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Blow-up analysis for nodal radial solutions
in Moser-Trudinger critical equations in R2

MASSIMO GROSSI AND DAISUKE NAIMEN

Abstract. In this paper we consider sign-changing radial solutions u" to the
problem (

�1u = �ueu
2+|u|1+" in B

u = 0 on @B,

and we study their asymptotic behaviour as " & 0.
We show that when u" = u"(r) has k interior zeros, it exhibits a multiple

blow-up behaviour in the first k nodal sets while it converges to the least energy
solution of the problem with " = 0 in the (k + 1)-th one. We also prove that in
each concentration set, with an appropriate scaling, u" converges to the solution
of the classical Liouville problem in R2.

Mathematics Subject Classification (2010): 35B32 (primary); 35J61 (sec-
ondary).

1. Introduction

The classical Moser-Trudinger inequality [23,26,29]

supR
� |ru|21

Z

�
e4⇡u

2
 C|�| , (1.1)

where� ⇢ R2 is a smooth bounded domain, C is a positive constant and u belongs
to the Sobolev spaceW 1,2

0 (�) has been the subject of much research in recent years.
In the pioneering paper [11] it was proved that the supremum in (1.1) is achieved

at a positive function u 2 W 1,2
0 (�) and the corresponding Euler-Lagrange equation
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satisfied by u is given by
8
><

>:

�1u =
ueu2

R
� u2eu

2 in �

u = 0 on @�.

(1.2)

This result was the starting point for many problems involving the Moser-Trudinger
inequality. From now on we will focus our interest when � is the unit ball B,
although some of the results hold for more general domains. Extensions of (1.2) to
a more general setting like

(
�1u = �ueu2 in B
u = 0 on @B,

(1.3)

where � is a positive parameter and u is a positive solution inspired several people.
In [25] there is an interesting discussion on relationship between the maximizer to
(1.1) and solutions of (1.3).

Note that by Gidas, Ni, Nirenberg’s Theorem [16] we have that all solutions to
(1.3) are radial.

In [1] it was proved the existence of solutions u� to (1.3) for any � 2 (0, �1)
where �1 is the first eigenvalue of �1 with Dirichlet boundary conditions (see
also [2,15]). The behavior of the solution u� as � ! 0 is very interesting because a
concentration phenomenon appears. This means that ||u�||1 = u�(0) ! +1 and
u�(x) ! 0 for any x 6= 0 (see [3, 25]).

These kind of results hold also for more general problems like
(

�1u = � f (u)eu2 in B
u = 0 on @B.

(1.4)

We refer to [1,2,13–15] for the precise assumptions on f and the statements of the
results.

Next let us consider sign changing radial solutions. Here we find some inter-
esting differences towards the case of positive solutions. Indeed, in [5] the authors
showed that it is not possible to have sign changing radial solutions to (1.3) for any
� 2 (0, �1). Actually, in order to have analogous existence results we need to add
some perturbation terms in (1.3). A particular case is the following:

Theorem 1.1. (See [5] and [6]) Let us consider the problem
(

�1u = �ueu2+|u|� in B
u = 0 on @B.

(1.5)
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Then we have that
i) if 1 < � < 2 there exists a radial solution with k interior nodal zones for any
integer k � 1 and for any � 2 (0, �1);

ii) if 0  �  1 there exists �AY = �AY (�) > 0 such that for any 0 < � < �AY
there exist no sign-changing solution to (1.5).

From this results we get that the nonlinearity g(s) = ses2+|s| is the threshold which
separates the existence and nonexistence of nodal solutions as � is small. Hence it
becomes interesting to study the asymptotic behavior of the solution u in (1.5) as
� = 1+ ", 0 < � < �AY and " & 0.

In order to state our main result we need to introduce some notations. First let
us denote by u0 the solution of

8
><

>:

�1u = �ueu2+u in B
u > 0 in B
u = 0 on @B.

(1.6)

Next, for u 2 H10 (B) and " � 0 let us consider the functional

I"(u) =
1
2

Z

B
|ru|2 �

Z

B
F"(u) , (1.7)

where F"(s) = �
R s
0 te

t2+|t |1+"dt . We have two main theorems:
• A global result where we describe the behavior of the solution in B \ {0};
• A local one where we characterize the behavior of the solution in a ball and
annuli shrinking near the origin.

Finally let us denote by S(r) =
�
x 2 R2 : |x | = r

 
.

Theorem 1.2 (Global behavior). We choose �AY for � = 1 from Theorem 1.1 and
assume 0 < � < min{�AY , �1}. Let u" be a nodal radial solution given by [6,
Theorem 1.3] which verifies

(
�1u = �ueu2+|u|1+" in B
u = 0 on @B,

(1.8)

with k interior nodal zones, i.e. there are k values 0 < r1," < r2," < · · · < rk," < 1
such that u" |S(ri,") = 0 for i = 1, · · · , k. Moreover set r0," = 0 and rk+1," = 1
and assume that u"(0) > 0 and (�1)i�1u(x) > 0 for any |x | 2 (ri�1,", ri,") and
i = 1, · · · , k + 1. Then we have that, as " ! 0,

u"(x) ! (�1)ku0(x) in C2loc(B \ {0}) (1.9)
ri," ! 0 for any i = 1, . . . , k, (1.10)

Z

B
|ru"|2 !

Z

B
|ru0|2 + 4k⇡, (1.11)

I"(u") ! I0(u0) + 2k⇡. (1.12)
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Theorem 1.3 (Local behavior). For r 2 [0, 1] let u" = u"(r) be the solution con-
sidered in the previous theorem. Then for i = 1, . . . , k let Ai," = (ri�1,", ri,"),
ui," = u" |Ai," and Mi," 2 [0, 1) be such that ui,"(Mi,"ri,") = ||ui,"||L1(Ai,") (we
have that M1," = 0). Then if �i," is defined as �i," = ri,"�i," with

2�r2i,"e
||ui,"||2L1(Ai,")

+||ui,"||1+"L1(Ai,") ||ui,"||2L1(Ai,")�
2
i," = 1 (1.13)

we have that �i," ! 0 and

2||ui,"||L1(Ai,")
���ui,"

�
Mi,"ri," + �i,"r

���� ||ui,"||L1(Ai,")
�

! log
1

⇣
1+ r2

8

⌘2 in C1loc(0,+1). (1.14)

Remark 1.4. Another interesting problem with similar behavior is given by
(

�1u = �ueu2�" in B
u = 0 on @B.

(1.15)

As for (1.8) it is possible to show that there exists a family of nodal solutions u" for
any " > 0. Despite the nonlinearity is not covered by the assumptions in [6, Theo-
rem 1.3] we can still repeat the proof in order to get the existence result. Moreover
the result in [5] applies and so there exists a constant �̄ such that for any � 2 (0, �̄)
there exists no sign changing solution.

It is possible to show that analogous results like in Theorems 1.2 and 1.3 hold.
The interest in this type of nonlinearity is given by the similarity with the analogous
in higher dimension (see problem (1.21) and the comments below).
Remark 1.5. Similar phenomena to Theorem 1.1, 1.2 and 1.3 appear in higher
dimensions for the problem

(
�1u = |u|

4
N�2 u + �u in B

u = 0 on @B,
(1.16)

where N � 3 and B is the unit ball of RN .
In [8] it was proved that if N = 4, 5, 6 there exists �⇤ > 0 such that there is no

nodal radial solution for 0 < � < �⇤. The asymptotic behavior of the solution u�
as � ! � for a limit value � > 0 and N = 4, 5, 6 was studied in [20]. Note that the
case N = 6 has strong similarities with our results when k = 1. Other existence
results for N = 4, 5 can be founded in [21].

It is interesting to compare the previous results with other similar problems
like (

�1u = |u|p�1u in B ⇢ R2
u = 0 on @B,

(1.17)
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(see [17]) and (
�1u = � sinh in B ⇢ R2
u = 0 on @B,

(1.18)

(see [18]).
Both this problems share the feature that suitable transformations of positive

solutions converge to the limit problem
(

�1u = eu in R2R
R2 e

u < +1.
(1.19)

We want to compare Theorems 1.2 and 1.3 with the analogous ones for (1.17) and
(1.18).

The global behavior is different: indeed solutions studied in [17] tend towards
0 in C2(B \ {0}) and solutions founded in [18] converge to suitable multiples of the
Green function which does not belong to W 1.2

0 (B).
However more striking differences appear if we look at the local behavior.

Indeed, suitable rescaling of solutions to (1.17) and (1.18) converge to solutions of
the singular Liouville problem

8
<

:

�1u = |x |↵eu in R2Z

R2
|x |↵eu < +1,

(1.20)

for some suitable positive number ↵. We refer to [17] and [18] for more precises
statements. In our case the local behavior of the solution is again related to the
problem (1.19). In some sense our problem is more similar to the “almost critical”
problem in higher dimensions N � 3 given by

(
�1u = |u|

4
N�2�"u in B ⇢ RN

u = 0 on @B.
(1.21)

In this case the local behavior of nodal solutions is given by the (unique) positive
smooth solution of the limit problem (see [10,12,27])

�1u = u
N+2
N�2 in RN . (1.22)

In our opinion this similarity is due to the effect of the nonlinearity which is very
close to those in Moser-Trudinger inequality.

The paper is organized as follows: in Section 2 we prove some energy estimates
for the solution u". In Section 3 we study the behavior of u" in the ball Br1," where
r1," is the first zero of u". In Section 4 and 5 we consider the behavior of u" in the
other annular regions and in Section 6 we give the proof of Theorems 1.2 and 1.3.
Finally in Appendix A we prove some technical lemmas.

For all u 2 H10 (B), we define kuk :=
�R
B |ru|2dx

�1/2. In addition, let
B(0, r) := Br and B(r, s) := Bs \ Br for r, s > 0.
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2. Energy estimates for u"

In the following, we always assume 0 < � < min{�1, �AY} and we consider the
least energy nodal solution u" of (1.8) obtained in [6, Theorem 1.3]. More precisely,
we define H1r,0(B) as a subspace of H10 (B) which consists of all the radial functions
and by the Nehari manifold

N" =

⇢
u 2 H1r,0(B) \ {0} |

Z

B
|ru|2dx =

Z

B
f"(u)u dx

�
,

where f"(t) = �tet2+|t |1+" and for k 2 N,

Nk," :=
n
u 2 H1r,0(B) | 9ri 2 (0, 1); 0 = r0 < r1 < · · · < rk+1 = 1,

u(ri ) = 0, ui := u|B(ri�1,ri )
, (�1)i�1ui > 0, ui 2 N", 1  i  k + 1

o
.

Then let u" 2 Nk," be a solution to (1.8) such that

I"(u") = inf
u2Nk,"

I"(u).

We choose constants 0 = r0," < r1," < · · · < rk," < rk+1," = 1 so that u"(ri,") =
0 for i = 1, 2, · · · , k. Moreover, for each i = 1, 2, · · · , k + 1, define ui," :=
u"|B(ri�1,",ri ) with zero extension to whole B.

First let us show a suitable upper bound for I"(u"). To this end, we use the
Moser function defined in [2]. For 0 < l < R  1, we define

ml,R(x) :=
1

p
2⇡

8
>>>>>>>>><

>>>>>>>>>:

✓
log

R
l

◆ 1
2

0  |x | < l

log R
|x |

✓
log

R
l

◆ 1
2

l  |x |  R

0 |x | > R.

Then it satisfies ml,R 2 H10 (B) and kml,Rk = 1. In addition let us define a cut off
function,

�l,R(x) = 1�
ml,R(x)

p
2⇡�1 �log R

l
� 1
2

2 H1(B).

Then we have 0  �l,R  1, �l,R = 0 on Bl and �l,R = 1 on B \ BR . For
0 < l1 = l1," < R1 = R1," < p1 = p1," < l2 = l2," < R2 = R2," < p2 = p2," <
· · · < lk = lk," < Rk = Rk," < 1, we set

8
><

>:

w1," := ml1,R1
wi," := (�1)i�1�Ri�1,pi�1mli ,Ri for i = 2, · · · , k, and
wk+1," := (�1)k�Rk ,1u0,
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where u0 is the least energy solution of (1.6) obtained in [2] and thus, it satisfies

I0(u0) = inf
u2N0

I0(u) 2 (0, 2⇡).

We choose l1, R1, p1, · · · , lk, Rk so that Rk ! 0 and
8
>>>>><

>>>>>:

log 1
Ri

log 1li
! 0 (i = 1, 2, · · · , k)

log Ri
li

log pi�1
Ri�1

! 0, pi�1
li ! 0 (i = 2, · · · , k),

(2.1)

as " ! 0. For example, take any Rk > 0 such that Rk ! 0 as " ! 0 and
then, choose lk = e�1/Rk , pk�1 = l2k , and Rk�1 = pk�1e�1/ lk . Similarly, set
lk�1 = e�1/Rk�1 , pk�2 = l2k�1, Rk�2 = pk�2e�1/ lk�1 and so on. We note that, for
every i = 1, 2, · · · , k + 1 and " 2 (0, 1), there exists a constant ti," > 0 such that
ti,"wi," 2 N". (See Step 2 in the [2, proof of Lemma 3.4].) We define a test function

w"(x) :=
k+1X

i=1
ti,"wi,".

Then we have w" 2 Nk,". We obtain the following:

Lemma 2.1. We get
lim sup
"!0

I"(u")  2⇡k + I0(u0).

Proof. First observe that since w" 2 Nk,", we have

I (u")  I"(w") =
k+1X

i=1
I"(ti,"wi,").

Then it suffices to show:

(I) lim sup"!0 I"(t1,"w1,")  2⇡ ;
(II) lim sup"!0 I"(ti,"wi,")  2⇡ , for i = 2, · · · , k;
(III) lim sup"!0 I"(tk+1,"wk+1,")  I0(u0).

(I) We claim
lim sup
"!0

t21,"  4⇡. (2.2)

If not, there exist a sequence ("n) and a constant � > 0 such that "n ! 0 as n ! 1
and t21,"n � 4⇡(1 + �) for all n. Set tn := t1,"n , wn := w1,"n , ln := l1,"n and
Rn := R1,"n for simplicity. Since tnwn 2 N"n , we get

t2nkwnk
2 = �

Z

B
(tnwn)

2e|tnwn |2+|tnwn |1+"n dx .
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Then we have

t2n � �

Z

Bln
(tnwn)

2e|tnwn |2+|tnwn |1+"n dx

�
�

2
t2n l

2
n log

Rn
ln
e
t2n
2⇡ log

Rn
ln

=
1
2
t2n log

Rn
ln
exp

(
t2n
2⇡

✓
log

1
ln

� log
1
Rn

◆
� 2 log

1
ln

)

.

By (2.1) we know that

log
Rn
ln

! 1 (n ! 1),

and equivalently

log
1
Rn

= o
✓
log

1
ln

◆
.

As a consequence, we find a constant �0 > 0 such that

2 � exp
⇢
�0 log

1
ln

�

for large n. Taking n ! 1, we have a contradiction. Now, since t1,"w1," 2 N",
kw1,"k = 1 and lim sup"!0 t21,"  4⇡ , we get

�
�
�
�

Z

B
f"(t1,"w1,")t1,"w1,"dx

�
�
�
�  C

for some constant C > 0 uniformly for " > 0. Furthermore, note t1,"w1," ! 0 a.e.
on B. Then by Lemma A.1 in Appendix A, we find

lim
"!0

Z

B
F"(t1,"w1,")dx =

Z

B
F0(0)dx = 0.

As a consequence, we get

lim sup
"!0

I"(t1,"w1,") = lim sup
"!0

t21,"
2

 2⇡.

This finishes the proof of (I).

(II) Fix i = 2, 3, · · · , k. We first claim that lim"!0
R
B |rwi,"|2dx = 1. In fact,

putting li = li," (i = 2, · · · , k), Ri = Ri," (i = 1, · · · , k) and pi = pi," (i =
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1, · · · , k � 1) for simplicity, we get
Z

B
|rwi,"|

2dx =
Z

B

�
�r�Ri�1,pi�1

�
�2m2li ,Ri dx

+ 2
Z

B
�Ri�1,pi�1mli ,Rir�Ri�1,pi�1rmli ,Ri dx

+
Z

B

�
�rmli ,Ri

�
�2�2Ri�1,pi�1dx

= I1 + I2 + I3.

It follows from (2.1) that

I1 =
Z

B(Ri�1,pi�1)

�
�r�Ri�1,pi�1

�
�2m2li ,Ri dx =

log Ri
li

log pi�1
Ri�1

! 0

as " ! 0. Since �Ri�1,pi�1mli ,Rir�Ri�1,pi�1rmli ,Ri = 0 on B, we get I2 = 0.
Furthermore, as �Ri�1,pi�1 = 1 on B(li , Ri ) and rmli ,Ri = 0 on Bli , we clearly
have

I3 =
Z

B

�
�rmli ,Ri

�
�2dx = 1.

This shows the claim. Now we shall show lim sup"!0 t2i,"  4⇡ . If not, there exists
a constant � > 0 such that t2i," � 4⇡(1 + �) for all small " > 0 by extracting a
sequence if necessary. Then noting ti,"wi," 2 N" and (2.1), we get

1+ o(1) = �

Z

B

�
�Ri�1,pi�1mli ,Ri

�2 exp
n �
ti,"�Ri�1,pi�1mli ,Ri

�2

+
�
�ti,"�Ri�1,pi�1mli ,Ri

�
�1+"

o
dx

� �

Z

B(pi�1,li )
m2li ,Ri exp

n�
ti,"mli ,Ri

�2odx

=
�

2
log

Ri
li
exp

(
t2i,"
2⇡

✓
log

1
li

�log
1
Ri

◆
�2 log

1
li

�2 log
1

1� (pi�1/ li )2

)

� C exp
✓
�0 log

1
li

◆
,

for some constants C, �0 > 0 if " is small enough. Taking " ! 0, we get a contra-
diction. Then, analogously with the conclusion for (I), we obtain

lim sup
"!0

I"(ti,"wi,") = lim sup
"!0

kti,"wi,"k2

2
 2⇡.

This proves (II).
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(III) We claim that tk+1," is bounded. To see this, we follow the argument in [6,
pages 493-494]. We assume on the contrary, for a sequence ("n), we have "n ! 0
and tk+1,"n ! 1 as n ! 1. Then we let

vn :=
tk+1,"nwk+1,"n

ktk+1,"nwk+1,"nk
=

wk+1,"n
kwk+1,"nk

.

Then using (2.1), we get vn ! v0 = (�1)ku0/ku0k 6= 0 in H10 (B). Furthermore,
noting ti,"n is bounded for all i = 1, 2, · · · , k as proved in (I) and (II), we obtain

kw"nk
2 =

kX

i=1
t2i,"n + t2k+1,"nkwk+1,"nk

2 = t2k+1,"nkwk+1,"nk
2(1+ ⌘n),

for a sequence (⌘n) ⇢ R+ with ⌘n ! 0 as n ! 1. Therefore, we get

w"n
kw"nk

=
1

(1+ ⌘n)
1
2

 

vn +
kX

i=1

ti,"n
tk+1,"nkwk+1,"nk

wi,"n

!

! v0 6= 0 in H10 (B).

Finally using w"n 2 N"n and the Fatou lemma, we have

1 = lim inf
n!1

1
kw"nk

2

Z

B
f"n (wn)wndx

�
Z

B
lim inf
n!1

f"n (w"n )
w"n

✓
w"n

kw"nk

◆2
dx

= 1,

a contradiction. This proves the claim. Finally let us end the proof. We suppose the
conclusion of (III) does not hold on the contrary. Then, we have a sequence ("n) and
a constant � > 0 such that "n ! 0 as n ! 1 and I"n (tk+1,"nwk+1,"n ) � I0(u0)+ �
for all n. On the other hand, as tk+1,"n is bounded, there exists a constant t0 � 0 such
that tk+1,"n ! t0 as n ! 1 up to subsequences. This implies tk+1,"nwk+1,"n !
t0u0 in H10 (�) as n ! 1 and then, we get t0u0 2 N0. It follows that t0 = 0 or 1.
(See Step 2 in the [2, proof of Lemma 3.4].) Consequently, we deduce

lim
n!1

I"n (tk+1,"nwk+1,"n )  I0(u0),

which implies a contradiction. This completes (III).

Lemma 2.2. There exist constants 0 < K < K 0 such that

K  kuk2  K 0

for all u 2 N" and small " > 0.
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Proof. The lower bound is clearly confirmed by Lemma A.2 in Appendix A. On
the other hand, the upper bound is proved similarly in [2, Claim 1 on page 404].
This finishes the proof.

Next we study the behavior of ri,". To this end we recall the next lemma.

Lemma 2.3 (Radial lemma [28]). Let BN ⇢ R be a N -dimensional unit ball and
Hrad(BN ) be a subspace of H1(BN ) which consists of all the radial functions.
Then, there exists a constant cN > 0 such that

|u(r)|  cNkuk/r
N�1
2
⇣
u 2 Hrad

�
BN
�
and r 2 (0, 1)

⌘
.

In particular, for N = 2 we have |u(r)|  c2kuk/
p
r .

We deduce the following:

Lemma 2.4. We see
ri," ! 0 as " ! 0

for all i = 1, 2, · · · , k.

Proof. By Lemma 2.2, we may assume u" is bounded in H10 (B) and u" * u
weakly in H10 (B) as " ! 0 where u is a radial solution u to (1.8) with " = 0.
Moreover we recall that ui," = u"|B(ri�1,",ri,") satisfies (�1)i�1ui," � 0 for all
i = 1, 2, · · · , k+1. Then, we can suppose there exists a function ui 2 H10 (B) such
that ui," * ui weakly in H10 (B) and (�1)i�1ui � 0 for all i = 1, 2, · · · , k+ 1 and
further, u =

Pk+1
i=1 ui . Now, let us show rk," ! 0 which also implies ri," ! 0 for

all i = 1, 2, · · · , k�1 as " ! 0. If not, we may suppose that there exists a constant
rk 2 (0, 1] such that rk," ! rk as " ! 0. We then claim uk+1 6= 0. Indeed, if
uk+1 = 0, on the contrary, we have

R
B u

2
k+1,"dx ! 0 as " ! 0. It follows that

kuk+1,"k1 = supr2(rk,",1) uk+1,"(r) ! 1 as " ! 0. Otherwise, from Lemma 2.2,
we get

0 < K  kuk+1,"k2 = �

Z

B
u2k+1,"e

u2k+1,"+|uk+1,"|1+"dx

 �ekuk+1,"k
2
1+kuk+1,"k1+"1

Z

B
u2k+1,"dx ! 0

as " ! 0, a contradiction. As a consequence, setting kuk+1,"k1 = uk,"(r⇤
k,") with

a value r⇤
k," 2 (rk,", 1), we get from Lemma 2.3 that

kuk,"k � c�12
�
�uk,"

�
r⇤
k,"
����r⇤

k,"
� 1
2 � c�12

�
�uk,"

�
r⇤
k,"
���r

1
2
k," ! 1

as " ! 0 since rk > 0, which contradicts Lemma 2.2. This shows the claim. Espe-
cially we get 0  r1  · · ·  rk 2 (0, 1). Now recalling that u is a radial solution
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and � < �AY and then, noting (�1)kuk+1 � 0 is nontrivial and (�1)k�1uk � 0,
we must have uk = 0. Then, the maximum principle yields rk = rk+1. Finally,
repeating the argument above, we get supr2(rk�1,",rk,") uk,"(r) ! 1 as " ! 0 and
then Lemmas 2.2 and 2.3 lead us to the contradiction. This finishes the proof.

Finally, let us investigate the limit value of the energy I"(u") more precisely.

Lemma 2.5. We get
lim
"!0

I"(ui,") = 2⇡

for all i = 1, 2, · · · , k. Furthermore, we obtain

lim sup
"!0

I"(uk+1,") = I0(u0).

Proof. Choose i = 1, 2, · · · , k. We first claim

lim inf
"!0

I"(ui,") � 2⇡. (2.3)

Indeed, let ũ0," 2 H10 (B) be a positive solution of (1.8) with B replaced by Bri,"
which satisfies

I"(ũ0,") = inf

(

I"(u)
�
�
� u 2 H10

�
Bri,"

�
,

Z

Bri,"
|ru|2dx =

Z

Bri,"
f"(u)udx .

)

.

The existence of ũ0," is ensured by [2]. Then we have I"(ui,") � I"(ũ0,"). Hence
it suffices to show lim inf"!0 I"(ũ0,") � 2⇡ . Now we assume, on the contrary,
lim inf"!0 I"(ũ0,") < 2⇡ . Set vi,"(x) = ũ0,"(ri,"x). Then v = vi," satisfies

(
�1v = �r2i,"ve

v2+v1+" , v > 0 in B
v = 0 on @B.

(2.4)

We define the energy associated to (2.4).

J"(v) =
Z

B
|rv|2dx � r2i,"

Z

B
F"(v)dx

⇣
v 2 H10 (B)

⌘
.

Then we have I"(ũ0,") = J"(vi,") and thus, lim inf"!0 J"(vi,") < 2⇡ . In particular,
we have a sequence ("n) such that "n! 0 as n! 1 and c := limn!1 J"n (vi,"n ) <
2⇡ . Notice that Lemma 2.2 ensures c > 0. Then, noting J 0

"n (vi,"n ) = 0 and Lemma
A.3 in Appendix A, we can find a function v0 2 H10 (�) such that vi,"n ! v0 in
H10 (�) as n ! 1 up to subsequences. Lastly, using (2.4), we get

(
�1v0 = 0, v0 � 0 in B
v0 = 0 on @B.
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Then, the maximum principle shows v0 = 0. But this contradicts c > 0. Next let
us show

lim sup
"!0

I"(ui,")  2⇡, and lim sup
"!0

I"(uk+1,") = I0(u0). (2.5)

In fact, we get by Lemma 2.1 and (2.3) that

2⇡k + I0(u0) � lim sup
"!0

I"(u") � 2⇡k + lim sup
"!0

I"(uk+1,")

which implies I0 (u0) � lim sup" ! 0 I"(uk + 1,"). Furthermore, let u 0," be the
least energy solution of (1.8) obtained by [2]. It follows that I0(u0) �
lim sup"!0 I"(uk+1,") � lim sup"!0 I"(u0,"). We claim lim sup"!0 I"(u0,") �
I0(u0). If not, we have a sequence ("n) such that "n ! 0 as n ! 1 and
limn!1 I"n (u0,") < I0(u0). Note I0(u0) 2 (0, 2⇡). Then from Lemma A.3,
we deduce, by subtracting a subsequence if necessary, u0,"n ! ũ0 in H10 (B) as
n ! 1 and further, ũ0 is a nontrivial solution of (1.6) with I0(ũ0) 2 (0, I0(u0)).
But as ũ0 2 N0, we obtain a contradiction by the definition of u0. This proves the
claim. Now again arguing as the beginning, we get

2⇡k + I0(u0) � lim sup
"!0

I"(u") � 2⇡(k � 1) + lim sup
"!0

I"(ui,") + I0(u0).

This completes (2.5). As a consequence, (2.3) and (2.5) finish the proof.

Lemma 2.6. We have
lim
"!0

I"(uk+1,") = I0(u0).

Proof. Since lim inf"!0 I"(uk+1,")  I0(u0), arguing as in the previous proof, we
can get

lim inf
"!0

I"(uk+1,") = I0(u0).

Then combining this together with the final assertion in the previous lemma, we
complete the proof.

3. Behavior of u" in the ball Br1,"

Let us start our main argument with studying the behavior on a ball. To this end,
we first observe that u1," = u"|Br1," is a solution to

(
�1u = �ueu2+|u|1+"

, u > 0 in Br1,"
u = 0 on @Br1," ,

(3.1)
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for " > 0. Then the results in [16] shows that u1," is radial and ku1,"kL1(Br1," ) =
u1,"(0). Next we see that v1,"(x) := u"(r1,"x) (x 2 B1) is a solution of

(
�1v = �r21,"ve

v2+|v|1+" , v > 0 in B
v = 0 on @B,

(3.2)

for " > 0 and kv1,"kL1(B) = v"(0). Notice �r21," ! 0 as " ! 0 by Lemma 2.4.
Furthermore, by Lemma 2.5, we get

J"(v") :=
1
2

Z

B
|rv"|

2dx � r21,"

Z

B
F"(v")dx ! 2⇡,

as " ! 0. We have the following:

Proposition 3.1. We get v1," * 0 weakly in H10 (B), v1,"(0) ! 1 and
Z

B
|rv1,"|

2dx ! 4⇡,

as " ! 0. Furthermore, let �1," > 0 be such that

2�r21,"v1,"(0)
2ev1,"(0)

2+v1,"(0)1+"� 21," = 1.

Then we have �1," ! 0 and

2v1,"(0)(v1,"(�1,"x) � v1,"(0)) ! log
1

(1+ |x |2/8)2
in C2loc(R2),

as " ! 0.

Proof. It is a direct consequence in [3, Theorem 2].

Corollary 3.2. We obtain u1," * 0 weakly in H10 (B), u1,"(0) ! 1 and
Z

Br1,"
|ru1,"|2dx ! 4⇡,

and
I"(u1,") ! 2⇡,

as " ! 0. Furthermore, let �1," = r1,"�1," > 0. Then we have �1," ! 0 and

2u"(0)(u"(�1,"x) � u"(0)) ! log
1

(1+ |x |2/8)2
in C2loc

�
R2
�
,

as " ! 0.
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Proof. The proof follows from Proposition 3.1 and Lemma 2.5.

4. Behavior of u" on annuli

We next investigate the behavior of u" on annuli. Fix i 2 {2, · · · , k} and set ui," :=
u"|B(ri�1,",ri,"). Then ui," 2 H10 (B) by zero extension. Since ui," is radial, we may
assume it satisfies

8
><

>:

�u00
i," � 1

r u
0
i," = �ui,"eu

2
i,"+u

1+"
i," in (ri�1,", ri,")

ui," > 0 in (ri�1,", ri,")
ui,"(ri�1,") = ui,"(ri,") = 0.

(4.1)

Now we have the following result:
Proposition 4.1. We get ui," * 0 weakly in H10 (B),

Z

B(ri�1,",ri,")
|rui,"|2dx ! 4⇡,

and
I"(ui,") ! 2⇡,

as " ! 0. Moreover, let us denote by Mi,"ri," 2 (ri�1,", ri,") with Mi," < 1, the
point such that ||ui,"||L1(ri�1,",ri,") = ui,"(Mi,"ri,"). Then if we set �i," = �i,"ri," >
0 with

2�||ui,"||2L1(ri�1,",ri,")e
||ui,"||2L1(ri�1," ,ri,")

+||ui,"||1+"L1(ri�1," ,ri,")r2i,"�
2
i," = 1,

we get �i," ! 0 and further,

2||ui,"||L1(ri�1,",ri,")
�
ui,"(M"ri," + �i,"r) � ||ui,"||L1(ri�1,",ri,")

�

! log
1

�
1+ r2/8

�2 in C
2
loc(R+),

as " ! 0.
In the following, we set M" := Mi," for simplicity. We get the following:
Lemma 4.2. ui,"(M"ri,") ! +1 as " ! 0.
Proof. Integrating (4.1) we get

Z ri,"

ri�1,"
(u0
i,")

2rdr = �

Z ri,"

ri�1,"
u2i,"e

u2i,"+u
1+"
i," r dr

 �eu
2
i,"(M"ri,")+u

1+"
i," (M"ri,")

Z ri,"

ri�1,"
u2i,"r dr

(using the Poincaré inequality)  �
eu

2
i,"(M"ri,")+u

1+"
i," (M"ri,")

�1(ri�1,", ri,")

Z ri,"

ri�1,"

�
u0
i,"
�2rdr,
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where �1(ri�1,", ri,") is the first eigenvalue of the operator�u00�1
r u

0 in (ri�1,", ri,").
Since ri�1,", ri," ! 0 we get that �1(ri�1,", ri,") ! +1 as " ! 0. This gives the
claim.

Now, let us consider the scaled function, v" :
⇣
ri�1,"
ri," , 1

⌘
! R defined as

v"(r) = ui,"(ri,"r)

which satisfies
8
>>>>>>>><

>>>>>>>>:

�v00
" � 1

r v
0
" = �r2i,"v"e

v2"+v1+"" in
✓
ri�1,"
ri,"

, 1
◆

v" > 0 in
✓
ri�1,"
ri,"

, 1
◆

v"

✓
ri�1,"
ri,"

◆
= v"(1) = 0.

(4.2)

Set
r" =

ri�1,"
ri,"

.

Then we have the following local behavior:

Lemma 4.3. Choose M" 2 (r", 1) as in Proposition 4.1. Then if we set �i," > 0 so
that

2�kv"k2L1(r",1)e
kv"k2L1(r" ,1)

+kv"k
1+"
L1(r" ,1)r2i,"�

2
i," = 1,

we get �i," ! 0 and

2kv"kL1(r",1)
�
v"(M" + �i,"r) � kv"kL1(r",1)

�
! z(r)

= log
1

�
1+ r2/8

�2 in C
2
loc(0,+1),

as " ! 0.

Proof. Let v", r" and M" 2 (r", 1) as above. For �" > 0, which will be chosen
later, we define the scaled function

z"(r) = 2v"(M")(v"(M" + �"r) � v"(M")). (4.3)



BLOW-UP ANALYSIS 813

We have that z" solves the equation,
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�z00" �
1

M"
�"

+ r
z0" = 2�� 2" r2i,"e

v2" (M")+v1+"" (M")v2" (M")

✓
z"

2v2" (M")
+ 1

◆

⇥ exp

n
z"
⇣

z"
4v2" (M")

+1
⌘

+v1+"" (M")
⇣��
� z"
2v2" (M")

+1
�
�
�
1+"

�1
⌘o

in
✓
r" � M"

�"
,
1� M"

�"

◆

z"(r)  0, z"(0) = z0"(0) = 0

z"
✓
r" � M"

�"

◆
= z"

✓
1� M"

�"

◆
= �2v2" (M") ! �1 (" ! 0).

So setting
2�� 2" r

2
i,"e

v2" (M")+v1+"" (M")v2" (M") = 1

we get
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�z00" �
1

M"
�"

+ r
z0" =

✓
z"

2v2" (M")
+ 1

◆

⇥exp

n
z"
⇣

z"
4v2" (M")

+1
⌘

+v1+"" (M")
⇣��
� z"
2v2" (M")

+1
�
�
�
1+"

�1
⌘o

in
✓
r"�M"

�"
,
1�M"

�"

◆

z"(r)  0, z"(0) = z0"(0) = 0

z"
✓
r" � M"

�"

◆
= z"

✓
1� M"

�"

◆
= �2v2" (M") ! �1 (" ! 0).

(4.4)

Note that �" ! 0 as " ! 0. Actually, multiplying (4.2) by v"r and integrating over
(0, 1), we get

Z 1

0
(v0
")
2rdr = �r2i,"

Z 1

0
v2"e

v2"+v1+"" rdr

 �r2i,"e
v2" (M")+v1+"" (M")

Z 1

0
v2"rdr

(applying the Poincaré inequality ) 
�

�1
r2i,"e

v2" (M")+v1+"" (M")
Z 1

0
(v0
")
2rdr.

This shows
r2i,"e

v2" (M")+v1+"" (M") � C > 0

for some constant C > 0 and small " > 0 . Then noting our choice of �" and
Lemma 4.2, we prove the claim. Moreover we clearly have that lim"!0

1�M"
�"

!

1, lim"!0
M"�r"
�"

= l 2 [0,1] and lim"!0
M"
�"

= m 2 [l,1]. Now let us show
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that for any compact subset K b (�l,1) ([0,1) if l = 0), there exists a constant
C > 0 which is independent of " such that

kz"kC1(K )  C.

Indeed, from (4.4), we get that �z00" � 1
M"
�"

+r
z0"  1. First assume l > 0 and choose

any K b (�l, 0]. We may suppose K b ( r"�M"�"
, 0] for small " > 0. Define

a = min K < 0 and set C" = M"
�"
. Then, for any r 2 K , we derive,

�
⇥
z0"(r)(C" + r)

⇤0
 C" + r.

Integrating between r and 0 we obtain

z0"(r)(C" + r)  �

✓
C"r +

1
2
r2
◆

.

Since C" + r > 0 for small " > 0, we show

z0"(r)  �
C"r + 1

2r
2

C" + r
and thus, z"(r) �

Z 0

r

C"s + 1
2s
2

C" + s
ds

for small " > 0. If we set G"(s) =
C"s+ 1

2 s
2

C"+s , we get that G 0
"(s) � 0 for all s 2 K .

So we find that G"(s) � G"(a) for all s 2 K . Now, if C" ! 1 as " ! 0, we get
G"(a) � �2|a| for small " > 0. If C" is bounded, we get a constant c0 > 0 such
that G"(a) � �c0 for small " > 0. This implies that there exists a constant c1 > 0
such that

z0"(r)  c1 and thus, z" � c1a on K , (4.5)
for all small ". Hence we have a constantC > 0 such that kz"kC1(K )  C uniformly
for small " > 0. On the other hand, for any compact subset K b [0,1), repeating
the same argument as above, we get the desired uniform bound for kz"kC1(K ). This
proves the claim. Consequently, we may pass to the limit in the equation (4.4). Now
let us discuss the “limit domain”. We have three possibilities,

1. r"�M"
�"

! �1;
2. r"�M"

�"
! �l < 0;

3. r"�M"
�"

! 0.

We will show that only case 3 occurs.

Case 1: r"�M"
�"

! �1 cannot occur
First we note that in this case we have that M"�" ! +1. Then, passing to the limit
in (4.4), we get that there exists a function z which satisfies z" ! z in C2loc(R) and

(
�z00 = ez in R
z(0) = z0(0) = 0.

(4.6)
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Hence z(s) = log 4e
p
2s

⇣
1+e

p
2s
⌘2 . So we have that

Z 1

r"
|v0
"|
2rdr = �r2i,"

Z 1

r"
v2"e

v2"+v1+"" rdr

=�r2i,"�"e
v2" (M")+v1+"" (M")v2" (M")

⇥
Z 1�M"

�"

r"�M"
�"

✓
z"(r)

2v2" (M")
+ 1

◆2
exp

z"(r)
✓

z"(r)
4v2" (M")

+1
◆

+v1+"" (M")

 �
�
�
�

z"(r)
2v2" (M")

+1
�
�
�
�

1+"
�1

!

⇥ (M" + �"r)dr

� �r2i,"�"M"ev
2
" (M")+v1+"" (M")v2" (M")

⇥
Z 1�M"

�"

0

✓
z"(r)

2v2" (M")
+ 1

◆2
exp

z"(r)
✓

z"(r)
4v2" (M")

+1
◆

+v1+"" (M")

 �
�
�
�

z"(r)
2v2" (M")

+1
�
�
�
�

1+"
�1

!

dr

=
M"

2�"

Z 1�M"
�"

0

✓
z"(r)

2v2" (M")
+ 1
◆2
exp

z"(r)
✓

z"(r)
4v2" (M")

+1
◆

+v1+"" (M")

 �
�
�
�

z"(r)
2v2" (M")

+1
�
�
�
�

1+"
�1

!

dr.

Here Fatou’s lemma implies that

lim inf
"!0

Z 1�M"
�"

0

✓
z"(r)
2v"(M")

+ 1
◆2
exp

z"(r)
✓

z"(r)
4v2" (M")

+1
◆

+v1+"" (M")

 �
�
�
�

z"(r)
2v2" (M")

+1
�
�
�
�

1+"
�1

!

dr

�
Z +1

0
ez(s)dr > 0.

Therefore by Lemma 2.2, we deduce a contradiction since M"/�" ! 1 as " ! 0.
This ends Case 1.

Case 2: r"�M"
�"

! �l < 0 cannot occur
Noting m := lim

"!0
M"
�"
and m � l, we get, passing to the limit in (4.4), that the weak

limit z satisfies
8
<

:

�z00 �
1

m + r
z0 = ez in (�l,+1)

z(r)  0, z(0) = z0(0) = 0.

Then, setting Z(s) = z(s � m) we derive that Z satisfies
(

�Z 00 � 1
r Z

0 = eZ in (m � l,+1)

Z(r)  0, Z(m) = Z 0(m) = 0.
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This Cauchy problem admits the unique solution (see [17])

Z(s) = log
4↵2m↵+2s↵�2

((↵ + 2)m↵ + (↵ � 2)s↵)2
,

where ↵ =
p
2m2 + 4. Let us show m = l. To this end, we can proceed as

in [17, Lemma 3.5]. For the sake of the completeness, we sketch it. We shall show
that z"((r" � M")/�") ! �1 implies that m = l. Indeed, arguing as above, we
have that for any r 2 [(r" � M")/�", 0],

z0"(r)
✓
M"

�"
+ r

◆
 �

✓
M"

�"
r +

1
2
r2
◆

.

If by contradiction we have that m > l, we deduce that M"�" + r � m � l + o(1)
where o(1) ! 0 as " ! 0 and then we get that

z0"(r)  C in [(r" � M")/�", 0]

for a constant C > 0 which is independent of small " > 0. On the other hand,
by the mean value theorem, since z"((r" � M")/�") ! �1 and z"(0) = 0 we
deduce the existence of ⇠" 2

⇣
r"�M"
�"

, 0
⌘
such that z0"(⇠") ! �1 which gives a

contradiction. So m = l. Now, from Lemmas 2.5, A.1 and the blow-up procedure
as above, we get

2 = �r2i,"

Z 1

r"
v2"e

v2"+v1+"" rdr + o(1)

=
1
2

Z 1�M"
�"

r"�M"
�"

✓
z"(r)

2v2" (M")
+ 1

◆2

⇥ exp
z"(r)

✓
z"(r)

4v2" (M")
+1
◆

+v1+"" (M")

 �
�
�
�

z"(r)
2v2" (M")

+1
�
�
�
�

1+"
�1

!
✓
M"

�"
+ r

◆
dr + o(1),

where o(1) ! 0 as " ! 0. Then using m = l > 0 and Fatou’s Lemma, we obtain

2 �
1
2

Z 1

0
eZ(s)sds =

p
2m2 + 4 > 2,

a contradiction. This finishes Case 2.

Case 3: r"�M"
�"

! 0 occurs.
Repeating the procedure in Case 2 we can show m = l = 0. As a consequence, we
deduce

z" ! z in Cloc([0,1)) \ C2loc((0,1))
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and then, z satisfies
(

�z00 � 1
r z

0 = ez in (0,+1)

z(r)  0, z(0) = 0.

The previous equation can be integrated giving the solutions (see [17, pages 744-
745])

z(r) = log

0

B
@
4
�2

e
p
2 log r�y�

⇣
1+ e

p
2 log r�y�

⌘2

1

C
A� 2 log r (4.7)

for some constants � 6= 0, y 2 R. Moreover a direct calculation shows

z(r) = 2 log
2
�

�

p
2
�
y +

 p
2
�

� 2

!

log r � 2 log
⇣
1+ e

p
2 log r�y�

⌘
.

Since z(0) = 0, we must have � = 1/
p
2. Then we clearly deduce y = log 2

p
2.

This completes the proof.

Proof of Proposition 4.1. The proposition follows from Lemmas 2.5, A.1 and
4.3.

Remark 4.4. If we consider a radial nodal solution u p to the problem
(

�1u = |u|p�1u in B
u = 0 on @B,

(4.8)

then in [17, Proposition 3.1] it was proved that Case 2 occurs for some suitable
m < 0. This shows that the shape of the nonlinearity plays a crucial role.

5. Behavior of u" in B \ Brk,"

Next we show the behavior on B \ Brk," . We set uk+1," := u"|B\Brk," 2 H10 (B) by
zero extension. Then we have the following:

Proposition 5.1. We get

uk+1," ! u0 in H10 (B),

as " ! 0 where u0 is the least energy solution of (1.6).
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First observe that we have already proved

0 < lim
"!0

I"(uk+1,") = inf
u2N0

I0(u) < 2⇡

by Lemma 2.6. This means that the energy of uk+1," belongs to the suitable com-
pactness region for Palais-Smale sequences [1]. Although we do not ensure
lim"!0 I 0"(uk+1,") = 0, we can accomplish the proof by the argument based on
Lions’ concentration compactness result [22]. We refer to the proof in [1] (and
also [15]).

Proof of Proposition 5.1. Since u" is bounded, we can assume, by choosing a se-
quence if necessary, that there exists a function u0 2 H10 (�) such that

u" * u0 weakly in H10 (B),

u" ! u0 in L p(B) for all p � 1,
u" ! u0 a.e. on B

(5.1)

as " ! 0. Then, since ui," * 0 weakly in H10 (B) for all i = 1, 2, · · · , k, we also
have

uk+1," * u0 weakly in H10 (B),

uk+1," ! u0 in L p(B) for all p � 1,
uk+1," ! u0 a.e. on B,

(5.2)

as " ! 0. Furthermore, since hI 0"(u"), u"i = 0, we get
R
B f"(u")u"dx is bounded.

Then Lemma A.1 implies f"(u") ! f0(u0) in L1(B). We claim that u0 is a weak
solution of (1.6) with " = 0. In fact, for all  2 C1

0 (B), we get by the weak
convergence of u" and L1(B) convergence of f"(u"),

0 = lim
n!1

⇢Z

B
ru"r dx �

Z

B
f"(u") dx

�

=
Z

B
ru0r dx �

Z

B
f0(u0) dx .

By a density argument we prove the claim. Next we shall show that there exists a
constant q > 1 such that

Z

B
| f"(uk+1,")|qdx is bounded. (5.3)

To see this, we observe that for a constant � > 1, which will be determined later,
there exists C > 0 such that | f"(t)|  Ce�t2 for all t 2 R and small " > 0. Then
for q > 1, which will be also chosen later, we get

Z

B
| f"(uk+1,")|qdx  C

Z

B
eq�u

2
k+1,"dx = C

Z

B
eq�kuk+1,"k2v2" dx ,
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where we set v" := uk+1,"/kuk+1,"k. Notice kv"k = 1 and v" * v0 weakly in
H10 (B) for a function v0 with 0  kv0k  1. We claim that v0 6= 0. If on the
contrary v0 = 0 we get u0 = 0. Then Lemma A.1 shows

R
B F"(uk+1,")dx ! 0 as

" ! 0. It follows that

0 < 2 lim
"!0

I"(uk+1,") = lim
"!0

kuk+1,"k2 < 4⇡. (5.4)

Consequently we can choose �, q > 1 so that
Z

B
| f"(uk+1,")|qdx  C

Z

B
eq�kuk+1,"k2v2" dx  C

Z

B
e4⇡v2" dx

for small " > 0. Notice that the Trudinger-Moser inequality implies that the right-
hand side is bounded uniformly for small " > 0. Now setting q 0 > 1 so that
1/q + 1/q 0 = 1, we get by the Hölder inequality that

kuk+1,"k2 =
Z

B
uk+1," f"(uk+1,")dx



✓Z

B
|uk+1,"|q

0
dx
◆ 1

q0
✓Z

B
| f"(uk+1,")|qdx

◆ 1
q

 C
✓Z

B
|uk+1,"|q

0
dx
◆ 1

q0

,

for a constant C > 0 if " > 0 is small enough. Hence, we get uk+1," ! 0 in
H10 (B) by (5.2). This contradicts (5.4). Therefore, we can assume 0 < kv0k < 1.
(If kv0k = 1, we finish the proof.) Then Lions’ concentration compactness lemma
([22, Theorem I.6 ]) proves

Z

B
e4⇡pv

2
" dx is bounded for all p <

1
1� kv0k2

. (5.5)

Now recalling the facts that lim"!0 I"(uk+1,") < 2⇡ , f0(t)t � 2F0(t) � 0 for all
t 2 R and hI 00(u0), u0i = 0, we get a constant � 2 (0, 1) such that

4⇡(1� �) = 2 lim
"!0

I"(uk+1,")

= lim
"!0

kuk+1,"k2 � 2
Z

B
F0(u0)dx � hI 00(u0), u0i

� lim
"!0

kuk+1,"k2 � ku0k2

= lim
"!0

kuk+1,"k2
�
1� kv0k

2�.

This shows
q� lim

"!0
kuk+1,"k2 

4⇡q�(1� �)

1� kv0k2
.
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Put p := q�(1 � �)/(1 � kv0k2). Then, we can choose �, q > 1 so that p <
1/(1� kv0k2) and

Z

B
| f"(uk+1,")|qdx  C

Z

B
e4⇡pv

2
" dx,

for small " > 0. Then (5.5) proves (5.3). Now choose u0," 2 H10 (B) such that
u0," = 0 on Brk," and u0," ! u0 in H10 (B) as " ! 0. Define for example u0," :=
�rk,",1u0 where �rk,",1 is a cut off function defined as in Section 2. Then integration
by parts gives that

Z

B
ruk+1,"r(uk+1," � u0,")dx =

Z

B\Brk,"
(�1uk+1,")(uk+1," � u0,")dx

=
Z

B
f"(uk+1,")(uk+1," � u0,")dx .

Now again let q 0 > 1 be a constant such that q�1+q 0�1 = 1. Then setting o(1) ! 0
as " ! 0, and using the Hölder inequality, (5.3), and (5.2), we get

kuk+1,"k2 � ku0k2 =
Z

B
ruk+1,"r(uk+1," � u0,")dx + o(1)

=
Z

B
f"(uk+1,")(uk+1," � u0,")dx + o(1)



✓Z

B
| f"(uk+1,")|qdx

◆ 1
q
✓Z

B
|uk+1," � u0,"|q

0
dx
◆ 1

q0

+o(1)

! 0

as " ! 1. Hence we get uk+1," ! u0 in H10 (B) as " ! 0. Finally, Lemma 2.6
proves that u0 is the least energy solution of (1.6). This completes the proof.

Remark 5.2. From the result above, we get kuk+1,"kL1((rk,",1)) is bounded. To see
this, observe that the strong convergence of uk+1," implies that for all q > 1, eu

2
k+1,"

is bounded in Lq(B) uniformly for small " > 0. Set r⇤
k+1," 2 (rk,", 1) so that

urk+1,"(r⇤
k+1,") = kuk+1,"kL1((rk,",1)). Then we get

|uk+1,"(r⇤
k+1,")| =

�
�
�
�
�

Z 1

r⇤
k+1,"

f"(uk+1,")r log rdr

�
�
�
�
�



 Z 1

r⇤
k+1,"

f"(uk+1,")2rdr

! 1
2
 Z 1

r⇤
k+1,"

r log2 rdr

! 1
2

 C

for a constant C > 0 if " > 0 is sufficiently small. This proves the claim.
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Remark 5.3. The previous remark shows

lim
"!0

rk,"u0
"(rk,") = 0.

To show this, set r⇤
k+1," 2 (rk,", 1) as above. First observe that r⇤

k+1," ! 0 as
" ! 0. If not, we have a constant r0 2 (0, 1) such that r⇤

k+1," ! r0 as " ! 0
by choosing a sequence if necessary. Then since uk+1," ! u0 a.e. on B, we have
u0(r)  u0(r0) for a.e. r 2 (0, r0). But, since u0 is a positive radial solution of
(1.6), the result in [16] shows u0(r) < 0 for all r 2 (0, 1). This is a contradiction.
Finally, integrating (1.8) over (rk,", r⇤

k+1,"), we get by the previous remark that

|rk,"u0
"(rk,")| =

�
�
�
�
�

Z r⇤
k+1,"

rk,"
f"(u")rdr

�
�
�
�
�
 Cr⇤

k+1,",

for some constant C > 0. This completes the proof.

6. Proof of the main theorems

We finally conclude the proof of our main theorems.

Proof of Theorem 1.2. The proof of (1.10) is given in Lemma 2.4, (1.11) is shown
in Corollary 3.2, Proposition 4.1 and Proposition 5.1, (1.12) is shown in Corollary
3.2, Proposition 4.1 and Proposition 5.1. So we have only to show (1.9), i.e.

u" ! (�1)ku0 in C2loc((0, 1]),

as " ! 0. To prove this, we may assume that u" satisfies
(

�u00
" � 1

r u
0
" = �u"eu

2
"+u1+"" , u" > 0 in (rk,", 1)

u"(rk,") = u"(1) = 0.
(6.1)

Now choose any compact subset K b (0, 1]. For all r 2 K , we may suppose
rk," < r by Lemma 2.4. Then multiplying (6.1) by r and integrating over (rk,", r)
we have

ru0
"(r) = rk,"u0

"(rk,") �
Z r

rk,"
f"(u")rdr.

Then Remark 5.3 and Lemma A.1 prove that ru0
" is bounded uniformly on K for

small ". In particular, u0
" is bounded uniformly on K for small ". Furthermore,

since for any r 2 K , we have

u"(r) = �
Z 1

r
u0
"(s)ds,

we derive ku"kC1(K ) is bounded uniformly for small ". Then the Arzelà-Ascoli
theorem ensures u" ! u0 uniformly on K as " ! 0. Finally, using (6.1), we show
u" ! u0 in C2(K ) as " ! 0. This finishes the proof.
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Proof of Theorem 1.3. For i = 0 the proof is given in Proposition 3.1. The case
i = 1, . . . , k is considered in Proposition 4.1.

Using the blow-up results above, we get the following remark:

Remark 6.1. We have

lim
"!0

ku"kL1((ri,",ri+1,"))

ku"kL1((ri�1,",ri,"))
= 0 (6.2)

for all i = 1, 2, · · · , k. Let us show the proof. For i = k, the proof is obvious
by Corollary 3.2, Lemma 4.2 and Remark 5.2. Then for i = 1, 2, · · · , k � 1,
set Mi," 2 [0, 1) so that |u"(Mi,"ri,")| = ku"kL1((ri�1,",ri,")), r⇤

i," := Mi,"ri," and
�i," = 2u"(r⇤

i,") f"(u"(r
⇤
i,")) > 0. Then integrating (1.8) over (r⇤

i,", r
⇤
i+1,") shows

Z ri,"

r⇤
i,"

f"(u")rdr = �
Z r⇤

i+1,"

ri,"
f"(u")rdr.

Hence putting vi,"(r) = |ui,"(ri,"r)|, vi+1,"(r) = |ui+1,"(ri+1,"r)| and z j,"(r) =
2|u"(r⇤

j,")|(|v j,"(� j,"r+Mj,")|� |u"(r⇤
j,"))|) for j = i, i+1, we get by the blow-up

procedure as above,

1
2|u"(r⇤

i,")|

Z 1�Mi,"
�i,"

0

 
zi,"(r)

2v2i,"(Mi,")
+ 1

!

⇥ e
zi,"(r)

 
zi,"(r)

4v2i,"(Mi,")
+1

!

+v1+"i," (Mi,")

0

@

�
�
�
�
�

zi,"(r)

2v2i,"(Mi,")
+1

�
�
�
�
�

1+"

�1

1

A ✓
Mi,"

�i,"
+ r

◆
dr

=
1

2|u"(r⇤
i+1,")|

Z 0
ri,"

ri+1,"
�Mi+1,"

�i+1,"

 
zi+1,"(r)

2v2i+1,"(Mi+1,")
+ 1

!

⇥

⇥e
zi+1,"(r)

 
zi+1,"(r)

4v2i+1,"(M")
+1

!

+v1+"i+1,"(Mi+1,")

0

@

�
�
�
�
�

zi+1,"(r)

2v2i+1,"(Mi+1,")
+1

�
�
�
�
�

1+"

�1

1

A✓
Mi+1,"
�i+1,"

+ r
◆
dr

= o

 
1

2|u"(r⇤
i+1,")|

!

as " ! 0 since lim"!0
ri,"/ri+1,"�Mi+1,"

�i+1,"
= 0. Finally using our blow-up results and

the Fatou lemma for the integral on the left-hand side, we get the desired conclu-
sion.
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Appendix A. Some basic facts

In the following, let ("n) ⇢ R+ be any sequence such that "n ! 0 as n ! 1:

Lemma A.1. Let (un) ⇢ H10 (B) be a bounded sequence such that un * u weakly
in H10 (B) and un ! u a.e. on B as n ! 1 for a function u. Furthermore, assume

sup
n

Z

B
f"n (un)undx < 1.

Then we have

lim
n!1

Z

B
f"n (|un|)dx =

Z

B
f0(|u|)dx

and

lim
n!1

Z

B
F"n (un)dx =

Z

B
F0(u)dx .

Proof. Similar to the proof of 4) of [2, Lemma 3.1].

Lemma A.2. We have
lim inf
"!0

inf
u2N"

I"(u) > 0.

Proof. If not, we have sequences ("n) ⇢ R+ and (un) ⇢ N"n such that
limn!1 I"n (un) = 0. Then since � < �1, analogously with Step 1 in [2, proof
of Lemma 3.4], we can get a contradiction. This proves the lemma.

Lemma A.3. Let (µn) ⇢ R+ and (un) ⇢ H10 (B) be sequences such that µn  1
for all n and further,

Jn(un) :=
Z

B
|run|2dx � µn

Z

B
F"n (un)dx ! c 2 (0, 2⇡) and

J 0
n(un) ! 0 in H�1(B),

as n ! 1. Then un ! u in H10 (B) up to a subsequence.

Proof. Similar to 1) in [2, page 404 ].
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