0, u(T )] the at most countable set of discontinuity points of

t, which coincides with the set of atomic points of µ (i.e. {x 2 [0, u(T )] : µ({x}) >
0}). Since m"L 1 converge to µ as " # 0 in the weak topology of finite positive
measures, we obtain

lim
"!0

Z x

0
m"(r) dr = µ([0, x)) for every x 2 [0, R) \ Jt,

see, e.g., [3, Proposition 1.62(b) and Theorem 2.2]. We used the fact that the support
of m" is contained in [0, u(T ) + "]. The convergence

t"(x) ! t(x) as ✏ ! 0

for all x 2 [0, R) \ Jt directly follows. Moreover, there exists "̄ > 0 such that
(u(T ) � "̄, u(T )] ⇢ D; hence for " 2 (0, "̄), the support of m" is contained in
[0, u(T )] and

t"(x) = t(x) for every x � u(T ), (5.6)

since
R u(T )
0 m"(r) dr = µ([0, u(T )]). Let us now consider the map t" for " 2 (0, "̄)

fixed. It is locally absolutely continuous, strictly increasing and differentiable for
L1-a.e. x � 0 with

t0"(x) =
1+ m"(x) f (x)

f (x)
> 0, lim

x"R
t"(x) = T?(u) =: T?.
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Thus the inverse map u" : [0, T?) ! [0, R) is locally absolutely continuous with

u0
"(t) =

f (u"(t))
1+ m"(u"(t)) f (u"(t))

for L1-a.e. t, u"(t) = u(t) for t � T . (5.7)

Moreover, if T? < 1, we see that limt"T? u"(t) = R = u(T?) and we can extend
u" to the whole real line by setting u"(t) = u(T?) for t � T?.

So we obtain that u" satisfies u0
"(t) = E 0

"(u"(t)) for all t 2 [0,1), for the
energy E" : R ! R with

E 0
" =

f
1+ m" f

(and initial value u"(0) = 0). Moreover, since t" is absolutely continuous, the set
�
t 2 [0, T?) : E 0

"(u"(t)) = 0
 

⇢ t"([0, R) \ D)

has Lebesgue measure 0; by Theorem 3.6(5), it follows that u" 2 GFmin[�E"].
Since E 0

" is uniformly bounded in every bounded interval, the family u" is
uniformly Lipschitz in every bounded interval by (5.7); in order to prove that it
converges to u as " # 0 it is sufficient to characterize its limit ũ along a convergent
subsequence k 7! u"(k), "(k) # 0 (which exists by Ascoli-Arzelà theorem).

Since for all x 2 [0, R) \ Jt we have

u(t(x)) = x = u"(k)(t"(k)(x)) ! ũ(t(x)) as k " 1;

since t is left-continuous, we get

ũ(t) = u(t) for all t 2 t([0, R)).

Since u is continuous and locally constant in the interior of [0, T?) \ t([0, R)) and ũ
is monotone, we conclude that u ⌘ ũ on [0,1). Hence, u" is converging uniformly
to u.

In the last part of the proof, we show that E 0
" =: f" is converging uniformly

to E 0 = f on R. We notice that the support of µ is a compact set included in
Ñ := [0, u(T )] \ D, where f vanishes. Hence, the support of m" is contained in
the "-neighborhood Ñ" := {x 2 [0, u(T )] : dist(x, Ñ )  "} of Ñ for " 2 (0, "̄) so
that f = f" in the complement of Ñ". On the other hand, since 0  f"  f on
[0, R), we get

sup
x2R

| f (x) � f"(x)|  2 sup
x2Ñ"

f (x) # 0 as " # 0,

since f is uniformly continuous in every compact subset ofR and f ⌘ 0 on Ñ .

By applying Lemma 2.11, Remark 3.8 and Theorem 4.8, we can now easily
prove that in the one dimensional case any solution of (GF) is strongly approx-
imable. In the next section, we will use Proposition 5.1 as an inspiring guide to
study the problem in an arbitrary finite dimensional setting.
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6. Strongly approximable solutions

We consider an arbitrary non-constant solution u 2 GF[�] for � 2 C1(H). Let
v 2 GFmin[�] be the unique minimal solution with u � v (see Theorem 3.6) and
R[u] ⇢ R[v] ⇢ R[u], and set T? := T?(v).

We know that there exists an increasing 1-Lipschitz map z : [0,+1) !
[0,+1) such that u(t) = v(z(t)). We also know that the restriction of v to [0, T?)
is an homeomorphism with

R :=

(
R[v] if T? = +1,

R[v] \ {v(T?)} if T? < +1
(6.1)

whose inverse will be denoted byet : R ! [0, T?). We will set

x(t) :=
Z t

0
|v0(s)| ds, L? := lim

t"T?
x(t) =

Z +1

0
|v0(s)| ds; (6.2)

notice that x 2 C1([0, T?)) with x0(t) > 0 a.e. so that it admits a locally absolutely
continuous inverse that we will denote by t : [0, L?) ! [0, T?).

The arc-length parametrization of R is then given by

ex : R ! [0, L?), ex(y) := x(et(y)) =
Z et(y)

0
|v0(s)| ds, y 2 R. (6.3)

Notice that x̃ is an homeomorphism between R and [0, L?) which associates to
every point u(t) 2 R the length of the curve u([0, t]); in particularet(y) = t(ex(y)).

Its inverse y := (ex)�1 : [0, L?) ! R is the arc-length parametrization of the
curve v, defined by

y(x) = v(t(x)). (6.4)

We can now consider the one-dimensional energy obtained by rectifying the graph
of v

E : [0, L?) ! R, E := �� � y, E(x(t)) = ��(v(t)), (6.5)

which is continuously differentiable with derivative

E 0(x)=�hr�(y(x)), v0(t(x))it0(x)=|r�(y(x))|2 1
|v0(t(x))| =|r�(y(x))|. (6.6)

If T? < +1, then L? < +1 and E is Lipschitz, so there is a continuous extension
of the energy to [0, L?] which we still denote by E .

The next lemma shows that u gives rise to a solution of GF[�E] via a suitable
rescaling.
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Lemma 6.1. The curve

u : [0,1) ! R, u(t) :=

(
ex(u(t)) for t < T?(u)
L? for t � T?(u) if T?(u) < +1

(6.7)

belongs to GF[�E], i.e.,

u0(t) = E 0(u(t)) for all t � 0. (6.8)

Moreover, if u is eventually minimal, then u is also eventually minimal.
Proof. In order to check (6.8) we first observe that u(t)=x(et(u(t)))=x(et(v(z(t))))=
x(z(t)) for t 2 [0, T?(u)) and

x0(t) = |v0(t)| = |r�(v(t))| = |r�(y(x(t))| = E 0(x(t)) for t 2 [0, T?)

since v(t) = y(x(t)). Therefore

u0(t) = x0(z(t))z0(t) = E 0(x(z(t)))z0(t) = E 0(u(t))z0(t)

for a.e. t 2 [0, T?(u)). On the other hand, we know that z0(t) = 1 whenever
|r�(u(t))| 6= 0, i.e. if |r�(y(u(t))| = E 0(u(t)) 6= 0. If T?(u) < +1, the limit
L? = limt"T?(u) x(z(t)) is finite and we can extend E to [0, L?] with E 0(L?) =
limx"L? E 0(x) = 0. Our calculations show that u 2 GF[�E].

Finally, let us assume that u is eventually minimal; this is equivalent to say that
for some T < T?(u) with u0(T ) 6= 0 we have z0(t) ⌘ 1 in (T, T?(u)), so that u is
also eventually minimal.

Let us assume that u is eventually minimal, according to Definition 3.7; in
particular u then satisfies (5.1). Arguing as in Proposition 5.1, we associate to E
and u energies E" : [0, L?) ! R (with continuous extension to [0, L?] if T?_L? <
+1) and curves u" : [0,1) ! R satisfying

E 0
"(x) =

|r�(y(x))|
1+ m"(x)|r�(y(x))| (6.9)

with m" chosen as in the proof of Proposition 5.1, and

u0
"(t) = E 0

"(u"(t)) for all t 2 [0,+1). (6.10)

The set
{t 2 [0, T?(u)) : E 0

"(u"(t)) = 0}
has Lebesgue measure 0, and u" is converging locally uniformly to u as " ! 0. We
observe that E" satisfies up to an additive constant

E"(x) =
Z x

0

|r�(y(r))|
1+ m"(r)|r�(y(r))| dr

=
Z t(x)

0

|r�(v(t))|
1+ m"(x(t))|r�(v(t))|

|v0(t)| dt.
(6.11)
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Now, we translate this one dimensional setting with the approximation by E" and
u" back to the initial situation with � and u.

Lemma 6.2. Let us suppose that u is eventually minimal and that there exist �" 2
C1(H) satisfying

�"(y) = �E"(x̃(y)) = �
Z t̃(y)

0

|r�(v(t))|
1+ m"(x(t))|r�(v(t))|

|v0(t)| dt on R, (6.12)

and
r�"(y) =

r�(y)
1+ m"(ex(y))|r�(y)|

for all y 2 R. (6.13)

Then the curve

u" : [0,+1) ! H, u"(t) :=

(
y(u"(t)) for t < T?(u),
u(T?(u)) for t � T?(u) if T?(u) < +1

(6.14)

is a minimal gradient flow for �". Moreover, u" is converging locally uniformly to
u as " ! 0.

Proof. We just observe that for a.e. x 2 [0, L?)

y0(x) = v0(t(x))t0(x) = �r�(v(t(x))) 1
|v0(t(x))| = �

r�(y(x))
|r�(y(x))| (6.15)

so that

u0
"(t)=y0(u"(t))u0

"(t)=�
r�(u"(t))
|r�(u"(t))|

|r�(u"(t))|
1+ m"(u"(t))|r�(u"(t))|

=�r�"(u"(t)).

We can apply Theorem 3.6(5) in order to conclude from u" 2 GFmin[�E"] that u" 2
GFmin[�"]. The convergence of u" is a consequence of the convergence of u".

It remains to show that there indeed exist energies �" : H ! R satisfying the
assumptions of Lemma 6.2 and converging to � in the Lipschitz seminorm. Note
that (6.12) which is not used in the proof of Lemma 6.2 should give an idea of how
to construct �".

Lemma 6.3. Let us suppose that H has finite dimension and u is an eventually
minimal solution to (GF). There exist continuously differentiable functions �" :
H ! R such that (6.12) (up to an additive constant) and (6.13) is satisfied and

lim
"#0
sup
H

|�" � �| + Lip[�" � �] = 0. (6.16)
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Proof. Let us fix a time T < T?(u) such that m"(ex(y)) = 0 for all y 2 R \u([0, T ])
and " > 0 and choose T1 2 (T, T?(u)) so that �(u(T )) > �(u(T1)) > infR[u] �.
We consider the compact sets K := u([0, T ]) and K1 := u([0, T1]) and the open
set A := {w 2 H : �(w) > �(u(T1))} which contains K . We can find a smooth
function  : H ! [0, 1] such that

 (w) ⌘ 1 on K ,  (w) = 0 on H \ A, (6.17)

and
r ⌘ 0 on K , sup

H
|r | < +1. (6.18)

The construction of  is standard: there exists � > 0 such that the distance function
dist(x, K ) satisfies

dist(x, K )  4� ) x 2 A.

The composition of dist(x, K ) with ⌘(d) := 1
� (� � (d � 2�)+)+ then yields a

1
� -Lipschitz function taking value 1 in a neighborhood of radius 2� around K and
vanishing if dist(x, K ) � 3�. Taking the convolution of ⌘�dist(·, K )with a smooth
kernel with support in {|x |  �}, we obtain a suitable function  .

Let us define �" : K1 ! R, �"(w) := �E"(ex(w)) � �(w). Applying Whit-
ney’s Extension Theorem (see, e.g., [14, Theorem 2.3.6]), we aim to extend �" to a
C1 function in H with gradient Q" : H ! H satisfying Q"(w) = F"(w) � F(w)
on K1, in which

F"(w) :=
r�(w)

1+ m"(x̃(w))|r�(w)|
, F(w) := r�(w).

For that purpose, since �" and Q" are continuous and � 2 C1(H), we only need to
check if for wn, w̄n 2 K1 with wn 6= w̄n, limn!0 |w̄n � wn| = 0, it holds that

lim
n!1

�E"(ex(w̄n)) + E"(ex(wn)) � hF"(wn), w̄n � wni

|w̄n � wn|
= 0. (6.19)

Up to extracting a subsequence, it is not restrictive to assume that w̄n and wn
converge to a common limit point w. By using the minimal flow v we can also
find points tn = et(wn), t̄n = et(w̄n) converging to some t such that w̄n = v(t̄n),
wn = v(tn), w = v(t). Notice that

E"(x̃(wn)) � E"(x̃(w̄n)) =
Z tn

t̄n

|r�(v(r))|
1+ m"(x(r))|r�(v(r))|

|v0(r)| dr

hF"(wn), w̄n � wni =
hr�(v(tn)), v(t̄n) � v(tn)i
1+ m"(x(tn))|r�(v(tn))|

.

If r�(w) = 0, then (6.19) directly follows from the fact that

�
�E"(x̃(wn)) � E"(x̃(w̄n))

�
� 

�
�
�
Z tn

t̄n
|r�(v(r))||v0(r)| dr

�
�
� = |�(w̄n) � �(wn)|,
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so that

lim sup
n!1

�
�E"(x̃(wn)) � E"(x̃(w̄n))

�
�

|wn � w̄n|
 lim sup

n!1

|�(w̄n) � �(wn)|

|wn � w̄n|
= 0,

and

lim sup
n!1

�
�hF"(wn), w̄n � wni|

|w̄n � wn|
 lim sup

n!1
|r�(wn)| = 0.

If |r�(w)| 6= 0, then

lim
n!1

v(tn) � v(t̄n)
tn � t̄n

= v0(t) = �r�(v(t)) = �r�(w) 6= 0,

and

lim
n!1

�E"(ex(w̄n)) + E"(ex(wn)) � hF"(wn), w̄n � wni

tn � t̄n

=
|r�(v(t))|

1+ m"(x(t))|r�(v(t))|
|v0(t)| +

hr�(v(t)), v0(t)i
1+ m"(x(t))|r�(v(t))|

= 0.

So �" : K1 ! R can be extended to a continuously differentiable function �" :
H ! R with gradient r�" = Q" on K1. Moreover, there exists a constant C only
depending on K1 such that (see [14, (2.3.8) in Theorem 2.3.6])

sup
H

|�"| + sup
H

|r�"|

C

 

sup
x,y2K1

W"(x, y) + sup
x,y2K1

|Q"(x) � Q"(y)| + sup
K1

|�"| + sup
K1

|Q"|

!

,
(6.20)

where

W"(x, y) :=
|�"(x) � �"(y) � hQ"(y), x � yi|

|x � y|
if x 6= y, W"(x, x) = 0.

Since E" is determined up to an additive constant, we may assume that E"(u(T )) =
E(u(T )) and thus that �" is converging uniformly to 0 on K1 and �" ⌘ 0 on K1 \K .
Moreover, it is not difficult to check that Q" is converging uniformly to 0 on K1.
Now, in order to show that W" is converging uniformly to 0 on K1 ⇥ K1, it is
sufficient to prove thatW"(x", y") ! 0 whenever |x"�y"| ! 0, x" 6= y", x", y" 2
K1. For this, we repeat the arguments as in the proof of (6.19) combined with the
argument at the end of the proof of Proposition 5.1: We may assume without loss
of generality that x" = v(t") and y" = v(t̃") converge to a common limit point
w = v(t) and t", t̃" converge to t . If r�(w) = 0, we may copy the corresponding
arguments from the proof of (6.19) as they are independent of " in this case. If
r�(w) 6= 0, then a contradiction argument shows that there exists "̄ > 0 such
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that m"(x(r)) = 0 for all min{t", t̃"}  r  max{t", t̃"}, 0 < " < "̄ (because
m"(x(r")) 6= 0 would imply r�(y(s")) = 0 for some s" with |s" � x(r")|  "), and
again, we may argue as in the proof of (6.19). The claim then follows.

Therefore, we infer from (6.20) that �" and r�" are converging uniformly to 0
on H. We set

�" := � +  �",

where  has been introduced in (6.17) and (6.18). The functions �" : H ! R have
all the desired properties.

Theorem 6.4. Let us suppose that H is a finite dimensional Euclidean space, � 2
C1(H) satisfies the quadratic lower bound (1.8) and u : [0,+1) ! H is a solution
to (GF). Then u is strongly approximable, according to Definition 2.7, i.e. there
exist functions �⌧ : H ! R (⌧ > 0) such that Lip[�⌧ � �] ! 0 as ⌧ # 0 and
MM(8, u(0)) = {u} = GMM(8, u(0)) for

8(⌧,U, V ) := �⌧ (V ) +
1
2⌧

|V �U |2.

Proof. Lemma 2.11 shows that the class of strongly approximable solutions is
closed with respect to Lipschitz convergence of the functionals and locally uniform
convergence of the solutions. By Theorem 4.8, every minimal solution is strongly
approximable; combining these results with the results from Lemma 6.2 and 6.3 we
obtain that the class of eventually minimal solutions is also strongly approximable.
By Remark 3.8 we conclude.

Remark 6.5. If � 2 Lip(H), then it clearly satisfies the quadratic lower bound
(1.8).

Appendix A. Diffuse critical points for one-dimensional gradient flows

In this section we give an example of a solution to a one dimensional gradient flow
generated by a function whose derivative vanishes in a Cantor set. In particular, the
example shows that the strict monotonicity of the energy along a solution curve is
not sufficient to guarantee its minimality.

Let us start from the continuous function f = ��0 : R ! R defined by

f (x) :=

(
⇡

p
x(1� x) if x 2 (0, 1),

0 elsewhere.

One can check by direct calculation that the curve u : [0, 1] ! R

u(t) :=
1
2

+
1
2
sin
✓
⇡

✓
t �

1
2

◆◆
, satisfies u0(t)= f (u(t)), u(0) = 0, u(1)=1.
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Let C ⇢ [0, 1] be the classical Cantor set and decompose [0, 1] \C into the disjoint
union of countable open intervals In = (an, bn) (n 2 N) with ln := bn � an . We
denote by Ln : R ! [0, 1] the continuous and piecewise linear map transforming
In into (0, 1), which is constant outside In (i.e. Ln(x) = 0 if x  an and Ln(x) = 1
if x � bn).

Since
P

n ln = 1 < 1, we can choose �n > 0 so that

↵n := ��1
n ln ! 0, B :=

X

n
�n < 1.

We set
fn(x) := ��1

n ln f (Ln(x))
and define g : R ! R by

g(x) :=
X

n
fn(x).

Note that g is well-defined and continuous since supx
PM

n=m fn(x)  ⇡ supn�m ↵n
and every fn is continuous.

Now, let us define the map R : [0, 1] ! R,

R(x) :=
X

n
�nLn(x), R0(x) =

�n

ln
on In,

which is absolutely continuous since
P

n �n < 1, with R0(x) > 0 a.e.. Hence,
R possesses an inverse map R�1 =: S : [0, B] ! [0, 1], which is also absolutely
continuous.

The intervals Ĩn := R(In) = (ãn, b̃n) are disjoint, covering [0, B] \ R(C).
Note that R(C) has Lebesgue measure 0. Setting L̃n := Ln � S, we have

L̃n(t) =
t � ãn
�n

if t 2 Ĩn, L̃n(t) = 0 if t  ãn, L̃n(t) = 1 if t � b̃n.

We define v : [0, B] ! R,
v(t) :=

X

n
lnu(L̃n(t)).

It is not difficult to check that v is of class C1, and that

{t 2 [0, B] : v0(t) = 0} = R(C).

Moreover, it holds that v0 = g �v: by density and continuity, it is sufficient to select
t 2 Ĩn; in this case, we have

v(t) = an + lnu((t � ãn)/�n)

and

v0(t) = ��1
n lnu0(L̃n(t)) = fn(lnu(L̃n(t)) + an) = fn(v(t)) = g(v(t)).
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So if we denote by G the primitive of g, then v is a minimal gradient flow for �G.
Let µ be a positive finite Cantor measure concentrated on R(C), in particular

µ({x}) = 0 for all x and µ(R(C)) > 0. We define

 (t) := t + µ([0, t)).

The map  : [0, B] ! [0, B + µ(R(C))] is continuous and strictly increasing and
we denote by ⌘ : [0, B + µ(R(C))] ! [0, B] its strictly increasing inverse. For
s < t , we have

t � s =  (⌘(t)) �  (⌘(s)) = ⌘(t) � ⌘(s) + µ((⌘(s), ⌘(t))) � ⌘(t) � ⌘(s),

i.e. ⌘ is 1-Lipschitz continuous.
We define w : [0, B + µ(R(C))] ! R,

w(s) := v(⌘(s)).

The curve w is Lipschitz continuous and ⌘0(s) = 1 for all s 2  ([0, B] \ R(C)).
Moreover, it holds that

{s 2 [0,B + µ(R(C))] : g(w(s))=0}={ (t) : t 2 [0, B], g(v(t))=0}= (R(C)).

From this we can infer

w0(s) = g(w(s)) for all s 2 (0, B + µ(R(C)))

(in particular, w is of class C1).
The set  (R(C)) has Lebesgue measure µ(R(C)) > 0. So, the gradient flow

w is not minimal but along the curve the energy �G � w : [0, B + µ(R(C))] ! R
is strictly decreasing.

The example could be set in a more general way, starting from a Cantor-like
set and an ordinary differential equation with non-uniqueness at the end points of a
reference interval.
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