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An infinite-dimensional version
of the Poincaré-Birkhoff theorem on the Hilbert cube
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Abstract. We propose a version of the Poincaré–Birkhoff theorem for infinite-
dimensional Hamiltonian systems, which extends a recent result by Fonda and
Ureña [20]. The twist condition, adapted to a Hilbert cube, is spread on a se-
quence of approximating finite-dimensional systems. Some applications are pro-
posed to pendulum-like systems of infinitely many ODEs. We also extend to the
infinite-dimensional setting a celebrated theorem by Conley and Zehnder [9].
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1. Introduction

The Poincaré-Birkhoff theorem was conjectured by Henri Poincaré in 1912, shortly
before his death [35]. It was first stated for an area-preserving homeomorphism on
an invariant planar annulus, assuming a twist condition at the boundary. A mod-
ern formulation of this original version, expressed in the covering space, reads as
follows (see [7]).

Theorem 1.1. Let ' : R ⇥ [a, b] ! R ⇥ [a, b] be an area-preserving homeomor-
phism of the form

'(x, y) = (x + #(x, y), ⇢(x, y)),
where the continuous functions #(x, y) and ⇢(x, y) are 2⇡-periodic in their first
variable x , with ⇢(x, a) = a and ⇢(x, b) = b, for every x 2 R. Assume the
boundary twist condition

#(x, a)#(x, b) < 0, for every x 2 R.

Then ' has at least two fixed points in [0, 2⇡[⇥ ]a, b[ .
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George Birkhoff in 1913 first gave a partial proof of the theorem [4], then started
extending it to some mappings for which the invariance of the annulus is not re-
quired [5], and finally also proposed a version of the theorem in a higher dimen-
sional setting [6].

For more than a century, a lot of effort has been devoted to generalize the
theorem in both these directions. Indeed, on the one hand, the invariance of the
domain turns out to be a serious obstacle in the applications to dynamical systems;
along this line of research, several remarkable results have been obtained, making
nowadays the theorem a very powerful tool when looking for periodic solutions of
planar Hamiltonian systems. We refer to [12,18,27] for a review on the development
of the planar theory, with special emphasis on the applications to ODEs; let us state
here a version of the Poincaré-Birkhoff theorem, taken from [20], which can be
employed in the planar Hamiltonian setting.
Theorem 1.2. Consider the planar Hamiltonian system

u0 =
@H
@v

(t, u, v) , v0 = �
@H
@u

(t, u, v) , (1.1)

where H : R ⇥ R2 ! R is T -periodic in t and 2⇡-periodic in u, continuous in
(t, u, v) and continuously differentiable in (u, v). Let � 2 {�1, 1} and assume that
every solution w(t) = (u(t), v(t)) of (1.1) with v(0) 2 [a, b] is defined for every
t 2 [0, T ] and satisfies(

v(0) = a ) � [u(T ) � u(0)] < 0
v(0) = b ) � [u(T ) � u(0)] > 0.

Then, there exist at least two T -periodic solutionsw(t) = (u(t), v(t)) of (1.1), such
that

w(0) = (u(0), v(0)) 2 [0, 2⇡[⇥ ]a, b[ .

On the other hand, far fewer progresses have been made for the higher dimensional
issue, which was considered by Birkhoff himself as an outstanding question [5, page
299]. Its study has led to some famous conjectures by Arnold [1] and eventually
to the development of symplectic geometry [33]. By the use of monotonicity as-
sumptions on the twist, some higher dimensional versions of the Poincaré-Birkhoff
theorem have been given (see, e.g., [34]), but, so far, a genuine generalization has
never been found.

Recently, however, Fonda and Ureña [20] provided an extension of Theo-
rem 1.2 to Hamiltonian systems in any (even) finite dimension: considering a sys-
tem like (1.1) with (u,v) = (u1, . . . ,uN , v1, . . . ,vN )2R2N , a suitable twist con-
dition on the boundary of the set

QN
k=1[ak, bk], requiring a change of sign for

uk(T ) � uk(0) when passing from vk(0) = ak to vk(0) = bk , provides the exis-
tence of N+1 distinct T -periodic solutions (see [20, Theorem 6.2] for the precise
statement). This twist condition clearly extends, in the higher dimensional case, the
one proposed in Theorem 1.2.

Taking advantage of this result, in this paper we will provide for the first time
an infinite-dimensional version of the Poincaré-Birkhoff theorem. This seems to
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be an ambitious task, since most of the compactness arguments used to prove the
theorem in the finite-dimensional case could fail, of course. We will manage to
overcome this difficulty by working on a Hilbert cube of the type

Q1
k=1[ak, bk] in

the Hilbert space `2; the compactness of this set, together with a suitable formula-
tion of the twist condition, will allow us to remedy the lack of compactness in the
infinite-dimensional setting, finally getting the existence of at least one T -periodic
solution of our (infinite-dimensional) Hamiltonian system, i.e., one fixed point of
the associated Poincaré map.

The plan of the paper is as follows. In Section 2 we describe our infinite-
dimensional setting and we prove our first main result (Theorem 2.1). The proof
is based on a Galerkin-type approximation scheme: first, the main theorem in [20]
is applied to a sequence of approximating finite-dimensional Hamiltonian systems,
providing a corresponding sequence of periodic solutions; a compactness argument
is then used to extract a subsequence converging to a periodic solution of the origi-
nal infinite-dimensional system.

In Section 3 we provide some applications of our main result to systems of
infinitely many second order ODEs, extending to the infinite-dimensional setting
some well-known statements for pendulum-like scalar equations and systems.

In Section 4 we adopt a more abstract perspective, providing a further exten-
sion of Theorem 2.1; here, the twist condition takes a more general form, which can
be seen as an infinite-dimensional generalization of the one introduced by Conley
and Zehnder in [9, Theorem 3]. We also propose an infinite-dimensional extension
of [9, Theorem 1], a result of the same authors providing an answer to a famous
conjecture by Arnold. A final Appendix is devoted to the Hilbert cube and its main
topological features.

Let us mention that periodic and quasi-periodic solutions to infinite-dimen-
sional Hamiltonian systems can also be detected by the methods of KAM theory,
finding fertile ground in applications to Hamiltonian PDEs. Among these, the non-
linear wave equation, the nonlinear Schrödinger equation, the KdV equation, and
several equations from hydrodynamics (see, e.g., [3,10,25,26,37] and the references
therein). Typically, this theory provides a lot of information when perturbing com-
pletely integrable systems, under some nondegeneracy assumptions. Our approach
here is more elementary, and it is not of perturbative nature; we hope that the results
in this paper will also stimulate further research in the field of Hamiltonian PDEs,
leading to new applications therein.

This paper is dedicated to the memory of Maria Paola Gramegna who, at the
beginning of the twentieth century, under the supervision of Giuseppe Peano, was
one of the first pioneering mathematicians to prove the existence of solutions to
infinite-dimensional differential systems [23]. She tragically died when she was 28
years old, victim of an earthquake.

2. The main result
In this section we state and prove our first main result, dealing with an infinite-
dimensional Hamiltonian system on a separable real Hilbert spaceH. Precisely, we
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consider the system

x 0 = ry H(t, x, y) , y0 = �rx H(t, x, y) , (2.1)

where H : R ⇥ H ⇥ H ! R is assumed to be T -periodic in the first variable,
continuous in (t, x, y) and continuously differentiable in (x, y). More precisely,
we assume that H is differentiable with respect to z = (x, y) 2 H ⇥ H, and
rz H = (rx H,ry H) : R ⇥ H ⇥ H ! H ⇥ H is continuous. Throughout the
paper, solutions to (2.1) are meant in the classical sense, namely as continuously
differentiable functions z = (x, y) : I ! H ⇥ H, being I ⇢ R an interval,
satisfying the differential equation pointwise; in particular, we will be interested
in the existence of T -periodic solutions. Hamiltonian systems like (2.1) have been
considered, e.g., in [2, 14]; we also mention the book [13] as a reference about the
general theory of ODEs in infinite-dimensional spaces.

Let us introduce our structural framework. In the following, it will be conve-
nient to identify the spaceH with `2, the space of real sequences ⇠ = (⇠k)k�1 such
that

P1
k=1 ⇠2k < 1, endowed with the usual scalar product

h⇠, ⇠̃i`2 =
1X

k=1
⇠k ⇠̃k ,

and the associated norm k⇠k`2 =
p

h⇠, ⇠i`2 . In this way, (2.1) can be thought as a
system of infinitely many scalar ODEs,

8
>><

>>:

x 0
k =

@H
@yk

(t, (x1, x2, . . .), (y1, y2, . . .))

y0
k = �

@H
@xk

(t, (x1, x2, . . .), (y1, y2, . . .))
k = 1, 2, . . . ,

where x = (x1, x2, . . . , ) and y = (y1, y2, . . .) belong to `2. We will also make use
of the following standard notation: given (⇠1, ⇠2, . . .) and (⇠̃1, ⇠̃2, . . .) in `2,

1Y

k=1

⇥
⇠k, ⇠̃k

⇤
:=
�
� = (�1,�2, . . .) 2 `2 | ⇠k  �k  ⇠̃k

 
.

First, we assume that rz H(t, z) has at most linear growth in the variable z, namely:

(A1) there exists C > 0 such that

krz H(t, z)k  C(1+ kzk), for every t 2 [0, T ], z 2 `2 ⇥ `2,

where the symbol k · k denotes the usual norm in the product space.
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Second, we consider three sequences (⌧k)k, (ak)k, (bk)k in `2, with

⌧k > 0, ak  0  bk and bk � ak > 0,

for every k � 1, and we define the two bounded subsets of `2

T1 =
1Y

k=1
[0, ⌧k], D1 =

1Y

k=1
[ak, bk].

With this notation, we assume the Lipschitz continuity condition

(A2) setting
R = (diam(T1 ⇥D1) + 1) eCT ,

there exists a constant L > 0 such that

krz H(t, z1)�rz H(t, z2)k  Lkz1�z2k, for every t 2 [0, T ], z1, z2 2 BR,

where BR ⇢`2 ⇥ `2 denotes the closed ball centered at 0 with radius R and
C>0 is the constant introduced in assumption (A1).

Finally, to state the main result of this section we need to introduce the following
Galerkin-type approximation scheme. Writing ⇠ = (⇠1, ⇠2, . . . ) 2 `2, for every
integer N � 1 we define the projection PN : `2 ! RN as

PN
�
⇠1, ⇠2, . . .

�
=
�
⇠1, ⇠2, . . . , ⇠N

�
,

and the immersion IN : RN ! `2 as

IN
�
⌘1, ⌘2, . . . , ⌘N

�
=
�
⌘1, ⌘2, . . . , ⌘N , 0, 0, . . .

�
.

Accordingly, we introduce the finite-dimensional approximating Hamiltonian func-
tion HN : R ⇥ RN ⇥ RN ! R by setting

HN (t, u, v) = H
�
t, INu, INv

�
, (2.2)

and we write the corresponding Hamiltonian system

u0 = rvHN (t, u, v) , v0 = �ruHN (t, u, v) , (2.3)

where u = (u1, . . . , uN ), v = (v1, . . . , vN ) 2 RN . Notice that hINu, INvi`2 =PN
i=1 uivi , so that the scalar product induced by `2 on RN coincides with the usual

Euclidean one, and the gradients in (2.3) are defined accordingly. In particular,

ruHN (t, u, v) = PNrx H
�
t, INu, INv

�
,

rvHN (t, u, v) = PNry H
�
t, INu, INv

�
.

(2.4)
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As a final notation, we set

TN = PNT1 =
NY

k=1
[0, ⌧k], DN = PND1 =

NY

k=1
[ak, bk].

We are now in a position to state and prove our first main result, extending Theo-
rem 1.2 to the infinite-dimensional setting.

Theorem 2.1. Let (A1) and (A2) hold and assume further that:

• The Hamiltonian function H is ⌧k-periodic in the variable xk , for every k � 1;
• There exists a sequence (�k)k in {�1, 1} such that, for every sufficiently large
integer N , if w(t) = (u(t), v(t)) is a solution of (2.3) with v(0) 2 @DN , then,
for every k = 1, . . . , N ,

(
vk(0) = ak ) �k

⇥
uk(T ) � uk(0)

⇤
< 0

vk(0) = bk ) �k
⇥
uk(T ) � uk(0)

⇤
> 0.

(2.5)

Then, there exists a T -periodic solution z(t) = (x(t), y(t)) of (2.1), such that

z(0) = (x(0), y(0)) 2 T1 ⇥D1.

Remark 2.2. Some comments about Theorem 2.1 are in order. As in the classi-
cal version of the Poincaré-Birkhoff Theorem, the assumption of periodicity in the
xk-variables for the Hamiltonian H implies that the natural phase space for sys-
tem (2.1) looks like the product of the infinite-dimensional “torus” T1 with the
infinite-dimensional “cube” D1. The key point in our infinite-dimensional setting
is that both these sets are compact. Indeed, since (⌧k)k, (ak)k, (bk)k belong to `2,
both T1 and D1 are homeomorphic to the Hilbert cube [0, 1]N, whose compact-
ness follows from Tychonoff’s Theorem (see the final Appendix for further details).
Referring to the twist condition, it is worth noticing that the set D1 has empty
interior, since it is a compact subset of an infinite-dimensional space. Hence, each
of its points is a boundary point and thus a twist-type assumption on @D1 would
hardly be satisfied. In our statement, the twist condition (2.5) is indeed required
on a sequence of finite-dimensional approximating systems, and this seems to be a
convenient choice also for the applications.

Proof. Throughout the proof, it will be convenient to make use of the projection
operator on the product spaces, namely PN : `2 ⇥ `2 ! RN ⇥ RN , defined as

PN (x, y) =
�
PN x, PN y

�
=
�
x1, . . . , xN , y1, . . . , yN

�
.

We also define the operator IN : RN ⇥ RN ! `2 ⇥ `2 as

IN (u, v) =
�
INu, INv

�
=
�
(u1, . . . , uN , 0, . . .), (v1, . . . , vN , 0, . . .)

�
,
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and we set
PN = IN � PN : `2 ⇥ `2 ! `2 ⇥ `2,

in such a way that

PN (x, y) =
�
(x1, . . . , xN , 0, . . .), (y1, . . . , yN , 0, . . .)

�
.

We first prove some preliminary estimates on the solutions of the Cauchy problems
associated with (2.1), whose integral formulation reads as

z(t) = z(0) +
Z t

0

✓
ry H(s, z(s))

�rx H(s, z(s))

◆
ds. (2.6)

Using the linear growth assumption (A1) and Gronwall’s lemma, it is easily checked
that, if a solution z(t) is defined on [0, T0] for some T0 2 ]0, T ], then it satisfies the
estimate

kz(t)k  (1+ kz(0)k) eCT0, for every t 2 [0, T0].

In particular, if z(0) 2 T1 ⇥ D1, it follows that z(t) 2 BR for every t 2 [0, T0],
with R as in (A2). By the Lipschitz continuity on BR , we thus have that z(t) is
actually defined on the whole interval [0, T ], is therein unique and belongs to BR
for every t 2 [0, T ]. The same argument shows that, for any solution w(t) =
(u(t), v(t)) of (2.3) satisfying w(0) 2 TN ⇥ DN , it holds that INw(t) 2 BR
for every t 2 [0, T ] (notice that rwHN straightly satisfies the finite-dimensional
counterparts of assumptions (A1) and (A2), with the same constants).

As a consequence of the above proved global existence, together with the twist
condition (2.5), we can apply [20, Theorem 6.2] to obtain, for every large enough
integer N , a T -periodic solution wN (t) = (uN (t), vN (t)) of (2.3) with wN (0) 2
TN ⇥ DN . Moreover, in view of the above estimates, INwN (t) 2 BR for every
t 2 [0, T ].

Let now zN0 = INwN (0); we thus have a sequence (zN0 )N inT1⇥D1. By the
discussion in Remark 2.2, the setT1⇥D1 is compact in `2⇥`2, so that there exists
a subsequence, still denoted by (zN0 )N , which converges to some z0 2 T1 ⇥D1.
In view of the arguments at the beginning of the proof, the solution z(t) of (2.1)
starting from z(0) = z0 is uniquely defined on [0, T ]; we are going to show that
z(t) is T -periodic, thus completing the proof of the theorem.

Indeed, we will prove that

INwN (t) ! z(t) , uniformly for every t 2 [0, T ] ,

this being enough since the uniform limit of T -periodic functions is a T -periodic
function. To this end, we fix " > 0, and we define "0 = "/2eLT , being L > 0 as in
assumption (A2). Writing

�
�
�z(t) � INwN (t)

�
�
� 

�
�z(t) � PN z(t)

�
�+

�
�
�PN z(t) � INwN (t)

�
�
� ,
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we are led to estimate each summand separately. As for the first one, sincePN !
Id in the space L(`2) of bounded linear operators on `2 and z(t) 2 BR for every
t 2 [0, T ], for N large enough it holds that

�
�z(t) � PN z(t)

�
�  "0, for any t 2 [0, T ].

As for the second summand, we first pass to the integral formulations of (2.1)
and (2.3), namely (2.6) and

wN (t) = wN (0) +
Z t

0

✓
rvHN

�
s, wN (s)

�

�ruHN
�
s, wN (s)

�
◆
ds,

and we use standard properties of the Riemann integral so as to obtain
�
�
�PN z(t) � INwN (t)

�
�
� 

�
�
�PN z(0) � INwN (0)

�
�
�

+
Z t

0

�
�
�
�PN

✓
ry H(s, z(s))

�rx H(s, z(s))

◆
� IN

✓
rvHN

�
s, wN (s)

�

�ruHN
�
s, wN (s)

�
◆��
�
� ds.

Now, since by definition INwN (0) = zN0 = PN zN0 and kPNkL(`2)  1, for N
sufficiently large it holds that

�
�
�PN z(0) � INwN (0)

�
�
� 

�
�
�z(0) � zN0

�
�
�  "0.

On the other hand, using (2.4) we rewrite the integral term as
Z t

0

�
�
�
�PN

✓
ry H(s, z(s))

�rx H(s, z(s))

◆
� PN

✓
ry H

�
s,INwN (s)

�

�rx H
�
s,INwN (s)

�
◆��
�
� ds

which in turn can be estimated by

L
Z t

0

�
�
�z(s) � INwN (s)

�
�
� ds,

using again the fact that kPNkL(`2)  1, together with the Lipschitz condition
(A2), and recalling that z(t) and INwN (t) belong to BR , for every t 2 [0, T ].
Summing up, for every t 2 [0, T ] and every large enough N , it holds that

�
�
�z(t) � INwN (t)

�
�
�  "e�LT + L

Z t

0

�
�
�z(s) � INwN (s)

�
�
� ds.

By Gronwall’s Lemma we get
�
�
�z(t) � INwN (t)

�
�
�  ", for every t 2 [0, T ],

whence the conclusion.
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Remark 2.3. Let us notice that [20, Theorem 6.2], used in the proof of our main
result, actually gives the existence of N + 1 distinct T -periodic solutions to (2.3).
Therefore, under the assumptions of Theorem 2.1, it would be natural to conjecture
the existence of infinitely many T -periodic solutions of (2.1). This however seems to
be out of reach within our Galerkin-type approximation argument, since multiplicity
may be lost when passing to the limit.

3. Some examples of applications

In this section we give a possible application of Theorem 2.1 to an infinite-dimen-
sional second order system of ODEs. Precisely, we consider a system of the type

x 00
k +

@V
@xk

(t, x1, . . . , xk, . . . ) = ek(t), k = 1, 2, . . . , (3.1)

where V(t, x1, . . . , xk, . . . ) is T -periodic in the variable t and ⌧k-periodic in each
variable xk , while ek(t) is a T -periodic forcing term with zero mean, i.e.,

Z T

0
ek(t) dt = 0, k = 1, 2, . . . (3.2)

Such a setting is motivated by the classical result for pendulum-like scalar equa-
tions [19,22,31], together with its several generalizations to finite-dimensional sys-
tems [8, 15, 17, 20, 21, 24, 28, 29, 32, 36, 39]. Our next result will then represent a
possible infinite-dimensional extension.

To enter the functional setting of Section 2, some care is required. Precisely,
we suppose that V : R⇥ `2 ! R is continuous in all its variables and continuously
differentiable with respect to x = (x1, x2, . . .) 2 `2; moreover, we require that the
map

e : R ! `2, t 7! e(t) = (e1(t), e2(t), . . .),

is well-defined and continuous. Due to these assumptions, (3.1) can be rewritten in
a compact way as

x 00 + rxV(t, x) = e(t). (3.3)

Solutions to (3.3) will then be meant as C2-functions x : R ! `2 satisfying the
equation pointwise.

We are now ready to state the main result of this section.

Theorem 3.1. In the above setting, suppose further that (⌧k)k belongs to `2. More-
over, assume that:

(V1) There exists (Mk)k in `2 such that, for every k � 1,
�
�
�
�
@V
@xk

(t, x)
�
�
�
�  Mk , for every (t, x) 2 [0, T ] ⇥ `2;
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(V2) For every ⇢ > 0, there exists L⇢ > 0 such that

krxV(t, x) � rxV(t, x̃)k`2 L⇢kx � x̃k`2 , for every t 2 [0, T ], x, x̃ 2 B⇢,

where B⇢ denotes the closed ball in `2, centered at 0 with radius ⇢.

Then, system (3.1) has a T -periodic solution.

Proof. Let E(t) = (E1(t), E2(t), . . .) be a primitive of e(t) with
R T
0 E(s) ds = 0.

As a first step, we rewrite system (3.3) as

x 0
k = yk + Ek(t), y0

k = �
@V
@xk

(t, x1, . . . , xk, . . . ) , k = 1, 2, . . . ;

it is easily checked that such a system possesses a Hamiltonian structure, with
Hamiltonian function H : R ⇥ `2 ⇥ `2 ! R given by

H(t, x, y) =
1X

k=1

 
y2k
2

+ yk Ek(t)

!

+ V(t, x1, . . . , xk, . . . ).

Notice that H is well-defined, is ⌧k-periodic in each variable xk and, thanks to the
zero mean value condition (3.2), is T -periodic in the variable t . Moreover, both the
assumptions (A1) and (A2) of the previous section are satisfied. Indeed, since

rz H(t, z) = (rxV(t, x), y + E(t)) ,

assumption (A2) follows plainly from (V2). On the other hand, assumption (V1)
yields

krz H(t, z)k2 
1X

k=1
M2
k + 2

⇣
kyk2

`2
+ kE(t)k2

`2

⌘
,

for every t 2 [0, T ] and z = (x, y) 2 `2 ⇥ `2, implying that (A1) holds true.
To conclude the proof, we thus need to find two sequences (ak)k, (bk)k in `2

such that the twist condition (2.5) holds true. To this end, we set

ak = �2MkT, bk = 2MkT,

and, for N sufficiently large, we consider the finite-dimensional system

u0
k = vk + Ek(t), v0

k = �
@V
@uk

(t, u1, . . . , uN , 0, . . . ), k = 1, . . . , N ,

which is readily verified to be the finite-dimensional approximation (2.3). Inte-
grating the equations, we immediately see that, if vk(0) = ak , then vk(t) < 0 for
every t 2 [0, T ], whence uk(T ) � uk(0) < 0. Symmetrically, if vk(0) = bk , then
vk(t) > 0 for every t 2 [0, T ], so that uk(T ) � uk(0) > 0. Theorem 2.1 thus
applies, giving the conclusion.
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We would like to consider now a system like

# 00
k + �k

@W
@#k

(t,#1, . . . ,#k, . . .) = fk(t), k = 1, 2, . . . , (3.4)

where �k > 0 for every k � 1, assuming thatW is T -periodic in the variable t and
2⇡-periodic in each variable #k . In this case, if

1X

k=1

1
�k

< +1,

then it is easy to see that the change of variables xk = #k/
p

�k leads back to
the setting of system (3.1), with V(t, x1, . . . , xk, . . .) = W(t,#1, . . . ,#k, . . .) and
ek(t) = fk(t)/�k (the k-th period will now be ⌧k = 2⇡/

p
�k). To make such a

procedure rigorous, we need to settle equation (3.4) in the Hilbert space of weighted
`2-summable sequences

`2w =

(

(⇠k)k

�
�
�
�
�

1X

k=1

⇠2k
�k

< 1

)

,

endowed with the scalar product

h⇠, ⇠̃i`2w =
1X

k=1

⇠k ⇠̃k

�k
,

and the corresponding norm k⇠k`2w
=
q

h⇠, ⇠i`2w . Indeed, assumingW : R⇥`2w ! R
to be continuously differentiable in # , by the definition of the inner product in `2w
one has

r#W(t,#) =

✓
�1

@W
@#1

(t,#), �2
@W
@#2

(t,#), . . .

◆
.

Hence, system (3.4) can be briefly written as

# 00 + r#W(t,#) = f (t) ,

where of course the map t 7! f (t) = ( f1(t), f2(t), . . .) is supposed to be well-
defined and continuous with values in `2w, and a solution is meant to be a C2-
function # : I ! `2w, where I ⇢ R is an interval, which satisfies the equation
pointwise. We then have the following.

Corollary 3.2. In the above setting, suppose further that
R T
0 fk(t) dt = 0 for every

k � 1 and that

(W1) There exists a constant M > 0 such that, for every k � 1,
�
�
�
��k

@W
@#k

(t,#)

�
�
�
�  M , for every (t,#) 2 [0, T ] ⇥ `2w;
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(W2) For every ⇢ > 0, there exists L⇢ > 0 such that

kr#W(t,#) � r#W(t, #̃)k`2w

 L⇢k# � #̃k`2w
, for every t 2 [0, T ], #, #̃ 2 B⇢,

where B⇢ denotes the closed ball in `2w, centered at 0 with radius ⇢.

Then, system (3.4) has a T -periodic solution.

4. A further generalization

In this section we propose a further infinite-dimensional extension of the Poincaré-
Birkhoff theorem, which will include Theorem 2.1 as a special case. Such a gener-
alization will be given on the lines of the N -dimensional version proved by Fonda
and Ureña in [20, Theorem 6.1], which we briefly recall below (in a slightly simpli-
fied version). In the following, by a convex body D ⇢ RN we mean the closure of
a non-empty, open, convex and bounded set; accordingly, we denote by N (v) the
corresponding outer normal cone at the point v 2 @D, namely, the set

N (v) =
n
⇣ 2 RN | h⇣, v � v0iRN � 0, for every v0 2 D

o
.

Theorem 4.1 ([20, Theorem 6.1]). Let {b1, . . . , bN } be a basis of RN and con-
sider the finite-dimensional Hamiltonian system

u0 = rvH(t, u, v) , v0 = �ruH(t, u, v) , (4.1)

where H : R ⇥ RN ⇥ RN ! R is T -periodic in t , continuous in (t, u, v), continu-
ously differentiable in (u, v) and such that, for k = 1, . . . , N ,

H(t, u + bk, v) = H(t, u, v), for every t 2 [0, T ], (u, v) 2 RN ⇥ RN .

Let A be a regular and symmetric N ⇥ N matrix and let D ⇢ RN be a convex
body. Furthermore, assume that every solution w(t) = (u(t), v(t)) of (4.1) with
v(0) 2 D is defined for every t 2 [0, T ], and

v(0) 2 @D ) hu(T ) � u(0), A⇣ iRN > 0, for every ⇣ 2 N (v(0)) \ {0}. (4.2)

Then, there exist at least N + 1 distinct T -periodic solutions w(t) = (u(t), v(t))
of (4.1) such that

w(0) = (u(0), v(0)) 2 TN ⇥ D,

where TN =
�PN

k=1 ↵kbk | 0  ↵k  1
 
.
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Condition (4.2) was inspired by a similar one previously considered by Conley and
Zehnder [9]; in the particular case when D =

QN
k=1[ak, bk] and A is a diagonal

matrix, it contains the twist condition appearing in the statement of [20, Theorem
6.2] (we recall that such a theorem was used in the proof of Theorem 2.1). For other
types of twist conditions, we refer to [16,20].

Let us now provide an infinite-dimensional version of Theorem 4.1. Given a
separable real Hilbert space H with Hilbert basis (ek)k , we consider the Hamilto-
nian system

x 0 = ry H(t, x, y), y0 = �rx H(t, x, y), (4.3)

where H : R ⇥ H ⇥ H ! R is T -periodic in the first variable, continuous in
(t, x, y) and continuously differentiable in z = (x, y). Similarly as in Section 2, we
further assume that:

(A0
1) There exists C > 0 such that

krz H(t, z)k  C(1+ kzk), for every t 2 [0, T ], z 2 H⇥H.

Moreover, given a non-empty, convex and compact set D ⇢ H and a sequence
(⌧k)k 2 `2, with ⌧k > 0 for every k � 1, we define the bounded subset of `2

T1 =

(
1X

k=1
↵kek | 0  ↵k  ⌧k

)

,

and we assume that:

(A0
2) Setting

R = (diam(T1 ⇥D) + 1) eCT ,

there exists a constant L > 0 such that

krz H(t, z1) � rz H(t, z2)kLkz1 � z2k, for every t 2 [0, T ], z1, z2 2 BR,

where BR ⇢ H⇥H denotes the closed ball centered at 0 with radius R.

Finally, for a strictly increasing sequence of positive integers (pN )N , we set

XN = span{e1, . . . , epN },

and denote by5N : H ! XN the corresponding orthogonal projection. With these
preliminaries, we have the following result.

Theorem 4.2. Let (A0
1) and (A0

2) hold and assume further that:

• For every k � 1, the Hamiltonian H satisfies the periodicity assumption

H(t, x + ⌧kek, y) = H(t, x, y), for every t 2 [0, T ], (x, y) 2 H⇥H;
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• There exists an invertible self-adjoint operator A 2 L(H), satisfying A(XN ) ⇢
XN for every N , such that the following condition holds true: for every suffi-
ciently large integer N � 1, if w(t) = (u(t), v(t)) 2 XN ⇥ XN is a solution
of

u0 = 5Nry H(t, u, v), v0 = �5Nrx H(t, u, v), (4.4)

with v(0) 2 @XN (D \ XN ), then

hu(T ) � u(0), A⇣ i > 0, for every ⇣ 2 ND\XN (v(0)) \ {0}. (4.5)

Then, there exists a T -periodic solution z(t) = (x(t), y(t)) of (4.3) such that

z(0) = (x(0), y(0)) 2 T1 ⇥D.

Remark 4.3. A bit of caution in considering condition (4.5) is needed. Indeed, it is
implicitly assumed that, for every N sufficiently large, the set D \ XN is a convex
body with respect to the relative topology of the finite-dimensional subspace XN
(for example, the theorem will not be applicable if H = `2 with the usual Hilbert
basis andD =

QM
k=1[0, 1/k]⇥ {0}⇥ {0}⇥ . . ., sinceD\ XN has empty interior in

XN when N > M). Having this in mind, ifD\XN is a convex body, @XN (D\XN )
andND\XN (v) denote the boundary and the normal cone in XN at v, respectively.

Proof. We just give a sketch of the proof, since it is similar to the one of Theo-
rem 2.1. Defining HN : R⇥XN⇥XN ! R as the restriction of H toR⇥XN⇥XN ,
it can be seen that

ruHN (t, u, v) = 5Nrx H(t, u, v), rvHN (t, u, v) = 5Nry H(t, u, v),

and all the assumptions of Theorem 4.1 are satisfied. Hence, there is a T -periodic
solution wN (t) of (4.4) satisfying wN (0) 2 (T1 \ XN ) ⇥ (D \ XN ). By com-
pactness, there is a subsequence, still denoted by (wN (0))N , which converges to
some z0 2 T1 ⇥D. The solution z(t) of (4.3) starting from z(0) = z0 is uniquely
defined on [0, T ] by (A0

1) and (A0
2), and the same argument used in the proof of

Theorem 2.1 can be applied, showing that z(t) is T -periodic.

Let us show how Theorem 2.1 follows from Theorem 4.2. Let H = `2, with
its usual Hilbert basis (ek)k , and set pN = N and

D =
1Y

k=1
[ak, bk] = D1.

In this case,

D \ XN =
NY

k=1
[ak, bk] ⇥ {0} ⇥ {0} ⇥ · · ·
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is a convex body in XN for every N and its normal cone at

v = (v1, . . . , vN , 0, 0, . . .) 2 @XN (D \ XN )

is given by

ND\XN (v) = I1(v1) ⇥ I2(v2) ⇥ · · · ⇥ IN (vN ) ⇥ {0} ⇥ {0} ⇥ · · · ,

where, for k � 1,

Ik(vk) =

8
><

>:

(�1, 0) if vk = ak
(0,+1) if vk = bk
{0} if vk 2 (ak, bk).

Then, defining the bounded self-adjoint operator A : `2 ! `2 by

Aek = �kek, for every k � 1,

it is immediately checked that the twist condition (4.5) holds true. SinceD is convex
and compact, as already remarked, the conclusion follows.

As a final remark, we notice that, using Theorem 4.2, we can also extend The-
orem 2.1 to a “vector Hilbert cube” framework. Precisely, we can replace the inter-
vals [ak, bk] by convex bodies Dk ⇢ Rdk having arbitrary finite dimension dk � 1;
the assumption that (ak)k, (bk)k belong to `2 with ak  0  bk is accordingly
replaced by

(diam Dk)k belongs to `2, and 0 2 Dk .

By minor modifications of the arguments in the Appendix, we see that the set

D =
1Y

k=1
Dk

is a convex compact subset of the space `2. On this set, a natural twist condition,
generalizing (2.5), can be stated on the lines of the one in Theorem 4.1. More
precisely, setting DN =

QN
k=1 Dk and writing any vector ⌘ 2 RpN , with pN =

d1 + . . . + dN , as ⌘ = (E⌘1, . . . , E⌘N ), with E⌘k 2 Rdk , we require the following:

• For every k � 1, there exists a symmetric and regular dk ⇥ dk matrix Ak such
that, for every sufficiently large integer N , if w(t) = (u(t), v(t)) 2 RpN ⇥ RpN

is a solution of

u0 = rvHN (t, u, v), v0 = �ruHN (t, u, v), (4.6)
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with v(0) 2 @DN , then

NX

k=1
hEuk(T ) � Euk(0), Ak E⇣ki > 0, for every ⇣ 2 NDN (v(0)) \ {0}.

Of course, in (4.6) we mean the truncated Hamiltonian HN as the vectorial analogue
of the one in (2.2), namely,

HN (t, u, v) = H(t, (Eu1, . . . , EuN , 0, . . .), (Ev1, . . . , EvN , 0, . . .)).

To see that the above framework enters the statement of Theorem 4.2, it is enough
to choose the usual Hilbert basis in the space H = `2, and to define A 2 L(`2) as
the diagonal operator

A =

0

B
B
B
B
@

A1 0 0 · · ·

0 A2 0 · · ·

0 0
. . .

...
...

1

C
C
C
C
A

.

Let us now investigate the case when the Hamiltonian function H(t, x, y), besides
being ⌧k-periodic in each variable xk , is also periodic in some of the variables yk .
This situation has been considered in the finite-dimensional case in [16, Theorem
12], where it was shown that, if the Hamiltonian is periodic in x1, . . . , xN and in
y1, . . . , yM , adding a twist condition on the complementary (N � M)-dimensional
space one obtains N + M + 1 distinct T -periodic solutions. In the case when
M = N , i.e., when the Hamiltonian is periodic in all variables, the twist condition
is not necessary any more, and one gets 2N + 1 periodic solutions: this is a famous
theorem by Conley and Zehnder [9, Theorem 1] partially solving a conjecture by
Arnold.

By the techniques introduced in this paper, it is possible to deal with various
situations where the Hamiltonian function, defined on an infinite-dimensional sep-
arable Hilbert space, is also periodic in all variables xk and in some of the variables
yk , maybe also an infinite number of them. To be brief, we will only consider here
the case when the Hamiltonian is periodic in all variables, similarly as in [9, Theo-
rem 1].

Theorem 4.4. Let the Hamiltonian function H(t, x, y) be ⌧k-periodic in each vari-
able xk , and ⌧̂k-periodic in each variable yk , where (⌧k)k and (⌧̂k)k are two positive
sequences in `2. Accordingly, define

T1 =

(
1X

k=1
↵kek | 0  ↵k  ⌧k

)

, bT1 =

(
1X

k=1
↵kek | 0  ↵k  ⌧̂k

)

,
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and assume conditions (A0
1) and (A0

2), with D replaced by bT1. Then, there exists
a T -periodic solution of (4.3).
Proof. All the finite-dimensional reductions (4.4) of our Hamiltonian system have a
T -periodic solution wN (t) = (uN (t), vN (t)): this can be deduced from [9, 28, 39].
By the periodicity of the Hamiltonian function, we can assume that wN (0) 2 T1 ⇥
bT1, and the compactness of this set allows us to conclude along the lines of the
proof of Theorem 2.1.

Appendix: the Hilbert cube

The Hilbert cube is defined as the set

C = [0, 1] ⇥ [0, 1] ⇥ . . . = [0, 1]N,

with the usual product topology (that is, the topology generated by all the Cartesian
products of open sets in every component space, only finitely many of which can be
proper subsets). In Functional Analysis, however, the name Hilbert cube is usually
attributed to the closed convex subset of `2 defined by

C =
1Y

k=1


0,
1
k

�
.

Here, however, the topology is the one inherited by the metric topology on `2; with
this choice, it can be seen (see [11, pages 164-165]) that the map

C ! C, (⇠k)k 7! (k⇠k)k
is a homeomorphism. As a consequence, C is compact, since the compactness of
C just follows from Tychonoff’s Theorem. Even more, it can be seen (see [38,
Theorem 2.3.3]) that every compact convex subset of a Banach space is linearly
homeomorphic to a closed convex subset of C. Hence, the Hilbert cube C turns
out to be a natural choice when trying to prove fixed point theorems in an infinite-
dimensional setting (cf. [30]).

In this paper, we made use of sets of the type

D1 =
1Y

k=1
[ak, bk] ⇢ `2,

where (ak)k, (bk)k belong to `2, and ak  0  bk for any k � 1. It is easily verified
that, whenever bk � ak > 0 for every k � 1, the set D1 is homeomorphic to C via
the affine map

C ! D1, (⇠k)k 7! (ak + k(bk � ak)⇠k)k ,

and hence is compact. However, for the reader’s convenience, we prove here below
its compactness in a self-contained way (relying only on well-known properties of
the metric topology of `2).
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Proof. Being `2 a metric space and D1 a closed set, it is enough to prove that D1
is totally bounded, namely that for every ✏ > 0 there exist ⇠1, . . . , ⇠n 2 `2 such
that

D1 ⇢
n[

i=1
B✏

�
⇠ i
�
,

where B✏(⇠
i ) is the open ball centered at ⇠ i having radius equal to ✏. Thus, let us

fix ✏ > 0. Correspondingly, there exists N � 1 such that

kPN ⇠ � ⇠k2
`2

=
1X

k=N+1
⇠2k 

1X

k=N+1

�
a2k + b2k

�
<

✏2

4
, (4.7)

for every ⇠ = (⇠1, ⇠2, . . .) 2 D1 . On the other hand, since IN PND1 is (finite-di-
mensional and hence) compact, it is totally bounded, so that there exist ⇠1, . . . , ⇠n 2
`2 with

IN PND1 ⇢
n[

i=1
B✏/2

�
⇠ i
�
. (4.8)

Combining (4.7) and (4.8), the conclusion straightly follows.
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[30] J. MAWHIN, Variations on Poincaré-Miranda’s theorem, Adv. Nonlinear Stud. 13 (2013),
209–217.

[31] J. MAWHIN and M. WILLEM, Multiple solutions of the periodic boundary value problem
for some forced pendulum-type equations, J. Differential Equations 52 (1984), 264–287.

[32] J. MAWHIN and M. WILLEM, Variational methods and boundary value problems for vector
second order differential equations and applications to the pendulum equation, In: “Non-
linear Analysis and Optimization” (Bologna, 1982), Lecture Notes in Math., Vol. 1107,
Springer, Berlin, 1984, 181–192.

[33] D. MCDUFF and D. SALAMON, “Introduction to Symplectic Topology”, Oxford University
Press, New York, 1998.

[34] J. MOSER and E. J. ZEHNDER, “Notes on Dynamical Systems”, Courant Lecture Notes in
Mathematics, Vol. 12, Amer. Math. Soc., Providence, 2005.
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