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Counting lines on surfaces, especially quintics

S LAWOMIR RAMS AND MATTHIAS SCHÜTT

Abstract. We introduce certain rational functions on a smooth projective surface
X ⇢ P3 which facilitate counting the lines on X . We apply this to smooth quintics
in characteristic zero to prove that they contain no more than 127 lines, and that
any given line meets at most 28 others. We construct examples which demonstrate
that the latter bound is sharp.

Mathematics Subject Classification (2010): 14J25 (primary); 14J70 (sec-
ondary).

1. Introduction

Recently, there has been considerable progress in the understanding of config-
urations of lines on smooth quartic surfaces in P3. If the ground field K has
char(K ) 6= 2, 3, the maximal number of lines on a smooth X4 is 64, and a line
can be met by at most 20 other lines (see [14, 18]). For char(K ) = 3 the maximal
number is 112 and a line meets at most 30 other lines [15]. The cases char(K ) = 2
as well as K = R, or even K = Q were studied in [5, 6, 16]. In fact, the former
two papers deal more generally, and to great extent, with smooth quartic surfaces
with many lines, not just the maximum. Most of this progress was made possible
by the fact that smooth quartics are K3 surfaces, and lines endow them with elliptic
fibrations (or genus one fibrations). Moreover, examples can be constructed with
the help of lattice-theoretical techniques based on the Torelli theorem.

In contrast, for smooth surfaces Xd ⇢ P3 of degree d � 5 very little seems to
be known, even if K = C. Although the question what is the maximal number of
lines appears in various places in the modern literature (see, e.g. [2, 9, 10]), the best
known bound essentially stems from work of Salmon (see [4, 17]) and has since
then been only slightly improved by Segre ([18]):

M(d)  d(11d � 28) + 12 (1.1)
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where M(d) is the maximum number of lines on a smooth degree-d surface (at least
over C). In comparison, the Fermat surface of degree d contains exactly 3d2 lines
(over any algebraically closed field of characteristic zero or exceeding the degree d)
and there are examples with more lines known only in degrees 6, 8, 12, 20 (see [3]).

Even less seems to be known about the maximum valency v(`) of a line `
where

v(`) = #{lines `0 ⇢ Xd; `0.` = 1}

and Xd is again assumed to be smooth. By [18] if ` is a line of the first kind (to
be defined below, see Definition 2.1), v(`) cannot exceed (8d � 14) (see Proposi-
tion 2.2), but this bound does not generalize to the so-called lines of the second kind
(cf. [11, 14]).

In the case of quartics, the proof of the sharp bound v(`)  20 for ` ⇢ X4
in [14] (outside characteristics 2, 3) is based on the study of the elliptic fibration
given by the pencil of cubics residual to ` in X4. Already for ` ⇢ X5, i.e., on
quintics, this approach leads to a genus 3-fibration, that is much more difficult to
control. Instead, for a line ` ⇢ Xd we will define certain rational functions b0, . . .,
bd�3 on the line ` (Definition 3.3) which form the main novelty of this paper. The
key feature of these functions, especially on the explicit and computational side, is
that their common zeroes encode the points where ` is met by other lines on Xd
(Proposition 3.7).

A line of the second kind on a quartic surface is always met by at least twelve
other lines (see [13, 18]), whereas one can construct examples of quintic surfaces
that contain only one line and the latter is of the second kind. In this note we
give another geometric interpretation of the notion of a line of the second kind (see
Proposition 3.9) that explains why special properties of lines of the second kind on
quartics do not carry over to lines on surfaces of degree d � 5. As an application,
we sketch an elementary proof of the valency bound for lines on quartics from [14]
in Example 3.11.

After those general preparations we shall focus on the case d = 5, i.e., of
quintics X5 ⇢ P3. Our first main result concerns the valency on smooth quintics:

Theorem 1.1. Let K be a field of characteristic zero. If X5 ⇢ P3K is a smooth
quintic containing a line `, then

v(`)  28 . (1.2)

More precisely, the maximal value can possibly be attained only for lines of three
certain ramification types (Corollary 6.2). For one of these configurations, all sur-
faces containing it can be exhibited explicitly using our methods (Example 6.3),
so the bound from Theorem 1.1 is indeed sharp. In particular, this implies that
a quintic surface with a fivetuplet of coplanar lines can contain at most 125 lines
(Corollary 6.1). Combined with a technique using the flecnodal divisor and some
basic topological and intersection-theoretical arguments, this leads to the following
bound for the maximum number of lines on X5 which is our second main result:



COUNTING LINES ON SURFACES, ESPECIALLY QUINTICS 861

Theorem 1.2. Let K be a field of characteristic zero. Any smooth quintic X5 ⇢ P3K
may contain at most 127 lines. In other words,

M(5)  127.

We have to admit that we do not expect Theorem 1.2 to be sharp, or even close to it.
In fact, the current record for the number of lines on a smooth quintic surface (out-
side characteristic 2, 5) stands at 75, attained both by the Fermat quintic and Barth’s
quintic [12]. Yet the given bound provides a substantial improvement compared to
(1.1).

The organization of the paper is as follows. At first we recall Segre’s argu-
ment for lines of the first kind (see Section 2). In Section 3 we define the rational
functions b0, . . ., bd�3 for a line on a smooth degree-d surface and describe their
relevant properties. In the subsequent three sections we study lines of the second
kind on quintics to complete the proof of Theorem 1.1. Finally, in Sections 8, 9
we investigate quintics without fivetuplets of coplanar lines in order to derive The-
orem 1.2.
Convention 1.3. Since the statements of this paper remain valid under base exten-
sion (or restriction), we work over an algebraically closed field K of characteristic
zero.

ACKNOWLEDGEMENTS. We thank the anonymous referee for helpful comments.

2. Segre’s bound for the lines of the first kind

Let d � 4 and let Xd ⇢ P3 be a smooth degree-d surface that contains a line ` (i.e.,
a degree-one curve). The linear system |OXd (1)�`| endows the surface in question
with a fibration, i.e., a morphism

⇡ : Xd ! P1 (2.1)

whose fibers are plane curves of degree d � 1. We let FP denote the fiber of (2.1)
contained in the tangent space TP Xd for a point P 2 `.

The restriction of the fibration (2.1) to the line ` defines the degree-(d�1)map

⇡ |` : ` ! P1. (2.2)

Let R` be the ramification divisor of (2.2). By the Hurwitz formula, one has

deg(R`) = 2d � 4 .

The line ` is said to be of ramification type (12d�4) if and only if all ramification
points are simple, i.e., no ramification point occurs in R` with multiplicity greater
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than one. The lines of other ramification types are defined in an analogous way;
e.g., type (2, 12d�6) means that only one double point appears in R`. We highlight
that in the case of d � 5 a phenomenon occurs that was impossible for quartics:
two ramification points of the map (2.2) may belong to the same fiber (see Subsec-
tion 4.3 for an explicit example). To simplify our notation we say that the line ` is
of ramification type

(12d�6, [1, 1])

if it is of the type (12d�4) and exactly two ramification points of index 1 lie in the
same fiber of (2.2). Moreover, a line `0 6= `, `0 ⇢ Xd is called `-unramified if and
only if it meets ` away from the set of ramification points of the map (2.2).

The general fiber of (2.1) is a smooth planar curve with 3(d�1)(d�3) inflec-
tion points. In his work on lines on surfaces Segre introduces the following notion
(cf. [18, page 87]):

Definition 2.1 (Lines of Second Kind). We call the line ` a line of the second kind
if and only if it is contained in the closure of the flex locus of the smooth fibers of
the fibration (2.1). Otherwise, ` is called a line of the first kind.

Obviously each line `0 6= ` on Xd that meets ` is a component of a fiber
of (2.1). In particular, it meets ` in a point where both the equation of the degree-
(d�1) curve (= the fiber of the fibration (2.1)) and its Hessian vanish. The resultant
of the restrictions of both polynomials to the line ` is of degree (8d � 14) in the
homogeneous coordinates of ` (see [18, page 88], [14, Lemma 5.2]). After verify-
ing that multiple lines meeting ` in the same point result in a multiple zero of the
resultant, this yields the following bound for the valency:

Proposition 2.2 (Segre). If ` ⇢ Xd is a line of the first kind, then it is met by at
most (8d � 14) other lines on Xd :

v(`)  8d � 14. (2.3)

For quintics, for instance, the bound reads v  26 which is a little better than
what we stated in Theorem 1.1. Indeed, examples of smooth degree-d surfaces that
contain a line met by (d(d�2)+2) other lines (thus eventually violating (2.3)) can
be found in [11], whereas quartic surfaces that violate the above bound are studied
in [14]. It is due to those examples that in this note we will mostly deal with lines
of the second kind; in particular, this will be necessary and sufficient to complete
the proof of Theorem 1.1.
Remark 2.3. Assume that the ideal of a degree-d surface Xd ⇢ P3 is generated by

f =
dX

i, j=0
↵i, j · xi3x

j
4 =

dX

i, j,k,l=0
↵i, j,k,l · xi3x

j
4 x

k
1 x

l
2 2 K [x1, x2, x3, x4] , (2.4)

where ` = V (x3, x4) is a line of the second kind, ↵i, j 2 K [x1, x2] is homogeneous
of degree (d � i � j), and ↵i, j,k,l 2 K . The degree-(d � 1) curve residual to ` in
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the intersection Xd \ V (x4 � � · x3) is given by the polynomial

f�(x1, x2, x3) := f (x1, x2, x3, �x3)/x3 . (2.5)

We put h�(x1, x2, x3) to denote the determinant of the Hessian of f�. Let r 2
K [x1, �] be the remainder of division of h�(x1, 1, 0) by f�(x1, 1, 0). We consider
the expansion

r =
X

i, j
ri, j x i1�

j . (2.6)

By definition, we have that

` is of the second kind if and only if all ri, j 2 K [↵i, j,k,l ] vanish identically. (2.7)

3. Counting lines with rational functions

In this section we introduce the main new tool of this note – the rational functions bk
(see Definition 3.3). The definition is preceded by some elementary lemmata which
we need in order to show that the functions we introduce are in fact well-defined.

Let Xd ⇢ P3 be a smooth surface of degree d that contains a line `. To
simplify our notation we assume as in Remark 2.3 that ` = V (x3, x4) and let f
denote a generator of the ideal I(Xd) with expansion (2.4).

We define

d j ( f ) :=

�
�
�
�
�
�
�
�

@2 f
@x j@x3

@2 f
@x j@x4

@ f
@x3

@ f
@x4

�
�
�
�
�
�
�
�

.

Let P 2 ` be a point such that @ f
@x4 (P) 6= 0. Since the tangent space TP Xd can be

parametrized by the map

P2 ! TP Xd

(x1 : x2 : x3) 7! (x1 : x2 : x3 : C(P) · x3) where C(P) := �
@ f/@x3(P)

@ f/@x4(P)
,
(3.1)

the fiber FP is given by the vanishing of fC(P) (i.e., (2.5) with � = C(P)). One can
easily check that for j = 1, 2 the following equality holds

@ f
@x4

(P) ·
@ fC(P)

@x j
|` =

@2 f
@x j@x3

|` ·
@ f
@x4

(P) �
@2 f

@x j@x4
|` ·

@ f
@x3

(P). (3.2)

Note that the right-hand side gives d j ( f )(P) upon substituting P . As an immediate
consequence we obtain the following lemma (which has an analogous statement for
d1( f ) as the proof reflects).
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Lemma 3.1. Suppose that P := (1 : p2 : 0 : 0)2` is a point such that @ f
@x4 (P) 6= 0.

Then the following conditions are equivalent:

• d2( f )(P) = 0;
• P is a ramification point of the map (2.2).

Proof. The point P is a ramification point of the map (2.2) if and only if the line `
is tangent to the fiber FP in the point P , i.e.,

@ fC(P)

@x1
(P) =

@ fC(P)

@x2
(P) = 0 . (3.3)

Suppose d2( f )(P) = 0. From (3.2) we obtain @ fC(P)

@x2 (P) = 0. The Euler identity
yields @ fC(P)

@x1 (P) = 0.
Assume P is a ramification point of the map (2.2). From (3.2) and (3.3) we

obtain d2( f )(P) = 0.

Lemma 3.2. Let Xd ⇢ P3 be a smooth surface that contains the line ` = V (x3, x4)
and let I(Xd) = h f i. Then f satisfies the following conditions

@ f
@x4

/2 I(`) and d2( f ) /2 I(`) . (3.4)

Proof. Suppose to the contrary that the formal partial derivative @ f
@x4 belongs to the

ideal I(`). Since f 2 I(`), we can write

f = x3 · g(x1, x2, x3, x4) + x4 · h(x1, x2, x4) .

Thus, we have @ f
@x4 2 I(`) if and only if h(x1, x2, x4) 2 I(`). The latter implies that

the partials @ f
@x1 ,

@ f
@x2 ,

@ f
@x4 vanish along `. Hence, the zeroes of g on ` are singularities

of Xd . That contradiction shows that @ f
@x4 cannot belong to the ideal of the line `.

Suppose that d2( f ) 2 I(`). vanishes along the line `. By Lemma 3.1 every
point of the line `where @ f

@x4 does not vanish is a ramification point of the map (2.2).
Contradiction.

After those preparations we can define the main tool of this note (recall that
the monomial xi3x

j
4 x

k
1 x

l
2 appears in (2.4) with the coefficient ↵i, j,k,l ).

Definition 3.3. Let ` = V (x3, x4) be a line on a smooth surface Xd ⇢ P3 and let
f be a generator of the ideal I(Xd) given as (2.4). For k = 0, . . . , d � 3 we define
the k-th function bk := bk( f ) 2 K (x1, x2) as the rational function given by the
formula

X

j1, j2, j3�0
j1+ j2k+3
j3d�(k+3)

✓
d � ( j1 + j2 + j3)
k + 3� ( j1 + j2)

◆
↵ j1, j2, j3,d�( j1+ j2+ j3)A

d�(k+3)� j3B(k+3)�( j1+ j2)C j2
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where

A :=�
d1( f )
d2( f )

|`, B :=
(@ f/@x3) · d4( f )�(@ f/@x4) · d3( f )

2 d2( f ) · (@ f/@x4)
|`, C :=�

@ f/@x3
@ f/@x4

|`.

Originally, we introduced the functions b0, . . ., bd�3 to find quartic surfaces with
interesting configurations of lines. Indeed, for an explicitly given surface, the b-
functions will provide a simple tool to check whether a line is met by many lines
(see Proposition 3.7 and Example 3.11). For quintic surfaces, the number of pos-
sible ramification types will still be small enough to successfully apply a similar
approach. This will be crucial for the proof of Theorem 1.1.

The main feature of the rational functions bk will be presented in Proposi-
tion 3.7. Before we get there, we discuss some basic properties.
Remark 3.4. Given a pair (Xd , `) where ` ⇢ Xd is a line, the functions bk do
depend on the choice of four ordered linear forms h1, h2, h3, h4 that constitute a
system of homogenous coordinates on P3 such that hh3, h4i = I(`). Indeed, one
can easily see that some poles of bk( f ) move when we change the homogenous
coordinates. Still, as we are about to show, both the set of common zeroes of
b0( f ), . . ., bd�3( f ) and the vanishing of b0( f ), . . ., b j ( f ) along the line ` have
purely geometric meanings for the pair (Xd , `). We prefer to define bk for fixed
homogenous coordinates (x1, x2, x3, x4) and a polynomial f 2 hx3, x4i to keep our
exposition concise.
Remark 3.5. In the definition of the functions bk we assumed the surface Xd to be
smooth. Obviously, one can define the functions bk as soon as there exists a system
of homogenous coordinates (x1, x2, x3, x4) on P3 such that the pair (Xd , `) satisfies
the conditions (3.4). This can be used in study of configurations of lines on singular
surfaces (cf. [19]).

For later use, we continue with another interpretation of the polynomials
d1( f ), . . . , d4( f ). For a point P 2 Xd := V ( f ), we follow [15] to define the
Hessian quadric VP := VP Xd as the quadric in P3 given by the quadratic form

qP =
1
2
(x1, x2, x3, x4)

 
@2 f

@xi@x j
(P)

!

1i, j4

t (x1, x2, x3, x4). (3.5)

Suppose that P 2 ` is a point such that @ f
@x4 (P) 6= 0. As one can easily check, the

pre-image of the intersection of the quadric VP with the tangent space TP Xd under
the parametrization (3.1) is the quadric given by the (3⇥ 3)-matrix

0

@
0 0 d1( f )(P)
0 0 d2( f )(P)

d1( f )(P) d2( f )(P) (�B(P))d2( f )(P)

1

A . (3.6)

In particular, we obtain the following useful observation:
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Observation 3.6. If P 2 ` is a point such that @ f
@x4 (P) 6= 0 and d2( f )(P) 6= 0 then

the Hessian quadric VP Xd does not contain the tangent space TP Xd .
Finally we can state the proposition that justifies our interest in the rational

functions b0( f ), . . ., bd�3( f ) (and the way we defined them).

Proposition 3.7. Let Xd ⇢ P3 be a smooth surface that contains the line ` =
V (x3, x4) and let I (Xd) = h f i. Suppose that P := (1 : p2 : 0 : 0) is a point such
that

@ f
@x4

(P) 6= 0 and d2( f )(P) 6= 0.

Then there is at most one line `0 6= ` such that P 2 `0 ⇢ Xd , and the following
conditions are equivalent:

(a) there exists a line `0 6= ` such that P 2 `0 ⇢ Xd ;
(b) all functions b j vanish at P , i.e.

b0(P) = . . . = bd�3(P) = 0 .

Proof. We assumed the surface Xd to be smooth, so if we have two lines `0 6= `00 on
Xd such that `0, `00 6= ` and P 2 `0, `00, then the lines in question are coplanar, so
P is a ramification point of the map (2.2). The latter is impossible by Lemma 3.1.

By Observation 3.6 the Hessian quadric VP does not contain the tangent space
TP Xd , so the latter and VP meet along two lines, one of which is the line `.
An elementary computation (see (3.1) and (3.6)) shows that the other line can be
parametrized by the map 8 := 8P given as

P1 3 (t1 : t3) 7! (t1 : A(P) · t1 + B(P) · t3 : t3 : C(P) · t3) .

Observe that we have in particular 8(1 : 0) = P (e.g., by (3.6)).
The line 8(P1) meets Xd with multiplicity at least 3 in the point P , so the

composition ( f � 8) has a triple root in the point (1 : 0). By direct check, one has

f � 8 = t33 ·
d�2X

j=0
b j (P) · t j3 · td�3� j

1 (3.7)

so the line 8(P1) lies on Xd if and only if (b) holds.

In particular, since the surface Xd contains only finitely many lines for any
d � 3, Proposition 3.7 shows that the bk-functions cannot all vanish identically:
Observation 3.8. If Xd is smooth and d�3, then there is an integer k2{0,. . . ,d�3}
such that bk 6⌘ 0.

The proof of Proposition 3.7 enables us to reinterpret Segre’s notion of the line
of the second kind (Definition 2.1).
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Proposition 3.9. Let Xd ⇢ P3 be a smooth surface that contains a line `. The
following conditions are equivalent:
(a) ` is a line of the second kind;
(b) the function b0( f ) vanishes along the line `.
Remark 3.10. Observe that the claim of Proposition 3.9 does not depend on the
choice of homogenous coordinates on P3 (cf. Remark 3.4).

Proof. We maintain the notation of the proof of Proposition 3.7.
Let us assume that the map (2.2) is not ramified at P . By definition, we have

8P(P1) 6= ` and the line 8P(P1) is tangent to Fp in the point P . The point P
is an inflection point of the fiber in question if and only if ( f � 8P) has a zero of
multiplicity � 4 in the point (1 : 0). By (3.7) the latter means that b0(P) = 0. This
completes the proof of the proposition.

Obviously, for a fixed line ` ⇢ Xd we can choose the homogenous coordi-
nates (x1, x2, x3, x4) in such a way that the hyperplane section V (x3) \ Xd , say,
contains no lines and no lines on Xd run through the intersection point V (x1) \ `
(which is missing from the description in Proposition 3.7). Once we make such a
choice, by Proposition 3.7, the number of `-unramified lines on Xd cannot exceed
the minimum of the degrees of the numerators of the non-zero functions bk( f ),
where k = 0, . . . , d � 3. Thus the bound on the number of `-unramified lines on
Xd depends on the presentations

b j (1, x2) =
b̃ j
c j

, (3.8)

where b̃ j , c j 2 K [x2] are relatively prime.
As an illustration, we compute the functions b0, b1 for the quartic surfaces

from the family Z which was central for [14, Section 4].
Example 3.11. Let X4 be a quartic that contains a line ` of the second kind of
ramification type (22). For now, let K denote an algebraically closed field of char-
acteristic 6= 2, 3. By an elementary computation (see [14, Lemma 4.5]) we can
assume that X4 is given by the equation

x3x31 + x4x32 + x1x2q(x3, x4) + p(x3, x4,

where q =
P2

j=0 q j x
j
3 x
2� j
4 , p =

P4
j=0 p j x

j
3 x
4� j
4 and ` := V (x3, x4). The

ramification points are P1 := (1 : 0 : 0 : 0), P2 := (0 : 1 : 0 : 0) and we have
TPj X4 = V (x j+2). We obtain b0 = 0 and

b1 =
1

27x31x
15
2

·

✓
� q32 x

18
2 +

⇣
27 p4 + 3 q1 q22

⌘
x152 x

3
1

�
⇣
27 p3 + 3 q0 q22 + 3 q21q2

⌘
x122 x

6
1 +

⇣
q31 + 6 q0 q1 q2 + 27 p2

⌘
x92x

9
1

�
⇣
3 q0 q21 + 27 p1 + 3 q20q2

⌘
x62x

12
1 +

⇣
3 q20q1 + 27 p0

⌘
x32x

15
1 � q30 x

18
1

◆
.
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By Proposition 3.7 the line ` is met by exactly 18 `-unramified lines provided
q2q0 6= 0.

We want to check what happens when the ramified fibers of (2.1) contain lines.
One can easily see that the fiber FP1 contains exactly one (respectively three) lines
if and only if p0 = 0 (respectively q0 = 0). A similar argument shows that FP2
contains exactly one (respectively three) lines if and only if p4 = 0 (respectively
q2 = 0).

Whenever a ramified fiber (respectively both ramified fibers) acquires a triplet
of lines, Proposition 3.7 implies that the number of `-unramified lines drops by
three (respectively six) and we arrive at exactly 18 lines that meet ` if p0 p4 6= 0,
or at least 19 if p0 p4 = 0. The maximal number 20 is attained precisely when both
p0, p4 vanish, but no q0, q2. In this case, the line ` is met by 20 other lines on the
quartic X4: exactly one line through each of ramification points and 18 `-unramified
lines.

In Example 3.11 we gave an elementary proof of the most important part of [14,
Proposition 1.1]. The computations we just carried out depict a useful property.
Apparently the presentation (3.8) can be used only to count the `-unramified lines.
Still, the functions b0, . . ., bd�3 detect the existence of many lines through the
ramified points of (2.2) as well (i.e., the degree of the numerator of b̃ j decreases
when many lines on Xd run through a ramification point of the map (2.2)). On the
other hand, the functions b0, . . ., bd�3 can also fail to detect the existence of a line
6= ` through a ramification point (see 6.3.1).

4. Lines of the second kind on quintic surfaces

Let X5 ⇢ P3 be a smooth quintic surface that contains a line `. In this case
we obtain the degree-4 map (2.2) and the ramification divisor R` is of degree six,
so there are seven possible ramification types of a line (plus the subcases when
two ramification points lie in the same fiber). In this section we discuss important
properties of quintic surfaces with lines of the second kind.

If P 2 ` is an n-fold ramification point, then generally there can be at most
n + 1 other lines on X5 containing P . For simple ramification points on a line of
the second kind, there is a useful strengthening (which is a consequence of (2.7)).

Lemma 4.1. Let ` be a line of the second kind on a smooth quintic X5 and let P
occur in the divisor R` with multiplicity one. Then at most two lines on X5 run
through the point P (one of them, by assumption, being `).

Proof. We maintain the notation of Remark 2.3, put P = (1 : 0 : 0 : 0),

↵1,0 = x21(x1 � c1x2)(x1 � c2x2), ↵0,1 = x22(x2 � d1x1)(x2 � d2x1) , (4.1)

and assume, after some linear transformation, that the line `0 := V (x2, x3) lies on
the quintic surface X5. By assumption, we have d1d2 6= 0, since otherwise P would
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not be a simple ramification point. Hence (2.7) yields ↵0221 = ↵0311 = 0. One can
easily check that the line `0 is the (reduced) tangent cone CP FP .

The condition (2.7) reduces the problem of finding surfaces with lines of the
second kind to solving (relatively large) systems of polynomial equations. In the
remainder of this section we explain how one can find all quintics with a line ` of
the second kind such that

R` 2 {(22, 12), (23), (3, 13), (3, 2, 1), (32)} . (4.2)

The remaining two ramification types, namely (16) and (2, 14), are harder to pa-
rametrize, so we will use different methods to deal with them (in the next section)
in order to prove Theorem 1.1.

Let us assume that X5 is given by (2.4) with d = 5, ` = V (x3, x4) and r is the
remainder defined in Remark 2.3. One can easily check that each ri, j

• is of degree at most 2 with respect to ↵i, j,k,l , when i + j = 2;
• is linear with respect to ↵i, j,k,l , for i + j = 3;
• is constant with respect to ↵i, j,k,l with i + j � 4.

By a linear coordinate change that does not alter the ramification type of P (of the
form x̃i = xi +

P
j=3,4 bi, j x j where i = 1, 2, j = 3, 4), we can assume that four of

the coefficients ↵i,2�i, j,k vanish (the most convenient choice of the four coefficients
will depend on the ramification type we study – see, e.g. (4.4)). Moreover, a direct
computation shows that ↵2003, ↵0230 are zero (a geometric interpretation of this fact
for some ramification types can be found in [18, Section 5]).

Throughout the remainder of this section, we denote two of the ramification
points (after some linear transformation) by P1 := P = (1 : 0 : 0 : 0), P2 :=
(0 : 1 : 0 : 0). Then we fix the polynomials ↵1,0, ↵0,1 appropriate for the given
ramification type. A determinant computation shows that for all quintic surfaces we
consider one can choose twelve ri, j such that the linear system of equations they
define (with the indeterminates ↵i,3�i,k,l ) has a unique solution. In this way we
obtain a map

K 6 ⇥ K 16 ! OP3(5) (4.3)

that associates to ↵i, j,k,l , where (i + j) 2 {2, 4, 5}, the quintic given by (2.4).
The substitution of (4.3) into all ri, j ’s yields several affine quadrics in the

affine parameter space K 6 which corresponds to ↵i,2�i,k,l . Let us denote their (set-
theoretic) intersection byW . By definition, the quintics with a line of the second
kind of the considered ramification type can be parametrized by the image of the
restriction of (4.3) to

W ⇥ K 16 .

It should be pointed out that in all cases we studyW ⇢ K 6 happens to be an affine
subspace.

Below we discuss the ramification types from (4.2) one-by-one in a series of
subsections. We omit certain formulae to keep our exposition compact, but all
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formulae can be obtained with the help of any computer algebra system without
difficulty.
Remark 4.2. A careful analysis, for instance based on a parameter count, reveals
that, just like for quartics [13], quintics with a line of the second kind do not form a
single irreducible family, as different ramification types can yield distinct families.
This can also be inferred from the degree of a certain surface in P3 (Sr11 to be
investigated in Section 5, see Remark 5.8).

4.1. Two triple ramification points

Let ↵1,0 = x41 and ↵0,1 = x42 . In particular we have R` = 3(P1 + P2) and TPi X5 =
V (xi+2) for both ramification points.

After a linear change of coordinates we can assume that

↵1130 = ↵1103 = ↵2030 = ↵0203 = 0. (4.4)

We consider the system of equations given by r0,2, . . ., r0,5 and ri, j where i = 2, 3,
j = 1, 2, 3, 4, to arrive at (4.3). One can easily check thatW = V (↵2012,↵0221) in
this case.

Consequently, every smooth quintic X5 with a line of the second kind of rami-
fication type (32) can be given by (2.4) where

↵3002 =
1
8
↵2021

2, ↵0320 = 1
8↵0212

2, ↵2102 =
1
4
↵1121↵2021, (4.5)

↵2120 =
1
8
↵1112

2, ↵1202 = 1
8↵1121

2, ↵1220 =
1
4
↵0212↵1112

and the other coefficients ↵i,3�i,k,l vanish.
Remark 4.3. Suppose that ` is of ramification type (32). Computing the (formal)
Taylor expansion of the equation of FP1 (respectively FP2) around P1 (respectively
P2) one checks that the line ` is the tangent cone of FP1 (respectively FP2) provided
either ↵0212 6= 0 or ↵0410 6= 0 (respectively either ↵2021 6= 0 or ↵4001 6= 0).

4.2. One triple ramification point

In order to study ramification types with a single triple point we put

↵1,0 = x41 , ↵0,1 = x22(x2 � x1)(x2 � cx1)

in (2.4). As in Subsection 4.1, we can assume that (4.4) holds and check that the
same system of twelve linear equations has a unique solution for every c 2 K .

A discriminant computation reveals that for three values of c (namely c = 0
and 9c2 � 14c + 9 = 0), we obtain the ramification type (3, 2, 1), whereas c = 1
uniquely leads to (3, 1, [1, 1]). Otherwise the line ` is of the (non-degenerate) type
(3, 13) (i.e., no pair of ramification points lies in one and the same fiber).
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One can check that for c = 0 (i.e., ramification type (3, 2, 1)) the set W is
given by vanishing of ↵2012 and

↵0212 = �
9
64

↵1121 �
4
3
↵0221 �

243
16384

↵2021 �
27
256

↵1112 .

For the values of c such that ` is not of ramification type (3, 2, 1), W is a 3-
dimensional affine subspace of K 6 given, among others, by the vanishing of ↵2012.

In the remark below we maintain the notation of Subsection 4.1. Recall that
the fiber FP1 (respectively FP2) is the quartic curve residual to ` in the intersection
of X5 with the plane V (x3) (respectively V (x4)).
Remark 4.4. a. Suppose that ` is of the type (3, 2, 1). Without loss of generality
we can assume that P1 (respectively P2) is a double, (respectively a triple) ramifica-
tion point and the fiber FP1 meets the line ` in the point (1 : 1 : 0 : 0). This amounts
to the choice c = 0 in Subsection 4.2 (in particular, we do not have to consider the
other values of c for the ramification type (3, 2, 1)). Then

R` = 2P1 + 3P2 + P3, with P3 = (4 : 3 : 0 : 0).

As in Remark 4.3, one can check that if the fiber FP2 contains a line through the
point P2, then ↵2021, ↵4001 vanish. By Lemma 4.1 the quintic X5 contains at most
one line 6= ` through the point P3.
b. For the ramification (3, 13) (including the case (3, 1, [1, 1])) we have the same
condition for FP2 to have a degree-1 component that contains the triple ramification
point P2. Lemma 4.1 shows that X5 contains at most one line 6= ` through each of
the other ramification points.

4.3. Double ramification points

Let us assume that

↵1,0 = x31(x1 � x2), ↵0,1 = x32(x2 � cx1) and c 6= 0, 1.

A discriminant computation shows that if c 6= 0, 1, 4,�8, the line ` is of the non-
degenerate type (22, 12). Obviously, c = 1 yields a singular quintic. For c = 4
we have R` = 2(P1 + P2 + P3), where P3 = (1 : 2 : 0 : 0), so the line ` is of
ramification type (23). Finally, if c = �8, then the fiber of the parametrization (2.2)
defined by the plane V (x3 � 64x4) consists of exactly two (different) ramification
points. Hence, the line ` is of the ramification type (22, [1, 1]).

After some linear transformation, we can assume that ↵2021, ↵2030, ↵1130, ↵0212
vanish. In order to determine the map (4.3) for a fixed c 6= 0, we solve the system
of equations given by the vanishing of r3,0, . . ., r3,4 and ri, j where i = 1, 2 and
j = 1, 2, 4, 5.

For c = 4 the intersection of quadricsW is given by the single equation

↵0203 = �128↵2012 + 16↵1103 + 8↵1112 + 4↵1121 � ↵0221/4. (4.6)
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If c = �8 the setW is a codimension-2 vector subspace of K 6 cut out by:

↵0203 = �64↵1103 + 16↵1112 + 1024↵2012,
↵0221 = �128↵1112 � 64↵1121 � 8192↵2012.

For c 6= 0, 1, 4,�8, we obtain a codimension-2 affine subspace again. Indeed,
one can easily check that ↵0203, ↵1103 can be uniquely expressed as elements of
K [c, 1/c][↵0221,↵1112,↵1121,↵2012].
Remark 4.5. a. By a tangent cone argument if a0221 6= 0 (respectively a2012 6= 0)
then at most one line 6= ` on X5 runs through the point P1 (respectively P2).
b. A similar argument shows that if a0221, a0410, a0401 (respectively a2012, a4010,
a4001) vanish simultaneously, then the fiber FP1 (respectively FP2) contains no lines
at all through the point P1 (respectively P2).

5. Segre’s surface of principal lines along a line

Having discussed the five ramification types from (4.2), it remains to analyse the
ramification types (16) and (2, 14) (which, as we pointed out before, are relatively
hard to parametrize explicitly). Their analysis is the content of the present section
using an idea that implicitly appears in [18] to count the lines that meet a line of the
second kind of the given ramification type.

To this end, we consider the following subset of the Grassmannian Gr(1, 3),

S` := { ˜̀ : ˜̀ is a line, 9 P 2 ` such that ˜̀ ⇢ TP X5 and i( ˜̀, FP ; P) � 2 },

where FP denotes the residual fiber through P and i(·) stands for the intersection
multiplicity of the planar curves ˜̀ and FP in the tangent plane TP X5 computed in
the point P . We have the following lemma (maintaining the notation of Remark 2.3
and [13, Lemma 2.3]).

Lemma 5.1. The total space [{ ˜̀ : ˜̀ 2 S`} =: S11 is an algebraic surface of
degree at most eleven.

Proof. Let P = (p1 : p2 : 0 : 0) 2 ` be a point such that ↵0,1(p1, p2) 6= 0. The
residual quartic curve FP ⇢ TP X5 is given by the polynomial

g(x1, x2, x3) := f (↵0,1(P)x1,↵0,1(P)x2,↵0,1(P)x3,�↵1,0(P)x3)/x3 .

Indeed, this is just (↵0,1(P)5 · fC(P)), where fC(P) is defined by (2.5).
By direct computation, there exist h1, h2 2 K [x1, x2] (respectively h3) of

degree 7 (respectively 11) such that

@g
@x3

(p1, p2, 0) = ↵30,1(p1, p2) · h3(p1, p2),

@g
@x j

(p1, p2, 0) = ↵40,1(p1, p2) · h j (p1, p2) for j = 1, 2.
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We define bihomogenous polynomials H11 2 K [z1, z2][x1, . . . , x4] (respectively
H4) of bidegree (11, 1) (respectively (4, 1))

H11 := ↵0,1(z1, z2) · h1(z1, z2) · x1+ ↵0,1(z1, z2) · h2(z1, z2) · x2+ h3(z1, z2) · x3,
H4 := ↵1,0(z1, z2) · x3 + ↵0,1(z1, z2) · x4,

and repeat almost verbatim the proof of [13, Lemma 2.3], dehomogenizing by
putting z2 = 1 and computing the resultant with respect to z1. (In [13] one deals
with a quartic surface X4 and considers bihomogeneous polynomials H8, H3 in-
stead of H11, H4, but that is about the only difference.)

Definition 5.2. The surface S11 will be called Segre’s surface of principal lines
along `.
Remark 5.3. Suppose P 2 ` and the tangent space TP X5 meets the Hessian
quadric VP along two lines (obviously one of them is `). Then, by definition both
lines are contained in S11.

Segre’s surface of principal lines has the following useful properties (the proofs
of claims (a) and (b) use the standard topology of P3(C), so here the initial charac-
teristic-0 assumption of the paper is relevant).

Lemma 5.4. Let ` ⇢ X5 be a line of the second kind.

(a) If a point P appears in R` with multiplicity one or two, then the tangent plane
TP X5 is a component of the ruled surface S11;

(b) If P appears in R` with multiplicity one, then the surface residual to TP X5 in
S11 contains all lines on X5 that run through P;

(c) If the support supp(R`) consists of at least five points and a fiber FP2 contains
two ramification points, then TP2 X5 appears with multiplicity at least two
in S11.

Proof. (a) Let FP be a fiber of (2.1). According to [18, Section 6], if i( ˜̀, FP ;P)�
2, then either P 2 sing(FP) or i( ˜̀, FP ; P) � 4. The latter is ruled out by the
assumption on multiplicity, so the claim of the lemma follows directly from the
definition of the familyS`.

(b) We maintain the notation of the proof of Lemma 4.1 and assume that the
line `0 runs through P on X5. One can easily check that for each point P̃ from a
(punctured) neighbourhood of P on ` (in the complex analytic topology) the Hes-
sian quadric VP̃ meets the tangent plane TP̃ X5 properly (i.e., along two lines: ` and
`P̃ ). Moreover, the line `0 lies in the closure of the union of the lines `P̃ .

(c) The claim results from an elementary but tedious computation. Wemaintain
the notation of the proof of Lemma 4.1, assume that the points P := (1 : 0 : 0 : 0),
P2 := (0 : 1 : 0 : 0) belong to supp(R`) and that the fiber FP (respectively FP2)
is the quartic curve residual to ` in the intersection of X5 with the plane V (x3)
(respectively V (x4)).

At first we assume that P , P2 are simple ramification points and P3 := (1 : 1 :
0 : 0) 2 supp(R`) \ FP2 (i.e., c1 = c2 = 1, d1 6= d2 and d1d2 6= 0 in (4.1)). Then
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we apply (2.7) to compute the map (4.3), and we find the defining polynomial h11
of S11 using the explicit resultant approach from the proof of Lemma 5.1. Finally,
we check that h11 is divisible by x24 , so the claim follows for the ramification types
(14, [1, 1]), (12, [1, 1]2), (2, 12, [1, 1]).

To deal with the ramification type ([1, 1]3) we assume c1 = c2 = 1 and 0 6=
d1 = d2 in (4.1). Using the discriminant one can check that ([1, 1]3) occurs only for
d1 = 2, whereas the ramification type (2, [1, 1]2) is impossible. Then for d1 = 2
we repeat the reasoning we used to deal with the other cases, to complete the proof
of the claim.

Lemma 5.4 has an immediate consequence for the valency of a line ` on a
smooth quintic X5 granted that all ramification points (relative to `) are simple:

Corollary 5.5. If ` ⇢ X5 is a line of the second kind of ramification type (16), then
` is met by at most 24 other lines on X5:

v(`)  24.

Proof. By Lemma 5.4 all lines that meet ` on X5 lie on a degree-5 surface contained
in S11 (residual to the six distinct tangent planes at the ramification points). The
bound then follows straight from Bezout’s theorem.

In the remaining case of ramification type (2, 14), we shall see that Segre’s
surface of principal lines still yields a bound that is sufficient for our purposes.
However, one has to carry out a more detailed analysis of its behaviour. For this
purpose, we put Sr11 to denote the surface residual in S11 to the union of tangent
planes of X5 in ramification points.

Lemma 5.6. Let ` ⇢ X5 be a line of the second kind of ramification type (2, 14)
and let P appear in R` with multiplicity two.

(a) If there are more than two lines through P on X5, then

deg(Sr11)  5;

(b) If deg(Sr11) = 6, then Sr11 and X5 meet along the line ` with multiplicity � 3.

Proof. We maintain the notation of the proof of Lemma 4.1, put d1 = 0 (i.e.,
P = (1 : 0 : 0 : 0) is the double ramification point), and apply (2.7) to find
the parametrization (4.3). We use the resultant to compute the polynomial h11 that
defines Segre’s surface S11 (as indicated in the proofs of Lemmata 5.1, 5.4). It is
divisible by x3x4, so set

h9 = h11/(x3x4) and define the auxiliary surface S9 = V (h9) � Sr11.

(a) The assumption on the number of lines through P implies that ↵0221 vanishes (cf.
Remark 4.5.(a). By direct check, the polynomial h9 is divisible by x3 (respectively
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by x3x4 when V (x4) contains two ramification points). The claim thus follows from
Lemma 5.4.a.

(b) In general, one checks that the polynomial h9 belongs to the fifth power of the
ideal hx3, x4i. Thus, if Sr11 is a sextic, then it is singular along the line ` (this gives
intersection multiplicity at least two). The claim will be proved by studying the
intersection number of appropriate hyperplane sections of X5 and S9. In detail, we
cut X5 and S9 with the hyperplane Ht := V (x1 � t x2) that meets ` transversally in
the point P 0 = (t : 1 : 0 : 0)). By direct check, the line TP 0X5 \ Ht is always a
component of the tangent cone of the curve Ht \ S9, so the intersection multiplicity
of X5 and S9 along ` does exceed five. Since Sr11 is a sextic by assumption, the
hypersurface S9 contains exactly three planes, each of which meets X5 along ` with
multiplicity one. Thus the claim of Lemma 5.4.b follows.

It should be pointed out that for a double ramification point the statement of
Lemma 5.4.b does not carry over (i.e., sometimes the surface Sr11 does not contain
all lines through the point in question). Yet Bezout’s theorem (using Lemma 5.6)
immediately gives the following for ramification type (2, 14).

Corollary 5.7. If ` ⇢ X5 is a line of the second kind of ramification type (2, 14),
then ` is met by at most 28 other lines on X5:

v(`)  28.

For completeness, we emphasize that together with Corollary 5.5 this covers the
two cases missing from Section 4 for the proof of Theorem 1.1.
Remark 5.8. As explored for quartics in [13], one can construct examples of quin-
tics with lines of other ramification types and Sr11 of degree up to 9. For such
surfaces the approach we just followed yields weaker bounds for the valency than
those needed for the proof of Theorem 1.1. In the next section we will overcome
this subtlety using the results of Section 3.

6. Counting lines along a line on a quintic surface

In this section we can finally come to the problem that was our original motivation.
We complete the proof of Theorem 1.1 and show that the given bound for the va-
lency is in fact sharp (Example 6.3). Before the proof, let us formulate an immediate
consequence of Theorem 1.1 which already points towards Theorem 1.2:

Corollary 6.1. If a smooth quintic surface contains five coplanar lines, then it con-
tains at most 125 lines.

Proof of Corollary 6.1. Any line in P3 meets the hyperplane which decomposes
into the 5 given lines when intersected with the quintic X5. Thanks to Theorem 1.1,
the total number of lines on X5 is thus bounded by 5 + 5 · (28 � 4) = 125 as
claimed.
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6.1. Proof of Theorem 1.1

Let ` ⇢ X5 be a line. By Proposition 2.2 and Corollaries 5.5, 5.7, we can assume
that ` is of the second kind and supp(R`) consists of at most four points (as given
in (4.2)). The proof is based on the case-by-case study of the bk-functions from
Definition 3.3 for each possible ramification type.

Without loss of generality we assume that the quintic surface X5 is given by
(2.4) and ` = V (x3, x4).

Recall that Lemma 3.9 implies that the rational function b0 vanishes identi-
cally. For j = 1, 2 we define the polynomials b̃ j , c j 2 K [x2] by the formula (3.8).
In order to apply Proposition 3.7, we have to check the condition @ f/@x4 6= 0 on `.
Presently, one finds that

V
✓

@ f
@x4

◆
\ ` = FP1 \ ` ⇢ V (x3).

Hence all the lines on X5 intersecting ` are either

• contained in the plane V (x3) or
• `-ramified outside the plane V (x3) (so that restrictions imposed by the index of
ramification apply, including Lemma 4.1) or

• `-unramified outside the plane V (x3) (so that the total number is bounded by
both deg(b̃1) and deg(b̃2)).

In what follows, we will balance out these three cases against each other in order to
prove the valency bound from Theorem 1.1.

6.2. Triple ramification points

At first we study the ramification types with a triple point and assume that X5 lies
in the image ofW ⇥ K 16 under the parametrization (4.3) whereW ⇢ K 6 is one of
the affine subspaces we discussed in Subsection 4.1 and Subsection 4.2.

6.2.1. Ramification type (32)

Wemaintain the notation of Subsection 4.1. Observe that the fiber FP1 meets ` only
in P1, so FP1 contains no `-unramified lines. On the other hand, all `-ramified lines
(if any) are contained in the fibres FP1, FP2 .

Suppose that b1 6⌘ 0. Since, by direct computation, we have

deg(b̃1)  17,

and there are at most four lines in the fibers FP1 (respectively FP2), Proposition 3.7
yields that the line ` is met by at most 25 other lines on X5.

Assume that b1 ⌘ 0. We have deg(b̃2)  28, so the valency bound stated
in Theorem 1.1 follows directly from Proposition 3.7 provided the fibers FP1 , FP2
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contain no lines. To complete the proof in this case, it remains to study b̃2 more
precisely. We have (with short-hand notation t.o.d. = terms of degree)

b̃2 = ↵2021 · (t.o.d. 28, 26) + (t.o.d. 24, . . . , 4) + ↵0212 · (t.o.d. 3, 0) .

Therefore, if one of the fibers FP1 , FP2 contains a line ˜̀ 6= `, then by Remark 4.3
and Proposition 3.7, we have ↵0212 = 0 or ↵2021 = 0, and the line ` is met by at
most 24 `-unramified lines (respectively at most 20 if both fibers contain a line).
This completes the proof of Theorem 1.1 for ramification type (32).

6.2.2. Ramification type (3, 2, 1)

We consider the case c = 0 in Subsection 4.2 and check that the denominator of
b j divides the product (x41(x1 � x2)5x192 ) for j = 1, 2 (here the factor (x1 � x2)5
comes from the vanishing of the partial @ f/@x4, whereas the factor given by the
simple ramification point P3 (cf. Remark 4.4.a cancels out).

Assume b1 6⌘ 0. One can easily check that deg(b̃1)  20. Moreover, if FP1
contains an `-unramified line (i.e., a line through (1 : 1 : 0 : 0)) then deg(b̃1) cannot
exceed 19. Since the fiber FP1 (respectively FP2) contains at most three (respec-
tively four) lines through the point P1 (respectively P2), Proposition 3.7 combined
with Lemma 4.1 and Remark 4.4.a implies that ` is met by at most 28 other lines
on X5.

If b1 ⌘ 0, then ↵0221 = 0 and the degree of b̃2 is at most 24. Moreover,
vanishing of ↵2021, ↵4001 results in deg(b̃2)  20, whereas the existence of an `-
unramified line in FP1 diminishes deg(b̃2) by one. The required bound thus results
from Proposition 3.7 combined with Remark 4.4.a.

6.2.3. Ramification type (3, 13)

Again, we maintain the notation of Subsection 4.2 and fix any c 2 K that does not
result in the ramification type (3, 2, 1). We obtain

deg(b̃1)  17 and deg(b̃2)  24.

If b̃1 6⌘ 0, then the claim follows directly from Lemma 4.1 (indeed, we have at
most eight lines in the fibers FP1 , FP2 and at most one line through each of the
other two simple ramification points). Otherwise, we use Remark 4.4.b to check
that deg(b̃2)  20 whenever FP2 contains a line through P2.

6.3. Double ramification points

It remains to deal with the ramification types with two double points. As in Subsec-
tion 6.2, we assume that X5 lies in the image ofW⇥K 16 under the parametrization
(4.3), whereW ⇢ K 6 is one of the affine subspaces we discussed in Subsection 4.3.

We maintain the notation of Subsection 4.3. Observe that the partial derivative
@ f/@x4 vanishes in P1 and in the point (1 : c : 0 : 0) 2 FP1 (thus the latter is the
only unramified point where the first assumption of Proposition 3.7 is not fulfilled
(but the second is)) .
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6.3.1. Ramification type (23)

We assume c = 4 in the formulas from Subsection 4.3.
Suppose that b1 6⌘ 0. By direct computation we have deg(b̃1)  26 (respec-

tively deg(b̃1)  25 when there is an extra line through (1 : 4 : 0 : 0)). Moreover,
if there are at least two extra lines through P2, then Remark 4.5.a yields ↵2012 = 0
and one gets deg(b̃1)  23. More generally, one can check that if there are at least
two lines 6= ` through each of k ramification points, than deg(b̃1)  26� 3k. Con-
sequently, Proposition 3.7 yields the required bound for the valency from Theorem
1.1 provided b1 6⌘ 0 and either ` is the unique line through the ramification point
P1 or there are at least three lines on X5 which contain the point P1.

It remains to discuss the case when there are exactly 26 `-unramified lines and
exactly one line 6= ` runs through each point Pj for j = 1, . . . , 3. By Proposi-
tion 3.7 every root of b̃1 must be a root of b̃2, so the remainder of the division of b̃2
by b̃1 vanishes. An elementary (but tedious) computation yields ↵2012 = 0 and at
most 23 `-unramified lines. Contradiction.

Finally suppose that b1 ⌘ 0. Then one can easily see that ↵2012, ↵0221, ↵4001,
↵4010, ↵0410, ↵0401 vanish. By Remark 4.5.b none of the fibers FP1 , FP2 contains a
line. Moreover, we have deg(b̃2)  24, so this completes the proof of Theorem 1.1
for ramification type (23).

6.3.2. Ramification type (22, 12)

We assume that c 6= 0, 1, 4,�8 in Subsection 4.3 and put P3, P4 to denote the
ramification points of index 1 (they can be found with the help of d2( f )). Recall
that, by Lemma 4.1, there is at most one line 6= ` through P3 (respectively P4).
Moreover, one can easily check that once there is a line (different from `) on X5
through (1 : c : 0 : 0), the degree of b̃1 drops by one.

Suppose that b1 6⌘ 0. We have deg(b̃1)  23. If neither ↵2012 nor ↵0221
vanishes, the bound v  28 follows from Remark 4.5.a. In the remaining cases, a
direct computation shows that if ↵2012 = 0 (respectively ↵0221 = 0), then we have
deg(b̃1)  20 (respectively b̃1 is divisible by x32). Proposition 3.7 thus yields the
claim again.

Eventually we are led to assume b1 ⌘ 0. Then ↵2012, ↵0221, ↵4001, ↵4010, ↵0410,
↵0401 vanish and we have deg(b̃2)  20. Remark 4.5.b yields that there are no lines
6= ` through P1, P2, which completes the proof of Theorem 1.1 for non-degenerate
ramification type (22, 12). The proof for the degenerate type follows the same lines,
so we omit it for the sake of brevity.

6.4. Record valency

In the above part of the proof of Theorem 1.1 we did not analyze (very precisely)
the behaviour of b2 under the assumption that b1 vanishes along `. Such an analysis
(the details of which we omit) yields the following corollary.
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Corollary 6.2. Let X5 ⇢ P3 be a smooth quintic surface and let ` ⇢ X5 be a line.
If ` is met by 28 other lines on X5, then one of the following holds:

(28a) the line ` is of the type (32) and b1 vanishes along `;
(28b) the line ` is of the type (23), and b1 does not vanish along `;
(28c) the line ` is of the type (2, 14).

Finite field experiments suggest that the configurations (28b), (28c) might not exist,
but proving this conjecture exceeds the scope of this paper. Below we describe the
family of all quintics that carry the configuration (28a). In particular this shows that
Theorem 1.1 is sharp.
Example 6.3 (Quintics of type (28a)). Let us maintain the notation of Subsection
4.1 and assume that X5, endowed with a line with two triple ramification points,
satisfies the conditions (4.5). We solve the system of equations given by the van-
ishing of b1 along the line `. An elementary computation yields that ↵4001, ↵0410
vanish, we have

↵4010 = �
1
16

↵2021
2↵1112, ↵0401 = �

1
16

↵1121↵
2
0212,

↵3101 = �
1
16

↵2021↵1112
2, ↵1310 = �

1
16

↵1121
2↵0212,

and the following equalities hold

↵3110 = �
1
8

↵2021↵1112↵1121 �
1
16

↵2021
2↵0212,

↵2201 = �
1
8

↵2021↵1112↵0212 �
1
16

↵1112
2↵1121,

↵2210 = �
1
8

↵2021↵1121↵0212 �
1
16

↵1112↵1121
2,

↵1301 = �
1
8

↵1112↵1121↵0212 �
1
16

↵2021↵0212
2 .

In this way we may define a map

Z5 : K 4 ⇥ K 6 ! OP3(5). (6.1)

Consider the image of Z5, a family of quintic surfaces. A standard Groebner basis
computation shows that the quintic surface Z = Z5(1, . . . , 1) is smooth. By Re-
mark 4.3 none of the (ramified) fibers FP1 , FP2 contain a line. Moreover, for the
line ` := V (x3, x4) on Z we have b1 = 0, deg(b̃2) = 28 and the discriminant of b̃2
does not vanish. By Proposition 3.7, the line ` meets exactly 28 other lines on Z .
Remark 6.4. As we will see in Section 8 (by Lemma 8.1), if a line on a smooth
quintic surface X5 is met by at least 26 other lines, then X5 contains a fivetuplet of
coplanar lines (including the given line). Thus no smooth surface in the family Z5
may contain more than 125 lines by Corollary 6.1.
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7. Lines vs conics or twisted cubics

Before we can come to the proof of Theorem 1.2, we need a few more preparations,
but now in a slightly different direction. Namely we want to get a rough idea of
the number of lines on a quintic meeting a given (smooth) rational curve C – here
either an irreducible conic or a twisted cubic. To this end, we start by following
fairly closely the lines of [15].

At any point P 2 C , we can compare the tangent plane to X5 = V ( f ) ⇢ P3,

TP = TP X5,

and the Hessian quadric VP ⇢ P3 defined by (3.5). The intersection TP \ VP
generically consists of the two 3-contact lines of X5 at P; in particular, if some line
` ⇢ X5 contains P , then

` ⇢ TP \ VP .

Depending on the chosen curve C , we now turn to the total space

Z = ZC = [P2C(TP \ VP) ⇢ P3. (7.1)

7.1. Conic case

Proposition 7.1. Assume that C is an irreducible conic. Then Z is a surface of
degree 22 in P3. It does not contain X5, but the surface Z contains any line in X5
meeting C .

Proof. The proof follows essentially word by word that of [15, Proposition 2.2]

Corollary 7.2. A conic on a smooth quintic surface X5 ⇢ P3 meets at most 88
lines.

Proof. If the conic C is geometrically reducible, then the claim follows from The-
orem 1.1. Else consider the effective divisor

D = Z \ X5 2 |OX5(22)|

and let m denote the multiplicity of C in D. Then, since all lines meeting C are
contained in D, we obtain two inequalities

#{lines on X5 meeting C} 

(
deg(D � mC) = 110� 2m
C.(D � mC) = 44+ 4m.

(7.2)

The estimate in Corollary 7.2 arises from m = 11.
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Remark 7.3. If there are lines on X5 planar with the conic C , then the estimate for
total number of lines meeting C can be improved. What’s more important for us:
the bound

C.

 
MX

i=1
`i

!

 88

still holds where the second divisor comprises (all) lines contained in X5.
Corollary 7.2 and Remark 7.3 will prove quite useful in the proof of Theorem

1.2 as they facilitate simplifications of some of the arguments involved.

7.2. Twisted cubic case

Twisted cubic curves show a rather different behavior than conics – notably because
they are not plane. We first investigate the surface Z from (7.1) arising from the
twisted cubic C .

Proposition 7.4. Assume that C is a twisted cubic on a smooth quintic X5 ⇢ P3.
Then Z is a surface of degree 33 in P3. It does not contain X5, but the surface Z
contains any line in X5 meeting C .

Proof. By a linear transformation, we can assume C to be parametrized by

' : P1 ! C

[s, t] 7!
h
t3, s3, t2s, ts2

i
.

The homogeneous ideal of C is thus generated by the three quadrics

q1 = x1x2 � x3x4, q2 = x1x4 � x23 , q3 = x2x3 � x24 .

At the point P = '(s, t), the tangent plane to the quintic X5 is thus given by a
bihomogeneous polynomial

g 2 K [s, t][x1, . . . , x4]

which is linear in the xi and of degree 12 in s, t . Meanwhile the quadratic form
q defining VP has degree 9 in s, t . Z is defined by the resultant of g and q with
respect to t which thus has degree 33 = 2 · 12+ 1 · 9.

To conclude, we note as in [15] that any component of Z is automatically ruled
by lines. In particular, neither component can equal X5.

Contrary to Corollary 7.2, Proposition 7.4 alone does not give a serious esti-
mate for the number of lines on X5 intersecting the twisted cubic C . Arguing as in
the proof of Corollary 7.2 with the divisor

D = Z \ X5 2 |OX5(33)|, (7.3)

we see at least that a plentitude of adjacent lines forces C to have large multiplicity
in D. The combination with the following result will prove quite useful in the
sequel.
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Proposition 7.5. Assume that some line ` on the smooth quintic X5 ⇢ P3 meets
the twisted cubic C with multiplicity two. Then ` has multiplicity at least two in D,
i.e., D � 2` > 0.

Proof. Assume that ` and C intersect in two distinct point P1, P2. On top of the
above normalization, we can assume that

I (`) = (x3, x4) and P1 = [1, 0, 0, 0], P2 = [0, 1, 0, 0].

By assumption, f 2 I (C)\I (`), i.e., there are cubic polynomials ci 2K [x1, . . . , x4]
such that

f = q1c1 + q2c2 + q3c3 with c1 2 (x3, x4).

In the end, it will suffice to consider polynomials modulo st (such that only the pure
powers in s and in t remain); for this purpose, the following observation concerning
the evaluation at P = '(s, t) will be useful:

c1, q2, q3 2 (x3, x4) =) st | c1(P), q2(P), q3(P).

Moreover, the same holds true for the (iterated) partial derivates with respect to x1
and x2. With this in mind, it is easy to get a hand on the defining polynomials g of
TP(S) and q of VP . For instance,

g ⌘ s3c3(P)x3 + t3c2(P)x4 mod (st).

In other words, g 2 (x3, x4, st), and the same holds for q (as one easily checks by
considering the double partials with respect to x1, x2).

We continue by computing the resultant of g and q via the Sylvester matrix
with respect to s or t . The above argument shows that the first and the last column
of this matrix has all (two) entries in (x3, x4). Hence the determinant of the matrix
is in (x3, x4)2, and the line ` has multiplicity at least two in D as claimed.

If the line ` meets C tangentially, say at [1, 0, 0, 0], then I (`) = (x2, x4), and
the analogous argument shows that

g, q 2 (x2, x4, s2).

Hence the first two (or the last two) columns of the Sylvester matrix have entries in
(x2, x4), and we conclude as before.

8. Bounding the total number of lines on quintics

This section has a slightly different flavour than the previous sections of the paper
as the methods are rather different. Our aim is to complete the proof of our second
main result, Theorem 1.2. Recall from Corollary 6.1 that if a smooth quintic surface
X5 ⇢ P3 admits a hyperplane section splitting into five lines, then X5 contains at
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most 125 lines. In order to prove Theorem 1.2, it thus remains to study the other
possible configurations of lines.

Recall that the locus of points P such that there exists a line that meets X5
with multiplicity at least 4 in P is the support of a divisor in OX5(31) (see [4], [8,
Section 8]). Following classical terminology, we call it the flecnodal divisor of X5
and denote it by F . Observe that each line on X5 is a component of F . A curve on
X5 is called flecnodal if and only if it is a component of the flecnodal divisor F .

We record the following simple observation.

Lemma 8.1. If a line ` ⇢ X5 is not contained in any hyperplane splitting into lines,
then

v(`)  25.

Proof. This is a consequence of the Euler number formula [1, Proposition III.11.4]
for the fibration (2.1) and the Euler number computation for singular curves (see [7,
Corollary V.4.4.ii]).

In order to start working towards the proof of Theorem 1.2, we make from now
the following assumption:
Assumption 8.2. The smooth quintic X5 contains M > 127 lines.

In particular, Corollary 6.1 implies that X5 does not admit any hyperplane
splitting into five lines. It thus follows from Lemma 8.1 that v(`)  25 for any
line on X5. Numbering the lines on X5 from `1 to `M , we introduce the following
auxiliary effective divisor:

F 0 := F �
MX

i=1
`i , deg(F 0) = 155� M  27. (8.1)

Note that we can compute the intersection number of F 0 and any line ` ⇢ X5 as
follows:

`.F 0 = `.

 

F �
MX

i=1
`i

!

= 31� (v(`) � 3) = 34� v(`) � 9, (8.2)

where the last estimate follows from Lemma 8.1.
The overall idea of our approach goes as follows: For large M , the intersection

number in (8.2) becomes too big relative to the degree of F 0. Indeed, for a single
line, such a phenomenon might well occur, but not for all lines at the same time as
we shall see soon.

For later reference, we compute the self-intersection number (F 0)2 in two
ways. We know that F2 = 5 · 312. Let us compare this intersection number with
the decomposition (8.1). Clearly we have

 
MX

i=1
`i

!2

=
MX

i=1

 

`i .
MX

j=1
` j

!

=
MX

i=1
(v(`i ) � 3) =

MX

i=1
v(`i ) � 3M
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while
MX

i=1
`i .F 0 =

MX

i=1
(34� v(`i )) = 34M �

MX

i=1
v(`i ).

Together this yields, using Lemma 8.1,

F2 = (F 0)2 + 65M �
MX

i=1
v(`i ) � (F 0)2 + 40M. (8.3)

Assumption 8.2 thus gives

(F 0)2  5 · 312 � 40M  �315. (8.4)

Note that, if some lines have valency less than 25, then the bounds (8.3), (8.4)
improve accordingly (as we exploit occasionally), and similarly for M > 128.

If F 0 does not contain any multiple components, then (8.4) directly leads to a
contradiction as follows: Write

F 0 =
rX

j=1
Ci

for some distinct irreducible curves Ci ⇢ X5. Since KX5 = H , adjunction gives

C2i � �2� deg(Ci ). (8.5)

Applied to the above decomposition of F 0, this gives

(F 0)2 =

 
rX

j=1
C j

!2
�

rX

j=1
C2j � �2r � degF 0 � �3 deg(F 0) � �81.

This contradicts (8.4) by far, soF 0 has to admit multiple components. We shall now
study the multiple components more precisely, but before going into the details, we
eliminate the lines from much of what is to follow.

Lemma 8.3. Any line contained in the support ofF 0 contributes positively to (F 0)2.

Proof. Write F 0 = F 00 + L, where L is the sum of lines contained in the support
of F 0 (with multiplicities),

L =
sX

j=1
` j ,

and F 00 is an effective divisor on X5 not containing any line in its support. We
compute, using (8.2),

(F 0)2 = F 0.(F 00 + L) = (F 00)2 +F 00.L| {z }
�0

+
sX

j=1
` j .F 0
| {z }

�9

; (8.6)
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that is,

(F 0)2 � (F 00)2 + 9 deg(L) (8.7)

as claimed.

Thanks to Lemma 8.3, we can reduce our considerations for F 0 to satisfy (8.4)
to an investigation of the non-linear components of F 0, i.e., we shall often work
with F 00. Sometimes we will even use linear components to our advantage, using
the positive contribution in (8.7). In fact, this can be sharpened substantially:
Remark 8.4. More precisely, any line ` contained in the support of F 0 satisfies

9  `.F 0 = `.L|{z}
deg(L)�4

+ `.F 00 =) `.F 00 � 13� deg(L).

In particular, L.F 00 � deg(L)(13 � deg(L)). Plugging into (8.6) causes (8.7) to
improve to

(F 0)2 � (F 00)2 +max{9 deg(L), deg(L)(22� deg(L))}. (8.8)

The next result will be crucial in determining the top multiplicity of the components
of F 0. For later reference, we first note it in the general set-up.

Lemma 8.5. Let D denote an effective divisor with D2 < 0. Then the support of
D contains a component C whose multiplicity N satisfies

N · C2  ✏ deg(C) where ✏ =
D2

deg(D)
< 0. (8.9)

Proof. Write
D =

X

i
NiCi

for distinct irreducible curves Ci . Assume that (8.9) does not hold for either com-
ponent of D. Then

D2 �
X

i
N2i C

2
i >

X

i
Ni (✏ deg(Ci )) = ✏ deg(D) = D2,

giving the required contradiction.

We shall use this lemma repeatedly. For our key case of D = F 0, we note the
following consequence.

Lemma 8.6. The support of F 0 contains a non-linear component C whose multi-
plicity N satisfies

N · C2 < �11 deg(C). (8.10)
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Proof. By Lemma 8.3 and its proof, it suffices to consider the divisor F 00 without
linear components of degree at most 27. Then apply Lemma 8.5 to F 00 and simpli-
fy.

Remark 8.7. In special situations, this argument can be strengthened using (8.7),
(8.8). Also we could insert any constant ✏ < 35/3 instead of 11 in (8.10), but
presently this would not have any impact on our arguments.

Lemma 8.8. The support ofF 0 contains an irreducible conic of multiplicity N � 6
or a twisted cubic curve of multiplicity N � 7.

Proof. Obviously the two given cases satisfy the inequality (8.10) from Lemma
8.6. In comparison, the only remaining case in degree at most 3, a plane cubic
curve C ⇢ X5, has C2 = �3 by adjunction, so (8.10) would give multiplicity at
least 12, exceeding the degree of F 0.

For deg(C) � 4, the inequality (8.5) eliminates all cases in combination with
(8.10).

Lemma 8.9. Any conic has multiplicity at most 9 in F 0.

Proof. For degree reasons, the multiplicity N of a conic Q in F 0 is at most 13.
Recall from Corollary 7.2 that the valency of Q satisfies

v(Q)  88,

so there certainly is a line ` off Q. But then N � 10 would imply

`.F 0 = `.(F 0 � NQ)  deg(F 0 � NQ)  27� 2N  7,

contradicting (8.2).

Before continuing, we record the following useful consequence:

Lemma 8.10. Any line has multiplicity at most 3 in F 0.

Proof. Let ` ⇢ X5 be of multiplicity N in F 0. First assume that N � 5. Then use
(8.2) and compute

9  `.F 0 = �3N + `.(F 0 � N`)  �3N + deg(F 0 � N`)  27� 4N .

The claim follows immediately. It remains to discuss the case N = 4. Write
F 0 = 4` +R with

deg(R)  23 and R2  �315+ 48� 72 = �339

by (8.8). Then Lemma 8.5 implies that either R contains a line of multiplicity at
least 5 (contradicting the above), or a conic of multiplicity m � 8. Hence we obtain

F 0 = 4` + mQ +R0, deg(R0)  23� 2m  7.

By Corollary 7.2 and Lemma 8.1, there is a line `0 ⇢ X5 which intersects neither `
nor Q. Hence `0.F 0  deg(R0)  7, contradicting (8.2). This completes the proof
of Lemma 8.10.
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Remark 8.11. With a little more work, one can improve Lemma 8.10 to show that
any line has multiplicity at most 2 in F 0, but we will not need this in what follows.

9. Proof of Theorem 1.2

We are now in the position to attack the proof of Theorem 1.2. To this end, we have
to rule out all possible configurations with an N -fold irreducible conic Q supported
on F 0 (N = 6, . . . , 9), or with an N -fold twisted cubic C (N = 7, 8, 9). We
proceed by a case-by-case analysis of the residual effective divisor

R=F 0�NQ, deg(R)27�2N , respectively R = F 0�NC, deg(R)27�3N .

9.1. Multiple conic case

Following Lemma 8.8 and Lemma 8.9, we start by assuming that F contains an
irreducible conic Q of multiplicity N = 6, . . . , 9 (and no conic of higher multiplic-
ity). We proceed by a case-by-case analysis.

9.1.1. N = 9

Recall from Remark 7.3 that

Q.
MX

i=1
`i  88.

Compared with Q.F = 62, this yields

Q.R � 10 and (F 0)2 � �324+ 180+R2 = �144+R2.

Hence (8.4) implies R2  �171. One might like to continue disregarding the
linear components as in Lemma 8.6, but here the positive contribution from linear
components might already have been captured in Q.R � 10, so we have to content
ourselves with applying Lemma 8.5 to R. It follows that there is a seven-fold line
`, but this contradicts Lemma 8.10.

9.1.2. N = 8

We deduce as in 9.1.1 that Q.R � 6. Hence R2  �155, and Lemma 8.5 shows
as before thatR contains a five-fold line which is ruled out by Lemma 8.10.

9.1.3. N = 7

Consider the residual divisor R with deg(R)  13. As before, we infer Q.R � 2
andR2  �147. It follows from Lemma 8.5 thatR contains either a 4-fold line `
(which is ruled out by Lemma 8.10) or a 6-fold conic Q0 6= Q. In the latter case,
either M = 129 and the bound (8.4) improves to

(F 0)2  �355
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which is impossible to attain, orF 0 = 7Q+6Q0 +` for some line ` whose positive
contribution by Remark 8.4 cannot be compensated for.

9.1.4. N = 6

The residual divisor R has degree deg(R)  15 and R2  �171. As in 9.1.3,
Lemma 8.5 implies thatR contains a line of multiplicity 4 (which again is excluded
by Lemma 8.10) or another conic Q0 6= Q of multiplicity m � 6. In the latter
case, since m = 7 has already been covered in 9.1.3, it remains to realize that for
m = 6, Lemma 8.5 applied to the residual divisor again leads to 3-fold line and
subsequently to a contradiction by the positive contribution from (8.7).

9.2. Multiple twisted cubic case

Continuing the present line of arguments based on Lemma 8.8, we distinguish three
cases depending on the multiplicity N = 7, 8, 9 of the twisted cubic C in F 0.

9.2.1. N = 7

Here R2  �70 and deg(R)  6, so Lemma 8.5 implies that R contains a 4-fold
line. Hence Lemma 8.10 gives the required contradiction.

9.2.2. N = 8

In this case, deg(R)  3 with no obvious further restrictions. We proceed by
distinguishing howR decomposes.

IfR contains a line, then its positive contribution following Remark 8.4 gives
a contradiction.

If R is an irreducible conic, then M = 129, and the improved bound F 02 
�355 from (8.4) cannot be reached. Similarly, of course, ifR = 0.

Hence R is an irreducible cubic (plane or twisted) which thus meets no more
than 98 lines (by looking at R.F ). All the remaining lines (at least 30 in number)
have to meet C with multiplicity two for (8.2) to hold. But then their valency drops
by 7 to v(`) = 18. As this occurs for at least 30 lines, we get a big correction term
of �210 to (8.4) which is impossible to beat.

9.2.3. N = 9

We have F 0 = 9C and M = 128. Then (8.2) implies that any line ` ⇢ X5 meets
C , and for C.F = 93 to hold, C has to intersect exactly 10 lines with multiplicity
two, say `1 . . . , `10. We turn to the effective divisor D from 7.2. By Proposition
7.5, there is a decomposition

D =
MX

i=1
`i +

10X

j=1
` j + mC + D0.
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For degree reasons, this implies m  9. In comparison, the intersection product
reads

99 = C.D = 158� 5m + C.D0

whence m � 12, contradiction.

9.3. Proof of Theorem 1.2

To conclude, let us wrap up the proof of Theorem 1.2. Assuming that M > 127,
we deduced in Lemma 8.8 that F contains a conic with multiplicity N � 6, or
a twisted cubic with multiplicity N � 7. On the other hand, N  9 by Lemma
8.9 respectively for degree reasons. Then the considerations in Subsections 9.1,
9.2 successively ruled out all configurations which might have fitted (8.4), thus
completing the proof of Theorem 1.2.
Remark 9.1. By inspection, the results of the preceding four sections are totally
geometric, i.e. they essentially only require that (2.1) has a smooth fiber, and that
the flecnodal divisor does not degenerate.
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