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Completely Sidon sets in discrete groups

GILLES PISIER

Abstract. A subset of a discrete group G is called completely Sidon if its span
in C⇤(G) is completely isomorphic to the operator space version of the space `1
(i.e., `1 equipped with its maximal operator space structure). We recently proved
a generalization to this context of Drury’s classical union theorem for Sidon sets:
completely Sidon sets are stable under finite unions. We give a different pre-
sentation of the proof emphasizing the “interpolation property" analogous to the
one Drury discovered. In addition we prove the analogue of the Fatou-Zygmund
property: any bounded Hermitian function on a symmetric completely Sidon set
3 ⇢ G \ {1} extends to a positive definite function on G. In the final section, we
give a completely isomorphic characterization of the closed span C3 of a com-
pletely Sidon set in C⇤(G): the dual (in the operator space sense) of C3 is exact
if and only if3 is completely Sidon. In particular,3 is completely Sidon as soon
as C3 is completely isomorphic (by an arbitrary isomorphism) to `1(3) equipped
with its maximal operator space structure.

Mathematics Subject Classification (2010): 43A46 (primary); 46L06 (sec-
ondary).

In harmonic analysis (see [34]) a subset 3 of an Abelian discrete group G is called
Sidon with constant C if for all finitely supported a : 3 ! C we have

X
n23 |an|  Ck

X
n23 an�nkC(Ĝ)

where Ĝ is the dual (compact) Abelian group, and where �n : Ĝ ! T is the
character on Ĝ associated to an element n 2 G. Here C(Ĝ) denotes the space of
continuous functions on Ĝ equipped with the usual sup-norm. For instance, when
G = Z we may view Ĝ = R/Z and �n(t) = e2i⇡nt .

Equivalently, if C3 ⇢ C(Ĝ) denotes the closed span of {�n | n 2 3} and (en)
denotes the canonical basis of `1(3) the mapping u : C3 ! `1(3) defined by
u(�n) = en is an isomorphism with kuk  C (and trivially ku�1k  1).

In the Abelian case the subject has a long and rich history for which we refer
to [23, 34, 37, 38]. The first period roughly 1960-1970 was driven by a major open
problem: whether the union of two Sidon sets is a Sidon set. Eventually this was
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proved by Drury [16] using a beautiful convolution device. After this achievement,
it was only natural to investigate the non-Abelian case. For that two options appear,
either:

1. one replaces Ĝ by a compact non-Abelian group and 3 becomes a set of irre-
ducible unitary representations on the latter compact group, or:

2. one replaces G by a discrete non-Abelian group.

We will not deal with case 1; in that case the union problem resisted generalization
but was solved by Rider in 1975. The subject suffered from the disappointing dis-
covery that the duals of most compact Lie groups do not contain infinite Sidon sets.
We refer the reader to our recent survey [50] for more on this.

This paper is devoted to case 2. In this case, there were several attempts to
generalize the Sidon set theory, notably by Picardello and Bożejko (see [9,44]), but
no analogue of Drury’s union theorem was found. The novelty of our approach is
that while these authors defined Sidon sets using the Banach space structures of
the relevant non-commutative operator algebras, we fully use their operator space
structures. In particular, the Banach space E = `1(3) that enters the definition
of a Sidon set has to be considered as an operator space, given together with an
isometric embedding E ⇢ A into a C⇤-algebra A, or into B(H) for some Hilbert
space H .

By definition an operator space is a subspace E ⇢ A (or E ⇢ B(H)). We may
use a different A and a different embedding as long as it induces the same sequence
of norms on all the spaces Mn(E) (n � 1). Of course Mn(A) is equipped with its
uniqueC⇤-norm, or equivalently the norm of theC⇤-tensor product Mn⌦A, and this
induces a norm on the subspace Mn(E). The theory of operator spaces is now well
developed. The main novelty is that the bounded linear maps u : E ! F between
operator spaces are now replaced by the completely bounded (in short c.b.) ones
and the norm kuk is replaced by the cb-norm kukcb. We say that u is a complete
isomorphism if it is invertible and both u and u�1 are c.b. maps. See below for
background on this. We refer to the books [18,47] for more information.

In the case of `1, there is a privileged operator space structure `1 ⇢ A that can
be conveniently described using for A the C⇤-algebra C⇤(F1) of the free group
with countably infinitely many generators. Let (Un) denote the unitaries in A
corresponding to the free generators. The embedding j : `1 ⇢ A is defined by
j (en) = Un , where (en) is the canonical basis of `1. Similarly, given an arbitrary
set 3 we may consider the group F3 freely generated by (gn)n23 and the corre-
sponding unitaries (Un)n23 in A = C⇤(F3). We then define j : `1(3) ⇢ A
again by j (en) = Un for n 2 3. Following Blecher and Paulsen (see [47, Sec-
tion 3] and [47, page 183]), we call this the maximal operator space structure on
`1(3). Unless specified otherwise, we always assume `1(3) equipped with the lat-
ter. More explicitly we have for any C⇤-algebra B (e.g. B = MN ) and any finitely
supported a : 3 ! B

�
�
�
X

3
at ⌦Ut

�
�
� = sup

n��
�
X

3
at ⌦ zt

�
�
�
o

(1)
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where the sup runs over all H and all functions z : 3 ! B(H) such that
sup3 kztk1.

Remark 1. By the Russo-Dye theorem, the supremum is unchanged if we restrict
to z’s with unitary values. Moreover, if we wish, we may (after translation by z�1s )
restrict to z’s with unitary values and such that zs = 1 for a single fixed s 2 3. In
addition wemay restrict to finite dimensional H ’s if we wish (see e.g. [47, page 155]
for details).

In the case B = C, we find
�
�
�
X

3
at ⌦Ut

�
�
� =

X
3

|at |. (2)

We now introduce the relevant generalization of Sidon sets.
Let A ⇢ B(H) be a C⇤-algebra. If B ⇢ B(K ) is any other C⇤-algebra (for

instance B = MN = B(K ) when dim(K ) = N ) and x 2 B ⌦ A (algebraic tensor
product) we denote by kxkB⌦minA or more simply by kxkmin the norm of x in the
minimal or spatial tensor product, i.e., we set

kxkmin = kx : K ⌦2 H ! K ⌦2 Hk.

Moreover, we use the same definition when A, B are merely operator subspaces
of B(H), B(K ). It is known that kxkmin does not depend on the choice of the
completely isometric embeddings A ⇢ B(H) and B ⇢ B(K ).

LetG be a discrete group. LetUG : G ! B(H) be the universal representation
and let C⇤(G) ⇢ B(H) denote the C⇤-algebra generated by UG .

Given a subset 3 ⇢ G we denote by C3 ⇢ C⇤(G) the operator space defined
by

C3 = span[UG(t) | t 2 3].

Definition 2. We say that3 ⇢ G is completely Sidon if there is C such that for any
N � 1 and any finitely supported a : 3 ! MN

�
�
�
X

t23 at ⌦Ut
�
�
�
MN⌦minC⇤(F3)

 C
�
�
�
X

t23 at ⌦UG(t)
�
�
�
MN⌦minC⇤(G)

.

More explicitly, this is the same as requiring

sup
�
�
�
X

at ⌦ ut
�
�
�
min

 C
�
�
�
X

at ⌦UG(t)
�
�
�
min

, (3)

where the sup runs over all families (ut )t23 of unitaries on an arbitrary Hilbert
space H .

Equivalently, the linear map u : C3! `1(3) defined for t 2 3 by u(UG(t)) =
UF3(gt ) is c.b. with kukcb  C . Then, since ku�1kcb  1, the space C3 is com-
pletely isomorphic to `1(3) equipped with its maximal operator space structure.
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The fundamental example is given by free sets, as follows.

Proposition 3. Let S ⇢ G be a free set, and let3 be a translate of S [ {1}. Then3
is completely Sidon with C = 1. Conversely, any completely Sidon set with C = 1
is of this form.

For the proof see Proposition 6.1 below.
We can now state our main results:

1. Completely Sidon sets are stable by finite unions.
2. Assume 3 completely Sidon, symmetric, 1 62 3 and assume for simplicity
3 without any element of order 2 (this case can also be handled), then the
linear map u : C3 ! C⇤(F3) associated to the mapping t 7! gt extends to a
completely positive (in short c.p.) map ǔ : C⇤(G) ! C⇤(F3).

3. If the operator space C3 is completely isomorphic to `1(3) via an arbitrary
linear correspondence, or if the dual operator space C⇤

3 is exact, then 3 is
completely Sidon.

Point 1 is the non-Abelian version of Drury’s 1970 union theorem from [16]. Point 2
is analogous to the so-called “Fatou-Zygmund" property established by Drury in
1974 (see [17, 37]), while point 3 is the analogue of the 1976 Varopoulos theorem
from [56]. For emphasis, we should point out that a surprising dichotomy stems
from it: for any infinite subset 3 ⇢ G the space C⇤

3 is (roughly) either “very big"
or “very small" in the operator space sense.

Points 1 and 2 answer questions raise by Bozejko in [9] (see Remark 1.3). The
proof of Point 2 is similar to that of 1, but is better understood if one first runs
through the proof of 1 as we do below. Moreover, the quantitative estimates we
give in terms of the constant C may be of independent interest. Lastly 3 is new.

Remark 4. We should emphasize that the theory of completely Sidon sets does not
contain the classical case, although it is very much parallel to it. Indeed, any group
G that contains an infinite completely Sidon set must be non-amenable (and hence
extremely non-commutative) becauseC⇤(G) cannot be exact. More precisely, if the
set has at least n elements with completely Sidon constant C < n/2

p
n � 1 then

C⇤(G) is not exact (see [47, page 336]) and a fortiori G is not amenable. However,
we do not know whether such a G must contain a copy of F1 (or equivalently F2).

Problem: By our main result, any finite union of translates of free sets is com-
pletely Sidon. Is the converse true? This fundamental question is analogous to a
well-known open one for the classical Sidon sets (see [23, page 107]).

1. Notation and background

Let E ⇢ B(H) and F ⇢ B(K ) be operator spaces, consider a map u : E ! F .
For any n � 1, let Mn(E) be the space of n ⇥ n matrices with entries in E . We
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have Mn(E) ⇢ Mn(B(H)). We equip Mn(E) ⇢ Mn(B(H))with the norm induced
by B(`n2(H)) ⇡ Mn(B(H)) where `n2(H) means H � H � · · · � H (n times). We
define un : Mn(E) �! Mn(F) by setting un([ai j ]) = [u(ai j )]. A map u : E ! F
is called completely bounded (in short c.b.) if supn�1 kunkMn(E)!Mn(F) < 1. Let

kukcb = supn�1 kunkMn(E)!Mn(F).

We denote by CB(E, F) the Banach space of all such maps equipped with the c.b.
norm. Let Mn(E)+ = Mn(E) \ Mn(B(H))+. We say that u is completely positive
(c.p. in short) if un is positivity preserving, i.e., un(Mn(E)+) ⇢ Mn(F)+ for any
n. When E is an operator system (i.e., E is a unital self-adjoint linear subspace)
c.p. implies c.b. and kukcb = kuk = ku(1)k. We denote by CP(E, F) the set of
c.p. maps.

Let A, B be C⇤-algebras. We will denote by D(A, B) the set of all “decom-
posable” maps u : A ! B, i.e., the maps that are in the linear span of CP(A, B).
This means that u 2 D(A, B) iff there are u j 2 CP(A, B) ( j = 1, 2, 3, 4) such
that

u = u1 � u2 + i(u3 � u4).

We will repeatedly use the nice definition of the dec-norm of a linear map u : A !
B between C⇤-algebras given by Haagerup in [27], as follows. We set

kukdec = inf{max{kS1k, kS2k}}, (1.1)

where the infimum runs over all maps S1, S2 2 CP(A, B) such that the map

V : x !

✓
S1(x) u(x)
u(x⇤)⇤ S2(x)

◆
(1.2)

is inCP(A,M2(B)). This is equivalent to the simple minded choice of norm kuk =
inf

P4
1 ku jk. When u is self-adjoint (i.e., when u(x⇤) = u(x)⇤ for all x 2 A)

we have kukdec = inf ku1 + u2k where the infimum runs over all the possible
decompositions of u as u = u1 � u2 with u1, u2 c.p.

See [27] for the proofs of all the basic facts on decomposable maps, that are
freely used throughout this note. In particular, we repeatedly use the fact that for
any pair v j : A j ! Bj ( j = 1, 2) of decomposable maps between C⇤-algebras, the
map v1⌦v2 on the algebraic tensor product uniquely extends to a map, still denoted
by v1 ⌦ v2, in D(A1 ⌦max A2, B1 ⌦max B2) with

kv1 ⌦ v2 : A1 ⌦max A2 ! B1 ⌦max B2kdec  kv1kdeckv2kdec. (1.3)

Moreover, if v1, v2 are completely positive (c.p. in short) the resulting map v1⌦v2 :
A1 ⌦max A2 ! B1 ⌦max B2 is c.p. Here A1 ⌦max A2 stands for the C⇤-algebra
obtained by completing the algebraic tensor product A1 ⌦ A2 with respect to the
maximal C⇤-norm (see e.g. [47, page 227]).
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We also use from [27] that if B = B(H) or if B is an injective C⇤-algebra
(which means the identity of B factors through B(H) via c.p. maps) then for any
C⇤-algebra A we have CB(A, B) = D(A, B) and for any u 2 CB(A, B)

kukcb = kukdec. (1.4)

See [18,47] for more background and references.
Let 3 ⇢ G be a subset of a discrete group G.
Let UG be the universal representation of G, and let C⇤(G) be the C⇤-algebra

generated by UG .
Let �G be the left regular representation, and let C⇤

�(G) be the C⇤-algebra
generated by �G . We denote by MG the von Neumann algebra generated by �G .

The notation (�s)s2G is used mostly for the canonical basis of the group algebra
C[G], and sometimes (abusively) for that of `2(G). As usual we view C[G] as a
dense ⇤-subalgebra of C⇤(G).

Proposition 1.1. Assume we have an embedding C⇤(F3) ⇢ B(H). The following
properties are all equivalent refomulations of Definition 2:

(i) The correspondence t 7! gt from 3 to the free generators of F3 extends to a
c.b. linear map u : C⇤(G) ! B(H) with kukcb  C;

(ii) For any Hilbert space H , for any bounded mapping z : 3 ! B(H) there is
a bounded linear map uz : C⇤(G) ! B(H) with kuzkcb  C supt23 kz(t)k
such that uz(UG(t)) = z(t) for any t 2 3.

Proof. If 3 is completely Sidon then clearly (i) holds by the injectivity of B(H),
and conversely (i) obviously implies 3 completely Sidon.

By the injectivity of B(H) for any z as in (ii) there is a linear vz : B(H) !
B(H) extending the correspondence UF3(gt ) ! z(t) (t 2 3) with kvzkcb =
supt23 kz(t)k (this expresses the fact that {gt | t 2 3} is completely Sidon with
constant 1). Then the composition uz = vzu shows that (i) implies (ii). The con-
verse is obvious.

Remark 1.2. If 3 is asymmetric in the sense that 3 \ 3�1 = �, we show in
Corollary 4.4 that the correspondence 3 3 t 7! gt 2 F3 extends to a c.p. map
u : C⇤(G) ! C⇤(F3) but then we only obtain kukcb(= kuk)  O(C4).
Remark 1.3. In [9] Bożejko considers the property appearing in (ii) in Proposi-
tion 1.1 and he calls “w-operator Sidon" the sets with this property. He calls “op-
erator Sidon" the sets 3 ⇢ G satisfying 3 \3�1 = � such that any B(H)-valued
bounded function on 3 admits a positive definite extension on G, and proves that
free sets (i.e., {gt | t 2 3} in F3) have this property. “Operator Sidon" is a priori
stronger than “w-operator Sidon", but actually, we will show later on in this pa-
per (see Theorem 4.1) that the two properties are equivalent. Bożejko also asked
whether these sets are stable under union. We show this in Corollary 3.3. Our re-
sults suggest to revise the terminology: perhaps the term “operator Sidon" should
be adopted instead of our “completely Sidon".
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Remark 1.4. The following observation plays a crucial role in this paper. Let
0 = F3. Let Q : C⇤(0) ! M0 be the ⇤-homomorphism associated to �0 .
Let E ⇢ C⇤(G) be an operator subspace. Then for any u 2 CB(E,C⇤(0))
there is u† 2 D(C⇤(G),M0) with ku†kdec  kukcb such that u†|E = Qu. In-
deed, free groups satisfy Kirchberg’s factorization property from [35]. In particu-
lar, by a well-known construction involving ultraproducts (see Th. 6.4.3 and Th.
6.2.7 in [13]), for some H the map Q factors through B(H) via c.p. contractive
maps Q1 : B(H) ! M0 and Q2 : C⇤(0) ! B(H) so that Q = Q1Q2. By
the injectivity of B(H) the composition Q2u : E ! B(H) admits an extension

˜Q2u 2 CB(C⇤(G), B(H)) with k ˜Q2ukcb  kQ2ukcb  kukcb. But by (1.4)
CB(C⇤(G), B(H)) = D(C⇤(G), B(H)) isometrically. Therefore k ˜Q2ukdec 
kukcb. The mapping u† = Q1 ˜Q2u has the announced properties. If we as-
sume in addition that E is an operator system and that u is c.p. then we find
u† 2 CP(C⇤(G),M0) with ku†k = ku†kdec  kuk = kukcb.

In particular, if 3 ⇢ G is a completely Sidon set with constant C , let E ⇢
C⇤(G) be the span of {UG(t) | t 2 3}. We may apply the preceding observation
to the linear mapping u defined by u(UG(t)) = U0(t) (t 2 3). We find U 2
D(C⇤(G),M0) such that U(UG(t)) = �0(gt ) for all t 2 3with kUkdec  kukcb 
C . We will show below (see Corollary 2.9) that conversely the existence of such a
U implies that 3 ⇢ G is completely Sidon.

Remark 1.5. Let A be a unital C⇤-algebra. By [33] any a 2 A with kak < 1�2/n
can be written as an average of n unitaries in A.

ACKNOWLEDGEMENTS. Thanks are due to Marek Bożejko, Simeng Wang and
Mateusz Wasilewski for useful communications. Lastly I am grateful to the referee
for a very careful reading.

2. Operator valued harmonic analysis

LetG be a discrete group. Let ' : G ! A be a function with values in aC⇤-algebra.
Let u' : C[G] ! A be the linear map extending '. We denote respectively by

B(G, A), CP(G, A), CB(G, A), D(G, A)

the set of those ' such that u' extends to a map u' : C⇤(G) ! A respectively in

B(C⇤(G), A), CP(C⇤(G), A), CB(C⇤(G), A), D(C⇤(G), A)

and we set

k'kB(G,A) = ku'k, k'kCB(G,A) = ku'kcb, k'kD(G,A) = ku'kdec. (2.1)
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By (1.4), when A = B(H) or when A is injective then CB(G, A) = D(G, A) and
k'kCB(G,A) = k'kD(G,A), but in general we only have D(G, A) ⇢ CB(G, A) with
k'kCB(G,A)  k'kD(G,A) and the inclusion is strict.

When A = C we have B(G, C) = CB(G, C) = D(G, C) isometrically and
we recover the non-commutative analogue of the classical “Fourier-Stieltjes alge-
bra" B(G) (see, e.g., [19] or [22, page 3]), which can be identified isometrically
with C⇤(G)⇤: we have ' 2 B(G) = B(G, C) iff there is a unitary representa-
tion ⇡ : G ! B(H) and vectors ⇠, ⌘ 2 H such that '(.) = h⌘,⇡(.)⇠i and
k'kB(G) = inf{k⌘kk⇠k} where the infimum (actually the minimum is attained)
runs over all possible such representations of '.

By the factorization of c.b. maps (see e.g. [18, 43]) the case when A = B(H)

is entirely analogous: in that case ' 2 CB(G, B(H)) if and only if there are Ĥ ,
a unitary representation ⇡ : G ! B(Ĥ) and operators ⇠, ⌘ 2 B(H, Ĥ) such that
'(.) = ⌘⇤⇡(.)⇠ and

k'kCB(G,A) = inf{k⌘kk⇠k}, (2.2)

where the infimum (actually a minimum) runs over all possible such representations
of '.

With this notation we can immediately reformulate Proposition 1.1 like this:

Proposition 2.1. A subset 3 ⇢ G is a completely Sidon set with constant C iff for
any H and any z : 3 ! B(H) such that sup3 kzk  1 there is ' 2 CB(G, B(H))
with k'kCB(G,B(H))  C such that '|3 = z. Moreover, for the latter to hold it
suffices that it holds for any finite dimensional H .

The next lemma is a simple refinement of the last statement. The proof is based on
a specific “extremal" property of the norm in (1).

Lemma 2.2. Let 0 < " < 1. Let H be a Hilbert space and c > 0 a constant.
Assume that for any z : 3 ! B(H) with sup3 kzk  1 there is '0 2 CB(G, B(H))
with k'0kCB(G,B(H))  c such that sup3 kz � '0k  ". Then for any z : 3 !
B(H) with sup3 kzk  1 there is ' 2 CB(G, B(H)) such that '|3 = z with
k'kCB(G,B(H))  c/(1� ").

Proof. Applying the assumption to the function ('0�z)/" we find '12CB(G,B(H))
with k'1kCB(G,B(H))  c such that sup3 kz�'0� "'1k  "2. Repeating this step,
we obtain ' j with k' jkCB(G,B(H))  c such that sup3 kz�'0�· · ·�" j' jk  " j+1.
Then ' =

P1
0 "

j' j gives us the desired function.

Remark 2.3 (On completely positive definite functions). We will say (following
[43]) that ' : G ! A is completely positive definite if for any finite subset
{t1, ..., tn} ⇢ G we have ['(t�1i t j )] 2 Mn(A)+. By classical results (due to
Naimark, see [43, page 51]) ' 2 CP(G, A) iff ' is completely positive definite. As-
suming A ⇢ B(H) ' is completely positive definite iff there are Ĥ , ⇡ : G ! B(Ĥ)
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and ⇠ 2 B(H, Ĥ) such that '(.) = ⇠⇤⇡(.)⇠ . When A = B(H), by a polarization ar-
gument (2.2) shows that any ' 2 CB(G, A) can be written as a linear combination
' = '1 � '2 + i('3 � '4) with ' j 2 CP(G, A) for all j = 1, ..., 4.

The spaces CB(G, A) and D(G, A) can also be viewed as spaces of multipli-
ers. To any ' : G ! A we associate a “multiplier" M' : C[G] ! C⇤(G) ⌦min A
that takes t 2 G to UG(t) ⌦ '(t).

Proposition 2.4. The multiplier M' extends to a c.b. (respectively decomposable)
map from C⇤(G) to C⇤(G) ⌦min A (respectively C⇤(G) ⌦max A) iff ' 2 CB(G, A)
(respectively ' 2 D(G, A)), and we have

k'kCB(G,A) = kM' : C⇤(G) ! C⇤(G) ⌦min Akcb

k'kD(G,A) = kM' : C⇤(G) ! C⇤(G) ⌦max Akdec
= kM' : C⇤(G) ! C⇤(G) ⌦min Akdec.

Moreover, ' 2 CP(G, A) iff M' extends to a c.p. map from C⇤(G) to C⇤(G) ⌦max
A, or equivalently a c.p. map from C⇤(G) to C⇤(G) ⌦min A.

Proof. Let ⇡1 : G ! C = B(C) be the trivial representation and let u1 : C⇤(G) !
C = B(C) be the associate ⇤-homomorphism. Note that u' = (u1⌦ I dA)M' . This
shows that if M' is either c.b., c.p. or decomposable with values in C⇤(G) ⌦min A
then the same is true for u' . Conversely, if ku'kcb  1 then kI dC⇤(G) ⌦ u' :
C⇤(G) ⌦min C⇤(G) ! C⇤(G) ⌦min Akcb  1. Let Jmin : C⇤(G) ! C⇤(G) ⌦min
C⇤(G) be the diagonal embedding taking t 2 G to (t, t) 2 G ⇥ G (corresponding
to UG ' UG ⌦UG as representations on G). Then M' = (I dC⇤(G) ⌦ u')Jmin and
hence kM' : C⇤(G) ! C⇤(G) ⌦min Akcb  1. Similarly, u' c.p. implies that
M' : C⇤(G) ! C⇤(G) ⌦min A is c.p.

Assume ku'kdec  1. Then by (1.3) kI dC⇤(G) ⌦ u' : C⇤(G) ⌦max C⇤(G) !
C⇤(G) ⌦max Akdec  1. Let Jmax : C⇤(G) ! C⇤(G) ⌦max C⇤(G) be the anal-
ogous diagonal embedding so that M' = (I dC⇤(G) ⌦ u')Jmax. It follows that
kM' : C⇤(G) ! C⇤(G) ⌦max Akdec  1. A fortiori, composing with the ⇤-
homomorphism C⇤(G) ⌦max A ! C⇤(G) ⌦min A we have kM' : C⇤(G) !
C⇤(G) ⌦min Akdec  1.

Remark 2.5. By a classical result (see [19]) B(G) (which is isometrically the same
as CB(G, C) or D(G, C)) is a Banach algebra for the pointwise product. In the
operator valued case there are two distinct analogues of this fact, as follows. Let
A j be C⇤-algebras ( j = 1, 2). Let ' j 2 CB(G, A j ) (respectively ' j 2 D(G, A j )).
Then the function '1 ⌦ '2 : G ! A1 ⌦ A2 is in CB(G, A1 ⌦min A2) (respectively
D(G, A1 ⌦max A2) with norm

k'1 ⌦ '2kCB(G,A1⌦minA2)  k'1kCB(G,A1)k'2kCB(G,A2)

(respectively k'1 ⌦ '2kD(G,A1⌦maxA2)  k'1kD(G,A1)k'2kD(G,A2).)
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To check this it suffices to observe that u'1⌦'2 = (u'1 ⌦ u'2)Jmin (respectively
u'1⌦'2 = (u'1 ⌦u'2)Jmax). Moreover, in both cases '1⌦'2 is completely positive
definite if each '1,'2 is so.

We now investigate the converse direction: how to obtain a multiplier from a
linear mapping.
Remark 2.6. We have an embedding G ! G ⇥ G as a diagonal subgroup 1G ⇢
G ⇥ G. In that case it is well-known (see e.g. [47, page 154]) that we have a c.p.
projection from C⇤(G ⇥ G) onto the closed span of the subgroup 1G in C⇤(G ⇥
G). It follows that the map Pmax : C⇤(G) ⌦max C⇤(G) ! C⇤(G) defined by
Pmax(UG(s) ⌦ UG(t)) = UG(t) if s = t and = 0 otherwise is a unital c.p. map
such that kPmaxk = kPmaxkdec = 1. Moreover, obviously Pmax Jmax = I dC⇤(G).
Therefore JmaxPmax is a unital c.p. projection (a conditional expectation) from
C⇤(G) ⌦max C⇤(G) to Jmax(C⇤(G)) ' C⇤(1G).

For any t 2 G we denote by f Gt 2 M⇤
G the functional defined by

f Gt (x) = h�t , x�ei.

Note that ( f Gt ) is biorthogonal to (�G(t)).
The next result, essentially from [47, page 150], is a refinement of Remark 2.6,

that illustrates the usefulness of the Fell absorption principle. The latter says that for
any unitary representation ⇡ on G the representation �G ⌦⇡ is unitarily equivalent
to �G ⌦ I (see e.g. [47, page 149]).

Theorem 2.7. We have an isometric (C⇤-algebraic) embedding

JG : C⇤(G) ⇢ MG ⌦max MG

taking UG(t) to �G(t) ⌦ �G(t) (t 2 G), and a completely contractive c.p. mapping

PG : MG ⌦max MG ! C⇤(G)

such that
I dC⇤(G) = PG JG .

Moreover, 8a, b 2 MG , a =
P

t2G a(t)�G(t), b =
P

t2G b(t)�G(t) we have (ab-
solutely convergent series)

PG(a ⌦ b) =
X

t2G a(t)b(t)UG(t).

We illustrate this by the following diagram: we have JG = (7G ⌦7G)Jmax:

C⇤(G) ⌦max C⇤(G)
7G⌦7G

// MG ⌦max MG

PG
✏✏

C⇤(G)

Jmax

OO

I dC⇤(G)
// C⇤(G)
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where Jmax : C⇤(G) ! C⇤(G) ⌦max C⇤(G) (as before) and 7G : C⇤(G) ! MG
are the ⇤-homomorphisms determined by

8t 2 G Jmax(UG(t)) = UG(t) ⌦UG(t) and 7G(UG(t)) = �G(t). (2.3)

Proof. Let x 2 MG ⌦ MG (algebraic tensor product). For s, t 2 G let x(s, t) =
( f Gs ⌦ f Gt )(x). Note that (a ⌦ b)(s, t) = f Gs (a) f Gt (b) and (

P
s | f Gs (y)|2)1/2 

kykMG for any y 2 MG . Therefore
P

t |(a⌦ b)(t, t)|  kakMGkbkMG . This shows
that

P
t |x(t, t)| < 1 for any x 2 MG ⌦ MG .

Note for future reference that for any b 2 MG

PG(�G(t) ⌦ b) = f Gt (b)UG(t). (2.4)

We will show the following claim:
�
�
�
X

t x(t, t)UG(t)
�
�
�
C⇤(G)

 kxkMG⌦maxMG . (2.5)

Then we set PG(x) =
P

t x(t, t)UG(t). This implies the result. Indeed, in the
converse direction we have obviously

�
�
�
X

x(t, t)�G(t) ⌦ �G(t)
�
�
�
max


�
�
�
X

x(t, t)UG(t)
�
�
� ,

and hence (2.5) implies at the same time that JG defines an isometric ⇤-homomor-
phism and that the natural (“diagonal") projection onto JG(C⇤(G)) is a contractive
map (actually a conditional expectation). The proof of the claim will actually show
that PG is c.p. We now prove this claim. Let ⇡ : G ! B(H) be a unitary represen-
tation of G. As usual we denote by ⇢G the right regular representation taking any
t 2 G to the unitary of right translation by t�1. We introduce a pair of commuting
representations (⇡1,⇡2) on `2(G) ⌦2 H as follows:

⇡1(�G(t)) = �G(t) ⌦ ⇡(t) and ⇡2(�G(t)) = ⇢G(t) ⌦ I.

Note that both ⇡1 and ⇡2 extend to normal isometric representations on MG . For
⇡1 this follows from the Fell absorption principle. For ⇡2, it follows from the fact
that ⇢G ' �G (indeed if W : `2(G) ! `2(G) is the unitary taking �t to �t�1 , then
W ⇤�G(·)W = ⇢G(·)).

We denote by ⇡1.⇡2 : MG ⌦ MG ! B(`2(G) ⌦2 H) the linear map (actually
a ⇤-homomorphism) defined on finite sums of rank 1 tensors by (⇡1.⇡2)(

P
a j ⌦

b j ) =
P
⇡1(a j )⇡2(b j ).

Since ⇡1 and ⇡2 have commuting ranges, we have

k(⇡1.⇡2)(x)kB(`2(G)⌦2H)  kxkMG⌦maxMG , (2.6)

hence compressing the left-hand side to K = �e ⌦ H ⇢ `2(G) ⌦2 H , we obtain
(note that h�e, �G(s)⇢G(t)�ei = 1 if s = t and zero otherwise)

X
t x(t, t)⇡(t) = PK (⇡1.⇡2)(x)|K
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and hence �
�
�
X

t x(t, t)⇡(t)
�
�
�
B(H)

 kxkMG⌦maxMG . (2.7)

Finally, taking the supremum over ⇡ , we obtain the announced claim (2.5). This
argument shows that PG is c.p. and kPGkcb  1.

Remark 2.8. Let us denote Ā the complex conjugate of a C⇤-algebra A, i.e., A
equipped with scalar multiplication defined for ↵ 2 C, a 2 A by: ↵ā = ↵̄a,
where ā denotes a viewed as an element of Ā. Note that the correspondence
UG(t) 7! UG(t) (respectively �G(t) 7! �G(t)) extends to a C-linear isomorphism
fromC⇤(G) toC⇤(G) (respectively from MG to MG). Therefore the following vari-
ant of Theorem 2.7 also holds: There is an embedding jG : C⇤(G) ! MG⌦maxMG
that takes t 2 G to �G(t)⌦�G(t) and a contractive c.p. map pG : MG⌦maxMG !
C⇤(G) such that pG(�G(t) ⌦ �G(s)) = 0 for t 6= s satisfying pG jG = I dC⇤(G).

Corollary 2.9. Let 0 = F3. A subset3 ⇢ G is completely Sidon iff there is a U in
D(C⇤(G),M0) such that U(UG(t)) = �0(gt ) for all t 2 3. In that case, the Sidon
constant is at most kUk2dec.

Proof. Assume there is such a U . Let Jmax be as in (2.3). Consider the mapping

J = P0(U ⌦ U)Jmax.

Clearly J (UG(t)) = U0(gt ) for all t 2 3. By Theorem 2.7 and (1.3) we have

kJ : C⇤(G) ! C⇤(0)kdec  kUk2dec.

A fortiori kJkcb  kUk2dec. By Proposition 1.13 is completely Sidon with constant
kUk2dec.

For the converse, see Remark 1.4.

Proposition 2.10. Let u 2 D(C⇤(G),MG ⌦max A) with kukdec  1. We define
'u : G ! A by

'u(t) = ( f Gt ⌦ I dA)u(UG(t)).

Then k'ukD(G,A)  1. If u is c.p. then 'u 2 CP(G, A).
Moreover, if there is ' : G ! A such that u(UG(t)) = �G(t) ⌦ '(t) for all

t 2 G, then 'u = '.

Proof. Let u� : C⇤(G) ! MG be the ⇤-homomorphism taking t 2 G to �G(t).
By (1.3)

ku� ⌦ u : C⇤(G) ⌦max C⇤(G) ! MG ⌦max MG ⌦max Akdec  1.

Let v = (PG ⌦ I dA)(u� ⌦ u)JG . Then v(UG(t)) = UG(t) ⌦ 'u(t) by (2.4) and
kvkdec  1. With u1 associated as above to the trivial representation u1v(UG(t)) =
'u(t) and hence k'ukD(G,A) = ku1vkdec  1. If u is c.p. so is u1v and 'u 2
CP(G, A). The last assertion is immediate.
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Let 0 be another discrete group. Let T 2 D(C⇤(G),M0). Let T (� , s) be the
associated “matrix" defined by

T (� , s) = f 0� (T (UG(s))) (2.8)

and determined by the identity T (s) =
P
� T (� , s)�0(� ), where the convergence

is in L2(⌧0). Note

sups2G
⇣X

�20
|T (� , s)|2

⌘1/2
 kTk. (2.9)

We will use the following special case of Proposition 2.10.

Lemma 2.11. Let v 2 D(C⇤(G),C⇤(G)). Let Tv = u�v 2 D(C⇤(G),MG) and
let Tv(t, s) be the associated matrix as in (2.8). Let v• : G ! C be the function
defined by

v•(t) = Tv(t, t).

Then v• 2 B(G) and

kv•kB(G) = kv•kCB(G,C) = kv•kD(G)  kvkdec.

Proof. We apply Proposition 2.10 with A = C and u = u�v. Then 'u = v• and
kv•kD(G)  ku�vkdec  kvkdec. The isometric identities CB(G, C) = D(G, C) =
B(G, C) give the rest.

Remark 2.12. Let A be a C⇤-algebra, let v 2 D(C⇤(G),C⇤(G) ⌦max A) and let
u = (u�⌦ I dA)v. We will again denote v• = 'u where 'u : G ! A is the function
defined in Proposition 2.10. We then have kv•kD(G,A)  kvkdec. Moreover, v• 2
P(G, A) if v is c.p.

More generally we will use the following variant of Lemma 2.11.

Lemma 2.13. Let 0 be another discrete group. Assume that there is a group mor-
phism q : 0 ! G. Let T 2 D(C⇤(G),C⇤(0)) such that there is a scalar matrix
[T (� , s)] (� 2 0, s 2 G) satisfying

8s 2 G
X

�20
|T (� , s)| < 1 and T (UG(s)) =

X
�20

T (� , s)U0(� ).

Let 2 : C⇤(G) ! C⇤(0) be defined by

2(UG(s)) =
X

�20,q(� )=s T (� , s)U0(� ).

Then 2 2 D(C⇤(G),C⇤(0)) with k2kdec  kTkdec. Moreover, 2 is c.p. if T
is c.p.
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Proof. Let q̂ : C⇤(0) ! C⇤(G) denote the ⇤-homomorphism associated to q :
0 ! G. Let T1 = J0T : C⇤(G) ! C⇤(0) ⌦max C⇤(0), and v = (q̂ ⌦
I dC⇤(0))T1. Clearly v 2 D(C⇤(G),C⇤(G) ⌦max C⇤(0)) with kvkdec  kTkdec.
Let 9 = v• : G ! C⇤(0) be the function defined in Remark 2.12 and let
2 : C⇤(G) ! C⇤(0) be the linear map associated to 9. Then the latter implies
k2kdec = k9kD(G,C⇤(0))  kTkdec.

Remark 2.14. Let Jmax : C⇤(G) ! C⇤(G) ⌦max C⇤(G) and Pmax : C⇤(G) ⌦max
C⇤(G) ! C⇤(G) be as before. Let �G = 7G ⌦ 7G : C⇤(G) ⌦max C⇤(G) !
MG ⌦max MG with 7G as in (2.3). Then, recapitulating, we have

Pmax = PG�G, JG = �G Jmax and Pmax Jmax = PG JG = I dC⇤(G).

3. Interpolation

We start by an interpolation theorem that can be viewed as a non-commutative
Drury trick.

Theorem 3.1. Let 3 ⇢ G be a completely Sidon set with constant C . Let w(") =
C2/" for " > 0. For any 0  "  1 there is a function  " 2 B(G) with k "kB(G) 
w(") such that  "(s) = 1 for any s 2 3 and | "(s)|  C2" for any s 62 3.

More generally, for any 0  "  1 and any function z : 3 ! A with val-
ues in a unital C⇤-algebra A with sup3 kzk < 1 there is  ",z 2 D(G, A) with
k ",zkD(G,A)  w(") such that

 ",z |3 = z and supG\3 k ",zkA  C2".

Outline of proof. The first step is the special case when G = F3 for the set 3̃ ⇢ F3
formed of the free generators indexed by 3 (see Lemma 3.6). The second step
(Lemma 3.9) establishes a strong link between the set 3 and the set 3̃. We will
then complete the proof (after Remark 3.11) by transplanting the case of 3̃ ⇢ F3
to that of 3 ⇢ G.

Remark 3.2. Note that when A = B(H), if we settle for a weaker estimate, the
first part implies the second one. Indeed, let z : 3 ! B(H) with sup3 kzk  1 and
let ' 2 CB(G, B(H)) with k'kCB(G,B(H))  C extending z as in Proposition 2.1.
Then the function  ",z = ' " satisfies  ",z |3 = z, k ",zkD(G,B(H))  Cw(") and
supG\3 k ",zkB(H)  C3".

Using this statement, the following is immediate by well-known arguments.

Corollary 3.3. The union of two completely Sidon sets is completely Sidon.

Proof. Fix 0 < " < 1. Let 31,32 be completely Sidon sets in G with respective
constants C1,C2 and let 3 = 31 [ 32. We may and do assume 31,32 disjoint.
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Let z : 3 ! B(H) with sup3 kzk  1. By Theorem 3.1 (recalling (1.4)) there
are ' j 2 CB(G, B(H)) with k' jkCB(G,B(H))  C4j /" such that ' j = z on 3 j and
supG\3 j k' jk  " for both j = 1, 2. Then ' = '1 + '2 satisfies k'kCB(G,B(H)) 

(C41 + C42)/" and sup3 k' � zk  ". By Proposition 2.1 this shows that 3 is
completely Sidon with constant (C41 + C42)/("(1� ")).

Remark 3.4 (Can the estimates be improved ? ). Actually as the proof below
shows, we can use for w any function w such that Theorem 3.1 holds when 3 =
{gt | t 2 3} ⇢ F3. Given the spectrum of the Haagerup multiplier h"(t) = "|t |

appearing below (that generalizes Riesz products to the non-commutative case) we
may apply an argument due to Méla [39, Lemme 3] for which we refer for more
details to [51, Remark 1.16] that implies that Theorem 3.1 holds for a better w,
namely for w(") = C2c1 log(2/") for some numerical constant c1 > 0 (instead of
w(") = C2/"). In the preceding corollary, assuming C = max{C1,C2} large, this
leads to 3 = 31 [ 32 completely Sidon with a constant C(3) = O(C2 logC).
This same estimate has been known for Sidon sets since Méla’s work. However,
it seems to be still open whether there is a better estimate than O(C2 logC). The
same question arises of course for completely Sidon sets. In particular, although
unlikely to be true, it seems that an estimate C(3) = O(C) is not ruled out.

We will use the following variant of Haagerup’s well-known theorem from
[26]. This plays the role of the Riesz products used in Drury’s original argument
(see Remark 3.13).

Theorem 3.5. For any 0  "  1 there is a function f" : F3 ! C in B(F3) with
k f"kB(F3)  1/" such that

8t 2 3 f"(gt ) = 1 and 8� 62 {gt | t 2 3} | f"(� )|  ".

Proof. Haagerup’s theorem produces a unital c.p. map associated to the multiplier
operator for the function h" : t 7! "|t |. the latter is in B(F3) with norm 1. For any
fixed z 2 T, let �z(t) = zn(t) (n(t) 2 Z) where t 7! zn(t) is the group morphism on
F3 taking all the generators to z (and hence their inverses to z�1). Clearly �z has
norm 1 in B(F3). Therefore the function

f"(t) = (1/")h"(t)
Z
z̄�z(t)dm(z),

where m is normalized Haar measure on T, satisfies by Jensen k f"(t)kB(F3)  1/",
f"(1) = f"(g�1

t ) = 0, f"(gt ) = 1 and | f"(t)|  " whenever |t | > 1. All the
announced properties are now easy to check.

Lemma 3.6. The set 3̃ = {gt | t 2 3} ⇢ F3 satisfies the properties in Theo-
rem 3.1 with C = 1.
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Proof. Let z : 3 ! U(A). There is a unitary representation ⇡z : F3 ! U(A)
such that ⇡z(gt ) = z(t) for any t 2 3. Let  ",z(t) = f"(t)⇡z(t) (i.e., the point-
wise product). Then  ",z extends z, k ",z(t)k  " if t 62 3 and we claim that
k ",zkD(F3,A)  1/". Indeed, let u⇡z : C⇤(F3) ! A be the associated ⇤-
homomorphism. Clearly ku⇡zkdec = 1 (see the proof of Proposition 3). Let M f" :
C⇤(F3) ! C⇤(F3) be the multiplier by f". Then kM f"kdec  1/" (see Propo-
sition 2.4). Therefore u⇡z M f" 2 D(C⇤(F3),C⇤(F3)) with ku⇡z M f"kdec  1/".
Since u⇡z M f" is the linear map associated to the function  ",z the claim follows.
This completes the proof in case z takes its values in U(A). Using Remark 1.5 one
easily extends this to the case when sup3 kzk < 1.

Let 0 be another discrete group.
Let T1, T2 2 D(C⇤(G),M0).
Let T1]T2 : C[G] ! `1(0) be defined by

[T1]T2](�s) =
X

�20
T1(� , s)T2(� , s) e� ,

where (�s) is the natural basis of C[G] and (e� ) the canonical basis of `1(0). Note
that by (2.9) the last sum is absolutely convergent. Since `1(0) ⇢ C⇤(0) (in the
usual way) we may view T1]T2 as a map with values in C⇤(0). Then we set equiv-
alently

[T1]T2](�s) =
X

�20
T1(� , s)T2(� , s)U0(� ). (3.1)

Proposition 3.7. For any T1, T2 2 D(C⇤(G),M0), the mapping T1]T2 extends to
a decomposable map still denoted (abusively) by T1]T2 in D(C⇤(G),C⇤(0)) such
that

kT1]T2kdec  kT1kdeckT2kdec. (3.2)

Proof. Just observe

(T1]T2) = P0(T1 ⌦ T2)JG : C⇤(G) ! C⇤(0),

and use (1.3).

Remark 3.8. Assume that there is a morphism q : 0 ! G onto G so that G is a
quotient of 0. Let q̂ : C⇤(0) ! C⇤(G) be defined by

q̂(U0(� )) = UG(q(� )).

Then q̂ is a ⇤-homomorphism. A fortiori it is a c.p. contractive mapping and hence
kq̂kdec = 1.

Let T 2 D(C⇤(G),C⇤(0)) such that T (UG(s)) =
P
�20 T (� , s)U0(� ) withP

�20 |T (� , s)| < 1 for all s 2 G. Let v = q̂T : C⇤(G) ! C⇤(G). Note that
v(UG(s)) =

P
s02G

P
�20,q(� )=s0 T (� , s)UG(s0), and hence

Tv(s0, s) =
X

�20,q(� )=s0 T (� , s)
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and kv : C⇤(G) ! C⇤(G)kdec  kT : C⇤(G) ! C⇤(0)kdec. By Lemma 2.11 we
have

kv•kB(G)  kTkdec, (3.3)

and
v•(s) =

X
�20,q(� )=s T (� , s). (3.4)

This brings us to the second step of the proof of Theorem 3.1, as follows:

Lemma 3.9. Let3 ⇢ G be a subset generating G. Let 0 = F3. Let q : 0 ! G be
the quotient morphism taking gt to t . If 3 ⇢ G is completely Sidon with constant
C , there is a scalar “matrix" T (� , s) such that

sups2G
X

�20
|T (� , s)|  C2, (3.5)

and such that the corresponding operator T : C⇤(G) ! C⇤(0) satisfies

8t 2 3 T (UG(t)) = U0(gt ).

Moreover, the map 2 : C⇤(G) ! C⇤(0) defined by

2(UG(s)) =
X

�20,q(� )=s T (� , s)U0(� )

is in D(C⇤(G),C⇤(0)) with k2kdec  C2.

Proof. By Remark 1.4, there is a map U : C⇤(G) ! M0 with kUkdec  C such
that U(UG(t)) = �0(gt ) for all t 2 3. Now let T = U]U . Then (3.5) follows
by (2.9) and (3.1). By (3.2) kTkdec  C2. The second part then follows from
Lemma 2.13.

Remark 3.10. By Remark 2.8 using U]U we can in addition obtain T (� , s) � 0
for all � , s.
Remark 3.11. Let 9 : G ! C⇤(0) be the function associated to 2, i.e.

8s 2 G 9(s) =
X

q(� )=s T (� , s)U0(� ).

Then 9 2 D(G,C⇤(0)) with k9kD(G,C⇤(0))  C2 and 9(t) = U0(gt ) for any
t 2 3.

Proof of Theorem 3.1. We may assume w.l.o.g. that G is the group generated by
3. We apply Lemma 3.9 and (3.5) to transplant the result of Lemma 3.6 from F3
to G. Recall 0 = F3. Fix 0  " < 1. Let z : 3 ! A such that sup3 kzk < 1.
Let z0 : 3̃ ! A be the transplanted copy of z defined by z0(gt ) = z(t) for any
t 2 3. Of course sup3̃ kz0k < 1. By Lemma 3.6 there is  0

",z : 0 ! A with
k 0

",zkD(0,A)  1/" extending z0 and such that k 0
",z(� )k  " if � 62 3̃. Let

u",z : C⇤(0) ! A be the linear map associated to  0
",z (i.e., u",z is u 0

",z is the
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sense of (2.1)). Let 9 be associated to 2 : C⇤(G) ! C⇤(0) as in Remark 3.11 so
that k9kD(G,C⇤(0)) = k2kD(C⇤(G),C⇤(0)). We then set

 ",z = u",z(9), (3.6)

so that u",z2 is the linear map associated to  ",z . Thus

k ",zkD(G,A)  k2kD(C⇤(G),C⇤(0))ku",zkD(C⇤(0),A)

= k9kD(G,C⇤(0))k 
0
",zkD(0,A)  C2/".

Equivalently (3.6) means that for any s 2 G we have

 ",z(s) =
X

q(� )=s T (� , s) 0
",z(� ).

Observe that if s 62 3 and q(� ) = s then necessarily � 62 {gt | t 2 3} and
hence (3.5) gives us k ",z(s)k  C2". Moreover for any t 2 3 we have  ",z(t) =
u",z(9(t)) =  0

",z(gt ) = z0(gt ) = z(t). So the second (and more general) part of
Theorem 3.1 follows.

Remark 3.12. Let |s|3 denote the length of an element s 2 G with respect to the
generating set 3, i.e., |s|3 = inf{|t | | t 2 F3, q(t) = s}. In the preceding proof
we find

| "(s)|  C2"|s|3�1 and k ",z(s)k  C2"|s|3�1.

Remark 3.13. If one replaces the free group by the free Abelian group 0a = Z(3)

the proof becomes quite similar to Drury’s original one, but reformulated in operator
theoretic terms. The group 0a is generated by generators (gat )t23 that are free
except that they mutually commute. In this case M0a is an injective von Neumann
algebra. Thus we have a mapping v 2 D(C⇤(G),M0a ) as in Corollary 2.9 where
now the gt ’s are replaced by the generators gat of 0a . When the group G is Abelian
we again have a quotient map qa : 0a ! G such that qa(gat ) = t for all t 2 3.
The analogue of f" is then the Fourier transform of a probability measure on the
compact group Ĝ = T3, namely the Riesz product

Q
t23(1 + "(zt + z̄t )) where

zt : T3 ! T is the t-th coordinate. This is defined only for |"|  1/2 but one can
use equally well whenever |"|  1 the Riesz product based on the Poisson kernel:

Y
t23

⇣X
n2Z "

|n|znt
⌘

.

Its Fourier transform is the exact analogue of f" on 0a .
See [24, Chapter 7] and [32, Chapter V] for more on Riesz products and their

generalizations.
See [8,10,15,22] for generalizations of Haagerup’s result (concerning the func-

tion h") to free products of groups and [4] for free products of c.p. maps on C⇤-
algebras.
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4. The Fatou-Zygmund property

We now turn to the Fatou-Zygmund (FZ in short) property. Recall P(G) is the set
of positive definite complex valued functions on G. The multiplier operator M f
associated to a function f 2 B(G) is c.p. on C⇤(G) iff f 2 P(G) and we have
kM f k = kM f kdec = f (1) for any f 2 P(G).

Theorem 4.1. Let3 ⇢ G \ {1} be a symmetric completely Sidon set. Any bounded
Hermitian function ' : 3 ! C admits an extension '̃ 2 P(G). More generally,
there is a constant C 0 such that for any unital C⇤-algebra A, any bounded Hermi-
tian function ' : 3 ! A admits an extension '̃ 2 CP(G, A) satisfying

k'̃(1)k  C 0 supt23 k'(t)k,

and moreover '̃(1) = 1Ak'̃(1)k.

The structure of the proof follows Drury’s idea in [17], but we again use decom-
posable maps as above, and harmonic analysis on the free group instead of the free
Abelian one.

The key Lemma is parallel to the one in [17]. It is convenient to formulate it
directly for positive definite functions with values in a unital C⇤-algebra A.

Lemma 4.2 (Key Lemma). Let 3 ⇢ G \ {1} be a symmetric completely Sidon set
with constant C . Let A be a unital C⇤-algebra. Let ' : 3 ! A be a Hermitian
function (i.e., we assume '(t�1) = '(t)⇤ for any t 2 3) with sup3 k'k < 1. For
any 0  "  1 there is 8" 2 P(G, A) with

k8"kCB(G,A) = k8"(1)k  4C2 and sups23 k8"(s) � "'(s)k  4C2"2.

Proof. For simplicity we give the proof assuming that 3 does not contain elements
such that t = t�1. Let 31 ⇢ 3 be such that 3 is the disjoint union of 31 and
3�1
1 = {t�1 | t 2 31}. We will work with the free group 0 = F31 instead of F3.

As before we set q(gt ) = t for all t 2 31.
Then we consider the self-adjoint operator space E spanned by {UG(t) | t 2

3}. Let u : E ! M0 be the linear mapping defined by u(UG(t)) = �0(gt ) and
u(UG(t�1)) = �0(gt )�1 for t 2 31. Note that u is self-adjoint in the sense that
u = u⇤ where u⇤(x) = u(x⇤)⇤ for all x 2 E . By Remark 1.4, since3 is completely
Sidon with constant C , u is the restriction to E of a mapping T 2 D(C⇤(G),M0)
with kTkdec  C . Replacing T by 1/2(T + T⇤) we may assume that T is self-
adjoint. Then (see [27]) we have a decomposition T = T+ � T� where T± 2
CP(C⇤(G),M0) with

max{kT+k, kT�k}  kT+ + T�k  kTkdec. (4.1)

We have
T ]T = a � b
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with
a = T+]T+ + T�]T� and b = T+]T� + T�]T+.

Note that a, b 2 CP(C⇤(G),C⇤(0)).
Fix 0  "  1. Let h" : C⇤(0) ! C⇤(0) be as before the Haagerup c.p.

multiplier defined on F3 by (see [26]) h"(t) = "|t |. Note that both h" and h�" are
in P(F3) (indeed, h�"(t) = h"(t)��1(t)).

The function '0 defined on the words of length 1 by '0(g±
t ) = '(t±) is

Hermitian. By Haagerup’s [26] and the operator valued version in [9] (see Re-
mark 1.3), there is a positive definite function f 2 P(0, A) extending '0 such
that f (1) = 1 and f (gt ) = '(t) (and f (g�1

t ) = '(t�1)) for all t 2 31. In-
deed, this is precisely the FZ-property of the free group 0 = F31 . (See [4] for
a generalization of this to c.p. maps on free products.) Let M f : C⇤(0) !
C⇤(0)⌦max A be the associated “multiplier" takingU0(t) toU0(t)⌦ f (t). Clearly
M f 2 CP(C⇤(0),C⇤(0) ⌦max A) and kM f k = kM f (1)k = 1.

We now introduce for any 0  "  1

Y" = (q̂Mh" ⌦ I dA)M f a + (q̂Mh�" ⌦ I dA)M f b.

Clearly Y" 2 CP(C⇤(G),C⇤(G) ⌦max A). Let 8" = Y •
" in the sense of Re-

mark 2.12. Since Y" is c.p. we know that 8" 2 CP(G, A). Moreover, by (4.1)

k8"kCB(G,A) = k8"(1)k  kak + kbk  kT+k2 + kT�k2 + 2kT+kkT�k

 4kTk2dec  4C2.

We now compute 8"(s) for s 2 3. We have

8"(s) =
X

�20,q(� )=s h"(� ) f (� )(T+(� , s)2 + T�(� , s)2)

+ h�"(� ) f (� )(2T+(� , s)T�(� , s)).

We can write (recall s 6= 1 and hence q(� ) = s implies |� | � 1)

8"(s) = I (s) + E(s),

where

I (s) =
X

�20,q(� )=s,|� |=1 h"(� ) f (� )(T+(� , s)2 + T�(� , s)2)

+ h�"(� ) f (� )(2T+(� , s)T�(� , s)),

and the “error term" E(s) is

E(s) =
X

�20,q(� )=s,|� |>1 h"(� ) f (� )(T+(� , s)2 + T�(� , s)2)

+ h�"(� ) f (� )(2T+(� , s)T�(� , s)).
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Fix s 2 31. If |� | = 1 and q(� ) = s we must have � = gs , h"(� ) = " and
h�"(� ) = �" and f (� ) = '(q(� )) = '(s) so we recover

I (s) = "'(s)[(T+(gs, s)2 + T�(gs, s)2) � (2T+(gs, s)T�(gs, s))]

= "'(s)T (gs, s)2,

and since T (� , s) = 1�=gs we obtain for s 2 31

I (s) = "'(s).

Similarly, I (s�1) = "'(s�1) = "'(s)⇤.
It remains to estimate the error: Note that if |� | > 1 we have |h±"(� )|  "2

and hence by (2.9)

kE(s)k  "2
X

�20
|T+(� , s)2 + T�(� , s)2| + 2|T+(� , s)T�(� , s)|

 "2
X

�20
(|T+(� , s)| + |T�(� , s)|)2

 "2(kT+k + kT�k)2  4"2kTk2dec  4"2C2.

This completes the proof of the lemma, assuming 3 has no element of order 2.
Otherwise let 32 ⇢ 3 be the set of such elements. We then replace F31 with
0 = F31 ⇤ (⇤t232Z2). We leave the details to the reader.

Remark 4.3. Let '0 : G ! C be such that '0(t) = 1 if t = 1 (unit of G)
and '0(t) = 0 otherwise. Clearly '0 2 P(G) (indeed '0(t) = h�1, �G(t)�1i).
Let ' 2 CP(G, A). Then '(1) 2 A+ and hence 0  '(1)  k'(1)k1A. Let
 (t) = '(t) + '0(t)(k'(1)k1A � '(1)). Then  2 CP(G, A),  (1) = k'(1)k1A
and  (t) = '(t) for all t 6= 1. Equivalently, if we are given V 2 CP(C⇤(G), A)
then there is W 2 CP(C⇤(G), A) such that W (1) = kV (1)k1A and W (UG(t)) =
V (UG(t)) for all t 6= 1.

Proof of Theorem 4.1. The theorem follows from the key Lemma 4.2 by a routine
iteration argument (note that 8" � "' is Hermitian), exactly as in [17]. For the last
assertion we use Remark 4.3.

The proof gives an estimate of the form C 0  cC4 where C is the completely
Sidon constant and c a numerical constant, to be compared with Remark 3.4.

Corollary 4.4. Assume for simplicity that 3 ⇢ G \ {1} is symmetric, and is the
disjoint union of 31 and 3�1

1 as before (in particular it has no element of order 2).
Let E3 ⇢ C⇤(G) be the operator system generated by 3 and {1}. The following
are equivalent:

(i) 3 is completely Sidon;
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(ii) There is a completely positive linear map V : C⇤(G) ! C⇤(F31) such that

8t 2 31 V (UG(t)) = UF31 (gt ) V (UG(t�1)) = UF31 (g
�1
t );

(iii) There is �>0 such that the (unital) mapping S� : E3!C⇤(F31) defined by

S�(1)=1 and 8t 231 S�(UG(t))=�UF31 (gt ) S�(UG(t�1))=�UF31 (g
�1
t ),

is c.p.;
(iv) There is � > 0 such that S� admits a c.p. extension S̃� : C⇤(G) ! C⇤(F31).

Moreover, the relationships between the Sidon constant and � are C  1/�  cC4,
and � � �2.

Proof. Assume (i). Let A = C⇤(F31). Define ' : 3 ! A by '(t) = gt ,'(t�1) =
g�1
t for t 2 31. By Theorem 4.1 there is a c.p. mapping V : C⇤(G) ! A extending
UG(t) 7! '(t). This proves (i) ) (ii). Assume (ii). Let � = kV (1)k�1. By
Remark 4.3 there is W 2 CP(C⇤(G),C⇤(0)) such that W (1) = (1/�)1 and 8t 2
31 W (UG(t)) = UF31 (gt ) W (UG(t�1)) = UF31 (g

�1
t ). Then the restriction S�

of �W to E3 satisfies (iii).
Assume (iii) or (iv). Then (i) follows because kS�kcb = 1. Also (iv) trivially

implies (iii).
Assume (iii). Let 0 = F31 . By Remark 1.4 S� extends to a c.p. map U :

C⇤(G) ! M0 . Now consider S = U]U . Then S is c.p. and extends S�2 . Thus (iii)
implies (iv).

The relationships between the constants can be traced back easily from the
proof.

Remark 4.5. All the preceding can be developed in parallel for the free Abelian
group. The last statement gives an apparently new fact (or rather, say, a new re-
formulation of the FZ property) in the commutative case. We state it for emphasis
because it seems interesting. Let G be a discrete commutative group. Assume for
simplicity that 3 ⇢ G \ {0} has no element of order 2 and is the (symmetric) dis-
joint union of 31 and 3�1

1 as before. Let 01 be the free Abelian group Z(31). Note
C⇤(01) ' C(T31). Then 3 is Sidon iff there is � > 0 such that the mapping

S� : E3 ! C⇤(01) ' C(T31)

defined as above but with Z(31) in place of F31 is positive. Note that in the com-
mutative case positive implies c.p.

5. Characterizations by operator space properties

Let 3 ⇢ G be a subset and let C3 ⇢ C⇤(G) be its closed linear span. In the
classical setting, when G is a commutative discrete group, Varopoulos [56] proved
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that 3 is Sidon as soon as C3 is isomorphic to `1(3) as a Banach space (via an
arbitrary isomorphism). Shortly after that, the author and independently Kwapień
and Pe lczyński proved that it suffices to assume that C3 is of cotype 2. This was
refined by Bourgain and Milman [3] who showed that3 is Sidon if (and only if) C3
is of finite cotype. It is natural to try to prove analogues of these results for a general
discrete group G. The next statement shows that if C3 is completely isomorphic to
`1(3) (equipped with its maximal operator space structure) then 3 is completely
Sidon. Indeed, the dual operator spaceC⇤

3 is then completely isomorphic to `1(3),
and the latter is exact with constant 1.

We recall that an operator space (o.s. in short) X ⇢ B(H) is called exact if
there is a constant C such that for any finite dimensional subspace E ⇢ X there
is an integer N , a subspace Ẽ ⇢ MN and an isomorphism u : E ! Ẽ such that
kukcbku�1kcb  C . The smallest constant C for which this holds is denoted by
ex(X).

The dual o.s. of an o.s. X ⇢ B(H) is characterized by the existence of an iso-
metric embedding X⇤ ⇢ B(H) such that the natural norms on the spaces Mn(X⇤)
and CB(X,Mn) coincide. See [47, Section 2.3] for more on this.

Theorem 5.1. If C⇤
3 is an exact operator space, then 3 is completely Sidon with

constant 4ex(C⇤
3)2. Conversely, if 3 is completely Sidon with constant C then then

ex(C⇤
3)  C .

Proof. The converse part is clear because `1(3) = `1(3)⇤ is exact with
ex(`1(3)) = 1.

Assume that C⇤
3 is exact. Let ↵ ⇢ 3 be a finite subset. Consider the mapping

T0 : C3 ! C⇤
�(F3) defined by T0(t) = �F3(gt ) for t 2 ↵ and T0(t) = 0 for t 62 ↵.

Let us denote by 't 2 (C⇤(G))⇤ the functional biorthogonal to the natural system,
i.e., 't (UG(s)) = �t (s).

Let a : G ! MN be a finitely supported MN -valued function (N � 1). We
have then by elementary arguments

�
�
�
X

a(t) ⌦UG(t)
�
�
� �

�
�
�
X

a(t) ⌦ �G(t)
�
�
�

� max
⇢�
�
�
X

a(t)⇤a(t)
�
�
�
1/2

,
�
�
�
X

a(t)a(t)⇤
�
�
�
1/2

�
.
(5.1)

By a well-known inequality with roots in Haagerup’s [26] (see [47, page 188]) (5.1)
implies �

�
�
X

a(t) ⌦UG(t)
�
�
� � (1/2)

�
�
�
X

a(t) ⌦ �F3(gt )
�
�
� (5.2)

and hence kT0kcb  2. Equivalently this means that the tensor

T0 =
X

t2↵ 't ⌦ �F3(gt ) 2 (C3)⇤ ⌦ C⇤
�(F3)

satisfies
kT0kmin = kT0 : C3 ! C⇤

�(F3)kcb  2. (5.3)
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Let " > 0. Assume |↵| = n and ↵ = {t (1), · · · , t (n)}. Let 0 ⇢ F3 be the copy
of Fn generated by {gt ( j) | 1  j  n}. We claim that T0 extends to an operator
T̃ : C⇤(G) ! M0 such that kT̃kdec  2ex(X)(1+ ").

By a result due to Thorbjørnsen and Haagerup [30] (see [47, page 331]) re-
cently refined in [14] we have (here we denote by (g j ) the free generators of Fn):

For any n and N there is an n-tuple of N ⇥ N -unitary matrices (u(N )
j )1 jn such

that for any exact operator space X and any x j 2 X we have

limN!1

�
�
�
X

u(N )
j ⌦ x j

�
�
�
MN (X)

 ex(X)
�
�
�
X

�Fn (g j ) ⌦ x j
�
�
�
min

, (5.4)

and
�
u(N )
j | 1  j  n} converges in moments to {�Fn (g j ) | 1  j  n

 
. (5.5)

Let X = C⇤
3. This gives us by (5.3)

limN!1

�
�
�
X

u(N )
j ⌦ 't ( j)

�
�
�
MN (X)

 2ex(X).

For some n0 we have

supN�n0

�
�
�
X

u(N )
j ⌦ 't ( j)

�
�
�
MN (X)

 2ex(X)(1+ ").

This gives us a map T1 : C3 ! (�
P

N�n0 MN )1 with kT1kcb  2ex(X)(1+ "),
such that T1(UG(t ( j))) = �N�n0u

(N )
j . Let ! be a nontrivial ultrafilter on N.

By (5.5), we have an isometric embedding M0 ⇢ (�
P

N�1 MN )1/! and a sur-
jective unital c.p. map Q! : (�

P
N�1 MN )1 ! M0 , such that

Q
⇣
�N�n0u

(N )
j

⌘
= �0(g j ).

Since (�
P

N�1 MN )1 is injective there is an extension of T1 denoted T̃1 : C⇤(G)!

(�
P

N�1 MN )1 such that kT̃1kdec = kT̃1kcb  kT1kcb  2ex(X)(1 + "), and
hence setting T̃ = QT̃1, we obtain the claim.

Then we conclude by Corollary 2.9.

Corollary 5.2. Let 3 ⇢ G. The operator space C3 ⇢ C⇤(G) is completely iso-
morphic to `1(3) (with its maximal o.s. structure) iff 3 is completely Sidon.

Remark 5.3. By the same argument, we can replace the exactness assumption of
Theorem 5.1 by the subexponentiality (or tameness) in the sense of [49].
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Remark 5.4. By the same argument, the following can be proved. Let {x j } ⇢ A be
a bounded sequence in a C⇤-algebra A. Assume that for some constant c, for any
N and any sequence (a j ) in MN with only finitely many nonzero terms we have

c
�
�
�
X

a j ⌦ x j
�
�
� � max

⇢�
�
�
X

a⇤
j a j

�
�
�
1/2

,
�
�
�
X

a ja⇤
j

�
�
�
1/2

�
.

Let E be the closed span of {x j }. If E⇤ is exact then {x j ⌦ x j } is completely Sidon
in A ⌦max A (with constant 4c2ex(E⇤)2). See [52] for more on that theme.
Remark 5.5.

(i) Let us first observe that the Varopoulos result mentioned above remains valid
for a non-commutative group G. We will show that if C3 is isomorphic to
`1(3), then the usual linear mapping taking the canonical basis of `1(3),
namely (�t )t23, to (UG(t))t23 is an isomorphism. Actually it suffices to as-
sume that C⇤

3 ' `1(3) as a Banach space or that, say, C⇤
3 is a L1-space, or

that (C⇤
3,C⇤

3) is a GT-pair in the sense of [48, Def. 6.1], to which we refer for
all unexplained terminology in the sequel.
With the preceding notation, let Wx : C⇤

3 ! C3 be the linear operator asso-
ciated to the tensor x =

P
t2↵ x(t)UG(t) ⌦ UG(t) 2 C3 ⌦ C3. Let k k_ be

the norm in the injective tensor product (in the usual Banach space sense) of
C⇤(G) with itself. Note

kWxk = kxk_  kxkmin =
�
�
�
X

t2↵ x(t)UG(t)
�
�
�
C⇤(G)

.

Let (z(t)) 2 T3. Let Tz : C3 ! C⇤
3 be the linear operator associated to

the tensor
P

t2↵ z(t)'t ⌦ 't 2 C⇤
3 ⌦ C⇤

3. A simple verification shows that,
denoting by �2(Tz) the norm of factorization through Hilbert space of Tz , we
have �2(Tz)  1.
Then Grothendieck’s Theorem, or our Banach space assumption (see [48, §6]),
implies that for any finite rank map w : C⇤

3 ! C3 we have |tr(wTz)| 
K�2(Tz)kwk_  Kkwk, where K is a constant independent of w, z. There-
fore, we have

�
�
�
X

t2↵ x(t)z(t)
�
�
� = |tr(WxTz)|  KkxkC⇤(G),

and hence taking the sup over all z’s and ↵’s
X

t23 |x(t)|  KkxkC⇤(G).

Thus we conclude that C3 is isomorphic to `1(3) by the usual (basis to basis)
isomorphism. Such sets are called weak Sidon in [44], where the term Sidon
is reserved for the sets that span `1(3) in the reduced C⇤-algebra C⇤

�(G).
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(ii) Let C�3 be the closed span of 3 in C⇤
�(G), i.e., C�3 = span{�G(t) | t 2 3}.

The preceding argument applies equally well to C�3, and shows that if C
�
3 is

isomorphic to `1(3) (by an arbitrary isomorphism) then it actually is so by the
usual isomorphism, and 3 is Sidon in the sense of [44].

(iii) Lastly, we apply the same idea to slightly generalize Theorem 5.1.
Fix N � 1. Let z = (z(t)) 2 U(N )3 and x = (x(t)) 2 M3

N . Consider the
tensors

Tz =
X

t2↵ 't ⌦ [z(t) ⌦ 't ] 2 C⇤
3 ⌦ MN (C⇤

3),

and
Wx =

X
t2↵ x(t) ⌦UG(t) ⌦UG(t) 2 MN (C3 ⌦ C3).

Then it can be checked on the one hand that

max
�
kTzkC⇤

3⌦hMN (C⇤
3), k

tTzkMN (C⇤
3)⌦hC⇤

3

 
 1.

Thus if the pair (C⇤
3,MN (C⇤

3)) satisfies (uniformly over N ) the o.s. version of
Grothendieck’s theorem described in [48, Proposition 18.2] we find for some
constant K (independent of N )

kTzkC⇤
3⌦^MN (C⇤

3)  K .

Here⌦^ is the projective tensor product in the operator space sense. A fortiori,
this implies

kTzkMN (C⇤
3⌦^C⇤

3)  K .

On the other hand, we have obviously

kWxkMN (C3⌦minC3) 
�
�
�
X

t2↵ x(t) ⌦UG(t)
�
�
�
MN (C3)

.

Thus we obtain
�
�
�
X

z(t) ⌦ x(t)
�
�
�  kTzkMN (C⇤

3⌦^C⇤
3)kWxkMN (C3⌦minC3)

 K
�
�
�
X

t2↵ x(t) ⌦UG(t)
�
�
�
MN (C3)

.

The latter implies that 3 is completely Sidon.

6. Remarks and open questions

6.1. Free sets

We start by the characterization of the case C = 1 announced in Proposition 3.

Proposition 6.1. The following properties of a subset 3 ⇢ G are equivalent:

(i) 3 is completely Sidon with a constant C = 1;
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(ii) For any finite subset S ⇢ 3 we have k
P

s2S �G(s)k = 2
p

|S| � 1;
(iii) 3 is a (left say) translate of a free set enlarged by including the unit;
(iv) For every m and every 2m-tuple t1, t2, t3, · · · , t2m�1, t2m in 3 with t1 6= t2 6=

· · · t2m�1 6= t2m we have t�11 t2t�13 t4 · · · t�12m�1t2m 6= 1.

Proof. We start by (iii) ) (i). Assume (iii). Since translation has no significant
effect, it suffices to prove (i) for 3 = S [ {1} with S free. We may assume that S
generates G. Let z : 3 ! U(A) such that z(1) = 1. By the freeness of S there
is a unitary representation ⇡ : G ! A extending z. By Remark 1 3 is completely
Sidon set with C = 1.

Conversely, let us show (i)) (iii).
Assume (i). Pick and fix an element s 2 3. We may assume after (left say) trans-
lation by s�1 that 1 2 3. Then the correspondence t 7! gt (t 6= s) extends
to a unital completely contractive map from the span of 3 in C⇤(G) to that of
{1}[ {gt | t 2 3\{s}} in C⇤(F3). By [46, Prop. 6] the latter mapping is the restric-
tion of a unital ⇤-homomorphism fromC⇤(G) toC⇤(F3), which (by the maximality
of C⇤(F3)) must be a ⇤-isomorphism. Translating back by s yields (iii).
(iii), (iv) is due to Akemann-Ostrand [1, Def. III.B and Th. III.D], as well as (iii)
) (ii) and the converse is due to Lehner [36].

Since free sets (or their left or right translates) are the fundamental completely
Sidon examples, and the latter are stable by finite unions it is natural to ask: Is any
completely Sidon set a finite union of translates of free sets? In other words (see
Proposition 6.1): is every completely Sidon set with constant C < 1 a finite union
of sets with C = 1? Of course this would imply that any group G that contains an
infinite completely Sidon set contains a copy of F1 as a subgroup, but we do not
even know whether this is true, although non-amenability is known (see Remark 4).
Remark 6.2. In [45] we asked whether an L-set (see the definition below) is a
finite union of left translates of free sets, but Fendler gave a simple counterexample
in Coxeter groups in [20].

6.2. L-sets

In [45] (following [28]) we study a class of subsets of discrete groups that we call
L-sets. By definition, L-sets are the sets satisfying (6.1) below. These sets are the
same as those called strong 2-Leinert sets in [7]. L-sets seem to be somehow the
reduced C⇤-algebraic analogue of our completely Sidon sets. Indeed, 3 ⇢ G is an
L-set iff the linear map taking �F3(gt ) to t 2 3 extends to a complete isomorphism
v from the span of 3̃ in C⇤

�(F3) to that of 3 in C⇤
�(G). If (6.1) holds we have

kvkcb  C 0 and kv�1kcb  1 always holds. The connection between completely
Sidon sets and L-sets is unclear. However our Proposition 6.3 below suggests that
completely Sidon sets are probably L-sets.

Proposition 6.3. Assume that C⇤
�(G) is an exact C⇤-algebra (G is then called an

“exact group"). Let 3 ⇢ G be a completely Sidon set. There is a constant C 0 such
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that for any k and any finitely supported function a : 3 ! Mk we have
�
�
�
X

t23 a(t) ⌦ �G(t)
�
�
�C 0max

⇢�
�
�
X

a(t)⇤a(t)
�
�
�
1/2

,
�
�
�
X

a(t)a(t)⇤
�
�
�
1/2

�
. (6.1)

In other words 3 is an L-set in the sense of [45].

Proof. Fix k. Let (Ut )t23 be an i.i.d. family of random matrices uniformly dis-
tributed in the unitary group U(k). Let z(t) = Ut . By (ii) in Proposition 1.1 we
have kuzkcb  C and hence
�
�
�
X

t23[a(t) ⌦ �G(t) ⌦Ut ] ⌦Ut
�
�
�C

�
�
�
X

t23[a(t) ⌦ �G(t) ⌦Ut ] ⌦UG(t)
�
�
�. (6.2)

Since UG ⌦ �G is equivalent to �G (by Fell’s absorption principle, see e.g. [47,
page 149]) and we may permute the factors

�
�
�
X

t23[a(t) ⌦ �G(t) ⌦Ut ] ⌦UG(t)
�
�
� =

�
�
�
X

t23 a(t) ⌦ �G(t) ⌦Ut
�
�
� ,

and since the operators Ut ⌦Ut have a common eigenvector
�
�
�
X

t23 a(t) ⌦ �G(t)
�
�
� 

�
�
�
X

t23[a(t) ⌦ �G(t) ⌦Ut ] ⌦Ut
�
�
� .

Therefore (6.2) implies
�
�
�
X

t23 a(t) ⌦ �G(t)
�
�
�  C

�
�
�
X

t23 a(t) ⌦ �G(t) ⌦Ut
�
�
� .

We now recall that the matrices Ut are random k ⇥ k unitaries and we let k ! 1.
By [14] (actually [29, Theorem B] suffices for our needs) the announced inequality
follows with C 0 = 2C .

Remark 6.4. In Proposition 6.3 it clearly suffices to assume that C⇤
�(G) is “com-

pletely tight" or “subexponential" in the sense of [49].
Remark 6.5. We refer to [47, §9.7] for all the terms used here. By Remark 6.6
below applied with p = 1, if3 ⇢ G (assumed infinite for simplicity) is completely
Sidon, then the span of3 in L1(⌧G) = MG⇤ is completely isomorphic to the opera-
tor space R +C . But we see no reason why it should be completely complemented
in L1(⌧G), so we do not see how to deduce from this that the span of3 in MG or in
C⇤
�(G) is completely isomorphic to the operator space R \ C = (R + C)⇤.
Note that the question whether C⇤

�(G) is an exact C⇤-algebra for all groups G
remained open for a long time, until Ozawa [42] proved that a group constructed
by Gromov in [25] (the so-called “Gromov monster") is a counterexample. See
also [2] and also [40,41] for more recent examples. This shows that the assumption
that G is exact in Proposition 6.3 is a serious restriction, although it holds in many
examples.

In the converse direction we do not have any example at hand of an L-set that
is not completely Sidon.
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6.3. 3( p)-sets

In [5, 6] Bożejko considered the analogue of Rudin’s 3(p)-sets in a non-Abelian
discrete group G. He proved that any sequence in G contains a subsequence form-
ing a 3(p)-set with 3(p)-constant growing like pp (we call such sets “subgaus-
sian" in [51]). In this direction, a natural question arises: which sequences in G
contain a completely Sidon subsequence? similarly, which contain a subsequence
forming an L-set? Obviously this is not true for any infinite sequence. It seems
interesting to understand the underlying combinatorial (or operator theoretic) prop-
erty that allows the extraction. In this context, we recall Rosenthal’s famous di-
chotomy [54] for a sequence in a Banach space: it contains either a weak Cauchy
subsequence or a `1-sequence (i.e., the analogue of a Sidon sequence). Is there an
operator space analogue of Rosenthal’s theorem?

6.4. 3( p)cb-sets

L-sets are also 3(p)cb-sets in the sense of Harcharras [31] for any 2 < p < 1.
In fact L-sets are just 3(p)cb-sets with uniformly bounded 3(p)cb-constant when
p ! 1. We refer to [31] for more information on these operator space analogues
of Rudin’s 3(p)-sets.

Remark 6.6. If 3 ⇢ G is completely Sidon, then a fortiori it is “weak Sidon" in
the sense of [44]. This means that any bounded scalar valued function on 3 is the
restriction of a multiplier in B(G). Since the latter are c.b. multipliers on L p(⌧G)
simultaneously for all 1  p < 1 (by Proposition 2.4 and complex interpolation)
we can use the Lust-Piquard-Khintchine inequalities (see [47, page 193]) to show
that for any 1  p < 1 the span of 3 in L p(⌧G) is isomorphic to that of 3̃ in
L p(⌧F3). Therefore, 3 is 3(p)cb for any 2 < p < 1 and the corresponding
constant is O(

pp) when p ! 1. Such sets could be called “completely sub-
gaussian". Whether conversely the 3(p)cb-constant being O(

pp) implies weak
Sidon probably fails but we do not have any counterexample. It is natural to ask
whether this “completely subgaussian" property implies that the set defines an un-
conditional basic sequence in the reduced C⇤-algebra of G. In this form this is
correct for commutative groups by our result from 1978 (see [51]), but what about
amenable groups?

In [11] it is proved that the generators in any Coxeter group satisfy the weak
Sidon property and the preceding remark is explicitly applied to that case.

6.5. Exactness

It is a long standing problem raised by Kirchberg whether the exactness of the full
C⇤-algebra C⇤(G) of a discrete group G implies the amenability of G. We feel that
the preceding results may shed some light on this.

Let 3 ⇢ A be a subset of a C⇤-algebra A. Let F3 be the free group with
generators (gt ) indexed by 3. Following [52] we say that 3 ⇢ A is completely
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Sidon with constant C if the linear map taking t 2 3 to UF3(gt ) is c.b. with c.b-
norm  C .

For any n � 1, let 3n be linearly independent finite sets in the unit ball of A
with |3n| ! 1. Let C(3n) be the completely Sidon constant. By [47, Theorem
21.5, page 336] if C(3n) = o(

p
|3n|) then A cannot be exact. In particular, if this

holds for A = C⇤(G) then G is not amenable. A fortiori, if A = C⇤(G) contains
an infinite completely Sidon set then G is not amenable.

Thus one approach to the preceding Kirchberg problem could be to show con-
versely that if G is non-amenable then there is a sequence (3n) of such sets in
A = C⇤(G) or even in G.

The analogous fact for the reduced C⇤-algebra was proved by Andreas
Thom [55].

6.6. Interpolation sets

Sidon sets are examples of “interpolation sets". Given an abstract set G given with
a space X ⇢ `1(G) of functions on G, a subset 3 ⇢ G is called an interpolation
set for X if any bounded function on 3 is the restriction of a function in X .

It is known (see [45]) that3 ⇢ G is an L-set iff any (real or complex) function
bounded on 3 and vanishing outside it is a c.b. (i.e., “Herz-Schur") multiplier on
the von Neumann algebra of G. In other words 3 is an interpolation set for the
class of such multipliers, with an additional property: that the indicator function of
3 is also a c.b. (Herz-Schur) multiplier.

In [44] Picardello introduces the term “weak Sidon set" for a subset 3 ⇢ G
such that any bounded function on 3 is the restriction of one in B(G) = C⇤(G)⇤.
In other words,3 is an interpolation set for B(G). By Hahn-Banach this is the same
as saying that the closed span of 3 in the full C⇤-algebra C⇤(G) is isomorphic as a
Banach space to `1(3) by the natural correspondence.

In [44] the term Sidon (respectively strong Sidon) is then (unfortunately in
view of our present work) reserved for the interpolation sets for B�(G) = C⇤

�(G)⇤

(respectively for the sets such that any function in c0(3) extends to one in A(G)).
Simeng Wang observed recently in [57] that Sidon and strong Sidon in Picardello’s
sense are equivalent.

Remark 6.7 (operator valued interpolation). A subset 3 ⇢ G is completely
Sidon iff it is an interpolation set for operator valued functions more precisely iff
any bounded B(H)-valued function on3 is the restriction of one in CB(G, B(H)).
Indeed, this is Proposition 1.1. Moreover, if this holds then by Theorem 4.1 for any
unital C⇤-algebra A any bounded A-valued function on 3 is the restriction of one
in D(G, A).

Remark 6.8 (final remark). In [52] we prove a version of the union theorem for
subsets of a general C⇤-algebra A. We can recover the group case when A =
C⇤(G).
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