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Improved estimates for the Ginzburg-Landau equation:
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Abstract. We derive estimates for various quantities which are of interest in the
analysis of the Ginzburg-Landau equation, and which we bound in terms of the
GL-energy Eε and the parameter ε. These estimates are local in nature, and in
particular independent of any boundary condition. Most of them improve and
extend earlier results on the subject.
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1. Introduction

Let � be a smooth bounded domain in RN , N ≥ 2. For 0 < ε < 1 we consider the
complex elliptic Ginzburg-Landau equation

−�uε = 1

ε2
uε(1 − |uε|2) on � (GL)ε

for maps uε : � → C. This equation is the Euler-Lagrange equation for the
Ginzburg-Landau (GL-) energy functional

Eε(uε) =
∫

�

eε(uε) ≡
∫

�

|∇uε|2
2

+ (1 − |uε|2)2

4ε2
,

and we will be concerned only with solutions uε with finite GL-energy.
The purpose of this paper is to derive estimates for various quantities which are

of interest in the analysis of (GL)ε, and which will be bounded in terms of the GL-
energy Eε and the parameter ε. These estimates are of local nature, and in particular
independent of any boundary condition. Most of them extend and generalize earlier
results on the subject.

The GL-energy has two components: the kinetic energy |∇u|2
2 on one side,

and the potential energy Vε(u) ≡ (1−|u|2)2

4ε2 on the other. Our first result yields an
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“improved” local bound for the integral of the potential, and shows that, for suitable
energy regimes, it is of lower order.

Theorem 1.1. Let � = B1 and uε be a solution to (GL)ε. We have∫
B1/2

Vε(uε) ≤ C0
Eε(uε)

|log ε| log

(
2 + Eε(uε)

|log ε|
)

, (1.1)

where C0 is some constant depending on N.

Estimate (1.1) provides some non trivial information only if the energy is not
too large, more precisely only if

Eε(uε) ≤ ε−1/C0 |log ε|.
On the other hand, it is well-known (1) that there exist real-valued solutions to (GL)ε
such that the “energy balance”

|∇uε|2
2

= (1 − |uε|2)2

4ε2

holds pointwise, and such that Eε(uε) is of order ε−1. In this case, log(2+ Eε(uε)|log ε| ) ∼
|log ε|, and therefore estimate (1.1) is optimal in this respect (2).

In another direction, the factor |log ε| appearing on the right-hand side of in-
equality (1.1) is the typical energy of a vortex solution (3) in dimension 2. It is
known (4) that for these solutions the integral of the potential remains bounded in-
dependently of the parameter ε: Theorem 1.1 gives therefore a generalization of
this fact for local integrals of the potential in arbitrary dimension, without impos-
ing any boundary datum. More precisely, if for some constant M0 > 0, Eε(uε) ≤
M0|log ε|, then (1.1) yields the bound∫

B1/2

Vε(uε) ≤ C0 M0 log(2 + M0),

which is uniform in ε. We would also like to emphasize that Theorem 1.1 is an
improvement of earlier results given in [15, 36, 33, 29, 8] (5).

(1)Take for instance uε(x1, ..., xN ) = tanh(
x1√
2ε

)

(2)However, the optimal value of the constant C0 is not known.
(3)A typical example is provided by a solution of the form uε(x) = f (|x |) exp(iθ) on B1 ⊂ C,

with f (0) = 0, f (1) = 1 and f verifying the ordinary differential equation − f ′′ + f ′
r =

1
ε2 f (1 − f 2) (see e.g. [25]).

(4)This is a consequence of Pohozaev identity (see e.g. [7]).
(5)In particular, in [8] it was proved∫

B1/2∩{|uε |≤1/2}
Vε(uε) ≤ C

(
Eε(uε)

|log ε|
)2

.
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Remark 1.2. Using the various tools presented in this paper, one may actually de-
rive a better estimate for the potential when the energy is small. More precisely,
there exist positive constants η1, β and C such that, if∫

B1

eε(uε) ≤ η1|log ε|, (1.2)

then ∫
B1/2

Vε(uε) ≤ Cεβ Eε(uε), (1.3)

so that estimate (1.1) is far from being optimal for low energy regimes. The proof
of (1.3) can be obtained combining the clearing-out property (see Theorem 2.7 in
Section 2) with Proposition A.4 of the Appendix. We leave it to the reader.

Using various elliptic estimates, we are able to relate, in the same spirit, local
estimates for the gradient of the modulus to the potential as follows.

Proposition 1.3. Let uε be a solution of (GL)ε on B1. We have

∫
B1/2

|∇|uε||2 ≤ C1

(∫
B1

Vε(uε) + ε

(∫
B1

Vε(uε)

)1/2
)

(1.4)

where C1 is some constant depending only on N.

In contrast with Theorem 1.1, the result in Proposition 1.3 remains valid for
vector-valued solutions uε : B1 → Rd , for arbitrary integer d ( the proof carries
over word for word). In the course of the proof, we invoke a bound on the L4-norm
of ∇uε (stated in Lemma 3.1), which we hope is of independent interest.

Combining Theorem 1.1 and Proposition 1.3 with covering and scaling argu-
ments, we deduce the global bound

Corollary 1.4. Let � be a smooth bounded domain in RN , N ≥ 2, and uε be a
solution of (GL)ε. We have, for a constant C depending on �,∫

�

(
| ∇|uε| |2 + Vε(uε)

)
|1 + log(dist (x, ∂�))|−1dx ≤ C�

(
Eε(uε)

|log ε|
)

, (1.5)

where, for t ≥ 0, we have set �(t) = t log(2 + t).

As a consequence of the above analysis, we see that in some sense the main
contribution to the GL-energy stems from the gradient of the phase, at least in the
appropriate energy regime.

In a slightly different direction, a highly involved result of Bourgain, Brezis and
Mironescu yields improved interior integral estimates for |∇uε|p, with p < 2 (i.e. p
subcritical), in dimension three and for the energy regime Eε(uε) ≤ M0|log ε| (see
[18], Theorem 8). Our purpose is to obtain a similar result in arbitrary dimension
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and for possibly larger energy regimes. Our approach is of somewhat different
nature and relies heavily on results in harmonic analysis which state that measures
with suitable growth over all balls are elements of the dual of W 1,p (see [38] and
references therein).

In view of possible oscillations in the phase, which essentially propagate in the
domain through an elliptic equation, it is not possible to expect a general improved
estimate involving only the energy (see e.g. [20, 12]). However, these oscillations
can be controlled by a weaker norm, say for instance the L1-norm of the gradient.
More precisely, we will show, as a consequence of Theorem 1.1 and [1, 2, 38], that
for every 1 ≤ p < 2, the following estimate holds (6)

(∫
B1/2

|∇uε|p

)1/p

≤ C p

(
�

(
Eε(uε)

|log ε|
)

+
∫

B1

|∇uε|
)

. (1.6)

Estimate (1.6) can ever be slightly improved if instead of Theorem 1.1 we invoke
Jacobian estimates introduced by Jerrard and Soner [28] and Alberti, Baldo and the
second author [3]. Relying on our result in [13], and the aforementioned results in
[38], we obtain

Theorem 1.5. Let 1 < p < 2. There exist C p > 0 such that if uε is a solution to
(GL)ε, then

(∫
B1/2

|∇uε|p

)1/p

≤ C p

(
Eε(uε)

|log ε| +
∫

B1

|∇uε|
)

. (1.7)

Remark 1.6. For boundary value problems, the term ||∇uε||L1 can be controlled
by the trace on ∂�. More precisely, it has been shown in [7, 29, 8, 18, 5, 9, 3]
that global bounds for ||∇uε||L p(�) with p < N

N−1 could be obtained under various
restrictive assumptions on gε = uε |∂� and uε. The case gε belonging to H1/2 with
the additional assumption (7) |gε| = 1 was considered in [17] and then in [5, 9].
The case p = N

N−1 was settled in [18] assuming a conjecture which we proved in

[13] (8).
More precisely, the results in [3, 18, 13] yield, for |gε| = 1 and � smooth

bounded and simply connected (9),

(∫
�

|∇uε| N
N−1

) N−1
N ≤ C

(
Eε(uε)

|log ε| + ||gε||2H1/2

)
. (1.8)

(6)Inequality (1.6) yields a nontrivial result only if Eε(uε) � |log ε|2
| log |log ε||2 .

(7)The proof in [5] actually carries over to the case |gε| is bounded away from zero, i.e. β >
|gε| > α > 0.

(8)Using a new linear estimate given in [18], Proposition 4, see also [37, 16].
(9)In [9], the assumption |gε| = 1 is replaced by an assumption on the GL-energy on the

boundary.
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Notice however that in the global estimate (1.8) and the case gε ∈ H1/2 the ex-
ponent N

N−1 is the best possible (see [18]), in contrast with the result of Theorem
1.5.

Combining (1.8) and Theorem 1.5 one obtains the announced generalization
of [18], Theorem 8.

Going back to Theorem 1.5, notice that estimate (1.7) is immediate if Eε(uε) ≥
|log ε|2, since by Hölder’s inequality,(∫

�

|∇uε|p
)1/p

≤ C

(∫
�

|∇uε|2
)1/2

≤ C Eε(uε)
1/2.

In view of Theorem 1.5 as well as the mentioned Jacobian estimates, it is tempting
to believe that estimate (1.1) can also be improved replacing possibly �(

Eε(uε)|log ε| )

by Eε(uε)|log ε| for suitable energy ranges (10). In another direction, it would be interest-
ing to extend our estimates to boundary value problems (see e.g. [22]) and to the
corresponding parabolic equation.

ACKNOWLEDGEMENTS. The third author wishes to thank warmly the Centro di
Ricerca Matematica Ennio De Giorgi of the Scuola Normale Superiore di Pisa for
its kind hospitality during the preparation of this work.

2. Estimates for the potential Vε(uε)

The purpose of this section is to provide the proof of Theorem 1.1. The vorticity set

Vε = {x ∈ �, |uε| ≤ 1 − σ0},
enters in an essential way in our discussion. The constant 0 < σ0 ≤ 1/2 appearing
in the definition of Vε depends only on the dimension N , and will be defined at a
later stage of our analysis (see Appendix).

The main point in the proof is to provide integral estimates of the potential
Vε(uε) on small balls B(x, r), distinguishing carefully the case where the balls are
included in � \ Vε from the case where they intersect the vorticity set Vε.

2.1. Potential estimates off the vorticity set

We first have:

Theorem 2.1. Let x ∈ � and r > 0 such that B(x, r) ⊂ � \ Vε. There are some
constants 0 < α0 < 1 and 0 ≤ σ0 ≤ 1/2 such that if r ≥ ε and

Ẽε(uε, x, r) ≡ 1

r N−2

∫
B(x,r)

eε(uε) ≤
(ε

r

)−α0
, (2.1)

(10)For instance, for Eε(uε) ≤ ε−γ , for a given 0 < γ < 1.
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then

|uε| ≥ 1 − Cε2

r2
(1 + Ẽε(uε, x, r)) on B(x, r/2). (2.2)

The proof of Theorem 2.1 follows some arguments in [11, 14]. The necessary
adaptation will be exposed in a separate Appendix. Theorem 2.1 provides a lower
bound for |uε| off the vorticity set. On the other hand, we recall some important
well-known global upper bounds.

Proposition 2.2. Let � be a smooth domain in RN and uε be a solution of (GL)ε on
�. There exists a constant C > 0 depending only on N such that, if dist (x, ∂�) >√

ε, then

|uε(x)| ≤ 1 + Cε2

dist (x, ∂�)
, (2.3)

|∇uε(x)| ≤ C

ε
. (2.4)

Combining Proposition 2.2 and Theorem 2.1, we deduce immediately the following
uniform estimate for the potential on balls included in � \ Vε.

Proposition 2.3. Let x, r and uε be as in Theorem 2.1 and assume that r ≥ ε and
dist (x, ∂�) >

√
ε. Then

sup
B(x,r/2)

Vε(uε) ≤ C
ε2

r4
(1 + Ẽε(uε, x, r))2. (2.5)

In the proof of Theorem 1.1 we will invoke Proposition 2.3 for balls of fixed radius
r = r0, specifying throughout the choice of r0 in a somewhat arbitrary way as

r0 = ε1/4

2
.

For this choice of r0, the factor ε2

r4
0

is equal to 16ε, and hence small.

2.2. Potential estimates on the vorticity set

In this section, we consider the case where B(x, r0) intersects the vorticity set Vε,

that is

dist (x,Vε) ≤ ε1/4

2
. (2.6)

In this situation, we show
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Proposition 2.4. Assume that dist (x, ∂�) ≥ ε1/8 and that (2.6) holds. Then there
exists some radius ε1/4 ≤ r(x) ≤ ε1/8 depending only on uε and x such that

∫
B(x,r(x))

Vε(uε) ≤ C

|log ε| log

(
2 + Ẽε(x, uε, ε

1/8)

|log ε|

) ∫
B(x,r(x))

eε(uε), (2.7)

where C > 0 is some constant depending only on N.

Comment. 1) We would like to draw the attention of the reader to the fact that
the l.h.s. of (2.7) is the potential integrated on the same domain B(x, r(x)) as the
energy eε(uε) on the right-hand side of the inequality. However the scaled energy
Ẽε(x, uε, ε

1/8) is considered on the larger domain B(x, ε1/8).
2) In contrast with Proposition 2.3, the radius r(x) for which this inequality

holds is not fixed a priori, but depends on x .

The main tools in the proof are the monotonicity formula and the clearing-out
theorem which we recall first.

Proposition 2.5 (Monotonicity formula (11)). Assume uε is a solution of (GL)ε in
B(x, R). Then we have

d

dr
(Ẽε(uε, x, r)) = 1

r N−2

∫
∂ B(x,r)

∣∣∣∣∂uε

∂n

∣∣∣∣
2

+ 1

r N−1

∫
B(x,r)

(1 − |uε|2)2

2ε2
,

for 0 < r < R.

Remark 2.6. Note in particular that

d

dr
(Ẽε(uε, x, r)) ≥ 1

r N−1

∫
B(x,r)

(1 − |uε|2)2

2ε2
≥ 0, (2.8)

so that for fixed x , the function F(r) ≡ Ẽε(uε, x, r) is a nondecreasing function of
the radius r . Moreover, setting

G(r) = r2−N
∫

B(x,r)

(1 − |uε|2)2

2ε2
,

(2.8) yields the differential inequality

r F ′ ≥ G , (2.9)

which relates in a simple way the energy integral and the potential integral on
B(x, r). This relation will be exploited in the proof of Proposition 2.4.

(11)Here we consider the version given in [8]. Earlier versions were given in [36, 33, 29].
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Theorem 2.7 (Clearing-out (12)for vorticity). Let uε be a solution to (GL)ε, x ∈ �,
r ≥ ε such that B(x, r) ⊂ �. If

Vε ∩ B(x, r
2 ) 
= ∅,

then
Ẽε(uε, x, r) ≥ η0| log( ε

r )|,
where η0 > 0 is some constant depending only on N.

Proof of Proposition 2.4. For s ∈ Iε ≡ [ 1
4 log ε, 1

8 log ε], set f (s) = F(exp s),
g(s) = G(exp s), so that relation (2.9) writes, for f and g,

f ′(s) ≥ g(s) ∀ s ∈ Iε. (2.10)

For this ODE we invoke the next elementary lemma.

Lemma 2.8. Let I = [a, b] be a bounded interval of R, f and g two nonnegative
absolutely continuous functions such that

f ′ ≥ g on I.

Then there exists s0 ∈ I such that

g(s0) ≤ 1

b − a
log

(
f (b)

f (a)

)
f (s0) . (2.11)

Applying Lemma 2.8 to (2.10) we deduce that there exists some r(x) ∈ [ε1/4, ε1/8]
such that

G(r(x)) ≤ 1

|log ε| log

(
F(ε1/8)

F(ε1/4)

)
F(r(x)). (2.12)

On the other hand, by the clearing-out theorem, since B(x, ε1/4

2 )∩Vε 
= ∅, we have

F(ε1/4) = Ẽε(x, uε, ε
1/4) ≥ η0| log(

ε

ε1/4
)| = 3η0

4
|log ε|. (2.13)

Combining (2.12) and (2.13), we deduce the conclusion (2.7).

Proof of Lemma 2.8 The argument is by contradiction. If (2.11) were false, we
would have

f ′(s) > λ f (s) ∀ s ∈ [a, b] ,

(12)This kind of result was proved under various assumptions in [15, 36, 33, 29, 30, 8, 10] and
termed η-compactness in [33, 29, 30], η-ellipticity in [8, 10]. Here we follow the terminology in
[27, 11], which was introduced by Brakke [19].
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where we have set

λ = 1

b − a
log

(
f (b)

f (a)

)
,

so that
d

ds
(exp(−λs) f (s)) > 0 on [a, b].

Hence, by integration

f (b) > exp(−λ(a − b)) f (a) = f (b),

a contradiction.

2.3. Proof of Theorem 1.1

Recall that in this section � ≡ B1. First, notice that we may assume throughout
that uε satisfies the energy bound

Eε(uε) ≤ ε−β0, (2.14)

where β0 = α0
2 , α0 being the constant appearing in Theorem A.2. Indeed, if other-

wise Eε(uε) ≥ ε−β0 , then, as already mentioned in the introduction, the conclusion
is straightforward, choosing C0 = 2

β0
.

We next consider the sets

�ε =
{

x ∈ B1/2, dist (x,Vε) ≤ r0 = ε1/4

2

}
and 
ε = B1/2 \ �ε ,

so that �ε ∪ 
ε = B1/2.

Step 1: bounds for the potential on 
ε. If x ∈ 
ε, then B(x, r0) ⊂ B3/4 \ Vε

provided ε is sufficiently small, and we may therefore invoke Proposition 2.3 to
assert that

Vε(uε(x)) ≤ Cε(1 + Ẽε(uε, x, r0))
2. (2.15)

By monotonicity we have

Ẽε(uε, x, r0) ≤ Ẽε(uε, x, r0 + 1

4
) ≤ C Eε(uε). (2.16)

Combining (2.15) with (2.16), together with the fact that Eε(uε) ≤ ε−β ≤ ε−1/2,
we deduce

sup

ε

Vε(uε) ≤ Cε1/2(1 + Eε(uε)). (2.17)
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Step 2: integrating the potential on �ε. If x ∈ �ε, then dist (x,Vε) ≤ r0, so that
we may apply Proposition 2.4. Combining (2.7) with the monotonicity formula as
above, we deduce∫

B(x,r(x))

Vε(uε) ≤ C

|log ε|
∫

B(x,r(x))

eε(uε) log

(
2 + Eε(uε)

|log ε|
)

. (2.18)

We next consider the covering ∪x∈�ε B(x, r(x)) of �ε and apply Besicovitch cov-
ering Theorem. This yields a finite set A = {x1, ..., xm} ⊂ �ε such that

�ε ⊂ ∪x∈A B(x, r(x))

and the balls B(xi , r(xi )), i = 1, ..., m can be distributed in � families Bk , k =
1, ..., � of disjoint closed balls, where � is a constant depending only on N . We
write ∫

�ε

Vε(uε) ≤
m∑

i=1

∫
B(xi ,r(xi ))

Vε(uε)

≤ C

|log ε| log

(
2 + Eε(uε)

|log ε|
) m∑

i=1

∫
B(xi ,r(xi ))

eε(uε).

(2.19)

On the other hand,

m∑
i=1

∫
B(xi ,r(xi ))

eε(uε) ≤
�∑

k=1

( ∑
B(xi ,r(xi ))∈Bk

∫
B(xi ,r(xi ))

eε(uε)

)

≤ �Eε(uε).

(2.20)

Combining (2.18), (2.19) and (2.20), we obtain∫
�ε

Vε(uε) ≤ C

|log ε| Eε(uε) log

(
2 + Eε(uε)

|log ε|
)

. (2.21)

Step 3: Proof of Theorem 1.1 completed. We distinguish two cases.

Case A: Eε(uε) ≥ ε1/2|log ε|. It follows from (2.17) that

sup

ε

Vε(uε) ≤ C
Eε(uε)

|log ε| , (2.22)

so that the conclusion (1.1) follows from (2.22) and (2.21).

Case B: Eε(uε) ≤ ε1/2|log ε|. In this case it follows from the clearing-out theorem
that if ε is sufficiently small,

|uε| ≥ 1 − σ0 on B9/10,

so that �ε = ∅, and 
ε = B1/2. The conclusion (1.1) then follows from Proposition
A.4 of the Appendix.
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Remark 2.9. Let ε < r < 1. The analogue of (1.1) for the ball Br writes, by
scaling, ∫

Br/2

Vε(uε) ≤ Eε(uε, r)

| log ε
r | log

(
2 + Eε(uε, r)

r N−2| log ε
r |

)
, (2.23)

where Eε(uε, r) ≡ ∫
Br

eε(uε) = r N−2 Ẽε(uε, 0, r). Indeed, setting ũε(x̃) = uε(r x̃)

for x̃ ∈ B1, we verify that ũε is a solution of (GL)ε̃ on B1, for ε̃ = ε/r . Moreover,
we have

Eε(ũε) = 1

r N−2
Eε(uε, r),

∫
B1

Vε̃(ũ ε̃) = 1

r N−2

∫
Br

Vε(uε).

3. Gradient estimates for the modulus |uε|
The aim of this section is to prove Proposition 1.3. The starting point is the elliptic
equation for the function ζ ≡ 1 − ρ2

ε ≡ 1 − |uε|2,

−�ζ + 2
ρ2

ε

ε2
ζ = 2|∇uε|2, (3.1)

which is a straightforward consequence of (GL)ε. We introduce next a test function
χ ∈ C∞

c (B1) such that χ ≡ 1 on B1/2 and χ = 0 on B1 \ B3/4. Multiplying (3.1)
by χ2ζ and integrating by parts, we obtain, after a few standard computations,

1

2

∫
B1/2

|∇ζ |2 ≤ 2
∫

B3/4

ζ |∇uε|2 + 2
∫

B3/4

ζ 2|∇χ |2. (3.2)

On the other hand, we have the pointwise equality |∇ζ |2 =|∇|uε|2|2=4|uε|2|∇|uε| |2,
so that

|∇|uε| |2 = 1

4
|∇ζ |2 + (1 − |uε|2)|∇|uε| |2 ≤ 1

4
|∇ζ |2 + |ζ ||∇|uε| |2,

and hence (3.2) yields∫
B1/2

|∇|uε| |2 ≤ 2
3

2

∫
B3/4

|ζ ||∇uε|2 +
∫

B3/4

ζ 2|∇χ |2. (3.3)

To complete the proof of Proposition 1.3, we apply Cauchy-Schwarz inequality to the
first integral on the right-hand side of (3.3). This involves the term ||∇uε||L4(B3/4)

,
which is handled by the following

Lemma 3.1. We have∫
B3/4

|∇uε|4 ≤ C

(
1 + 1

ε2

∫
B4/5

Vε(uε)

)
, (3.4)

where C > 0 is a constant depending only possibly on N.
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Comment. The factor ε−2 in (3.4) is somewhat optimal. This can be checked
both for vortices and kinks. For vortices, i.e. planar complex solutions of the form
uε = fε(r) exp(iθ), we have∫

B3/4

|∇uε|4 � C
∫ 3/4

ε

1

r4
rdr � C

ε2
� C

ε2

∫
B1

Vε(uε),

whereas for the standard kink tanh( x√
2ε

) we have

∫
B3/4

|∇uε|4 � C
∫ ε

−ε

1

ε4
dx � C

ε3
� C

ε2

∫
B1

Vε(uε).

Proof of Lemma 3.1 On the ball B4/5 we decompose the function uε as uε ≡vε+wε,
where wε is a harmonic function and verifies wε = uε on the boundary ∂ B4/5. In
view of Proposition 2.2, uε, and hence wε are uniformly bounded on ∂ B4/5, so that,
since wε is harmonic,

|∇wε| ≤ C on B3/4, (3.5)

where C depends only on the dimension N .
Turning to vε, we notice that by construction vε = 0 on ∂ B4/5, and that

|�vε| ≤ C

ε
Vε(uε)

1/2.

Hence by standard elliptic theory

||vε||2H2(B4/5)
≤ C

ε2

∫
B4/5

Vε(uε). (3.6)

Moreover, since uε and wε are uniformly bounded on B4/5, the same holds for vε,
i.e.

||vε||L∞(B4/5) ≤ C, (3.7)

where C > 0 is depending only on N . We next invoke a classical Gagliardo-
Nirenberg type inequality which asserts that

||∇vε||2L4(B4/5)
≤ C ||vε||H2 ||vε||L∞, (3.8)

where C depends only on N . An elementary proof of (3.8) may actually be derived
as follows. Since v ≡ vε is compactly supported in B4/5, we may write, for i =
1, ..., N , integrating by parts,

||vxi ||4L4(B4/5)
=

∫
v3

xi
vxi = −

∫
(v3

xi
)xi v = −3

∫
vxi xi (vxi )

2v

≤ 3||vxi xi ||L2 ||vxi ||2L4 ||v||L∞,

(3.9)



IMPROVED ESTIMATES FOR THE GINZBURG-LANDAU EQUATION:THE ELLIPTIC CASE 331

which yields (3.8). Combining (3.6), (3.7) and (3.8), we obtain

||∇vε||4L4(B4/5)
≤ C

ε2

∫
B4/5

Vε(uε). (3.10)

Invoking finally (3.5) together with the decomposition uε = vε + wε we complete
the proof of Lemma 3.1

Remark 3.2. In view of the inequality |∇uε| ≤ C/ε, we deduce by (3.5) that
|∇vε| ≤ C/ε on B3/4. It follows that for any p ≥ 4 we have

||∇vε||p
L p(B3/4)

≤ C p

ε p−2

∫
B4/5

Vε(uε),

and hence, for every p ≥ 4,

∫
B3/4

|∇uε|p ≤ C p

(
1

ε p−2

∫
B4/5

Vε(uε) + 1

)
. (3.11)

As in the case p = 4, the exponent ε−(p−2) is somewhat optimal. We conjecture
actually that inequality (3.11) is true for every p > 2.

Proof of Proposition 1.3 completed. We go back to inequality (3.3). In view of
Lemma 3.1, we have, by Cauchy-Schwarz inequality∫

B3/4

|ζ ||∇uε|2 ≤ ||ζ ||L2(B3/4)
||∇uε||2L4(B3/4)

≤ C

(∫
B3/4

ε2Vε(uε)

)1/2 (
1 +

∫
B4/5

ε−2Vε(uε)

)1/2

≤ C


∫

B4/5

Vε(uε) + ε

(∫
B4/5

Vε(uε)

)1/2

 .

(3.12)

The conclusion follows.

Remark 3.3. Combining Theorem 1.1 and Proposition 1.3 we are immediately led
to the inequality ∫

B1/2

|∇|uε| |2 ≤ C2�

(
Eε(uε)

|log ε|
)

. (3.13)

Indeed, as in the proof of Theorem 1.1 one distinguishes two cases:

Case 1:
∫

B4/5
Vε(uε) ≥ ε2. In this case ε(

∫
B4/5

Vε(uε))
1/2 ≤ ∫

B4/5
Vε(uε) and the

conclusion follows directly from (1.4).

Case 2:
∫

B4/5
Vε(uε) ≤ ε2. One concludes in this case using Proposition A.4.
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Remark 3.4. As in Remark 2.9 we may argue by scaling to assert that, for ε<r <1,
we have∫

Br/2

|∇|uε| |2 + Vε(uε) ≤ Eε(uε, r)

| log ε
r | log

(
2 + Eε(uε, r)

r N−2| log ε
r |

)
. (3.14)

Proof of Corollary 1.4. Let � be an arbitrary smooth domain in RN . Let ε1/2 ≤
r ≤ 1 and consider a ball B(x, r) ⊂ �. As a direct consequence of (3.14) and the
elementary inequality log(2 + E

r N−2 ) ≤ log(2 + E)(1 + | log r |), it follows that

∫
B(x,r/2)

|∇|uε| |2+Vε(uε)≤ C

|log ε| log

(
2 + Eε(uε)

|log ε|
)

(1 + | log r |)
∫

B(x,r)

eε(uε).

(3.15)

Using a covering argument, we deduce∫
{dist(x,∂�)≥ε1/4}

(
| ∇|uε| |2+Vε(uε)

)
|1+log(dist (x, ∂�))|−1dx ≤C�

(
Eε(uε)

|log ε|
)

.

On the other hand,∫
{dist(x,∂�)≤ε1/4}

(
| ∇|uε| |2 + Vε(uε)

)
|1 + log(dist (x, ∂�))|−1dx

≤ Eε(uε)

1 + 1
4 |log ε| ≤ C

Eε(uε)

|log ε| .

Combining the last two inequalities, the conclusion (1.5) follows.

4. L p estimates for ∇uε, p < 2

The purpose of this section is to prove (1.6) and its improvement (1.7) stated in
Theorem 1.5. Throughout this section, our arguments follow closely methods in-
troduced in the afore quoted literature. We first decompose the gradient into contri-
butions of phase and modulus, writing (here and in the sequel u ≡ uε)

4|u|2|∇u|2 = 4|u × ∇u|2 + |∇|u|2|2, (4.1)

so that

4|∇u|2 = 4|u × ∇u|2 + |∇|u|2|2 + 4(1 − |u|2)|∇u|2. (4.2)

For the two last terms on the right-hand side of (4.2) we invoke our previous esti-
mate (3.13) and (3.12), so that∫

B1/2

|∇|u|2|2 + 4|1 − |u|2| |∇u|2 ≤ C�

(
Eε(uε)

|log ε|
)

,
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so that, by Hölder inequality,

(∫
B1/2

|∇|u|2|p + 4(|1 − |u|2| |∇u|2)p/2

)1/p

≤ C

(
�

(
Eε(uε)

|log ε|
))1/2

. (4.3)

It follows in particular, that if Eε(uε) ≥ η1|log ε| (where η1 is the constant ap-

pearing in Theorem A.7 of the Appendix), then since
(
�

(
Eε(uε)|log ε|

))1/2 ≤ C Eε(uε)|log ε| ,

we deduce (∫
B1/2

|∇|u|2|p + 4(|1 − |u|2| |∇u|2)p/2

)1/p

≤ C
Eε(uε)

|log ε| . (4.4)

4.1. Decomposing u × ∇u

Recall that the term u ×∇u represents essentially the gradient of the phase (13), and
verifies the equation div (u × ∇u) = 0 (14). It is convenient to rewrite this equation
in the formalism of differential forms (15)

d∗(u × du) = 0. (4.5)

In order to derive an elliptic system for u × du it is useful to consider the Jacobian
Ju ≡ d(u × du) = 2

∑
i< j uxi × ux j dxi ∧ dx j as well as the truncated quantity

J̃ = d(χu × du) = χ Ju + dχ ∧ (u × du), (4.6)

where 0 ≤ χ ≤ 1 denotes a smooth function, compactly supported in B7/8, and
such that χ ≡ 1 on B6/7. Let ψ be the solution of the elliptic equation

�ψ = J̃ on R
N ,

obtained through convolution with the fundamental solution of the Laplacian. Since
d J̃ = 0, it follows that �(dψ) = 0, so that dψ = 0 on RN . Hence, we are led to

dd∗ψ = dd∗ψ + d∗dψ = �ψ = J̃ ,

so that
d(u × du − d∗ψ) = 0 on B6/7.

By Poincaré Lemma, there exists some function � on B6/7 such that

u × du = d� + d∗ψ on B6/7. (4.7)

(13)Indeed, if u 
= 0, then u = |u| exp(iϕ) and u × ∇u = |u|2∇ϕ.
(14)Take the exterior product of (GL)ε with u.
(15)d denotes the exterior differential, and d∗ = ± � d� its formal adjoint.
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Moreover, applying d∗ to both sides we deduce

�� = 0 on B6/7.

By standard elliptic estimates it follows

||∇�||L∞(B5/6) ≤ C ||∇u||L1(B6/7)
+ ||∇ψ ||L1(B6/7)

. (4.8)

Next, we write ψ = ψ1 + ψ2, where ψ2 is the solution (obtained through convolu-
tion with the fundamental solution of the Laplacian) of the equation

�ψ2 = dχ ∧ (u × du) on R
N .

Clearly, by standard elliptic estimates,

||∇ψ2||L∞(B7/8) ≤ C ||∇u||L1(B8/9)
. (4.9)

At this stage it remains to analyze the term ψ1, solution of

�ψ1 = χ Ju on R
N , (4.10)

which is the central part of the proofs of inequalities (1.6) and (1.7). We begin with
the proof of (1.6).

4.2. Proof of (1.6)

In order to avoid oscillations of u when |u| � 1 we first reproject u. To that aim let
f : R+ → [1, 2] be a function such that f (t) = 1

t if t ≥ 1/2, f (t) = 1 if t ≤ 1/4
and | f ′| ≤ 4. Set

ũ = f (|u|) · u on B1 .

Notice that

J ũ = d( f 2(|u|)u × du) and
∣∣∣1 − f 2(|u|)

∣∣∣ ≤ C(1 − |u|2).
Moreover, a property which is central in the proof is that

|J ũ| ≤ C
(1 − |u|2)2

ε2
= CVε(uε). (4.11)

Indeed, if |u| ≥ 1/2, then by construction J ũ = 0. On the other hand, if |u| ≤ 1/2,
then Vε(uε) ≥ 1

64ε2 , whereas |J ũ| ≤ C
ε2 , as a consequence of estimate (2.4).

Let us show next that the difference J ũ − Ju is small in a suitable norm.

Step 1: comparing J ũ to Ju. We claim that for 1 ≤ p < 2,

||J ũ − Ju||p
W−1,p(B7/8)

≤ C pε
2−p Eε(uε). (4.12)

In particular, if ψ̃1 is the solution of �ψ̃1 = χ J ũ on RN , then we have,∫
|∇(ψ̃1 − ψ1)|p ≤ C pε

2−p Eε(uε). (4.13)
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Proof. We have J ũ − Ju = d((1 − f 2(|u|))u × du), and

||(1 − f 2(|u|))u × du||p
L p(B7/8)

≤ C
∫

B7/8

(1 − |u|2)p|∇u|p

≤ C

(∫
B7/8

(1 − |u|2) 2p
2−p

)1− p
2

Eε(uε)
p/2

≤ C

(∫
B7/8

(1 − |u|2)2

)1− p
2

Eε(uε)
p/2

≤ Cε2−p Eε(uε),

(4.14)

so that (4.12) and (4.13) follow.

In order to handle ψ̃1, we consider the (vector) measure µ defined by

µ = χ J ũ dx on R
N .

In view of (4.11) we have

|µ| ≤ CχVε(uε) dx on R
N . (4.15)

Next we consider, for q > 2, the maximal fractional operator (see e.g. [38], p.204)

Mq |µ|(x) = sup{rq−N |µ|(B(x, r)) , r > 0},

Step 2: estimate of ||Mq |µ| ||L∞(RN ). We have, for every q > 2,

||Mq |µ| ||L∞ ≤ Cq�

(
Eε(uε)

|log ε|
)

. (4.16)

Proof of (4.16). In view of the definition of µ we have, by Theorem 1.1

|µ|(RN ) ≤
∫

B7/8

Vε(uε) ≤ C�

(
Eε(uε)

|log ε|
)

. (4.17)

Next, for x ∈ RN and ε1/2 ≤ r ≤ 1/16 we have, by (3.15),

|µ|(B(x, r)) ≤ C

|log ε| log

(
2 + Eε(uε)

|log ε|
)

(1 + | log r |)
∫

B(x,r)

eε(uε). (4.18)

Combining (4.18) with the monotonicity formula, we are led to the inequality, for
x ∈ RN , ε1/2 ≤ r ≤ 1/16,

|µ|(B(x, r)) ≤ Cr N−2(1 + | log r |)�
(

Eε(uε)

|log ε|
)

. (4.19)
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Finally, for small radii 0 < r < ε1/2, we have the straightforward estimate

|µ|(B(x, r)) ≤
∫

B(x,r)

χeε(uε) ≤ Cr N−2 Eε(uε),

so that, in this case

rq−N |µ|(B(x, r)) ≤ Cε
q−2

2 Eε(uε). (4.20)

Combining (4.17), (4.18) and (4.20), (4.16) follows.

Step 3: estimate for ψ̃1. Recall that

�ψ̃1 = µ on R
N .

By Theorem 4.7.4 of [38] (16), for every 1 < q0 < q1 < N we have

||µ||[W 1,q1 (RN )]∗ ≤ C(q0, q1)||Mq0 |µ| ||L∞ .

By duality, since µ is compactly supported in B1 it follows

||∇ψ̃1||Lq′
1 (B1)

≤ C(q0, q1)||Mq0 |µ| ||L∞ . (4.21)

Finally we choose q ′
1 = p so that q1 > 2. Choosing q0 = q1+2

2 we have q0 > 2 so
that we may estimate the right-hand side of (4.21) by Step 3. this yields

||∇ψ̃1||L p(B1) ≤ C p�

(
Eε(uε)

|log ε|
)

. (4.22)

Step 4: proof of (1.6) completed. Combining (4.9), (4.13) and (4.22) we obtain

||∇ψ1||L p(B6/7) ≤ C p�

(
Eε(uε)

|log ε|
)

. (4.23)

Combining (4.23) with (4.9), we deduce

||∇ψ ||L p(B6/7) ≤ C p

(
�

(
Eε(uε)

|log ε|
)

+ ||∇u||L1(B8/9)

)
,

and hence by (4.8)

||∇�||L∞(5/6) ≤ C

(
�

(
Eε(uε)

|log ε|
)

+ ||∇u||L1(B8/9)

)
.

(16)which goes back to results in [1]. See also related issues in [26, 2, 31].
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Going back to (4.7) we are led to

||u × ∇u||L p(B6/7) ≤ C p

(
�

(
Eε(uε)

|log ε|
)

+ ||∇u||L1(B8/9)

)
. (4.24)

Next we distinguish two cases.

Case 1. Eε(uε) ≤ η1|log ε|, where η1 is the constant appearing in Theorem A.7
of the Appendix. Then we may apply Theorem A.7, and (1.6) is an immediate
consequence of (A.39).

Case 2. Eε(uε) ≥ η1|log ε|. Then (1.6) follows combining (4.2), (4.3), (4.4) and
(4.24).

4.3. Proof of Theorem 1.5

As mentioned in the introduction, and in view of Theorem A.7 it suffices to consider
the case

η1|log ε| ≤ Eε(uε) ≤ |log ε|2, (4.25)

where η1 is the constant appearing in Theorem A.7. We therefore assume (4.25)
holds throughout this section. The main difference with the proof of (1.6) is the
treatment of equation (4.10), and the way we approximate the Jacobian Juε. The
main new ingredient is an approximation procedure, taken from [13]. The mono-
tonicity formula, which is crucial in the above proof of (1.6), (see e.g. (4.20)) does
not hold however for the approximating map, at least at very small scales. In order
to overcome this difficulty we smooth out � using a convolution by a mollifier.
More precisely, we introduce a small scale δ0 of the form

δ0 = δ0(ε) =
(

1

|log ε|
)k0

, (4.26)

where k0 > 0 will be determined later. Let ζ a smooth positive function compactly
supported in B1 such that

∫
B1

ζ = 1, and set

ζε(x) = δ−N
0 ζ(

x

δ0
).

We introduce next the 2-form

ψ̃1 = ψ1 ∗ ζε,

so that ψ̃1 satisfies the equation

�ψ̃1 = (χ Juε) ∗ ζε on R
N .

The first observation is that ψ̃1 is close to ψ1.
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4.3.1. Comparing ∇ψ̃1 to ∇ψ1

Proposition 4.1. We have

||∇ψ̃1 − ∇ψ1||L1 ≤ Cδ0 Eε(uε), (4.27)

||∇ψ1||L2 + ||∇ψ̃1||L2 ≤ C Eε(uε)
1/2 (4.28)

so that for any 1 ≤ p < 2 we have by interpolation

||∇ψ̃1 − ∇ψ1||L p ≤ C pδ
2
p −1

0 Eε(uε)
1/p. (4.29)

Proof. Recall that for any function w and 1 ≤ p < +∞,

||w ∗ ζε − w||L p ≤ C pδ0||∇w||L p . (4.30)

We apply (4.30) to w = ∇ψ1, p = 1. To that aim, we claim

||∇ψ1||W 1,1 ≤ C Eε(uε), (4.31)

Proof of the claim. It follows from a result in [23] that if v ∈ H1(RN ; C), then the
Jacobian Jv belongs to the Hardy space H1, and that

||Jv||H1(RN ) ≤ C ||∇v||L2(RN ). (4.32)

On the other hand, a classical result in harmonic analysis states that if f ∈ H1(RN ),
then

||∇2(�−1 f )||L1(RN ) ≤ C || f ||H1(RN ). (4.33)

We apply (4.32) to a suitable extension of uε to the whole of RN , so that by (4.33)
and a few auxiliary computations we deduce

||∇2(�−1(χ Juε))||L1(RN ) ≤ C ||∇uε||L2(RN ),

and the claim follows.
Inequality (4.27) is then a direct consequence of (4.31), whereas for (4.28) we

invoke the identity Juε = d(uε × duε).
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4.3.2. Approximation with vorticity bounds

The main result of [13] is

Proposition 4.2. Let 0 < γ < 1 and uε : B1 → C be such that Eε(uε) ≤ ε−γ .
There exists constants C > 0 and α > 0 depending only on γ and N such that there
exists a smooth function vε : B1 → C such that

|vε| ≤ 1, Eε(vε) ≤ C Eε(uε) (4.34)

||Jvε||L1 ≤ C
Eε(uε)

|log ε| (4.35)

||vε − uε||L2(B1)
≤ Cεα Eε(uε)

1/2. (4.36)

Notice in particular that if uε and vε are as above, then

Juε = Jvε + κε, (4.37)

where

κε ≡ dhε ≡ d ((uε − vε) × d(uε + vε)) . (4.38)

If uε itself is uniformly bounded, we have the following

Lemma 4.3. Assume uε is as in Proposition 4.2 and verifies moreover

|uε| ≤ 2 on B1 . (4.39)

Then, for any 1 ≤ p < 2, we have

||hε||L p ≤ C pε
αp Eε(uε)

1/p, (4.40)

where C p > 0 and 0 < αp < 1 depend only on p.

Comment. In the case considered above, Juε has been split in a term bounded in
L1 by Eε(uε)|log ε| and a term which is small in W −1,p, for every 1 ≤ p < 2.

Proof of Lemma 4.3. Since by (4.34) and assumption (4.39) ||uε − vε||L∞ ≤ 3 it
follows by interpolation and (4.36) that, for any r ≥ 2,

||uε − vε||Lr (B1) ≤ ||uε − vε||2/r
L2(B1)

||uε − vε||(r−2)/r
L∞(B1)

≤ Cε2α/r Eε(uε)
1/r .

Hence, for 1 ≤ p < 2,

||hε||L p(B1) ≤ ||uε − vε||L2p/(p−2)(B1)
Eε(uε)

p/2 ≤ Cε(2−p)α Eε(uε),

so that the conclusion follows.

We provide next a more localized version of Proposition 4.2.
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Proposition 4.4. Let 1 ≤ p < 2 and assume uε satisfies (4.25). Let k1 > 0 and set
δ1 = δ1(ε) = |log ε|−k1 . Then we may decompose χ Juε as

χ Juε = νε + rε,

where νε is compactly supported in B7/8 and satisfies, for some constant C(k1) > 0
depending only on N and k1,

sup{r2−N |νε|B(x, r), x ∈ R
N , r ≥ δ1(ε)} ≤ C(k1)

Eε(uε)

|log ε| , (4.41)

and where rε satisfies, for some 0 < β < 1 depending only on p and k1,

||rε||W−1,p(B1)
≤ C pε

β Eε(uε)
1/p. (4.42)

Proof. The argument is to apply Proposition 4.2 on balls of size δ1(ε) and then
reconnect the resulting functions thanks to a partition of unity. More precisely,
cover B1 by balls Bi ≡ B(xi , δ1(ε)), i = 1, ..., �ε such that the balls B(xi , δ1/8) do
not intersect, and consider a partition of unity {χi }1≤i≤�ε for the previous covering,
i.e. such that χi is smooth, compactly supported in B(xi , δ1) and moreover

|∇χi | ≤ C

δ1
, (4.43)

for some constant C depending only on N .
On each ball Bi we apply Proposition 4.2 to the restriction of uε, after a suitable

change of scales. This yields maps vi
ε : Bi → C such that |vi

ε| ≤ 1 and∫
Bi

eε(v
i
ε) ≤ C

∫
Bi

eε(uε),

∫
Bi

|Jvi
ε| ≤ C

|log ε|
∫

Bi

eε(uε) (4.44)

and

||uε − vε||2L2(Bi )
≤ Cδ2

1ε2α

∫
Bi

eε(uε). (4.45)

Moreover, for κ i
ε = Juε − Jvi

ε = dhi = d ((uε − vε) × d(uε + vε)) we have, for
every 1 ≤ p < 2,

||hi ||L p(Bi ) ≤ C pδ
(2−p)/p
1 εαp

(∫
Bi

eε(uε)

)1/p

. (4.46)

Setting νε = χ(
∑

i χi Jvi
ε), we may write χ Juε = νε + rε, with

rε = χ(

�ε∑
i=1

χiκ
i
ε) =

�ε∑
i=1

d(χχi h
i
ε) +

�ε∑
i=1

d(χχi )h
i
ε.
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In view of (4.46) and (4.43), we derive (4.42). Concerning νε, we have to bound
uniformly r2−N

∫
B(x,r)

|νε|. Firstly we notice that by (4.44) and the properties of
the covering, we have, for sufficiently small ε and r ≥ δ1(ε)

∫
B(x,r)

|νε| ≤ C

|log ε|
∫

B(xi ,8r)

χ̃eε(uε),

where χ̃ ≥ χ is some smooth function with compact support in B8/9. Hence, by
monotonicity,

sup{r2−N
∫

B(x,r)

|νε|, r ≥ δ1, x ∈ R
N } ≤ C

Eε(uε)

|log ε| , (4.47)

and the proof is complete.

We now turn to the measure ν̃ε = νε ∗ ζε.

Lemma 4.5. Assume k0 = k1, i.e. δ0(ε) = δ1(ε). Then we have

||M2|ν̃ε| ||L∞(RN ) ≤ C
Eε(uε)

|log ε| , (4.48)

where the constant C depends only on k0 = k1.

Proof. In view of the definition of ν̃ε we have, for any y ∈ RN ,

|ν̃ε(y)| ≤ Cδ−N
0

∫
B(x,δ0)

|νε|. (4.49)

In order to bound r2−N
∫

B(x,r)
|ν̃ε(y)|dy uniformly on R, we distinguish two cases.

Case 1: r ≤ δ0. By Proposition 4.2 and (4.49), we have

|ν̃ε(y)| ≤ Cδ−2
0

Eε(uε)

|log ε| .

Integrating, we deduce

r2−N
∫

B(x,r)

|ν̃ε(y)| ≤ Cr2δ−2
0

Eε(uε)

|log ε| ≤ C
Eε(uε)

|log ε| .
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Case 2: r ≥ δ0. We write

∫
B(x,r)

|ν̃ε(y)|dy =
∫

B(x,r)

∣∣∣∣
∫

B(0,δ0)

ζε(z)νε(y − z)dz

∣∣∣∣ dy

≤
∫

B(x,r)

∫
B(0,δ0)

ζε(z)|νε|(y − z) dzdy

=
∫

B(0,δ0)

∫
B(x,r)

ζε(z)|νε|(y − z) dydz

=
∫

B(0,δ0)

ζε(z)

(∫
B(x−z,r)

|νε(w)|dw

)
dz

≤ Cr N−2 Eε(uε)

|log ε| ,

(4.50)

where we invoke Proposition 4.4 for the last inequality. Combining the two cases,
the conclusion follows.

4.3.3. Proof of Theorem 1.5 completed

The main difference with the proof of (1.6) is that instead of (4.23) we are now in
position to use the stronger estimate, if uε verifies (4.25),

||∇ψ1||L p(B6/7) ≤ C p
Eε(uε)

|log ε| . (4.51)

When (4.51) is established, then the proof carries out almost verbatim.

Proof of (4.51). We determine the constant k0 in (4.26), going back to (4.29).
Indeed, choosing

k0 = k1 = (1 − 2

p
)2,

we obtain by (4.29)

||∇ψ̃1 − ∇ψ1||L p ≤ C p
Eε(uε)

|log ε| . (4.52)

Next, we write ψ̃1 = ψ̃0
1 + ψ̃1

1 , where ψ̃0
1 is the solution obtained by convolution

with the fundamental solution of the Laplacian of

�ψ̃0
1 = ν̃ε on R

N ,

and where similarly ψ̃1
1 solves

�ψ̃0
1 = r̃ε ≡ rε ∗ ζε on R

N .
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In view of Lemma 4.5 and invoking once more Theorem 4.7.4 of [38], we obtain

||∇ψ̃0
1 ||L p ≤ ||M2|ν̃ε| ||L∞ ≤ C p

Eε(uε)

|log ε| . (4.53)

By (4.42) in Proposition 4.2, we deduce

||∇ψ̃1
1 ||L p ≤ C pε

β Eε(uε) ≤ C p
Eε(uε)

|log ε| , (4.54)

so that combining (4.52), (4.53) and (4.54), we obtain (4.51).

Appendix

In this Appendix we consider the following situation. Consider the unit ball B1 ⊂
RN , and uε a solution to (GL)ε verifying

|uε| ≥ 1

2
on B1, (A.1)

or the even more restrictive assumption

|uε| ≥ 1 − σ0,

where 0 < σ0 < 1/2 is some constant which will be introduced later. In particular
we may write

uε = ρεeiϕε on B1, (A.2)

where ϕε is a real-valued function defined on B1 and ρε denotes the modulus |uε|
of uε. Our aim is to derive a number of improved estimates, in particular pointwise
estimates, under the additional assumption (A.1). This will lead us among other
things to the proof of Theorem 2.1.

A.1. Pointwise estimates

We first have

Proposition A.1. Let uε be a solution of (GL)ε on B1 verifying (A.1), then

|uε| ≥ 1 − Cε2(1 + ||∇ϕε||2L∞(B 3
4
)) on B 1

2
, (A.3)

where C > 0 is some constant depending only on N.
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Proof. The equation for θε = 1 − ρε writes

−�θε + aθε = b, (A.4)

where we have set

a = 1 + (1 − θε)
2

ε2
, b = (1 − θε)|∇ϕε|2. (A.5)

We can conclude applying the maximum principle as in the Appendix of [14].

Our next purpose is to obtain pointwise bounds for |∇uε|, and hence |∇ϕε|. To
that aim, we introduce a bound on the energy of the form

Eε(uε) ≤ ε−α, (Hα)

for 0 < α < 1. We then have

Theorem A.2. Let uε be a solution of (GL)ε on B1. There exist constants 0 <

α0 < 1 and 0 < σ0 ≤ 1
2 depending only on N such that if (Hα0) is satisfied and if

|uε| ≥ 1 − σ0 on B1, (A.6)

then

eε(uε)(x) ≤ C
∫

B1

eε(uε), on B 3
4

(A.7)

where the constant C depends only on N .

Remark A.3. In a more general context, Chen and Struwe [21] (see also [34]) es-
tablished (A.7) replacing (Hα) by the stronger assumption

Eε(uε) ≤ γ0, (A.8)

where γ0 > 0 is some constant depending only on N . Our proof of Theorem A.2
will rely on the Chen-Struwe result in an essential way. The main point is to show
that (A.8) is met locally, after suitable scalings.

Proof of Theorem A.2. Changing uε possibly by a constant phase, we may impose
the additional condition

1

|B1|
∫

B1

ϕε = 0. (A.9)

Inserting (A.2) into (GL)ε we are led to the elliptic equation

−div(ρ2
ε∇ϕε) = 0 in B1. (A.10)
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In contrast with the equation for the modulus, (A.10) has the advantage that the
explicit dependence on ε has been removed. We will handle (A.10) as a linear
equation for the function ϕε, ρε being considered as a coefficient. In the sequel, we
write ϕ = ϕε and ρ = ρε when this is not misleading. In order to avoid boundary
conditions, we consider the truncated function ϕ̃ defined by ϕ̃ = ϕ χ, where χ is a
smooth cut-off function such that

χ ≡ 1 on B 4
5

and χ ≡ 0 on R
N \ B 5

6
.

The function ϕ̃ then verifies the equation

−div(ρ2∇ϕ̃) = div(ρ2ϕ∇χ) + ρ2∇χ · ∇ϕ in B1. (A.11)

Moreover, by construction
supp(ϕ̃) ⊂ B 5

6
.

Since by assumption ρ is close to 1, it is natural to treat the l.h.s. of (A.11) as a
perturbation of the Laplace operator, and to rewrite (A.11) as follows

−�ϕ̃ = div((ρ2 − 1)∇ϕ̃) + div(ρ2ϕ∇χ) + ρ2∇χ · ∇ϕ in B 5
6
.

We introduce the function ϕ0 defined on B 5
6

as the solution of

{ −�ϕ0 = div(ρ2ϕ∇χ) + ρ2∇χ · ∇ϕ in B 5
6
,

ϕ0 = 0 on ∂ B 5
6
.

(A.12)

In particular, since χ ≡ 1 on B( 4
5 ), we have

−�ϕ0 = 0 in B4/5. (A.13)

We set ϕ1 = ϕ̃ − ϕ0, i.e.
ϕ̃ = ϕ0 + ϕ1.

We will show that ϕ1 is essentially a perturbation term. At this stage, we divide the
estimates into several steps. We start with linear estimates for ϕ0.

Step 1 : Estimates for ϕ0 . We claim that

‖∇ϕ0‖2
L2∗

(B 5
6
)
≤ C1

[∫
B1

eε(uε)

]
(A.14)

and

‖∇ϕ0‖2
L∞(B 3

4
) ≤ C2

[∫
B1

eε(uε)

]
, (A.15)

where 2∗ = 2N
N−2 is the Sobolev exponent in dimension N .
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Proof. The first estimate follows from the linear theory for the Laplace operator,
whereas the second follows from the first one and the fact that ϕ0 is harmonic on
B(4/5).

Step 2: The equation for ϕ1. The function ϕ1 verifies the elliptic problem{ −�ϕ1 = div((ρ2 − 1)∇ϕ̃) in B 5
6
,

ϕ1 = 0 on ∂ B 5
6
.

(A.16)

It is convenient to rewrite equation (A.16) as

−�ϕ1 = div((ρ2 − 1)∇ϕ1) + div (g0), (A.17)

where we have set g0 = (ρ2 − 1)∇ϕ0. Using (A.14) and by assumption (Hα0 ) we
obtain, for any 2 ≤ q < 2∗, the estimate for g0

‖g0‖q
Lq (B 5

6
) ≤ Cε(2−α0)

(2∗−q)

2∗ ‖eε(uε)‖
q
2
L1 . (A.18)

Indeed, since 2∗q
2∗−q ≥ 2 and |ρ| ≤ C on B 5

6
,

∫
B 5

6

|ρ2 − 1|q |∇ϕ0|q ≤
(∫

B1

|∇ϕ0|2∗
) q

2∗ (∫
B1

|ρ2 − 1| 2∗q
2∗−q

) 2∗−q
2∗

≤ C‖eε(uε)‖
q
2
L1ε

2(2∗−q)

2∗

(∫
B1

|ρ2 − 1|2
4ε2

) 2∗−q
2∗

,

and the conclusion (A.18) follows.
We now estimate ϕ1 from (A.17) through a fixed point argument.

Step 3: The fixed point argument. Equation (A.17) may be rewritten as

ϕ1 = T (div((ρ2 − 1)∇ϕ1)) + T (div g0),

which is of the form
(Id − A)ϕ1 = b

where T = �−1, A is the linear operator v �→ T (div((ρ2 − 1)∇v)) and b =
T (div g0). Consider the Banach space Xq = W 1,q

0 (B 5
6
). It follows from the linear

theory for T that A : Xq → Xq is linear continuous and that

‖A‖L(Xq ) ≤ C(q)‖1 − ρ‖L∞(B 5
6
).

In particular, we may choose the constant σ > 0 in (A.6) such that

C(q)‖1 − ρ‖L∞(B(1)) ≤ C(q)σ0 <
1

2
.
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With this choice of σ , we deduce that I − A is invertible on Xq and

‖ϕ1‖Xq ≤ C‖b‖Xq . (A.19)

Finally, by (A.18) we obtain

‖b‖Xq = ‖T (div g0)‖Xq ≤ C‖g0‖Lq ≤ C ε
(2−α0)(2∗−q)

q2∗ ‖eε(uε)‖
1
2
L1 .

Going to (A.19) we deduce

‖∇ϕ1‖Lq (B5/6) ≤ Cε
(2−α0)(2∗−q)

2∗q ‖eε(uε)‖
1
2
L1(B1)

. (A.20)

We now combine the estimates for ϕ0 and ϕ1.

Step 4: Improved integrability of ∇ϕ̃. Since α0 < 2, we obtain, combining
(A.14) and (A.20),

‖∇ϕ̃‖Lq (B5/6) ≤ Cε
(2−α0)(2∗−q)

2∗q ‖eε(uε)‖
1
2
L1(B1)

. (A.21)

Comment. Since q > 2, the previous estimate presents a substantial improvement
over the corresponding inequality with q replaced by 2, which is immediate. This
improvement is crucial in order to prove the smallness of both the modulus and
potential terms in the energy, which we derive now.

Step 5: Estimates for the modulus and potential terms. Recall that the function
ρ satisfies the equation

−�ρ + ρ|∇ϕ|2 = ρ
(1 − ρ2)

ε2
. (A.22)

Since χ ≡ 1 on B4/5, we have ϕ = ϕ̃ on B4/5. Let ξ be a non-negative cut-off
function such that ξ ≡ 1 on B3/4 and ξ ≡ 0 outside B4/5. Multiplying (A.22) by
(1 − ρ2)ξ and integrating by parts we obtain

∫
B1

2ρ|∇ρ|2ξ +
∫

B1

ρ
(1 − ρ2)2

ε2
=

∫
B1

∇ρ · ∇ξ(1 − ρ2) +
∫

B1

ρ(1 − ρ2)|∇ϕ̃|2ξ.

Hence, since ρ ≥ 1
2 on B1 we obtain

∫
B3/4

|∇ρ|2 + Vε(uε) ≤ Cε

(∫
B1

|∇ρ|2
) 1

2
(∫

B1

Vε(uε)

) 1
2

+ C

(∫
B4/5

|∇ϕ̃|q
) 2

q
(∫

B4/5

(1 − ρ2)
q

q−2

) q−2
q
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so that using (A.21) we finally infer that∫
B3/4

[
∣∣∇|uε|

∣∣2 + Vε(uε)] ≤ Cεβq

∫
B1

eε(uε), (A.23)

where βq = (4 − 2α0)
(2∗−q)

2∗q . To summarize, we have proved at this stage that

eε(uε) ≤ |∇ϕ0|2 + rε, (A.24)

for some rε ≥ 0 which verifies∫
B 3

4

rε ≤ Cεβq

∫
B1

eε(uε). (A.25)

Step 6: Proof of Theorem A.2 completed. We are going to apply the result by
Chen and Struwe [21] (see Remark A.3) to a suitably scaled version of uε.

Let 0 < r0 < 1
8 , to be determined later, set ε = ε

r0
and let x0 ∈ B 1

2
be fixed.

Consider the map vε defined on B1 by

vε(x) = uε

(
x − x0

r0

)

so that uε(x0) = vε(0). By scaling, we have∫
B1

eε(vε) = 1

r N−2
0

∫
B(x0,r0)

eε(uε). (A.26)

Note in particular, since r0 < 1
8 , that B(x0, r0) ⊂ B(3/4), and we may invoke the

decomposition (A.24) to assert that∫
B(x0,r0)

eε(uε) ≤ meas(B(x0, r0) ) · ‖∇ϕ0‖2
L∞ +

∫
B 3

4

rε

≤ Cr N
0 ‖eε(uε)‖L1(B1)

+ Cεβq ‖eε(uε)‖L1(B1)
.

Hence, going back to (A.26)∫
B1

eε(vε) ≤ Cr2
0‖eε(uε)‖L1(B1)

+ Cr2−N
0 εβq ‖eε(uε)‖L1(B1)

, (A.27)

so that, in view of assumption (Hα0),

∫
B1

eε(vε) ≤ Cr2
0ε−α0 + Cr2−N

0 εβq−α0 . (A.28)
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We next determine the constants q, α0 and r0 so that the right-hand side of (A.28)
is less than γ0. First, we choose q arbitrarily in the interval (2, 2∗), say for instance
q = 2+2∗

2 . We then notice that, varying r0, the maximum of r2
0ε−α0 + r2−N

0 εβq−α0

is achieved for

r0 = ( N−2
2 )1/N εβq/N , (A.29)

so that the right-hand side of (A.28) is less than Cε2
βq
N −α0 . Since βq = (4 −

2α0)
(2∗−q)

2∗q , we may choose α0 sufficiently small so that βq > 0 and 2βq
N − α0 > 0.

In particular, for such a choice we have∫
B1

eε(vε) ≤ γ0

for ε sufficiently small. We are now in position to apply the Chern-Struwe result
described in Remark A.3. This yields, in view of (A.27),

r2
0 eε(uε)(x0) = eε(vε)(x0) ≤ C

∫
B1

eε(vε)

≤ Cr2
0‖eε(uε)‖L1(B1)

+ Cr2−N
0 εβq ‖eε(uε)‖L1(B1)

,

(A.30)

and hence

eε(uε)(x0) ≤ C
∫

B1

eε(uε), (A.31)

and the proof is complete.

Notice that in the course of the proof, we have shown that the contribution of
the modulus to the energy is small: More precisely, inequality (A.23) yields

Proposition A.4. Let uε be a solution of (GL)ε on B1. There exist constants 0 <

α0 < 1 and 0 < σ0 ≤ 1
2 depending only on N such that if (Hα0) is satisfied and if

|uε| ≥ 1 − σ0 on B1, (A.32)

then ∫
B 3

4

[
∣∣∇|uε|

∣∣2 + Vε(uε)] ≤ Cεβ

∫
B1

eε(uε), (A.33)

where β > 0 and C depend only on N .

Remark A.5. Notice that we also have derived under assumption (A.32) a point-
wise estimate for the potential in Proposition 2.3. In Theorem A.6 we also derive a
pointwise bound for |∇ρ|.
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Proof of Theorem 2.1. Since we have the pointwise inequalities

|∇ϕε|2 ≤ 4|∇uε|2 ≤ 8eε(uε),

the conclusion of Theorem 2.1 in case R = 1 follows combining (A.7) and (A.3).
The general case is deduced by scaling.

Finally we derive pointwise estimates for derivatives. More precisely, we have

Theorem A.6. Assume that (A.2) and (Hα0) hold, where α0 is the constant appear-
ing in Theorem 2.1. Then

||∇ρε||L∞(B1/2) ≤ Cε(1 + Eε(uε)), (A.34)

where C is a constant depending only on N.

Proof. We deduce from Theorem 2.1 and Proposition 2.2 that

||θε||L∞(B5/6) ≤ Cε2(1 + Eε(uε)), (A.35)

where θε = 1 − ρε. Hence, going back to (A.5), we have

||aθε||L∞(B5/6) ≤ C(1 + Eε(uε)), (A.36)

so that (A.4), (A.5) and (A.7) yield

||�θε||L∞(B5/6) ≤ C(1 + Eε(uε)). (A.37)

On the other hand, we have the Gagliardo-Nirenberg inequality

||∇θε||L∞(B1/2) ≤C(||�θε||L∞(B5/6)||θε||L∞(B5/6) + ||θε||2L∞(B5/6)
), (A.38)

(see e.g. Lemma A.2 in [6]) and the conclusion follows combining (A.34), (A.35)
and (A.38).

A.2. Higher integrability

In the proof of inequality (1.6) and Theorem 1.5 we invoke the following

Theorem A.7. Let uε be a solution of (GL)ε on B1. There exists constants η1 > 0
and C > 0 such that if Eε(uε) ≤ η1|log ε|, then

(∫
B1/2

|∇u|2
)1/2

≤ C
∫

B1

|∇u| . (A.39)
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Proof. In view of the Clearing-Out property, there exists some constant η1 > 0
such that, if

Eε(uε) ≤ η1|log ε| (A.40)

then
|uε| ≥ 1 − σ0 on B7/8.

For this choice of η1, we may therefore write on B7/8 uε = ρε exp(iϕε).

Step 1: estimate for the phase. The phase ϕε satisfies the equation

div (ρ2
ε∇ϕε) = 0 on B7/8. (A.41)

Expanding the differential operator, we are led to

−�ϕε + c∇ϕε = 0 on B7/8, (A.42)

where we have set c = −∇ρε

ρε
. In view of Theorem A.6, we derive the bound

||c||L∞(B7/8) ≤ Cε2|log ε|,
so that, by standard elliptic estimates for (A.42) we have

||∇ϕε||L∞(B6/7) ≤ C
∫

B7/8

|∇uε| . (A.43)

Step 2: estimate for the modulus. In this step, we will derive similarly the bound

‖∇ρε‖L2(B1/2)
≤ C‖∇u‖L1(B1)

(A.44)

which, combined with (A.43), will yield the conclusion. In order to prove (A.44)
we distinguish two cases.

Case A: ‖∇u‖L1(B1)
≥ 1. This is the easiest case. Let 0 ≤ χ ≤ 1 be a smooth cut-

off function with compact support in B6/7 and such that χ ≡ 1 on B5/6. Multiplying
equation (A.4) by χ2θε we are led to∫

B5/6

|∇θε|2+ε−2θ2
ε ≤C(χ)

(‖b‖L∞(B6/7)‖θε‖L∞(B6/7)+‖∇θε‖L∞(B1)‖θε‖L∞(B6/7)

)
.

Since θε = 1 − ρε, we have |θε| ≤ C by Proposition 2.2, and in view of (A.43) we
have ‖b‖L∞(B6/7) ≤ C‖∇uε‖2

L∞(B1)
. Hence, we are led to

‖∇θε‖2
L2(B5/6)

+ ε−2‖θε‖2
L2(B5/6)

≤ C
(
‖∇uε‖L1(B1)

‖∇uε‖2
L1(B1)

)
≤ C‖∇uε‖2

L1(B1)

(A.45)
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where we have used the assumption ‖∇u‖L1(B1)
≥ 1; the conclusion (A.44) follows

in this case.

Case B : ‖∇u‖L1(B1)
≤ 1. In view of (A.43) and (A.45), we have ‖∇uε‖L2(B5/6)

≤
C, and we deduce from Theorem 2.1 and Proposition 2.2 that

‖θε‖L∞(B4/5) ≤ Cε2. (A.46)

In particular, setting α(x) = a(x) − 2ε−2 we have

‖α‖L∞(B4/5) ≤ C.

Next, let r ∈ (3/4, 4/5). Multiplying (A.4) by 1 and integrating over Br we obtain∣∣∣∣
∫

Br

2ε−2θε

∣∣∣∣ ≤
∫

Br

|b| +
∫

∂ Br

|∂θε

∂n
| + C

∫
Br

ε−2θ2
ε .

In particular we may choose some r such that

2ε−2
∣∣∣∣
∫

Br

θε

∣∣∣∣ ≤ C
(‖∇θε‖L1(B1)

+ ‖∇uε‖L1(B1)

) ≤ C‖∇uε‖L1(B1)
.

Therefore, we obtain by Sobolev embedding

‖θε‖W 1,1(Br )
≤ C‖∇uε‖L1(B1)

. (A.47)

Going back once more to (A.4), we decompose on B3/4 the function θε as θε =
θ0
ε + θ1

ε , where θ1
ε is the solution of{ −�θ1

ε + aθ1
ε = b on B 3

4
,

θ1
ε = 0 on ∂ B 3

4

(A.48)

so that θ0
ε verifies the equation

−�θ0
ε + aθ0

ε = 0 on B 3
4
. (A.49)

Multiplying (A.48) by θ1
ε , we obtain

||∇θ1
ε ||2L2(B3/4)

+ ε−2||θ1
ε ||2L2(B3/4)

≤ C ||∇uε||2L1(B1)
,

so that

||θ1
ε ||H1(B3/4)

≤ C ||∇uε||L1(B1)
. (A.50)

We claim that similarly, we have the estimate for θ0
ε

||∇θ0
ε ||L2(B1/2)

≤ C ||θ0
ε ||W 1,1(B3/4)

, (A.51)



IMPROVED ESTIMATES FOR THE GINZBURG-LANDAU EQUATION:THE ELLIPTIC CASE 353

where the constant C is independent of ε. We postpone the proof of (A.51) and
complete the proof of (A.43) in Case B. Combining (A.50) and (A.51), we have

||∇ρε||L2(B1/2)
≤ ||∇θ1

ε ||L2(B1/2)
+ ||∇θ0

ε ||L2(B1/2)

≤ C
(
‖∇uε‖L1(B1)

+ ‖θε − θ1
ε ‖W 1,1(B3/4)

)
≤ C

(
‖∇uε‖L1(B1)

+ ‖θε‖W 1,1(B3/4)
+ ‖θ1

ε ‖H1(B3/4)

)
≤ C‖∇uε‖L1(B1)

where we have used (A.50) for the third inequality. Inequality (A.43) is therefore
established.

Proof of the claim (A.51). Let 0 ≤ χ ≤ 1 be a smooth cut-off function with compact
support in B3/4, and consider the operator Lε = −� + 2ε−2 on RN . We have, for

θ
0,χ
ε = χθ0

ε ,

Lε(θ
0,χ
ε ) = f χ

ε ≡ 2∇χ∇θ0
ε + (�χ − αχ)θ0

ε . (A.52)

Notice that for any 1 ≤ p ≤ +∞, we have

‖ fε‖L p(RN ) ≤ C(χ)‖θ0
ε ‖W 1,p(supp χ). (A.53)

The kernel Kε associated to the operator Lε is given by

Kε(x) = cN |x |2−N exp

(
−|x |

ε

)
if N ≥ 3

and

Kε(x) = c2 log(|x |) exp

(
−|x |

ε

)
if N = 2.

In particular, we have for any 1 ≤ r < N
N−1

‖Kε‖W 1,r (RN ) ≤ C(r),

where the constant C(r) is independent of ε. It follows that for every 1 ≤ q < p∗ ≡
N p

N−p

‖θ0,χ
ε ‖W 1,q (RN ) ≤ C(χ, q)‖θ0

ε ‖W 1,p(supp χ).

We iterate the previous inequality for suitable choices of cut-off functions χ and
q = 1∗, 1∗∗, · · · up to q = 2. This yields

|θ0
ε ‖H1(B1/2)

≤ C‖θ0
ε ‖W 1,1(B1)

.
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