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The metric at infinity on Damek-Ricci spaces

ROBERTO CAMPORESI

Abstract. Let S = N A be a Damek-Ricci space, identified with the unit ball
B in s via the Cayley transform. Let S p+q = @B be the unit sphere in s,
p = dim v, q = dim z. The metric in the ball model was computed in [1] both
in Euclidean (or geodesic) polar coordinates and in Cartesian coordinates on B.
The induced metric on the Euclidean sphere S(R) of radius R is the sum of a
constant curvature term, plus a correction term proportional to h1, where h1 is a
suitable differential expression which is smooth on S(R) for R < 1, but becomes
(possibly) singular on the unit sphere at the pole (0, 0, 1). It has a simple geo-
metric interpretation, namely h1 = |2|2, where 2 is, up to a conformal factor,
the pull-back of the canonical 1-form on the group N (defining the horizontal
distribution on N ) by the generalized stereographic projection. In the symmet-
ric case h1, as well as the transported distribution on S p+q \ {(0, 0, 1)}, have a
smooth extension to the whole sphere. This can be interpreted by the Hopf fi-
bration of S p+q . In the general case no such structure is allowed on the unit
sphere, and the question was left open in [1] whether or not h1 extends smoothly
at the pole. In this paper we prove that h1 does not extend, except in the sym-
metric case. More precisely, writing h1 in the coordinates (V, Z) on S p+q as
h1 =

P
h(z)
i j dzi dz j +

P
h(v)
i j dvi dv j +

P
h(zv)
i j dzi dv j , we prove that, in the

non-symmetric case, the coefficients h(z)
i j do not have a limit at the pole, but re-

main bounded there, whereas the coefficients h(v)
i j and h(zv)

i j extend smoothly at
the pole. In order to do this, we obtain an explicit formula for the 1-form 2 valid
for any Damek-Ricci space. From this formula we deduce that2 does not extend
to the pole, except for q = 1 (Hermitian symmetric case). The square of 2 and
the distribution ker2 do not extend, unless S is symmetric. Indeed, we prove that
the singular part of h1 vanishes identically if and only if the J2-condition holds.

Mathematics Subject Classification (2010): 22E25 (primary); 43A85, 53C30
(secondary).

1. Introduction

Let S = N A be a Damek-Ricci space, i.e., the semidirect product of a (connected
and simply connected) nilpotent Lie group N of Heisenberg type [7] and the one-
dimensional Lie group A ⇠= R+ acting on N by anisotropic dilations. When S
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is equipped with a suitable left-invariant Riemannian metric �S , it becomes a (non-
compact, simply connected) homogeneous harmonic Riemannian space [3,4]. Con-
versely, every such space is a Damek-Ricci space if we exclude Rn and the “degen-
erate” case of real hyperbolic spaces (see [6, Corollary 1.2]). We take the basic
notation from [9], to which we refer for a nice introduction to the geometry and
harmonic analysis on Damek-Ricci spaces.

We use the ball model B of S, namely we identify S with the unit ball B in the
Lie algebra s via the Cayley transform C : N A ! B [2, 9],

S = N A
C
⇠= B = {(V, Z , t) 2 s : R2 = |V |2 + |Z |2 + t2 < 1}.

Here s = n � a = v � z � a, where a ' R, z is the center of n and v its orthogonal
complement in n. We denote by h·, ·i the inner product on s, and by |·| the associated
norm. For any Z 2 z we have the linear map JZ : v ! v defined by

hJZV, V 0i = hZ , [V, V 0]i, 8V, V 0 2 v.

The Lie algebra n = v�z of N is a two-step real nilpotent Lie algebra of Heisenberg
type (or H -type), i.e., the map JZ satisfies

J 2Z = �|Z |2 I, 8Z 2 z,

where I denotes the identity mapping. This implies that the map Z ! JZ extends
to a representation of the real Clifford algebra Cl(z) on v. This procedure can be
reversed and yields a general method for constructing H -type Lie algebras [7].

We let p = dim v, q = dim z, and let Sp+q be the unit sphere in s:

Sp+q = @B = {(V, Z , t) 2 s : |V |2 + |Z |2 + t2 = 1}.

Let �S be the left-invariant Riemannian metric on S given by [1], (1.1). The trans-
ported metric �B = C�1 ⇤(�S) was computed in [1, Theorem 3.1], in Euclidean
polar coordinates (R, (V, Z , t)) 2 [0, 1) ⇥ Sp+q . It is given by

�B =
4 dR2

(1� R2)2
+ �S(R), (1.1)

where the induced metric on the Euclidean sphere S(R) of radius R < 1 is

�S(R)|R(V,Z ,t) =
4R2

1� R2
�Sp+q |(V,Z ,t) +

4
(1� R2)2

h1|R(V,Z ,t).

Here �Sp+q is the round metric on Sp+q , and h1 is the following differential expres-
sion on Sp+q \ {(0, 0, 1)}:

h1|(V,Z ,t) =
�
�[V, dV ] + td Z � Zdt

�
�2 + |Z |2|dZ |2 � hZ , dZi2

+ 2
⇣
hV, dV ihZ , dZi �

⌦
JdZV, JZdV

↵⌘
+ k1(V, Z , t), (1.2)
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where

k1(V, Z , t) =
1

((1� t)2 + |Z |2)2

⇢
|V |4

⇣
hZ , dZi2 � |Z |2|dZ |2

⌘

+
�
�[JZV, JdZV ]

�
�2

+ 4(1� t)
⇣
|V |2

⇣⌦
JZV, dV

↵
hZ , dZi � |Z |2

⌦
JdZV, dV

↵⌘

+
⌦
J[JZ V,dV ] JZV, JdZV

↵⌘

� 4(1� t)
⇣
|Z |2 � (1� t)2

⌘ ⇣⌦
JZV, dV

↵
hV, dV i

+
⌦
J[V,dV ] JZV, dV

↵⌘

+ 4(1� t)2
⇣⌦
JZV, dV

↵2
� |Z |2

�
�[V, dV ]

�
�2

+
�
�[JZV, dV ]

�
�2 � |Z |2hV, dV i2

⌘

+ 2
�
|Z |2�(1� t)2

�⇣
|V |2

⇣
hV, dV ihZ , dZi�

⌦
JdZV, JZdV

↵⌘

�
⌦
J[V,dV ] JZV, JdZV

↵⌘
�
.

(1.3)

(See [1, (3.3)], and observe that R4hR|(V,Z ,t) = h1|R(V,Z ,t), and k1(R(V, Z , t)) is
just R4 times the term with the curly bracket in [1, (3.3)]. In the notations of [1],
h1 = limR!1 hR .)

For R < 1, the expression h1|R(V,Z ,t) is smooth 8(V, Z , t) 2 Sp+q . For
R = 1, h1|(V,Z ,t) in (1.2)-(1.3) is smooth for (V, Z , t) 6= (0, 0, 1), but it could be
singular at the pole (0, 0, 1). The question whether or not h1 extends smoothly at
the pole was left open in [1, page 330].

Note that we can rewrite the ball metric (1.1) in Cartesian coordinates
(V 0, Z 0, t 0) = R(V, Z , t) 2 B as

�B |(V 0,Z 0,t 0) =4
�
�dV 0

�
�2+

�
�dZ 0

�
�2 + dt 02

1� R2
+

4
(1�R2)2

⇢
R2dR2+h1|(V 0,Z 0,t 0)

�
, (1.4)

where RdR = hV 0, dV 0i+hZ 0, dZ 0i+t 0dt 0 (cf. [1, (3.1), (3.11), (3.12)]). The ques-
tion is then whether or not the curly bracket in (1.4) admits a continuous extension
to the boundary R = 1 (namely at the pole (0, 0, 1)).

In this paper we address these questions. We prove that h1 does not extend
to the pole, except when the curly bracket in k1 vanishes identically. Using the
coordinates (V, Z) on Sp+q to write h1 =

P
h(z)
i j dzi dz j +

P
h(v)
i j dvi dv j +

P
h(zv)
i j dzi dv j , we will see that, in the non-symmetric case, the coefficients h(z)

i j
do not have a limit at the pole, but remain bounded there, whereas the coefficients
h(v)
i j and h

(zv)
i j extend smoothly to zero at the pole.
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In Section 2 we prove that the first two two terms of the bracket in (1.3) vanish
if and only if the J 2-condition holds, i.e., if and only if S is symmetric [2]. Com-
bined with Proposition 3.1, this implies that k1 = 0 iff the J 2-condition holds. We
then briefly discuss the example of the 7-dimensional non-symmetric Damek-Ricci
space with N the complex Heisenberg group. In this case it is easily proved that the
h(z)
i j do not extend.
In Section 3 we approach the problem using z-valued 1-forms on N and Sp+q .

Let C : N ! Sp+q \ {(0, 0, 1)} be the generalized stereographic projection, given
by C(n) = limt!�1 C(net ), and let�0|(V,Z) = dZ� 1

2 [V, dV ] be the canonical 1-
form on the group N , whose kernel is the horizontal distribution on N . Then h1 =
22 ⌘ |2|2, where 2 = ��1(C�1 ⇤�0), with �(V, Z , t) = �2/[(1 � t)2 + |Z |2].
We obtain an explicit formula for the 1-form2. We discuss the symmetric case and
the 7-dim example in detail. Then we conclude with the general result valid for any
Damek-Ricci space (Theorem 3.7).

ACKNOWLEDGEMENTS. The author would like to thank Aroldo Kaplan for inter-
esting conversations that inspired most of this work. The author also thanks the
referee for useful observations and remarks that improved the first version of this
paper.

2. The vanishing of k1 and the J2-condition

Consider the limit of k1(V, Z , t) as (V, Z , t) ! (0, 0, 1). The term ((1 � t)2 +
|Z |2)�2 blows up, while the curly bracket tends to zero. Obviously, the limit is
either zero or does not exist. We will see that this limit does not exist, and h1 does
not extend to the pole, except when the curly bracket in k1 vanishes identically.

In order to prove this, we have to work with the coordinates (V, Z) on the
sphere Sp+q . Fix orthonormal bases {Ui }

q
i=1 of z and {Vj }

p
j=1 of v, and set Z =P

ziUi , V =
P

v j V j . Then we write k1 in (1.3) as

k1 =
qX

i, j=1
k(z)
i j dzi dz j +

pX

i, j=1
k(v)
i j dvi dv j +

qX

i=1

pX

j=1
k(zv)
i j dzi dv j , (2.1)

and take the limit of the components ki j as (V, Z) ! (0, 0). We can assume t > 0
and t =

p
1� |V |2 � |Z |2. The mixed components, as well as the V -components,

are complicated, in general. However the Z -components only involve the quantity

|V |4
⇣
hZ , dZi2 � |Z |2|dZ |2

⌘
+

�
�[JZV, JdZV ]

�
�2 (2.2)
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i.e., the first two terms in (1.3). For later use we note that, in coordinates, we have

|Z |2|dZ |2 � hZ , dZi2 =
X

i< j

�
zi dz j � z j dzi

�2
, (2.3)

[JZV, JdZV ] =
X

i< j

�
zi dz j � z j dzi

�
[Ji V, J j V ], (2.4)

where Ji ⌘ JUi , with J 2i = �I , Ji J j = �J j Ji (i 6= j) (see [1, page 325]).
The quantity (2.2), divided by ((1 � t)2 + |Z |2)2, is just

P
k(z)
i j dzi dz j (cf.

(1.3) and (2.1)). It will turn out that this is precisely the singular part of k1, namely
the coefficients k(z)

i j do not have a limit at the pole unless k
(z)
i j = 0, whereas the k(v)

i j

and k(zv)
i j tend to zero at the pole. We shall prove this later in a simple example, and

in the next section in the general case.
First, let us prove that the expression (2.2) vanishes if and only if the J 2-

condition holds. We recall here the definition of the J 2-condition (see [2, Defini-
tion 2.10]).
Definition 2.1. Let n = v � z be an H -type Lie algebra. We say that n satisfies the
J 2-condition if for all V in v and all Z , Z 0 in z such that hZ , Z 0i = 0, there exists
Z 00 in z (possibly depending on V , Z and Z 0) such that

JZ JZ 0V = JZ 00V .

In [2, Proposition 4.1 and Theorem 4.5], it is proved that the J 2-condition is equiv-
alent to S being symmetric.

Theorem 2.2. Let n = v � z be an H -type Lie algebra. The following are equiva-
lent:

(i)
�
�[JZV, JZ 0V ]

�
�2 = |V |4

⇣
|Z |2|Z 0|2 � hZ , Z 0i2

⌘
, 8V 2 v, 8Z , Z 0 2 z;

(ii) n satisfies the J 2-condition.

Thus the expression (2.2) vanishes, i.e., k(z)
i j = 0, 8i, j , iff the J 2-condition holds.

Proof. (i) ) (ii). Let Z 0 be orthogonal to Z . Using [JZV, JZ 0V ] = [V, JZ JZ 0V ]
and (i), we have �

�[V, JZ JZ 0V ]
�
�2 = |Z |2|Z 0|2|V |4. (2.5)

Now suppose V 6= 0, and recall the orthogonal direct sum decomposition

v = RV � Jz(V ) � k(V ),

where
Jz(V ) = {JZV : Z 2 z},



930 ROBERTO CAMPORESI

and k(V ) is the orthogonal complement ofRV in ker ad(V ).We decompose JZ JZ 0V
accordingly:

JZ JZ 0V = cV + JZ 00V + W, (2.6)
for some c 2 R, Z 00 2 z, and W 2 k(V ). It follows that

�
�JZ JZ 0V

�
�2 = |Z |2|Z 0|2|V |2 = c2|V |2 + |Z 00|2|V |2 + |W |2.

On the other hand [V, JZ JZ 0V ] = [V, JZ 00V ] = |V |2Z 00, and (2.5) implies

|Z 00|2|V |4 = |Z |2|Z 0|2|V |4.

Comparing the latter two equalities, we obtain c = 0 andW = 0, whence JZ JZ 0V =
JZ 00V . This proves (ii).

(ii)) (i). Assuming (ii), for any V 2 v and any orthogonal vectors Z , Z 0 2 z,
there exists Z 00 2 z such that JZ JZ 0V = JZ 00V .

On the one hand [V, JZ JZ 0V ] = [V, JZ 00V ] = |V |2Z 00, therefore
�
�[JZV, JZ 0V ]

�
�2 =

�
�[V, JZ JZ 0V ]

�
�2 = |Z 00|2|V |4.

On the other hand
�
�JZ JZ 0V

�
�2 =

�
�JZ 00V

�
�2, so |Z |2|Z 0|2|V |2 = |Z 00|2|V |2, and (i)

follows for Z 0 orthogonal to Z .
Finally, decomposing an arbitrary Z 0 2 z as Z 0 = �Z + Z?, with Z? 2 z

orthogonal to Z , we have
�
�[JZV, JZ 0V ]

�
�2 =

�
�[JZV, JZ?V ]

�
�2 = |Z |2|Z?|2|V |4

=
⇣
|Z |2|Z 0|2 � hZ , Z 0i2

⌘
|V |4.

Remark 2.3. This theorem implies that the expression k1 in (1.3) vanishes iff the
J 2-condition holds. Indeed if k1 vanishes then (2.2) vanishes and the J 2-condition
holds. Conversely, if this condition holds, one can prove the vanishing of the re-
maining part of the curly bracket in k1. For instance, using the identity (3.17) below
(which is equivalent to the J 2-condition, see Remark 3.2), one can easily prove the
vanishing of the mixed components k(zv)

i j in k1. In a similar way one proves the
vanishing of the V -components k(v)

i j . We omit the details because this will follow
somewhat more transparently from the approach below using z-valued 1-forms (see
Proposition 3.1 and Remark 3.6).

Now let us prove that the quantity (2.2) does not have a limit at the pole in the
non-symmetric case. We consider a simple example here, and treat the general case
in the next section. Consider the lowest (=7) dimensional non-symmetric Damek-
Ricci space, namely S = N A, where N is the complexified Heisenberg group. Here
q = 2, p = 4, z = R2 and v = R4, with commutations (see [9, page 67])

[V, V 0] = [(a, b, c, d), (a0, b0, c0, d 0)]

= (ab0 � ba0 + dc0 � cd 0, ac0 � ca0 + bd 0 � db0).
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One computes [JZV, JdZV ] = 0, so that by (2.3) and (2.2) we get

qX

i, j=1
k(z)
i j dzi dz j = �

|V |4(z1dz2 � z2dz1)2

((1� t)2 + |Z |2)2
= ��2, (2.7)

where � is the 1-form

�|(V,Z ,t) =
|V |2(z1dz2 � z2dz1)

(1� t)2 + |Z |2
= �

z2|V |2

(1� t)2 + |Z |2
dz1 +

z1|V |2

(1� t)2 + |Z |2
dz2.

Consider the first component of �. Using (1� t)2 + |Z |2 = 2� |V |2 � 2t , we get

lim
(V,Z ,t)!(0,0,1)

z2|V |2

(1� t)2 + |Z |2

= lim
(V,Z)!(0,0)

z2|V |2

2� |V |2 � 2
p
1� |V |2 � |Z |2

= lim
(V,Z)!(0,0)

z2|V |2
⇣
2� |V |2 + 2

p
1� |V |2 � |Z |2

⌘

(2� |V |2)2 � 4(1� |V |2 � |Z |2)

= 4 lim
(V,Z)!(0,0)

z2|V |2

|V |4 + 4|Z |2
.

This is either zero or does not exist. Taking z1 = 0, z2 = |V |2, or z1 = z2 = |V |2,
we get a nonzero value, thus the limit does not exist. Alternatively, set 1 � t =
⇢ cos�, |Z | = ⇢ sin�, and z2 = |Z | sin↵, then |V |2 = ⇢(2 cos� � ⇢) and

z2|V |2

(1� t)2 + |Z |2
= sin↵ sin�(2 cos� � ⇢).

This does not have a limit at the pole, where ⇢ ! 0 but � and ↵ are undefined. The
same conclusion holds for the second component of � and for the coefficients k(z)

i j .
We shall see later that the components k(v)

i j and k
(zv)
i j of k1 tend to zero at the pole.

These results will then be generalized to any Damek-Ricci space.

Remark 2.4. In order to compute the limit lim(V,Z ,t)!(0,0,1) k1(V, Z , t), we could
follow the suggestion in [1, page 330], to use bispherical coordinates (⇢,�,!1,!2),
or equivalently, (|V |, |Z |,!1,!2), on Sp+q ( [1, page 332]). The expression of h1
in these coordinates is given by [1, (4.14)], with R = 1, k1 being the term with the
curly bracket there. Recall that

V = |V |!1, Z = |Z |!2, |Z | = ⇢ sin�, t = ⇢ cos�, |V |2 = 1� ⇢2,
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and !1 2 Sp�1, !2 2 Sq�1 (the unit spheres in v and z, respectively). Let
" = 1 � t . Using [1], (4.14), we can rewrite k1(V, Z , 1 � ") in (1.3) in terms
of (|V |, |Z |, ",!1,!2) as

k1(V, Z , 1�")

=
|Z ||V |4

�
"2+|Z |2

�2

n
A|Z |3+B|Z |2"+C"(|Z |2�"2)+D"2|Z |+E |Z |(|Z |2�"2)

o
,
(2.8)

where A, B,C, D, E are the following differential expressions on Sp�1 ⇥ Sq�1:

A = ��Sq�1 +
�
� ⇥J!2!1, Jd!2!1

⇤ �
�2,

B = 4
⇣

�
⌦
Jd!2!1, d!1

↵
+

⌦
J[J!2!1,d!1] J!2!1, Jd!2!1

↵⌘
,

C = �4
⌦
J[!1,d!1] J!2!1, d!1

↵
,

D = 4
⇣⌦
J!2!1, d!1

↵2
�

�
� [!1, d!1]

�
�2 +

�
� ⇥J!2!1, d!1

⇤ �
�2

⌘
,

E = 2
⇣⌦
J!2 Jd!2!1, d!1

↵
�

⌦
J[!1,d!1] J!2!1, Jd!2!1

↵⌘
,

�Sq�1 = |d!2|2 being the round metric on Sq�1. Now the functions

|Z |4

("2 + |Z |2)2
,

"|Z |3

("2 + |Z |2)2
,

"|Z |(|Z |2 � "2)

("2 + |Z |2)2
,

"2|Z |2

("2 + |Z |2)2
,

|Z |2(|Z |2 � "2)

("2 + |Z |2)2

(2.9)

are bounded in a neighborhood of (Z , ") = (0, 0), and it would seem from (2.8)
that

lim
(V,Z ,")!(0,0,0)

k1(V, Z , 1� ") = 0, (2.10)

so that (1.2) would imply

lim
(V,Z ,t)!(0,0,1)

h1|(V,Z ,t) = |dZ |2. (2.11)

The curly bracket in (1.4) would then extend continuously to the boundary R = 1,
with the value dt 02 + |dZ 0|2 at the pole (0, 0, 1).

Unfortunately, this result is wrong, as seen above in the 7-dim example. The
point is that we cannot use bispherical coordinates to compute the limit in (2.10),
because these coordinates are singular (undefined) precisely at the pole. In (2.8)
we have products of biradial quantities (namely the functions in (2.9) multiplied by
|V |4), that tend to zero at the pole, times the “angular" expressions A, B,C, D, E ,
that are undefined and do not have a limit at the pole. Note that A, B,C, D, E
are not scalar-valued but tensor-valued (they are quadratic in the differentials of
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the angular coordinates !1,!2). By no means can they be regarded as bounded
quantities. Thus we cannot conclude that these products tend to zero and extend
smoothly. For instance in the 7-dim example, let !2 = (cos↵, sin↵) 2 S1, then
z1dz2 � z2dz1 = |Z |2d↵, A = �d↵2, and (2.7) becomes

X

i, j
k(z)
i j dzi dz j = �

|V |4|Z |4

((1� t)2 + |Z |2)2
d↵2.

The scalar quantity multiplying d↵2 tends to zero as (V, Z , t) ! (0, 0, 1). How-
ever, the 1-form d↵ is unbounded around the pole with respect to the Euclidean
norm, being kd↵k = 1/|Z | ! 1 as Z ! 0. In fact, this expression does not ex-
tend smoothly at the pole, since the coefficients k(z)

i j in Cartesian coordinates (z1, z2)
do not have a limit there.

3. The approach by z-valued 1-forms

Let us recall the following geometric interpretation of the differential expression
h1. Consider the stereographic projection C : N ! Sp+q \ {(0, 0, 1)}. This is the
diffeomorphism defined by C(n) = limt!�1 C(net ) 2 @B (see [9, Section 4.6]),
and given explicitly by (V, Z) ! (V 0, Z 0, t 0), where

8
>>>>>>>><

>>>>>>>>:

V 0 =

⇣
1+14 |V |2

⌘
V�JZ V

⇣
1+14 |V |2

⌘2
+|Z |2

Z 0 = 2Z
⇣
1+14 |V |2

⌘2
+|Z |2

t 0 =
�1+

⇣1
4 |V |2

⌘2
+|Z |2

⇣
1+14 |V |2

⌘2
+|Z |2

,

with inverse (
V = 2 (1�t 0)V 0+JZ 0V 0

(1�t 0)2+|Z 0|2

Z = 2Z 0

(1�t 0)2+|Z 0|2
.

Recall the generalized contact structure on the H -type group N . The horizontal
subbundle HN ⇢ T N is spanned by the left-invariant vector fields X such that
Xe 2 v. The bundle HN can be represented as the kernel of the following z-valued
1-form on N :

�0|(V,Z) = dZ � 1
2 [V, dV ] (3.1)

(see [1], p. 329). We define the horizontal distribution HS? on the punctured sphere
S? = Sp+q \ {(0, 0, 1)} to be

HS? = C⇤HN = C⇤ ker�0 = ker(C�1 ⇤�0). (3.2)
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The pull-back C�1 ⇤�0 can be computed by calculating dV , dZ in terms of dV 0,
dZ 0, dt 0 and then substituting in (3.1). The result is (dropping primes):

�
C�1 ⇤�0�|(V,Z ,t)

=
2

((1� t)2 + |Z |2)2

⇢
dZ

⇣
(1� t)2 + |Z |2 � (1� t)|V |2

⌘

+ Z
⇣
(2� |V |2)dt + 2thV, dV i � 2hJZV, dV i

⌘

+
�
|Z |2 � (1� t)2

�
[V, dV ] � 2(1� t)[JZV, dV ] � [JZV, JdZV ]

�
,

(3.3)

for any (V, Z , t) 6= (0, 0, 1) (cf. [1, (3.18)]). Here, of course, hV, dV i+ hZ , dZi+
t dt = 0. The norm squared of this z-valued 1-form on S? is related to h1. Indeed,
by [1, Proposition 3.4] (with h1 = limR!1 hR), we have

�
�C�1 ⇤�0

�
�2|(V,Z ,t) =

�
�(V, Z , t)

�2 h1|(V,Z ,t) (3.4)

for (V, Z , t) 6= (0, 0, 1), where

�(V, Z , t) = �
2

(1� t)2 + |Z |2
. (3.5)

If we could prove that

lim
(V,Z ,t)!(0,0,1)

⇣�
�(V, Z , t)

��1
(C�1 ⇤�0)|(V,Z ,t)

⌘
= dZ |(0,0,1), (3.6)

then (2.11) would follow, being h1 = |��1(C�1 ⇤�0)|2 by (3.4). However, (3.6)
does not hold, in general, i.e., the z-valued 1-form

2 = ��1(C�1 ⇤�0), (3.7)

such that h1 = 22 ⌘ |2|2, does not extend continuously to the pole, in general.
We will actually see that the limit in (3.6) does not exist, except when q = 1.

3.1. The symmetric case

Let S = N A be a symmetric Damek-Ricci space. Then S can be identified with
a noncompact Riemannian symmetric space of rank one X = G/K , by viewing
N A as the solvable component in the Iwasawa decomposition G = N AK of a
noncompact simple Lie group G of real rank one. By suitably scaling the metric, S
is isometric to one of the following hyperbolic spaces: CHn (complex hyperbolic
spaces, q = 1, p = 2(n � 1), n � 2); HHn (quaternionic hyperbolic spaces,
q = 3, p = 4(n � 1), n � 2); OH2 (octonionic hyperbolic plane, q = 7, p = 8).
(See [9, Proposition 27, page 97].)
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The unit sphere Sp+q is a fibre bundle with fibre Sq over a suitable projective
space (the generalized Hopf fibration, see [5]):

Sq ,! Sp+q ! KP p/(q+1), (3.8)

where K = C, H, O for q = 1, 3, 7, respectively, and OP1 ⌘ S8. Explicitly, we
have the fibrations [5]

S1 ,! S2n�1 ! CPn�1 = complex projective n � 1 space,
S3 ,! S4n�1 ! HPn�1 = quaternionic projective n � 1 space,
S7 ,! S15 ! S8.

Let � be the z-valued 1-form on Sp+q given by (cf. [1], (3.14)):

�|(V,Z ,t) = [V, dV ] + td Z � Zdt + 1
|V |2

[JZV, JdZV ]. (3.9)

For q = 1, 3 the bundle (3.8) is principal, and � is a connection 1-form. Thus
the kernel of � defines a p-dimensional distribution (the horizontal subbundle
HT (Sp+q)), with supplementary (vertical) subspace VT (Sp+q) provided by the
fibers of the Hopf fibration. For q = 7 the bundle (3.8) is not principal, but we have
a similar interpretation of � as a connection 1-form. However, in this case, � is
undefined and has no limit at the points V = 0, Z 6= 0 of S15, due to the last term
in (3.9). This term explicitly depends on V (unlike q = 1, 3, see below for details),
and has no limit at

{(0, Z , t) : |Z |2 + t2 = 1, Z 6= 0} ⌘ S7 \ {(0, 0,±1)}.

Here S7 (the unit sphere in z � a) is just the Hopf fiber through the poles (0, 0,±1)
of S15. (We identify z � a ' O ' R8 with the Cayley line L1 = {(0, u) : u 2 O}
in O2 ' R16, corresponding to the south pole of the base space S8 ' {Lm, m 2
O} [ {L1}, see [5].) At the poles the last term in (3.9) tends to zero, and � tends
to ±dZ |(0,0,±1). Nevertheless, we prove in Proposition 3.1 that the norm squared
of � is well defined and smooth on the whole sphere and equals h1 � k1 in (1.2)
(cf. (3.18)). The kernel of �2 is then smooth on S15, and defines the horizontal
distribution HT (S15) (of dimension 8). Of course, at the points x = (0, Z , t), we
have HTx (S15) = v and VTx (S15) � Rx = z � a.

To see that ker�2 agrees with the distribution (3.2) on S?, we need the re-
lationship between � and C�1 ⇤�0. In the Hermitian case of q = 1, we have
v = Cn�1 = R2(n�1), z = ImC = RU1, JU1V = iV = (iV1, . . . , iVn�1),
and we compute [JZV, JdZV ] = 0, so�|(V,Z ,t) = [V, dV ]+ td Z� Zdt is smooth
on Sp+q = S2n�1, and (cf. [1, page 330])

C�1 ⇤�0 = �� (q = 1) (3.10)

(� given by (3.5)), i.e., 2 = � on S?. Thus 2 and ker2 extend continuously to
the whole sphere S2n�1, and (3.6) holds. For q = 3, 7, the relationship between
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C�1 ⇤�0 and � is more complicated. If �0 = (↵1, . . . ,↵q) and � = (!1, . . . ,!q),
one gets (see Remark 3.6)

C�1 ⇤↵i = �
X

j
ri j! j (q = 3, 7) (3.11)

(� given by (3.5)), i.e., 2 = R(�), where R = (ri j ) is a smooth function on S?

(for q = 3) or S15 \ S7 (for q = 7) with values in SO(q). This function does not
have a limit as (V, Z , t) ! (0, 0, 1). We discuss this separately for q = 3 and
q = 7.

q = 3. In the quaternionic case, we have v = Hn�1 = R4(n�1), z = ImH = R3,
and we takeU1 ·U2 = U3 plus permutations (where {U1,U2,U3} is an orthonormal
basis of z), and JZV = Z · V = (Z · V1, . . . , Z · Vn�1). Then J1 J2 = J3 plus
permutations (where Ji = JUi ), and we compute from (2.4)

[JZV, JdZV ] = |V |2(z2dz3 � z3dz2)U1 + |V |2(z3dz1 � z1dz3)U2
+ |V |2(z1dz2 � z2dz1)U3.

Formula (3.9) yields
8
><

>:

!1 = [V, dV ]1 + tdz1 � z1dt + z2dz3 � z3dz2
!2 = [V, dV ]2 + tdz2 � z2dt + z3dz1 � z1dz3
!3 = [V, dV ]3 + tdz3 � z3dt + z1dz2 � z2dz1,

and � is smooth on Sp+q = S4n�1. Using (3.3), one obtains the general formula
(3.24)-(3.25) for the 1-form2. Specializing this formula to our case, we get (3.28),
i.e., 2 = R(�), with

R(V, Z , t) =

0

B
B
B
@

(1�t)2+z21�z
2
2�z

2
3

(1�t)2+|Z |2
2(z1z2�z3(1�t))

(1�t)2+|Z |2
2(z1z3+z2(1�t))

(1�t)2+|Z |2

2(z1z2+z3(1�t))
(1�t)2+|Z |2

(1�t)2+z22�z
2
1�z

2
3

(1�t)2+|Z |2
2(z2z3�z1(1�t))

(1�t)2+|Z |2

2(z1z3�z2(1�t))
(1�t)2+|Z |2

2(z2z3+z1(1�t))
(1�t)2+|Z |2

(1�t)2+z23�z
2
1�z

2
2

(1�t)2+|Z |2

1

C
C
C
A

. (3.12)

It is easy to check that R(V, Z , t) 2 SO(3). Using bispherical coordinates
(|V |, |Z |,!1,!2) and then polar coordinates 1 � t = ⇢ cos�, |Z | = ⇢ sin�, we
see that the entries ri j are bounded around the pole (0, 0, 1) but do not have a limit
there. Thus the 1-form 2 in (3.7) does not extend to the pole, and (3.6) does not
hold.

Nevertheless, from (3.11) or (3.28) we get |C�1 ⇤�0|2 = �2|�|2, i.e.,
22 = �2, so the square of 2 does extend to the pole. Moreover, it follows from
(3.11) that ker2 = ker� on S?, i.e., the horizontal distribution (3.2) coincides with
the horizontal subbundle of the Hopf bundle on S?, and thereby extends continu-
ously to the whole sphere S4n�1.
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q = 7. A similar analysis can be repeated in the octonionic case. The details
are more complicated, due to the non-associativity of the product in v ' O and
z ' Im(O). In particular, the claim made in [1, Example 3, page 326], about the
“multiplication table" for the products Ji J j with i 6= j (where Ji = JUi , {Ui }7i=1
an orthonormal basis of z), is incorrect. (See also Remark 3.3.) Recall that the op-
erators JZ are defined as left (or right) multiplication inO, say JZV = Z · V . Then
Ji J j V = Ui · (Uj · V ) is different from (Ui · Uj ) · V = JUi ·Uj V , in general, and
the products Ji J j do not follow the multiplication table of octonions. We only have
the J 2-condition:

Ji J j V = JZi j (V )V (i 6= j), (3.13)

where v \ {0} 3 V ! Zi j (V ) 2 z are nontrivial functions. (For q = 3, the Zi j are
independent of V , being Zi j (V ) = Ui · Uj , 8V 6= 0.) Using [V, JZV ] = |V |2Z ,
we get from (3.13)

Zi j (V ) = 1
|V |2

[V, Ji J j V ].

Defining the components Zi j (V ) =
P

k Z
k
i j (V )Uk, we have

Zki j (V ) = 1
|V |2

hJi J j V, JkV i. (3.14)

Note that Zii j (V ) = 0 = Z j
i j (V ), and Zki j (V ) = �Z j

ik(V ), so that Zi jk ⌘ Zki j is
totally antisymmetric. By (2.4) we compute

1
|V |2

[JZV, JdZV ] =
X

i< j
(zi dz j�z j dzi )Zi j (V ) =

X

k

X

i< j
(zi dz j�z j dzi )Zki j (V )Uk,

and the connection 1-form � =
P

!kUk in (3.9) has components

!k |(V,Z ,t) = [V, dV ]k + tdzk � zkdt +
X

i< j
(zi dz j � z j dzi )Zki j (V ).

Note that the Zi j , Zki j are actually functions of !1 = V/|V | 2 Sp�1 = S7 (the unit
sphere in v), and they are bounded since by (3.13) we get

|Zi j (V )|2 =
X

k
|Zki j (V )|2 = 1, 8i 6= j, 8V 6= 0.

It follows that lim(V,Z ,t)!(0,0,1) !k |(V,Z ,t) = dzk , but � has no limit at the points
(0, Z , t) 2 S15 with Z 6= 0, although it is obviously bounded there. We shall see in
Proposition 3.1 that �2 is well defined and smooth on S15, with �2 = h1 � k1 in
(1.2) (cf. (3.18)).

Here is a simple algorithm to compute the functions Zi j . Fix a multiplication
table in v ' O, and identify z ' Im(O). Each V 2 v is written as v0U0+

P7
1 v jU j ,

where U0 is the neutral element and Uj (1  j  7) are the imaginary units, with
U2j = �U0. Given i < j , determine k from the table such that Ui ·Uj = ±Uk , and
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let T = ±Jk Ji J j (same sign). Then T ⇤ = T , T 2 = I , and v = v+ � v�, where
v± are the eigenspaces of T with eigenvalues ±1, respectively. Let {a, b, c, d} =
{1, . . . , 7} \ {i, j, k}. Each V 2 v can be written as V = V+ + V�, where V+ =
vaUa + vbUb + vcUc + vdUd 2 v+, and V� = v0U0 + viUi + v jU j + vkUk 2 v�.
Then Zi j (V±) = ⌥Ui ·Uj , but in general

Zi j (V ) = Zki j (V )Uk + Zai j (V )Ua + Zbi j (V )Ub + Zci j (V )Uc + Zdi j (V )Ud ,

where by (3.14) we compute

Zki j (V ) = ±
|V�|2 � |V+|2

|V |2
,

Zli j (V ) = ±
2

|V |2
⌦
JkV�, JlV+

↵
(l = a, b, c, d)

(same sign as in Ui · Uj = ±Uk). It is easy to see from these formulas that the
functions !1 ! Zmi j (!1) are spherical harmonics of degree 2 on S

p�1.
Again the general formula (3.24)-(3.25) for the 1-form 2 yields (3.28), i.e.,

2 = R(�), whereR = (ri j ) is given as follows:

rii (V, Z , t) =
(1� t)2 + z2i �

P
j 6=i z

2
j

(1� t)2 + |Z |2
(1  i  7), (3.15)

ri j (V, Z , t) =
2

(1� t)2 + |Z |2

n
zi z j + (1� t)

X

k 6=i, j
zk Z

j
ik(V )

o

=
2

(1� t)2 + |Z |2

n
zi z j � (1� t)

⌦
Z , Zi j (V )

↵o
(i 6= j),

(3.16)

where we used the identities Z j
ik(V ) = �Zki j (V ) to write

X

k
zk Z

j
ik(V ) = �

X

k
zk Zki j (V ) = �hZ , Zi j (V )i.

The non-diagonal entries ri j and r ji are related by a sign change in the second
term of the curly bracket in (3.16) (as in (3.12)). It then follows that R(V, Z , t) 2
SO(7), and the entries ri j are bounded around the pole (0, 0, 1) but do not have a
limit there. Thus 2 does not extend to the pole but its square does, being 22 = �2

with�2 smooth on S15 (cf. (3.18)). Again ker2 = ker�2 on S? = S15\{(0, 0, 1)},
and the horizontal distribution (3.2) extends continuously to the whole sphere S15.
Note that 2 is smooth on S? (by (3.25)), so the singularities of R and � at the
points (0, Z , t), Z 6= 0 (due to the functions Zi j ) cancel out in 2 = R(�).

We can now easily prove that k1 = 0 in (1.3).
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Proposition 3.1. Let n satisfy the J 2-condition. Then in (1.2) we have h1 � k1 =
�2, so since h1 = 22 = �2, we get k1 = 0.

Proof. From (3.9) we have

�2|(V,Z ,t) =
�
�[V, dV ] + td Z � Zdt

�
�2 +

�
�|V |�2[JZV, JdZV ]

�
�2

+ 2
⌦
[V, dV ], 1

|V |2
[JZV, JdZV ]

↵
+ 2

⌦
td Z � Zdt, 1

|V |2
[JZV, JdZV ]

↵
.

The last term in this expression vanishes, as easily seen. The second term equals�
|Z |2|dZ |2 � hZ , dZi2

�
(by Theorem 2.2). Let us prove that

⌦
[V, V 0], 1

|V |2
[JZV, JZ 0V ]

↵
= hV, V 0ihZ , Z 0i � hJZ 0V, JZV 0i, (3.17)

for all V, V 0 2 v, V 6= 0, and Z , Z 0 2 z. This will establish that �2 = h1 � k1 in
(1.2), i.e.,

�2|(V,Z ,t) =
�
�[V, dV ] + td Z � Zdt

�
�2 + |Z |2|dZ |2 � hZ , dZi2

+ 2
⇣
hV, dV ihZ , dZi �

⌦
JdZV, JZdV

↵⌘
, 8(V,Z ,t)2 Sp+q .

(3.18)

First let Z 0 2 z with hZ , Z 0i = 0. Then, by the J 2-condition, there is Z 00 2 z such
that JZ JZ 0V = JZ 00V . Therefore,

[JZV, JZ 0V ] = [V, JZ JZ 0V ] = [V, JZ 00V ] = |V |2Z 00, (3.19)

and

�
⌦
JZ 0V, JZV 0↵ =

⌦
V 0, JZ JZ 0V

↵
=

⌦
V 0, JZ 00V

↵

=
⌦
Z 00, [V, V 0]

↵
.

Thus (3.17) follows for Z 0 orthogonal to Z .
For an arbitrary Z 0 2 z, we decompose Z 0 = �Z+Z?, with Z? 2 z orthogonal

to Z . Let Z 00 be determined by JZ JZ?V = JZ 00V . Then we have

[JZV, JZ 0V ] = [JZV, JZ?V ] = |V |2Z 00,

where we used (3.19) with Z? in place of Z 0. The left-hand side of (3.17) is then
equal to

⌦
Z 00, [V, V 0]

↵
. The right-hand side of (3.17) equals

hV, V 0i�|Z |2 �
⌦
J�ZV, JZV 0↵ �

⌦
JZ?V, JZV 0↵

=
⌦
JZ JZ?V, V 0↵ =

⌦
JZ 00V, V 0↵ =

⌦
Z 00, [V, V 0]

↵
.

This proves the proposition.
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Remark 3.2. If n = v � z is an H -type Lie algebra such that (3.17) holds, then
the J 2-condition holds. Indeed let hZ , Z 0i = 0, and decompose JZ JZ 0V as in (2.6).
Then the left-hand side of (3.17) equals h[V, V 0], Z 00i, and we get hJZ 00V, V 0i =
hJZ JZ 0V, V 0i, for all V, V 0 2 v. Thus JZ JZ 0V = JZ 00V , and the J 2-condition
holds. This condition is then equivalent to (3.17).
Remark 3.3. Consider the z-valued 1-form

8|(V,Z ,t) = [V, dV ] + td Z � Zdt +
X

i< j
(zi dz j � z j dzi )Ui ·Uj .

This is smooth on Sp+q and it reduces to � for q = 1, 3, but for q = 7, 8 6= �. In
this case, the component 1-forms �k of 8 =

P
�kUk are given by

�k |(V,Z ,t) = [V, dV ]k + tdzk � zkdt +
X

i< j
(zi dz j � z j dzi )Ci jk,

where Ci jk are the structure constants defined by Ui · Uj =
P7

k=1 Ci jk Uk from
any given multiplication table in O. Note that Ci jk is totally antisymmetric. It is
natural to ask whether82 = �2 for q = 7. Formula (3.15) in [1] would then apply,
with the component 1-forms !1, . . . ,!7 being just the �k . Unfortunately this is not
true, i.e., 82 does not agree with �2 on S15, as easily seen. Thus there is no simple
formula for the vertical part of the metric h1=22=�2 in terms of the 1-forms �k .

To summarize, in the symmetric case the 1-form2 does not extend to the pole
(0, 0, 1) of Sp+q for q = 3, 7, but its square does, together with the distribution.
This can be explained by the generalized Hopf fibration.

The horizontal-vertical distributions on the unit sphere Sp+q can also be de-
scribed as follows. Recall that Sp+q is a homogeneous space K/M , where K is
the subgroup of the isometry group of S = N A that fixes the origin, and M is the
group of orthogonal automorphisms of N A, namely the automorphisms of S that
preserve the inner product on the Lie algebra s. The origin eM in K/M corre-
sponds to the north pole (0, 0, 1), and the tangent space TeM Sp+q decomposes as
v � z. The horizontal subbundle is then the assignment kM ! k⇤v, the vertical
one is kM ! k⇤z. If we use Euclidean polar coordinates on the unit ball B in s to
write b = R! 2 B, with R > 0 and ! = kM 2 Sp+q , then we have the orthogo-
nal splitting of the tangent space TbB = T (1)

b � T (2)
b � Rb, where T (1)

b = k⇤v and
T (2)
b = k⇤z. See [2, Theorem 7.10], for an explicit description of T (1)

b and T (2)
b �Rb

in the coordinates ! = (V, Z , t) 2 Sp+q .

3.2. The general case

In the non-symmetric case, the situation is as follows. The unit sphere Sp+q is
no longer a fibration with fiber Sq , and the horizontal distribution (3.2) does not
extend smoothly, in general. For instance for q even, so that p + q is even, there
are no smooth distributions on Sp+q of dimension k (smooth fields of k-planes)
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for 1  k  p + q � 1 ( [10, Theorem 27.18]). It was proved recently that the
horizontal distribution extends iff the J 2-condition holds, iff S is symmetric ( [8,
Proposition 4.3]).

The distribution (3.2) on S? = Sp+q \ {(0, 0, 1)} is just the kernel of the z-
valued 1-form 2 in (3.7) (� in (3.5) being smooth and non-vanishing on S?). This
distribution can also be described as the kernel of the rank-2 tensor h1 = 22.
Indeed, recall that

ker h1 = {X 2 T S? : h1(X,Y ) = 0, 8Y 2 T S?}.

If 2 = (✓1, . . . , ✓q), then 22 = ✓21 + · · · + ✓2q , and ker2 =
T

j ker ✓ j ✓ ker22.
Conversely, if X 2 ker h1 = ker22, then taking Y = X in the definition above
gives

0 = h1(X, X) = 2(X)2 = ✓1(X)2 + · · · + ✓q(X)2,

whence ✓ j (X) = 0,8 j , i.e., X 2 ker2. As mentioned before, h1 does not ex-
tend to the pole (0, 0, 1) in the non-symmetric case, in agreement with the non-
extendability of the distribution. We saw this in the 7-dimensional example, to
which we now return.

3.2.1. The 7-dimensional example

We want to write down the 1-form 2 more explicitly, and show it does not extend.
Let U1,U2 be an orthonormal basis of z, and Ji = JUi , i = 1, 2, as usual. If
Z = (z1, z2) 2 z and V = (v1, v2, v3, v4) 2 v, we have

8
><

>:

[V, dV ]1 = hJ1V, dV i = v1dv2 � v2dv1 + v4dv3 � v3dv4
[V, dV ]2 = hJ2V, dV i = v1dv3 � v3dv1 + v2dv4 � v4dv2
hJ1 J2V, dV i = v4dv1 � v1dv4 + v2dv3 � v3dv2,

and we compute [JZV, JdZV ] = 0,

[JZV, dV ] = �hV, dV iZ + hJ1 J2V, dV i(z2U1 � z1U2).

By (3.3), we obtain the following formula for the 1-form 2 in (3.7):

2|(V,Z ,t) = [V, dV ] + td Z � Zdt +
2(z2U1 � z1U2)
(1� t)2 + |Z |2

⇥

⇥

⇢
z1dz2 � z2dz1 + z1[V, dV ]2 � z2[V, dV ]1 + (1� t)hJ1 J2V, dV i

�
.

(3.20)

Letting 2 = (✓1, ✓2), we get the following 1-forms on S6 \ {(0, 0, 1)}:
8
>>>>><

>>>>>:

✓1|(V,Z ,t) = [V, dV ]1 + tdz1 � z1dt + 2z2
(1�t)2+|Z |2

⇥
n
z1dz2 � z2dz1 + z1[V, dV ]2 � z2[V, dV ]1 + (1� t)hJ1 J2V, dV i

o

✓2|(V,Z ,t) = [V, dV ]2 + t dz2 � z2dt � 2z1
(1�t)2+|Z |2

⇥
n
z1dz2 � z2dz1 + z1[V, dV ]2 � z2[V, dV ]1 + (1� t)hJ1 J2V, dV i

o
.
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We can now prove that these 1-forms do not extend to the pole, the problem being
due to the coefficients of the dz j .

Theorem 3.4. Let S = N A be the non-symmetric Damek-Ricci space of dimension
7 with p = 4, q = 2, and N the complexified Heisenberg group. Then the 1-form2,
given by (3.20), does not extend to the pole (0, 0, 1). More precisely, the coefficients
of the dz j do not have a limit at the pole, but remain bounded there, whereas the
coefficients of the dv j tend to zero at the pole.

Proof. Consider the coefficients of the dz j in the term with the curly bracket in
(3.20), namely the functions

z1z2
(1� t)2 + |Z |2

,
z21

(1� t)2 + |Z |2
,

z22
(1� t)2 + |Z |2

. (3.21)

These functions do not have a limit at the pole. For instance, we get

lim
(V,Z)!(0,0)

z1z2
(1� t)2 + |Z |2

= lim
(V,Z)!(0,0)

z1z2
2� |V |2 � 2

p
1� |V |2 � |Z |2

= lim
(V,Z)!(0,0)

z1z2
⇣
2� |V |2 + 2

p
1� |V |2 � |Z |2

⌘

(2� |V |2)2 � 4(1� |V |2 � |Z |2)

= 4 lim
(V,Z)!(0,0)

z1z2
|V |4 + 4|Z |2

.

This is either zero or does not exist. Taking z1 = z2 = |V |2 we get a nonzero
value, thus the limit does not exist. Alternatively, use bispherical coordinates
(|V |, |Z |,!1,!2) on S6, defined by

V =|V |!1, !1=(a1, a2, a3, a4) 2 S3, Z=|Z |!2, !2=(cos↵, sin↵) 2 S1.

Then
z1z2

(1� t)2 + |Z |2
=

|Z |2

(1� t)2 + |Z |2
sin↵ cos↵.

Now take polar coordinates 1 � t = ⇢ cos�, |Z | = ⇢ sin�, then ⇢ ! 0 when
(V, Z , t) ! (0, 0, 1), while �,↵ are undefined at the pole. The first function in
(3.21) reduces to (sin�)2 sin↵ cos↵, so the limit does not exist. However, this
function remains bounded. A similar analysis can be repeated for the other func-
tions in (3.21): they do not have a limit but remain bounded around the pole.

Now look at the coefficients of the dv j . Consider, for instance, the first com-
ponent ✓1 of 2. The coefficient of dv1 in the term with the curly bracket is

f (V, Z , t) =
2z2

(1� t)2 + |Z |2

n
� z1v3 + z2v2 + (1� t)v4

o
.
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It is easy to see that this tends to zero at the pole. Indeed, in bispherical coordinates,
it reads

f (V, Z , t) =
2|Z | sin↵

(1� t)2 + |Z |2

n
|Z ||V |(�a3 cos↵ + a2 sin↵) + (1� t)|V |a4

o
.

Now take polar coordinates 1� t = ⇢ cos�, |Z | = ⇢ sin�, then

|V |2 = 1� t2 � |Z |2 = (1� t)(1+ t) � |Z |2

= ⇢(2 cos� � ⇢).

The range of (⇢,�) is 0  ⇢  2 cos�, 0  �  ⇡/2, and corresponds to the
semicircle t2 + |Z |2  1, 0  |Z |  1 in the (t, |Z |) plane. In this region we have
0  2 cos� � ⇢  2. Now when (V, Z , t) ! (0, 0, 1), ⇢ ! 0, while �,↵, a j are
undefined in the limit. We get

f (V,Z ,t)=
2⇢ sin� sin↵

⇢2
⇢3/2

p
2 cos��⇢

n
sin�(�a3 cos↵+a2 sin↵)+a4 cos�

o
.

This tends to zero as ⇢1/2 when ⇢ ! 0, the remaining expression being bounded. A
similar analysis shows that the coefficients of the dv j in the curly bracket in (3.20)
extend to zero at the pole. The remaining coefficients of the dv j in (3.20) obviously
tend to zero at the pole.

Using (3.20), we can compute the square of 2. The result can be written as
follows:

22|(V,Z ,t)

=
�
�[V, dV ]+td Z�Zdt

�
�2+

�
z1dz2�z2dz1+ hJ1 J2V, dV i

�2
� ✓2|(V,Z ,t),

(3.22)

where ✓ is the 1-form

✓ |(V,Z ,t) =
1

(1� t)2 + |Z |2

✓
|V |2 (z1dz2 � z2dz1)

+ 2(1�t)
�
z1[V, dV ]2� z2[V, dV ]1

�
�

�
|Z |2�(1� t)2

�
hJ1 J2V, dV i

◆

⌘ ( f1 dz1 + f2 dz2) + (g1 dv1 + g2 dv2 + g3 dv3 + g4 dv4) ⌘ � + � .

Formula (3.22) for22 agrees with the known formula for h1 (= limR!1 hR , see [1,
(3.16)]), in agreement with (3.4)-(3.7). The precise identification of k1 in (1.2)-(1.3)
is:

k1(V, Z , t) = hJ1 J2V, dV i2 � ✓2|(V,Z ,t). (3.23)

The 1-forms ✓,� do not extend to the pole, whereas � extends to zero there. Indeed,
the functions f1, f2 do not have a limit (but remain bounded), whereas the functions
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g j , 1  j  4, tend to zero as (V, Z , t) ! (0, 0, 1). The proof is the same as
above: use bispherical coordinates followed by polar coordinates for 1 � t , |Z |.
We can then complete the analysis of the differential expression k1 as (V, Z , t) !
(0, 0, 1). Since

✓2 =
2X

i, j=1
fi f j dzi dz j +

4X

i, j=1
gi g j dvi dv j + 2

2X

i=1

4X

j=1
fi g j dzi dv j

= �2 + � 2 + 2�� ,

we get, comparing (3.23) with (2.1), k(z)
i j = � fi f j , k(zv)

i j = �2 fi g j , and

X
k(v)
i j dvi dv j = �

X
gi g jdvi dv j + hJ1 J2V, dV i2.

Therefore, as (V, Z , t) ! (0, 0, 1), the coefficients k(z)
i j do not have a limit (as we

already know), whereas the k(v)
i j tend to zero, as well as the k

(zv)
i j (since g j ! 0 and

the fi are bounded around the pole).
As regards the horizontal distribution ker h1, this is smooth on S? = S6 \

{(0, 0, 1)}, with dimension p = 4. In principle, it could extend smoothly on S6, but
it would have to change dimension at the pole. Indeed on S6 there are no continuous
k-dimensional distributions (continuous fields of k-planes) for 1  k  5 ([10,
Theorem 27.18]). For k = 1, this is the well known result that even spheres do not
admit continuous nowhere vanishing vector fields, or 1-forms by duality. However,
ker h1 can not extend smoothly on S6, since h1 = 22 is not smooth at the pole

Again note that, in bispherical coordinates, z1dz2 � z2dz1 = |Z |2d↵, and if
we take the limit of 2 in these coordinates we seem to get the result (3.6), i.e., that
2 extends to the pole. This proof would be wrong for the same reasons discussed
before (Remark 2.4).

3.2.2. The 1-form 2 in the general case

In order to generalize the above calculations, we examine in more detail the 1-form
2 in (3.7). We would like to write it in a more explicit form, analogous to (3.20).

Theorem 3.5. Let S be any Damek-Ricci space. Fix an orthonormal basis {Ui }
q
i=1

of z, and set Z =
P

ziUi , Ji ⌘ JUi . Then the 1-form 2 in (3.7) can be written as

2|(V,Z ,t) =[V, dV ] + td Z � Zdt +
1

(1� t)2 + |Z |2

X

i< j

⇢
2
�
z jUi � ziU j

�

⇥
⇣
zi dz j � z j dzi + zi [V, dV ] j � z j [V, dV ]i + (1� t)hJi J j V, dV i

⌘

+ (zi dz j � z j dzi )[Ji V, J j V ]

�
. (3.24)
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Proof. We insert the quantity 0 = �2(hV, dV i+hZ , dZi+tdt) in the curly bracket
in (3.3), and use the identity

(1� t)2 + |Z |2 � (1� t)|V |2 = 2(t2 + |Z |2) � t (2� |V |2),

to get, after some algebra,

2|(V,Z ,t) = [V, dV ] + td Z � Zdt +
1

(1� t)2 + |Z |2

⇢
2
⇣
hZ , dZiZ � |Z |2dZ

⌘

+ 2
⇣
Z
⌦
JZV, dV

↵
�|Z |2[V, dV ]

⌘
+2(1�t)

⇣
ZhV, dV i+[JZV, dV ]

⌘

+ [JZV, JdZV ]

�
. (3.25)

The following identities are easily proved:

hZ , dZiZ � |Z |2dZ =
X

i< j

�
z jUi � ziU j

��
zi dz j � z j dzi

�
,

Z
⌦
JZV, dV

↵
� |Z |2[V, dV ] =

X

i< j

�
z jUi � ziU j

��
zi [V, dV ] j � z j [V, dV ]i

�
,

ZhV, dV i + [JZV, dV ] =
X

i< j

�
z jUi � ziU j

�
hJi J j V, dV i.

Using these and (2.4) in (3.25), gives (3.24).

Remark 3.6. For q = 1, the curly bracket in (3.25) vanishes, and we get back
(3.10). In the non-symmetric example of q = 2, the last term in the curly bracket of
(3.25) vanishes, and we obtain formula (3.20). In the symmetric case of q = 3, 7,
we use the J 2-condition (3.13) to write 2 in (3.24) as

2 = � + 3, (3.26)

where � = (!1, . . . ,!q) is the connection 1-form (3.9), and 3 is the 1-form

3|(V,Z ,t)

=
2

(1� t)2 + |Z |2

X

i< j

⇢
�
z jUi � ziU j

�
⇥

⇥
⇣
zi dz j � z j dzi + zi [V, dV ] j � z j [V, dV ]i + (1� t)hJZi j (V )V, dV i

⌘

+
�
|V |2 � (1� t)

�
(zi dz j � z j dzi )Zi j (V )

�
.

(3.27)

Using (3.26)-(3.27), we can easily rewrite 2 = (✓1, . . . , ✓q) in the form

2 = R(�), i.e., ✓i =
X

j
ri j! j , (3.28)
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whereR = (ri j ) is given respectively by (3.12) and (3.15)-(3.16). Thus 22 = �2,
and 3 = R(�) � � satisfies h3 + 2�,3i = 0. We conclude that although 2 and
3 do not extend to the pole (0, 0, 1), 22 does, as already discussed.

We can now repeat a similar analysis as was done before in the 7-dimensional
example. We obtain the following result:

Theorem 3.7. Let S = N A be any Damek-Ricci space:

1) The z-valued 1-form 2, defined in (3.7) and given by (3.24), does not extend
to the pole (0, 0, 1), except for q = 1 (Hermitian symmetric case). More
precisely, the coefficients of the dz j in 2 do not have a limit at the pole for
q > 1, but remain bounded there, whereas the coefficients of the dv j tend to
zero at the pole;

2) The differential expression h1 = 22 in (1.2)-(1.3) does not extend to the
pole, unless S is symmetric. More precisely, the differential expression k1
in (1.3) vanishes identically in the symmetric case, but it is nonzero for S non-
symmetric. In this case, writing k1 in the form (2.1), the metric coefficients
k(z)
i j do not have a limit as (V, Z , t) ! (0, 0, 1), but remain bounded, whereas
the coefficients k(v)

i j and k(zv)
i j tend to zero at the pole;

3) The horizontal distribution ker2 = ker h1 on Sp+q \ {(0, 0, 1)} does not ex-
tend smoothly to the pole unless S is symmetric.

Proof. Let 2 = (✓1, . . . , ✓q) =
P

✓iUi . From (3.24) we get, for 1  i  q,

✓i |(V,Z ,t) = [V, dV ]i + tdzi�zi dt +
1

(1� t)2 + |Z |2
⇥

⇥

⇢
2
X

j 6=i
z j

⇣
zi dz j�z j dzi+zi [V,dV ] j�z j [V, dV ]i+(1�t)hJi J j V, dV i

⌘

+
X

j<k
(z j dzk � zkdz j )hJi J j V, JkV i

�
.

(3.29)

Consider the coefficients of the differentials dzl for l = i and l = j 6= i in the term
with the curly bracket in (3.29). They involve the functions

z2j
(1� t)2 + |Z |2

,
zi z j

(1� t)2 + |Z |2
,

zkhJi J j V, JkV i

(1� t)2 + |Z |2
. (3.30)

These functions do not have a limit at the pole. Indeed in bispherical coordinates
V = |V |!1, Z = |Z |!2, where !1 2 Sp�1, !2 2 Sq�1, we have, e.g.,

zi z j
(1� t)2 + |Z |2

=
|Z |2

(1� t)2 + |Z |2
(!2)i (!2) j .
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Letting 1 � t = ⇢ cos�, |Z | = ⇢ sin�, then ⇢ ! 0 when (V, Z , t) ! (0, 0, 1),
and the functions above do not have a limit. In a similar way we get, being |V |2 =
⇢(2 cos� � ⇢),

zkhJi J j V, JkV i

(1� t)2 + |Z |2
=

|Z ||V |2

(1� t)2 + |Z |2
(!2)khJi J j!1, Jk!1i

= sin�(2 cos� � ⇢)(!2)khJi J j!1, Jk!1i,

which does not have a limit when ⇢ ! 0. Notice, however, that these functions
remain bounded around the pole.

As regards the coefficients of the dvl in the curly bracket in (3.29), they are
generated by the 1-forms

zi z j [V, dV ] j
(1� t)2 + |Z |2

,
z2j [V, dV ]i

(1� t)2 + |Z |2
,

z j (1� t)hJi J j V, dV i

(1� t)2 + |Z |2
, (3.31)

and tend to zero at the pole. Indeed, the terms [V, dV ] j and hJi J j V, dV i are linear
expressions in the coordinates vk and the differentials dvl , for instance, we have

[V, dV ] j =
pX

k,l=1
a( j)
kl vkdvl (1  j  q),

for suitable constants a( j)
kl . Using again bispherical coordinates and then polar co-

ordinates for (1� t, |Z |), we get, e.g.,

zi z j [V, dV ] j
(1� t)2 + |Z |2

=
|Z |2|V |

(1� t)2 + |Z |2
(!2)i (!2) j

X

k,l
a( j)
kl (!1)kdvl

=
p

⇢
p
2 cos� � ⇢ (sin�)2(!2)i (!2) j

X

k,l
a( j)
kl (!1)kdvl .

The coefficients of the dvl in this formula go to zero as
p

⇢ when ⇢ ! 0, the remain-
ing expressions being bounded. The same result holds for the other terms in (3.31).

Thus 2 does not extend smoothly on Sp+q unless q = 1 (in which case the
curly bracket in (3.29) vanishes). Its square does not extend either, except in the
symmetric case, and the same holds for the differential expression h1 in (1.2), being

h1 = 22 = ✓21 + · · · + ✓2q .

Indeed, in the symmetric case the quantity k1 in (1.3) vanishes identically (Propo-
sition 3.1), and h1 = 22 = �2 extends to the pole.

In the non-symmetric case k1 is nonzero, indeed the expression (2.2) vanishes
iff the J 2-condition holds (Theorem 2.2). By writing k1 in the form (2.1), and
computing the square of 2 from (3.29), we see that the coefficients k(z)

i j involve
products of the functions in (3.30) (or products of those functions and t), the k(v)

i j
are generated by products of the 1-forms in (3.31) (or products of those 1-forms
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and [V, dV ]i ), and the k(zv)
i j arise from products of the functions in (3.30) and the 1-

forms in (3.31) (or those in (3.30) and [V, dV ]i , or those in (3.31) and t). Therefore,
the coefficients k(z)

i j do not have a limit as (V, Z , t) ! (0, 0, 1), but remain bounded
there, whereas the coefficients k(v)

i j and k(zv)
i j tend to zero at the pole. Finally, the

horizontal distribution ker2 = ker h1 on S? does not extend smoothly to Sp+q in
the non-symmetric case, since 22 = h1 is not smooth at the pole.

As a final remark, we record the following formula for h1, that generalizes
(3.22) to any Damek-Ricci space.

Proposition 3.8. The differential expression h1 in (1.2)-(1.3) can be written (in the
notations of Theorem (3.5)) as

h1|(V,Z ,t) =
�
�[V, dV ] + td Z � Zdt

�
�2 +

X

i< j

�
zi dz j � z j dzi + hJi J j V, dV i

�2

+
1

((1� t)2 + |Z |2)2

⇢ �
�[JZV, JdZV ]

�
�2 + 4(1� t)

⌦
[JZV, JdZV ], [JZV, dV ]

↵

� 2
�
|Z |2 � (1� t)2

� ⌦
[JZV, JdZV ], [V, dV ]

↵
(3.32)

�
X

i< j

✓
|V |2

�
zi dz j � z j dzi

�
+ 2(1� t)

�
zi [V, dV ] j � z j [V, dV ]i

�

�
�
|Z |2 � (1� t)2

�
hJi J j V, dV i

◆2

� 4(1� t)2
X

i< j<k

⇣
zi hJ j JkV, dV i + z j hJk Ji V, dV i + zkhJi J j V, dV i

⌘2�
.

The quantity k1(V, Z , t) in (1.3) is then
P

i< j hJi J j V, dV i2 plus the term with the
curly bracket in (3.32) (this generalizes (3.23)).

Proof. We use the identities in [1, page 325 and top page 326], in (1.2)-(1.3).
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