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The metric at infinity on Damek-Ricci spaces

ROBERTO CAMPORESI

Abstract. Let S = N A be a Damek-Ricci space, identified with the unit ball
B in s via the Cayley transform. Let SPt9 = 3B be the unit sphere in s,
p = dimv, ¢ = dim 3. The metric in the ball model was computed in [1] both
in Euclidean (or geodesic) polar coordinates and in Cartesian coordinates on B.
The induced metric on the Euclidean sphere S(R) of radius R is the sum of a
constant curvature term, plus a correction term proportional to /|, where A is a
suitable differential expression which is smooth on S(R) for R < 1, but becomes
(possibly) singular on the unit sphere at the pole (0,0, 1). It has a simple geo-
metric interpretation, namely 7| = |®|2, where O is, up to a conformal factor,
the pull-back of the canonical 1-form on the group N (defining the horizontal
distribution on N) by the generalized stereographic projection. In the symmet-
ric case hj, as well as the transported distribution on S” +q \ {(0, 0, 1)}, have a
smooth extension to the whole sphere. This can be interpreted by the Hopf fi-
bration of SPT9. In the general case no such structure is allowed on the unit
sphere, and the question was left open in [1] whether or not /| extends smoothly
at the pole. In this paper we prove that 4| does not extend, except in the sym-
metric case. More precisely, writing /1 in the coordinates (V, Z) on SP14 as

hy = Y0 dzidzj+ 3 k(Y dvidv+ Y03 dz; dvj, we prove that, in the
non-symmetric case, the coefficients hg) do not have a limit at the pole, but re-

1t and n3”

main bounded there, whereas the coefficients extend smoothly at

the pole. In order to do this, we obtain an explicit formula for the 1-form © valid
for any Damek-Ricci space. From this formula we deduce that ® does not extend
to the pole, except for ¢ = 1 (Hermitian symmetric case). The square of ® and
the distribution ker ® do not extend, unless S is symmetric. Indeed, we prove that
the singular part of 41 vanishes identically if and only if the J 2_condition holds.

Mathematics Subject Classification (2010): 22E25 (primary); 43A85, 53C30
(secondary).

1. Introduction

Let S = N A be a Damek-Ricci space, i.e., the semidirect product of a (connected
and simply connected) nilpotent Lie group N of Heisenberg type [7] and the one-
dimensional Lie group A = R™ acting on N by anisotropic dilations. When §
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is equipped with a suitable left-invariant Riemannian metric yg, it becomes a (non-
compact, simply connected) homogeneous harmonic Riemannian space [3,4]. Con-
versely, every such space is a Damek-Ricci space if we exclude R" and the “degen-
erate” case of real hyperbolic spaces (see [6, Corollary 1.2]). We take the basic
notation from [9], to which we refer for a nice introduction to the geometry and
harmonic analysis on Damek-Ricci spaces.

We use the ball model B of S, namely we identify S with the unit ball B in the
Lie algebra s via the Cayley transform C : NA — B [2,9],

¢ 2 2 2 2
S=NAZB={((V,Z,t)es: R2=|V2+|Z>+* <1}.

Heres =n®a =03 ® a, where a >~ R, 3 is the center of n and v its orthogonal
complement in n. We denote by (-, -) the inner product on s, and by |-| the associated
norm. For any Z € 3 we have the linear map Jz : v — v defined by

(JZV, VY =(Z,[V,V']), VV,V'eo.

The Lie algebran = v@j3 of N is a two-step real nilpotent Lie algebra of Heisenberg
type (or H-type), i.e., the map Jz satisfies

JZ =71, VZ €3,

where I denotes the identity mapping. This implies that the map Z — Jz extends
to a representation of the real Clifford algebra CI(3) on v. This procedure can be
reversed and yields a general method for constructing H -type Lie algebras [7].

We let p = dimb, ¢ = dim 3, and let SP*¢ be the unit sphere in s:

SP =08 ={((V.Z.es: [V +|ZP +* =1}

Let ys be the left-invariant Riemannian metric on S given by [1], (1.1). The trans-
ported metric yp = C -1 *(ys) was computed in [1, Theorem 3.1], in Euclidean
polar coordinates (R, (V, Z, t)) € [0, 1) x §PT4_Itis given by

4dR?

m + VS(R)> (1.1)

VB =

where the induced metric on the Euclidean sphere S(R) of radius R < 1 is
4R?

1 — R?

Vs IRV, Z,n = vsr+a|l(v,z.n + hilRwv,Z.0)-

4
(1—R?)?

Here ygp+q is the round metric on SP79, and h is the following differential expres-
sion on SP14\ {(0,0, 1)}:

hlw.z.n = |[V,dV]+tdZ — Zdt|* + |Z21dZ]* = (Z,dZ)?
+2((V. dVNZ.dZ) = (JazV. JzaV)) + ki (V. Z,1), (12)
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where

(V. Z.1) = {|V|4<(Z, dz)? — |Z|2|dZ|2)

(1 =02 +1Z*)?
+ |12V, Jaz V1)
a1 — t)(|V|2(<JZV,dV>(Z,dZ) - |Z|2(szv,dv))

+ <][Jz v.avidzV, Jaz V))

—40 =0 (122 = 1 =0?) (UzV.av)v.av)
(13)
+ <J[V,dV]J2V, dV))

+4(1 =02 ((JzV.av P = 1zP|v.av]?
+ |z, avifF = 1z, av)?)

+2(1212 = = D) IVR((V. dVNZ, dZ)~(Jaz V. JzdV))
—{Jv.anidzV, Jaz V))}.

(See [1, (3.3)], and observe that R4hR|(V,Z,t) = hilrv,z.),and k1 (R(V, Z, 1)) is
just R* times the term with the curly bracket in [1, (3.3)]. In the notations of [1],
hi =limg_1 hg.)

For R < 1, the expression h|g(v.z.r) is smooth V(V, Z,t) € SP*4. For
R =1, hi|v,z, in (1.2)-(1.3) is smooth for (V, Z, t) # (0,0, 1), but it could be
singular at the pole (0, 0, 1). The question whether or not /4 extends smoothly at
the pole was left open in [1, page 330].

Note that we can rewrite the ball metric (1.1) in Cartesian coordinates
(V',Z',t)=R(V,Z,t) € Bas

av' )P+ |dz' )P + a4
- R2 TR

YBl(v', 2.1y = {deR2+h1 |(V/,Z’,t/)}7 (1.4)
where RAR = (V',dV'Y+(Z',dZ"y+t'dt’ (cf.[1,(3.1),(3.11),(3.12)]). The ques-
tion is then whether or not the curly bracket in (1.4) admits a continuous extension
to the boundary R = 1 (namely at the pole (0, O, 1)).

In this paper we address these questions. We prove that 41 does not extend
to the pole, except when the curly bracket in k; vanishes identically. Using the
coordinates (V, Z) on SPT4 to write h; = Zhg) dzidz; + Zh?f)dv,- dvj +
Z h?j’.u) dz; dv;, we will see that, in the non-symmetric case, the coefficients hgj’.)
do not have a limit at the pole, but remain bounded there, whereas the coefficients

h;;) and hgn) extend smoothly to zero at the pole.
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In Section 2 we prove that the first two two terms of the bracket in (1.3) vanish
if and only if the J2-condition holds, i.e., if and only if § is symmetric [2]. Com-
bined with Proposition 3.1, this implies that k; = 0 iff the J?-condition holds. We
then briefly discuss the example of the 7-dimensional non-symmetric Damek-Ricci
space with N the complex Heisenberg group. In this case it is easily proved that the
hg’.) do not extend.

In Section 3 we approach the problem using 3-valued 1-forms on N and SP*9.
LetC : N — SPT4\ {(0,0, 1)} be the generalized stereographic projection, given
by C(n) = limy_, _oo C(ne'),and let Q'|(y.zy = dZ — %[V, d V] be the canonical 1-
form on the group N, whose kernel is the horizontal distribution on N. Then k| =
©% = |02, where ® = A~ 1 (C~1*Q)), with A(V, Z,1) = =2/[(1 — )> + |Z|?].
We obtain an explicit formula for the 1-form ®. We discuss the symmetric case and
the 7-dim example in detail. Then we conclude with the general result valid for any
Damek-Ricci space (Theorem 3.7).

ACKNOWLEDGEMENTS. The author would like to thank Aroldo Kaplan for inter-
esting conversations that inspired most of this work. The author also thanks the
referee for useful observations and remarks that improved the first version of this

paper.

2. The vanishing of k; and the J?-condition

Consider the limit of k1(V, Z, 1) as (V, Z,t) — (0,0, 1). The term ((1 — )% +
|Z|?)~2 blows up, while the curly bracket tends to zero. Obviously, the limit is
either zero or does not exist. We will see that this limit does not exist, and /| does
not extend to the pole, except when the curly bracket in k| vanishes identically.

In order to prove this, we have to work with the coordinates (V, Z) on the
sphere P14 Fix orthonormal bases {U,‘}?:1 of 3 and {V]‘}I;":1 of v,and set Z =
Y ziU;, V. =Y v;V;. Then we write ki in (1.3) as

q

p q P
k=Y kPdzidzi+ Y kD dvidvj+ Y > kS dzidvy,  @2.1)
i,j=1 ij=1 i=1 j=1

and take the limit of the components ;; as (V, Z) — (0,0). We can assume ¢ > 0

andt = /1 — |V|? — | Z|2. The mixed components, as well as the V-components,
are complicated, in general. However the Z-components only involve the quantity

VI (Z.d2)? =12z ) + U2V, Jaz V1] 2.2)
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i.e., the first two terms in (1.3). For later use we note that, in coordinates, we have

ZP1dZ1? —(2,dZ)? =) (zidzj — zjdz)’, 23)
i<j

U2V, JazV1=_(uidzj — zjdzi) [V, J;V], 2.4)
i<j

where J; = Jy,, with Jl-2 =-—1,JiJ;j =—J;J;i (i #j) (see[l,page 325]).

The quantity (2.2), divided by ((1 — )2 + |Z|%)2, is just 2k§f) dz;dzj (cf.
(1.3) and (2.1)). It will turn out that this is precisely the singular part of k1, namely
the coefficients kl.(j?) do not have a limit at the pole unless ki(j?) = 0, whereas the kl.(;)
and ki(?n) tend to zero at the pole. We shall prove this later in a simple example, and
in the next section in the general case.

First, let us prove that the expression (2.2) vanishes if and only if the J2-

condition holds. We recall here the definition of the J2-condition (see [2, Defini-
tion 2.10]).

Definition 2.1. Let n = v @ 3 be an H-type Lie algebra. We say that n satisfies the
J?-condition if for all V in v and all Z, Z’ in 3 such that (Z, Z') = 0, there exists
Z" in 3 (possibly depending on V, Z and Z’) such that

JzJ72V = JznV.

In [2, Proposition 4.1 and Theorem 4.5], it is proved that the J2-condition is equiv-
alent to S being symmetric.

Theorem 2.2. Letn = v @ 3 be an H-type Lie algebra. The following are equiva-
lent:

Q) |JzV, Iz VI = |V|4(|Z|2|Z’|2—<Z, Z’>2), VV e, VZ,Z €3

(i1) n satisfies the J 2_condition.

Thus the expression (2.2) vanishes, i.e., kl.(j?) =0,Vi, j, iffthe J 2_condition holds.

Proof. (i) = (ii). Let Z’ be orthogonal to Z. Using [JzV, JzV] = [V, JzJz/ V]
and (i), we have

2
V. Iz VI = 1ZP1Z'PIVIE (2.5)
Now suppose V # 0, and recall the orthogonal direct sum decomposition
0 =RV J(V)DEV),

where
J;(V)=1{JzV : Z €3},
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and £(V) is the orthogonal complement of RV in ker ad(V'). We decompose Jz Jz' V
accordingly:
JzJzV =cV +JzV + W, (2.6)

for some c € R, Z” € 3,and W € £(V). It follows that
2z V[ = 1ZPIZ'PIVIE = AV +1Z" PV + WP
On the other hand [V, JzJ, V] = [V, Jz»V] = |V|*Z",and (2.5) implies
Z"PIvit=1zP1Z PV I

Comparing the latter two equalities, we obtain ¢ = 0 and W = 0, whence JzJ,/V =
Jz»V . This proves (ii).

(ii) = (i). Assuming (ii), for any V € v and any orthogonal vectors Z, Z’ € 3,
there exists Z” € 3 such that JzJ,/V = Jz/ V.

On the one hand [V, JzJ 7 V] = [V, Jz»V] = |V|?*Z", therefore

T2V, Iz VI[P = |1V, J2d2 VI[P = 12 PV,

On the other hand |JzJz V|> = |JzV[*, 50 1ZR1Z/PIV2 = |Z/ V]2, and (i)
follows for Z’ orthogonal to Z.

Finally, decomposing an arbitrary Z’ € 3 as Z' = AZ + Z*, with Z+ € 3
orthogonal to Z, we have

2 2
LUzV, Iz V" = [[UzV, T VI = 1ZP 12 vt
= (1ZP1Z'P =z, 2)?)Iv " O

Remark 2.3. This theorem implies that the expression k; in (1.3) vanishes iff the
J?-condition holds. Indeed if ki vanishes then (2.2) vanishes and the J2-condition
holds. Conversely, if this condition holds, one can prove the vanishing of the re-
maining part of the curly bracket in k. For instance, using the identity (3.17) below
(which is equivalent to the J?-condition, see Remark 3.2), one can easily prove the

k(én)

vanishing of the mixed components in k1. In a similar way one proves the

vanishing of the V-components k( ) We omit the details because this will follow
somewhat more transparently from the approach below using 3-valued 1-forms (see
Proposition 3.1 and Remark 3.6).

Now let us prove that the quantity (2.2) does not have a limit at the pole in the
non-symmetric case. We consider a simple example here, and treat the general case
in the next section. Consider the lowest (=7) dimensional non-symmetric Damek-
Ricci space, namely S = N A, where N is the complexified Heisenberg group. Here
qg=2,p=4,3= R2 and v = R*, with commutations (see [9, page 67])

[V.V'] =[(a,b,c,d), (@b, d)]
= (ab' —ba' +dc’ —cd',ac’ — ca’ +bd — db).



THE METRIC AT INFINITY ON DAMEK-RICCI SPACES 931

One computes [JzV, JyzV] = 0, so that by (2.3) and (2.2) we get

q 4 )
) |VI*(z1dz2 — z2dz1) )
kij dzidzj = - =2, @)
=R (1 =12 +|Z2)2
where 8 is the 1-form
|V 12(z1dz2 — z2d21) 2|V|? alVR
- == d dzy.
ﬁl(V,Z,t) a- Z‘)Z + |Z|2 a —l‘)2 T |Z|2 71+ = t)2 n |Z|2 22

Consider the first component of 8. Using (1 — D24+ 1Z1>P=2—|V|> =2t,we get

i 2|V|?
lim —_—
vV.Z.)—0,0.1 (1 — )2 4+ |Z|?
) 2lV?
= Iim
V.2)>002 — V]2 =21 — V2= |Z2
alVE(2- VP +2/T= VP -1ZP)
= lim
V.2)»00 Q2—|V[)H2 -4 —|V|]>?—|Z?)
\% 2
4 tim 2V
(V.2)—©0,0) |V|* + 4| Z|?

This is either zero or does not exist. Taking z; = 0, z2 = [VI2,orz; =z = |V %,
we get a nonzero value, thus the limit does not exist. Alternatively, set 1 — ¢t =
pcosg,|Z| = psing,and zp = |Z| sin«, then V|2 = p(2cos¢p — p) and

2| V|2 L
m =sinasing(2cos¢ — p).
This does not have a limit at the pole, where p — 0 but ¢ and « are undefined. The
same conclusion holds for the second component of 8 and for the coefficients ki(?) .
We shall see later that the components ki(;') and kl.(.f.n) of k1 tend to zero at the pole.
These results will then be generalized to any Damek-Ricci space.

Remark 2.4. In order to compute the limit limy, 7 1) (0,0,1) k1(V, Z, 1), we could
follow the suggestion in [1, page 330], to use bispherical coordinates (o, ¢, w1, w2),
or equivalently, (|V|, |Z|, w1, ), on SPT4 ([1, page 332]). The expression of A
in these coordinates is given by [1, (4.14)], with R = 1, k| being the term with the
curly bracket there. Recall that

V=|Vie,, Z=|Zlwy, |Z|=psing, t=pcosp, |VI*=1-p?
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and w; € SP~!, wy € §97! (the unit spheres in v and 3, respectively). Let
e = 1 —1t. Using [1], (4.14), we can rewrite k{(V,Z,1 — ¢) in (1.3) in terms
of (IVI,1Z], &, w1, 2) as

ki(V, Z, 1—¢)
Z|Iv*

=72{A|Z|3+B|Z|28+C£(|Z|2—82)+D82|Z|—|—E|Z|(|Z|2—82)}

(2.8)
(2+12P) ’

where A, B, C, D, E are the following differential expressions on S? -1 sa-1.

A=~y + | [Juno1, Jawen] [*
B= 4( — (Jdan @1, dot) + (I 1y 01,1 Jn @1, de2w1)>,
C= _4(J[w| do] o1, dwl),

D = 4{{uyor.donf = [or, don) + | [y, do] ).

k)

E = 2((Ja)2-]da)2a)l, da)l> - (J[a)l,dwl]-]a)gwla de2a)1>)v

Vsa—1 = |d s |? being the round metric on § 2=1_ Now the functions
z|* elZP? elZI(1Z]* — &)
(E2+1ZHF (24122 (2 +1Z29)* 2.9)
?|Z|? 1ZI2(1Z)* — %)

(E+1Z1H* (2 +1Z2)?

are bounded in a neighborhood of (Z, ) = (0, 0), and it would seem from (2.8)
that

lim ki(V,Z,1—¢) =0, (2.10)

(V,Z,6)—(0,0,0)

so that (1.2) would imply

lim hilv.z.n = 1dZ|% (2.11)
(V,Z,t)—(0,0,1)

The curly bracket in (1.4) would then extend continuously to the boundary R = 1,
with the value dt'*> + |d Z'|? at the pole (0, 0, 1).

Unfortunately, this result is wrong, as seen above in the 7-dim example. The
point is that we cannot use bispherical coordinates to compute the limit in (2.10),
because these coordinates are singular (undefined) precisely at the pole. In (2.8)
we have products of biradial quantities (namely the functions in (2.9) multiplied by
|V|4), that tend to zero at the pole, times the “angular" expressions A, B, C, D, E,
that are undefined and do not have a limit at the pole. Note that A, B,C, D, E
are not scalar-valued but tensor-valued (they are quadratic in the differentials of
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the angular coordinates wi, w2). By no means can they be regarded as bounded
quantities. Thus we cannot conclude that these products tend to zero and extend
smoothly. For instance in the 7-dim example, let w; = (cosc, sinw) € S 1 then
z1dzy — 22dz1 = |Z|*da, A = —do?, and (2.7) becomes

4174
Zki(?)dzidz]'=— |V|2|Z| 3 2dozZ.
e (=07 +1ZP)

The scalar quantity multiplying do? tends to zero as (V, Z, 1) — (0,0, 1). How-
ever, the 1-form do is unbounded around the pole with respect to the Euclidean
norm, being ||da|| = 1/|Z] — oo as Z — 0. In fact, this expression does not ex-
tend smoothly at the pole, since the coefficients kl.(j?) in Cartesian coordinates (21, 22)
do not have a limit there.

3. The approach by 3;-valued 1-forms

Let us recall the following geometric interpretation of the differential expression
hy. Consider the stereographic projection C : N — SP%4 \ {(0, 0, 1)}. This is the
diffeomorphism defined by C(n) = lim;—, _o, C(ne') € 9B (see [9, Section 4.6]),
and given explicitly by (V, Z) — (V’, Z', t’), where

v (H—%\Vlz)V—JZV

11v22 Z|?
(1+31vP) +1z|
Z/ 27

-z,
(1+31VP) +izP

2
—1+(3IVI) +1ZP

/

1 2 ’
(1+31VP) +izp

with inverse Gt vad

A=V IV
V=2 ()P +1zP

— z'

Z= (=124 2"

Recall the generalized contact structure on the H-type group N. The horizontal

subbundle HN C TN is spanned by the left-invariant vector fields X such that

X, € v. The bundle HN can be represented as the kernel of the following 3-valued

1-form on N:

.z =dZ —3[V,dV] (3.1)

(see [1], p. 329). We define the horizontal distribution H S* on the punctured sphere
§* = §PTa\ {(0,0, 1)} to be

HS* = C.HN = Cyker Q' = ker(C~'*Q)). (3.2)
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The pull-back C~'*Q’ can be computed by calculating dV, dZ in terms of dV’,
dZ',dt' and then substituting in (3.1). The result is (dropping primes):

C"*) w.z
~ 2
(=02 +|Z)2
n z((z VDt 426V, dV) —2(J,V, dV))

{dZ((l —0?+1ZP = (A= DIVP)
(3.3)

+ (122 = (1 =0)?)[V.dV]—2(1 —)[JzV,dV]—[JzV, JdZV]},

forany (V, Z,t) # (0,0, 1) (cf. [1,(3.18)]). Here, of course, (V,dV)+(Z,dZ) +
t dt = 0. The norm squared of this 3-valued 1-form on S* is related to /. Indeed,
by [1, Proposition 3.4] (with A1 = limg_,| hg), we have

_ 2 2
IC™* Q| v,z = (MV, Z,0) Bl v, z.0) (34
for (V, Z,t) # (0,0, 1), where

2

)\.(V, Z, t) = —m.

(3.5)
If we could prove that

. -1,
lim  ((A(V.Z,0)' € Dlw.zn) =dZloon. GO
(V.Z,0)—(0,0,1)

then (2.11) would follow, being A1 = [A~1(C~'*Q")|> by (3.4). However, (3.6)
does not hold, in general, i.e., the 3-valued 1-form

e =171 *Q), (3.7)

such that h; = ©2 = |®|?, does not extend continuously to the pole, in general.
We will actually see that the limit in (3.6) does not exist, except when g = 1.

3.1. The symmetric case

Let S = N A be a symmetric Damek-Ricci space. Then S can be identified with
a noncompact Riemannian symmetric space of rank one X = G/K, by viewing
N A as the solvable component in the Iwasawa decomposition G = NAK of a
noncompact simple Lie group G of real rank one. By suitably scaling the metric, S
is isometric to one of the following hyperbolic spaces: CH" (complex hyperbolic
spaces, g = 1, p = 2(n — 1), n > 2); HH" (quaternionic hyperbolic spaces,
q=3,p=4n—1),n > 2); OH? (octonionic hyperbolic plane, g = 7, p = 8).
(See [9, Proposition 27, page 97].)
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The unit sphere SP19 is a fibre bundle with fibre S9 over a suitable projective
space (the generalized Hopf fibration, see [5]):

§9 s §PFe 5 KpP/ath, (3.8)

where K = C, H, O for g = 1, 3, 7, respectively, and or! = s8. Explicitly, we
have the fibrations [5]

st es g1 5 cpr! complex projective n — 1 space,

§3 < §*=1 5 Hp"~! = quaternionic projective n — 1 space,
ST sP — 8.
Let 2 be the 3-valued 1-form on S”*4 given by (cf. [1], (3.14)):

Qw.zn = [V.dV1+1dZ — Zdt + 512V, JazV]. (3.9)
For ¢ = 1, 3 the bundle (3.8) is principal, and €2 is a connection 1-form. Thus
the kernel of 2 defines a p-dimensional distribution (the horizontal subbundle
HT(SPT9)), with supplementary (vertical) subspace VT (SP*9) provided by the
fibers of the Hopf fibration. For ¢ = 7 the bundle (3.8) is not principal, but we have
a similar interpretation of €2 as a connection 1-form. However, in this case, €2 is
undefined and has no limit at the points V = 0, Z # 0 of S'°, due to the last term
in (3.9). This term explicitly depends on V (unlike ¢ = 1, 3, see below for details),
and has no limit at

(0, Z,0): |1ZP+>=1, Z#0}=S5"\{0,0,£1)}.

Here S” (the unit sphere in 3 @ a) is just the Hopf fiber through the poles (0, 0, £1)
of §13. (We identify 3 @ a ~ O ~ R® with the Cayley line Lo, = {(0, u) : u € Q}
in 0% ~ R!6, corresponding to the south pole of the base space S® ~ {L,,, m €
O} U {Leo}, see [5].) At the poles the last term in (3.9) tends to zero, and 2 tends
to =dZ|,0,+1). Nevertheless, we prove in Proposition 3.1 that the norm squared
of Q is well defined and smooth on the whole sphere and equals #; — k1 in (1.2)
(c¢f. (3.18)). The kernel of Q2 is then smooth on S!3, and defines the horizontal
distribution HT (S'%) (of dimension 8). Of course, at the points x = (0, Z, t), we
have HT,(S¥) =vand VT, (S®) ®Rx =3 @ a.

To see that ker Q2 agrees with the distribution (3.2) on $*, we need the re-
lationship between Q2 and C~'*Q’. In the Hermitian case of g = 1, we have
p = C" ! = RV 3 = ImC = RUy, Jy,V = iV = (iVi,...,iV4_1),
and we compute [JzV, JgzV] = 0,50 Q| v,z = [V,dV]+tdZ — Zdt is smooth
on §P*4 = §2"~1 ‘and (cf. [1, page 330])

clr =2  (g=1 (3.10)

(A given by (3.5)), i.e., ® = Q on §*. Thus ® and ker ® extend continuously to
the whole sphere $?*~!, and (3.6) holds. For ¢ = 3, 7, the relationship between
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C~1'*Q and € is more complicated. If Q' = (a1, ..., ag) and Q = (o, ..., wy),
one gets (see Remark 3.6)

C My =1 rijoj  (g=3.7) (3.11)
j

(A given by (3.5)), i.e., ® = R(2), where R = (r;;) is a smooth function on $*
(for ¢ = 3) or S13\ §7 (for ¢ = 7) with values in SO(g). This function does not
have a limit as (V, Z,t) — (0,0, 1). We discuss this separately for ¢ = 3 and
q="17.

q = 3. In the quaternionic case, we have v = H-! = R“(”_l),g =ImH = R3,
and we take U; - U = Us plus permutations (where {U1, U3, U3} is an orthonormal
basis of 3),and JzV = Z -V =(Z-Vi,...,Z-V,_1). Then J1J, = J3 plus
permutations (where J; = Jy,), and we compute from (2.4)

[J2V. JazV] =V (22d23 — 23d22)Us + |V[*(z3dz1 — 21d23)Ua
+ VP (@idz2 — 22d21)Us.

Formula (3.9) yields

w1 =[V,dVh +tdz1 — z1dt + z2dz3 — 23d22

wy =[V,dV]y 4+ tdzo — z0dt 4+ z3dz1 — 71dz3

w3 =[V,dV]3 +tdzz — z3dt + z1dzp — z22dzy,
and € is smooth on §Pt4 = §%'~1 Using (3.3), one obtains the general formula
(3.24)-(3.25) for the 1-form ®. Specializing this formula to our case, we get (3.28),
ie.,® ="R(Q),with

-0 427-3-23 2(z1z—z3(1=1)  2(z1z3+22(1=1)

-2+ (-DZHZP  —(=0+HZP
— | 2@iztzd-1n) A=0D°+25-21-23 2(zz3—z1(1-1))
RV, 2,1 = (—2+|Z? A—n2+1Z? (=242 - G2
23—00-1)  2patud-n) (-0*+z53-zi-2
(1-02+|Z? (1-02+(Z]? A-02+1Z?

It is easy to check that R(V,Z,tr) € SO(3). Using bispherical coordinates
(IV1,1Z], w1, w2) and then polar coordinates 1 — ¢t = pcos¢, |Z| = psing, we
see that the entries r;; are bounded around the pole (0, 0, 1) but do not have a limit
there. Thus the 1-form ® in (3.7) does not extend to the pole, and (3.6) does not
hold.

Nevertheless, from (3.11) or (3.28) we get [C™'*Q|? = A%|Q?, ie.,
®% = Q2, so the square of ® does extend to the pole. Moreover, it follows from
(3.11) that ker ® = ker 2 on S*, i.e., the horizontal distribution (3.2) coincides with
the horizontal subbundle of the Hopf bundle on S*, and thereby extends continu-
ously to the whole sphere §#*~!.
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q = 7. A similar analysis can be repeated in the octonionic case. The details
are more complicated, due to the non-associativity of the product in v >~ O and
3 =~ Im(Q). In particular, the claim made in [1, Example 3, page 326], about the
“multiplication table" for the products J; J; with i # j (where J; = Jy,, {U,-}l.7:1
an orthonormal basis of 3), is incorrect. (See also Remark 3.3.) Recall that the op-
erators Jz are defined as left (or right) multiplication in @, say JzV = Z - V. Then
JiJ;V =U; - (Uj - V) is different from (U; - U;) - V = JU,--U,-V, in general, and
the products J; J; do not follow the multiplication table of octonions. We only have
the J2-condition:

JiJjV =Jz,; )V i #j), (3.13)
where v \ {0} 5 V — Z;;(V) € 3 are nontrivial functions. (For g = 3, the Z;; are
independent of V, being Z;;(V) = U; - U;,VV # 0.) Using [V, JzV] = \VI2Z,
we get from (3.13)

Zij(V) = plV. Ji V1.

Defining the components Z;; (V) = Y, ij(V) Uk, we have

Z5(V) = gatdidiV, V). (3.14)
Note that Z;.'j(V) =0= Z{'j(V), and Zlkj(V) = —Zijk(V), so that Z;jx = ij is
totally antisymmetric. By (2.4) we compute

prlIzV. JazV1 =) (idzj—zjdz) Zi(V) = ) ) (zidzj—2;dz) Zi5(V) Uk,
i<j k i<j

and the connection 1-form 2 = ) w; Uy in (3.9) has components

wrlwv,zn =1V,dVIk +tdzx — zidt + Z(Zide — Zdei)ij(V)-

i<j

Note that the Z;;, Z{‘i are actually functions of w1 = V/|V| € §P~1 = §7 (the unit
sphere in v), and they are bounded since by (3.13) we get

1Zi(VIP =D 1Z5(WV)IF =1, Vi # j, YV #0.
k

It follows that lim(vyz,,)ﬁ(oyo’l) a)k|(\/,z’t) = dz, but  has no limit at the points
(0, Z, 1) € §' with Z # 0, although it is obviously bounded there. We shall see in
Proposition 3.1 that Q2 is well defined and smooth on S'3, with Q2 = h| — k; in
(1.2) (cf. (3.18)).

Here is a simple algorithm to compute the functions Z;;. Fix a multiplication
table in v >~ O, and identify 3 >~ Im(Q). Each V € v is written as voUp +ZZ v;Uj,
where U is the neutral element and U; (1 < j < 7) are the imaginary units, with
U]z = —Uyp. Giveni < j,determine k from the table such that U; - U; = £Uy, and
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let T = +JiJ;J; (same sign). Then T* = T, T2 =J,and v = v, @ v_, where
v are the eigenspaces of T with eigenvalues +1, respectively. Let {a, b, c,d} =
{1,...,7}\ {i, j,k}. Each V € v can be written as V = V + V_, where V| =
vaUg +vpUp + v U +v4Ug € by ,and Vo = voUp +v;U; +v;Uj + v U € 0.
Then Z;;(V+) = F U; - Uj, but in general

Zij(V) = Z{;(VUx + Z§5(V)Ua + Z0,(V)Up + Z5;(V)Ue + Z85(V)Ua,
where by (3.14) we compute

Vo2 = V4P
145

’

Z(V) =+
2
Zi(V) = Epa (Vo iVs) - (=acbie.d)

(same sign as in U; - U; = %Uy). It is easy to see from these formulas that the
functions w; — Z;’} (w1) are spherical harmonics of degree 2 on S” -1

Again the general formula (3.24)-(3.25) for the 1-form © yields (3.28), i.e.,
© = R(2), where R = (r;;) is given as follows:

2 2 2
(1—t) +Zi —Z]#IZJ

iV, Z,t) = 1<i<7), 3.15
2 j
.z = ————luz 4 (-0 Y wzj )
11—+ 1Z] P
+J (3.16)
- 2 s - a-nlz.zgw)) G
(1 =024z 1" !
where we used the identities Zl.jk(V) = —ij(V) to write

szzi."k(V) =— ZZkZ,kj(V) = —(Z,Zij(V)).
X 3

The non-diagonal entries r;; and rj; are related by a sign change in the second
term of the curly bracket in (3.16) (as in (3.12)). It then follows that R(V, Z, t) €
S$O(7), and the entries r;; are bounded around the pole (0, 0, 1) but do not have a
limit there. Thus ® does not extend to the pole but its square does, being @% = Q2
with ©2 smooth on S (cf. (3.18)). Again ker ® = ker Q% on §* = S5\ {(0, 0, 1)},
and the horizontal distribution (3.2) extends continuously to the whole sphere S'°.
Note that ® is smooth on $* (by (3.25)), so the singularities of R and 2 at the
points (0, Z, ), Z # 0 (due to the functions Z;;) cancel out in ® = R().

We can now easily prove that k1 = 0 in (1.3).
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Proposition 3.1. Let n satisfy the J?-condition. Then in (1.2) we have hy — k| =
Q2 so since h = 0% = Q2, we getk; =0.

Proof. From (3.9) we have

2 - 2
Q.20 = |V, dVI+1tdZ — Zdt|” + [|VI72 2V, Jaz V]|
+2A[V.dV]. gpldzV, JazV1) +2tdZ — Zdt, 551IzV, Jaz V).

The last term in this expression vanishes, as easily seen. The second term equals
(1Z1?|1dZ|*> — (Z,dZ)?) (by Theorem 2.2). Let us prove that

(v, v, ﬁ[]zv, Jp V)= (V,V'NZ,Z) = UV, IzV'), (3.17)

forall V,V' € v,V #£0,and Z, Z' € 3. This will establish that Q2 =h; —k in
(12),ie.

Q.20 =|IV,aV1+1dZ — zdt|* + |Z1P1dZ|* — (2, dZ)?

3.18
+2(<V,dV><Z,dZ>—(szV,JZdv)), V(V,z,t)espw( )

First let Z' € 3 with (Z, Z') = 0. Then, by the J2-condition, there is Z” € 3 such
that JzJz/V = Jz» V. Therefore,

[(JzV, Iz V] =V, JzdzV]=[V,JznV] = |V|ZZ”, (3.19)
and

—(JpV, V') = (V' Jzd V)= (V' Iz V)
=(z",[v, V).
Thus (3.17) follows for Z’ orthogonal to Z.

For an arbitrary Z' € 3, we decompose Z' = AZ+Z~+, with Z* € 3 orthogonal
to Z. Let Z” be determined by JzJ,1V = Jz/V. Then we have

[JzV, Iz V] =7V, Iz V] = |VI*Z",

where we used (3.19) with Z1 in place of Z’. The left-hand side of (3.17) is then
equal to (Z”, [V, V']). The right-hand side of (3.17) equals

(V,VOMZP = (hizV, J2V) = (T, v, Iz V)
=(JzJ V. V) =(IpV, V) =(2", [V, V']).

This proves the proposition. O
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Remark 3.2. If n = v @ 3 is an H-type Lie algebra such that (3.17) holds, then
the J2-condition holds. Indeed let (Z, Z’) = 0, and decompose JzJ 'V as in (2.6).
Then the left-hand side of (3.17) equals ([V, V'], Z"), and we get (Jz#V, V') =
(JzJzV, V'), forall V,V' € v. Thus JzJzV = JzV, and the J2-condition
holds. This condition is then equivalent to (3.17).

Remark 3.3. Consider the 3-valued 1-form

Ov.z.0) =V.dV]+1dZ — Zdt + Y (zidzj — 2;dz)U; - U;.

i<j

This is smooth on SP*4 and it reduces to Q forg = 1,3,butforg =7, ® # Q. In
this case, the component 1-forms ¢y of ® = > ¢ Uy are given by

Silv.zoy = V. dVIk + tdzy — zdt + Y (zidz; — 2jdzi)Ciji.

i<j

where C;jy are the structure constants defined by U; - U; = ZZ:I Cijk Uy from
any given multiplication table in Q. Note that C; i is totally antisymmetric. It is
natural to ask whether ®2 = Q? for ¢ = 7. Formula (3.15) in [1] would then apply,
with the component 1-forms wy, .. ., w7 being just the ¢;. Unfortunately this is not
true, i.e., @2 does not agree with Q%on S 15, as easily seen. Thus there is no simple
formula for the vertical part of the metric 7| = ®> =Q? in terms of the 1-forms ¢y.

To summarize, in the symmetric case the 1-form ® does not extend to the pole
(0,0, 1) of SP*4 for ¢ = 3,7, but its square does, together with the distribution.
This can be explained by the generalized Hopf fibration.

The horizontal-vertical distributions on the unit sphere SP*9 can also be de-
scribed as follows. Recall that SP19 is a homogeneous space K/M, where K is
the subgroup of the isometry group of § = N A that fixes the origin, and M is the
group of orthogonal automorphisms of N A, namely the automorphisms of § that
preserve the inner product on the Lie algebra s. The origin eM in K/M corre-
sponds to the north pole (0, 0, 1), and the tangent space T, SPT¢ decomposes as
v @ 3. The horizontal subbundle is then the assignment kM — kb, the vertical
one is kM — k.3. If we use Euclidean polar coordinates on the unit ball B in s to
write b = Rw € B, with R > 0 and w = kM € SP*4, then we have the orthogo-

nal splitting of the tangent space T, B = Tb(l) <) Tb(z) @ Rb, where Tb(l) = kb and

T b(2) = k3. See [2, Theorem 7.10], for an explicit description of Tb(l) and Tb(z) ®Rb
in the coordinates w = (V, Z, t) € SPT4.

3.2. The general case

In the non-symmetric case, the situation is as follows. The unit sphere SPHa g
no longer a fibration with fiber §7, and the horizontal distribution (3.2) does not
extend smoothly, in general. For instance for ¢ even, so that p 4 ¢ is even, there
are no smooth distributions on S”*4 of dimension k (smooth fields of k-planes)
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for1 <k < p+qg —1([10, Theorem 27.18]). It was proved recently that the
horizontal distribution extends iff the J2-condition holds, iff S is symmetric ([8,
Proposition 4.3]).

The distribution (3.2) on $* = $P74 \ {(0, 0, 1)} is just the kernel of the 3-
valued 1-form ® in (3.7) (A in (3.5) being smooth and non-vanishing on S*). This
distribution can also be described as the kernel of the rank-2 tensor h; = ©2.
Indeed, recall that

kerhy = {X € TS*: hi(X,Y) =0, VY € TS*}.

If® = (,...,6),then ©> = 67 + - + 67, and ker ® = [ ker6; < ker ©7.
Conversely, if X € kerh; = ker ®2, then taking ¥ = X in the definition above
gives
0=hi(X,X) =OX) =017+ +6,(X)°,

whence 0;(X) = 0,Vj,ie., X € ker®. As mentioned before, i1 does not ex-
tend to the pole (0,0, 1) in the non-symmetric case, in agreement with the non-
extendability of the distribution. We saw this in the 7-dimensional example, to
which we now return.

3.2.1. The 7-dimensional example

We want to write down the 1-form ® more explicitly, and show it does not extend.
Let Uy, U, be an orthonormal basis of 3, and J; = Jy,, i = 1,2, as usual. If
Z=(21,22) €3and V = (v1, v2, v3, v4) € b, we have

[V,dV]i = (J1V,dV) = vidvy — vodv| 4+ vadviz — v3dvy

[V,dV], = (hLV,dV) = vidvs — v3dv| 4+ vadvg — v4dvy

(J1V,dV) = vadvy — vidvg 4+ vodvs — v3duy,

and we compute [JZzV, J;zV] =0,
[JzV,dV]=—(V,dV)Z + (/1 J2V,dV)(z2U1 — 21U2).
By (3.3), we obtain the following formula for the 1-form ® in (3.7):

2(z2U1 — 71Up)

® =[V,dV]+tdZ — Zdt + ———
lv,zn =1 1+ +(1_t)2+|z|2x

3.20
X {mdzg —z2dz1 +21[V,dV]y — 22[V,dV]i + A = ) (/1 LV, dV)}. o
Letting ® = (61, 62), we get the following 1-forms on s6 \ {(0,0, )}:
Oilv.z.n =[V,dV +tdz1 — z1dt + (1_,)22%
X{Z1d22 —2dzi+z1lV,dV —22[V,dV]i + (1 = ){/i LV, dV)}
02lv.zn = [V, dV]2 +1dz2 — 22dt — G

x{z1dzs = 22z + 21V, AV = 22l V.dV] + (= DALV, av) .
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We can now prove that these 1-forms do not extend to the pole, the problem being
due to the coefficients of the dz ;.

Theorem 3.4. Let S = N A be the non-symmetric Damek-Ricci space of dimension
7withp =4,q = 2,and N the complexified Heisenberg group. Then the I-form ©,
given by (3.20), does not extend to the pole (0,0, 1). More precisely, the coefficients
of the dzj do not have a limit at the pole, but remain bounded there, whereas the
coefficients of the dv; tend to zero at the pole.

Proof. Consider the coefficients of the dz; in the term with the curly bracket in
(3.20), namely the functions

2122 Z% Z%

(I=02+1Z7" A=02+1Z7" A-0*+|Z]*

(3.21)

These functions do not have a limit at the pole. For instance, we get

. 7122 . 2122
lim s o5 = lim
(V,2)—0,0) (1 —1)* + |Z] (V,2)—(0,0) 2 — |V|2 —2./1 — |V|2 — |Z|2
an(2- VP +2/1= V2= |ZP)
= lim

T W.2)—0.0 Q—|VP2—4(1—|V]2—|Z]P)
. 2112
llm —_—

(V.2)—~0,0) |V|* + 4| Z|?

This is either zero or does not exist. Taking z; = zo = |V|*> we get a nonzero
value, thus the limit does not exist. Alternatively, use bispherical coordinates
(IV1, 1Z|, w1, w2) on S, defined by

V=|V|wi, a)lz(al,ag,a3,a4)eS3, Z=\|Z|ws, a)gz(cosa,sina)eSl.

Then
2122 |Z|?

A—02+1ZF  A=02+|zZ]

Now take polar coordinates 1 —t = pcos¢, |Z| = psing, then p — 0 when
(V,Z,t) - (0,0, 1), while ¢, @ are undefined at the pole. The first function in
(3.21) reduces to (sin¢)?sina cosa, so the limit does not exist. However, this
function remains bounded. A similar analysis can be repeated for the other func-
tions in (3.21): they do not have a limit but remain bounded around the pole.

Now look at the coefficients of the dv;. Consider, for instance, the first com-
ponent 81 of ®. The coefficient of dv; in the term with the curly bracket is

sin « cos .

2720

S ED =G ze

{ —z1v3+z2v2 + (1 — t)v4}.
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It is easy to see that this tends to zero at the pole. Indeed, in bispherical coordinates,
it reads
2|Z| sin«

T a0 = G=evize

{|Z||V|(—a3 cosa 4 az sina) + (1 —t)|V|a4}.

Now take polar coordinates 1 — ¢t = pcos ¢, |Z| = psin¢, then

VP2 =12 —1ZP =0 -0 +1) —|Z]?
= p(2cos¢p — p).

The range of (p,¢) is0 < p < 2cos¢,0 < ¢ < m/2, and corresponds to the
semicircle 1> + |Z|> < 1,0 < |Z| < 1l inthe (¢, | Z]) plane. In this region we have
0 <2cos¢ —p <2.Now when (V,Z,t) - (0,0,1), p — 0, while ¢, o, a; are
undefined in the limit. We get

2o si .
fV,zZ,t)= m,oyz\ﬂcosd)—p{sin(b(—ag cos a+ap sin &) +ay cos qb}.
0

This tends to zero as p'/?> when p — 0, the remaining expression being bounded. A
similar analysis shows that the coefficients of the dv; in the curly bracket in (3.20)
extend to zero at the pole. The remaining coefficients of the dv; in (3.20) obviously
tend to zero at the pole. O

Using (3.20), we can compute the square of ®. The result can be written as
follows:

% v.z.

) - (322)
=|[V,dV]+tdZ—Zdt| + (z1dz2a—z2dz14 (J1 LV, dV))" = 0% v, 2.1,

where 6 is the 1-form

Ol(v.za) = (|V|2 (z1dz2 — 72dz1)

(1-02+|Z?
+2(1=)(z1[V,dV— 22V, dV1) = (1Z1* = (1 = )*){(1 ]V, dV))
= (fidz1 + fodzo) + (g1dvy + g2dva + g3dvs + gadvs) = B+ y.

Formula (3.22) for ©2 agrees with the known formula for 4| (= limg_,1 hg,see [1,
(3.16)]), in agreement with (3.4)-(3.7). The precise identification of k1 in (1.2)-(1.3)
is:

ki (V. Z,1) = (11 2V, dV)? = 0%|(v. 2. (3.23)
The 1-forms 6, § do not extend to the pole, whereas y extends to zero there. Indeed,
the functions f, f> do not have a limit (but remain bounded), whereas the functions
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gj,»1 < j <4, tend to zero as (V, Z,t) — (0,0, 1). The proof is the same as
above: use bispherical coordinates followed by polar coordinates for 1 — ¢z, | Z]|.
We can then complete the analysis of the differential expression k; as (V, Z,t) —
(0,0, 1). Since

2 4 2 4
92 = Z fifjdz,-dzj—}— Z g,-gjdvidvj +ZZZﬁgdeidvj

i,j=1 i,j=1 i=1 j=1
=% +y*+28y,

we get, comparing (3.23) with (2.1), k2 = — fi ;. k{3 = —2f;g;, and
ZkISf)dvidvj = — Zgigjdvidvj + (1 LV, dV)Q.

Therefore, as (V, Z,t) — (0,0, 1), the coefficients kl.(j?) do not have a limit (as we

already know), whereas the kl.(;) tend to zero, as well as the kl.(;n) (since g; — 0 and
the f; are bounded around the pole).

As regards the horizontal distribution ker /1, this is smooth on §* = 56 \
{(0, 0, 1)}, with dimension p = 4. In principle, it could extend smoothly on § 6 but
it would have to change dimension at the pole. Indeed on S° there are no continuous
k-dimensional distributions (continuous fields of k-planes) for 1 < k < 5 ([10,
Theorem 27.18]). For k£ = 1, this is the well known result that even spheres do not
admit continuous nowhere vanishing vector fields, or 1-forms by duality. However,
ker 11 can not extend smoothly on S, since 1, = ©? is not smooth at the pole

Again note that, in bispherical coordinates, z1dzy — zo0dz1 = |Z Izda, and if
we take the limit of ® in these coordinates we seem to get the result (3.6), i.e., that
® extends to the pole. This proof would be wrong for the same reasons discussed
before (Remark 2.4).

3.2.2. The I-form @ in the general case

In order to generalize the above calculations, we examine in more detail the 1-form
® in (3.7). We would like to write it in a more explicit form, analogous to (3.20).

Theorem 3.5. Let S be any Damek-Ricci space. Fix an orthonormal basis {U; }?:1
of 3, and set Z =) _ z;U;, J; = Jy,. Then the 1-form © in (3.7) can be written as
1
® =[V,dV]+tdZ — Zdt + ————— 2(z; Ui — ziU;
lv.z.n =l ] A2+ 2P ;{ (zjUi — ziUj)

x (zidz; = 2jdzi + 5V, dV1; = 21V, dV]i + (1= DTV, dV))

+ (zidzj — zjdz)[Ji V, JjV]}. (3.24)
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Proof. We insert the quantity 0 = —2((V,dV)+(Z, dZ)+tdt) in the curly bracket
in (3.3), and use the identity

(A= +1ZP = A =0V =20 +1Z) — 12— |V]?),
to get, after some algebra,

1
(1=n*+1Z]

+2(Z(J2V.dV)=1ZPIV, dV) 421 =0) (Z(V. dV)+1JzV. aV))

Olw.zn=ILV,dV]1+1tdZ — Zdt + {2((2, dz)Z — |Z|2dz)
+[JzV, szV]}- (3.25)

The following identities are easily proved:

(Z2,dZ)Z —|Z\*dZ = Z (zjUi — ziUj) (zidzj — z;dzi),

i<j
Z{JzV.dV) = |ZPIV.dV] =) (2;Ui — 2U;) (il V. dV]j — zj[V.dV]),
i<j
Z\V.dV)+1JzV.dV]I=Y_(z;Ui — z:U;)(J; J;V.dV).
i<j
Using these and (2.4) in (3.25), gives (3.24). ]

Remark 3.6. For ¢ = 1, the curly bracket in (3.25) vanishes, and we get back
(3.10). In the non-symmetric example of g = 2, the last term in the curly bracket of
(3.25) vanishes, and we obtain formula (3.20). In the symmetric case of ¢ = 3, 7,
we use the J2-condition (3.13) to write ® in (3.24) as

®=Q+A, (3.26)
where Q = (w1, ..., wg,) is the connection 1-form (3.9), and A is the 1-form
A,z
= U - )
(=02 +1ZP = |
(3.27)

X (Zide —zjdzi +zilV,dV]j — z;IV,dV]i+ (A = ){Jz,; )V, dV))
+(IVE = (1= 0)Gdzj — zjdz,-)Z,-j(V)}.
Using (3.26)-(3.27), we can easily rewrite ® = (0, ..., 6;) in the form

O=R(Q), ie, 6= rijoj (3.28)
j
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where R = (r;;) is given respectively by (3.12) and (3.15)-(3.16). Thus 02 = Q?,
and A = R(Q2) — Q satisfies (A + 22, A) = 0. We conclude that although ® and
A do not extend to the pole (0,0, 1), ©? does, as already discussed.

We can now repeat a similar analysis as was done before in the 7-dimensional
example. We obtain the following result:

Theorem 3.7. Let S = N A be any Damek-Ricci space:

1) The 3-valued I-form ©, defined in (3.7) and given by (3.24), does not extend
to the pole (0,0, 1), except for q = 1 (Hermitian symmetric case). More
precisely, the coefficients of the dz; in ® do not have a limit at the pole for
q > 1, but remain bounded there, whereas the coefficients of the dv tend to
zero at the pole;

2) The differential expression hy = ©2 in (1.2)-(1.3) does not extend to the
pole, unless S is symmetric. More precisely, the differential expression ki
in (1.3) vanishes identically in the symmetric case, but it is nonzero for S non-
symmetric. In this case, writing ki in the form (2.1), the metric coefficients

kl-(?) do not have a limitas (V, Z,t) — (0,0, 1), but remain bounded, whereas
the coefficients kl.(;’) and ki(j?n) tend to zero at the pole;

3) The horizontal distribution ker ® = kerh on SP*4 \ {(0, 0, 1)} does not ex-
tend smoothly to the pole unless S is symmetric.

Proof. Let® = (01, ...,04) = > 6;U;. From (3.24) we get,for 1 <i <gq,

Oilv.zn =1V,dV]i +tdzi —z;dt + mx
x {2Zz,~(z,»dzj—zjdzl-+zl~[v,dV]j—z,-[v,dV]i+<1—t)<JijV»dV>)(3_29)
J#
+ Z(Zjdzk — zkdzj){Ji JjV, ka>}-
Jj<k

Consider the coefficients of the differentials dz; for/ =i and/ = j # i in the term

with the curly bracket in (3.29). They involve the functions

2
Zj ZiZ; (i V. I V)

(I=02+1Z12"  (A=-02+[Z7  (A=-D2+[Z]*

(3.30)

These functions do not have a limit at the pole. Indeed in bispherical coordinates
V =|V|wi, Z = |Z|ws, where w; € SP~1, wy € §971, we have, e.g.,
ZizZj 1Z|?

T 02 1128 ~ A2 4 1zp 1@
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Letting 1 — ¢t = pcos¢, |Z] = psing, then p — 0 when (V, Z,t) — (0,0, 1),
and the functions above do not have a limit. In a similar way we get, being |V |?> =
p2cos¢ — p),

al iV, V) |Z|V?
I=02+1Z7 A —0*+|Z]?
=sing(2cosp — p) (@) (JiJjowr1, Jrw1),

()i (JiJjowr, Jrwr)

which does not have a limit when p — 0. Notice, however, that these functions
remain bounded around the pole.

As regards the coefficients of the dv; in the curly bracket in (3.29), they are
generated by the 1-forms

zizj[V,dV]; IV, dV]; 2j(1 =0)(J;J;V,dV)
(I=02+1Z1> (A -02+|Z* (1 =12 +|Z?

, (3.31)

and tend to zero at the pole. Indeed, the terms [V, dV]; and (J; J;V, dV) are linear
expressions in the coordinates v and the differentials dv;, for instance, we have

p .
V.dvlj= Y alwdy (1<j<gq.
k,[=1

for suitable constants a. k Us1ng again bispherical coordinates and then polar co-
ordinates for (1 — ¢, | Z]), we get, e.g.,

zizilV,dV]; |Z|2|V|
(1 _Jt)2_|_ IZJ|2 = a l)2+ |Z|2( ®2); (CU2)J Zakl (w1)xrdv;

= /P y/2c0sp — p (sin$)® (wz) (wz)]Zak, (@1)dv.

The coefficients of the dv; in this formula go to zero as ,/p when p — 0, the remain-
ing expressions being bounded. The same result holds for the other terms in (3.31).
Thus ® does not extend smoothly on S”¢ unless ¢ = 1 (in which case the
curly bracket in (3.29) vanishes). Its square does not extend either, except in the
symmetric case, and the same holds for the differential expression /4 in (1.2), being

2 2 2
h=0>=07+-. +0].

Indeed, in the symmetric case the quantity k; in (1.3) vanishes identically (Propo-
sition 3.1),and | = 0% = Q? extends to the pole.

In the non-symmetric case k; is nonzero, indeed the expression (2.2) vanishes
iff the J2-condition holds (Theorem 2.2). By writing k; in the form (2.1), and
k&

computing the square of ® from (3.29), we see that the coefficients ; involve

products of the functions in (3.30) (or products of those functions and t), the kl.(}’)
are generated by products of the 1-forms in (3.31) (or products of those 1-forms
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and [V, dV];), and the kl.(?n) arise from products of the functions in (3.30) and the 1-
forms in (3.31) (or those in (3.30) and [V, dV'];, or those in (3.31) and ¢). Therefore,
the coefficients ki(?) do not have alimitas (V, Z,t) — (0,0, 1), but remain bounded
there, whereas the coefficients ki(/'?) and ki(j?u) tend to zero at the pole. Finally, the

horizontal distribution ker ® = ker 4y on S* does not extend smoothly to P4 in
the non-symmetric case, since 0% = h1 is not smooth at the pole. O

As a final remark, we record the following formula for 4, that generalizes
(3.22) to any Damek-Ricci space.

Proposition 3.8. The differential expression hy in (1.2)-(1.3) can be written (in the
notations of Theorem (3.5)) as

hlwv.zoy =|[V.dV]+1dZ — Zdt|2 + Z (zidzj — zjdzi + (Ji J;V, dV))2

i<j
1 2
+ (1—1)2+ |Z|2)2{ |[JZV’ JdZv]| +4(1 - t)([JZV, JazV1,[JzV, dV])
—2(1Z2 = A =) U2V, JazV1, [V, dV]) (3.32)
-3 (|V|2 (zidzj — z;dz;) +2(1 — )(z[V,dV]; — z;[V.dV];)
i<j

2
—(1zP-a- t)Z)(Jl-JJ-V,dV)>

2 2
—41-0* )" (zi(JijV,dV)+zj(JkJiV,dV)+zk(JiJjV,dV)> .

i<j<k

The quantity k\(V, Z, t) in (1.3) is then Zi<j<‘]i JiV, dV)2 plus the term with the
curly bracket in (3.32) (this generalizes (3.23)).

Proof. We use the identities in [1, page 325 and top page 326],in (1.2)-(1.3). O
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