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Distortion in Cremona groups

SERGE CANTAT AND YVES DE CORNULIER

Abstract. We study the distortion of elements in two-dimensional Cremona
groups over algebraically closed fields of characteristic zero. We obtain the
following trichotomy: non-elliptic elements (i.e., those whose powers have un-
bounded degree) are undistorted, and elliptic elements have a doubly exponential
distortion when they are virtually unipotent or an exponential distortion other-
wise.

Mathematics Subject Classification (2010): 14E07 (primary); 14J50, 20F65
(secondary).

1. Introduction

Let k be an algebraically closed field. The goal of this paper is to study the distortion
in the Cremona group Bir(P2k). We characterize distorted elements, and study their
distortion function. The three main tools are:

(1) An upper bound on the distortion which is obtained via height estimates, using
basic number theory (this holds in arbitrary dimension);

(2) A result of Blanc and Déserti concerning base points of birational transforma-
tions of the plane;

(3) A non-distortion result for parabolic elements in Bir(P2k), obtained via Noether
inequalities and the study of the action of Bir(P2k) on the Picard-Manin space
(an infinite-dimensional hyperbolic space).

This third step sheds new light on the geometry of the action of Bir(P2k) on this
hyperbolic space.
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1.1. Distortion

If f and g are two real-valued functions on R+, we write f � g if there exist three
positive constants C , C 0, C 00 such that f (x)  Cg(C 0x) + C 00 for all x 2 R+. We
write f ' g when f � g � f .

Let G be a group. If S and T are two subsets of G containing the neutral
element 1, we write S � T if S ⇢ T k for some integer k � 0, and S ' T if
S � T � S. Let c be an element of G. Let S be a finite symmetric subset of G
containing 1; if the subgroup GS generated by S contains c, we define the distortion
function

�c,S(n) = sup
�
m 2 N : cm 2 Sn

 
.

Definition 1.1. By definition, �c,S(n) = 1 if and only if c has finite order. Clearly,
if S ⇢ T then �c,S  �c,T . Also, �c,Sk (n) = �c,S(kn). In particular, if S ⇢ T k ,
then �c,S  �c,T (kn). If S � T , it follows that �c,S � �c,T , and if S ' T then
�c,S ' �c,T .

If S and T both generate G then S ' T and �c,S ' �c,T . Thus, when G is
finitely generated, the '-equivalence class of the distortion function only depends
on (G, c), not on the finite generating subset; it is called the distortion function of
c in G, and is denoted �Gc , or simply �c. The element c is called undistorted if
�c(n) � n, and distorted otherwise.
Example 1.2. Fix a pair of integers k, ` � 2. In the Baumslag-Solitar group Bk =
ht, x | t xt�1 = xki, we have �Bkx (n) ' exp(n). In the “double” Baumslag-Solitar
group Bk,` (see [22, Section 8]), one finds double exponential distortion.
It is natural to consider distortion in groups that are not finitely generated. We say
that an element c 2 G is undistorted if �Hc (n) ' n for every finitely generated
subgroup H of G containing c. Changing H may change the distortion function
�Hc ; for instance, if c is not a torsion element, it is undistorted in H = cZ but
may be distorted in larger groups. Also, there are examples of pairs (G, c) such
that c becomes more and more distorted, in larger and larger subgroups of G (see
Section 8). Thus, we have a good notion of distortion, but the distortion is not
measured by an equivalence class of a function “�Gc ”.

We shall say that the distortion type (or class) of c in G is at least f if there
is a finitely generated subgroup H containing c with f � �Hc , and is at most g if
�Hc � g for all finitely generated subgroup H containing c. If the distortion type is
at least f and at most f simultaneously, we shall say that f is the distortion type
of c. For instance, c may be exponentially, or doubly exponentially distorted in G.
Example 1.3. Let k be a field. Let c be an element of the general linear group
GL d(K); we have one of the following (see [24,25, Section 3])

• c is not virtually unipotent, i.e., at least one of its eigenvalues in an algebraic
closure of k is not a root of unity, and then c is undistorted;

• c is virtually unipotent of infinite order, and then �c(n) ' exp(n) (this occurs
only if k has characteristic zero);

• c has finite order.
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The dimension d � 0 does not intervene in this description. In contrast, the unipo-
tent elementary matrix e12(1) = Id + �1,2 is undistorted in SL 2(Z) but has expo-
nential distortion in SL d(Z) for d � 3.

1.2. Distortion in Cremona groups

Distortion in groups of homeomorphisms is an active subject (see [2,9,23,27,28]).
For instance, in the group of homeomorphisms of the sphere Sd , every element
is distorted. Our goal in this paper is to study distortion in groups of birational
transformations.

If M is a projective variety over a field k, we denote by Bir(Mk) its group of
birational transformations over k. When M is the projective space Pmk , this group is
the Cremona group in m variables Crm(k) = Bir(Pmk ) = Bir(Am

k ). The problem is
to describe the elements of Bir(Mk) which are distorted in Bir(Mk), and to estimate
their distortion functions.

1.2.1. Degree sequences

Let H be a hyperplane section of M , for some fixed embedding M ⇢ PN
k . The

degree of a birational transformation f : M 99K M with respect to the polarization
H is the intersection product degH ( f ) = Hm�1 · f ⇤(H), where m = dim(M).
When M is Pmk and H is a hyperplane, then degH ( f ) is the degree of the homo-
geneous polynomial functions fi , without common factor of positive degree, such
that f = [ f0 : · · · : fm] in homogeneous coordinates.

The degree function is almost submultiplicative (see [17, 29, 32]): there is a
constant CM,H such that for all f and g in Bir(Mk)

degH ( f � g)  CM,H degH ( f ) degH (g). (1.1)

Thus, we can define the dynamical degree �1( f ) by

�1( f ) = lim
n!+1

⇣
degH ( f n)1/n

⌘
.

By definition, �1( f )�1, and the following well-known lemma implies that �1( f )=
1 when f is distorted (see Section 2).

Lemma 1.4. Let G be a group with a finite symmetric generating subset S. Let |w|
denote the word length of w 2 G with respect to the generating subset S. Then:

(1) | · | is sub-additive: |vw|  |v| + |w|;
(2) The stable length sl(c) := limn!1

1
n |c

n| is a well-defined element of R+;
(3) c is distorted if and only if sl(c) = 0.

1.2.2. Distortion in dimension 2

Assume, for simplicity, that the field k is algebraically closed. Typical elements
of Crd(k) have dynamical degree > 1. At the opposite, we have the notion of
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algebraic elements. A birational transformation f : M 99K M is algebraic, or
bounded, if (degH ( f n))n�0 is a bounded sequence of integers; by a theorem of
Weil (see [34]), f is bounded if and only if there exists a projective variety M 0, a
birational map ' : M 0 99K M , and an integer m > 0, such that '�1 � f m � ' is
an element of Aut(M 0)0 (the connected component of the identity in the group of
automorphisms Aut(M 0)). In the case of surfaces, bounded elements are also called
elliptic; we shall explain this terminology in Section 4.

Theorem 1.5. Let k be a field. If an element f 2 Cr2(k) is distorted, then f is
elliptic. If k is algebraically closed and of characteristic 0, and f 2 Cr2(k) is
elliptic and of infinite order, then:

• If some positive power of f is conjugate to a unipotent automorphism of P2k,
then f has double exponential distortion;

• Otherwise, f has exponential distortion.

The first assertion extends to Bir(X) for all projective surfaces (see Theorems 6.5
and 7.1), but the second does not. For instance, if X is a complex Abelian sur-
face and Aut(X) has only finitely many connected components, every translation of
infinite order is undistorted and elliptic.

Consider, in Cr2(k), the element (x, y)
s

7! (x, xy); it is not elliptic and by the
above theorem, it is not distorted in Cr2(k). On the other hand, the natural embed-
ding Cr2(k) ⇢ Cr3(k) maps it to (x, y, z) 7! (x, xy, z), which is exponentially
distorted in Bir(A3k), while its degree growth remains linear. Thus Theorem 1.5 is
specific to the projective plane.

Question 1.6. (see Section 3)

(A) In Theorem 1.5, can we remove the restriction concerning the characteristic or
the algebraic closedness of the field k?

(B) Can we find an element of infinite order with more than double exponential
distortion in the Cremona group Crm(C), for some m � 3?

1.3. Hyperbolic spaces, horoballs, and distortion

Our proof of Theorem 1.5 makes use of the action of Cr2(k) on an infinite dimen-
sional hyperbolic spaceH1, already at the heart of several articles (see [13]). There
are elements f of Cr2(k) acting as parabolic isometries onH1, with a unique fixed
point ⇠ f at the boundary of the hyperbolic space. We shall show that the orbit of
a sufficiently small horoball centered at ⇠ f under the action of Cr2(k) is made of
a family of pairwise disjoint horoballs. We refer to Theorem C in Section 6 for
that result. Theorem B, proved in Section 4, is a general result for groups acting by
isometries on hyperbolic spaces that provides a control of the distortion of parabolic
elements.



DISTORTION IN CREMONA GROUPS 831

1.4. Remark

One step towards Theorem 1.5 is to prove that the so-called Halphen twists of
Cr2(k) (a certain type of parabolic elements) are not distorted. Blanc and Furter
obtained simultaneously another proof of that result; instead of looking at the geom-
etry of horoballs, as in our Theorem 4.1, they prove a very nice result on the length
of elements of Cr2(k) in terms of the generators provided by Noether-Castelnuovo
theorem (the generating sets being PGL 3(k) and transformations preserving a pen-
cil of lines). Our proof applies directly to Halphen twists on non-rational surfaces.

ACKNOWLEDGEMENTS. We thank Jérémy Blanc and Jean-Philippe Furter, as well
as Vincent Guirardel, Anne Lonjou, and Christian Urech for interesting discussions
on this topic.

2. Degrees and upper bounds on the distortion

The following proposition shows that the degree growth may be used to control the
distortion of a birational transformation.

Proposition 2.1. Let (M, H) be a polarized projective variety, and f be a bira-
tional transformation of M .

(1) If degH ( f n) grows exponentially, then f is undistorted;
(2) If deg( f n) ⌫ n↵ for some ↵ > 0, the distortion of f is at most exponential.

Proof. According to Equation (1.1), the degree function is almost submultiplica-
tive; replace it by deg0

H ( f ) := degH ( f )/CM,H to get a submultiplicative function.
If S is a finite symmetric subset of Bir(M), and D is the maximum of deg0

H (g)
for g in S, then Dn is an upper bound for deg0

H on the ball S
n . Hence if deg0( f m) �

Cqm for some constantsC>0 and q>1, and if f m 2 Sn we haveCqm Dn . Taking
logarithm, we getm log(q)+C  n log(D), and thenm  log(q)�1(n log(D)�C).
Thus

� f,S(n) 
(n log(D) � C)

log(q)
� n

and the first assertion is proved. Now, assume that deg0
H ( f m) � cm↵ for some

positive constants c and ↵. Then cm↵  Dn , so m  c�1/↵Dn/↵ . Thus � f,S(n) 
c�1/↵Dn/↵ � exp(n) and the second assertion follows.

Remark 2.2. More generally, consider an increasing function ↵ such that ↵(m) 
log deg0

H ( f m) for all m � 1. Let � be a decreasing inverse of ↵, i.e. a function
� : R+ ! R+ such that �(↵(m)) = m for all m. We have

↵(m)  log
�
deg0

H ( f m)
�

 n log(D)
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if f m is in Sn , hence � f,S(n)  �(n log(D)). However, we do not know any exam-
ple of birational transformation with intermediate (neither exponential nor polyno-
mially bounded) degree growth. See [33] for a lower bound on the degree growth
when f 2 Aut(Am

k ).

3. Heights and distortion

In this section we study the distortion of automorphisms of Pmk in the groups
Aut(Pmk ) and Crm(k) = Bir(Pmk ).

3.1. Distortion and monomial transformations

Let k be an algebraically closed field of characteristic zero. Here, we show that all el-
ements ofPGLm+1(k) are distorted in Crm(k), and we compute their distortion rate.

3.1.1. Monomial transformations and distortion of semisimple automorphisms

The group GLm(Z) acts by automorphisms on the m-dimensional multiplicative
group Gm

m: if A = [ai, j ] is in GLm(Z), then A(x1, . . . , xm) = (y1, . . . , ym) with

y j =
Y

i
xai, ji . (3.1)

The group Gm
m(k) acts also on itself by translations. Altogether, we get an embed-

ding of GLm(Z) n Gm
m(k) in Bir(Pmk ).

If s is a fixed element of k⇥, we denote by 's : Zm ! Gm
m the homomorphism

defined by 's(n1, . . . , nd) = (sn1, . . . , snd ). This homomorphism is injective if
and only if s is not a root of unity. Its image 's(Zm) is normalized by the monomial
group GL d(Z); in this way, every element s 2 k⇥ of infinite order determines
an embedding of GLm(Z) n Zm into Bir(Pmk ), the image of which is GLm(Z) n
's(Zm). The following lemma is classical (see [24,25] for instance).

Lemma 3.1. For every m � 2, the Abelian subgroup Zm is exponentially distorted
in GLm(Z) n Zm . More precisely, |gn| ' log(n) for every non-trivial element g in
the (multiplicative) Abelian group Zm .

For u 2 k⇥, the subgroup 'u(Zm) of Gm
m(k) acts by translations on Gm

m(k).
This determines a subgroup Vu of Crm(k) acting by diagonal transformations
(x1, . . . , xm) 7! (un1x1, . . . , unm xm). By the previous lemma, the distortion of
every element in Vu is at least exponential in Crm(k) (when u is a root of unity, the
distortion is infinite).

Now let u be an arbitrary diagonal transformation: u(x) = (u1x1, . . . , umxm),
where (ui ) 2 Gm

m(k). Consider the transformations gi = (x1, . . . , xi�1, ui xi , xi+1,
. . . , xm). Then the gi pairwise commute and u = g1 . . . gm . Since gi 2 Vui , it is at
least exponentially distorted inGLm(Z)n Gm

m(k). Thus, u is at least exponentially
distorted in GLm(Z) n Gm

m(k). We have proved:
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Lemma 3.2. Let k be a field and m � 2 be an integer. In Bir(Pmk ), every linear,
diagonal transformation is at least exponentially distorted.

3.1.2. Distortion of unipotent automorphisms

Lemma 3.3. If U is a unipotent element of SLm+1(k), then U is at least expo-
nentially distorted in SLm+1(k), and it is at least doubly exponentially distorted in
Bir(Pmk ) for m � 2.

Consequently, the image ofU has finite order in every linear representation of (large
enough subgroups of) the Cremona group. Note that (in characteristic zero) this
already indicates that Cr1(k) ⇢ Cr2(k) is distorted in the sense that the translation
x 7! x + 1, which has exponential distortion in Cr1(k) ' PGL 2(k), has double
exponential distortion in Cr2(k).

Proof. Unipotent elements of SLm+1(k) have finite order if the characteristic of
the field is positive; hence, we assume that char(k) = 0. Consider the element

U =

✓
1 1
0 1

◆
(3.2)

of SL 2(k). Let A 2 SL 2(k) be the diagonal matrix with coefficients 2 and 1/2 on
the diagonal: AnU A�n = U4n and U is exponentially distorted in the subgroup of
SL 2(k) generated by U and A. Similarly, consider a unipotent matrix Ui, j = Id+
Ei, j , where Ei, j is the (m+1)⇥ (m+1)matrix with only one non-zero coefficient,
namely ei, j = 1; then Ui, j is exponentially distorted in SLm+1(k): there is a
diagonal matrix A such that |Un

i, j | ' log(n) in the group hUi, j , Ai, for all n � 1.
This implies that unipotent matrices are exponentially distorted in SLm+1(k).

As a second step, consider a 3⇥ 3 Jordan block and its iterates:

U =

0

@
1 1 0
0 1 1
0 0 1

1

A , Un =

0

@
1 n n(n � 1)/2
0 1 n
0 0 1

1

A . (3.3)

We want to prove that U is doubly exponentially distorted in Cr2(k). Take iterates
UKn for some integer K > 1. Then, conjugating by An , and multiplying by B, with

A =

0

@
1 0 0
0 K 0
0 0 1

1

A , B =

0

@
1 0 0
0 1 �1
0 0 1

1

A , C =

0

@
K 0 0
0 1 0
0 0 1

1

A , (3.4)

we get a new matrix BA�nUKn An = [vi, j (n)] which is upper triangular; its coeffi-
cients are equal to 1 on the diagonal, v1,2 = Kn , v1,3 = Kn(Kn�1)/2 and v2,3 = 0.
Conjugating with Cn changes v1,2 into v0

1,2 = 1 and v1,3 into v0
1,3 = (Kn � 1)/2.

Multiplying by the unipotent matrix D = Id � E1,2 + 1/2E1,3 changes v0
1,2 into

0 and v0
1,3 into K

n . One more conjugacy by Cn gives a matrix E with constant
coefficients. Thus UKn is a word of finite length (independent of n) in An , Cn , and
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a fixed, finite number of unipotent matrices (B, D, E). Since A and C are diagonal
matrices, they satisfy |An| ⇠ log(n) and |Cn| ⇠ log(n) in some finitely generated
subgroup of Cr2(k). Thus, U is doubly exponentially distorted.

This argument and a recursion starting at m = 2 proves the general result.

3.1.3. Distortion of linear projective transformations

Every A 2 PGLm+1(k) is the product of a semisimple element SA with a unipotent
element UA such that SA and UA commute. When k is algebraically closed, SA
is diagonalizable. By Lemmas 3.2 and 3.3, A is at least exponentially distorted
(respectively doubly exponentially distorted if SA has finite order).

3.2. Heights and upper bounds

Theorem 3.4. Let k be an algebraically closed field of characteristic zero. Let A
be an element of Aut(Pmk ) given by a matrix in SLm+1(k) of infinite order. Then,
its distortion in the Cremona group Bir(Pmk ) is doubly exponential if the matrix is
virtually unipotent, and simply exponential otherwise.

To prove this result, we use basic properties of heights of polynomial functions. We
start with a proof of this theorem when k = Q is an algebraic closure of the field of
rational number; the general case is obtained by a specialization argument.

3.2.1. Heights of polynomial functions

LetK be a finite extension ofQ, and let MK be the set of places ofK; to each place,
we associate a unique absolute value | · |v on K , normalized as follows (see [6,
Section 1.4]). First, for each prime number p, the p-adic absolute value on Q
satisfies |p|p = 1/p, and | · |1 is the standard absolute value. Then, if v 2 MK is a
place that divides p, with p prime or1, then

|x |v =
�
�NormK/Q(x)

�
�1/[K:Q]
p (3.5)

for every x 2 K. With such a choice, the product formula reads
X

v2MK

log |x |v = 0 (3.6)

for every x 2 K \ {0}.
Let m be a natural integer. If f (x) =

P
I aIxI is a polynomial function in the

variables x = (x0, . . . , xm), with aI 2 K for each multi-indice I = (i0, . . . , im),
we set

| f |v = max
I

|aI |v (3.7)

for every place v 2 MK. If f 6= 0, we define its height h( f ) by

h( f ) =
X

v2MK

log | f |v. (3.8)
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If f̂ = ( f0, . . . , fm) is an endomorphism ofAm+1
K , the height h( f̂ ) is the maximum

of the heights h( fi ), and | f̂ |v is the maximum of the | fi |v . (Note that the affine
coordinates system x is implicitely fixed.)

Remark 3.5. Let f and g be non-zero elements of K[x0, . . . , xm].

(1) The product formula implies that h(a f ) = h( f ), 8a 2 K \ {0};
(2) From this, we see that h( f ) � 0 for all f 2 K[x0, . . . , xm] \ {0}. Indeed, one

can multiply f by the inverse of a coefficient aI 6= 0 without changing the
value of its height; then, one of the coefficients is equal to 1 and | f |v � 1 for
all v 2 MK;

(3) The Gauss Lemma says that | f g|v = | f |v|g|v when v is not Archimedean.
This multiplicativity property fails for places at infinity;

(4) If L is an extension of K, then the height of f 2 K[x0, . . . , xm] is the same
as its height as an element of L[x0, . . . , xm] (see [6, Lemma 1.3.7)]. Thus, the
height is well defined on Q[x0, . . . , xm].

Theorem 3.6 (see [6, 1.6.13]). Let f1, . . ., fs be non-zero elements of Q[x0, . . .,
xm], and let f be their product f1 · · · fs . Let1( f ) be the sum of the partial degrees
of f with respect to each of the variables xi . Then

�1( f ) log(2) +
sX

i=1
h( fi )  h( f )  1( f ) log(2) +

sX

i=1
h( fi ).

If deg( f ) denotes the degree of f , then 1( f )  (m + 1) deg( f ). For s = 2 we get

h( f1)  h( f ) � h( f2) + (m + 1) log(2) deg( f ). (3.9)

3.2.2. Heights of birational transformations

Consider a birational transformation f : PmQ 99K PmQ, and write it in homogeneous
coordinates

f
⇥
x0 : . . . : xm

⇤
=
⇥
f0 : . . . : fm

⇤
, (3.10)

where the fi 2 Q[x0, . . . , xm] are homogeneous polynomial functions of the same
degree d with no common factor of positive degree. Then, d is the degree of f
(see Section 1.2.1), and the fi are uniquely determined modulo multiplication by a
common constant a 2 Q \ {0}. Thus, Remark 3.5(1) shows that the real number

h( f ) = max
i
h( fi ) (3.11)

is well defined. This number h( f ) is, by definition, the height of the birational
transformation f . It coincides with the height of the lift of f as the endomorphism
f̂ = ( f0, . . . , fm+1) of Am+1

k (see Section 3.2.1).
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3.2.3. Growth of heights under composition

Let S = { f 1, . . . , f s} be a finite symmetric set of birational transformations of PmQ;
the symmetry means that f 2 S if and only if f �1 2 S. Consider the homomor-
phism from the free group Fs = ha1, . . . , as |;i to Bir(PmQ) defined by mapping each
generator a j to f j . Then, to every reduced word w`(a1, . . . , as) of length ` in the
generators a j corresponds an element

wl(S) = wl
�
f 1, . . . , f s

�
(3.12)

of the Cremona group Bir(PmQ).

For each f i 2 S, we fix a system of homogeneous polynomials f ij 2 Q[x0 :

. . . : xm] defining f , as in Section 3.2.2: f i = [ f i0 : . . . : f im] and the f ij have
degree di = deg( f i ). Moreover, we choose the f ij so that for every i at least one
of the coefficients of the f ij is equal to 1. Once the f

i
j have been fixed, we have a

canonical lift of each f i to a homogeneous endomorphism f̂ i of Am+1
Q , given by

f̂ i (x0, . . . , xm) =
⇣
f i0 , . . . , f

i
m

⌘
. (3.13)

Thus, every reduced word w` of length ` in Fs determines also an endomorphism
ŵ`(S) = w`( f̂ 1, . . . , f̂ s) of the affine space.

Let dS be the maximum of {2, d1, . . . , ds}, so that dS � 2. Then, the degree of
the endomorphism ŵ`(S) is at most d`S .

Let K be the finite extension of Q which is generated by all the coefficients
aij,I of the polynomial functions f

i
j =

P
aij,Ix

I . We shall say that a place v 2 MK
is active if |aij,I |v > 1 for at least one of these coefficients; the set of active places
is finite, because there are only finitely many coefficients. For each place v 2 MK,
we set

M(v) = max
�
�
�aij,I

�
�
�
v

= max
�
�
� f̂ i
�
�
�
v
, (3.14)

the maximum of the absolute values of the coefficients; our normalization implies
that M(v) � 1 and M(v) = 1 if and only if v is not active.

Lemma 3.7. Let v be a non-Archimedean place. If w` 2 Fs is a reduced word of
length `, then

log |ŵ`(S)|v  log(M(v))d`S.

Thus, if v is not active, then log |ŵ`(S)|v = 0.

Proof. Set d = dS . Write ŵ`(S) as a composition ĝ`� · · ·� ĝ1, where each ĝk is one
of the f̂ i (here we use that S is symmetric). By definition, |ĝ1|v  M(v). Then,
assume that |ĝk�1 � · · · � ĝ1|v  M(v)1+d+···+dk�2 for some integer 2  k  `.
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Write ĝk�1 � · · · � ĝ1 = (u0, . . . , um) for some homogeneous polynomials u j . The
Gauss lemma (see Remark 3.5) says that

�
�
�ui00 · · · uimm

�
�
�
v

= |u0|imv · · · |um |i0v 
⇣
M(v)1+d+···+dk�2

⌘d
(3.15)

for every multi-index I = (i0, . . . , im) of length
P
i j  d. The endomorphism ĝk

has degree  d, and the absolute values of its coefficients are bounded by M(v),
hence �

�
�ĝk � · · · � ĝ1

�
�
�
v

 M(v)1+d+···+dk�1 . (3.16)

By recursion, this upper bound holds up to k = `. For k = ` we obtain the estimate
log |ŵ`(S)|v  log(M(v))d` because 1+ d + · · · + d`�1  d`.

Lemma 3.8. Let v be an Archimedean place. If w` 2 Fs is a reduced word of
length `, then

log |ŵ`(S)|v  2 log(M(v))d`S + log
�
mdmS

�
d2`S .

Proof. Consider a monomial xI = xi00 · · · ximm of degree  d. Let u0, . . ., um be
homogeneous polynomials of degree  D with D � 2 and with all coefficients
satisfying |c|v  C . Note that the space of homogeneous polynomials of degree D
in m variables has dimension

�D+m
m
�
.Then

�
�
�ui00 · · · uimm

�
�
�
v



✓
D + m
m

◆d
Cd  (D + m)mdCd 

�
mDm�dCd . (3.17)

Indeed, every coefficient in the product ui00 · · · uimm is obtained as a sum of at most
�D+m

m
�d
terms, each of which is a product of at most d coefficients of the u j .

Then, to estimate the absolute values of the coefficients of ŵ`(S), we proceed
by recursion as in the proof of Lemma 3.7. Set B = mdmS . For a composition
ĝk � · · · � ĝ1 of length k we obtain

�
�
�ĝk � · · · � ĝ1

�
�
�
v

 B(k�1)dk�1S M(v)2d
k�1
S . (3.18)

The conclusion follows from `d`S  d2`S .

Putting these lemmas together, we get

h(ŵ`(S)) 
X

v active
2 log(M(v))d`S +

X

v|1

log
�
mdmS

�
d2`S . (3.19)

This inequality concerns the height of the endomorphism ŵ`(S); to obtain the
birational transformation w`(S), we might need to divide by a common factor
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q(x0, . . . , xm). Since the degree of ŵ`(S) is no more than d`S , Theorem 3.6 pro-
vides the upper bound

h(w`(S)) 

 

(m + 1) log(2) +
X

v active
log(M(v)) +

X

v|1

log
�
mdmS

�
!

d2`S . (3.20)

This proves the following proposition.

Proposition 3.9. Let Fs = ha1, . . . , as |;i be a free group of rank s � 1. For every
homomorphism ⇢ : Fs ! Bir(PmQ), there exist two constants Cm(⇢) and d(⇢) � 1
such that h(⇢(w))  Cm(⇢)d(⇢)|w| for every w 2 Fs , where |w| is the length of w
as a reduced word in the generators ai .

3.3. Proof of Theorem 3.4

We may now prove Theorem 3.4. When k = Q, this result is a direct corollary of
Proposition 3.9 and Section 3.1.3; we start with this case and then treat the general
case via a specialization argument.

3.3.1. Number fields

Let A be an element of SLm+1(Q) of infinite order. After conjugation, we may
assume A to be upper triangular. First, suppose that A is virtually unipotent (all its
eigenvalues are roots of unity). Then h(An) grows like ⌧ log(n) as n goes to +1.
Thus, if An is a word of length `(n) in some fixed, finitely generated subgroup of
Bir(PmQ), Proposition 3.9 shows that

⌧ log(n)  Cd`(n) (3.21)

for some positive constants C and d > 1. Thus, A is at most doubly exponentially
distorted; from Lemma 3.3, it is exactly doubly exponentially distorted. Now, sup-
pose that an eigenvalue ↵ of A is not a root of unity. Kronecker’s lemma provides
a place v 2 MQ(↵) for which |↵|v > 1 (see [6, Theorem 1.5.9]). Thus, h(An)
grows like ⌧n for some positive constant ⌧ as n goes to +1 (see Remark 3.5(2)),
and A is at most exponentially distorted in Bir(PmQ). From Section 3.1.3, we obtain
Theorem 3.4 when k = Q.

3.3.2. Fields of characteristic zero

Let k be an algebraically closed field of characteristic zero and let A be an element
of SLm+1(k). Let S = { f 1, . . . , f m} be a finite symmetric subset of Bir(Pmk ) such
that the group generated by S contains A. For each n, denote by `(n) the length of
An as a reduced word in the f i .

Write each f i in homogeneous coordinates f i = [ f i0 : . . . : f im], as in Sec-
tion 3.2.3; and denote by C the set of coefficients of the matrix A and of the poly-
nomial functions f ij =

P
aij,Ix

I . This is a finite subset of k, generating a finite
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extension K of Q. This finite extension is an algebraic extension of a purely tran-
cendental extension Q(t1, . . . , tr ), where r is the transcendental degree of K over
Q. Then, the elements of C are algebraic functions with coefficients in Q (such as
(2t1t23 � 1)1/3 + t52 ); the ring of functions generated by C (over Q) may be viewed
as the ring of functions of some algebraic variety VC (defined over Q).

If u is a point of VC(Q) and c 2 C is one of the coefficients, we may evaluate c
at u to obtain an algebraic number c(u). Similarly, we may evaluate, or specialize,
A and the f i at u. This gives an element Au in SLm+1(Q) (the determinant is 1),
and rational transformations f iu of PmQ. For some values of u, f

i
u may be degenerate,

identically equal to [0 : . . . : 0]; but for u in a dense, Zariski open subset of VC , the
f iu are birational transformations of degree deg( f iu ) = deg( f i ). Pick such a point
u 2 VC(Q). If An is a word of length `(n) in the f i , then Anu is a word of the same
length in the f iu . From the previous section we deduce that A is at most doubly
exponentially distorted. Moreover, if one of the eigenvalues ↵ 2 k of A is not a
root of unity, we may add ↵ to the set C and then choose the point u such that ↵(u)
is not a root of unity either. Then, Au and thus A is at most exponentially distorted.
This concludes the proof of Theorem 3.4.

4. Non-distortion

In this section we prove Theorem 4.1, which provides an upper bound for the dis-
tortion of parabolic isometries in certain groups of isometries of hyperbolic spaces.

4.1. Hyperbolic spaces and parabolic isometries
4.1.1. Hyperbolic spaces

Let H be a real Hilbert space of dimension m + 1 (m can be infinite). Fix a unit
vector e0 of H and a Hilbert basis (ei )i2I of the orthogonal complement of e0.
Define a new scalar product onH by

hu|u0i = a0a0
0 �

X

i2I
aia0

i (4.1)

for every pair u = a0e0 +
P

i aiei , u0 = a0
0e0 +

P
i a

0
iei of vectors. Define Hm to

be the connected component of the hyperboloid {u 2 H| hu|ui = 1} that contains
e0, and let dist be the distance on Hm defined by (see [3])

cosh(dist(u, u0)) = hu|u0i. (4.2)

The metric space (Hm,dist) is a model of the hyperbolic space of dimension m
(see [3]). The projection ofHm into the projective space P(H) is one-to-one onto its
image. In what follows,Hm is identified with its image in P(H) and its boundary is
denoted by @Hm ; hence, boundary points correspond to isotropic lines in the space
H for the scalar product h·|·i.
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4.1.2. Hyperbolic plane

A useful model for H2 is the Poincaré model: H2 is identified to the upper half-
plane {z 2 C; Im(z) > 0}, with its Riemanniann metric given by ds2 = (x2 +
y2)/y2. Its group of orientation preserving isometries coincides with PSL 2(R),
acting by linear fractional transformations. The distance between two points z1 and
z2 satisfies

sinh
✓
1
2
distH2(z1, z2)

◆
=

|z1 � z2|
2(Im(z1)Im(z2))1/2

. (4.3)

4.1.3. Isometries

Denote by O1,m(R) the group of linear transformations of H preserving the scalar
product h·|·i. The group of isometries Iso(Hm) coincides with the index 2 subgroup
O+
1,m(R) of O(H) that preserves the chosen sheet Hm of the hyperboloid {u 2

H | hu|ui = 1}. This group acts transitively on Hm , and on its unit tangent bundle.
If h 2 O+

1,m(R) is an isometry of Hm and v 2 H is an eigenvector of h
with eigenvalue �, then either |�| = 1 or v is isotropic. Moreover, since Hm is
homeomorphic to a ball, h has at least one eigenvector v inHm [ @Hm . Thus, there
are three types of isometries [8]:

(1) An isometry h is elliptic if and only if it fixes a point u in Hm . Since h·|·i is
negative definite on the orthogonal complement u?, the linear transformation
h fixes pointwise the line Ru and acts by rotation on u? with respect to h·|·i;

(2) An isometry h is parabolic if it is not elliptic and fixes a vector v in the isotropic
cone. The line Rv is uniquely determined by the parabolic isometry h. If z is
a point of Hm , there is an increasing sequence of integers mi such that hmi (z)
converges towards the boundary point ⇠ determined by v;

(3) An isometry h is loxodromic if and only if h has an eigenvector v+
h with eigen-

value � > 1. Such an eigenvector is unique up to scalar multiplication, and
there is another, unique, isotropic eigenline Rv�

h corresponding to an eigen-
value < 1; this eigenvalue is equal to 1/�. On the orthogonal complement of
Rv+

h �Rv�
h , h acts as a rotation with respect to h·|·i. The boundary points de-

termined by v+
h and v�

h are the two fixed points of h inH1[@H1: the first one
is an attracting fixed point, the second is repelling. Moreover, h 2 Iso(H1) is
loxodromic if and only if its translation length

L(h) = inf{dist(x, h(x)) | x 2 H1} (4.4)

is positive. In that case, � = exp(L(h)) is the largest eigenvalue of h and
dist(x, hn(x)) grows like nL(h) as n goes to +1 for every point x in Hm .

When h is elliptic or parabolic, the translation length vanishes (there is a point u
in Hm with L(h) = dist(u, h(u)) if h is elliptic, but no such point exists if h is
parabolic).
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4.1.4. Horoballs

Let ⇠ be a boundary point of Hm , and let ✏ be a positive real number. The horoball
H⇠ (✏) in H1 is the subset

H⇠ (✏) =
�
v 2 Hm ; 0 < hv|⇠i < ✏

 
.

It is a limit of balls with centers converging to the boundary point ⇠ . An isometry h
fixing the boundary point ⇠ maps H⇠ (✏) to H⇠ (eL(h)✏).

4.2. Distortion estimate

Our goal is to prove the following theorem.

Theorem 4.1. Let m be any (possibly infinite) cardinal. Let G be a subgroup of
Iso (Hm). Let f be a parabolic element of G, and let ⇠ 2 @Hm be the fixed point
of f . Suppose that the following two properties are satisfied.

(i) There are positive constants C and C 0 > 0 and a point x0 2 Hm such that

dist
�
f n(x0), x0

�
� C log n � C 0

for all large enough values of n;
(ii) There exists a horoball B centered at ⇠ such that for every g 2 G either gB =

B or gB \ B = ;.

Then f is at most n2/C -distorted in G. In particular C  2 and if C = 2 then f is
undistorted in G.

When looking at the Cremona group Cr2(k), we shall see examples of isometries in
H1 with dist( f n(x0), x0) ⇠ C log n for C = 1 or C = 2.

4.2.1. Complements of horoballs

Let X be a metric space. Let W be a subset of X . Let distWc (or dX when W = ;)
be the induced intrinsic distance on the complement of W ; namely, for x and y in
Wc, we have distWc(x, y) = sup">0 dWc,"(x, y) with

dWc,"(x, y) = inf

(
n�1X

i=0
d(xi , xi+1) : n�0, x0= x, xn= y, sup

i
d(xi , xi+1)"

)

for points xi which are all in X \ W . It is a distance as soon as it does not take the
1 value. In the cases we shall consider, X will be the hyperbolic spaceHm , W will
be a union of horoballs, and Wc will be path connected. In that case, distWc(x, y)
is the infimum of the length of paths connecting x to y within Wc.

Similarly, if Y is a subset of X , we denote by distY the induced intrinsic dis-
tance on Y (hence, distY = dist(X\Y )c ).
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Lemma 4.2. Let B ⇢ Hm be an open horoball, with boundary @B. Let x and y be
points on the horosphere @B. Then

distBc(x, y) = dist@B(x, y) = 2 sinh(dist(x, y)/2).

Proof. The statement being trivial when x = y, we assume x 6= y in what fol-
lows. Let ⇠ be the center at infinity of B. Then x , y, and the boundary point ⇠
are contained in a unique geodesic plane P . Since the projection of Hm onto P
is a 1-Lipschitz map, we have dist@B(x, y) = dist@B\P(x, y) and distBc(x, y) =
distBc\P(x, y). Hence, we can replace Hm by the 2-dimensional hyperbolic space
P ' H2. To conclude, we use the Poincaré half-plane model of H2. There is an
isometry P ! H2 mapping the horosphere @B \ P to the line i + R, the points x
and y to i + t and i + t 0, and ⇠ to 1. If � (s) = x(s) + iy(s), s 2 [a, b], is a path
in P \ Bc that connects x to y, its length satisfies

length(� ) =
Z b

a

(x 0(s)2 + y0(s)2)1/2

y(s)
ds 

Z b

a
|x 0(s)|ds

because y  1 in Bc \ P . Thus, the geodesic segment from x to y for distBc
(respectively dist@B) is the euclidean segment � (s) = i + s, with s 2 [t, t 0], and

distBc(x, y) = dist@B(x, y) = |t � t 0|.

We conclude with Formula (4.3), that gives sinh(distH2(x, y)/2) = |t � t 0|/2.

Lemma 4.3. Let (Bi ) be a family of open horoballs in Hm with pairwise disjoint
closures and let Q =

S
Bi . Then

(1) distQc is a distance on Hm r Q;
(2) For every index i and every pair of points (x, y) on the boundary of @Bi , we

have distQc(x, y) = dist@Bi (x, y).

Proof. Let (x, y) be a pair of points in Qc. Consider the unique geodesic segment
ofHm that joins x to y. Denote by [u j , u0

j ] the intersection of this segment with Bj .
Let C be a positive constant such that 2 sinh(s/2)  Cs for all s 2 [0,dist(x, y)]
(such a constant depends on dist(x, y)). From Lemma 4.2 we obtain

distQc(x, y)  dist(x, y) +
X

j
dist@Bj

�
u j , u0

j
�

(4.5)

 dist(x, y) +
X

j
Cdist

�
u j , u0

j
�

(4.6)

 (1+ C)dist(x, y). (4.7)

Thus, distQc(x, y) is finite: this proves (1).
For (2), note that Qc⇢ Bci and Lemma 4.2 imply distQc(x, y)�distBci (x, y) =

dist@Bi (x, y), and that dist@Bi (x, y) � distQc(x, y) because @Bi ⇢ Qc.
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4.2.2. Proof of Theorem 4.1

Changing B in a smaller horoball, we can suppose that B is open and that gB̄ \ B̄
is empty for all g 2 G with gB 6= B. Let Q be the union of the horoballs gB for
g 2 G. Let x1 be a point on the horosphere @B. Let D > 1 satisfy 2 log(D) =
C 0 + 2dist(x1, x0). From the first hypothesis, we know that

dist
�
f n(x1), x1

�
� C log n � 2 log(D)

for all sufficiently large values of n. By Lemmas 4.2 and 4.3, we get

distQc(x1, f n(x1)) = 2 sinh
�
dist(x1, f n(x1))/2

�

� 2 sinh(C log(n)/2� log(D))

� D�1nC/2 � Dn�C/2

for large enough n. Let us now estimate the distortion of f in G. Let S be a finite
symmetric subset ofG and let DS be the maximum of the distances distQc(g(x1),x1)
for g in S. Suppose that f n = g1 � g2 � · · · � g` is a composition of ` elements
gi 2 S. The group generated by the gi acts by isometries on Qc for the distance
distQc . Thus,

distQc( f n(x1), x1) = distQc(g1 � · · · � g`(x1), x1)
 distQc(g1 � · · · � g`(x1), g1 � · · · � g`�1(x1))

+ distQc(g1 � · · · � g`�1(x1), x1)
 distQc(g`(x1), x1) + distQc(g1 � · · · � g`�1(x1), x1)


X̀

j=1
distQc(g j (x1), x1)

 `DS.

This shows that D�1nC/2 � Dn�C/2  DS ⇥ ` for large values of n (and `), and
the conclusion follows.

5. The Picard-Manin space and hyperbolic geometry

In this section we recall the construction of the Picard-Manin space of a projective
surface X (see [13,26] for details).

5.1. Picard-Manin spaces

Let X be a smooth, irreducible, projective surface. We denote its Néron-Severi
group by Num(X); when k = C, Num(X) can be identified to H1,1(X;R) \
H2(X;Z). The intersection form

(C, D) 7! C · D (5.1)
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is a non-degenerate quadratic form on Num(X) of signature (1, ⇢(X) � 1). The
Picard-Manin space Z(X) is the limit lim⇡ : X 0!X Num(X 0) obtained by looking
at all birational morphisms ⇡ : X 0 ! X , where X 0 is smooth and projective. By
construction, Num(X) embeds naturally as a proper subspace of Z(X), and the
intersection form is negative definite on the infinite dimensional space Num(X)?.
Example 5.1. The group Pic(P2k) is generated by the class e0 of a line. Blow-up
one point q1 of the plane, to get a morphism ⇡1 : X1 ! P2k. Then, Pic(X1) is a
free Abelian group of rank 2, generated by the class e1 of the exceptional divisor
Eq1 , and by the pull-back of e0 under ⇡1 (still denoted e0 in what follows). After n
blow-ups one obtains

Pic(Xn) = Num(Xn) = Ze0 � Ze1 � . . . � Zen , (5.2)

where e0 (respectively ei ) is the class of the total transform of a line (respectively
of the exceptional divisor Eqi ) by the composite morphism Xn ! P2k (respectively
Xn ! Xi ). The direct sum decomposition (5.2) is orthogonal with respect to the
intersection form:

e0·e0 = 1, ei ·ei = �1 8 1  i  n, and ei ·e j = 0 8 0  i 6= j  n. (5.3)

Taking limits, Z(P2k) splits as a direct sum Z(P2k) = Ze0 �
L

q Zeq where q runs
over all possible points of the so-called bubble space B(P2k) of P2k (see [4, 19, 26]).

5.2. The hyperbolic spaceH1(X)H1(X)H1(X)

Denote byZ(X,R) and Num(X,R) the tensor productsZ(X)⌦ZR and Num(X)⌦Z
R. Elements of Z(X,R) are finite sums uX +

P
i aiei where uX is an element of

Num(X,R), each ei is the class of an exceptional divisor, and the coefficients ai
are real numbers. Allowing infinite sums with

P
i a
2
i < +1, one gets a new space

Z(X), on which the intersection form extends continuously [7, 12]. Fix an ample
class e0 in Num(X) ⇢ Z(X). The subset of elements u in Z(X) such that u · u = 1
is a hyperboloı̈d, and

H1(X) = {u 2 Z(X) | u · u = 1 and u · e0 > 0} (5.4)

is the sheet of that hyperboloid containing ample classes of Num(X,R). With the
distance dist(·, ·) defined by

coshdist(u, u0) = u · u0, (5.5)

H1(X) is isometric to the hyperbolic space H1 described in Section 4.1.
We denote by Iso(Z(X)) the group of isometries of Z(X) with respect to the

intersection form, and by Iso(H1(X)) the subgroup that preserves H1(X). As
explained in [12, 13, 26], the group Bir(X) acts by isometries on H1. The homo-
morphism

f 2 Bir(X) 7! f• 2 Iso(H1(X)) (5.6)
is injective.
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5.3. Types and degree growth

Since Bir(X) acts faithfully on H1(X), there are three types of birational transfor-
mations: Elliptic, parabolic, and loxodromic, according to the type of the associ-
ated isometry of H1(X). We now describe how each type can be characterized in
algebro-geometric terms.

5.3.1. Degrees, distances, translation lengths and loxodromic elements

Let h 2 Num(X,R) be an ample class with self-intersection 1. The degree of f
with respect to the polarization h is degh( f ) = f•(h) · h = cosh(dist(h, f•h)).
Consider for instance an element f of Bir(P2k), with the polarization h = e0 given
from the class of a line; then the image of a general line by f is a curve of degree
degh( f ) which goes through the base points qi of f �1 with certain multiplicities
ai , and

f•e0 = degh( f )e0 �
X

i
aiei , (5.7)

where ei is the class corresponding to the exceptional divisor that one gets when
blowing up the point qi .

If the translation length L( f•) is positive, we know that the distance
dist( f n• (x), x) grows like nL( f•) for every x 2 H1(X) (see Section 4.1). We
get: the logarithm log(�1( f )) of the dynamical degree of f is the translation length
L( f•) of the isometry f•. In particular, f is loxodromic if and only if �1( f ) > 1.

5.3.2. Classification

Elliptic and parabolic transformations are also classified in terms of degree growth.
Say that a sequence of real numbers (dn)n�0 grows linearly (respectively quadrati-
cally) if n/c  dn  cn (respectively n2/c  dn  cn2) for some c > 0.

Theorem 5.2 (Gizatullin, Cantat, Diller and Favre, see [10,11,16, 20]). Let X be
a projective surface, defined over an algebraically closed field k, and h be a polar-
ization of X . Let f be a birational transformation of X .

(1) f is elliptic if and only if the sequence degh( f n) is bounded. In this case, there
exists a birational map � : Y 99K X and an integer k � 1 such that ��1 � f ��
is an automorphism of Y and ��1 � f k � � is in the connected component of
the identity of the group Aut(Y );

(2) f is parabolic if and only if the sequence degh( f n) grows linearly or quadrat-
ically with n. If f is parabolic, there exists a birational map  : Y 99K X
and a fibration ⇡ : Y ! B onto a curve B such that  �1 � f �  permutes
the fibers of ⇡ . The fibration is rational if the growth is linear, and elliptic (or
quasi-elliptic if char(k) 2 {2, 3}) if the growth is quadratic;

(3) f is loxodromic if and only if degh( f n) grows exponentially fast with n: There
is a constant bh( f ) > 0 such that degh( f n) = bh( f )�( f )n + O(1).
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5.4. Elliptic elements of Cr2(k)

Every elliptic, infinite order element of Bir(P2k) is conjugate to an automorphism
f 2 PGL 3(k) when k is algebraically closed (see [5]). Thus, Theorem 3.4 stipu-
lates that elliptic elements of infinite order are

• Exactly doubly exponentially distorted if they are conjugate to a virtually unipo-
tent element of PGL 3(k);

• Exactly exponentially distorted otherwise.

5.5. Loxodromic elements of Cr2(k)

Loxodromic elements have an exponential degree growth; by Proposition 2.1, they
are not distorted. This result applies to all loxodromic elements f 2 Bir(X), for all
projective surfaces.

5.6. Parabolic elements of Cr2(k)

According to Theorem 5.2, there are two types of parabolic elements, depending
on the growth of the sequence deg( f n): Jonquières and Halphen twists. Here,
we collect extra informations on these transformations, and study their distortion
properties in Sections 6 and 7.

5.6.1. Jonquières twists

Let f be an element of Cr2(k) for which the sequence deg( f n) grows linearly with
n. Then, f is called a Jonquières twist. Examples are given by the transformations
f (X,Y ) = (X, Q(X)Y ) with Q 2 k(X) of degree � 1. The following properties
follow from [4,5, 16].

Normal form. There is a birational map ' : P1k ⇥ P1k 99K P2k that conjugates f to
an element g of Bir(P1k ⇥ P1k) which preserves the projection ⇡ : P1k ⇥ P1k ! P1k
onto the first factor. More precisely, there is an automorphism A of P1k such that
⇡ � g = A � ⇡ . If x and y are affine coordinates on each of the factors, then

g(x, y) = (A(x), B(x)(y)) , (5.8)

where (A, B) is an element of the semi-direct product PGL 2(k) n PGL 2(k(x)).
Alternatively, f is conjugate to an element g0 of Cr2(k) that preserves the pencil of
lines through the point [0 : 0 : 1].

Action onH1(P2k)H1(P2k)H1(P2k). Assume now that g0 preserves the pencil of lines through the
point q1 := [0 : 0 : 1]. Let e1 2 Z(P2k;R) be the class of the exceptional divisor
E1 that one gets by blowing-up q1. Then g0

• preserves the isotropic vector e0 � e1
(corresponding to the class of the linear system of lines through q1), and the unique
fixed point of g0

• on @H1(P2k) is determined by e0 � e1. Let d denote the degree
dege0(g

0). Let qi denote the base points of (g0)�1 (including infinitely near base
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points) and e(qi ) be the corresponding classes of exceptional divisors. From [1, 4],
one knows that there are 2d � 1 base points (including q1), and that

g0
•e0 = de0 � (d � 1)e(q1) �

2d�1X

i=2
e(qi ) (5.9)

g0
•e(q1) = (d � 1)e0 � (d � 2)e(q1) �

2d�1X

i=2
e(qi ). (5.10)

Degree growth. The sequence 1n dege0( f
n) converges toward a number ↵( f ). The

set {↵(h f h�1); h 2 Cr2(k)} admits a minimum; this minimum is of the form
1
2µ( f ) for some integer µ( f ) > 0, and there is an integer a � 1 such that
↵( f ) = 1

2µ( f )a2. Blanc and Déserti prove also that a = 1 precisely when f pre-
serves a pencil of lines in P2k (thus, the conjugate g0 of f satisfies ↵(g0) = 1

2µ( f )).
Moreover, when f preserves such a pencil, one knows from [4, Lemma 5.7], that
dege0( f

n) is a subadditive sequence. Thus, 1n dege0( f
n) � µ/2, and µ/2 is the

infimum of 1n dege0( f
n). In Section 7, we shall describe how Blanc and Déserti

interpret µ( f ) as an asymptotic number of base points.

5.6.2. Halphen twists

Let f be an element of Cr2(k) for which the sequence deg( f n) grows quadratically
with n. Then, f is called a Halphen twist. The following properties follow from
[4,14,15].

Normal form. There is a rational surface X , together with a birational map ':X99K
P2k and a genus 1 fibration ⇡ : X ! P1k such that g = '�1 � f � ' is a regular au-
tomorphism of X that preserves the fibration ⇡ . More precisely, there is an element
A in Aut(P1k) of finite order such that ⇡ � g = A � ⇡. Changing g into gk where k
is the order of g, we may assume that the action on the base of ⇡ is trivial; then, g
acts by translations along the fibers of ⇡ .

There is a classification of genus 1 pencils of the plane up to birational conju-
gacy, which dates back to Halphen (see [18, 21]): a Halphen pencil of index l is a
pencil of curves of degree 2l with 9 base-points of multiplicity l. Every Halphen
twist f preserves such a pencil; on X , the pencil corresponds to the genus 1 fibration
which is g-invariant.

Action on H1(P2k)H1(P2k)H1(P2k) and degree growth. Let c be the class of the fibers of ⇡ in
Num(X) (respectively in Z(X) = Z(P2k)). This class is g-invariant (respectively
f•-invariant) and isotropic. Thus c 2 Z(P2k) determines the unique fixed point of
the parabolic isometry f• on @H1(P2k).

After conjugacy, we may assume that the genus 1 fibration ⇡ comes from a
Halphen pencil of the plane of index l with nine base points q1, . . ., q9. This linear
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system corresponds to the class c such that

1
l
c = 3e0 �

9X

j=1
e(q j ). (5.11)

Thus, after conjugacy, we may assume that the Halphen twist g fixes such a class.
Under this hypothesis, of [4, Lemma 5.10] provides the following inequality

q
dege0(g

n+m) 
q
dege0(g

n) +
q
dege0(g

m) (5.12)

for all integers n,m � 0. In particular, the number

⌧ (g) = inf
n>0

1
n

q
dege0(g

n) = lim
n!+1

1
n

q
dege0(g

n) (5.13)

is a well defined positive real number, and dege0(g
n) � ⌧ (g)n2 for all n � 1.

Blanc and Déserti prove that the minimum (g) = min ⌧ (hgh�1)2 for h 2 Cr2(k)
is a positive rational number and that limn!+1

1
n2 dege0(g

n) = (g)
9 a2 for some

integer a � 3.

6. Parabolic elements of Cr2(k) and their invariant horoballs

For simplicity, the hyperbolic spaceH1(P2k)will be denoted byH1. In this section
we prove Theorem 6.1, which states that sufficiently small horoballs invariant by
Jonquières or Halphen twists are pairwise disjoint. Combined with Theorem 4.1,
this result implies that Halphen twists are not distorted.

6.1. Small horoballs associated to Halphen and Jonquières twists

6.1.1. Fixed points of Jonquières and Halphen twists

Let f be an element of Cr2(k) acting as a parabolic isometry on the hyperbolic
spaceH1. Then, f fixes a unique point ⇠ on the boundary @H1. Up to conjugacy,
there are two possibilities:

• f is a Jonquières twist, and f preserves the pencil of lines through a point q1
of P2k. Then, setting e1 = e(q1), the boundary point ⇠ is represented by the ray
R+w, where

wJ = e0 � e1; (6.1)
• f is a Halphen twist. Then, up to conjugacy, ⇠ is R+w with

wH = 3e0 � e1 � e2 � e3 � e4 � e5 � e6 � e7 � e8 � e9, (6.2)

where the ei are the classes given by the blow-up of the base-points of a Halphen
pencil.
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6.1.2. Disjonction of horoballs

If w is an element of the Picard-Manin space with w2 = 0 and w · e0 > 0, the ray
R+w determines a boundary point of H1. Let ✏ be a positive real number. The
horoball Hw(✏) is defined in Section 4.1.4; its elements are characterized by the
following three constraints:

v2 = 1, v · e0 > 0, 0 < v · w < ✏. (6.3)

When f is a Jonquières or Halphen twist then, after conjugacy, f• preserves the
horoballs centered HwJ (✏) or HwH (✏). Define

✏J =

p
3� 1
p
2

' 0.5176 and ✏H :=
1
3
p
2

' 0.2357. (6.4)

Theorem 6.1. Let wJ be the class e0 � e1 2 H1(P2k) determined by the pencil of
lines through a point q1. If 0 < ✏ < ✏J , the horoballs h(HwJ (✏)), for h 2 Cr2(k),
are pairwise disjoint; more precisely, given h in Cr2(k),

either h(HwJ (✏)) = HwJ (✏) or h(HwJ (✏)) \ HwJ (✏) = ;.

Let wH be the class 3e0 � e1 � e2 � e3 � e4 � e5 � e6 � e7 � e8 � e9 determined
by a Halphen pencil. If 0 < ✏  ✏H , the horoballs h(HwH (✏)), h 2 Cr2(k), are
pairwise disjoint; more precisely, given h in Cr2(k),

either h(HwH (✏)) = HwH (✏) or h(HwH (✏)) \ HwH (✏) = ;.

6.2. Proof of the first assertion

6.2.1. For simplicity, we write w instead of wJ . Let h be an element of Cr2(k). If
h• fixes the line R+w, then it fixes w and its dynamical degree is equal to 1; thus, h
fixes the horoballs Hw(✏). We may therefore assume that h• does not fix w. Write

h•(w) = h•(e0 � e1) = me0 �
X

i
riei (6.5)

for some multiplicities ri in Z+. Since w2 = 0, we get

m2 =
X

i
r2i . (6.6)

For later purpose, we shall write r1 = m � s1 for some integer s1 � 0. Then,

s21 +
X

j�2
r2j = 2ms1. (6.7)

Remark 6.2. We have h•(w) = w if and only if m = 1 and r1 = 1, if and only if
s1 = 0. Indeed, if s1 = 0, then the last equation implies that all r j vanish for j � 2.
Hence, h•(w) = mw for some m � 1, h is parabolic, and m must be equal to the
dynamical degree of h, so that m = 1.
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6.2.2. Assume that h•(Hw(✏)) intersects Hw(✏). Then, there exists a point u in the
intersection. Write

u = ↵0e0 �
X

i
↵i ei . (6.8)

By definition of Hw(✏), we have 0 < w · u < ✏ and 0 < h•(w) · u < ✏, i.e.,

0 < ↵0 � ↵1 < ✏ and 0 < m↵0 �
X

i
ri↵i < ✏. (6.9)

We shall write ↵1 = ↵0� ⌧ with 0 < ⌧ < ✏. Since u · e0 > 0 we know that ↵0 > 0,
and since u2 = 1 we have X

i
↵2i = ↵20 � 1, (6.10)

and therefore
⌧ 2 +

X

j�2
↵2j = 2↵0⌧ � 1. (6.11)

6.2.3. In a first step, we prove a lower estimate for ↵0. By Equation (6.9),

m↵0 < ✏ +
X

i
↵i ri . (6.12)

Apply Cauchy-Schwartz inequality and use Equations (6.5) and (6.10) to obtain

m↵0 < ✏ +

 
X

i
↵2i

!1/2  X

i
r2i

!1/2
= ✏ +

�
↵20 � 1

�1/2�m2
�1/2

. (6.13)

This gives
m↵0

⇣
1�

�
1� 1/↵20

�1/2⌘
< ✏. (6.14)

Then, remark that (1 � t)1/2  1 � t/2, to deduce 1 � (1 � 1/↵20)
1/2 � 1

2↵20
, and

inject this relation in the previous inequality to get
m
2✏

< ↵0. (6.15)

6.2.4. Isolate r1↵1 in Equation (6.9), i.e. write m↵0 � r1↵1 �
P

j�2 ↵ j r j < ✏, to
obtain

s1↵0 + m⌧ < ✏ + s1⌧ +
X

j�2
↵ j r j . (6.16)

Then, remark that m⌧ � 0, and apply Cauchy-Schwartz estimate to the vectors
(s1, (r j ) j�2) and (⌧, (↵ j ) j�2); from Equations (6.11) and (6.7) we get

s1↵0 < ✏ + (2↵0⌧ � 1)1/2(2ms1)1/2 (6.17)
< ✏ + 2(↵0✏)1/2(ms1)1/2 (6.18)
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because 0 < ⌧ < ✏. This gives

⇣s1
m
↵0
⌘1/2

<
✏

(ms1↵0)1/2
+ 2(✏)1/2

and the inequality ↵0 > m/(2✏) gives

⇣ s1
2✏

⌘1/2
<

✏3/2

(m2s1/2)1/2
+ 2(✏)1/2.

Since s1 � 1 andm � 1 we get (
p
2)�1 <

p
2✏2+2✏, in contradiction with ✏ < ✏J .

6.3. Proof of the second assertion

The proof follows the same lines.

6.3.1. For simplicity, we write w instead of wH . Let h be an element of Cr2(k). If
h• the line Rw, it fixes also the classw, and its dynamical degree is equal to 1; thus,
h• fixes the horoballs Hw(✏). Thus, we may assume that h• does not fix w. Write

h•(w) = me0 �
X

i
ri ei (6.19)

for some ri in Z+. Since w2 = 0, we get

m2 =
X

i
r2i . (6.20)

For later purpose, we shall write ri = (m/3) � si for each index 1  i  9. Then

9X

i=1
s2i +

X

j�10
r2j = (2/3)mS, (6.21)

with

S :=
9X

i=1
si . (6.22)

Remark 6.3. We have h•(w) = w if and only if m = 3 and ri = 1 for 1  i  9.
This is equivalent to S = 0. Indeed, if S = 0, then the last inequality implies that
all multiplicities r j vanish for j � 10, and all si vanish for 1  i  9. Thus,
h•(w) = mw, m must be equal to the dynamical degree of h, and m = 1.
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6.3.2. Assume that h•(Hw(✏)) intersects Hw(✏). Then, there exists a point u in the
intersection. Write u = ↵0e0 �

P
i ↵i ei . By definition, we have 0 < w · u < ✏ and

0 < h•(w) · u < ✏, i.e.,

0 < 3↵0 �
9X

i=1
↵i < ✏ and 0 < m↵0 �

X

i
ri↵i < ✏. (6.23)

We shall write ↵i = (1/3)↵0 � ⌧i for 1  i  9, and T =
P9

i=1 ⌧i . Then,

0 < T < ✏. (6.24)

Since u · e0 > 0 we know that ↵0 > 0, and since u2 = 1 we have
X

i
↵2i = ↵20 � 1. (6.25)

Thus,
9X

i=1
⌧ 2i +

X

j�10
↵2j = (2/3)↵0T � 1. (6.26)

6.3.3. The following lower estimate is obtained as in the case w = wJ :

m
2✏

< ↵0. (6.27)

6.3.4. Now, isolate the terms ri↵i , for i between 1 and 9, in Equation (6.23):

m↵0 �
9X

i=1
ri↵i �

X

j�10
↵ j r j < ✏. (6.28)

We obtain

(m � (1/3)
9X

i=1
ri )↵0 +

X

i
ri⌧i < ✏ +

X

j�10
↵ j r j (6.29)

i.e.,

(1/3)S↵0 + (1/3)mT < ✏ +
9X

i=1
si⌧i +

X

j�10
↵ j r j . (6.30)

Apply again, the fact that mT � 0 and Cauchy-Schwartz estimate:

(1/3)S↵0�✏ < ((2/3)↵0T �1)1/2((2/3)mS)1/2 < (2/3)(↵0✏)1/2(mS)1/2 (6.31)

because 0 < T < ✏. This gives

1
3

✓
S
m
↵0

◆1/2
<

✏

(mS↵0)1/2
+
2
3
(✏)1/2 (6.32)
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and the inequality ↵0 > m/(2✏) implies

1
3

✓
S
2✏

◆1/2
<

✏3/2

(m2S/2)1/2
+
2
3
(✏)1/2. (6.33)

Since S � 1 and m � 1, we get (3
p
2)�1 <

p
2✏2 + (2/3)✏, in contradiction with

✏ < ✏H .

6.4. Consequence: Halphen twists are not distorted

Let h 2 Cr2(k) be a Halphen twist. After conjugacy, we may assume that h•
preserves the class wH associated to some Halphen pencil. We know from Sec-
tion 5.6.2 that the degree growth of h is quadratic, with

dege0(h
n) � (⌧ (h)n)2. (6.34)

Since dege0(h
n) is equal to cosh(dist(h•e0, e0)), we obtain the lower bound

logdist(h•e0, e0)) � 2 log(n) � 2 log(⌧ (h)). (6.35)

Set Hm = H1(P2k), f = g•, G = Cr2(k), B = HwH (✏H/2), and C = 2. By
Theorem 6.1 if g is an element of G then g(B) = B or g(B) \ B = ;. Thus, we
may apply Theorem 4.1 to f = h• and we get the desired result: h is undistorted in
Cr2(k).

6.5. Non-rational surfaces

The previous paragraph makes use of the explicit description of Halphen pencils in
P2k. Here, we consider a smooth projective surface X , over the algebraically closed
field k, and assume that

• X is not rational;
• f is a birational transformation of X with deg( f n) ' n2 (we shall say that f is
a Halphen twist of X).

Then, from Theorem 5.2, we know that f preserves a unique pencil of genus 1.

Lemma 6.4. The Kodaira dimension of X is equal to 0 or 1. The surface X has a
unique minimal model X0, and Bir(X0) = Aut(X0).

Proof. A Halphen twist has infinite order, thus Bir(X) is infinite, and the Kodaira
dimension of X is < 2. If it is equal to �1, then X is a ruled surface, and since X
is not rational, the ruling is unique and Bir(X)-invariant. Thus, f must preserve two
pencils. These two rational fibrations determine two f•-invariant isotropic classes
in Z(X), in contradiction with the fact that f• is parabolic. This proves the first
assertion. The second one is a well-known consequence of the first.
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We can therefore conjugate f to an automorphism f0 of X0, and assume that
Bir(X0) = Aut(X0). Thus, the distortion of f in Bir(X) is now equivalent to the
distortion of f0 in Aut(X0). Instead of looking at the infinite dimensional vec-
tor space Z(X), we can look at the action of Aut(X0) on the Néron-Severi group
Num(X0).

Identify Num(X0) to Zr , where r is the Picard number of X , and denote by q0
the intersection form on Num(X0). Then, the image of Aut(X0) in GL (Num(X))
is a subgroup of the orthogonal group O+(q0;Z) preserving the hyperbolic space
Hr ⇢ Num(X0;R) defined by q0. The quotient V = Hr/O+(q0;Z) is a hyperbolic
orbifold, and the fixed point ⇠ of f0 in @Hr gives a cusp of V . A sufficiently small
horoball B centered at ⇠ determines a neighborhoods of this cusp (see [30]). Thus, if
g is an element of O+(q0;Z), then g(B) = B or g(B)\ B = ;, as in Theorem 6.1.
From Theorem 4.1, we deduce that f is undistorted. We have proved:

Theorem 6.5. Let k be an algebraically closed field. Let X be a smooth projective
surface, defined over k. If f 2 Bir(X) is a Halphen twist (i.e. deg( f n) ' n2), then
f is not distorted in Bir(X).

7. Jonquières twists are undistorted

The argument presented in Section 6.4 to show that Halphen twists are undistorted
is not sufficient for Jonquières twists; it only gives a quadratic upper bound on the
distortion function. As we shall see, the following result follows from [5].

Theorem 7.1. Let k be an algebraically closed field, and let Xk be a projective
surface. Let f be an element of Bir(X). If f is a Jonquières twist (i.e. if the
sequence deg( f n) grows linearly) then f is not distorted in Bir(X).

7.1. In the Cremona group

We first describe the proof when X is the projective plane. Denote by bp : Cr2(k) !
Z+ the function number of base-points: bp( f ) is the number of base-points of the
homaloidal net of f , i.e. of the linear system of curves obtained by pulling-back
the system of lines in P2. Indeterminacy points are examples of base-points, but the
base-point set may also include infinitely near points. The number of base-points
is also the number of blow-ups needed to construct a minimal resolution of the
indeterminacies of f . If f• denotes the action of f on the Picard-Manin space, and
e0 is the class of a line, then

�
f �1�

•e0 = de0 �
X

i
mi e(pi ), (7.1)

where d is the degree of f and mi is the multiplicity of the homaloidal system
f ⇤O(1) at the base-point pi ; thus, bp( f ) is just the number of classes for which the
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multiplicity mi is positive. The number of base-points is non-negative, is subaddi-
tive, and is symmetric (see [5]): bp( f �g)  bp( f )+bp(g) and bp( f ) = bp( f �1).
As a consequence, the limit

↵( f ) = lim
n!+1

1
n
bp( f n) (7.2)

exists and is non-negative. It is symmetric, i.e. ↵( f �1) = ↵( f ), invariant under
conjugacy, and it vanishes if f is distorted, because if f is distorted its stable length
vanishes (Lemma 1.4) and this implies ↵( f ) = 0 by the subadditivity of bp.

Blanc and Déserti prove that ↵( f ) is a non-negative integer, and that it vanishes
if and only if f is conjugate to an automorphism by a birational map ⇡ : X 99K P2.
In particular, bp( f ) > 0 for Jonquières twists because they are not conjugate to
automorphisms; but the result of Blanc and Déserti is even more precise: if f is
a Jonquières twist, ↵( f ) coı̈ncides with the integer µ( f ) which was defined in
Section 5.6.1. Theorem 7.1 follows from those results.

7.2. In Bir(X)Bir(X)Bir(X)

The definition of bp( f ) extends to birational transformations of arbitrary smooth
surfaces; again, its stable version ↵( f ) is invariant under conjugacy, vanishes when
f is distorted, and may be interpreted as the number of terms in the decomposition
f ne0 = uX +

P
i aiei in the Picard-Manin space Z(X) = Num(X) �i Zei (see

Section 5), where e0 is any ample class in Num(X). (The proofs of Blanc and
Déserti extend directly to this general situation.)

If f 2 Bir(X) is a parabolic element with deg( f n) ' n, and if X is not a
rational surface, one can do a birational conjugacy to assume that X is the product
C ⇥ P1k of a curve of genus g(C) � 1 with the projective line. Then, Bir(X)
preserves the projection ⇡ : X ! C , acting by automorphisms on the base.

The Néron-Severi group of X has rank 2, and is generated by the class v of
a vertical line {x0} ⇥ P1k and by the class h of a horizontal section C ⇥ {y0}. The
canonical class kX is 2(g�1)v�2h, where g is the genus of the curve C . Blowing-
up X , the canonical class of the surfaces X 0 ! X determines a limit

k̃ = 2(g � 1)v� 2h+
X

i
ei , (7.3)

where the ei are the classes of all exceptional divisors, as in Section 5. This limit is
not an element of the Picard-Manin space Z(X), but it determines a linear form on
the Z-module Z(X); this form is invariant under the action of Bir(X) on Z(X).

As an ample class, take e0 =
p
2�1

(v + h). This is an element of H1(X).
If f is an element of Bir(X), it preserves the class v of the fibers of ⇡ : X ! C ;
hence

p
2 f•(e0) = h + dv �

P
aiei for some multiplicities ai 2 Z+. Applied top

2 f•(e0), the invariance of the canonical class leads to the following constraint:

2(d � 1) =
X

i
ai . (7.4)
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And the invariance of the intersection form gives

2(d � 1) =
X

i
a2i . (7.5)

Thus, ai = 1 or 0, and there are exactly 2(d�1) non-zero terms in the sum
P

i aiei .
We get

p
2 f•(e0) = h+ dv�

2(d�1)X

i=1
ei . (7.6)

When f is a Jonquières twist, then deg( f n) ' n, and the number bp( f n) of terms
in the sum also grows linearly, like 2 deg( f n). Thus, ↵( f ) > 0, extending the result
of Blanc and Déserti to all surfaces. This concludes the proof of Theorem 7.1.

8. Appendix: two examples

8.1. Baumslag-Solitar groups

Fix a pair of integers k, ` � 2. In the Baumslag-Solitar group Bk = ht, x | t xt�1 =
xki, we have �x (n) ' exp(n) (see [22], Section 3.K1). In the “double” Baumslag-
Solitar group

Bk,` =
D
t, x, y | t xt�1 = xk, xyx�1 = y`

E
,

we have tnxt�n = xkn 2 S2n+1 and xkn yx�kn = y`k
n

2 S4n+3; hence, �y,S(4n +
3) � `k

n and the distortion of y in Bk,` is at least doubly exponential. In fact, we
can check �y(n) ' exp exp(n) in Bk,` as follows. Consider the homeomorphisms
of the real lines R which are defined by Y (s) = s + 1, X (s) = `s, and T (s) =
sign(s)|s|k ; the relations satisfied by t , x and y in Bk,` are also satisfied by T , X
and Y in Homeo(R): this gives a homomorphism from Bk,` to Homeo(R). If
f is any of the three homeomorphisms T , X and Y or their inverses, it satisfies
| f (s)|  max(2`, |s|k). Thus, a recursion shows that every word w of length n in
the generators is a homeomorphism satisfying |w(0)|  (2`)kn . Since Ym(0) = m,
this shows that the distortion of y is at most doubly exponential.

8.2. Locally nilpotent groups

Consider the group M of upper triangular (infinite) matrices whose entries are in-
dexed by the ordered set Q of rational numbers, the coefficients are rational num-
bers, and the diagonal coefficients are all equal to 1:

(1) M is perfect (it coincides with it derived subgroup), and torsion free;
(2) M is locally nilpotent (every finitely generated subgroup is nilpotent);
(3) For every integer d � 1, the elementary matrix U = Id + E0,1 is in the d-th

derived subgroup of a finitely generated, nilpotent subgroup Nd of M .
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The first two assertions are described in [31, Section 6.2]; the last one follows from
the following two simple remarks: the elementary matrix Id+Ed,d+1 is in the center
of the group of upper triangular matrices ofSL d+1(Q); the translation ↵ 7! ↵�d is
an order preserving permutation of Q, and this action determines an automorphism
of the group M that maps Id+ Ed,d+1 to U . Property (3) implies that the distortion
of U in Nd is nd . This implies that the distortion of U in M is at least nd for all d;
but its distortion is polynomial in every finitely generated subgroup of M .

References
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