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Completely Sidon sets in discrete groups

GILLES PISIER

Abstract. A subset of a discrete group G is called completely Sidon if its span
in C*(G) is completely isomorphic to the operator space version of the space £;
(i.e., £1 equipped with its maximal operator space structure). We recently proved
a generalization to this context of Drury’s classical union theorem for Sidon sets:
completely Sidon sets are stable under finite unions. We give a different pre-
sentation of the proof emphasizing the “interpolation property" analogous to the
one Drury discovered. In addition we prove the analogue of the Fatou-Zygmund
property: any bounded Hermitian function on a symmetric completely Sidon set
A C G\ {1} extends to a positive definite function on G. In the final section, we
give a completely isomorphic characterization of the closed span Cp of a com-
pletely Sidon set in C*(G): the dual (in the operator space sense) of Cp is exact
if and only if A is completely Sidon. In particular, A is completely Sidon as soon
as Cp is completely isomorphic (by an arbitrary isomorphism) to £1 (A) equipped
with its maximal operator space structure.

Mathematics Subject Classification (2010): 43A46 (primary); 46L06 (sec-
ondary).

In harmonic analysis (see [34]) a subset A of an Abelian discrete group G is called
Sidon with constant C if for all finitely supported a : A — C we have

D oenlal €I, anvalle

where G is the dual (compact) Abelian group, and where y, : G — Tis the
character on G associated to an element n € G. Here C (G) denotes the space of
continuous functions on G equipped with the usual sup-norm. For instance, when
G = 7 we may view G = R/Z and y, () = %™

Equivalently, if CA C C (G) denotes the closed span of {y,, | n € A} and (e,)
denotes the canonical basis of £1(A) the mapping u : Cpo — £1(A) defined by
u(yy) = e, is an isomorphism with ||u|| < C (and trivially |u~'|| < 1).

In the Abelian case the subject has a long and rich history for which we refer
to [23,34,37,38]. The first period roughly 1960-1970 was driven by a major open
problem: whether the union of two Sidon sets is a Sidon set. Eventually this was
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proved by Drury [16] using a beautiful convolution device. After this achievement,
it was only natural to investigate the non-Abelian case. For that two options appear,
either:

1. one replaces G by a compact non-Abelian group and A becomes a set of irre-
ducible unitary representations on the latter compact group, or:
2. one replaces G by a discrete non-Abelian group.

We will not deal with case 1; in that case the union problem resisted generalization
but was solved by Rider in 1975. The subject suffered from the disappointing dis-
covery that the duals of most compact Lie groups do not contain infinite Sidon sets.
We refer the reader to our recent survey [50] for more on this.

This paper is devoted to case 2. In this case, there were several attempts to
generalize the Sidon set theory, notably by Picardello and Bozejko (see [9,44]), but
no analogue of Drury’s union theorem was found. The novelty of our approach is
that while these authors defined Sidon sets using the Banach space structures of
the relevant non-commutative operator algebras, we fully use their operator space
structures. In particular, the Banach space E = £;(A) that enters the definition
of a Sidon set has to be considered as an operator space, given together with an
isometric embedding £ C A into a C*-algebra A, or into B(H) for some Hilbert
space H.

By definition an operator space is a subspace E C A (or E C B(H)). We may
use a different A and a different embedding as long as it induces the same sequence
of norms on all the spaces M,,(E) (n > 1). Of course M, (A) is equipped with its
unique C*-norm, or equivalently the norm of the C*-tensor product M, ® A, and this
induces a norm on the subspace M, (E). The theory of operator spaces is now well
developed. The main novelty is that the bounded linear maps u : E — F between
operator spaces are now replaced by the completely bounded (in short c.b.) ones
and the norm ||u| is replaced by the cb-norm |ju||c,. We say that u is a complete
isomorphism if it is invertible and both u and u~' are c¢.b. maps. See below for
background on this. We refer to the books [18,47] for more information.

In the case of £y, there is a privileged operator space structure £; C A that can
be conveniently described using for A the C*-algebra C*(Fo,) of the free group
with countably infinitely many generators. Let (U,) denote the unitaries in A
corresponding to the free generators. The embedding j : £; C A is defined by
j(en) = U,, where (e,) is the canonical basis of £;. Similarly, given an arbitrary
set A we may consider the group [ freely generated by (g,)nca and the corre-
sponding unitaries (U,)pen in A = C*(IFp). We then define j : £;(A) C A
again by j(e,) = U, for n € A. Following Blecher and Paulsen (see [47, Sec-
tion 3] and [47, page 183]), we call this the maximal operator space structure on
£1(A). Unless specified otherwise, we always assume £1(A) equipped with the lat-
ter. More explicitly we have for any C*-algebra B (e.g. B = My) and any finitely
supporteda : A — B

HZAaZ@Ut

=sup{HZAa,®Zz

| (M
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where the sup runs over all H and all functions z : A — B(H) such that
supy [z < 1.

Remark 1. By the Russo-Dye theorem, the supremum is unchanged if we restrict
to z’s with unitary values. Moreover, if we wish, we may (after translation by z; 1)
restrict to z’s with unitary values and such that z; = 1 for a single fixed s € A. In
addition we may restrict to finite dimensional H’s if we wish (see e.g. [47, page 155]
for details).

In the case B = C, we find

> aeu] =31l @)

We now introduce the relevant generalization of Sidon sets.

Let A C B(H) be a C*-algebra. If B C B(K) is any other C*-algebra (for
instance B = My = B(K) when dim(K) = N) and x € B ® A (algebraic tensor
product) we denote by x| pg,,;,4 OF more simply by [|x||min the norm of x in the
minimal or spatial tensor product, i.e., we set

[X[lmin = llx : K ® H - K ® H.

Moreover, we use the same definition when A, B are merely operator subspaces
of B(H), B(K). It is known that | x|/pmin does not depend on the choice of the
completely isometric embeddings A C B(H) and B C B(K).

Let G be a discrete group. Let Ug : G — B(H) be the universal representation
and let C*(G) C B(H) denote the C*-algebra generated by U .

Given a subset A C G we denote by Cp C C*(G) the operator space defined
by

Ca =5pan[Uc (1) | € Al

Definition 2. We say that A C G is completely Sidon if there is C such that for any
N > 1 and any finitely supported a : A — My

v <c| Ug )| .
”ZIEA ar ® U My®minC*(Fa) — Zte/\ a ® Uc(1) My @minC*(G)

More explicitly, this is the same as requiring

sup HZa, X uy;

where the sup runs over all families (#;);cp of unitaries on an arbitrary Hilbert
space H.

Equivalently, the linearmap u : Cp — £1(A) defined fort € A by u(Ug(?)) =
Ur, (g) is c.b. with |Ju||cs < C. Then, since lu e < 1, the space Cp is com-
pletely isomorphic to £1(A) equipped with its maximal operator space structure.

sc|Yaeuso| . (3)

min



894 GILLES PISIER

The fundamental example is given by free sets, as follows.

Proposition 3. Let S C G be a free set, and let A be a translate of S U {1}. Then A
is completely Sidon with C = 1. Conversely, any completely Sidon set with C = 1
is of this form.

For the proof see Proposition 6.1 below.
We can now state our main results:

. Completely Sidon sets are stable by finite unions.

. Assume A completely Sidon, symmetric, 1 ¢ A and assume for simplicity
A without any element of order 2 (this case can also be handled), then the
linear map u : Cp — C*(IFp) associated to the mapping ¢ — g; extends to a
completely positive (in short c.p.) map it : C*(G) — C*([Fp).

3. If the operator space C is completely isomorphic to £1(A) via an arbitrary

linear correspondence, or if the dual operator space C} is exact, then A is

completely Sidon.

o =

Point 1 is the non-Abelian version of Drury’s 1970 union theorem from [16]. Point 2
is analogous to the so-called “Fatou-Zygmund" property established by Drury in
1974 (see [17,37]), while point 3 is the analogue of the 1976 Varopoulos theorem
from [56]. For emphasis, we should point out that a surprising dichotomy stems
from it: for any infinite subset A C G the space C7 is (roughly) either “very big"
or “very small" in the operator space sense.

Points 1 and 2 answer questions raise by Bozejko in [9] (see Remark 1.3). The
proof of Point 2 is similar to that of 1, but is better understood if one first runs
through the proof of 1 as we do below. Moreover, the quantitative estimates we
give in terms of the constant C may be of independent interest. Lastly 3 is new.

Remark 4. We should emphasize that the theory of completely Sidon sets does not
contain the classical case, although it is very much parallel to it. Indeed, any group
G that contains an infinite completely Sidon set must be non-amenable (and hence
extremely non-commutative) because C*(G) cannot be exact. More precisely, if the
set has at least n elements with completely Sidon constant C < n/2+/n — 1 then
C*(G) is not exact (see [47, page 336]) and a fortiori G is not amenable. However,
we do not know whether such a G must contain a copy of Fo, (or equivalently ;).

Problem: By our main result, any finite union of translates of free sets is com-
pletely Sidon. Is the converse true? This fundamental question is analogous to a
well-known open one for the classical Sidon sets (see [23, page 107]).

1. Notation and background

Let E C B(H) and F C B(K) be operator spaces, consider amapu : E — F.
For any n > 1, let M, (E) be the space of n x n matrices with entries in E. We
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have M, (E) C M,(B(H)). We equip M, (E) C M,(B(H)) with the norm induced
by B(¢5(H)) ~ M, (B(H)) where ¢5(H) means H ® H @ --- ® H (n times). We
define u,: My(E) —> M, (F) by setting u,([a;;]) = [u(a;;)]. Amapu: E — F
is called completely bounded (in short c.b.) if sup,~ llux || m, (£)— M, (F) < 0. Let

lulle = sup,>q llunllm,E)—> M, (F)-

We denote by C B(E, F) the Banach space of all such maps equipped with the c.b.
norm. Let M,,(E)+ = M,,(E) N M, (B(H))+. We say that u is completely positive
(c.p. in short) if u, is positivity preserving, i.e., u,(M,(E)+) C M,(F)4 for any
n. When E is an operator system (i.e., E is a unital self-adjoint linear subspace)
c.p. implies c.b. and ||u||c, = |lu]l = ||lu(1)||. We denote by C P(E, F) the set of
C.p. maps.

Let A, B be C*-algebras. We will denote by D(A, B) the set of all “decom-
posable” maps u : A — B, i.e., the maps that are in the linear span of C P(A, B).
This means that u € D(A, B) iff thereareu; € CP(A, B) (j =1,2,3,4) such
that

u=uy—uy+i(uz —uaq).

We will repeatedly use the nice definition of the dec-norm of a linear map u : A —
B between C*-algebras given by Haagerup in [27], as follows. We set

[l gec = inf{max{[[ Sy, |S211}}, (1.1)

where the infimum runs over all maps Si, S> € C P(A, B) such that the map

, S1(x)  u(x)

Vix— (u(x*)* Sz(x)> (1.2)
isin C P(A, M>(B)). This is equivalent to the simple minded choice of norm ||u| =
ianflt flujll. When u is self-adjoint (i.e., when u(x*) = u(x)* for all x € A)
we have ||ul|lgec = inf|lu; + uz|| where the infimum runs over all the possible
decompositions of u as u = u; — up with uy, up c.p.

See [27] for the proofs of all the basic facts on decomposable maps, that are
freely used throughout this note. In particular, we repeatedly use the fact that for
any pairv; : A; — Bj (j = 1, 2) of decomposable maps between C*-algebras, the
map v ® v on the algebraic tensor product uniquely extends to a map, still denoted
by v1 ® v2,in D(A] ®max A2, B1 Qmax B2) with

lvi ® v2 : Al ®max A2 = B1 @max B2lldec < V1 lldec vz lldec- (1.3)

Moreover, if vy, vy are completely positive (c.p. in short) the resulting map v ® v :
Al Qmax A2 = B ®max B2 is c.p. Here A] ®max A stands for the C*-algebra
obtained by completing the algebraic tensor product A; ® Ay with respect to the
maximal C*-norm (see e.g. [47, page 227]).
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We also use from [27] that if B = B(H) or if B is an injective C*-algebra
(which means the identity of B factors through B(H) via c.p. maps) then for any
C*-algebra A we have CB(A, B) = D(A, B) and for any u € C B(A, B)

lulleb = llueldec- (1.4)

See [18,47] for more background and references.

Let A C G be a subset of a discrete group G.

Let Ug be the universal representation of G, and let C*(G) be the C*-algebra
generated by Ug.

Let Ag be the left regular representation, and let C;(G) be the C*-algebra
generated by Ag. We denote by Mg the von Neumann algebra generated by Ag.

The notation (;)scc is used mostly for the canonical basis of the group algebra
C[G], and sometimes (abusively) for that of £,(G). As usual we view C[G] as a
dense *-subalgebra of C*(G).

Proposition 1.1. Assume we have an embedding C*(Fp) C B(H). The following
properties are all equivalent refomulations of Definition 2.:

(i) The correspondence t — g; from A to the free generators of IF 5 extends to a
c.b. linear map u : C*(G) — B(H) with ||u|cp < C;

(i) For any Hilbert space H, for any bounded mapping z : A — B(H) there is
a bounded linear map u; : C*(G) — B(H) with |luzllco < C sup,cp l2(2)|]
such that u,(Ug (1)) = z(t) for any t € A.

Proof. If A is completely Sidon then clearly (i) holds by the injectivity of B(H),
and conversely (i) obviously implies A completely Sidon.

By the injectivity of B(H) for any z as in (ii) there is a linear v, : B(H) —
B(H) extending the correspondence Ur, (g;) — z(t) (t € A) with [l |l =
sup,ca llz()]l (this expresses the fact that {g; | # € A} is completely Sidon with
constant 1). Then the composition u#, = v u shows that (i) implies (ii). The con-
verse is obvious. L

Remark 1.2. If A is asymmetric in the sense that A N A~! = ¢, we show in
Corollary 4.4 that the correspondence A > ¢ +— g; € [Fp extends to a c.p. map
u : C*(G) — C*(F ) but then we only obtain ||u||c,(= |[u]]) < O(C*).

Remark 1.3. In [9] Bozejko considers the property appearing in (ii) in Proposi-
tion 1.1 and he calls “w-operator Sidon" the sets with this property. He calls “op-
erator Sidon" the sets A C G satisfying A N A~! = ¢ such that any B(H)-valued
bounded function on A admits a positive definite extension on G, and proves that
free sets (i.e., {g; | t € A} in [F) have this property. “Operator Sidon" is a priori
stronger than “w-operator Sidon", but actually, we will show later on in this pa-
per (see Theorem 4.1) that the two properties are equivalent. Bozejko also asked
whether these sets are stable under union. We show this in Corollary 3.3. Our re-
sults suggest to revise the terminology: perhaps the term “operator Sidon" should
be adopted instead of our “completely Sidon".
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Remark 1.4. The following observation plays a crucial role in this paper. Let
' = Fp. Let Q : C*(I') — Mr be the x-homomorphism associated to Ar.
Let E C C*(G) be an operator subspace. Then for any u € CB(E,C*(I'))
there is " € D(C*(G), Mr) with ||u'|lgec < llullcb such that u¥|z = Qu. In-
deed, free groups satisfy Kirchberg’s factorization property from [35]. In particu-
lar, by a well-known construction involving ultraproducts (see Th. 6.4.3 and Th.
6.2.7 in [13]), for some H the map Q factors through B(H) via c.p. contractive
maps Q1 : B(H) — Mr and Q; : C*(T') — B(H) so that Q = Q10>. By
the injectivity of B(H) the composition Qou : E — B(H) admits an extension
Qou € CB(C*(G), B(H)) with ||Qoullec < |Qaulles = llullco. But by (1.4)
CB(C*(G), B(H)) = D(C*(G), B(H)) isometrically. Therefore ||Qaullgec <
llu]lcb. The mapping ut = Q1Q~2u has the announced properties. If we as-
sume in addition that E is an operator system and that u is c.p. then we find
u" € CP(C*(G), Mr) with [lu"|| = [[u" [lgec < llull = llullcp-

In particular, if A C G is a completely Sidon set with constant C, let £ C
C*(G) be the span of {Ug(¢) | t € A}. We may apply the preceding observation
to the linear mapping u defined by u(Ug(t)) = Ur(t) (t € A). We find U €
D(C*(G), Mr) such that U (U (t)) = Ar(g;) forallt € A with ||U |lgec < |lttllcy <

C. We will show below (see Corollary 2.9) that conversely the existence of such a
U implies that A C G is completely Sidon.

Remark 1.5. Let A be a unital C*-algebra. By [33] any a € A with ||a| < 1 —2/n
can be written as an average of n unitaries in A.

ACKNOWLEDGEMENTS. Thanks are due to Marek Bozejko, Simeng Wang and
Mateusz Wasilewski for useful communications. Lastly I am grateful to the referee
for a very careful reading.

2. Operator valued harmonic analysis

Let G be adiscrete group. Let ¢ : G — A be a function with values in a C*-algebra.
Let u, : C[G] — A be the linear map extending ¢. We denote respectively by

B(G,A), CP(G,A), CB(G,A), D(G,A)
the set of those ¢ such that u,, extends to a map u, : C*(G) — A respectively in
B(C*(G), A), CP(C*(G),A), CB(C*(G),A), D(C*(G),A)
and we set

lellsG,a) = llugll, llellcsG,a) = lluglles,  @llpG, a) = luglldgec-  (2.1)
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By (1.4), when A = B(H) or when A is injective then C B(G, A) = D(G, A) and
lellcaG.a) = 1@l p(G. a), but in general we only have D(G, A) C CB(G, A) with
lelleG.a) < llellpG. a) and the inclusion is strict.

When A = C we have B(G, C) = CB(G,C) = D(G, C) isometrically and
we recover the non-commutative analogue of the classical “Fourier-Stieltjes alge-
bra" B(G) (see, e.g., [19] or [22, page 3]), which can be identified isometrically
with C*(G)*: we have ¢ € B(G) = B(G, C) iff there is a unitary representa-
tion r : G — B(H) and vectors £, € H such that ¢(.) = (n,7(.)€) and
lellsgy = inf{l|n||l§]]} where the infimum (actually the minimum is attained)
runs over all possible such representations of ¢.

By the factorization of c.b. maps (see e.g. [18,43]) the case when A = B(H)
is entirely analogous: in that case ¢ € CB(G, B(H)) if and only if there are H,
a unitary representation 7 : G — B(I-AI ) and operators &, n € B(H, H ) such that
@(.) = n*m(.)§ and

lelicac,a) = nf{linlll1}, (22)

where the infimum (actually a minimum) runs over all possible such representations
of ¢.
With this notation we can immediately reformulate Proposition 1.1 like this:

Proposition 2.1. A subset A C G is a completely Sidon set with constant C iff for
any H and any z : A — B(H) such that sup, ||z|| < 1 there is ¢ € CB(G, B(H))
with ||¢llcsG,BH)) < C such that o = z. Moreover, for the latter to hold it
suffices that it holds for any finite dimensional H .

The next lemma is a simple refinement of the last statement. The proof is based on
a specific “extremal" property of the norm in (1).

Lemma 2.2. Let O < ¢ < 1. Let H be a Hilbert space and ¢ > 0 a constant.
Assume that for any z : A — B(H) withsup, ||z|| < 1thereis ¢y € CB(G, B(H))
with ||@ollcBG,B(H)) =< ¢ such that sup, ||z — @oll < €. Then for any z : A —
B(H) with supy |zl < 1 there is ¢ € CB(G, B(H)) such that | = z with
lellcsG. By < c/(1—é).

Proof. Applying the assumption to the function (¢p9—z)/¢ we find 1€ CB(G, B(H))
with [|@1llcB(G.BH)) < ¢ suchthatsup, [z —¢o —ep1]l < 2. Repeating this step,
we obtain ¢; with ||¢;|lc B(G,B(H)) < ¢ suchthatsup, |[z—¢@o—- - -—sj(p_,- | <eitl,
Then ¢ = > ° el j gives us the desired function. O

Remark 2.3 (On completely positive definite functions). We will say (following
[43]) that ¢ : G — A is completely positive definite if for any finite subset
{t1,...,t,} C G we have [(p(tfltj)] € M,(A);+. By classical results (due to
Naimark, see [43,page 51]) ¢ € C P(G, A) iff ¢ is completely positive definite. As-
suming A C B(H) ¢ is completely positive definite iff there are H7m:G— B(I:I )
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and & € B(H, I:I) suchthat ¢(.) = £*7(.)é. When A = B(H), by a polarization ar-
gument (2.2) shows that any ¢ € C B(G, A) can be written as a linear combination
© =91 — @ +i(p3 —p4) withgj € CP(G, A) forall j =1, ..., 4.

The spaces C B(G, A) and D(G, A) can also be viewed as spaces of multipli-
ers. Toany ¢ : G — A we associate a “multiplier" M, : C[G] — C*(G) ®min A
that takes t € G to Ug (1) ® ¢(t).

Proposition 2.4. The multiplier M, extends to a c.b. (respectively decomposable)
map from C*(G) to C*(G) Qmin A (respectively C*(G) Qmax A) iff ¢ € CB(G, A)
(respectively ¢ € D(G, A)), and we have

lellcG,a) = IIMy : C*(G) = C*(G) ®min Allcb

lellpG,a) = 1My : C*(G) = C*(G) ®max Alldec
= “M(/J : C*(G) - C*(G) Qmin A“dec-

Moreover, ¢ € CP(G, A) iff M, extends to a c.p. map from C*(G) to C*(G) @max
A, or equivalently a c.p. map from C*(G) to C*(G) Qmin A.

Proof. Letm) : G — C = B(C) be the trivial representation and let u; : C*(G) —
C = B(C) be the associate *-homomorphism. Note that u, = (11 ® Ids) M. This
shows that if M,, is either c.b., c.p. or decomposable with values in C*(G) ®min A
then the same is true for u,. Conversely, if ||ugyllcy < 1 then |Idcrc) ® uyp :
C*(G) ®min C*(G) = C*(G) ®min Alleb < 1. Let Jyin : C*(G) — C*(G) ®min
C*(G) be the diagonal embedding taking r € G to (¢,t) € G x G (corresponding
to Ug >~ Ug ® Ug as representations on G). Then M, = (Idc+G) ® uy) Jmin and
hence My, : C*(G) — C*(G) ®min Allcb < 1. Similarly, u, c.p. implies that
M, : C*(G) = C*(G) ®min Aisc.p.

Assume ||ug|ldgec < 1. Then by (1.3) |[Idc+G) ® uy : C*(G) @max C*(G) —
C*(G) ®max Alldec < 1. Let Jpax : C*(G) = C*(G) ®@max C*(G) be the anal-
ogous diagonal embedding so that My, = (Idc+) ® ugy)Jmax. It follows that
My : C*(G) = C*(G) ®max Alldgee < 1. A fortiori, composing with the -
homomorphism C*(G) ®max A — C*(G) ®min A we have |M, : C*(G) —
C*(G) ®min A”dec <1 O

Remark 2.5. By aclassical result (see [19]) B(G) (which is isometrically the same
as CB(G,C) or D(G, C)) is a Banach algebra for the pointwise product. In the
operator valued case there are two distinct analogues of this fact, as follows. Let
Aj be C*-algebras (j = 1,2). Letp; € CB(G, Aj) (respectively ¢; € D(G, A))).
Then the function 1 ® g2 : G - A] ® Az isin CB(G, A1 @min A2) (respectively
D(G, A1 ®max Ap) with norm

lor ® e2llcBG, Ay @mindr) = ll@1llcBG,anll@2llcB(G, A)

(respectively [[¢1 ® @21l D(G, A @max A2) = I101ID@G, anl921I DG, Ar)-)
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To check this it suffices to observe that uy, gy, = (Uy, ® Uy,)Imin (respectively
Up 9, = (Up, @ Uy,) Imax). Moreover, in both cases ¢ ® ¢; is completely positive
definite if each @1, ¢ is so.

We now investigate the converse direction: how to obtain a multiplier from a
linear mapping.

Remark 2.6. We have an embedding G — G x G as a diagonal subgroup Ag C
G x G. In that case it is well-known (see e.g. [47, page 154]) that we have a c.p.
projection from C*(G x G) onto the closed span of the subgroup Ag in C*(G x
G). It follows that the map Ppax : C*(G) ®max C*(G) — C*(G) defined by
Pnax(Ug(s) ® Ug(t)) = Ug(t) if s = t and = 0 otherwise is a unital c.p. map
such that || Pyax|l = || Pmaxlldec = 1. Moreover, obviously PmaxJmax = Idc*(G)-
Therefore Jmax Pmax 1S @ unital c.p. projection (a conditional expectation) from
C*(G) ®max C*(G) 10 Jmax (C*(G)) = C*(Ag).

For any ¢ € G we denote by f,G € M(; the functional defined by
FE@) = (81, x80).

Note that ( f,G) is biorthogonal to (Ag(?)).

The next result, essentially from [47, page 150], is a refinement of Remark 2.6,
that illustrates the usefulness of the Fell absorption principle. The latter says that for
any unitary representation 7 on G the representation Ag ® 7 is unitarily equivalent
to Ag ® I (see e.g. [47, page 149]).

Theorem 2.7. We have an isometric (C*-algebraic) embedding
Jg: C*(G) C MG @max Mg

taking Ug(t) to LG (1) @ Ag(t) (t € G), and a completely contractive c.p. mapping
PG: MG ®max Mg — C*(G)

such that
]dc*((;) = PgJ;.

Moreover,Ya,b € Mg,a =) ,.qa(®)rg(), b =Y ,.qb()Ag(t) we have (ab-
solutely convergent series)

Pola®b) =) a®b®OUc().
We illustrate this by the following diagram: we have Jg = (Yg ® YG) Jmax:

TeRTY,
C*(G) ®max C*(G) = Mg @max Mg

JmaxT lPG
_—

Idq*
C*(G) S YoM ()
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where Jnax : C*(G) — C*(G) ®max C*(G) (as before) and Y : C*(G) — Mg
are the x-homomorphisms determined by

Vie G Jnax(Ug®)) = Ug(1) @ Ug(t) and Yg(Ug (1)) = Ag(1).  (2.3)

Proof. Let x € Mg ® Mg (algebraic tensor product). For s,z € G let x(s,¢t) =
(f& ® £0)(x). Note that (a ® b)(s, 1) = fC(a) fC(b) and (¥, [fE(y))'/2 <
|l yllmg forany y € Mg. Therefore ), |(a @ b)(t, 1)| < ||lallmg |16 m; - This shows
that )", |x(z, )| < oo forany x € Mg ® Mg.
Note for future reference that for any b € Mg

Pc(hg(t) @ b) = fE(b)Us (1) (2.4)

We will show the following claim:

|2 U, < g - 25)

Then we set Pg(x) = ), x(t,1)Ug(t). This implies the result. Indeed, in the
converse direction we have obviously

Hzx(h Hig(t) ® AG(t)‘

= > xt. 06|

’
max

and hence (2.5) implies at the same time that Jg defines an isometric *-homomor-
phism and that the natural (“diagonal") projection onto Jg (C*(G)) is a contractive
map (actually a conditional expectation). The proof of the claim will actually show
that Pg is c.p. We now prove this claim. Let 7 : G — B(H) be a unitary represen-
tation of G. As usual we denote by pg the right regular representation taking any
t € G to the unitary of right translation by r~!. We introduce a pair of commuting
representations (71, ) on £2(G) ®2 H as follows:

m(Ac@) =Ac(t) @m(t) and m(Ag(®)) = pc(t) ® 1.

Note that both 7| and 7> extend to normal isometric representations on Mg. For
1 this follows from the Fell absorption principle. For 3, it follows from the fact
that p¢ ~ Ag (indeed if W: £2(G) — £2(G) is the unitary taking §; to §,-1, then
WG (OW = pG ().

We denote by 7.2 : Mg @ Mg — B(2(G) ®2 H) the linear map (actually
a s-homomorphism) defined on finite sums of rank 1 tensors by (71.72)(}_a; ®
bj) =) mi(aj)m(b)).

Since 71 and m, have commuting ranges, we have

”(7[1'7T2)('x)||3(€2(G)®2H) = ”x”MG®maxMG ’ (26)

hence compressing the left-hand side to K = §, ® H C £2(G) ®> H, we obtain
(note that (6., Ag(s)pg(t)d.) = 1 if s = t and zero otherwise)

th(t, B (t) = Pk (m1.7m2)(x) |k
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and hence
DIRILIC] Y @)

Finally, taking the supremum over 7, we obtain the announced claim (2.5). This
argument shows that Pg is c.p. and || Pgllcb < 1. O

Remark 2.8. Let us denote A the complex conjugate of a C*-algebra A, i.e., A
equipped with scalar multiplication defined for « € C,a € A by: aa = @a,
where @ denotes a viewed as an element of A. Note that the correspondence
Ug(t) — Ug(t) (respectively Ag(f) = Ag(t)) extends to a C-linear isomorphism
from C*(G) to C*(G) (respectively from Mg to ‘M¢). Therefore the following vari-
ant of Theorem 2.7 also holds: There is an embedding j : C*(G) — Mg Qmax MG
that takes t € G to Ag(t) ® LG (t) and a contractive c.p. map pg - MG @max Mg —
C*(G) such that pg(Ag(t) @ Ag(s)) = 0 for t # s satisfying pc jc = Idc+G).

Corollary 2.9. LetT" = Fp. A subset A C G is completely Sidon iff there is ald in
D(C*(G), Mr) such thatU(Ug(t)) = Ar(g;) for allt € A. In that case, the Sidon
constant is at most ||Z/l||czlec.

Proof. Assume there is such a {f. Let Jyax be as in (2.3). Consider the mapping
J = Pl"(u ®U)Jmax-

Clearly J(Ug(t)) = Ur(g;) forall t € A. By Theorem 2.7 and (1.3) we have

171 C*(G) = C*(Mllgee = U 13ec-

A fortiori || J ||y < U ||§ec. By Proposition 1.1 A is completely Sidon with constant
1A |3
For the converse, see Remark 1.4. O

Proposition 2.10. Let u € D(C*(G), MG ®max A) with ||ullgec < 1. We define
oy G —> Aby
@u() = (£ ® 1da)uUc(1)).

Then |loullpG.a) < 1. Ifuiscp. then ¢, € CP(G, A).
Moreover, if there is ¢ : G — A such that u(Ug(t)) = Ag(t) ® ¢(t) for all
t € G, then ¢, = ¢.

Proof. Let u; : C*(G) — Mg be the x-homomorphism taking # € G to Ag (7).
By (1.3)

lu), ®u : C*(G) Qmax C*(G) — MG Qmax MG ®max Alldgec < 1.

Let v = (Pg ® Ida)(u) ® u)Jg. Then v(Ug(¢)) = Ug(t) ® ¢,(t) by (2.4) and
lvllgec < 1. With u; associated as above to the trivial representation u1v(Ug(t)) =

¢, (t) and hence ||@,llpG.4) = llu1vlldec < 1. If w is c.p. sois ujv and ¢, €
CP(G, A). The last assertion is immediate. ]



COMPLETELY SIDON SETS IN DISCRETE GROUPS 903

Let I" be another discrete group. Let T € D(C*(G), Mr). Let T (y, s) be the
associated “matrix" defined by

T(y,s) = f, (TWs(s))) (2.8)

and determined by the identity 7 (s) = Zy T (y, s)Ar(y), where the convergence
isin Ly(tr). Note

1/2
supseq (32, 1T 9)P) " < ITL (29)
We will use the following special case of Proposition 2.10.

Lemma 2.11. Let v € D(C*(G), C*(G)). Let T, = uv € D(C*(G), Mg) and
let Ty(t, s) be the associated matrix as in (2.8). Let v* : G — C be the function
defined by

V() =Ty(t,1).
Then v® € B(G) and

lvllsG) = Iv®licsi,c) = v lipG) < vldec-

Proof. We apply Proposition 2.10 with A = C and u = u;v. Then ¢, = v® and
v llpG) < llusvlldec < llvlldec. The isometric identities C B(G, C) = D(G, C) =
B(G, C) give the rest. O

Remark 2.12. Let A be a C*-algebra, let v € D(C*(G), C*(G) ®@max A) and let
u = (u) ®I1da)v. We will again denote v*® = ¢, where ¢, : G — A is the function
defined in Proposition 2.10. We then have [|v*|p(G,4) < [|Vlldec. Moreover, v® €
P(G, A) ifviscp.

More generally we will use the following variant of Lemma 2.11.

Lemma 2.13. Let I" be another discrete group. Assume that there is a group mor-
phismq : T — G. Let T € D(C*(G), C*(I')) such that there is a scalar matrix
[T(y,s)] (y €', s € G) satisfying

Vs € G Zyer IT(y, s)| < o0 and T(Ug(s)) = Zyer T(y, s)Ur(y).
Let ® : C*(G) — C*(I") be defined by

OWs() =) T(y,)Ur(y).

vel,q(y)=s

Then ® € D(C*(G),C*(I")) with ||O|lgec < T |lgec. Moreover, ® is c.p. if T
isc.p.
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Proof. Let g : C*(I') — C*(G) denote the *-homomorphism associated to g :
I > G. LetTy = JrT : C*G) — C*(T") ®max C*T), and v = (§ ®
Idc+ry)Ti. Clearly v € D(C*(G), C*(G) Qmax C*(I')) with [|v]ldec < I7T lldec-
Let W = v* : G — C*(I') be the function defined in Remark 2.12 and let
® : C*(G) — C*(I") be the linear map associated to W. Then the latter implies
1®lldec = ¥ lID(G.c*ay) < IT lldec- O

Remark 2.14. Let Jax 0 C*(G) = C*(G) ®max C*(G) and Prax : C*(G) max
C*(G) — C*(G) be as before. Let xg = Yg ® Tg : C*(G) ®max C*(G) —
MG Q@max Mg with Y as in (2.3). Then, recapitulating, we have

Prax = P x6, J6 = xGJmax and PmaxJmax = PgJc = IdC*(G)-

3. Interpolation

We start by an interpolation theorem that can be viewed as a non-commutative
Drury trick.

Theorem 3.1. Let A C G be a completely Sidon set with constant C. Let w(e) =
C?/e fore > 0. Forany0 < ¢ < 1 there is a function Y, € B(G) with lVellBG) <
w(e) such that Yo (s) = 1 forany s € A and |Y:(s)| < C%e for any s € A.

More generally, for any 0 < ¢ < 1 and any function z : A — A with val-
ues in a unital C*-algebra A with sup, ||z|| < 1 there is Y., € D(G, A) with
Ve.zl DG, A) < w(e) such that

2
Vezipa =2 and supg\a [[Ve,zlla < C7e.

Outline of proof. The first step is the special case when G = 5 for the set A C [y
formed of the free generators indexed by A (see Lemma 3.6). The second step
(Lemma 3.9) establishes a strong link between the set A and the set A. We will
then complete the proof (after Remark 3.11) by transplanting the case of A C [Fp
tothatof A C G. O

Remark 3.2. Note that when A = B(H), if we settle for a weaker estimate, the
first part implies the second one. Indeed, letz : A — B(H) with sup, [|z|]| < 1and
let ¢ € CB(G, B(H)) with ||¢liceG,BH)) < C extending z as in Proposition 2.1.
Then the function ¥ ; = @y, satisfies VY 7|, = 2, [IVezllDG,B(H) < Cw(¢) and

supg\a 1V 2|l By < Ce.

Using this statement, the following is immediate by well-known arguments.
Corollary 3.3. The union of two completely Sidon sets is completely Sidon.

Proof. Fix 0 < ¢ < 1. Let A1, A be completely Sidon sets in G with respective
constants C1, C2 and let A = Ay U Ay. We may and do assume A, A; disjoint.
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Letz : A — B(H) with sup, ||z]| < 1. By Theorem 3.1 (recalling (1.4)) there
are ; € CB(G, B(H)) with |l¢jllcBG,BH)) = C?/e such that ¢; = z on A and
SUPG\A llo;ll < & forboth j =1,2. Then ¢ = ¢ + ¢, satisfies ||¢lcpG,BH) <
(C! + C3)/e and sup, |l¢ — z|| < e. By Proposition 2.1 this shows that A is
completely Sidon with constant (C} + C3)/(e(1 — ¢)). O

Remark 3.4 (Can the estimates be improved ?).  Actually as the proof below
shows, we can use for w any function w such that Theorem 3.1 holds when A =
{g: | t € A} C Fy. Given the spectrum of the Haagerup multiplier s, (1) = &'l
appearing below (that generalizes Riesz products to the non-commutative case) we
may apply an argument due to Méla [39, Lemme 3] for which we refer for more
details to [51, Remark 1.16] that implies that Theorem 3.1 holds for a better w,
namely for w(e) = C ¢ log(2/¢) for some numerical constant ¢; > O (instead of
w(e) = C?/¢). In the preceding corollary, assuming C = max{Cy, C;} large, this
leads to A = A1 U Aj completely Sidon with a constant C(A) = o(C? log C).
This same estimate has been known for Sidon sets since Méla’s work. However,
it seems to be still open whether there is a better estimate than O(C?log C). The
same question arises of course for completely Sidon sets. In particular, although
unlikely to be true, it seems that an estimate C(A) = O(C) is not ruled out.

We will use the following variant of Haagerup’s well-known theorem from
[26]. This plays the role of the Riesz products used in Drury’s original argument
(see Remark 3.13).

Theorem 3.5. For any 0 < ¢ < 1 there is a function f; : Fpn — Cin B(Fp) with
| fellBar,) < 1/€ such that

Vie A fe(g)=1and Vy ¢{g [t €A} |fe(y)|=e.

Proof. Haagerup’s theorem produces a unital c.p. map associated to the multiplier
operator for the function &, : t > ¢!/l the latter is in B(F,) with norm 1. For any
fixed z € T, let x.(t) = z"® (n(r) € Z) where t — 7" is the group morphism on
IF taking all the generators to z (and hence their inverses to z~!). Clearly x, has
norm 1 in B(FF4). Therefore the function

£ut) = (1/e)he (1) / 2 (D)dm(2),

where m is normalized Haar measure on T, satisfies by Jensen || /¢ ()|l pr,) < 1/¢.

fe() = fg(gt_l) =0, fe(g) = 1 and | fe(t)| < ¢ whenever |¢t| > 1. All the
announced properties are now easy to check. O

Lemma 3.6. The set A = {g; | t € A} C Fu satisfies the properties in Theo-
rem 3.1 with C = 1.
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Proof. Let z : A — U(A). There is a unitary representation 77, : Fy — U(A)
such that ,(g;) = z(t) forany t € A. Let Y. (t) = fe(t)7;(¢) (i.e., the point-
wise product). Then v, ; extends z, ||V (#)|]| < e if t € A and we claim that
Ve lIpEF,,4) < 1/e. Indeed, let u,, : C*(Fp) — A be the associated x*-
homomorphism. Clearly [luy, [ldec = 1 (see the proof of Proposition 3). Let My, :
C*(Fp) — C*(Fp) be the multiplier by f;. Then ||My,|gec < 1/¢ (see Propo-
sition 2.4). Therefore u, My, € D(C*(Fp), C*(Fp)) with [Juz, My, [lgec < 1/€.
Since uz, My, is the linear map associated to the function v , the claim follows.
This completes the proof in case z takes its values in U(A). Using Remark 1.5 one
easily extends this to the case when sup, ||z]| < 1. O

Let I' be another discrete group.
LetTy, T, € D(C*(G), Mr).
Let T1#T> : C[G] — £1(I") be defined by

(TiET)() = ) T $)Ta(y. 5) ey,

where (8;) is the natural basis of C[G] and (e, ) the canonical basis of £1(I"). Note
that by (2.9) the last sum is absolutely convergent. Since £;(I') € C*(I') (in the
usual way) we may view T1875 as a map with values in C*(I"). Then we set equiv-
alently

(T2T2)6) =) i ) Ta(y. )Ur (). (3.1)

Proposition 3.7. For any T1, T» € D(C*(G), Mr), the mapping T\T extends to
a decomposable map still denoted (abusively) by T\4T» in D(C*(G), C*(T")) such
that

171872l dec < 171 1ldecl 72|l dec- (3.2)
Proof. Just observe
(N#1) = Pr(T1 @ Tr)Jg : C*(G) — C*(I),
and use (1.3). ]

Remark 3.8. Assume that there is a morphism ¢ : I' — G onto G so that G is a
quotient of T'. Let g : C*(I") — C*(G) be defined by

4WUr(y)) = Ug(q(y)).

Then ¢ is a *-homomorphism. A fortiori it is a ¢.p. contractive mapping and hence

”é”dec =1.
Let T € D(C*(G), C*(I") such that T (Ug(s)) = Y, T (. )Ur(y) with

ZyEI‘ T (y,s)] < ooforalls € G. Letv = gT : C*(G) — C*(G). Note that
v(UG($)) = Y yeq ZyeF,q(y):s’ T (y, s)Ug(s"), and hence

/ —
Lis’s) = Zyel“,q(y)ﬂ’ Ly.s)
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and [|v : C*(G) = C*(G)|lgec < |IT : C*(G) — C*(I')||gec- By Lemma 2.11 we
have
Iv*1BG) < IIT lldec (3.3)

and
V=D oy TS, (3.4)

This brings us to the second step of the proof of Theorem 3.1, as follows:

Lemma 3.9. Let A C G be a subset generating G. LetT' =Fp. Letq : T' — G be
the quotient morphism taking g, to t. If A C G is completely Sidon with constant
C, there is a scalar “matrix" T (y, s) such that

SUPsec ) o 1T 9)l =< €2, (3.5)
and such that the corresponding operator T : C*(G) — C*(I') satisfies
Vie A TUg®) =Ur(g).

Moreover, the map ® : C*(G) — C*(I") defined by

OWs() =) T(y,5)Ur(y)

vel.q(y)=s

is in D(C*(G), C*(T")) with ||O|lqec < C2.

Proof. By Remark 1.4, there is amap U : C*(G) — Mr with ||U||gec < C such
that U(Ug(t)) = Ar(g) forall + € A. Now let T = UHU. Then (3.5) follows
by (2.9) and (3.1). By (3.2) [T |ldec < C?. The second part then follows from

Lemma 2.13. O

Remark 3.10. By Remark 2.8 using Huu we can in addition obtain 7' (y,s) > 0
for all y, s.

Remark 3.11. Let ¥ : G — C*(I") be the function associated to ®, i.e.

Vse G Y(s)= Z T(y,s)Ur(y).

q(y)=s
Then ¥ € D(G, C*(F)) with ||\IJ||D(G,C*(1")) < C2 and V(1) = Ur(g,) for any
teA.

Proof of Theorem 3.1. We may assume w.l.0.g. that G is the group generated by
A. We apply Lemma 3.9 and (3.5) to transplant the result of Lemma 3.6 from [F
to G. Recall ' = Fp. Fix0 <& < 1. Letz : A — A such that sup, |z < 1.
Let 7/ : A — A be the transplanted copy of z defined by z’(g;) = z(¢) for any
t € A. Of course supy ||Z'|l < 1. By Lemma 3.6 there is ¥, , : ' — A with

I, llpar.ay < 1/ extending z’ and such that ||y ()| < eif y & A. Let

ug; : C*(I') — A be the linear map associated to Wé,z (ie., ug is Uy is the
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sense of (2.1)). Let W be associated to ® : C*(G) — C*(I") as in Remark 3.11 so
that |W| pG.cx1)) = IOl pc*(G).cx(r))- We then set

Ve, = Ue (V) (3.6)

so that u, ;® is the linear map associated to ¥ .. Thus

Ve, zllDG,4) < IOl pc*(G),cx ) lUe,zll DCc* (), A)

= W lp@,crrpllve lipr,a < C?/e.

Equivalently (3.6) means that for any s € G we have
Vea®) =) o T V).

Observe that if s ¢ A and g(y) = s then necessarily y & {g; | t € A} and
hence (3.5) gives us || (s)] < C2e. Moreover for any t € A we have ¥ ;(t) =
ue (W) = ¥, (&) = 7'(g) = z(t). So the second (and more general) part of
Theorem 3.1 follows. O

Remark 3.12. Let |s| denote the length of an element s € G with respect to the
generating set A, i.e., |s|a = inf{|¢t| | t € Fp, q(t) = s}. In the preceding proof
we find

Yo ()] = C2ePI " and [ ()| < C2eMIal

Remark 3.13. If one replaces the free group by the free Abelian group I'* = Z)
the proof becomes quite similar to Drury’s original one, but reformulated in operator
theoretic terms. The group I'“ is generated by generators (g¢);ca that are free
except that they mutually commute. In this case M« is an injective von Neumann
algebra. Thus we have a mapping v € D(C*(G), Mr«) as in Corollary 2.9 where
now the g;’s are replaced by the generators gf of I'“. When the group G is Abelian
we again have a quotient map ¢ : I'* — G such that g(gf") = ¢ forall € A.
The analogue of f; is then the Fourier transform of a probability measure on the
compact group G = T», namely the Riesz product [Tiea (1 + &(zs + Z1)) Where
7, : TA — T is the ¢-th coordinate. This is defined only for |¢] < 1/2 but one can
use equally well whenever |¢| < 1 the Riesz product based on the Poisson kernel:

[Ten (C,cae™2)

Its Fourier transform is the exact analogue of f, on I'“.

See [24, Chapter 7] and [32, Chapter V] for more on Riesz products and their
generalizations.

See [8,10,15,22] for generalizations of Haagerup’s result (concerning the func-
tion h.) to free products of groups and [4] for free products of c.p. maps on C*-
algebras.
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4. The Fatou-Zygmund property

We now turn to the Fatou-Zygmund (FZ in short) property. Recall P(G) is the set
of positive definite complex valued functions on G. The multiplier operator M s
associated to a function f € B(G) is c.p. on C*(G) iff f € P(G) and we have
IMpll = IMfllgec = f(1) forany f € P(G).

Theorem 4.1. Let A C G\ {1} be a symmetric completely Sidon set. Any bounded
Hermitian function ¢ : A — C admits an extension ¢ € P(G). More generally,
there is a constant C’ such that for any unital C*-algebra A, any bounded Hermi-
tian function ¢ : A — A admits an extension ¢ € C P(G, A) satisfying

@Dl < C"sup,ep eI,
and moreover ¢(1) = 14]le(1)]|.

The structure of the proof follows Drury’s idea in [17], but we again use decom-
posable maps as above, and harmonic analysis on the free group instead of the free
Abelian one.

The key Lemma is parallel to the one in [17]. It is convenient to formulate it
directly for positive definite functions with values in a unital C*-algebra A.

Lemma 4.2 (Key Lemma). Let A C G \ {1} be a symmetric completely Sidon set
with constant C. Let A be a unital C*-algebra. Let ¢ : A — A be a Hermitian
function (ie., we assume ¢(t~') = @(t)* for any t € A) with sup, llell < 1. For
any 0 < e < 1 there is &, € P(G, A) with

1P llcBG,a) = Pe(D| < 4C% and supyey [|Pe(s) — ep(s)| < 4C2e?.

Proof. For simplicity we give the proof assuming that A does not contain elements
such that # = r=1. Let A; C A be such that A is the disjoint union of A and
A]_1 = {t=! |t € A1}. We will work with the free group I" = 5, instead of F.
As before we set g(g;) =t forallt € Aq.

Then we consider the self-adjoint operator space E spanned by {Ug(¢) | t €
A}. Letu : E — Mr be the linear mapping defined by u(Ug(¢)) = Ar(g;) and
u(Ug(t™") = Ar(g,)~! fort € A;. Note that u is self-adjoint in the sense that
u = u, where u,(x) = u(x*)* forall x € E. By Remark 1.4, since A is completely
Sidon with constant C, u is the restriction to E of a mapping T € D(C*(G), Mr)
with | T|lgec < C. Replacing T by 1/2(T + T.) we may assume that 7 is self-
adjoint. Then (see [27]) we have a decomposition T = T+ — T~ where T* €
CP(C*(G), Mr) with

max{ITH I NI} < IT* +T71 < IT lldec- 4.1)

‘We have
THT =a—b
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with
a=T Tt + T 4T andb =T 4T~ + T 4TT.

Note thata, b € C P(C*(G), C*(T)).

Fix0 < e < 1. Let h, : C*(I') - C*(I") be as before the Haagerup c.p.
multiplier defined on Fp by (see [26]) h.(t) = gl'l. Note that both 4, and h_, are
in P(IFp) (indeed, h_.(t) = h(t) x_1(2)).

The function ¢’ defined on the words of length 1 by ¢'(g) = @(¥) is
Hermitian. By Haagerup’s [26] and the operator valued version in [9] (see Re-
mark 1.3), there is a positive definite function f € P(T, A) extending ¢’ such

that f(1) = 1 and f(g;) = ¢(¢) (and f(gfl) = @@t YY) foralr e Ay. In-
deed, this is precisely the FZ-property of the free group I' = [Fp,. (See [4] for
a generalization of this to c.p. maps on free products.) Let My : C*(I') —
C*(I") ®max A be the associated “multiplier" taking Ur(¢) to Ur (¢) @ f(¢). Clearly
My € CP(C*(I), C*(I) @max A) and [ M| = | My(D)]| = 1.

We now introduce for any 0 < ¢ <1

Y. = (éMh€ X ]dA)Mfa + (qAMh% X ]dA)be.

Clearly Y € CP(C*(G),C*(G) ®max A). Let &, = Y7 in the sense of Re-
mark 2.12. Since Y, is c.p. we know that &, € C P(G, A). Moreover, by (4.1)

1®ellcs.a) = 1P < lal + 16 < TP+ 1T 1>+ 20T T
< 4Tl < 4C>.

We now compute &, (s) for s € A. We have
Pe(s) =D iy e VNI T (9 +T7(r.5)%)
+hoe N fFRT (v, T (v, 9)).
We can write (recall s # 1 and hence g(y) = s implies |y| > 1)
e(s) = 1(5) + E(s).
where
1) =Dt aimsipiat BT DT .9 +T7(r.5)%)
+hoe N FWCRT (. )T (. 9)),
and the “error term" E(s) is

EG) =) raormsipiot e LTy +T7(r.9)%)
+h e fWQRTT (v, )T (v, 9).
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Fixs € A;. If |[y] = 1 and g(y) = s we must have y = g, h(y) = ¢ and
h—e(y) = —e and f(y) = ¢(q(y)) = ¢(s) so we recover

1(s) = e@()[(TT(gs, $)* + T (g5, 9)%) — QT (g5, )T (gs, 5))]
=e(s)T (g5, 5)%

and since T'(y, s) = 1,,—,, we obtain for s € A
I(s) = ep(s).
Similarly, I (s™") = ep(s™") = ep(s)*.

It remains to estimate the error: Note that if || > 1 we have |h+.(y)| < ¢
and hence by (2.9)

2

IEOI =) T @) + T ()’ [+ 2T (. )T~ (v 9)|
<2y (TPl + T (r.5))?
<EUTHI+ 1T < 43T (3 < 46°C.

This completes the proof of the lemma, assuming A has no element of order 2.
Otherwise let A C A be the set of such elements. We then replace 5, with
' =IFa, * (%ea,Z2). We leave the details to the reader. ]

Remark 4.3. Let ¢g : G — C be such that ¢g(#) = 1if r = 1 (unit of G)
and ¢o(t) = O otherwise. Clearly ¢g € P(G) (indeed ¢o(¢) = (81, Ag(¢)d1))-
Let ¢ € CP(G, A). Then ¢(1) € Ay and hence 0 < (1) < |l@(1)||14. Let
Y@ = o) + oo (lp(D14 — ¢(1)). Then ¥ € CP(G, A), (1) = (1)1
and ¥ (1) = ¢(¢) for all t # 1. Equivalently, if we are given V € C P(C*(G), A)
then there is W € C P(C*(G), A) such that W(1) = ||[V(1)||14 and W(Ug(¢)) =
V(Ug(t)) forall ¢ #£ 1.

Proof of Theorem 4.1. The theorem follows from the key Lemma 4.2 by a routine
iteration argument (note that ®, — ¢ is Hermitian), exactly as in [17]. For the last
assertion we use Remark 4.3. O

The proof gives an estimate of the form C’ < ¢C* where C is the completely
Sidon constant and ¢ a numerical constant, to be compared with Remark 3 4.

Corollary 4.4. Assume for simplicity that A C G \ {1} is symmetric, and is the
disjoint union of A1 and Al_1 as before (in particular it has no element of order 2).
Let Ex C C*(G) be the operator system generated by A and {1}. The following
are equivalent:

(1) A is completely Sidon;
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(ii) There is a completely positive linear map V : C*(G) — C*(F p,) such that
Vie Ay V(Ug(t)) = Ur, (&) V(Us(t™) = Ur,, (ot

(iii) There is 6 >0 such that the (unital) mapping Ss : EA — C*(IFp,) defined by

Ss()=1and ¥t € Ay S5;(Uq (1)) =8Ug, (&) Ss(Ug(t~")=8Ur, (g,

iscp.; _
(iv) There is B > 0 such that Sg admits a c p. extension Sg : C*(G) — C*(Fy,).

Moreover, the relationships between the Sidon constant and § are C < 1/6 < cC 4,
and B > §2.

Proof. Assume (i). Let A = C*(IFp,). Define ¢ : A — Aby ¢(t) = g, ot =
gt_1 fort € Aj. By Theorem 4.1 there is a c.p. mapping V : C*(G) — A extending
Ug(t) — (). This proves (i) = (ii). Assume (ii). Let § = V|t By
Remark 4.3 there is W € C P(C*(G), C*(I")) such that W(1) = (1/8)1 and V¢t €
A1 WWUg@®)) = UFAI (g1) WUg(1t™ 1Y) = UFAI (gt_l). Then the restriction S
of §W to E p satisfies (i1i).

Assume (iii) or (iv). Then (i) follows because || Ss|lc,b = 1. Also (iv) trivially
implies (iii).

Assume (iii). Let I' = [F,,. By Remark 1.4 S5 extends to a c.p. map U :
C*(G) — Mr. Now consider S = Utl{. Then S is c.p. and extends Ss2. Thus (iii)
implies (iv).

The relationships between the constants can be traced back easily from the
proof. O

Remark 4.5. All the preceding can be developed in parallel for the free Abelian
group. The last statement gives an apparently new fact (or rather, say, a new re-
formulation of the FZ property) in the commutative case. We state it for emphasis
because it seems interesting. Let G be a discrete commutative group. Assume for
simplicity that A C G \ {0} has no element of order 2 and is the (symmetric) dis-
joint union of A and Afl as before. Let I'| be the free Abelian group Z*1). Note
C*(I') ~ C(T?1). Then A is Sidon iff there is § > 0 such that the mapping

Ss: EA — C*(I'y) =~ C(T™)
defined as above but with Z1 in place of [, is positive. Note that in the com-
mutative case positive implies c.p.
5. Characterizations by operator space properties

Let A C G be a subset and let Cp, C C*(G) be its closed linear span. In the
classical setting, when G is a commutative discrete group, Varopoulos [56] proved
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that A is Sidon as soon as C, is isomorphic to £1(A) as a Banach space (via an
arbitrary isomorphism). Shortly after that, the author and independently Kwapien
and Pelczyfiski proved that it suffices to assume that Cp is of cotype 2. This was
refined by Bourgain and Milman [3] who showed that A is Sidon if (and only if) Cy
is of finite cotype. It is natural to try to prove analogues of these results for a general
discrete group G. The next statement shows that if C, is completely isomorphic to
£1(A) (equipped with its maximal operator space structure) then A is completely
Sidon. Indeed, the dual operator space C’} is then completely isomorphic to £ (A),
and the latter is exact with constant 1.

We recall that an operator space (0.s. in short) X C B(H) is called exact if
there is a constant C such that for any finite dimensional subspace E C X there
is an integer N, a subspace E C My and an isomorphism u : £ — E such that
lulleplle™ | < C. The smallest constant C for which this holds is denoted by
ex(X).

The dual o.s. of an 0.s. X C B(H) is characterized by the existence of an iso-
metric embedding X* C B(H) such that the natural norms on the spaces M, (X*)
and C B(X, M,,) coincide. See [47, Section 2.3] for more on this.

Theorem 5.1. If C}} is an exact operator space, then A is completely Sidon with

constant 4ex(C ;"\)2. Conversely, if A is completely Sidon with constant C then then
ex(Cr) <C.

Proof. The converse part is clear because £oo(A) = £1(A)* is exact with
ex(loo(A)) = 1.

Assume that C} is exact. Let o« C A be a finite subset. Consider the mapping
Ty : Cp — C;(IFp) defined by To(r) = Ap, (g;) fort € o and To(t) = 0 fort & a.
Let us denote by ¢; € (C*(G))* the functional biorthogonal to the natural system,
ie.,9(Ug(s)) = 8:(s).

Leta : G — My be a finitely supported My-valued function (N > 1). We
have then by elementary arguments

> anevcm| = |Yan @icw|

= ma"{”Za(x)*a(z)Hl/z, 1/2}. 5.0)

(Za(r)a(t)*

By a well-known inequality with roots in Haagerup’s [26] (see [47, page 188]) (5.1)
implies

1> aw e U] = 1/2) | at) @ s, (80 (5.2)

and hence || Tp||cb < 2. Equivalently this means that the tensor

To=) ¢ ®s,(g) € (Cr)* ®Ci(Fa)

satisfies
ITollmin = 170 : Cao = Cx(Fa)lley < 2. (5.3)
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Lete > 0. Assume || = nand @ = {t(1),--- ,f(n)}. Let ' C Fp be the copy
of I, generated by {g;(j) | 1 < j < n}. We claim that 7j extends to an operator
T : C*(G) — M such that || T [|gec < 2ex(X)(1 + €).

By a result due to Thorbjgrnsen and Haagerup [30] (see [47, page 331]) re-
cently refined in [14] we have (here we denote by (g;) the free generators of IF,,):

For any n and N there is an n-tuple of N x N-unitary matrices (uE.N))li j<n Such
that for any exact operator space X and any x; € X we have

: ™)
limy—oo |y uV @x;| e |Yimenex] o G4

My (X)

and

{MEN) | 1 < j < n} converges in moments to {Ag,(g;) |1 < j =< n}. 5.5)

Let X = C3. This gives us by (5.3)

. N
limy oo HZ u; = HMN(X) < 2ex(X).
For some ng we have

SUP N >p

(N) )
Yu @), <2 Fe).

This givesusamap 77 : Cp — (D ZNzno Mpn)oo With || T |y < 2ex(X)(1 + &),
such that T1(Ug(t(j))) = @Nznou(/.N). Let w be a nontrivial ultrafilter on N.

By (5.5), we have an isometric embédding Mr C (®) N> MN)oo/w and a sur-
jective unital c.p. map Q,, : (b ZNzl My)oo — Mr, such that

0 (@wzn") = 10(g)).

Since (®) N1 M N)oo 18 injective there is an extension of 7 denoted T\:C *(G)—
(® X n>1 MN)oo such that [ Tillaec = [T1llcb < T1llcb < 2ex(X)(1 + ¢), and

hence setting T = Qfl, we obtain the claim.
Then we conclude by Corollary 2.9. O

Corollary 5.2. Let A C G. The operator space Cx C C*(G) is completely iso-
morphic to £1 () (with its maximal o.s. structure) iff A is completely Sidon.

Remark 5.3. By the same argument, we can replace the exactness assumption of
Theorem 5.1 by the subexponentiality (or tameness) in the sense of [49].
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Remark 5.4. By the same argument, the following can be proved. Let {x;} C Abe
a bounded sequence in a C*-algebra A. Assume that for some constant c, for any
N and any sequence (a;) in My with only finitely many nonzero terms we have

. Hzaj ®fo > max{”Zajfajulﬁ’ )Zaja}'f”uz}.

Let E be the closed span of {x;}. If E* is exact then {x; ® x} is completely Sidon
in A ®max A (with constant 4c2ex(E*)?). See [52] for more on that theme.

Remark 5.5.

(i) Let us first observe that the Varopoulos result mentioned above remains valid

for a non-commutative group G. We will show that if C, is isomorphic to
£1(A), then the usual linear mapping taking the canonical basis of £1(A),
namely (6;)rep, to (Ug(%))rea is an isomorphism. Actually it suffices to as-
sume that C} ~ £, (A) as a Banach space or that, say, Cx is a Loo-space, or
that (C, C}) is a GT-pair in the sense of [48, Def. 6.1], to which we refer for
all unexplained terminology in the sequel.
With the preceding notation, let Wy : C} — Cj be the linear operator asso-
ciated to the tensor x = ), x() UG (1) @ Ug(t) € Co @ Cp. Let | || be
the norm in the injective tensor product (in the usual Banach space sense) of
C*(G) with itself. Note

IWell = lxlly < Bellmin = | 3, x0U6 )|

c*(G)

Let (z(t)) € TA. Let T, : Cp — C} be the linear operator associated to
the tensor ), ., 2()¢; ® ¢ € Ci ® C}. A simple verification shows that,
denoting by y»(T7;) the norm of factorization through Hilbert space of 7,, we
have y»(T;) < 1.

Then Grothendieck’s Theorem, or our Banach space assumption (see [48, §6]),
implies that for any finite rank map w : C} — Cp we have |tr(wT;)| <
K (T)|wllv < K|wl|, where K is a constant independent of w, z. There-
fore, we have

3 ¥ O020)| = K WLT)] = K ¥l o).
and hence taking the sup over all z’s and «’s
> en RO = Kllxller@).
Thus we conclude that C is isomorphic to £1(A) by the usual (basis to basis)

isomorphism. Such sets are called weak Sidon in [44], where the term Sidon
is reserved for the sets that span £1(A) in the reduced C*-algebra C;(G).
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(ii)

(iii)
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Let C% be the closed span of A in C3(G), i.e., C5x = span{ig(t) | t € A}.
The preceding argument applies equally well to C% , and shows that if C j‘\ is
isomorphic to £1(A) (by an arbitrary isomorphism) then it actually is so by the
usual isomorphism, and A is Sidon in the sense of [44].
Lastly, we apply the same idea to slightly generalize Theorem 5.1.
Fix N > 1. Let z = (z(t)) € U(N)® and x = (x(t)) € My. Consider the
tensors

T,=)  _ ¢ ®E0®ep]eCi®My(Ch),

and
We=>"_ x()®Uc() ®Ug(t) € My(Ca ® C).

Then it can be checked on the one hand that
max {[|Tzllcs o my s I Tallmycyoues } < 1.

Thus if the pair (C}, My (C?})) satisfies (uniformly over N) the 0.s. version of
Grothendieck’s theorem described in [48, Proposition 18.2] we find for some
constant K (independent of N)

ITzllcx @ myct) = K.
Here ® A is the projective tensor product in the operator space sense. A fortiori,

this implies
1Tzl My concy) = K-

On the other hand, we have obviously

W nCh) < H x(1) @ Ucl H '
I X||MN(CA®m1nCA) = Ztecx ) ® U () My (Ch)

Thus we obtain
[>" 200 @) < ITalluyicioncy I Wallm Casmcs)

<K, x0e U

My(Ca)

The latter implies that A is completely Sidon.

6. Remarks and open questions

6.1. Free sets

We start by the characterization of the case C = 1 announced in Proposition 3.

Proposition 6.1. The following properties of a subset A C G are equivalent:

®

A is completely Sidon with a constant C = 1;
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(i) For any finite subset S C A we have || ) .¢ A ()| = 24/1S] —1;
(i) A is a (left say) translate of a free set enlarged by including the unit;
(iv) For every m and every 2m-tuple t1, 12,13, -+ , tam—1, tom in A with t| # tr #

—1 —1 -1
e Dm—1 ;ﬁ tom we have tl t2t3 |7 lzm_llzm 7& 1.

Proof. We start by (iii) = (i). Assume (iii). Since translation has no significant
effect, it suffices to prove (i) for A = S U {1} with § free. We may assume that S
generates G. Let z : A — U(A) such that z(1) = 1. By the freeness of S there
is a unitary representation 7 : G — A extending z. By Remark 1 A is completely
Sidon set with C = 1.
Conversely, let us show (i) = (iii).

Assume (i). Pick and fix an element s € A. We may assume after (left say) trans-
lation by s~! that 1 € A. Then the correspondence ¢ > g (t # s) extends
to a unital completely contractive map from the span of A in C*(G) to that of
{13U{g: | t € A\{s}}in C*(Fp). By [46, Prop. 6] the latter mapping is the restric-
tion of a unital *-homomorphism from C*(G) to C*(IF » ), which (by the maximality
of C*(IF5)) must be a *-isomorphism. Translating back by s yields (iii).

(iii) < (iv) is due to Akemann-Ostrand [1, Def. III.B and Th. II1.D], as well as (iii)
= (ii) and the converse is due to Lehner [36]. O

Since free sets (or their left or right translates) are the fundamental completely
Sidon examples, and the latter are stable by finite unions it is natural to ask: Is any
completely Sidon set a finite union of translates of free sets? In other words (see
Proposition 6.1): is every completely Sidon set with constant C < oo a finite union
of sets with C = 1?7 Of course this would imply that any group G that contains an
infinite completely Sidon set contains a copy of F, as a subgroup, but we do not
even know whether this is true, although non-amenability is known (see Remark 4).

Remark 6.2. In [45] we asked whether an L-set (see the definition below) is a
finite union of left translates of free sets, but Fendler gave a simple counterexample
in Coxeter groups in [20].

6.2. L-sets

In [45] (following [28]) we study a class of subsets of discrete groups that we call
L-sets. By definition, L-sets are the sets satisfying (6.1) below. These sets are the
same as those called strong 2-Leinert sets in [7]. L-sets seem to be somehow the
reduced C*-algebraic analogue of our completely Sidon sets. Indeed, A C G is an
L-set iff the linear map taking A, (g;) to t € A extends to a complete isomorphism
v from the span of A in C;(Fp) to that of A in C;(G). If (6.1) holds we have
vl < C" and [v~!|lep < 1 always holds. The connection between completely
Sidon sets and L-sets is unclear. However our Proposition 6.3 below suggests that
completely Sidon sets are probably L-sets.

Proposition 6.3. Assume that C;(G) is an exact C*-algebra (G is then called an
“exact group"). Let A C G be a completely Sidon set. There is a constant C’ such
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that for any k and any finitely supported function a : A — My we have

Za(t)a(t)* 1/2} . (6.1)

H 3 a) ® () H §C/max{ HZa(l)*a(t) H " (

In other words A is an L-set in the sense of [45].

Proof. Fix k. Let (Us)ien be an i.id. family of random matrices uniformly dis-
tributed in the unitary group U (k). Let z(t) = U;. By (ii) in Proposition 1.1 we
have ||u,||cb < C and hence

I3, JaorcneU1eT;

=c|}  Ja @it @U@ Ust). 62)

Since Ug ® Ag is equivalent to Ag (by Fell’s absorption principle, see e.g. [47,
page 149]) and we may permute the factors

H Y la®) @) @ U1 ® Ug (1) ” - H Y L) ® 1) ® U

b
and since the operators U; ® U; have a common eigenvector

X @i < |X, 0 @10 0 UIST,

Therefore (6.2) implies

HZM a(t) ® rg (1) H <C Hz,eAa(t) ® Ac(t) ® Uy H :

We now recall that the matrices U, are random k x k unitaries and we let k — 00.
By [14] (actually [29, Theorem B] suffices for our needs) the announced inequality
follows with C' = 2C. O

Remark 6.4. In Proposition 6.3 it clearly suffices to assume that C}(G) is “com-
pletely tight" or “subexponential" in the sense of [49].

Remark 6.5. We refer to [47, §9.7] for all the terms used here. By Remark 6.6
below applied with p = 1,if A C G (assumed infinite for simplicity) is completely
Sidon, then the span of A in L(tg) = Mg, is completely isomorphic to the opera-
tor space R 4 C. But we see no reason why it should be completely complemented
in L1(tg), so we do not see how to deduce from this that the span of A in Mg or in
C}(G) is completely isomorphic to the operator space RN C = (R + C)*.

Note that the question whether C;(G) is an exact C*-algebra for all groups G
remained open for a long time, until Ozawa [42] proved that a group constructed
by Gromov in [25] (the so-called “Gromov monster") is a counterexample. See
also [2] and also [40,41] for more recent examples. This shows that the assumption
that G is exact in Proposition 6.3 is a serious restriction, although it holds in many
examples.

In the converse direction we do not have any example at hand of an L-set that
is not completely Sidon.
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6.3. A(p)-sets

In [5,6] Bozejko considered the analogue of Rudin’s A(p)-sets in a non-Abelian
discrete group G. He proved that any sequence in G contains a subsequence form-
ing a A(p)-set with A(p)-constant growing like ,/p (we call such sets “subgaus-
sian" in [51]). In this direction, a natural question arises: which sequences in G
contain a completely Sidon subsequence? similarly, which contain a subsequence
forming an L-set? Obviously this is not true for any infinite sequence. It seems
interesting to understand the underlying combinatorial (or operator theoretic) prop-
erty that allows the extraction. In this context, we recall Rosenthal’s famous di-
chotomy [54] for a sequence in a Banach space: it contains either a weak Cauchy
subsequence or a £1-sequence (i.e., the analogue of a Sidon sequence). Is there an
operator space analogue of Rosenthal’s theorem?

64. A(p)ch-sets

L-sets are also A(p)cp-sets in the sense of Harcharras [31] for any 2 < p < oo.
In fact L-sets are just A(p)cp-sets with uniformly bounded A (p)cp-constant when
p — oo. We refer to [31] for more information on these operator space analogues
of Rudin’s A(p)-sets.

Remark 6.6. If A C G is completely Sidon, then a fortiori it is “weak Sidon" in
the sense of [44]. This means that any bounded scalar valued function on A is the
restriction of a multiplier in B(G). Since the latter are c.b. multipliers on L ,(7g)
simultaneously for all 1 < p < oo (by Proposition 2.4 and complex interpolation)
we can use the Lust-Piquard-Khintchine inequalities (see [47, page 193]) to show
that for any 1 < p < oo the span of A in L,(7¢) is isomorphic to that of A in
L,(tp,). Therefore, A is A(p)cp for any 2 < p < oo and the corresponding
constant is O(,/p) when p — o00. Such sets could be called “completely sub-
gaussian". Whether conversely the A(p)cp-constant being O(,/p) implies weak
Sidon probably fails but we do not have any counterexample. It is natural to ask
whether this “completely subgaussian" property implies that the set defines an un-
conditional basic sequence in the reduced C*-algebra of G. In this form this is
correct for commutative groups by our result from 1978 (see [51]), but what about
amenable groups?

In [11] it is proved that the generators in any Coxeter group satisfy the weak
Sidon property and the preceding remark is explicitly applied to that case.

6.5. Exactness

It is a long standing problem raised by Kirchberg whether the exactness of the full
C*-algebra C*(G) of a discrete group G implies the amenability of G. We feel that
the preceding results may shed some light on this.

Let A C A be a subset of a C*-algebra A. Let [F5 be the free group with
generators (g;) indexed by A. Following [52] we say that A C A is completely
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Sidon with constant C if the linear map taking t € A to Ur, (g;) is c.b. with c.b-
norm < C.

For any n > 1, let A, be linearly independent finite sets in the unit ball of A
with |A,| — oo. Let C(A,) be the completely Sidon constant. By [47, Theorem
21.5, page 336] if C(A,) = o(J/|Ay]) then A cannot be exact. In particular, if this
holds for A = C*(G) then G is not amenable. A fortiori, if A = C*(G) contains
an infinite completely Sidon set then G is not amenable.

Thus one approach to the preceding Kirchberg problem could be to show con-
versely that if G is non-amenable then there is a sequence (A,) of such sets in
A=C*(G)oreveninG.

The analogous fact for the reduced C*-algebra was proved by Andreas
Thom [55].

6.6. Interpolation sets

Sidon sets are examples of “interpolation sets". Given an abstract set G given with
a space X C £ (G) of functions on G, a subset A C G is called an interpolation
set for X if any bounded function on A is the restriction of a function in X.

It is known (see [45]) that A C G is an L-set iff any (real or complex) function
bounded on A and vanishing outside it is a c.b. (i.e., “Herz-Schur") multiplier on
the von Neumann algebra of G. In other words A is an interpolation set for the
class of such multipliers, with an additional property: that the indicator function of
A is also a c.b. (Herz-Schur) multiplier.

In [44] Picardello introduces the term “weak Sidon set" for a subset A C G
such that any bounded function on A is the restriction of one in B(G) = C*(G)*.
In other words, A is an interpolation set for B(G). By Hahn-Banach this is the same
as saying that the closed span of A in the full C*-algebra C*(G) is isomorphic as a
Banach space to £1(A) by the natural correspondence.

In [44] the term Sidon (respectively strong Sidon) is then (unfortunately in
view of our present work) reserved for the interpolation sets for B; (G) = C;(G)*
(respectively for the sets such that any function in co(A) extends to one in A(G)).
Simeng Wang observed recently in [57] that Sidon and strong Sidon in Picardello’s
sense are equivalent.

Remark 6.7 (operator valued interpolation). A subset A C G is completely
Sidon iff it is an interpolation set for operator valued functions more precisely iff
any bounded B(H)-valued function on A is the restriction of one in C B(G, B(H)).
Indeed, this is Proposition 1.1. Moreover, if this holds then by Theorem 4.1 for any
unital C*-algebra A any bounded A-valued function on A is the restriction of one
in D(G, A).

Remark 6.8 (final remark). In [52] we prove a version of the union theorem for
subsets of a general C*-algebra A. We can recover the group case when A =
C*(G).
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