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Pointwise estimates of solutions to nonlinear equations
for nonlocal operators

ALEXANDER GRIGOR’YAN AND IGOR VERBITSKY

Abstract. We study pointwise behavior of positive solutions to nonlinear integral
equations, and related inequalities, of the type

u(x) �
Z

�
G(x, y) g(u(y))d� (y) = h,

where (�, � ) is a locally compact measure space, G(x, y) : � ⇥ � ! [0,+1]
is a kernel that satisfies a weak form of the maximum principle, h � 0 is a mea-
surable function, and g : [0,1) ! [0,1) is a monotone increasing function.

In the special case where G is Green’s function of the Laplacian (or frac-
tional Laplacian) that satisfies the maximum principle and h = 1, a typical global
pointwise bound for any supersolution u > 0 is given by

u(x) � F�1(G� (x)), x 2 �,

where F(t) :=
R t
1

ds
g(s) , t � 1, and necessarily

G� (x) < F(1) =
Z +1

1

ds
g(s)

,

for every x 2 � such that u(x) < 1.
This problem is motivated by the semilinear fractional Laplace equation

(�1)
↵
2 u � g(u)� = µ in �, u = 0 in �c,

with measure coefficients � , µ, where g(u) = uq , q > 0, and 0 < ↵ < n, in
domains � ✓ Rn , or Riemannian manifolds, with positive Green’s function G.

In a similar way, we treat positive solutions to the equation

u(x) +
Z

�
G(x, y) g(u(y))d� (y) = h,

and the corresponding fractional Laplace equation (�1)
↵
2 u + g(u)� = µ, with

a monotone decreasing function g, in particular g(u) = uq , q < 0.
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1. Introduction

We study pointwise behavior of non-negative solutions u to nonlinear integral equa-
tions (and related inequalities) of the type

u(x) =
Z

�
G(x, y) g(u(y))d� (y) + h (x) , x 2 �. (1.1)

Here � is a locally compact Hausdorff space, � is a Radon measure on �,
G(x, y) : � ⇥ � ! [0,+1] is a lower semicontinuous function, g : [0,1) !
[0,1) is a monotone increasing continuous function, and h � 0 is a given � -
measurable function.

We also treat positive solutions to more general equations and inequalities with
measure-valued kernels G, or equivalently, operator equations of the type

u = T (g(u)) + h in � (1.2)
on a measurable space (�,4), where T is a positivity preserving linear operator
acting in the cone of measurable functions � ! [0,+1], and continuous with
respect to pointwise limits of monotone increasing sequences of functions (see Sec-
tion 2, Examples 2.2-2.4).

Our main applications are to positive weak solutions of the semilinear frac-
tional Laplace problem with measure coefficients,

(�1)
↵
2 u � uq� = µ in �, u = 0 in �c, (1.3)

where q > 0, 0 < ↵ < n, and µ, � are Radon measures in a domain � ✓ Rn

(or a Riemannian manifold) with positive Green’s function G. Equation (1.3) is
equivalent to the integral equation (1.1) with

h = Gµ =
Z

�
G (·, y) dµ (y) .

Similar results are obtained for the integral equation

u(x) = �
Z

�
G(x, y) g(u(y))d� (y) + h (x) , x 2 �, (1.4)

where g is a monotone decreasing function, and the corresponding fractional
Laplace problem

(�1)
↵
2 u + uq� = µ in �, u = 0 in �c, (1.5)

in the case q < 0.
More precisely, we obtain sharp global lower bounds for non-negative measur-

able functions u satisfying the integral inequality
u(x) � G(g (u) d� )(x) + h(x) in � (1.6)

in the case of monotone increasing g, and upper bounds for solutions of
u(x)  �G(g (u) d� )(x) + h(x) in � (1.7)

in the case of monotone decreasing g.
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We assume that the kernel G satisfies the following form of the weak maximum
principle:

For any Radon measure ⌫ in � with compact support K = supp(⌫),

G⌫  1 in K =) G⌫  b in �, (1.8)

with some constant b � 1.

This property of G is sometimes referred to as the generalized, or rough maximum
principle (see [1, 17, 19]), and is known for many local and non-local operators.
It is used extensively in this paper, together with a weak form of the domination
principle (1.11) considered below.

These basic principles make it possible to extend the results of [13], where
classical solutions to (1.3) and (1.5), with continuous � , µ (not necessarily posi-
tive), were treated for the (weighted) Laplace operator on Euclidean domains and
weighted Riemannian manifolds, to certain nonlocal problems for integral opera-
tors with kernel G, and measures � , µ. The exact value of the constant b in (1.8)
is not essential, although it appears in various constants in our estimates, which are
sharp if b = 1 (in particular, in the case of local operators).

As suggested by the referee, we list some examples of operators L whose asso-
ciated kernelG satisfies (1.8). Notice that not all of these examples are independent,
and some of them contain others as special cases. Related examples and various ex-
tensions can be found in [2, 7, 8, 11, 19].

(1) The Laplace operator L = �1 on a domain � ✓ Rn (n � 1) which has a
nontrivial positive Green’s function G (see [13,19]);

(2) The Laplace-Beltrami operator L = �1 on a Riemannian manifold Mn which
has a nontrivial positive Green’s function G, and more generally its weighted
analogue L = � 1

!div(!r) on a weighted Riemannian manifold (see [12,13]);
(3) The fractional Laplace or Laplace-Beltrami operator L = (�1)

↵
2 (0 < ↵  2)

on a domain � ✓ Rn , or a Riemannian manifold Mn , respectively, which has
a nontrivial positive Green’s function G ([2, 19]);

(4) The fractional Laplace operator L = (�1)
↵
2 (0 < ↵ < n), or L = (1 �1)

↵
2

(↵ > 0) on Rn , or a ball, or half-space ([1, 8]);
(5) Convolution operators L f = k ? f onRn with radial monotone non-increasing

kernel k : R̄+ ! R̄+ discussed below after Theorem 1.1 (see also [1, Theorem
2.6.2]);

(6) Integral operators with quasi-metric kernels G : � ⇥ � ! (0,+1] on a
locally compact Hausdorff space � such that d(x, y) = 1

G(x,y) satisfies the
quasi-triangle inequality with constant { (see Section 4 below, and also [8,15,
16]);

(7) Second-order differential operators L = �div(ar·) � b · r + c in divergence
form, with real-valued measurable coefficients a = (ai j ), b = (bi ) and c,
where b and c � 0 are bounded, and a is symmetric and uniformly elliptic,
with Green’s function G on an open subset � ✓ Rn ([2, 11]);
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(8) Second-order differential operators with real-valued continuous coefficients in
non-divergence form L = �

P
i, j ai j@i@ j � b · r + c, where c � 0, and a

is symmetric and positive definite, with Green’s function G on an open subset
� ✓ Rn ([2, 11]);

(9) More generally, Green’s functions G associated with connected Brelot spaces
([2, 7, 11]);

(10) More generally,P-harmonic Bauer spaces with Green’s function G; in partic-
ular, the heat kernel associated with the operator @@t + L , where L is either one
of the operators in Example 7 or 8 ([2, 7, 11]).

We remark that in Examples 1-3 and 7-10 we have b = 1 in (1.8). In Examples 4
and 5, the constant b depends on n, whereas in Example 6 we have b  8{3 (see
Lemma 4.2 below).

There are well-known cases where Green’s function G of the operator L is
known explicitly, for instance, G(x, y) = min(x, y) for Lu = �u00 on the positive
half-axis R+ with zero boundary condition u(0) = 0, or G(x, y) = c↵,n|x � y|↵�n

for L = (�1)
↵
2 (0 < ↵ < n) on Rn . For bounded C1,1-domains � ⇢ Rn , there

are explicit two-sided estimates of Green’s function of L = (�1)
↵
2 (0 < ↵  2,

↵ < n):

G(x, y) ⇡


�(x) �(y)

|x � y|2 + �(x) �(y)

� ↵
2
|x � y|↵�n, x, y 2 �,

where �(x) = dist(x, @�). These estimates can be used in combination with our
results to provide more explicit pointwise estimates of solutions (see, for instance,
[8, 14]). Examples providing explicit estimates of Green’s functions for L = �1
on Riemannian manifolds can be found in [11].

In the case h = 1 our main result is the following theorem.

Theorem 1.1. Let G satisfy in � the weak maximum principle (1.8) with constant
b � 1. Assume that g is a monotone non-decreasing positive continuous function
in [1,+1], and set

F(t) =
Z t

1

ds
g(s)

, t � 1.

If u is a positive measurable function on � that satisfies

u (x) � G(g (u) d� ) (x) + 1 (1.9)

for � -almost all x 2 �, then, at any point x 2 � where (1.9) is satisfied and
u (x) < +1, we have

G� (x) < b F(1) = b

Z +1

1

ds
g(s)

,

and
u(x) � 1+ b

h
F�1

⇣
b�1G� (x)

⌘
� 1

i
.
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For a similar result in a more general setup of measure-valued kernels (Exam-
ple 2.2), see Theorem 3.2; non-increasing nonlinearities g are treated in Theo-
rem 3.3.

For example, for g (s) = sq with q > 0, q 6= 1, we obtain

u(x) � 1+ b

"✓
1+

(1� q)G� (x)
b

◆ 1
1�q

� 1

#

,

where in the case q > 1 necessarily

G� (x) <
b

q � 1
.

In the case q = 1 we have

u(x) � 1+ b
⇣
eb

�1 G� (x) � 1
⌘
.

Theorem 1.1 and its corollaries yield global pointwise estimates for positive solu-
tions to a broad class of elliptic and parabolic PDE, as well as non-local problems on
Euclidean domains and manifolds. In particular, they are applicable to convolution
equations on Rn of the type

u = k ? (g(u)d� ) + 1. (1.10)

Here
k ? ( f d� )(x) =

Z

Rn
k(x � y) f (y)d� (y),

where k = k(|x |)>0 is an arbitrary lower semi-continuous, radially non-increasing
function on Rn . Such kernels are known to satisfy the weak maximum principle
(1.8) with constant b which depends only on the dimension n of the underlying
space (see [1, Theorem 2.6.2]).

To treat more general right-hand sides h � 0, we invoke a weak form of the
domination principle for kernels G with respect to a Radon measure � on � and a
lower semi-continuous function h:

For any bounded measurable function f � 0 with compact support,

G( f d� )(x)  h(x) in supp( f ) =) G( f d� )(x)  b h(x) in �, (1.11)

provided G( f d� ) is bounded on supp( f ).
Closely related properties are sometimes referred to as the dilated domination

principle, the complete maximum principle, or the second maximum principle in
the case b = 1 (see [2, 18, 19], and Sections 4 and 5 below).

We observe that the weak domination principle holds for Green’s kernels as-
sociated with a large class of elliptic and parabolic problems, along with many
non-local operators, and certain classes of functions h. In particular, (1.11) holds
with b = 1 for nonnegative superharmonic functions h in Examples 1-3 and 7-9
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considered above, but generally fails in Example 10 (some additional assumptions
are needed). It is still true for L = @

@t � 1 and the classical heat kernel G with
h = G⌫ + c for nonnegative measures ⌫ and constants c; see [2, 7].

Our main estimates in the case of general h and g(t) = tq , q 2 R \ {0}, are
contained in the following theorem. A more general statement in the context of
measure-valued kernels G can be found in Theorem 5.1 below.

Theorem 1.2. Let h > 0 be a lower semi-continuous function in �. Let G be a
non-negative kernel in � ⇥ � which satisfies the domination principle (1.11) with
respect to h with constant b � 1. Suppose that u is a non-negative function such
that uq 2 L1loc(� ), which satisfies (1.6) if q > 0, and (1.7) if q < 0.
Then if q > 0 (q 6= 1), we have

u(x) � h(x)

(

1+ b

"✓
1+

(1� q)G(hqd� )(x)
b h(x)

◆ 1
1�q

� 1

#)

, x 2 �, (1.12)

where in the case q > 1 necessarily

G(hqd� )(x) <
b

q � 1
h(x), (1.13)

for all x 2 � such that 0  u(x) < +1, and (1.6) holds.
In the case q = 1,

u(x) � h(x)

1+ b

✓
eb

�1 G(hd� )(x)
h(x) � 1

◆�
, x 2 �. (1.14)

If q < 0, then

u(x)  h(x)

(

1� b

"

1�

✓
1�

(1� q)G(hqd� )(x)
b h(x)

◆ 1
1�q

#)

, x 2 �, (1.15)

and necessarily

G(hqd� )(x) <
b

1� q

h
1�

�
1� b�1�1�q

i
h(x), (1.16)

for all x 2 � such that u(x) > 0, h(x) < +1, and (1.7) holds.

These estimates with h = Gµ yield the corresponding lower bounds for positive
weak solutions u 2 Lqloc(� ) to the inequality

(�1)
↵
2 u � uq� � µ in �, u = 0 in �c,

for q > 0, and the upper bounds for positive weak solutions to the inequality

(�1)
↵
2 u + uq�  µ in �, u = 0 in �c,
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for q < 0, where µ, � are Radon measures in an arbitrary domain � ✓ Rn with
positive Green’s function G in the case 0 < ↵  2, when the domination principle
holds with b = 1. They also hold in the case 0 < ↵ < n (with some constant
b � 1) provided Green’s function G is quasi-metric, or quasi-metrically modifiable,
for instance, if � is the entire space, a ball, or half-space (see [8]).

For classical solutions and local elliptic differential operators, such estimates
were obtained earlier in [13] in the case where � 2 C(�) is a continuous function
which may change sign, and µ � 0 is a locally Hölder continuous function in
� ✓ Rn , or a smooth Riemannian manifold.

In the linear case q = 1, estimate (1.14) in Theorem 1.2 obviously yields

u(x) � h(x) eb
�1 G(hd� )(x)

h(x) , x 2 �.

This is a refinement (with sharp constant in the case b = 1) of the lower bound
obtained in [8] along with a matching upper bound, for quasi-metric kernels G. See
Sections 4 and 5 where these and more general classes of kernels are treated.

In the superlinear case q > 1, the necessary condition (1.13) was found in [16]
for quasi-metric kernels G (without the explicit constant), and in [3] for the Laplace
operator �1 with Dirichlet boundary conditions, with sharp constant 1

q�1 . In the
latter case, the domination principle holds with b = 1, so that this constant is the
same as in (1.13).

There are certain upper bounds for u in the case q > 1, and lower bounds in the
case q < 0, which are true for general non-negative kernels G (without the weak
domination principle) provided conditions (1.13) and (1.16) respectively hold with
smaller constants depending on q, which ensure the existence of positive solutions
([13, Theorem 3.5]; see also [3, 12, 16] for q > 1).

For the homogeneous problem (1.6) with h = 0 in the sublinear case 0 < q <
1, we have a similar lower estimate for non-trivial solutions u (see Corollary 3.6
for a more general setup of measure-valued kernels). No such estimates of positive
solutions to (1.6) or (1.7) with h = 0 are available for q � 1 or q < 0, respectively.

Theorem 1.3. Let 0 < q < 1. Suppose G is a non-negative kernel on � ⇥ �
satisfying the weak maximum principle (1.8) with constant b � 1. If u 2 Lqloc(� ),
u > 0, is a solution to the integral inequality (1.6)with h = 0, that is, u � G(uqd� )
in �, then

u(x) � (1� q)
1
1�q b� q

1�q
⇥
G� (x)

⇤ 1
1�q , x 2 �. (1.17)

If b = 1, then the constant (1�q)
1
1�q in (1.17) is the same as in the local case ([13,

Theorem 3.3]), and is sharp. This estimate was first deduced in [4] for solutions
to the equation �1u = uq � on Rn (without the sharp constant). See also [5, 6]
for matching lower and upper bounds of solutions to the equation (�1)

↵
2 u = uq �

(0 < ↵ < n) on Rn in the case 0 < q < 1.
We remark that necessary and sufficient conditions for the existence of a pos-

itive solution in the case 0 < q < 1 to the homogeneous equation u = G(uqd� )
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in � for quasi-symmetric kernels G which satisfy the weak maximum principle are
given in [22] (see also [21]).

ACKNOWLEDGEMENTS. The authors are grateful to Alexander Bendikov and
Wolfhard Hansen for stimulating discussions. The second author wishes to thank
the Mathematics Department at Bielefeld University for the hospitality during his
visits.

2. The weak maximum principle and iterated estimates

We first prove a series of lemmas.

Lemma 2.1. Let (�,!) be a � -finite measure space, and let a = !(�)  +1.
Let f : � ! [0,+1] be a measurable function. Let � : [0, a) ! [0,+1) be a
continuous, monotone non-decreasing function, and set �(a) := limt!a� �(t) 2
(0,+1]. Then the following inequality holds:

Z !(�)

0
�(t) dt 

Z

�
� (! ({z 2 � : f (z)  f (y)})) d!(y). (2.1)

Proof. If ! (�) = 1 then consider an exhausting sequence {�k}1k=1 of measurable
subsets of � with ! (�k) < +1. Since

Z

�
� (! ({z 2 � : f (z)  f (y)})) d! (y)

�
Z

�k

� (! ({z 2 �k : f (z)  f (y)})) d! (y) ,

it suffices to prove (2.1) for �k instead of � and then let k ! 1. Hence, we can
assume without loss of generality that a = ! (�) < 1.

If � is unbounded (as t ! a�) then replace � by a bounded function � j =
min(�, j), prove (2.1) for � j and then let j ! 1. Therefore, we assume in what
follows that � is continuous on [0, a].

Assume first that the function f is simple, that is, f takes on only a finite set
of values {bi }Ni=1 where the sequence {bi } is arranged in the increasing order. Set

ai = ! {z 2 � : f (z)  bi } for i = 1, ..., N

and a0 = 0. If y 2 � is such that f (y) = bi , then

� (!{z 2 � : f (z)  f (y)}) = � (ai ) .



POINTWISE ESTIMATES OF SOLUTIONS FOR NONLOCAL OPERATORS 729

It follows that
Z

�
� (!{z 2 � : f (z)  f (y)}) d!(y)

=
NX

i=1

Z

{y2�: f (y)=bi }
� (!{z 2 � : f (z)  f (y)}) d!(y)

=
NX

i=1
� (ai )!{y 2 � : f (y) = bi }

=
NX

i=1
� (ai ) (ai � ai�1).

Since the function � is non-decreasing, we obtain
NX

i=1
� (ai ) (ai � ai�1) �

NX

i=1

Z ai

ai�1
� (t) dt =

Z aN

a0
� (t) dt =

Z !(�)

0
� (t) dt,

whence (2.1) follows.
Let f be an arbitrary measurable function. By a standard argument, there is

an increasing sequence { fn} of simple functions such that fn " f as n ! 1.
Applying the first part of the proof to fn , we obtain
Z

�
� (!{z 2 � : fn(z)  f (y)}) d! (y)�

Z

�
� (!{z 2 � : fn(z) fn(y)}) d! (y)

�
Z !(�)

0
� (t) dt.

The sequence Fn(y) := !{z 2 � : fn(z)  f (y)} of functions of y 2 � is
decreasing in n and converges to !{z 2 � : f (z)  f (y)} as n ! 1. Since � is
bounded and continuous and ! (�) < 1, we obtain by the bounded convergence
theorem that

lim
n!1

Z

�
� (!{z 2 � : fn(z)  f (y)}) d! (y)

=
Z

�
� (!{z 2 � : f (z)  f (y)}) d! (y) ,

whence (2.1) follows.

In the rest of the section we assume that (�,4) is a measurable space, and that
G (x, dy) is a � -finite kernel in �, which means that, for any x 2 �, G (x, dy) is a
� -finite measure on (�,4), and this measure depends on x measurably. The latter
means that, for any 4-measurable function f : � ! [0,1], the function

G f (x) =
Z

�
f (y)G (x, dy)
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is also4-measurable. We assume here that G satisfies the weak maximum principle
in the following form:

There is a constant b � 1 such that, for any non-negative bounded measurable
function f on �,

G f  1 in { f > 0} =) G f  b in �. (2.2)

Clearly, (2.2) implies the following: for any " � 0,

G f  " in { f > 0} =) G f  "b in �. (2.3)

Let us consider some examples where this framework is applicable.
Example 2.2. Let � be a locally compact Hausdorff space with countable base.
Assume that G (x, dy) is a Radon kernel in �, that is, for any x 2 �, G (x, dy) is
a Radon measure on � (in particular, � -finite). The weak maximum principle for a
Radon kernel G can be stated as follows:

For any bounded measurable function f with compact support,

G f  1 in supp( f ) =) G f  b in �. (2.4)

Then the weak maximum principle holds also in the form (2.2) by approximating
an arbitrary function f by f 1F with compact F .
Example 2.3. Let � again be a locally compact Hausdorff space with countable
base, and let ! be a Radon measure on �. Suppose K : � ⇥ � ! [0,+1] is a
measurable function such that K (x, ·) 2 L1loc (�,!) for any x 2 �. Then set

G(x, E) :=
Z

E
K (x, y)d!(y), (2.5)

so that G is a Radon kernel in the above sense. In this case we have

G f (x) =
Z

�
K (x, y) f (y)d!(y).

Example 2.4. Let (�,4) be a measurable space. Let T be a positivity preserving
linear operator acting in the cone of measurable functions � ! [0,+1]. Assume
also that T is continuous with respect to pointwise limits of monotone increasing
sequences of functions.

Fix some x 2 � and define the measure

!x (E) = T1E (x) , E 2 4.

Then, for any non-negative measurable function f on �, we have

T f (x) =
Z

�
f d!x . (2.6)
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Indeed, if u is a simple function of the form

f =
1X

i=1
fi1Ei ,

where fi are non-negative constants, then

T f (x) =
1X

i=1
fi T1Ei (x) =

1X

i=1
ui!x (Ei ) =

Z

�
f d!x .

For a general measurable function f one proves (2.6) by passing to the limit using
an increasing sequence of simple functions.

The measure !x is clearly � -additive. The � -finiteness of !x has to be assumed in
addition (for example, if T1 (x) < 1 then the measure !x is finite). Assuming that
!x is � -finite, set G(x, dy) := d!x (y), or equivalently,

G (x, E) =
Z

E
G(x, dy) = T1E (x), E 2 4. (2.7)

The following is the key lemma used repeatedly throughout this paper.

Lemma 2.5. Let (�,4) be a measurable space, and let G (x, dy) be a � -finite
kernel in �. Assume that G satisfies the weak maximum principle (2.2). Fix x 2 �
and set a = G1(x)  +1. If a function � : [0, a) ! [0,+1) satisfies the
conditions of Lemma 2.1 and �(t) = �(a) for t � a, then

Z G1(x)

0
�(t)dt  G

⇥
�(bG1)

⇤
(x) for all x 2 �. (2.8)

Proof. For any y 2 �, set

Ey = {z 2 � : G1(z)  G1(y)}.

Clearly,
G1Ey (z)  G1(z)  G1(y) for all z 2 Ey .

Hence, by the weak maximum principle (2.3) applied to f = 1Ey , we obtain

G1Ey (z)  bG1(y) for all z 2 �,

which implies, for z = x ,
G1Ey (x)  bG1(y). (2.9)
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Applying Lemma 2.1 to the � -finite measure ! (dy) = G (x, dy) and the function
f = G1, noticing that !(E) = G1E (x), and using (2.9), we obtain

Z G1(x)

0
�(t) dt 

Z

�
� (!{z 2 � : G1(z)  G1(y)}) !(dy)

=
Z

�
�

�
!

�
Ey

��
! (dy)


Z

�
� (bG1(y))! (dy)

= G
⇥
� (bG1)

⇤
(x) ,

which proves (2.8).

Remark 2.6. In the particular case �(t) = tr�1 (t � 0) where r � 1, Lemma 2.5
gives the following estimate:

[G1(x)]r  r br�1G
h
(G1)r�1

i
(x) for all x 2 �. (2.10)

In the case �(t) = tr�1 (t > 0) where 0 < r  1, it is easy to see that the converse
inequality to (2.10) holds, that is,

[G1(x)]r � r br�1G
h
(G1)r�1

i
(x) for all x 2 �. (2.11)

Lemma 2.7. In the setting of Lemma 2.5 define a sequence { fk}1k=0 of functions on
� by

f0 = G1, fk+1 = G (� ( fk)) , (2.12)

for all k � 0. Set
 (t) = �

�
b�1t

�
, (2.13)

and define also the sequence { k}1k=0 of functions on [0,1) by  0(t) = t and

 k+1(t) =
Z t

0
 �  k(s)ds, (2.14)

for all k � 0. Then, for all x 2 � and k � 0,

 k ( f0 (x))  fk(x). (2.15)

For example, we have

f1 = G (� ( f0)) , f2 = G (� ( f1)) ,

and
 1 (t) =

Z t

0
 (s) ds,  2 (t) =

Z t

0
 ( 1 (s)) ds.
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Proof. For k = 0 estimate (2.15) is trivial. For k = 1 estimate (2.15) follows from
Lemma 2.5 with  in place of �, since by (2.8)

 1 ( f0 (x)) =
Z G1(x)

0
 (s)ds  G ( (bG1)) (x) = G (�(G1)) (x) = f1 (x) .

Let us make an inductive step from k to k + 1, where k � 1. Fix y 2 � and define
the set

�y = {z 2 � : fk(z)  fk(y)}.

Then by (2.12) we have

G
�
1�y� ( fk�1)

�
(z)  fk (z)  fk (y) for all z 2 �y,

which implies by the weak maximum principle that

G
�
1�y� ( fk�1)

�
(x)  b fk(y) for all x 2 �. (2.16)

Consider now the kernel

Ĝ (x, dz) = G
�
x, 1�y dz

�
,

and define a sequence of functions { f̂k} similarly to (2.12):

f̂0 = Ĝ1 = G1�y , f̂k+1 = Ĝ(�( f̂k)) = G
⇣
1�y�( f̂k)

⌘
, k � 0.

It follows from (2.16) that

f̂k (x)  b fk(y) for all x 2 �.

By the inductive hypothesis, we have, for all x 2 �,

 k

⇣
f̂0 (x)

⌘
 f̂k(x).

It follows that

 �  k
⇣
f̂0 (x)

⌘
  ( f̂k(x))   (b fk(y)) = � ( fk(y)) ,

that is,
 �  k

�
G1�y

�
(x)  � ( fk(y)) for all x 2 �. (2.17)
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Fix now also x 2 � and apply Lemma 2.1 with the � -finite measure ! (dy) =
G (x, dy) .We obtain, using (2.14) and (2.17), that

 k+1 ( f0 (x)) =
Z f0(x)

0
 �  k (s) ds =

Z !(�)

0
 �  k (s) ds


Z

�
 �  k (! (z 2 � : fk (z)  f (y)))! (dy)

=
Z

�
 �  k

�
!

�
�y

��
! (dy)

=
Z

�
 �  k

�
G1�y (x)

�
! (dy)


Z

�
� ( fk (y))! (dy)

= G (� ( fk)) (x) = fk+1 (x) ,

which finishes the inductive step.

Setting in Lemma 2.7 �(t) = tq , q > 0, we obtain the following.

Corollary 2.8. Under the hypotheses of Lemma 2.7, we have, for any q > 0, k � 0,
and all x 2 �,

[ f0(x)]1+q+···+qk  c(q, k) bq+q2+···+qk fk(x), (2.18)

where fk are defined by (2.12) with �(t) = tq , and

c(q, k) =
kY

j=1

�
1+ q + · · · + q j

�qk� j
. (2.19)

In particular, in the case q = 1, for all x 2 � we have

[ f0 (x)]k+1  (k + 1)! bk fk(x). (2.20)

Remark 2.9. A direct proof by induction using Lemma 2.5 gives a constant that
grows in b much faster than bq+q2+···+qk in (2.18).

3. Monotone nonlinearities

In this section we will apply estimates of Section 2 to the following nonlinear
problem. Let � and G be as above, that is (�,4) is a measurable space and
G (x, dy) be a � -finite kernel in �, satisfying the weak maximum principle (2.2).
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Let g : [1,+1) ! [0,+1) be a continuous, monotone non-decreasing function;
set g(+1) = limt!+1 g(t). We consider the non-linear integral inequality

u (x) � G (g (u)) (x) + 1 for all x 2 �, (3.1)

where u : � ! [1,1) is a measurable function. Our goal is to obtain sharp
pointwise lower estimates of u(x)which are better than the trivial estimate u(x)�1.
In what follows we always assume that g (1) � 1.
Remark 3.1. Indeed, if g (1) = 0, then simple examples, for instance, g(t) = log t
and u ⌘ 1, show that we cannot expect any non-trivial estimates for u. If g(1) > 0,
then by renaming g

g(1) back to g and changing G appropriately, we can assume that
g (1) = 1. Hence, the assumption g (1) � 1 is natural in this setting.
The next theorem is our main result.

Theorem 3.2. Let G be a � -finite kernel on � satisfying the weak maximum prin-
ciple (2.2) with b � 1. Let g : [1,+1) ! [1,+1) be a continuous monotone
non-decreasing function. Set

F(t) =
Z t

1

ds
g(s)

, t � 1. (3.2)

If u satisfies (3.1) then, for all x 2 � such that u(x) < +1, the following inequal-
ities hold:

u(x) � 1+ b
h
F�1

⇣
b�1G1(x)

⌘
� 1

i
(3.3)

and
b�1G1(x) < a :=

Z +1

1

ds
g(s)

. (3.4)

Note that the function F is defined on [1,1). Hence, the inverse function F�1 is
defined on [0, a), and takes values in [1,1). Hence, the condition (3.4) is necessary
for the right-hand side of (3.3) to be well-defined.

Proof. Set for any t � 0

� (t) = g (t + 1) and  (t) = �(b�1t) = g(b�1t + 1). (3.5)

Define the sequence { fk} of functions on � by (2.12), that is,

f0 = G1, fk+1 = G (� ( fk)) .

We claim that, for all k � 0,

u � fk + 1 in �. (3.6)

Indeed, it follows from (3.1) that u � 1, and one more application of (3.1) yields

u � G (g (1)) + 1 � G1+ 1 = f0 + 1,
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that is, (3.6) for k = 0. If (3.6) is already proved for some k � 0, then substituting
(3.6) into (3.1) yields

u � G (g ( fk + 1)) + 1 = G (� ( fk)) + 1 = fk+1 + 1,

which finishes the proof of (3.6).
Consider now the sequence { k}1k=0 of functions on [0,1) defined by (2.14),

that is,  0 (t) = t and

 k+1(t) =
Z t

0
 �  k(s)ds. (3.7)

By Lemma 2.7, we have, for all x 2 � and k � 0,

fk (x) �  k ( f0 (x)) ,

which together with (3.6) imply

u (x) �  k (G1 (x)) + 1 for all x 2 �.

By (3.5) the function  is monotone non-decreasing and  � 1, which implies that
the sequence { k}1k=0 is non-decreasing, that is,  k+1 (t) �  k (t) for all t � 0.
Indeed, for k = 0 it follows from

 1 (t) =
Z t

0
 (t) dt � t =  0 (t) ,

and if  k �  k�1 is already proved then  k+1 �  k follows from (3.7) and the
monotonicity of  .

Set
 1 (t) = lim

k!1
 k (t)

so that
u (x) �  1 (G1 (x)) + 1 for all x 2 �. (3.8)

Let us fix x 2 � such that u(x) < +1. It follows from (3.8) that

t0 := G1(x) < +1 and  1 (t0) < 1.

Without loss of generality we may assume that t0 > 0 since in the case G1(x) = 0
the estimates (3.3), (3.4) are obvious. Then we see that the function  1 is finite on
[0, t0], positive on (0, t0] and satisfies the integral equation

 1(t) =
Z t

0
 �  1(s) ds, 0 < t  t0. (3.9)

It follows that  1 is continuously differentiable on [0, t0] and satisfies the differ-
ential equation

d 1

dt
=  ( 1(t)),  1(0) = 0. (3.10)
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Setting

9(⇠) =
Z ⇠

0

ds
 (s)

= b F
�
1+ b�1⇠

�

and observing that by (3.10)

d9( 1)(t)
dt

= 1,

we obtain, for any t 2 [0, t0],

9 ( 1(t)) = t. (3.11)

It follows that, for t = t0,

F(1+ b�1 1 (t0)) = b�1t0. (3.12)

Since all values of F are located in [0, a), we obtain that

b�1t0 < a,

which is equivalent to (3.4). Next, we obtain from (3.12) that

 1 (t0) = bF�1
⇣
b�1t0

⌘
� 1.

Substituting this into (3.8) yields (3.3), which finishes the proof.

Our methods are also applicable to non-linear integral inequalities of the type

u(x) + G(g(u))  1 in �, (3.13)

defined on measurable functions 0  u  1. Here g : (0, 1] ! (0,+1) is a
continuous, monotone non-increasing function and g(0) = limt!0+ g(t)  +1.

We exclude the case g(1) = 0, since otherwise we cannot expect an upper es-
timate for u better than the trivial estimate u  1. In fact, without loss of generality
we may assume g(1) � 1 by using g

g(1) and changing G appropriately as above (see
Remark 3.1). Thus, we assume that g : [0, 1] ! [1,+1].

Theorem 3.3. Let G be a � -finite kernel on � satisfying the weak maximum prin-
ciple (2.2) with b � 1. Let g : [0, 1] ! [1,+1] be a continuous monotone
non-increasing function. Set

F(t) =
Z 1

t

ds
g(s)

, 0  t  1. (3.14)

If u � 0 satisfies (3.13) then, for all x 2 � such that u(x) > 0, the following
inequalities hold:

u(x)  1� b
h
1� F�1

⇣
b�1G1(x)

⌘i
, (3.15)



738 ALEXANDER GRIGOR’YAN AND IGOR VERBITSKY

and

b�1 G1(x) < F(1� b�1) =
Z 1

1�b�1

ds
g(s)

, (3.16)

so that the right-hand side of (3.15) is well-defined and positive.

Proof. For any t 2 [0, 1] set

�(t) = g(1� t) and  (t) = �(b�1t) = g(1� b�1t), (3.17)

so that � and  are non-decreasing. As in the proof of Theorem 3.2, define the
sequence { fk}1k=0 of functions on � by (2.12),

f0 = G1, fk+1 = G (� ( fk)) .

We claim that 0  fk  1 for all k � 0, so that � ( fk) is well-defined, and moreover

u  1� fk in �. (3.18)

Indeed, obviously u  1, and hence g(u) � g(1) � 1. Consequently by (3.13),

u  1� G (g (1))  1� G1 = 1� f0,

so that f0  1, and (3.18) holds for k = 0. If (3.18) has been proved for some
k � 0, then substituting (3.18) into (3.13) yields

u  1� G (g (1� fk)) = 1� G (� ( fk)) = 1� fk+1,

which proves (3.18). In particular, 0  fk  1 for all k � 0.
Set t0 := G1(x) = f0(x) 2 [0, 1]. Consider now the sequence { k}1k=0 of

functions on [0, t0] defined by (2.14),

 0 (t) = t,  k+1(t) =
Z t

0
 �  k(s)ds.

We need to show that the functions  k(t) are well-defined, that is,  k(t) 2 [0, 1]
for all t 2 [0, t0] and k � 1, and

fk(x) �  k( f0(x)). (3.19)

By (3.18), we deduce

G(g(u)) � G(g(1� fk)) = G(�( fk)) = fk+1. (3.20)

Clearly,  1 is well-defined. Hence, by Lemma 2.7 and the preceding inequality
with k = 0,

1 � 1� u(x) � G(g(u))(x) � f1(x) �  1( f0(x)) =  1(t0).

Since  1 is non-decreasing, we see that  1(t) 2 [0, 1] for all t 2 [0, t0].
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If the inequalities  k(t0)  1 and (3.19) have been proved for some k � 1,
then  k+1(t) is well-defined on [0, t0]. By Lemma 2.7 and (3.20),

1 � 1� u(x) � G(g(u))(x) � fk+1(x) �  k+1( f0(x)) =  k+1(t0).

Since  k+1(t) is a non-decreasing function, it follows that  k+1(t)  1 for all
t 2 [0, t0], and (3.19) holds for all k � 1. Consequently, for all k � 0,

1 � u(x) + fk(x) � u(x) +  k( f0(x)). (3.21)

The rest of the proof is similar to that of Theorem 3.2. Passing to the limit as
k ! 1 in (3.21) yields

1 � u(x) +  1( f0(x)),

where  1(t) is the unique solution of the integral equation (3.9) in the interval
0  t  t0. From this we deduce that

9
�
 1(t)

�
= t, 0  t  t0,

where, for ⇠ 2 [0, 1],

9(⇠) =
Z ⇠

0

ds
 (t)

= b F
�
1� b�1⇠

�
.

Here F is defined by (3.14). Hence,

 1(t) = 9�1(t) = b
�
1� F�1(b�1t)

�
, 0  t  t0, t0 2 Range(9).

Thus,

G1(x) = t0 
Z 1

0

dt
 (t)

= b

Z 1

1�b�1

dt
g(t)

,

so that (3.15) holds, where its right-hand side is well defined. Clearly, (3.15) implies
(3.16) provided u(x) > 0.

We now consider some special cases of the integral inequalities (3.1) and
(3.13). Let g(t) = tq (q > 0) in the case of (3.1), that is,

u � G(uq) + 1 in �. (3.22)

Corollary 3.4. Let q > 0. Under the assumptions of Theorem 3.2, suppose that u
satisfies (3.22).

If q 6= 1, then

u(x) � 1+ b

⇣
1+ (1� q)b�1G1(x)

⌘ 1
1�q

� 1
�

, (3.23)
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where in the case q > 1, for all x 2 � such that u(x) < +1,

b�1G1(x) <
1

q � 1
. (3.24)

In the case q = 1,

u(x) � 1+ b
⇣
eb

�1 G1(x) � 1
⌘
, x 2 �. (3.25)

Proof. We apply Theorem 3.2 with g(t) = tq , t � 1. If q > 0 (q 6= 1), we have

F(t) =
Z t

1
s�qds =

1
1� q

⇣
t1�q � 1

⌘
, t � 1,

and consequently

F�1(⌧ ) = [1+ (1� q) ⌧ ]
1
1�q , 0  ⌧ 

1
q � 1

if q > 1; ⌧ � 0 if 0 < q < 1.

Therefore, for all x 2 � such that u(x) < +1, we deduce (3.23), where G1(x) <
b
1�q , so that the right-hand side of (3.23) is well defined, that is, (3.24) holds.

In the case q = 1, we have F(t) = log t for t � 1, and F�1(⌧ ) = e⌧ for ⌧ � 0,
which gives (3.25).

We now consider inequalities of the type (3.13) with g(t) = tq for q < 0,
that is,

u + G(uq)  1 in �. (3.26)

Corollary 3.5. Let q < 0. Under the assumptions of Theorem 3.3, suppose that
u � 0 satisfies (3.26). Then, for all x 2 � such that u(x) > 0,

G1(x) <
b

1� q

h
1�

�
1� b�1�1�q

i
, (3.27)

and

u(x)  1� b


1�

⇣
1� (1� q)b�1G1(x)

⌘ 1
1�q

�
. (3.28)

Proof. We apply Theorem 3.3 with g(t) = tq , q < 0, where t 2 (0, 1]. In this case,

F(t) =
Z 1

t
s�qds =

1
1� q

⇣
1� t1�q

⌘
, 0  t  1.

Then
F�1(⌧ ) = [1� (1� q) ⌧ ]

1
1�q , 0  ⌧ 

1
1� q

.

Therefore, for all x 2 � such that u(x) > 0, we deduce (3.28), where G1(x)  b
1�q

so that the right-hand side of (3.28) is well defined. Moreover, (3.27) holds since
u(x) > 0 in (3.28).
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In the following corollary we give pointwise estimates for super-solutions to
homogeneous equations in the sublinear case.

Corollary 3.6. Let G be a � -finite kernel on � satisfying the weak maximum prin-
ciple (2.2) with b � 1. Let 0 < q < 1. If u > 0 in � satisfies

u � G(uq) in �, (3.29)

then
u(x) � (1� q)

1
1�q b� q

1�q (G1(x))
1
1�q , x 2 �. (3.30)

Remark 3.7. The constant (1�q)
1
1�q in (3.30) coincides with that in [13, Theorem

3.3], if b = 1, and is sharp.

Proof. For a > 0, set
Ea = {y 2 � : u(y) � a}.

Then
u � G(uq) � aq

�
G(1Eau

q)
�

in Ea.

Iterating this inequality, we obtain

u � aq
k+1
G fk in Ea,

where fk is defined by (2.12) with �(t) = tq . Hence, by Corollary 2.8,

u � c(q, k)�1 aq
k+1

b�q(1+q+···+qk�1) �
G1Ea (x)

�1+q+···+qk in Ea.

Notice that

c(q, k) =
kY

j=1

�
1+ q + · · · + q j

�qk� j

<
kY

j=1
(1� q)�q

k� j

< (1� q)�(1�q)�1 .

It follows

u � (1� q)(1�q)�1aq
k+1

b�q(1+q+···+qk�1) �
G1Ea (x)

�1+q+···+qk in Ea.

Letting k ! +1, we obtain

u � (1� q)
1
1�q b� q

1�q (G1Ea )
1
1�q in Ea.

Finally, letting a ! 0+ yields (3.30) in �.
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4. Quasi-metric kernels

Consider the setting of Example 2.3, that is,� is a locally compact Hausdorff space
with countable base, ! is a Radon measure on �. Let K : � ⇥ � ! (0,+1]
be a lower semi-continuous function. Assume that for any x 2 �, K (x, ·) 2
L1loc (�,!). Set

G f (x) =
Z

�
K (x, y) f (y)d!(y).

The kernel K is called quasi-metric (see [8, 14, 16]) if K is symmetric, that is,
K (x, y) = K (y, x) and d (x, y) = 1

K (x,y) is quasi-metric, that is, there exists a
quasi-metric constant { > 0 such that the quasi-triangle inequality holds:

d(x, y)  { [d(x, z) + d(y, z)], 8 x, y, z 2 �.

Without loss of generality we may assume that d(x, y) 6= 0 for some x, y 2 �, so
that { � 1

2 .
The following lemma is proved in [22, Lemma 3.5].

Lemma 4.1. Suppose G is a quasi-metric kernel in � with quasi-metric constant
{. Then G satisfies the weak maximum principle (1.8) with constant b = 2{.

In the next lemma we consider a certain modification of a quasi-metric kernel.

Lemma 4.2. Suppose K is a quasi-metric kernel in� with constant {. Forw 2 �,
let �w = {x 2 � : K (x, w) < +1}. Then

Kw(x, y) =
K (x, y)

K (x, w) K (y, w)
, x, y 2 �w, (4.1)

is a quasi-metric kernel on �w with quasi-metric constant 4{2.
In particular, Kw satisfies the weak maximum principle (1.8) in �w with con-

stant b = 8{3.

Proof. This is immediate from the so-called Ptolemy inequality for quasi-metric
spaces, [8, Lemma 2.2] (see also [15, Proposition 8.1]),

d(x, y) d(z, w)4{2[d(x, w) d(y, z)+d(x, z) d(y, w)], 8 x, y, z, w 2 �. (4.2)

Dividing both sides of the preceding inequality by d(x, w) d(y, w) d(z, w), we de-
duce

d(x, y)
d(x, w) d(y, w)

 4{2


d(x, z)
d(x, w) d(z, w)

+
d(y, z)

d(y, w) d(z, w)

�
,

for all x, y, z 2 �w.
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Let h : � ! (0,+1) be a lower semicontinuous function on�. For a general
kernel K : �⇥� ! (0,+1], consider a modified kernel

Kh(x, y) =
K (x, y)
h(x) h(y)

for x, y 2 �. (4.3)

Here we discuss the question how to verify the weak maximum principle for Kh .
Remark 4.3. As we will demonstrate below (see Lemma 4.5), Kh satisfies the
weak maximum principle (1.8) provided K satisfies the following form of the weak
domination principle:

Given a positive lower semicontinuous function h in �,

Kµ(x)  M h(x) 8 x 2 supp(µ) =) Kµ(x)  bM h(x) 8 x 2 �, (4.4)

for any compactly supported Radon measure µ with finite energy in �, i.e.,R
� Kµ dµ < +1, and any constant M > 0.
This property is sometimes called a dilated domination principle (see, e.g.,

[17]). In the case where (4.4) holds with b = 1 for any h = K⌫ + a, where ⌫
is a Radon measure and a � 0 is a constant, it is called the complete maximum
principle (see e.g., [2, 14]).

The weak domination principle holds for Green’s kernels associated with a
large class of local and non-local operators, and super-harmonic h.
Remark 4.4. It is easy to see that, for a quasi-metric kernel K , the modified kernel
Kh with h = K⌫ > 0, where ⌫ is a Radon measure, is generally not quasi-metric.
However, it does satisfy the weak maximum principle (1.8) under some mild as-
sumptions. See Lemma 4.6 below.

The modified kernel Kh in this case is essentially quasi-metric if ⌫ is a mea-
sure supported at a single point w 2 �, i.e., when h(x) = c K (x, w), c > 0, by
Lemma 4.2.
Let us denote by M+(�) the class of Radon measures in �.

Lemma 4.5. Suppose K is a non-negative lower semicontinuous kernel in� which
satisfies the domination principle (4.4). Suppose h is a positive lower semicontinu-
ous function in �. Then the modified kernel Kh defined by (4.3) satisfies the weak
maximum principle (1.8) in �0 = � \ {x : h(x) < +1} with the same constant b.

In particular, if (4.4) holds for K and h with b = 1, then Kh satisfies the
strong maximum principle in �0.

Proof. For ⌫ 2 M+(�0) with compact support, let d ⌫̃ = 1
h(x)d⌫. Notice that h is

bounded below by a positive constant on any compact set so that ⌫̃ 2 M+(�), and
supp(⌫̃) ✓ supp(⌫).

Let
�m := {x 2 � : h(x)  m}, m = 1, 2, . . . (4.5)

Clearly, each �m is a closed set, and �0 =
S+1

m=1�m . Let d⌫m = ��md⌫, so that
supp(⌫m) ✓ �m .
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Suppose that, for a positive constant M ,

Kh⌫(x)  M for all x 2 supp(⌫).

Then obviously
Kh⌫m(x)  M for all x 2 supp(⌫m).

It follows that

K ⌫̃m(x)  M h(x) for all x 2 supp(⌫̃m), where d ⌫̃m(x) =
1

h (x)
d⌫m .

Clearly, ⌫̃m has finite energy with respect to K , since
Z

�
K ⌫̃m d ⌫̃m  M

Z

�
hd ⌫̃m = M

Z

�
d⌫m < +1.

Hence, by (4.4)
K ⌫̃m(x)  bM h(x) 8x 2 �.

Consequently, by the monotone convergence theorem

K ⌫̃(x)  bM h(x) 8x 2 �0.

Equivalently,
Kh⌫(x)  bM 8x 2 �0.

Thus, Kh satisfies the weak maximum principle (respectively, the strong maximum
principle if b = 1) in �0.

Lemma 4.6. Let K be a quasi-metric kernel on �⇥�, continuous in the extended
sense. Let h = K⌫ where ⌫ 2 M+(�), h 6⌘ +1. Then the modified kernel Kh

defined by (4.3) satisfies the weak maximum principle in �0 = {x 2 � : h(x) <
+1}.

Proof. If ⌫ = �w for some w 2 � then by Lemma 4.2 the modified kernel Kw

given by (4.1) is a quasi-metric kernel on �w = {x 2 � : K (x, w) < +1}. By
Lemma 4.1, Kw satisfies the weak maximum principle with constant b = 83 in
�0 = �w.

To show that, for general h = K⌫, the modified kernel Kh defined by (4.3)
satisfies the weak maximum principle in �0, we invoke the idea used in [20, Theo-
rem 7], (see also [17, 18]) which reduces it to the elementary domination principle
in the case ⌫ = �w.

Suppose first that µ 2 M+(�) is a measure with compact support and of finite
energy, and h = K⌫. Let us show that K satisfies (4.4) for µ 2 M+(�). To this
end, we argue by contradiction. Assume that

Kµ  K⌫ on F = supp (µ), (4.6)
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but there exists w 2 � \ F such that

Kµ(w) > b K⌫(w), (4.7)

where without loss of generality we may let K⌫(w) < +1.
Notice that quasi-metric kernels are symmetric, and strictly positive. Hence,

cap(F) < +1 for any compact set F ⇢ � (see [9]), and there exists an extremal
measure µF 2 M+(�) of finite energy, with supp (µF ) ✓ F , such that by [20,
Lemma 1⇤], (see also [17,18]),

KµF (z)  K (z, w), 8z 2 supp (µF ), (4.8)

and
KµF (z) � K (z, w) on F. (4.9)

Since Kw is a quasi-metric kernel in �w, it satisfies the weak maximum principle
with constant b = 8{3, and consequently G satisfies the domination principle (4.4)
with ⌫ = �w and the same constant b in �w. In fact, the domination principle for
µF and ⌫ = �w holds in �, i.e.,

KµF (x)  b K (x, w), 8x 2 �, (4.10)

where b = 83, since the right-hand side of (4.10) is infinite on � \�w, and for all
measures of finite energy µ(� \�w) = 0. Indeed, by the quasi-triangle inequality
K (x, y) = 1

d(x,y) = +1 if x, y 2 � \�w, and so Kµ = +1 on � \�w, unless
µ(� \�w) = 0.

We denote by E(µ, ⌫) the mutual energy of the measures µ, ⌫ 2 M+(�):

E(µ, ⌫) :=
Z

�
K⌫ dµ =

Z

�
Kµ d⌫. (4.11)

Let us estimate the mutual energy E(µF , ⌫). Integrating both sides of (4.10) against
d⌫ we deduce

E(µF , ⌫) =
Z

�
KµF d⌫

 b

Z

�
K (x, w) d⌫(x) = bG⌫(w).

On the other hand, it follows from (4.9) and (4.7) that

E(µF , µ) =
Z

F
KµF dµ

�
Z

F
K (x, w) dµ(x)

= Kµ(w) > b K⌫(w).

Since E(µF , ⌫) � E(µF , µ) by (4.6), we arrive at a contradiction.
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Suppose now that µ 2 M+(�) has compact support F ⇢ �0, and h = K⌫.
Then for �m ⇢ �0 defined by (4.5) and dµm = ��mdµ we have

Kµm  h  m in �m .

Consequently, µm 2 M+(�) has finite energy, supp(µm) ⇢ F \ �m is a compact
set, and by the previous case

Kµm(x)  b h(x), x 2 �0,

for m large enough. Passing to the limit as m ! +1 we obtain by the monotone
convergence theorem

Kµ(x)  b h(x), x 2 �0.

5. The weak domination principle and nonlinear integral inequalities

In the setting of Example 2.2, let � be a locally compact Hausdorff space with
countable base, and let G (x, dy) be a Radon kernel in �. Let h : � ! (0,+1)
be a given positive lower semi-continuous function in �. In particular, infF h > 0
for every compact set F ⇢ �.

In this section we consider super-solutions u : � ! [0,+1) of

u(x) � G(uq)(x) + h(x) in �, (5.1)

in the case q > 0, and sub-solutions u : � ! (0,+1) of

u(x)  �G(uq)(x) + h(x) in �, (5.2)

in the case q < 0.
We will assume that G satisfies the weak domination principle in the following

form:
For any bounded measurable function f � 0 with compact support,

G f (x)  h(x) in supp( f ) =) G f (x)  b h(x) in �, (5.3)

provided G f is bounded on supp( f ).
Our main result in this setup is as follows.

Theorem 5.1. In the above setting, for a given function h, assume that G satisfies
the weak domination principle (5.3) in �. Suppose that u � 0 satisfies (5.1) if
q > 0, or u > 0 and satisfies (5.2) if q < 0. Then u (x) satisfies the following
estimates for all x 2 �:
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(i) If q > 0, q 6= 1, then

u(x) � h(x)

(

1+ b

"✓
1+

(1� q)G(hq)(x)
b h(x)

◆ 1
1�q

� 1

#)

, (5.4)

where in the case q > 1 necessarily

G(hq)(x) <
b

q � 1
h(x). (5.5)

(ii) If q = 1, then

u(x) � h(x)

1+ b

✓
eb

�1 G(h)(x)
h(x) � 1

◆�
. (5.6)

(iii) If q < 0, then

u(x)  h(x)

(

1� b

"

1�

✓
1�

(1� q)G(hq)(x)
b h(x)

◆ 1
1�q

#)

(5.7)

and necessarily

G(hq)(x) <
b

1� q

h
1�

�
1� b�1�1�q

i
h(x). (5.8)

Proof. Suppose first that q > 0. Let us consider a modified kernel

Gh (x, dy) =
h (y)q

h (x)
G (x, dy) .

Clearly, Gh is also a Radon kernel on any subset

�m = {x 2 � : h (x)  m} , m � 1. (5.9)

Notice that each �m is closed, �m ✓ �m+1, and
S1

m=1�m = �.
Setting Gh

m = Gh(x, 1�mdy) and

v(x) :=
u(x)
h(x)

, x 2 �, (5.10)

we see that v satisfies the inequality

v(x) � Gh
m(vq)(x) + 1 for all x 2 �. (5.11)
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Moreover, Gh
m satisfies the weak maximum principle (2.4) in � with the same con-

stant b, that is, for any bounded measurable function f with compact support
in �,

1
h
G(1�mh

q f )  1 in supp( f ) =)
1
h
G(1�mh

q f )  b in �. (5.12)

Indeed, this follows from the weak domination principle (5.3) applied to 1�mhq f
in place of f , which yields

G(1�mh
q f )  h in supp( f ) \�m =) G(1�mh

q f )  b h in �. (5.13)

This proves (5.12).
Hence, by Corollary 3.4 with Gh

m in place of G, it follows from (5.11) that v
satisfies the following estimates for all x 2 �:

v(x) � 1+ b

⇣
1+ b�1(1� q)Gh

m(1)(x)
⌘ 1
1�q

� 1
�

, (5.14)

if q > 0, q 6= 1, where in the case q > 1, we have

Gh
m(1)(x) <

b

q � 1
. (5.15)

If q = 1, then
v(x) � 1+ b

⇣
eb

�1 Gh
m(1)(x) � 1

⌘
. (5.16)

Passing to the limit as m ! 1 we deduce by the monotone convergence theorem
that, for q > 0, q 6= 1,

v(x) � 1+ b

⇣
1+ b�1(1� q)Gh(1)(x)

⌘ 1
1�q

� 1
�

,

where the strict inequality holds for q > 1 in

Gh(1)(x) <
b

q � 1
,

since in the preceding estimate we have v(x) = u(x) h(x) < +1. If q = 1, then

v(x) � 1+ b
⇣
eb

�1 Gh(1)(x) � 1
⌘

.

Going back from v,Gh to u,G in these estimates yields that (5.4) or (5.6) hold at
every x 2 �, and in the case q > 1 the necessary condition (5.5) holds.



POINTWISE ESTIMATES OF SOLUTIONS FOR NONLOCAL OPERATORS 749

In the case q < 0, estimates (5.7) and (5.8) are deduced in a similar way from
Corollary 3.5, provided u(x) > 0.

Remark 5.2. The results of Section 4 show that, in that setup, the estimates of
Theorem 5.1 hold for quasi-metric kernels K and h = K⌫ in �0 = {x 2 � :
h(x) < +1}, for all Radon measures ⌫ in � such that K⌫ 6⌘ +1.
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[22] S. QUINN and I. E. VERBITSKY, A sublinear version of Schur’s lemma and elliptic PDE,
Anal. PDE 11 (2018), 439–466.

Department of Mathematics
University of Bielefeld
33501 Bielefeld, Germany
and
Institute of Control Sciences of Russian
Academy of Sciences
Moscow, Russia
grigor@math.uni-bielefeld.de

Department of Mathematics
University of Missouri, Columbia
Missouri 65211, USA
verbitskyi@missouri.edu


